

$$
\begin{gathered}
\text { TUBE } \\
\text { TECHNICAL } \\
\text { HANDBOOK }
\end{gathered}
$$

ERICSSON TELEPHONES LMMTE ETELCO LIMITEO

electronic tube handbook

ERICSSON TELEPHONES LIMITED

CONTENTS

Section Symbol
General Information G1
Voltage Stabilizers ST
Corona Voltage Stabilizers CS
Reference Tubes RF
Trigger Tubes TR
*Dekatron Tubes DK
*Digitrons and Register Tubes RG
Circuits CT
Spark Gap Tubes SP
Maintenance Tubes MN
References RS* DEKATRON and DIGITRON are registered TradeMarks of Ericsson Telephones Limited.
TUBE DIVISION

Head Office: 22 LINCOLN'S INN FIELDS LONDON WC2
Tube Division Publication B573Issue 3Con

ELECTRONIC TUBES,

ELECTROLUMINESCENT DEVICES

AND PHOTOCONDUCTIVE CELLS

DEKATRONS, DIGITRONS, PHOSPHOTRONS, PHOSPHOLITES, PHOTACTORS, REGISTER TUBES, TRIGGER TUBES, REFERENCE STABILIZER TUBES, MIMIC DIAGRAMS and PHOTOCONDUCTIVE CELLS.

PRICE LIST (NETT)

REVISED 1st. SEPTEMBER
 1964

Ericsson Telephones Ltd. Etelco Limited

Tube and Physics Division
Beeston, Nottingham
England
(Counters and Selectors)
Type
Price
GC10B 29/-
GC10B/L (CV6044) 50/.
GC10B/S (CV2271) 34/.
GC10/4B (CV1739) 38/-
GC10/4B/L (CV6100).. 50/.
GC10D (CV5143) 45/.
GC12/4B 50/-
GCA10G 45/•
GS10C/S (CV2325) 35/•
GS10D 45/.
GS10H 30/-
GS12D 65/-
GSA10G 45/•
"DIGITRON AND REGISTER TUBES
(Indicator Tubes)
\ddagger GR2J 40/。
¥ GR7M 45/-
GR10A (CV5291) 35/-

GR10J 32/6
GR10K 32/6
GR10M 32/6
\ddagger GR10N 80/-

TRIGGER TUBES

\ddagger	GPE120T	-	-	-	-	. .	. \cdot	10/
	GPE175M	-	-	-	-	.	-	8/6
	GTE120Y	. \cdot	-	-	-	.	-	5/0
	GTE130T	.	-	.	-	-	-•	9/-
\ddagger	GTE150Y	-	.	.	.	-•	-	5/-
	GTE175M	. -	-	-•	-	-	-	6/6
	GTR120w	-	-	-	. .	1/6

SPARK GAP TUBES

GD2V			70/-
\ddagger GD550W	.	-	-•	-	-	.	28/

Type Price

GD340	-•	-	42/6
GD350X	. .	.	-	42/6
GD350Y	-	-	-•	-•	-•	。	30/-

REFERENCE AND STABILIZER TUBES

REED RELAY INSERTS
\ddagger MRR1/A \quad.. $5 /-$

MAINTENANCE TUBES

\ddagger Data available on request

MAINTENANCE TUBES (continued)


```
INDICATOR SHIELDS FOR USE WITH DEKATRONS
E.T.L. CODE PRICE Nett FOR USE WITH
(not subject
to discount)
N78211 (Bakelite 0-9) 2/• .. GC10B, GC10B/S, GC10/4B, GC10D
N79368 (Hetal 0-9) 1/... GC10B, GC10B/S, GC10/4B, GC10D, GS10H
N79369 (Metal \(0-11\) ) \(1 / \cdot \ldots\) GC12/4B
N80977 (Metal 0-9) 1/••. GS10C/S, GS10D, GR10A
N84538 (Metal \(0-11\) ) \(1 / \cdot \cdot\) GS12D
N84338 (Metal 0-9) \(1 / \cdot\).. GC10/2P
```

RETAINING CLIP FOR USE WITH TROCHOTRONS
HFD13441
2/3 .. For use with VS10G, VS10H and Vsiok

ESCUTCHEON UNITS FOR USE WITH SIDE VIEWING DIGITRONS

HFD13502
2 tube
\&2. 2.6
HFD13503
HFD13504
HFD13505
3 tube
£2.10.0
4 tube
23. 2.6

5 tube $£ 3.12 .6$

For use with Digitron GR10J

TUBE SOCKETS

* PHOTACTOR SWITCHES

CADMIUM SULPHIDE PHOTOCELLS

```
\ddagger K40 .. .. .. .. .. .. 10/=
\ddagger K42 .. .. .. .. .. .. 8/.
MIMIC DIAGRAMS
SPECIAL ELECTROLUMINESCENT LAMP UNITS SPECIAL PHOTACTORS
SPECIAL CADMIUM SELENIDE CELLS
```

These are produced to customers requirements. We shall be pleased to advise or quote against your specification.

COLD - CATHODE TUBES

TABLE OF EQUIVALENTS

SEPTEMBER 1964

ERICSSON TELEPHONES LIMITED ETELCO LTD.

TUBE EQUIVALENTS
Voltage Stabilizers and Reference Tubes

* Near Equivalent

Type	CV.	English Elect.	G.E.C.	Mullard	U.S.A.
GD75P				75C1	0C2
GTR75M	284			75B1	
GD83M				83A1	
GD85M/S	449	5651/GS1209	QS83/3	85A2	063
GD85PR/S	4048	QS1212		M8098	
GR35WR				M8190*	
GD86W/S	2321				
GD87M	2573				5651
GD90M				90C1	
GTR95M/S	286	QS95/10	QS95/10	95A1	
GD100A/S	188	QS92/10			
GD100B/S	1070		ST11	7475	
GD108M	1833	$\begin{aligned} & \hline \mathrm{OB2} 2 \\ & \text { QS1208 } \end{aligned}$		108C1	OB2
GD120A/S	$\begin{aligned} & 1110 \\ & 1731 \end{aligned}$		S130		
GTR120A/S	45		S130P		
GD150A/S	216	$\begin{aligned} & \text { OB3 } \\ & \text { QS150/40 } \end{aligned}$	QS150/40	150 C 3	OD3
GD150M/S	1832	$\begin{aligned} & \text { OA2 } \\ & \text { QS1207 } \end{aligned}$		$\begin{aligned} & 150 \mathrm{C} 2 \\ & 150 \mathrm{C} \end{aligned}$	OA2
GTR150M/S	287	QS150/15	QS150/15	150B3	
GD150P/S	2225	QS1200		15082	6354
GD150PR/S	4104			M8163	
Trigeer Tubes					
GPE1201				Z806W*	
GTE130T	2434			Z803U	6779
GTE150Y				Z700U**	
GTE175M	5348				

Multi-Cathode Tubes

GC10B/S	2271			Z303C	6482
GC10B/L	6044				
GC10/4B	1739				6802
GC10/4B/L	6100				
GC10D	5143				
GC10/2P					6879
GS10C/S	2325			Z502S	6476
GR10A	5291			Z503M	
GS10H				Z504S*	

IDigitron Tubes

	CV	France (CSF)	Philips	Mullard	Burroughs
GR10M		TA542	Z520M	Z520M	B5031
GR10K	5842				

GENERAL INFORMATION

INDEX

Nomenclature
General Tube Index
Escutcheons
Recommended Components

Nomenclature

All tube types are denoted by a group of letters, followed by a number and a final letter. The first letter gives a general description of the tube, i.e., $\mathrm{G}=\mathrm{Gas}$-filled, $\mathrm{V}=\mathrm{Vacuum}$.

The second letter, or group of letters, indicates the class of tube.

$$
\begin{aligned}
\text { Thus:- } & \begin{array}{l}
\text { Diode } \\
\text { Triode }
\end{array}=\mathrm{D} \\
\text { Tetrode } & =\mathrm{TE} \\
\text { Pentode TR } & =\mathrm{PE} \\
\text { Counter } & =\mathrm{C} \\
\text { Selector } & =\mathrm{S} \\
\text { Register } & =\mathrm{R}
\end{aligned}
$$

The number that follows these letters refers to a significant characteristic of the tube. For example, in counters, selectors and registers it indicates the number of index cathodes; in diodes and voltage stabilizers, the running voltage; and in trigger tubes, the nominal striking voltage of the trigger electrode.

Where a counter has more than one cathode brought out to its individual pin on the tube base, a second figure separated from the first by an oblique stroke indicates the number of these cathodes, e.g., GC10/4B.

The next letter indicates the method of connection to the external circuit and also gives the order of development.

$$
\begin{array}{ll}
\text { Phenolic Bases } & =\mathrm{A}-\mathrm{F} \\
\text { Glass Button Bases } & =\mathrm{G}-\mathrm{T} \\
\text { Wire-ended } & =\mathrm{W}-\mathrm{Z}
\end{array}
$$

The suffix / M applies to Trochotron Beam Switching Tubes provided with magnetic shielding.

The suffix R applies to tubes tested for resistance to vibration and shock.

Tubes tested to Services specifications are coded with the suffix /S.

G|-1-1

General Tube Index

Tube Type	CV Code	Section	
GC10B	-	Dekatron Tubes	DK-1
GC10B/L	CV. 6044	,, ,	DK-1
GC10B/S	CV. 2271	," ,"	DK-1
GC10/4B	CV. 1739	," ,,	DK-2
GC10/4B/L	CV. 6100	," „,	DK-1
GC12/4B	-	", ",	DK-3
GC10D	CV. 5143	" "	DK-4
GC10/2P	-	Maintenance Tubes	MN-2
GCA10G	-	Dekatron Tubes	DK-10
GD2V	-	Spark Gap Tubes	SP-1
GD75P	-	Voltage Stabilizers	ST-8
GD83M	-	Reference Tubes	RF-5
GD85M/S	CV. 449 (OG3) Issue 4	,, ",	RF-2
GD85M/R	-	" ",	RF-2
GD85P/RS	CV. 4048	," ,	RF-2
GD85WR	-	"	RF-4
GD86W/S	CV. 2321	," ,"	RF-1
GD87M	CV. 2573 (5651)	" ",	RF. 6
GD90M	-	Voltage Stabilizers	ST-6
GD108M	CV. 1833 (OB2)	," ,"	ST-10
GD120A/S	CV. 1110	Maintenance Tubes	MN-3
GD150A/S	CV. 216 (OD3)	Voltage Stabilizers	ST-3
GD150M	-	," ,"	ST-5
GD150M/R	-	" "	ST-7
GD150M/S	CV. 1832 (OA2)	" "	ST-4
GD150P	CV. 2225	" "	ST-9
GD340W	-	Corona Voltage Stabilizers	CS-1
GD350X	-	,, „,	CS-2
GD350Y	-	", "	CS-2
GDT120M	-	Maintenance Tubes	MN-5
GDT120T	-	" "	MN-6

General Tube Index

Tube Type	CV Code	Section	
GPE175M	-	Trigger Tubes	TR-5
GR2G	-	Maintenance Tubes	MN-7
GR2H	-	,, ,"	MN-8
GR4G	-	,", ",	MN-9
GR10A	CV. 5291	Digitrons and Register Tubes	RG-1
GR10G	-	Maintenance Tubes	MN-10
GR10H	-	,", ",	MN-11
GR10J	-	Digitrons and Register Tubes	RG-7
GR10K	CV. 5842	,", „	RG-8
GR10M	-	", ",	RG-11
GR10W	-	Maintenance Tubes	MN-12
GR12G	-	,, ,,	MN-13
GR12H	-		MN-13
GS10C/S	CV. 2325	Dekatron Tubes	DK-11
GS10D	-	", "	DK-13
GS10E	-	Maintenance Tubes	MN-14
GS10H	-	Dekatron Tubes	DK-17
GS12D	-	,, ,,	DK-12
GSA10G	-	,, ",	DK-10
GTE120Y	-	Trigger Tubes	TR-7
GTE130T	CV. 2434	,", "	TR-6
GTE175M	-		TR-1
GTR75M	CV. 284	Voltage Stabilizers	ST-11
GTR83W	-	Reference Tubes	RF-8
GTR83X	-		RF-7
GTR95M/S	CV. 286	Voltage Stabilizers	ST-1
GTR120A/S	CV. 45	Maintenance Tubes	MN-4
GTR120W	-	Trigger Tubes	TR-2
GTR150M/S	CV. 287	Voltage Stabilizers	ST-2
GTR150W	-	Reference Tubes	RF-9
VS10G	CV. 5290	Maintenance Tubes	MN-15
VS10G/M	-	,, ,,	MN-16
VS10H	CV. 6103	" "	MN-17
VS10K	-	" "	MN-18
Digitron Escutcheon Unit			Gl-3

\square

Escutcheons

Escutcheons numbered $0-9$ and $0-11$ are available in the sizes given below. With the exception of N. 78211 which is moulded in black bakelite and numbered 0-9, they are made of brass with a matt black tropical finish. The numerals are silk screen printed in white.

CODE N79368 numbered 0-9

CODE N80977 numbered 0.9
(Used for duodecal tubes)

CODE N79369 numbered 0.11

*DIGITRON ESCUTCHEON
 UNIT KITS

Escutcheon unit kits are available for use with 30 mm . character height, side=viewing, DIGITRON tubes, in sizes accommodating 2 to 5 tubes. Each kit consists of mounting brackets, valve holders, two end plates, a clear red perspex window, a cream moulded escutcheon and the appropriate number of 6BA screws and nuts. The mounting brackets and end plates are finished matt black.

The fits are supplied with all the necessary components, but without tubes, under the following codes.

No. of tubes	
2	HFD 13502
3	HFD 13503
4	HFD 13504
5	HFD 13505

*Registered Trade Mark
digitron escutcheon

UNIT KITS

HFD 13506 - HFDI 13509 ESCUTCHEON
 $\begin{array}{llll}2 & 6.812^{\prime \prime} & 6.187^{\prime \prime} \mathrm{HFD} \\ 3 & 8.13506\end{array}$ $\begin{array}{llll}3 & 8.187^{\prime \prime} & 7.562^{\prime \prime} \text { HFDI3507 } \\ 4 & 9.562^{\prime \prime} & 8.937^{\circ} \mathrm{HFD} 13508\end{array}$ 5 10.937" $10 \cdot 312^{\prime \prime} \mathrm{HFD} 13509$

HFD 13510
MOUNTING BRACKET

HED 13511
END PLATE

Recommended Components and Tube Equivalents

The following information has been compiled to assist users of our tubes in choosing the correct components for the circuits given in this Technical Handbook. We believe that the information given here will be of particular use to our overseas customers.

Components

Q3/3
Selenium Diode manufactured by:-
Standard Telephones and Cables Ltd.
Rectifier Division
Harlow, Essex
P50A Germanium Junction Photo-Cell is also
manufactured by S.T.C. Ltd.
GEX 55/1 Crystal Diode manufactured by:G.E.C.

Valve and Electronics Department Magnet House, Kingsway London, W.C. 2

OA202 Mullard Limited Mullard House

Torrington Place
London, W.C. 1

Tube Sockets

B12E
(Duodecal plus bottom cap connector)

Manufactured by:-
(a) The McMurdo Instrument Co.Ltd.

Victoria Works
Ashstead, Surrey
(Manufacturer's reference X12E/Mk. 2 and X12ER/Mk. 2)
(b) Siemens Edison Swan Ltd.

Brantwood Road
Tottenham, London, N. 17
(Manufacturer's reference VH 34/1201)

Recommended Components and Tube Equivalents

Tube Sockets

B12E with two sub-miniature contacts for GS12D tube
B17A
Manufacturer's reference VH 26/1703
E.T.L. code HFD 13045
Printed Circuit Type
B27A
E.T.L. code HFD 13534
Manufacturer's reference VH 26/2701
E.T.L. code N890858A

Manufactured by:-
Siemens Edison Swan Ltd.
(Manufacturer's reference VH 39/15)

B17A Socket Mounting Position

Tube Equivalents

BRITISH SERVICES CODE
CV. 138
CV. 140
CV. 448
CV. 455
CV. 491
CV. 2209
CV. 2213

COMMERCIAL CODE
EF91/6AM6
EB91/6AL5
OA81/IN476
ECC81/12AT7
ECC82/12AU7
6F33
NT2
rellable code
CV. 4014
-
CV. 4024
CV. 4003

VOLTAGE STABILIZERS

INDEX

Tube Type
CV. Code

GTR95 M/S	CV. 286
GTR150 M/S	CV. 287
GD150 A/S	.	.	.	CV.	16 (OD3)
GD150 M/S	CV. 1	832 (OA2)
GD150M	-
GD90M	-
GD150M/R	-
GD75P	-
GD150P	CV. 2225
GD108M	.			CV. 1	833 (OB2)
GTR75M		.		.	CV. 284

VOLTAGE STABILIZERS

These tubes are gas-filled diodes, with a voltage drop between anode and cathode which is, within its working range, relatively independent of the current flowing. They are connected in parallel with the load to be stabilized, with a series resistor common to both load and stabilizer tube.

Before the tube strikes, the voltage on its anode will be some fraction of the supply voltage determined by the ratio of the series resistor and the effective load resistance. When this latter resistance is a minimum, i.e., in the condition for maximum load current, the choice of series resistor for a given supply voltage may be limited by the necessity for sufficient anode voltage to ensure take-over initially. Once the discharge is established, circuit values are chosen to keep the stabilizer anode current within the minimum and maximum ratings.

Limit Ratings

Minimum anode current	2 mA
Maximum anode current	10 mA
Minimum anode supply voltage when primer is	
\quad connected as (1) below	110 V
	125 V

Primer Connections

1. To $+150 \vee$ via $270 \mathrm{k} \Omega$, or any other arrangement causing the primer current to be between 150 and $500 \mu \mathrm{~A}$.
2. Through $3.3 \mathrm{k} \Omega$ to the main anode.

Characteristics

Running voltage at 5 mA	$90-100 \mathrm{~V}$
Maximum change in V_{R} for a current change from	
2 to 10 mA	5 V
Impedance	350Ω
Primer striking volts	125 V
Primer V_{R} before anode take-over	108 V
Maximum noise within the working range	15 mV r.m.s.
Noise at 2 mA	Approx. $350 \mu \mathrm{~V}$ r.m.s.

Primed Voltage Stabilizer

Mechanical Data

Mounting position	Any
Weight	7.1 g (nominal)
Base	B7G

Limit Ratings

Minimum anode current	2 mA
Maximum anode current	20 mA
Minimum anode supply voltage when primer is	
connected as (1) below	170 V
(2) below	200 V

Primer connections

1. To +240 V via $270 \mathrm{k} \Omega$, or any other arrangement causing the primer current to be between 300 and $500 \mu \mathrm{~A}$.
2. Through $68 \mathrm{k} \Omega$ to the main anode.

Characteristics

Running voltage at 10 mA $145-160 \mathrm{~V}$
Maximum change in running voltage for a current change from 2 to 20 mA 5 V
Impedance 350Ω
Primer striking volts 200 V
Primer V_{R} before anode take-over 150 V
Maximum noise within the working range 15 mV r.m.s.
Noise at 2 mA Approx. $550 \mu \mathrm{~V}$ r.m.s.

Primed Voltage Stabilizer (CV.287)

Mechanical Data

Mounting position
Weight
Base

Base Connections
(underside view)

Voltage Stabilizer

Limit Ratings

Minimum anode current	5 mA
Maximum anode current	40 mA
Minimum anode supply voltage	180 V

N.B.-Equilibrium conditions are reached after operation for 3 minutes.

Characteristics

Minimum running voltage at 5 mA	145 V
Maximum running voltage at 40 mA	162 V
Maximum change in V_{R} for a current change of	
$\quad 5$ to 40 mA	5.5 V
Impedance	250Ω
Maximum noise within working range	10 mV r.m.s.
Noise at 30 mA	$180 \mu \mathrm{~V}$ r.m.s. (nom.)

ST-3-1

Mechanical Data

Mounting position
Any
Weight
35 g (nominal)
Base
I.O.

Voltage Stabilizer

Limit Ratings

Minimum anode current	5 mA
Maximum anode current	30 mA
Minimum anode supply voltage	180 V

Characteristics

$$
\begin{array}{lr}
\text { Minimum running voltage at } 5 \mathrm{~mA} & 142 \mathrm{~V} \\
\text { Maximum running voltage at } 30 \mathrm{~mA} & 165 \mathrm{~V} \\
\text { Maximum change in } V_{R} \text { over a range of } 5 \text { to } 30 \mathrm{~mA} & 6 \mathrm{~V} \\
\text { Maximum noise within the working range } & 5 \mathrm{mV} \text { r.m.s. }
\end{array}
$$

Mechanical Data

Mounting position
Weight
Base
Any

10 g (nominal)
B7G

Base Connections
(underside view)

Pin 1 Anode
2 Cathode
3 Do not connect
4 Cathode
5 Anode
6 Do not connect
7 Cathode

Limit Ratings

Minimum anode current	5 mA
Maximum anode current	30 mA
Minimum anode supply voltage	180 V

Characteristics

Minimum running voltage at 5 mA	143 V	\leftarrow
Running voltage at 15 mA	$145-155 \mathrm{~V}$	
Maximum running voltage at 30 mA	156 V	\leftarrow
Maximum change in V_{R} over a range of 5 to 30 mA	5 V	\leftarrow
Maximum noise within the working range	5 mV r.m.s.	

N.B. \leftarrow Indicates a change from previous data sheets

Mechnical Data

Weight	10 g (nominal)
Base	B7G

Base Connections
(underside view)

Pin 1 Anode
2 Cathode
3 Do not connect
4 Cathode
5 Anode
6 Do not connect
7 Cathode

Limit Ratings

Minimum anode current	1 mA
Maximum anode current	40 mA
Maximum striking voltage (normal room illumination)	115 V
Maximum ambient temperature limits	-55° to
$+90^{\circ} \mathrm{C}$	

Characteristics

Running voltage at 20 mA	$86-94 \mathrm{~V}$
Maximum change in V_{R} for a current change from 1 to 40 mA	14 V
Incremental resistance at 20 mA	350Ω nom.

N.B.-Equilibrium conditions are reached after three minutes operation.

Mechanical Data

Mounting Position
Any
Base

Base Connections

(underside view)

Pin 1 Anode
2 Cathode
3 Do not connect
4 Cathode
5 Anode
6 Do not connect
7 Cathode

Limit Ratings

Minimum anode current	2 mA
Maximum anode current	60 mA
Maximum striking voltage (light or dark)	115 V
Maximum negative anode voltage	50 V
Bulb temperature limits	-55° to $+90^{\circ} \mathrm{C}$
Maximum storage temperature	$+70^{\circ} \mathrm{C}$

Characteristics

Running voltage at $30 \mathrm{~mA} \quad 75-81 \mathrm{~V}$
Maximum change in V_{R} for a current change from 2 to 60 mA
Typical incremental resistance over a current range of $10-60 \mathrm{~mA}$ 130Ω
N.B.-Equilibrium conditions are reached after three minutes operation.

Mechanical Data

Mounting position
Any
Base
B7G

Limit Ratings

Minimum anode current	5 mA
Maximum anode current	15 mA
Minimum anode supply voltage	180 V
(normal room illumination)	
Ambient temperature limits	-55° to $+90^{\circ} \mathrm{C}$

Characteristics

Running voltage at 10 mA 145-154 V
Maximum change in V_{R} over a range of 5 to 15 mA 5 V
Typical incremental resistance 250Ω

Mechanical Data

Mounting position
Any
Base
B7G

Base Connections (underside view)

Pin 1 Anode
2 Cathode
3 Do not connect
", " ",
",
"" "

Limit Ratings

$$
\begin{array}{lr}
\text { Minimum anode current } & 5 \mathrm{~mA} \\
\text { Maximum anode current } & 30 \mathrm{~mA} \\
\text { Minimum anode supply voltage to ensure striking } & \\
\quad \text { (Light or dark) } & 127 \mathrm{~V} \\
\text { Maximum negative anode voltage } & 75 \mathrm{~V} \\
\text { Maximum starting current } & 75 \mathrm{~mA} \\
\text { Ambient temperature limits for operation } & -55 \text { to }+90^{\circ} \mathrm{C} .
\end{array}
$$

Characteristics
Minimum running voltage at 5 mA 105 V
Maximum running voltage at 30 mA 112 V
Maximum change in running voltage for a current change from 5 to 30 mA 3.5 V
Maximum noise over the range $50-5,000$ c.p.s. for a current range of 30 to 5 mA 5 mV r.m.s.
Typical delay in striking. (In total darkness)
Supply Voltage 130 V 20 mS
Supply Voltage 170 V 5 mS

GDIO8M (cy.1833)
Voltage Stabilizer
OB 2

Mechanical Data

Mounting position
Any
Base
B7G

Base Connections

(underside view)

Pin 1 Anode
2 Cathode
3 Do not connect
4 Cathode
5 Anode
6 Do not connect
7 Cathode

Voltage Stabilizer

Limit Ratings

Minimum anode current	2 mA
Maximum anode current	22 mA
Minimum anode supply voltage	110 V
\quad (Primer connected to anode via $15 \mathrm{k} \Omega$)	

Minimum anode current
Maximum anode current 22 mA (Primer connected to anode via $15 \mathrm{k} \Omega$)

Characteristics

Running voltage at 10 mA$70-80 \mathrm{~V}$Maximum change in V_{R} over a range of 20 to 2 mA 6 V
Maximum noise over the range $50-5,000$ c.p.s. fora current range of 20 to 2 mA15 mV r.m.s.

Mechanical Data

Mounting position	Any
Base	B7G

$\left.\begin{array}{lr}\begin{array}{l}\text { Base Connections } \\ \text { (underside view) }\end{array} & \text { Pin } 1 \\ 2 \\ 3\end{array}\right\}$

CORONA VOLTAGE STABILIZERS

INDEX

Tube Type

GD340W
GD350X
GD350Y

CORONA VOLTAGE STABILIZERS

The $\mathrm{Va} / \mathrm{la}$ characteristic of a conventional voltage stabilizer tube has a sharp peak at a current of a few micro-amps. At this point the anode voltage reaches a maximum which is called the striking or ignition voltage.

In a corona stabilizer, this sharp peak is widened into a plateau extending from a few micro-amps to a few hundred micro-amps. Within these limits of current, the voltage dropped across the tube is almost constant.

At these currents, the cathode does not glow, but a diffuse corona discharge can be seen around the anode wire.

Corona voltage stabilizers are connected in the same manner as glow stabilizers, but the series and load resistances have much higher values. Two or more tubes can be connected in series when the stabilized voltage required is a multiple of the tube voltage.

Limit Ratings

Minimum tube current	$3 \mu \mathrm{~A} \leftarrow$
Maximum tube current	$200 \mu \mathrm{~A}$
Minimum supply voltage	420 V
Maximum capacity in parallel with tube	$0.1 \mu \mathrm{~F}$
Ambient operating temperature	$-30^{\circ} \mathrm{C}$ min. to $+60^{\circ} \mathrm{C}$ max.
Temperature coefficient	0.03% per ${ }^{\circ} \mathrm{C}$ approx.

Characteristics

Running voltage at $12 \mu \mathrm{~A}$
$330-360 \mathrm{~V} \leftarrow$
Maximum change in V_{R} for a current change of 3 to $12 \mu \mathrm{~A}$
Maximum change in V_{R} for a current change of 12 to $200 \mu \mathrm{~A}$
Maximum noise output over the working range over a band width of 50 c.p.s. to 100k c.p.s.

100 mV r.m.s.
N.B. \leftarrow Indicates a change from previous data sheets.

Mechanical Data

Mounting position
Weight
Base

Any
6.7 g (nominal)

Pinch foot with flying-leads
(Leads are 0.4 mm . dia. tinned wire)

N.B.-To prevent damage to the tube, the leads should not be soldered or bent nearer than 5 mm . ($\left.\mathrm{l}_{4}^{\prime \prime}\right)$ from the glass seal.

Limit Ratings

Minimum tube current Maximum tube current

GD350X
$3 \mu \mathrm{~A}$
$200 \mu \mathrm{~A}$

GD350Y
$3 \mu \mathrm{~A} \leftarrow$
$200 \mu \mathrm{~A}$

Characteristics

Running voltage at $12 \mu \mathrm{~A}$	$\begin{gathered} 341-359 \mathrm{~V} \\ \left(350 \mathrm{~V} \pm 2 \frac{1}{2} \%\right) \end{gathered}$
Maximum change in V_{R} for a current change of $3-12 \mu \mathrm{~A}$	2 V
Maximum change in V_{R} for a current change of 12-200 $\mu \mathrm{A}$	A 5V

N.B. \leftarrow Indicates a change from previous data sheets.

Mechanical Data

Mounting position	Any
Weight	$6.7 \mathrm{g}$. . (nominal)
Base	Pinch foot with flying-leads
	(Leads are 0.4 mm . dia. tinned wire)

Base Connections

 (underside view)
N.B. - To prevent damage to the tube, the leads should not be soldered or bent nearer than 5 mm . ($\left.\frac{1}{4}^{\prime \prime}\right)$ to the glass seal.

REFERENCE TUBES

INDEX

| Tube Type | | | | CV. Code |
| :--- | :--- | :--- | :--- | :--- | ---: |

REFERENCE TUBES

Reference tubes are special stabilizers having running voltages which (at given currents) remain extremely constant throughout the life of the tubes.

The supply voltage must not be less than the striking voltage of the tube, and a series resistor is required to absorb the difference between the input voltage and the tube running voltage. This resistor should be chosen to pass the sum of the load current and the recommended tube current.

Where the load current can be neglected in comparison with the tube current, it can be shown that variations in the supply voltage are divided by a smoothing factor of

$$
\begin{aligned}
\frac{V_{s}-V_{0}}{I_{d} r_{d}} & +1 \text { when they appear across the tube } \\
V_{s} & =\text { Supply volts } \\
V_{0} & =\text { Output volts } \\
I_{d} & =\text { Tube current } \\
r_{d} & =\text { Tube impedance }
\end{aligned}
$$

Therefore it follows that tubes which operate at a low current have a high smoothing factor. Because both the tube and the series resistor dissipate negligible power, the temperature change is very small, and this effect further improves the stability of the output voltage.

The maximum permissible variation of the supply is given by the product of the series resistor and the difference between the maximum and minimum tube currents.

Reliable-Ruggedized Types

One of the trends of modern electronic engineering is an increasing requirement for equipments which are both small and capable of operating under very difficult environmental conditions. Our contribution to this field is a range of sub-miniature reliable ruggedized reference tubes which are given exhaustive vibration tests. These tests comprise resonance search, vibration endurance and vibration fatigue. Two levels of severity of test are recognized, and these levels are shown in Fig. 1. The tubes passing the Level 1 tests are suitable for inclusion in equipment which is likely to encounter the most severe conditions, and requires the highest degree

REFERENCE TUBES

of reliability, i.e., G.W. applications. The tubes passing Level 2 are suitable for use in normally difficult environments such as Civil and Military Aircraft, Ship-borne equipment, or close proximity to vibrating machinery. The same standard of reliability can be expected for both Levels. We shall be pleased to advise customers as to suitability of tubes at other levels and vibration envelopes.

Fig. 1 Vibration Test Level Envelope

Limit Ratings

$$
\begin{array}{lr}
\text { Minimum anode current } & 50 \mu \mathrm{~A} \\
\text { Maximum anode current } & 1.0 \mathrm{~mA} \\
\text { Maximum striking voltage (normal room illumination) } & 125 \mathrm{~V} \\
\text { Temperature coefficient } & -5 \mathrm{mV} \text { per }{ }^{\circ} \mathrm{C} . \\
\text { (over range } 20-100^{\circ} \mathrm{C} \text {.) } & \\
\text { N.B.-Equilibrium conditions are reached after } 90 \text { seconds } \\
\text { operation. }
\end{array}
$$

Characteristics

Running voltage at $500 \mu \mathrm{~A}$
Recommended current range when used as a reference tube $400 \mu \mathrm{~A}-1.0 \mathrm{~mA}$

Impedance over range $400 \mu \mathrm{~A}-1.0 \mathrm{~mA}$ $5,500 \Omega$

Maximum noise generated by the tube over a band width of $50-5,000 \mathrm{c} / \mathrm{s}$ at $500 \mu \mathrm{~A}$ $220 \mu \mathrm{~V}$ r.m.s.

Maximum \% variation of V_{R} during the first 3,000 hours at $500 \mu \mathrm{~A}$
Typical drift of V_{R} per 1,000 hours after the first 1,500 hours

There is no step or discontinuity in the la/Ea curve for currents greater than $400 \mu \mathrm{~A}$.

Mechanical Data

Mounting position
Any
Weight
Connections
Wire leads
The anode lead is taken from the end nearest the exhaust pip, and is marked with a red spot.
To prevent damage to the tube, the leads should not be soldered or bent nearer than 5 mm . ($\left.\frac{1}{4}^{\prime \prime}\right)$ from the glass seal.

Limit Rating

Minimum anode current $\quad 1.0 \mathrm{~mA}$
Maximum anode current 10 mA
Maximum striking voltage (normal room lighting 5/50 ft. (candles)

115 V
Maximum temperature coefficient
(over range +25 to $+85^{\circ} \mathrm{C}$)
$-3.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$

Characteristics

Running voltage at 6.0 mA
$85 \pm 2 \mathrm{~V}$
Regulation (5.8 to 6.2 mA) 0.18 V

Regulation (1.0 to 10 mA) 4.0 V
Maximum incremental resistance at $6.0 \mathrm{~mA} \quad 450 \Omega$
Maximum voltage jump (anode resistance $5 \mathrm{k} \Omega$, 1 to 10 mA) 100 mV peak
Maximum variation of running voltage during a life period of $1,000 \mathrm{hrs}$. at 6.0 mA
0.5\%

Maximum variation of running voltage after the first 300 hrs . at 6.0 mA
$0 \cdot 2 \%$
Minimum short term (100 hrs . max.) variation of running voltage after the first 200 hrs . at 6.0 mA
0.1%
N.B.—Equilibrium conditions are reached after three minutes' operation.

RF-2-1

Mechanical Data

Mounting position
Any
Base
B7G

Base Connections

(underside view)

Pin 1 Anode
2 Cathode
3 Do not connect
4 Cathode
5 Anode
5 Do not connect Cathode

2,4,7

Limit Rating

Minimum anode current	1.0 mA
Maximum anode current	10 mA
Maximum striking voltage (normal room lighting	
$5 / 50 \mathrm{ft}$ candles)	115 V
Maximum temperature coefficient	
\quad (over range +25 to $+85^{\circ} \mathrm{C}$)	$-3.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
Maximum vibration (continuous operation)	2.5 g
Maximum shock (short duration)	500 g

Characteristics

Running voltage at $6.0 \mathrm{~mA} \quad 85 \pm 2 \mathrm{~V}$
Regulation (5.8 to 6.2 mA) 0.18 V

Regulation (1.0 to 10 mA) 4.0 V
Maximum incremental resistance at $6.0 \mathrm{~mA} \quad 450 \Omega$
Maximum voltage jump (anode resistance $5 \mathrm{k} \Omega$, 1 to 10 mA) 100 mV peak
Vibration noise, $20-500$ c.p.s. at $2.5 \mathrm{~g} \quad 5 \mathrm{mV}$ r.m.s. $500-2,000$ c.p.s. at $2.5 \mathrm{~g} \quad 15 \mathrm{mV}$ r.m.s.
Maximum variation of running voltage during a life period of $1,000 \mathrm{hrs}$. at 6.0 mA
Maximum variation of running voltage after the first 300 hrs . at 6.0 mA
Maximum short term (100 hrs . max.) variation of running voltage after the first 300 hrs . at 6.0 mA
0.1%

GD85M/R

Ruggedized Miniature Reference Tube

Mechanical Data

Mounting position	Any
Base	B7G

Base Connections

(underside view)

Pin 1 Anode

2 Cathode
3 Do not connect
4 Cathode
5 Anode
6 Do not connect
7 Cathode

Reliable-Miniature Reference Tube

Limit Ratings

Minimum anode current 1.0 mA
Maximum anode current 10 mA
Maximum striking voltage (normal room lighting 5/50 ft. candles) 115 V
Maximum temperature coefficient(over range $-55^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$) $\quad-10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$(over range $+25^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$) $\quad-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
Maximum acceleration (continuous operation) 2.5 g
Maximum shock (short duration) 500 g
Characteristics
Running voltage at 6.0 mA $85 \pm 2 \mathrm{~V}$Regulation (5.8 to 6.2 mA)0.18 V(1.0 to 10 mA)4.0 V
Incremental resistance at 6 mA 450Ω
Maximum voltage jump (Anode resistance $5 \mathrm{k} \Omega$.1 to 10 mA)
Maximum variation of running voltage at 6 mADuring the first 300 hours0.3\%
During the subsequent 10,000 hours 0.2%
Typical drift of running voltage per 1,000 hours after the first 300 hours 0.1%
N.B.-Equilibrium conditions are reached after three minutes operation at 6.0 mA

GD 85P/RS

Reliable-Miniature Reference Tube (CV.4048)

TESTS

To be performed in addition to those applicable in K1001.
Test Conditions-unless otherwise specified.

$\mathrm{Va}(\mathrm{b})$	R lim.	Ia
(V)	(ohms)	(mA)
(Note 1)	5 K	$6 \cdot 0($ Note 2)

A d.c. voltage not exceeding 100 volts shall be applied between Anode and Cathode and shall be increased steadily at a rate not exceeding 25 volts/second until the valve strikes. The ripple content of the supply shall not exceed 0.25%.

After the valve has struck, the supply voltage shall be further increased until the anode current is 6.0 mA . It shall be maintained constant for 3 minutes before any characteristic, other than striking voltage, is measured.

K1001	Test	Test Conditions	AQL \%	Insp. Level	Sym-bol	Limits		Units	Notes
						Min.	Max.		
$7 \cdot 1$	Glass Strain	No Voltages	6.5	I					
	Group A								
	Striking Voltage			100\%	Va	-	115	V	1
	Maintaining Voltage			100\%	Vb	83	87	V	

Tests (cont.)

Tests (cont.)

K1001	Test	Test Conditions	AQL \%	Insp. Level	Symbol	Limits		Units	Notes
						Min.	Max.		
	Group B Temperature Coefficient (1)	Temperature varied from $\begin{aligned} & -55^{\circ} \mathrm{C} \\ & \text { to }+25^{\circ} \mathrm{C} \end{aligned}$		TA					3, 6
	Temperature Coefficient (2)	Temperature varied from $\begin{aligned} & +25^{\circ} \mathrm{C} \text { to } \\ & +90^{\circ} \mathrm{C} \end{aligned}$		TA					3, 6
	Striking Voltage	Measure at Temperature $=-50^{\circ} \mathrm{C}$		TA			115	V	1
	Regulation	$\delta \mathrm{Va}$ for change of Ia from 1.0 to 10.0 mA Temperature $=+90^{\circ} \mathrm{C}$							3, 6

Reliable-Miniature Reference Tube

Tests (cont.)

K1001	Test	Test Conditions	AQL \%	Insp. Level	$\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$	Limits		Units	Notes
						Min.	Max.		
	Group C Striking Voltage (Dark Strike) Regulation (2)	$\delta \mathrm{Va}$ for change of Ia from 1.0 to 10.0 mA	2.5 2.5	I	Va		115 4.0	V	5
7.2	Group D Base Strain	No voltages	$6 \cdot 5$	IA					
$11 \cdot 2$	Resonance Search (1)	$\mathrm{Ra}=27 \mathrm{~K}$ Frequency $=25 \text { to }$ $500 \mathrm{c} / \mathrm{s}$		IC					
$11 \cdot 1$	Vibration Noise Output Resonance Search (2)	$\mathrm{Ra}=27 \mathrm{~K}$ Frequency $\begin{aligned} & =500 \mathrm{to} \\ & 2500 \mathrm{c} / \mathrm{s} \end{aligned}$	2.5	IC	$\begin{gathered} \mathrm{Va} \\ (\mathrm{AC}) \end{gathered}$		5	$\begin{gathered} m V \\ \text { RMS } \end{gathered}$	

GD85P/RS (CV.4048)

Tests (cont.)

K1001	Test	Test Conditions	AQL \%	Insp. Level	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Limits		Units	Notes
						Min.	Max.		
11.1	Vibration Noise Output		2.5		$\begin{gathered} \mathrm{Va} \\ (\mathrm{AC}) \end{gathered}$		15	$\begin{gathered} \mathrm{mV} \\ \mathrm{RMS} \end{gathered}$	
$11 \cdot 3$	Fatigue Test	$\mathrm{I} a=0$ Duration $30+30+$ 39 hours. Accelera- tion $=5 \mathrm{~g}$. Frequency $=170 \mathrm{c} / \mathrm{s}$		IA					
	Post Fatigue Test	Combined AQL	4.0						
	Anode Voltage Change		2.5		$\delta \mathrm{Va}$		± 0.7	V	
$11 \cdot 1$	Vibration Noise		2.5				30	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{P} / \mathrm{p} \end{aligned}$	

Tests (cont.)

K1001	Test	Test Conditions	AQL \%	Insp. Level	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Limits		Units	Notes
						Min.	Max.		
11.4	Shock Test	$\mathrm{I} a=0$ Acceleration $=500 \mathrm{~g}$.		IA					
	Post Shock Test	Combined AQL	4.0						
	Anode Voltage Change		2.5	IA	¿ Va		± 0.7	v	
11.1	Vibration Noise		2.5				30	$\begin{aligned} & \mathrm{m} V \\ & \mathrm{p} / \mathrm{p} \end{aligned}$	
AVI/5	Group E Life Test								
	End Point 1000 Hours								
	Inoperatives		2.5	IA					
	Striking Voltage		2.5		Va		115	V	

GD 85P/RS (CV.4048)

Reliable-Miniature Reference Tube

Tests (cont.)

Notes

1. Test to be conducted in normal ambient room lighting ($5 / 50 \mathrm{ft}$. candles).
2. A calibrated amplifier detector with C.R.T. indicator having a substantially linear response over the range $50 / 5000 \mathrm{c} / \mathrm{s}$ is to be connected between the anode and cathode. The anode current is to be varied slowly from $1.0-10.0 \mathrm{~mA}$ and back to 1.0 mA at least three times.
3. The tube voltage drop shall be measured at $10^{\circ} \mathrm{C}$ steps over the temperature range specified.
4. The valve shall be tapped and the noise shall not exceed the limit specified.
5. This test is to be conducted in total darkness after the valves have been held in total darkness for 24 hours.
6. In group B, the first two tests and the last test are under review. Limit figures for these tests will be supplied when known.

Reliable-Miniature Reference Tube

Ruggedized Sub-Miniature Voltage Reference Tube

Limit Ratings

Minimum anode current	0.5 mA
Maximum anode current	5.0 mA
Minimum supply voltage	
\quad (In total darkness or normal room illumination)	125 V
Maximum temperature coefficient	$-10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\quad-60^{\circ}$ to $+25^{\circ} \mathrm{C}$	$-7 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
$+25^{\circ}$ to $+90^{\circ} \mathrm{C}$	
Maximum acceleration in accordance with B.S.G. 100	
-Vibration Grade 1.	

Characteristics (at $+25^{\circ} \mathrm{C}$)

Running voltage at 1.5 mA	$85 \mathrm{~V}+3 \mathrm{~V}$
Regulation 1.2 to 2.0 mA	1 V
0.5 to 5.0 mA	5 V
Maximum noise over working range	2 mV p.p.
Vibration noise	
(Acceleration $5 \mathrm{~g} \mathrm{min}$.at 50 c.p.s.)	50 mV p.p. max.
Voltage Jumps 1.0 to 5.0 mA	5 mV pk. max.
0.5 to 1.0 mA	100 mV pk. max.

Mechanical Data

Mounting position
Any
Base B8D/F (4 wire flying-lead)
N.B.-Direct soldered connections to the leads must be at least $5 \mathrm{~mm}\left(\frac{1}{4}{ }^{\prime \prime}\right)$ from the seal and any bending of the leads must be at least 1.5 mm ($\frac{1}{16}{ }^{\prime \prime}$) from the seal.

Base Connections

(underside view)

1 Cathode
2 Lead omitted
3 Anode
4 Lead omitted
5 Lead omitted
6 Cathode
7 Lead omitted
8 Anode

Limit Ratings

Minimum anode current 3.5 mA

Maximum anode current 6.0 mA
Minimum anode supply voltage (Note 1) 130 V
Maximum negative anode voltage 50 V
Maximum starting current (Note 2) 10 mA
Maximum bulb temperature (Note 3)
During operation
$150^{\circ} \mathrm{C}$
During storage and standby $100^{\circ} \mathrm{C}$
Characteristics (at preferred operating current of 4.5 mA (Note 4))
Initial values (measured at 25 to $30^{\circ} \mathrm{C}$)
Running voltage $\quad 83.0$ to 84.5 V
*Incremental resistance
Maximum $\quad 350 \Omega$
Minimum 110Ω
*Maximum voltage jump ($3.5-6.0 \mathrm{~mA}$) 1 mV
Typical r.m.s. noise voltage ($30 \mathrm{c} / \mathrm{s}-10 \mathrm{kc} / \mathrm{s}$) $100 \mu \mathrm{~V}$
*Nominal temperature coefficient over the range
25 to $120^{\circ} \mathrm{C}$ (Note 6) $-2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
*See Note 5.

Life Performance

Typical variations of running voltage at $25^{\circ} \mathrm{C}$ over the period indicated.
For continuous operation at 4.5 mA
$0-300$ hours $\quad 0$ to +0.35 V
300-2,500 hours
0 to +0.2 V
2,500-10,000 hours +0.05 to +0.35 V
For storage or standby, the variations that can be expected up to 3,000 hours are negligible.

Notes
(1) This value holds good over life, in light or dark. In total darkness an ignition delay of up to 5 seconds may occur.
(2) To be restricted for long life to approximately 30 seconds once or twice in each 8 hours use.
(3) During conduction the bulb temperature is approximately $20^{\circ} \mathrm{C}$ above ambient temperature.
(4) Equilibrium conditions are reached within I minute.
(5) Information to date indicates that these values hold good with little or no change over life.
(6) The characteristics curve connecting temperature coefficient and bulb temperature is continuous and repeatable.

RF-5-1

Mechanical Data

Mounting position
Any
Base
B7G

Base Connections (underside view)

Pin 1 Anode
2 Cathode

3
4

5 Do not connect

Limit Ratings

Minimum anode current
1.5 mA
Maximum anode current
3.5 mA
Maximum striking voltage (in either normal room illumination or in total darkness after 24 hours in the dark)

Characteristics

Running voltage at 1.5 mA
Running voltage at 3.5 mA
Regulation (1.5 to 3.5 mA)
Voltage jumps (1.5 to 3.5 mA)

82 V min.
92 V max.
3.0 V max.

100 mV max.

Mechanical Data	
Mounting position	Any
Base	B7G

Base Connections

(Underside view)

Primed Sub-Miniature Reference Tube

GTR83X

Limit Ratings

Minimum anode current 0.5 mA
Maximum anode current 2.5 mA
Minimum anode supply voltage 130 V
Minimum primer supply voltage ($R \mathrm{p}=390 \mathrm{k} \Omega$) 150 V

Characteristics

Running voltage at 0.5 mA	$82-86 \mathrm{~V}$
*Regulation $(0.5-2.5 \mathrm{~mA})$	4.5 V

*Regulation ($0.5-2.5 \mathrm{~mA}$)
4.5 V

Jump noise ($2.5-0.5 \mathrm{~mA}$) 1 mV ptp. max.
Anode takeover voltage (Vp $150 \mathrm{~V}, \mathrm{Rp} 390 \mathrm{k} \Omega$) 90 V max.
*The tube characteristics are reasonably linear between 0.5 and 2.5 mA providing that the primer is passing at least $150 \mu \mathrm{~A}$.

Mechanical Data

Base $\quad 3$ flying leads of $0.4 \mathrm{~mm}\left(.0157^{\prime \prime}\right)$ dia. | tinned copper |
| :---: |

Anode lead is indicated by a red spot adjacent to the lead-out wire.

1. Anode
2. Cathode
3. Primer

Low Current
 Primed Sub-Miniature Reference Tube

GTR83W

Limit Ratings

Minimum cathode current $50 \mu \mathrm{~A}$
Maximum cathode current $250 \mu \mathrm{~A}$
Minimum anode supply voltage:- (in light or dark) with primer not connected 135 V
with primer passing $10 \mu \mathrm{~A}$ 95 V
Minimum primer supply voltage 150 V
Maximum primer series resistance $5.6 \mathrm{M} \Omega$

Characteristics

Running voltage at $50 \mu \mathrm{~A}$	$82-86 \mathrm{~V}$
*Maximum change in running voltage for a current change from $50 \mu \mathrm{~A}$ to $250 \mu \mathrm{~A}$	5.0 V
Primer Running Volts	95 V nominal
Noise	1 mV p.t.p. max.

* The tube characteristic is linear and jump-free.

Recommended Operation

Primer connected via $2 \cdot 7 \mathrm{M} \Omega$ to anode supply rail
Cathode current $100 \mu \mathrm{~A}$

Life

At $100 \mu \mathrm{~A}$, the maximum change in running voltage per 1,000 hours is 1%.

Mechanical Data

Base $\quad 3$ flying leads of $0.4 \mathrm{~mm}\left(\cdot 0157^{\prime \prime}\right)$ dia.

Anode lead is indicated by a blue spot adjacent to the lead-out wire.

1. Anode
2. Cathode
3. Primer

Limit Ratings

Minimum cathode current $500 \mu \mathrm{~A}$
Maximum cathode current 2 mA
Minimum anode supply voltage:- (in light or dark)
with primer not connected 210 V
with primer passing $150 \mu \mathrm{~A} \quad 170 \mathrm{~V}$
Maximum inverse voltage 50 V
Minimum primer supply voltage 175 V

Characteristics

Running voltage at $1 \mathrm{~mA} \quad 145-150 \mathrm{~V}$
Maximum change in running voltage for a current change from $500 \mu \mathrm{~A}$ to 1.5 mA
$3 V$
Typical change in running voltage for a current
change from $500 \mu \mathrm{~A}$ to 2 mA
Primer Running Volts 135 V nominal
Noise 15 mV r.m.s. max.

Recommended Operation

Primer connected via $270 \mathrm{k} \Omega$ either to anode or to anode supply rail.

$$
\begin{array}{lr}
\text { Supply volts } & >175 \mathrm{~V} \\
\text { Cathode current } & 1 \mathrm{~mA}
\end{array}
$$

Life

At 1 mA , the maximum change in running voltage per 1,000 hours is 1%.

GTR150W

Primed Sub-Miniature Reference Tube

Mechanical Data

Base $\quad 3$ flying leads of $0.4 \mathrm{~mm}\left(.0157^{\prime \prime}\right)$ dia. | tinned copper |
| :---: |

Anode lead is indicated by a yellow spot adjacent to the lead-out wire.

1. Anode
2. Cathode
3. Primer

TRIGGER TUBES

INDEX

Tube Type
CV. Code

GTE175M	-
GTR120W	-
GPT120					
GTE175M	-
GTE130	CV. 2434
GT120	..	\ldots	-

TRIGGER TUBES

These tubes consist basically of two discharge gaps; from main anode (A) to main cathode (K), and from trigger (T) to main cathode (K). The tube geometry is such that the gap $A-K$ has a substantially higher striking voltage than the shorter gap T-K. A fixed potential, less than the breakdown voltage of the main gap but greater than its running voltage, is applied between A and K through a resistor which prevents the anode current from exceeding the permitted maximum.

If, with the main gap connected as described, a potential greater than the trigger striking voltage is applied to the trigger (T), a small current will flow and cause the breakdown voltage of the main gap to fall below the applied voltage. Current then flows in the A-K circuit, setting up a self-sustaining discharge, and the T-K circuit can then be disconnected without affecting the main discharge.

The preferred method of using these tubes is to return the trigger through a high resistance to a potential just less than the trigger striking voltage. A fraction of a micro-amp. of current flows, and produces a voltage across the leak, so that the potential at the trigger electrode is slightly less than the fixed bias. The valve can then be fired by a small positive pulse a.c. coupled to the trigger electrode. The minimum pulse duration depends mainly on the availability of free electrons in the tube. These may be produced by cosmic rays, radio-active materials, light, or a subsidiary source of ionization.

Designed for Dekatron coupling circuits

 and as a general purpose trigger tube
Limit Ratings

```
Maximum anode voltage to prevent self ignition in all tubes (trigger voltage +173 V )
\(+310 \mathrm{~V}\)
```

Minimum trigger voltage necessary to cause trigger breakdown in all tubes (anode voltage 300 V)
Maximum trigger voltage at which trigger breakdown will not occur in any tube (anode voltage 300 V)
$+173 \mathrm{~V}$
During the first 3,000 hours of operating life the trigger breakdown voltage will not drift outside the limit ratings specified above.
Maximum trigger to anode voltage
$+200 \mathrm{~V}$
Minimum trigger to cathode current necessary to cause transfer in all tubes (anode voltage 300 V)
$100 \mu \mathrm{~A}$
Minimum trigger to cathode current necessary to cause transfer in all tubes, with 100 pF capacitor between cathode and trigger (anode voltage 300 V) $8 \mu \mathrm{~A}$
Maximum cathode current
Peak-maximum duration $20 \mu \mathrm{~S}$
-maximum duration 50 mS in 10 S D.C.
$50 \mathrm{~mA} \leftarrow$

Maximum speed of operation, determined by circuit conditions

Approx. 1,000 c.p.s.

Characteristics

Anode running voltage at 2.5 mA
Trigger running voltage
$150 \pm 5 \mathrm{~V}$
Auxiliary cathode current (Aux. cathode returned to a minimum of -95 V via $10 \mathrm{M} \Omega$)
$25 \mu \mathrm{~A}$ nom.
De-ionization time
$600 \mu \mathrm{~S}$ max.
Minimum current at which all tubes will remain conducting ($\mathrm{Ra} 470 \mathrm{k} \Omega$)
$200 \mu \mathrm{~A}$
Recommended Operating Conditions
Anode supply voltage
280-310 V
Anode to cathode current
2.5 mA

Trigger bias with respect to cathode
Trigger leak less than $470 \mathrm{k} \Omega$
Trigger leak greater than $470 \mathrm{k} \Omega$
165 V max. \leftarrow 170 V max.
Minimum pulse required for operation (Pulse duration $100 \mu \mathrm{~S}$)
$+25 \mathrm{~V}$
N.B. \leftarrow Indicates a change from previous data sheets.

Trigger Tetrode
Designed for Dekatron coupling circuits and as a general purpose trigger tube

Mechanical Data

Mounting position	Any Weight Base

Base Connections
(underside view)

Pin $\left.\begin{array}{l}1 \\ 2\end{array}\right\}$ Trigger T
$\left.\begin{array}{l}3 \\ 4\end{array}\right\}$ Cathode K_{1}
5 Do not connect
6 Auxiliary cathode K_{2}
7 Main anode A

N.B.-This tube must not be enclosed in a metal screen or can.

Notes on Operation

Rectangular pulses of at least $100 \mu \mathrm{~S}$ duration are applied via a $1,000 \mathrm{pF}$ capacitor to the trigger, which is returned through $1 \mathrm{M} \Omega$ to +170 V bias. The tube will not fire with pulses of amplitude less than 5 V and will fire with pulses greater than 25 V .

To extinguish the main discharge, the anode-cathode potential must be reduced to below the running voltage (150 V) for a time dependent on the de-ionization characteristic.

Alternatively the tube may be extinguished by means of a capacitor in parallel with the A-K gap forming a self-quenching circuit. A typical example is the Cold Cathode coupling circuit used with the $4 \mathrm{kc} / \mathrm{s}$ Dekatron tubes.

Trigger Tetrode
Designed for Dekatron coupling circuits and as a general purpose trigger tube

TRIGCER-CATHODE STRIKING VOLTAGE ($\mathrm{V}_{\text {st }}$)
Limits of Trigger Striking Voltage

Trigger Tetrode
Designed for Dekatron coupling circuits
GTE175M and as a general purpose trigger tube

Typical Transfer Characteristic

Designed for Dekatron coupling circuits and as a general purpose trigger tube

An inexpensive sub-miniature tube especially designed for computer applications

Limit Ratings

Maximum anode voltage to prevent self-
ignition in all tubes (trigger voltage 0 V) +310 V
Maximum trigger-cathode voltage at which
breakdown will not occur in any tube
Cathode 0, Trigger +110 , Anode +310
Cathode 0, Trigger -100, Anode +150
Minimum trigger voltage necessary to cause
breakdown in all tubes (anode voltage 290 V) +170 V
Maximum cathode current 9 mA
Minimum cathode current 3 mA

Characteristics

Anode-Cathode running voltage at 4.5 mA
(Tubes may exhibit jumps of up to 10 V in operation)
Trigger-Cathode running voltage ($\mathrm{R}_{\mathrm{T}}-220 \mathrm{k} \Omega$)

$$
\begin{array}{ll}
\mathrm{la}=0 \mathrm{~mA} & 63 \mathrm{~V} \text { nominal } \leftarrow \\
\mathrm{la}=4.5 \mathrm{~mA} & 73 \mathrm{~V} \text { nominal } \leftarrow
\end{array}
$$

Trigger current required to cause the anode
to take-over the discharge (anode voltage 290 V)
De-ionization time
lonization time (with trigger pulsed to $+200 \mathrm{~V})$
$25 \mu \mathrm{~A}$ nominal
3 mS
$90 \mu \mathrm{~S} \max$

Recommended Operating Conditions

Anode supply voltage
180-310 V
Cathode current
Trigger bias with respect to cathode
(Trigger resistor $220 \mathrm{k} \Omega$)
100 V
Minimum trigger coupling capacitor
(Trigger resistor exceeding $200 \mathrm{k} \Omega$)
150 pF
Minimum ambient illumination $\quad 5 \mathrm{ft}$. candles
N.B.-If tubes stand in the off condition for 150 hours or more, self-ignition may
occur at anode voltages above 280, unless a current of 3 mA is passed
through all tubes for at least 1 second before commencing normal operation of the circuit.
N.B. \leftarrow Indicates a change from previous data sheets.

TR-2-1

Mechanical Data

Mounting position
Any
Weight
$2 \cdot 2 \mathrm{~g}$ (nominal)
Base
3 flying leads of 0.35 mm . dia.
(28 s.w.g.) tinned copper
N.B.-It is recommended that the wires are not soldered or bent nearer than 10 mm . ($\left.\frac{1}{2}^{\prime \prime}\right)$ from the glass.

Lead Wires
1-Anode
2-Trigger
3-Cathode

Trigger Tube

An inexpensive sub-miniature tube especially
GTR120W designed for computer applications

NUMBERS OF TUBES
Distribution of Trigger Striking Volts
Limit RatingsMaximum anode voltage to prevent self ignitionin all tubes (trigger voltage +173 V) +310 VMinimum trigger voltage necessary to cause eithertrigger to breakdown in all tubes (anode voltage300 V)+183 VMaximum trigger voltage at which trigger break-down will not occur in any tube (anode voltage300 V)$+173 \mathrm{~V}$(During the first 3,000 hours of operating life thetrigger breakdown voltage will not drift outsidethe limit ratings specified above.)
Maximum trigger to anode voltage $+200 \mathrm{~V}$
Minimum trigger to cathode current necessary tocause transfer in all tubes (anode voltage 300 V)$100 \mu \mathrm{~A}$
Minimum trigger to cathode current necessary to cause transfer in all tubes, with 100 pF capacitor between cathode and trigger (anode voltage 300 V) $8 \mu \mathrm{~A}$
Maximum cathode current
Peak-maximum duration $20 \mu \mathrm{~S}$ 50 mA
-maximum duration 50 mS in 10 S 6 mA
D.C.3.5 mA
Maximum speed of operation, determined by cir- cuit conditions Approx. 1,000 c.p.s.
Characteristics
Anode running voltage at 2.5 mA $150 \pm 5 \mathrm{~V}$
Trigger running voltage 135 V nom.
Auxiliary cathode current (Aux. cathode returned to a minimum of -95 V via $10 \mathrm{M} \Omega$) $25 \mu A$ nom.$600 \mu \mathrm{~S}$ max.
Minimum current at which all tubes will remain conducting (Ra $470 \mathrm{k} \Omega$) $200 \mu \mathrm{~A}$
Recommended Operating Conditions
Anode supply voltage280-310 V
Anode to cathode current 2.5 mA
Trigger bias with respect to cathodeTrigger resistor less than $470 \mathrm{k} \Omega$165 V max.Trigger resistor greater than $470 \mathrm{k} \Omega$170 V max.Minimum pulse required for operation (Pulseduration $100 \mu \mathrm{~S}$)$+25 \mathrm{~V}$

Mechanical Data

Mounting position	Any Weight Base
(nominal)	
B7G	

Base Connections
(underside view)

$\left.\begin{array}{rl}\text { Pin } & 1 \\ 2\end{array}\right\}$. Trigger T_{1}
$\left.\begin{array}{l}3 \\ 4\end{array}\right\}$ Cathode K_{1}
5 Trigger T_{2}
6 Auxiliary cathode K_{2}
7 Main anode A

N.B.-This tube must not be enclosed in a metal screen or can.

Primed trigger tube with two trigger electrodes suitable for use in bi-directional ring counters and in "OR" gates

GPE175M

Notes on Operation

Rectangular pulses of at least $100 \mu \mathrm{~S}$ duration are applied via a $1,000 \mathrm{pF}$ capacitor to the triggers which are returned through $1 \mathrm{M} \Omega$ to +170 V bias. The tube will not fire with pulses of amplitude less than 5 V and will fire with pulses greater than 25 V .

To extinguish the main discharge, the anode-cathode potential must be reduced to below the running voltage (150 V) for a time dependent on the de-ionization characteristic. ($600 \mu \mathrm{~S}$ minimum).

Alternatively the tube may be extinguished by means of a capacitor in parallel with the A-K gap forming a self-quenching circuit.

When the tube is not conducting, the triggers are isolated from each other, but when anode current flows, both triggers have a low impedance to cathode and to each other.

Typical bi-directional ring counter and coupling circuits are shown overleaf. for use in bi-directional ring counters and in "OR" gates

Four Stage Bi-directional Ring Counter using GPE 175 M tubes

Coupling Circuit for Bi-directional Counter LK163

Limit Ratings

$$
\begin{array}{ll}
\begin{array}{l}
\text { Maximum anode voltage to prevent self ignition in } \\
\text { all tubes }
\end{array} & +290 \mathrm{~V} \\
\text { Maximum trigger to cathode voltage at which } \\
\text { breakdown will not occur in any tube } \mathrm{Va}=280 \mathrm{~V} & \pm 128 \mathrm{~V} \\
\text { Minimum trigger voltage necessary to cause break- } \\
\text { down in all tubes } \mathrm{Va}=280 \mathrm{~V} \\
\text { Maximum increase in trigger striking volts when } \\
\text { anode voltage is changed from } 290 \mathrm{~V} \text { to } 170 \mathrm{~V} & 1.0 \% \\
\begin{array}{ll}
\text { Maximum peak positive trigger current (Note 1) } & 8.0 \mathrm{~mA} \\
\text { Maximum cathode current d.c. } & 25 \mathrm{~mA} \\
& 100 \mathrm{~mA} \\
\text { Minimum auxiliary anode supply voltage } & 150 \mathrm{~V}
\end{array}
\end{array}
$$

Characteristics

Anode to cathode running volts (Note 2)			105 V nom.
De-lonization time	Ik (pk)	0-20 mA	3.5 mS nom.
		20-100 mA	
		(Note 3)	12 mS nom.
Ionization time	$V_{T}=$	$\mathrm{V}_{T S}+0.5 \mathrm{~V}$	2 mS nom.
	$V_{T}=$	$\mathrm{V}_{T S}+4.0 \mathrm{~V}$	0.1 mS nom.

Trigger transfer characteristics
Current triggering
Trigger Current necessary for anode takeover, with no trigger capacitor ($\mathrm{Va}=240 \mathrm{~V}$)
N.B. \leftarrow Indicates a change from previous data sheets.

Characteristics (cont.)

Capacitive triggering (High impedance source)
Minimum trigger capacitor to ensure anode take-
over (Note 4)

$$
\begin{array}{lr}
\mathrm{Va}=170 \mathrm{~V} & 2,700 \mathrm{pf} \\
\mathrm{Va}=200 \mathrm{~V} & 1,000 \mathrm{pf} . \\
\mathrm{Va}=240 \mathrm{~V} & 500 \mathrm{pf} .
\end{array}
$$

Recommended Operating Conditions

Anode supply voltage
170-290 V
Auxiliary anode series resistor (Note 5) $10 \mathrm{M} \Omega$

Notes

1. During anode conduction the trigger is held by the discharge at 90 V above the cathode potential and if the trigger input voltage is raised or lowered about this potential, trigger current will flow. In the condition where the voltage is below 90 V current flows in a reverse direction and the trigger acts as a cathode. This condition is harmful to the tube and in applications such as those where the anode and trigger are extinguished by relay contacts it is desirable to extinguish the main anode discharge before the trigger discharge. If the trigger supply voltage rises above 90 V the tube will not be affected, providing the resultant forward current is limited to the value stated.
2. Oscillations of up to 10 V pk to pk superimposed on the running voltage.
3. In self extinguishing circuits the deionization time is much shorter.
4. To limit the positive peak current a resistor of $\mathbf{2 . 2} \mathbf{k} \Omega$ is required for trigger capacitors between 4,700 and 15,000 pf., and a resistor of $5.6 \mathrm{k} \Omega$ for trigger capacitors of over $15,000 \mathrm{pf}$.
5. It is recommended that the auxiliary anode resistor is soldered direct to pin 6. Stray capacitance between the auxiliary anode and the cathode must be kept to a minimum.

Mechanical Data

Mounting position	Any
Base	B9A

Base connections (underside view)

Pin 1 Main anode
2 Do not connect
3 Do not connect
4 Cathode
5 Cathode
6 Auxiliary anode
7 Cathode
8 Trigger

9 Trigger

TR-6-2

Limit Ratings

Maximum anode voltage to prevent self ignition in all tubes

Minimum trigger voltage necessary to cause trigger
breakdown in all tubes
Maximum trigger voltage at which trigger breakdown will not occur in any tube
$+114 \mathrm{~V}$
Minimum primer supply voltage (light or dark, either positive or negative to cathode)
Preferred continuous cathode current
$1-5 \mathrm{~mA}$
A current of $0.5-1 \mathrm{~mA}$ may be used if a rise of up to 10% in trigger striking voltage in 1,000 hours of conduction can be accommodated.
Pulse currents greater than 5 mA are permitted. The manufacturers will be pleased to advise on specific cases.

Characteristics

Anode running voltage at 2 mA
Trigger running voltage
Primer current
$103-110 \mathrm{~V}$
95 V nominal $8 \mu \mathrm{~A}$ nominal

Primer connected to 250 V via $10 \mathrm{M} \Omega$. The resistor must be wired directly to the lead, keeping stray capacitance to a minimum.
Typical trigger current at a voltage just less than the striking voltage
Minimum anode voltage to take-over the trigger discharge:-
(a) $\mathrm{I}_{\mathrm{t}}=30 \mu \mathrm{~A}$
(b) $\mathrm{C}_{\mathrm{t}}=470 \mathrm{pF}, \mathrm{R}_{\mathrm{t}}=1 \mathrm{M} \Omega \quad 150 \mathrm{~V}$
lonization time, trigger pulsed to 5 V more positive than its striking voltage:-
(a) with primer conducting $100 \mu \mathrm{~S}$
(b) primer not connected 5 mS

For short pulses, or slowly changing trigger voltage such as occurs in R.C. timers, the primer must be connected. Ford.c. switching applications the primer is not required.

```
Mechanical Data
    Base
    4 \text { flying leads of 0.4 mm (.0157') dia. tinned}
        copper wire.
```

The spacing between primer and cathode leads is much less than the other two spacings.

1. Primer
2. Cathode
3. Anode
4. Trigger

DEKATRON TUBES

INDEX

Tube Type

GC10B
GC10B/S CV. 2271
GC10B/L CV. 6044
GCI0/4BL CV. 6100
GC10/4B CV. 1739
GC12/4B -
GC10D CV. 5143
GCA10G -
GSA10G -
GS10C/S CV. 2325
GS12D
GS10D
CV. Code
-
\qquad

GS10H
" Dekatron" is a Registered Trade Mark of Ericsson Telephones Limited.

DEKATRON TUBES

These are multi-electrode, gas-filled, cold-cathode, glow-transfer tubes used for the counting of electrical impulses and displaying the state of the count. The impulses may be produced by a wide variety of sources such as the closure of contacts, interruption of a light beam, tachometer generator, ionization chamber, etc. Dekatron tubes are also a convenient method of counting down from one frequency to another, or of measuring frequency by counting the number of cycles of a waveform which occur during a known time interval.

The Double-Pulse Dekatron Principle

A scale-of-10 Dekatron consists basically of 30 cold-cathode diodes in one envelope. The diode cathodes are rod shaped and arranged around a circular disc anode.

Ten of the electrodes are known as cathodes, ten as first guides, and ten as second guides. Nine of the cathodes are internally connected, the tenth, brought out to a separate connection in the base of the tube, is the output cathode. All the ten first guides are connected together as are the ten second guides. The cathodes, first guides and second guides are intermeshed in cyclic order. When a high potential $(400-500 \mathrm{~V})$ is applied to the tube, with a high resistance in the anode circuit to limit the current to a suitable value, one of the anode-cathode gaps is ionized and a "negative glow" around the particular cathode is visible through the dome of the envelope.

In the quiescent state the cathodes are at earth potential, and the first and second guides are biased positively. If the first guides are pulsed negatively the guide adjacent to the glowing cathode becomes ionized, and because the anode potential will tend to " follow" the potential of the most negative electrode, the glowing cathode is extinguished and the discharge transfers to the first guide. This process is repeated by making the second guides negative and returning the first guides to the positive bias. The glow discharge will then transfer from the first guide to the adjacent second guide. When the second guides are returned to the positive bias the glow will transfer to the next cathode which will then be negative with respect to the guides.

DEKATRON TUBES

Therefore, by applying successive pairs of negative pulses to the first and second guides in that order, it is possible to transfer the glow discharge from cathode to cathode in a clockwise or additive direction. If the pulses be applied in the reverse order, the circulation is anticlockwise or subtractive.

The output cathode is connected to the earthed main cathode ring by a load resistor, and when the discharge invests this cathode, current will flow through the resistor, developing a positive voltage of 30 to 40 volts across it. This voltage can be used as a signal to indicate that the discharge has completed one revolution of the tube, and with suitable amplification it can be used to drive a further Dekatron.

Dekatron Computing Tubes

For multi-decade subtraction, the negative carry must take place on cathode 9 and the direction sensing circuits usually require at least one intermediate output. The computing tubes, therefore, besides being tested in both directions, have four individual cathodes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , brought out to pins on the valve base. The remaining cathodes are internally connected to the common ring which is wired to earth. The spacing of the output cathodes is so arranged that, by making the appropriate cathode act as zero, an output pulse can be obtained at any intermediate count. The method of connection is shown in the table on the relevant data sheet.

Dekatron Selector Tubes

These retain all the essentials of the Dekatron counting tubes whilst having the additional property of access to all the cathodes. The selector tubes have found many uses in frequency dividers, batching counters, generators of staircase waveforms, and in marking one selected lead from a group.

Single Pulse Dekatron Counters

Unlike other Dekatrons, these tubes require only a single pulse for each count. They are similar in appearance to double-pulse counters, but have three guide electrodes instead of two between successive cathodes.
cont'd

DEKATRON TUBES

The negative input pulses are applied via a high resistance to the first guides and directly to the second guides. These two groups of guides are normally biased positively with respect to the earthed cathodes. The cathodes are preceded by the third guides, which are connected to earth through a high resistance. The receipt of an input pulse transfers the glow from a cathode to a first guide, and the anode current by flowing through the first guide resistor, raises the voltage of the guide. When the potential difference between first and second guides is equal to the transfer voltage, the glow moves (auto-transfers) to the second guide, where it rests until the pulse voltage is removed. The return of the first and second guides to the positive bias potential moves the glow to the third guide, and again an auto-transfer takes place to the cathode, so completing one count. The rate of change of voltage on the guides is kept to a suitable figure by small capacitors in parallel with the auto-transfer resistors.
N.B.-Additional information on the use of Dekatron tubes is given in the following data sheets and in the Circuit Section.

LICENCE

The manufacture and use of " Dekatron" tubes is covered by one or more of the following United Kingdom Patents or applications :-

712,171	712,175	712,177	712,215
712,229	721,058	734,611	751,952
960,927	768,550	777,562	778,114
784,033	785,021	787,246	$13961 / 58$

These patents cover any circuit using cold-cathode ring counter tubes with guide electrodes. Purchasers of our tubes are granted a free licence to use any such circuits with "Dekatron" tubes.

Limit Ratings

Maximum counting rate : sine wave and rectangular pulses

4,000 p.p.s.
Maximum total anode current $550 \mu \mathrm{~A}$

Minimum total anode current $250 \mu \mathrm{~A}$
Minimum anode supply voltage (normal room illumination) 350 V
Maximum potential dirnrence between guides and cathodes

140 V
Maximum output cathode load
$150 \mathrm{k} \Omega$
Maximum output pulse available with $150 \mathrm{k} \Omega$ cathode load resistor

35 V

Characteristics

Running voltage at $300 \mu \mathrm{~A}(\mathrm{GC10B} / \mathrm{S})$
$191 \pm 5 \mathrm{~V}$

Recommended Operating Conditions

*Anode current	$310 \mu \mathrm{~A} \pm 20 \%$
**Guide Bias	+18 V
Bias on output cathode resistor	-20 V
Forced resetting pulse	-120 V
Double pulse drive-amplitude	$-80 \mathrm{~V} \pm 10 \mathrm{~V}$
Double pulse drive-durations	$60 \mu \mathrm{~S}$
Integrated pulse drive-amplitude	$-145 \mathrm{~V} \pm 15 \mathrm{~V}$
Integrated pulse drive-duration	$80 \mu \mathrm{~S}$
Sine wave drive-amplitude	
* The required anode current may be obtained from a 475 V supply	
via an $820 \mathrm{k} \Omega$ resistor.	
** This does not apply in the case of the sine-wave drive.	

Mechanical Data

Mounting position

Alignment

Weight Escutcheons

Base

Base Connections
(underside view)

Pin 1 Common cathodes
${ }_{3}$ 1st Guides
4 Anode
5 2nd Guides
${ }_{7}^{6}$ Cathode "O"
8 —

Dimension	Nominal	GC10B		GC10B/S	
		Min.	Max.	Min.	Max.
A	$\begin{aligned} & 72.5 \mathrm{~mm} .\left(2.85^{\prime \prime}\right) \\ & 85 \mathrm{~mm} .\left(3.35^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 68.5 \mathrm{~mm} . \\ & 81.5 \mathrm{~mm} . \end{aligned}$	$\begin{aligned} & 76.5 \mathrm{~mm} . \\ & 88.5 \mathrm{~mm} . \end{aligned}$	$\begin{aligned} & 69.5 \mathrm{~mm} . \\ & 82.5 \mathrm{~mm} . \end{aligned}$	$\begin{aligned} & 75.5 \mathrm{~mm} . \\ & 87.5 \mathrm{~mm} . \end{aligned}$

Any
For visual indication the tube is viewed through the dome of the bulb.

Cathode " O " is aligned with pin 6 to an accuracy of $\pm 12^{\circ}$.
43 g (nominal)
N. 78211 Bakelite, or N. 79368 Brass
I.O.

ISSUE 2

Limit Ratings

Max. speed
Max. striking voltage
Max. anode current
Min. anode current
Max. input signal peak to peak
*Max. guide bias
Max. Ko bias
Max. Ko load
Max. guide bias resistance

Rectangular	Sine
Pulse	Wave
Drive	Drive

4,000 p.p.s. 4,000 c.p.s.
$350 \mathrm{~V} \quad 350 \mathrm{~V}$
$550 \mu \mathrm{~A} \quad 550 \mu \mathrm{~A}$
$250 \mu \mathrm{~A} \quad 250 \mu \mathrm{~A}$
$140 \mathrm{~V} \quad 171 \mathrm{~V}$ 60 V
$-20 \mathrm{~V}$
$100 \mathrm{k} \Omega$
$220 \mathrm{k} \Omega$

Characteristics

Running voltage at $450 \mu \mathrm{~A} \quad 190 \mathrm{~V} \quad 190 \mathrm{~V}$

Recommended Operating Conditions

Supply voltage	400 V	400 V		
Anode resistor				
Signal amplitude			$\quad 470 \mathrm{k} \Omega \mathrm{470k} \mathrm{\Omega}$	Both Guides
:---	$\quad-120 \mathrm{~V}, 55 \mathrm{~V}$ r.m.s.			

* With rectangular pulse drive with a variable mark/space ratio this guide bias must be maintained, e.g., by D.C. restoration.

	Test	Test Conditions	$\begin{aligned} & \text { 九ㅇ } \\ & \stackrel{1}{0} \end{aligned}$	Insp. Level	$\begin{aligned} & \overline{0} \\ & \underset{\sim}{\hat{N}} \end{aligned}$	Limits		$\frac{\ddot{4}}{5}$	¢
						$\dot{\Sigma} \dot{\Sigma}$	$\begin{aligned} & \dot{x} \\ & \text { 元 } \end{aligned}$		
	GROUP C Electrical Retest								6
	Not more than 7 days prior to application for Services final approval								
a	Scaling Accuracy	$\begin{gathered} \mathrm{V}_{\mathrm{b}}=400 \mathrm{~V} \\ \mathrm{~V}_{1}=+35 \mathrm{~V} \\ \mathrm{~V}_{2}=-40 \mathrm{~V} \\ \mathrm{~T}=60 \mu \mathrm{~S} \\ \text { Frequency } \\ 4.0 \mathrm{kc} / \mathrm{s} \end{gathered}$		100\%					2
b	Running Voltage	$\mathrm{V}_{\mathrm{b}}=400 \mathrm{~V}$		100\%	V_{r}	184	194		4

NOTES

1. Tests of Group A are to be applied directly after completion of manufacture.
2. The tube shall scale without error the first applications of test signals (illustrated in Fig. 1). Test signals are to be applied for at least $1 / 10$ th second. The test circuit of Fig. 2 is applicable.
3. K_{1-9} 1st guide and 2 nd guide electrodes to be disconnected. Illuminations of tube to be $5-50 \mathrm{ft}$. candles. Tube to conduct in less than 10 seconds.
4. The K_{1-9} 1st guide and 2 nd guide electrodes will be successively earthed through a suitable make before break type switch to cause 30 gaps to conduct in turn. The running voltage across each gap shall be within the specified limits. For this test the K_{\circ} and K_{1-9} electrode will be commoned. The test circuit to Fig. 3 is applicable. The measurement of the running volts is to be made between 0.1 and 2.0 seconds after the contacts of the make before break type switch have broken.
5. The tubes selected for this test are to be run in the circuit shown in Fig. 4. One application of the pulses shown in Fig. 1 is to be made every 85 ± 5 hours. The tube is to receive 20 such pulses and then be removed. A tube which fails to step on the application of the test pulses shall be rejected. The normal guide bias is to be +60 V which will be reduced to +35 V immediately prior to the application of pulses.
6. During the period between the completion of Group A tests and the commencement of Group C tests no further processing shall be applied.
7. A lot shall consist of not more than one calendar month's production or 1301 whichever is the greater. For lots of 800 and less sampling codes shall be as for lots 801-1300.

Scale-of-ten Counter Specially processed for long life

Fig. 1

Fig. 3

Fig. 2

Fig. 4

Mechanical Data

Mounting position

Alignment

Escutcheons

Base

Base Connections (underside view)

Any
For visual indication the tube is viewed through the dome of the bulb.

Cathode " O " is aligned with pin 6 to an accuracy of $\pm 12^{\circ}$.
N78211 Bakelite, or N79368 Brass
I.O.

GC 10 B L

GC 10/4 B/L
Pin 1 Common cathodes
2 Cathode " 5 "
3 ist Guides
4 Anode
5 2nd Guides
6 Cathode "9"
7 Cathode" 0 "
8 Cathode " 3 "

Limit Ratings

$\begin{array}{lr}\text { Maximum counting rate: sine wave and rect- } & \\ \text { angular pulses } & 4,000 \text { p.p.s. } \\ \text { Maximum total anode current } & 550 \mu \mathrm{~A} \\ \text { Minimum total anode current } & 250 \mu \mathrm{~A} \\ \text { Minimum anode supply voltage } & \\ \begin{array}{l}\text { (normal room illumination) }\end{array} & 350 \mathrm{~V} \\ \text { Maximum potential difference between guides and } & \\ \quad \text { cathodes } & 140 \mathrm{~V} \\ \text { Maximum output cathode load } & 150 \mathrm{k} \Omega\end{array}$

Characteristics

Running voltage at $300 \mu \mathrm{~A}$
191 V approx.

Recommended Operating Conditions

**Anode current		$310 \mu \mathrm{~A} \pm 20 \%$
**Guide bias	$+20 \mathrm{~V}$	$+40 \mathrm{~V}$
Bias on output cathode resistor	$-20 \mathrm{~V}$	Zero
Resultant pulse	40 V	40 V
Forced resetting pulse		-120 V
Double pulse drive-amplitude		$-80 \mathrm{~V} \pm 10 \mathrm{~V}$
Double pulse drive-durations		$60 \mu \mathrm{~S}$
Integrated pulse drive-amplitude		$-145 \mathrm{~V} \pm 15 \mathrm{~V}$
Integrated pulse drive-duration		$80 \mu \mathrm{~S}$
Sine wave drive-amplitude		40-70 V r.m.s.
* The required anode current may be via a $820 \mathrm{k} \Omega$ resistor. ** This does not apply in the case of the	ained fr e wave	75 V supply
The following table shows the number of obtained for both directions of drive and ectrode.	put pulse th each	which outputs may de used as the zero
Number of pulses to give output from		

A	B	C	D	
0	1	4	6	Clockwise, A zero
0	9	6	4	Anti-clockwise, A zero
9	0	3	5	Clockwise, B zero
1	0	7	5	Anti-clockwise, B zero
6	7	0	2	Clockwise, C zero
4	3	0	8	Anti-clockwise, C zero
4	5	8	0	Clockwise, D zero
6	5	2	0	Anti-clockwise, D zero

Bi-directional 10 -way Computing Tube with Intermediate Outputs

Mechanical Data

Mounting position

Alignment

Weight
Escutcheons

Base

Base Connections (underside view)

Pin 1 Common cathodes
2 Cathode " D"
3 1st Guides
4 Anode
5 2nd Guides
6 Cathode "A"
7 Cathode "B"
8 Cathode "C"

Any.
For visual indication the tube is viewed through the dome of the bulb.

Cathode " B " is aligned with pin No. 6 to an accuracy of $\pm 12^{\circ}$.

43 g (nominal).
N. 78211 Bakelite, or N. 79368 Brass.
I.O.

Limit Ratings

Maximum counting rate : sine wave and rect-	
\quad angular pulses	
Maximum total anode current	$550 \mu \mathrm{p} . \mathrm{p} . \mathrm{s}$.
Minimum total anode current	$250 \mu \mathrm{~A}$
Minimum anode supply voltage	
(normal room illumination)	350 V
Maximum potential difference between guides and	
\quad cathodes	140 V
Maximum output cathode load	$150 \mathrm{k} \Omega$

Characteristics

Running voltage at $300 \mu \mathrm{~A} \quad 191 \mathrm{~V}$ approx.

Recommended Operating Conditions

*Anode current
**Guide bias
Bias on output cathode resistor - 20 V
Resultant pulse
Forced resetting pulse
Double pulse drive-amplitude
Double pulse drive-durations
Integrated pulse drive-amplitude
Integrated pulse drive-duration
Sine wave drive-amplitude
$310 \mu \mathrm{~A} \pm 20 \%$
$+40 \mathrm{~V}$
Zero
40 V
40 V
$-120 \mathrm{~V}$
$-80 \mathrm{~V} \pm 10 \mathrm{~V}$
$60 \mu \mathrm{~S}$
$-145 \mathrm{~V} \pm 15 \mathrm{~V}$
$80 \mu \mathrm{~S}$
40-70 V r.m.s.

* The required anode current may be obtained from a 475 V supply via an $820 \mathrm{k} \Omega$ resistor.
** This does not apply in the case of the sine wave drive.
The following table shows the number of input pulses for which outputs may be obtained for both directions of drive and with each cathode used as the zero electrode.

Number of pulses to give output from :-

A	B	C	D	
0	1	7	9	Clockwise, A zero
0	11	5	3	Anti-clockwise, A zero
11	0	6	8	Clockwise, B zero
1	0	6	4	Anti-clockwise, B zero
5	6	0	2	Clockwise, C zero
7	6	0	10	Anti-clockwise, C zero
3	4	10	0	Clockwise, D zero
9	8	2	0	Anti-clockwise, D zero

Mechanical Data

Mounting position	Any, For visual indication the tube is viewed through the dome of the bulb.
Alignment	Cathode "B" is aligned with pin No. 6 to an accuracy of $\pm 10^{\circ}$.
Weight	43 g (nominal).
Escutcheon	N79369 Brass
Base	I.O.

Base Connections (underside view)

Pin 1 Common cathodes
2 Cathode "C"
3 1st Guides
4 Anode
5 2nd Guides
6 Cathode " A"
7 Cathode "B"
8 Cathode " D"

Limit Ratings

Maximum counting rate : any wave shape $\quad 20 \mathrm{kp} / \mathrm{s}$
Maximum total anode current $\quad 1.2 \mathrm{~mA}$
Minimum total anode current $700 \mu \mathrm{~A}$
Minimum anode supply voltage (normal room illumination) 420 V
Maximum potential difference between guides and cathodes 180 V
The output cathode I . st not rise above the potential of the commoned cathodes by more than 10 volts, and may be made more than 30 volts negative only when resetting.

Characteristics

Running voltage at $800 \mu \mathrm{~A} \quad 215 \mathrm{~V}$ approx.

Recommended Operating Conditions

*Anode current

$$
800 \mu \mathrm{~A}
$$

Output cathode load $82 \mathrm{k} \Omega$
Forced resetting pulse

$$
-140 \mathrm{~V}
$$

Random pulse drive-amplitude

$$
-(144 V+50 V)
$$

**Random pulse drive-duration
$25 \mu \mathrm{~S}$ min.
**Random pulse drive-quiescent time $25 \mu \mathrm{~S}$ min.
Random pulse drive-guide bias
Sine wave drive-amplitude
$+72 \pm 12 \mathrm{~V}$

Sine wave drive-guide bias 65-100 V r.m.s.

* The required anode current may be obtained from a 475 V supply via a $330 \mathrm{k} \Omega$ resistor.
Note-To reduce the effect of stray capacity to a minimum it is essential that the anode resistor be wired not more than $\frac{1^{\prime \prime}}{\prime^{\prime \prime}}$ (or 5 mm .) from tag 4 on the valve holder.
** The maximum is limited by the repetition rate.

Mechanical Data
Mounting position

Alignment

Weight
Escutcheons

Base

Base Connections (underside view)

Pin 1 Common cathodes
2 3rd Guides
3 1st Guides
4 Anode
6 Output cathode
7 Output 3rd Guide
8 2nd Guides

LK 122

Drive	Input		C1	R1	R2	D1
	Duration	Amplitude				
Random pulse	$>25 \mu \mathrm{~S}$	145 +50 V	. $02 \mu \mathrm{~F}$	$1 \mathrm{M} \Omega$	Not reqd.	Q3/3
Sine wave	-	$\begin{gathered} \text { 65-100 V } \\ \text { r.m.s. } \end{gathered}$	To suit lowest frequency	Not reqd.	$100 \mathrm{k} \Omega$	Not reqd.

Sine-wave or random-pulse drive for GC10D

Bi-directional 10-way Counter/Selector Dekatron with Auxiliary Anodes and Routing Guides

UNDER REVISION

The cathodes of the counter tube are arranged with 1-9 commoned internally and ' 0 ' brought out to a separate connection in order to provide a transfer pulse when the tubes are cascaded. In the case of the Selector tube the cathodes are all brought out to separate base connections. In both tube types additional output electrodes in the form of ten auxiliary anodes placed between the main anode and the cathodes are also brought out to connections in the base. The electrodes can be used to provide negative pulses suitable for the direct operation of a Digitron register tube. The routing guides between ' 9 ' and ' 0 ' are brought out to separate connections to facilitate bi-directional counting.

Limit Ratings

Maximum counting rate paired pulse drive	$10 \mathrm{kp} / \mathrm{s}$
Maximum counting rate single pulse drive	$5 \mathrm{kp} / \mathrm{s}$
Minimum main anode supply voltage	440 V
*Maximum main anode current	0.9 mA
*Minimum main anode current	0.5 mA
*Maximum auxiliary anode current	2.5 mA
*Maximum cathode current	3.0 mA
*Minimum cathode current	2.3 mA
Maximum cathode load	$3.3 \mathrm{k} \Omega$
Maximum routing guide resistor	$4.7 \mathrm{k} \Omega$

*The maximum main and auxiliary anode currents cannot occur with the same operating conditions. The sum of these two currents should not exceed the maximum cathode current.

The current through the auxiliary anodes may be varied by changing the Digitron anode resistor, and similarly, the Dekatron main anode/cathode current can be varied by changing its anode resistor. The two currents are substantially independent of each other.

Bi-directional IO-way Counter/Selector Dekatron with Auxiliary Anodes and Routing Guides

UNDER REVISION

Characteristics

Main anode to cathode running voltage	240 V nom.
Auxiliary anode voltage when conducting	225 V nom.

Recommended Operating Conditions

Main anode supply voltage	$475 \pm 25 \mathrm{~V}$
Main anode current	0.62 mA
Auxiliary anode current	2.0 mA
Cathode load resistor	$3.3 \mathrm{k} \Omega$
Main anode resistor	$390 \mathrm{k} \Omega$
Auxiliary anode resistors (Digitron readout Fig. 1)	$220 \mathrm{k} \Omega$
Auxiliary biasing resistor (Digitron readout Fig. 1)	$1 \mathrm{M} \Omega$
Auxiliary anode resistors (no readout Fig. 2)	$33 \mathrm{k} \Omega$
Auxiliary anode biasing resistor (no readout Fig. 2)	$100 \mathrm{k} \Omega$
Forced resetting pulse amplitude	-100 V nom.
Forced resetting pulse duration	$50 \mu \mathrm{Smin}$.
Paired pulse drive Fig. 3 amplitude	120 V nom.
Paired pulse drive Fig. 3 duration	$30 \mu \mathrm{~S}$
Paired pulse drive Fig. 3 guide two delay	$28 \mu \mathrm{~S}$
Single pulse drive Fig. 4 amplitude	$150 \mathrm{~V} \mathrm{nom}$.
Single pulse drive Fig. 4 duration	$100 \mu \mathrm{~S}$ nom.

Bi-directional 10 -way Counter/Selector Dekatron with Auxiliary Anodes and Routing Guides

UNDER REVISION

Mechanical Data

Mounting position

Alignment

Base
Socket

Any.
For visual indication the tube may be viewed through the dome of the bulb.
Cathode ' 0 ' is aligned to pin 3 with an accuracy of $\pm 5^{\circ}$
Modified B26A
B27A

GCA10G Base Connections (underside view)

Pin 1 Commoned Cathode 1-9
2 Cathode 0
3 Routing Guide 2
4 Routing Guide 1
5 Auxiliary Anode 1
6 Auxiliary Anode 0
7 Auxiliary Anode 9
8 Auxiliary Anode 8
9 Auxiliary Anode 7
10 Auxiliary Anode 6
11 Auxiliary Anode 5
12 Auxiliary Anode 4
13 Auxiliary Anode 3
14 Auxiliary Anode 2
15 Do not connect
16 Guide 2
17 Guide 1
28 Main Anode

UNDER REVISION

Bi-directional 10 -way Counter/Selector Dekatron with Auxiliary Anodes and Routing Guides

UNDER REVISION

Fig. 1 Dekatron with Digitron Readout.

Fig. 2 Dekatron without Digitron Readout.

Bi-directional IO-way Counter/Selector Dekatron with Auxiliary Anodes and Routing Guides

UNDER REVISION

Fig. 3 Paired Pulse Drive.

Fig. 4 Single Pulse Drive.

Limit Ratings

Maximum counting rate: sine wave and rect-
angular pulses 4,000 p.p.s.
Maximum total anode current $550 \mu \mathrm{~A}$
Minimum total anode current $250 \mu \mathrm{~A}$
Minimum anode supply voltage
(normal room illumination)
400 V

Characteristics

Running voltage at $325 \mu \mathrm{~A} \quad 192 \mathrm{~V}$ approx.

Recommended Operating Conditions

*Anode current	$325 \mu \mathrm{~A} \pm 20 \%$
${ }^{* * G} \mathbf{G u i d e}$ bias	+36 V
Forced resetting pulse	-120 V
Double pulse drive-amplitude	$-80 \mathrm{~V} \pm 10 \mathrm{~V}$
Double pulse drive-durations	$60 \mu \mathrm{~S}$
Integrated pulse drive-amplitude	$-145 \mathrm{~V} \pm 15 \mathrm{~V}$
Integrated pulse drive-duration	$80 \mu \mathrm{~S}$
Sine wave drive-amplitude	$40-70 \mathrm{~V}$ r.m.s.

*Anode current
$325 \mu \mathrm{~A} \pm 20 \%$
Forced resetting pulse
Double pulse drive-amplitude
Double pulse drive-durations Integrated pulse drive-amplitude Integrated pulse drive-duration Sine wave drive-amplitude

* The required anode current may be obtained from a 475 V supply via a $680 \mathrm{k} \Omega$ resistor.
** This does not apply in the case of the sine wave drive.

Mechanical Data

Mounting position

Alignment

Weight
Escutcheon
Base

Any.
For visual indication the tube is viewed through the dome of the bulb.

Cathode No. 1 is aligned with pin No. 11 to an accuracy of $\pm 12^{\circ}$.
53 g . (nominal).
N. 80977

Duodecal with bottom cap.

Limit Ratings
Maximum counting rate: sine wave and rect-angular pulses
Maximum total anode current4,000 p.p.s.
Minimum total anode current $190 \mu \mathrm{~A}$
Minimum anode supply voltage (normal room illumination) 400 V
Maximum potential difference between cathodes and guides 140 V
Maximum output cathode load $270 \mathrm{k} \Omega$
Maximum output available across a $270 \mathrm{k} \Omega$ cathode load resistor 35 V
Characteristics
Running voltage at $270 \mu \mathrm{~A}$ 191 V
Recommended Operating Conditions
*Anode current $270 \mu \mathrm{~A} \pm 20 \%$
**Guide bias $+36 \mathrm{~V}$
Forced resetting pulse $-120 \mathrm{~V}$
Double pulse drive-amplitude Double pulse drive-durations Integrated pulse drive-amplitude Integrated pulse drive-duration 10 V
$-80 \mathrm{~V} \pm 10 \mathrm{~V}$ $-145 \mathrm{~V} \pm 15 \mathrm{~V}$
Sine wave drive-amplitude 40-70 V r.m.s.
Mechanical Data

Mounting position

Alignment
Weight

Escutcheon

Base

Any.
For visual indication the tube is viewed through the dome of the bulb.
Cathode No. 1 is aligned with pin No. 12 to an accuracy of $\pm 10^{\circ}$. 50 g (nominal). N. 84538.

Duodecal with bottom cap and two flying leads.

* The required anode current may be obtained from a 475 V supply via a $910 \mathrm{k} \Omega$ resistor.
** This does not apply in the case of the sine wave drive.

Base Connections
(underside view)
(underside view)

Pin 1	Cathode 0
2	, 11
3	, 10
4	" 9
5	"
6	" 7
7	, 6
8	"
9	, 4
10	"
11	,
12	" 1
Bottom	Cap Anode

Lead between pins
6 and 7 with yellow
sleeving 1st Guides
Lead between pins
12 and 1 with green sleeving

2nd Guides

Bi-directional 10-way Selector Tube

Limit Ratings

Maximum counting rate:
Continuous sine wave drive $\quad 20 \mathrm{kp} / \mathrm{s}$
Rectangular pulse drive $\quad 10 \mathrm{kp} / \mathrm{s}$
Maximum total anode current $900 \mu \mathrm{~A}$
Minimum total anode current $700 \mu \mathrm{~A}$
Minimum supply voltage, anode to cathode
(normal room illumination) 440 V
Maximum potential between guides and cathodes 180 V
Maximum output pulse available with 47 k cathode load resistor

Characteristics

Running voltage at $800 \mu \mathrm{~A}$

Recommended Operating Conditions

*Anode current
**Guide bias
Cathode load resistors
Forced resetting pulse
***Double pulse drive-amplitude
Double pulse drive-duration
Double pulse drive-pulse overlap at the 90% pulse level
****Integrated pulse drive-amplitude
Integrated pulse drive-duration
Sine wave drive-amplitude

208 V approx.

* The required anode current may be obtained from a 475 V supply via a $300 \mathrm{k} \Omega \pm 5 \%$ resistor.
Note-To reduce the effect of stray capacity to a minimum it is essential that the anode resistor be wired not more than $\frac{1}{4}$ " $(5 \mathrm{~mm})$ from the anode tag on the valve holder.
** This does not apply in the case of the sine wave drive. See circuit LK.100, Issue 2.
*** The pulses should have a rise time of less than $150 \mathrm{~V} / \mu \mathrm{S}$ and a droop of less than 30 V. See circuit LK.102, Issue 2.
**** The pulse should have a rate of rise of less than $150 \mathrm{~V} / \mu \mathrm{S}$ and a droop of less than 5 V. See circuit LK. 101, Issue 2.
N.B. \leftarrow Indicates a change from previous data sheet.

Bi-directional 10-way Selector Tube

Mechanical Data

Mounting position

Alignment
Weight
Base
Escutcheon

Any.
For visual indication the tube is viewed through the dome of the bulb.
Cathode 1 is aligned with pin No. 11 to an accuracy of $\pm 12^{\circ}$.
53 g (nominal)
Duodecal with bottom cap. N80977.

Base Connections (underside view)

Pin 1 Cathode 0

2	,
3	,"
4	,"
5	,
6	,
7	,
8	,
9	,
10	
11	2nd Guid

B.C. Anode

Bi-directional 10 -way
Selector Tube

Continuous Sine-Wave Drive

Integrated-Pulse Drive

Bi-directional 10 -way Selector Dekatron with Routing Guides

Although the seated height of this tube is less than $1 \frac{1^{\prime \prime}}{}$, the electrical characteristics are similar to the Dekatrons with phenolic bases.

Limit Ratings

Maximum counting rate	5000 p.p.s.
Maximum anode current	$370 \mu \mathrm{~A}$
Minimum anode current	$250 \mu \mathrm{~A}$
Minimum supply voltage	380 V
(normal room illumination)	
Maximum potential difference between electrodes	140 V
other than anode	28 V

Characteristics

Running voltage at $310 \mu \mathrm{~A}$
187 V nominal

Recommended Operating Conditions for a maximum counting rate of 4000 p.p.s.*

**Cathode resistors
$82 \mathrm{~K} \Omega$

***Anode resistor
$820 \mathrm{~K} \Omega$
Supply voltage, with 1% anode resistor $475 \mathrm{~V} \pm 10 \%$ with 5% anode resistor
Guide Bias $475 \vee \pm 5 \%$

Double Pulse Circuit, Fig. 2 Pulse amplitudes $\quad-70 \pm 7 \mathrm{~V}$ Pulse durations $\quad 80 \pm 5 \mu \mathrm{~S}$
Integrated Pulse Circuit, Fig. 1 Input pulse amplitude
$-145 \pm 15 \mathrm{~V}$
Input pulse duration $\quad 75 \mathrm{\mu S} \mathrm{~min}$.
$1 / 3 \mathrm{f}$ secs max.
Continuous Sine Wave Circuit, Fig. 3 Amplitude $55 \pm 15 \mathrm{~V}$ r.m.s.

* The manufacturers will design circuits to suit individual cases where the counting rate exceeds 4 kps .
** Each cathode must have a return path to the negative rail via $82 \mathrm{~K} \Omega$, even though an output pulse is not required.
*** To reduce the effect of stray capacity to a minimum, it is essential that the anode resistor be wired not more than $\frac{1}{4}$ " (5 mm) from the anode tag on the valve holder.

Mechanical Data

Mounting position	Any For visual indication the tube is viewed through the dome of the bulb.
Alignment	Cathode 1 is aligned with pin $9 \pm 3^{\circ}$.
Base	B17A
Escutcheon	N79368

Valveholder, printed circuit
Valveholders, tags

Valveholder connections and fixing (under-chassis view).

Valveholder requires $1.0^{\prime \prime}$ dia. hole in chassis.

Pin 1 Cathode 6
2 Cathode 5
3 Do not connect
4 Cathode 4
5 Cathode 3
6 Do not connect
7 Cathode 2
8 Anode
9 Cathode 1
E.T.L. code HFD 13534
A.E.I. type VH26/1703
E.T.L. code HFD 13045

Pin 10 Cathode 0
11 Routing Guide 2
12 Routing Guide 1
13 Cathode 9
14 Cathode 8
15 Commoned Guide 2
16 Cathode 7
17 Commoned Guide 1

> Bi-directional IO-way Selector Dekatron with Routing Guides

Fig. 1 Integrated Pulse Drive

Fig. 2 Double Pulse Drive

f	$4 \mathrm{kc} / \mathrm{s}$	$2 \mathrm{kc} / \mathrm{s}$	$1 \mathrm{kc} / \mathrm{s}$	$500 \mathrm{c} / \mathrm{s}$	$200 \mathrm{c} / \mathrm{s}$	$100 \mathrm{c} / \mathrm{s}$	$50 \mathrm{c} / \mathrm{s}$
C	680 pF	$.002 \mu \mathrm{~F}$	$.005 \mu \mathrm{~F}$	$.01 \mu \mathrm{~F}$	$.02 \mu \mathrm{~F}$	$.05 \mu \mathrm{~F}$	$.1 \mu \mathrm{~F}$

Fig. 3 Sine Wave Drive

All diodes type 0A202 or equivalent.
Components and Voltages 10% tol. unless specified in data.

TROCHOTRON BEAM SWITCHING TUBES

INDEX

Tube Type					CV. Code
VS10G	CV. 5290
VS10H	CV. 6103

Cathode

Heater

Indirectly heated
Vh
6.3 V
0.5 A

Ih

Limit Ratings

Maximum heater to cathode voltage $\pm 150 \mathrm{~V}$
Maximum spade to cathode voltage (V_{5} max.) 125 V
Minimum spade to cathode voltage ($\mathrm{V}_{\mathrm{S}} \mathrm{min}$.) 85 V
Minimum target to cathode voltage ($\mathrm{V}_{\mathrm{T}} \mathrm{min}$.) 50 V
Maximum target to cathode voltage (V_{T} max.) 300 V
Minimum switching-grid to cathode voltage (V_{SG} min.) $\quad \mathrm{V}_{\mathrm{S}}=125 \mathrm{~V}$
$\mathrm{V}_{\mathrm{S}}=85 \mathrm{~V}$
$65 \vee \leftarrow$
$45 \vee$

Minimum input duration
$0.5 \mu \mathrm{~S}$

Characteristics ($\mathrm{V}_{\mathrm{S}}=108 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=100 \mathrm{k} \Omega$)
Holding ade current
1.2 mA nom.

Target current
10.0 mA nom. \leftarrow

Recommended Operating Conditions (for counting up to $1 \mathrm{Mc} / \mathrm{S}$)

V_{S}	$108 \mathrm{~V} \leftarrow$
R_{S}	$100 \mathrm{k} \Omega$
\pm	10%

(Each spade must be connected to a separate load resistor with not more than $\frac{1}{2}$ " $(10 \mathrm{~mm})$ of connecting lead).

V_{T}	108 V
R_{T}	$4.7 \mathrm{k} \Omega$

(Any number of target connections may be taken to a common target resistor).

VS10G Trochotron, 10-way Beam Switching Tube (CV5290)

Recommended Operating Conditions (for counting up to

 $1 \mathrm{Mc} / \mathrm{S}$) cont.| $\mathrm{V}_{\text {SG }}=\frac{\mathrm{V}_{\text {S }}}{2}$ | $54 \mathrm{~V} \leftarrow$ |
| :--- | :---: |
| $\mathrm{~V}_{\text {SG }}$ pulse amplitude | $-54 \mathrm{~V} \leftarrow$ |
| t pulse | $0.5 \mathrm{\mu S}$ |
| $\mathrm{R}_{\text {SG }}$ | $22 \mathrm{k} \Omega \leftarrow$ |
| C input | $330 \mathrm{pF} \leftarrow$ |

Alternatively d.c. coupling may be used as shown in circuit LK. 125

* Note :- The spade resistance is the total resistance, including resistors for beam formation ctc.

Mechanical Data

Mounting position Any: providing that the tube is kept at least $2^{\prime \prime}$ from any magnetic material or $4^{\prime \prime}$ from a similar tube, a strong magnet or a mu-metal screen.
Weight
185 g
Base
B26A
N.B. \leftarrow Indicates a change from previous data sheets.

Mechanical Data-cont.

1 Mc/S Trochotron Decade Counter with
GR10A Register Tube readout

VS10G Holding Spade and Target Characteristics

\qquad

High Current I0-way Trochotron Beam Switching Tube

Cathode

Indirectly heated

Heater	Vh	6.3 V
	lh	0.55 V

Limit Ratings

Maximum heater to cathode voltage $\pm 150 \mathrm{~V}$
Maximum spade to cathode voltage (V_{S} max.) +145 V
Minimum spade to cathode voltage ($\left.\mathrm{V}_{\mathrm{s}} \mathrm{min}.\right) \quad+80 \mathrm{~V}$
Minimum target to cathode voltage ($\left.\mathrm{V}_{\mathrm{T}} \mathrm{min}.\right) \quad+50 \mathrm{~V}$
Maximum target to cathode voltage (V_{T} max.) +300 V
Minimum switching-grid to cathode voltage

$$
\left(V_{S G} \min .\right) \quad V_{S}=140 \mathrm{~V} \quad 75 \mathrm{~V}
$$

$$
125 \mathrm{~V} \quad 55 \mathrm{~V}
$$

$80 \mathrm{~V} \quad 45 \mathrm{~V}$

Minimum spade resistor ($\mathrm{R}_{\mathrm{S}} \mathrm{min}$.)

$$
\begin{array}{rl}
\mathrm{V}_{\mathrm{S}}=140 \mathrm{~V} & 56 \mathrm{k} \Omega \\
125 \mathrm{~V} & 68 \mathrm{k} \Omega \\
80 \mathrm{~V} & 82 \mathrm{k} \Omega
\end{array}
$$

Maximum spade resistor (R_{S} max.)

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{s}}=140 \mathrm{~V} & 150 \mathrm{k} \Omega \\
125 \mathrm{~V} & 175 \mathrm{k} \Omega
\end{array}
$$

$80 \mathrm{~V} \quad 270 \mathrm{k} \Omega$
Minimum resolution time (for groups of pulses not exceeding nine in number)

250 nS
Maximum switching speed (for regular spaced pulses) $2 \mathrm{Mc} / \mathrm{S}$

Characteristics

Holding spade current
1.0 mA nom.

Target spade current $\quad V_{S}=140 \mathrm{~V}$ 125 V 80 V 18.0 mA nom. 10.0 mA nom. 6.5 mA nom.

Switching grid current on switching

$$
\begin{array}{rl}
V_{\mathrm{S}}=140 \mathrm{~V} & 2.0 \mathrm{~mA} \text { nom. } \\
125 \mathrm{~V} & 1.0 \mathrm{~mA} \text { nom. } \\
80 \mathrm{~V} & 0.2 \mathrm{~mA} \text { nom } .
\end{array}
$$

Recommended Operating Conditions for

$1 \mathrm{Mc} / \mathrm{S}$ Operation

V_{s}	125 V
R_{s}	$100 \mathrm{k} \Omega$

(Each spade must be connected to a separate load resistor with not more than $\frac{1}{2}^{\prime \prime}(10 \mathrm{~mm})$ of connecting lead).
V_{T}
125 V
R_{T}
$4.7 \mathrm{k} \Omega$
(Any number of target resistors may be taken to a common target resistor).

Minimum pulse-duration	$0.25 \mu \mathrm{~S}$
Minimum pulse-amplitude	$-\left(\mathrm{V}_{\mathrm{SG}}+5\right) \mathrm{V}$

For 2 Mc/S Operation

V_{S}	125 V
R_{S}	$82 \mathrm{k} \Omega$

(Each Spade must be connected to a separate load resistor with not more than $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}(10 \mathrm{~mm})$ of connecting lead).
V_{T} 125 V
R_{T}
$4.7 \mathrm{k} \Omega$
(Any number of target resistors may be taken to a common target resistor).

Minimum pulse-duration

$$
\begin{array}{r}
0.25 \mu S \\
-\left(V_{S G}+5\right) V
\end{array}
$$

Minimum pulse-amplitude

Mechanical Data

Mounting position

Weight
Base
Sockets
Base Connections (underside view,

Pin 1 Spade 0
2 Target 9
3 Target 8
4 Odd Switching grids
5 Target 7
6 Spade 7
7 Target 6
8 Target 5
9 Spade 5
10 Target 4
11 Do not connect
12 Target 3
13 Target 2
14 Spade 2
15 Target 1
16 Even Switching grids
17 Target 0
19 Spade 9
20 Spade 8
21 Heater
22 Spade 6
23 Spade 4
24 Spade 3
25 Heater
26 Spade 1
27 Cathode

Any: providing that the tube is kept at least $2^{\prime \prime}$ from any magnetic material or $4^{\prime \prime}$ from a similar tube, a strong magnet or a mu-metal screen.

220 g
B26A
B26A or B27A

DIGITRON AND REGISTER TUBES

INDEX

Tube Type					CV. Code
GR10A	..	\ldots	CV. 5291
GR10J	\ldots	-
GR10K	CV. 5842
GR10M	-
Digitron Escutcheon Unit					

"Digitron" is a registered Trade Mark of Ericsson Telephones Limited

DIGITRON TUBES

The Digitron is a gas-filled tube in which the cathodes are shaped to form characters. The selected cathode is made to glow by a switched connection to one side of a power supply-the anode being connected through a load resistor to the other.

The switch may be mechanical-uniselector, relay, etc., or it may be electronic in the form of a trigger tube, Trochotron-Beam Switching Tube, Transistor or a thermionic tube.

The current to operate the tube must be within two limits, firstly it must be sufficient to cover the whole of the selected cathode with glow and secondly it must be less than the maximum specified current. If this maximum current is exceeded then the life of the tube will be adversely affected.

Fig. 1 Digitron Operating Characteristics
Reference to Fig. 1 shows a typical method of specifying the characteristics. The parallel lines are the upper and lower limits of running voltage over the operational current range.

The recommended operating point is indicated as ' P ' and load lines may then be drawn from the available supply voltage through the point 'P'. The slope of this line gives the required anode load resistor.

DIGITRON TUBES

In certain tubes it is desirable to include additional resistors in cathodes which have smaller than average areas, i.e., 1 and 7 in the GR10G. This is to ensure that the average life of each character is approximately the same.

It is possible to prevent cathodes from glowing by connecting them to a small positive voltage-the Pre-bias Voltage. This varies from about 25 volts minimum to 100 volts maximum. A selected cathode may be made to glow by applying a negative voltage of amplitude equal to the pre-bias voltage. Details of the recommended pre-bias voltage will be found in the particular tube data where applicable.

Digitrons are essentially constant current tubes and operate best under these conditions. An ideal combination is that of Trochotron and Digitron, otherwise the tubes should be operated from as high a supply voltage as possible in order to minimise individual characteristic variations.

The range of D gitrons includes end and side-viewing number tubes, a fraction tube and sign tubes.

REGISTER TUBES

In order to count pulses at rates greater than $20 \mathrm{kp} / \mathrm{s}$, it is essential to precede the Dekatron scaler with hard valve decades. To preserve uniformity of display, the register tube has been introduced. Like a Dekatron it has a common anode and ten cathodes, but there are no guides. The difference between striking and extinction voltage of the gaps is of the order of 25 volts which can be readily obtained from a coincidence matrix fed by the binary decade. Thus it is possible to have a uniform presentation even though the scaler may contain both Dekatrons and hard valve decades.

A conventional binary scale of sixteen modified by feedback into a scale of ten has eight anodes each with two stable potentials. It is possible to select ten combinations of at most four anodes which are all in the low potential state at one count only. These are connected via isolating resistors to one cathode of the register tube the anode of which is connected to some higher voltage determined by the following equations:-

$$
\begin{aligned}
& E_{1} \geqslant E_{s}+\left(E_{2}-E_{0}\right) . \\
& E_{1} \leqslant I_{a} R_{a}+\left(E_{2}-\frac{n-1}{n} E_{0}\right)+E_{x} .
\end{aligned}
$$

where $E_{1}=$ Anode supply voltage of register tube.
$\mathrm{E}_{2}=$ Anode voltage of non-conducting tube of binary pair.

REGISTER TUBES

$\mathrm{E}_{\mathrm{o}}=$ Peak-to-peak output pulse from binary pairs.
$\mathrm{E}_{\mathrm{s}}=$ Striking voltage of register tube.
$E_{x}=$ Extinction voltage of register tube.
$\mathrm{n}=$ The greatest number of scaler anodes controlling one register cathode (normally $n=4$).

The register tube cathode is required to glow when all its four associated anodes are low, and must not glow when three are low and one is high. Thus the amplitude of the binary anode swings must be at least four times the difference between the striking and extinguishing voltages of the cold cathode diodes forming the register tube. The recommended circuit and base connections have been designed to allow the maximum tolerance in operating conditions, and to this end some cathodes are connected to more scaler anodes than is needed to satisfy the normal glow conditions.

The de-ionization time of the gas limits the rate at which the circulation of the glow will follow the counter. At speeds greater than some $50 \mathrm{kp} / \mathrm{s}$ the discharge will completely extinguish, but when the pulse rate drops to a lower value the tube will strike again and display the correct count.

Limit Ratings

Minimum anode to cathode voltage to ensure
breakdown (normal room illumination) $129 \mathrm{~V} \leftarrow$

Characteristics

$$
\text { Running voltage at } 60 \mu \mathrm{~A} \quad 108 \mathrm{~V} \text { approx. }
$$

Recommended Operating Conditions

Anode current

To ensure correct operation the cathode potential must change by a voltage V_{0} where :-

$$
\begin{aligned}
\mathrm{V}_{0} & >\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{\mathrm{x}} \\
& >129-105, \text { i.e., } 24 \text { volts } \\
\mathrm{V}_{\mathrm{s}} & =\text { Striking voltage } \\
\mathrm{V}_{\mathrm{x}} & =\text { Extinction voltage }
\end{aligned}
$$

N.B. \leftarrow Indicates a change from previous data sheets.

Mechanical Data

Mounting position

Alignment
Weight
Escutcheon
Base

Any.
The tube is viewed through the dome of the bulb.

Cathode No. 2 is aligned with pin No. 11 to an accuracy of $\pm 12^{\circ}$.
50 g.
N. 80977.

Duodecal.

*DIGITRON - Long Life 10 Digit Side-Viewing Cold-Cathode Numerical Register Tube

Limit Ratings

$$
\begin{array}{lc}
\text { Maximum cathode current } & 4 \mathrm{~mA} \\
\text { Minimum voltage necessary to ensure breakdown } & 150 \mathrm{~V}
\end{array}
$$

Characteristics

Abstract

Nominal running voltage 145 V A cathode left floating will assume some potential between that of the anode and the glowing cathode.

Recommended Operating Conditions

Under the recommended d.c. operating conditions with the characters switched sequentially every 24 hours, an average life of 10,000 hours can be expected.
D. C. operation

Anode supply voltage $\mathrm{Ra}=33 \mathrm{k} \Omega \quad 250 \mathrm{~V}$
A.C. operation
(Unsmoothed half-wave rectifier 50 c. $\mathrm{p}_{0} \mathrm{~S}_{\text {。 }} \mathrm{a}_{\mathrm{c}} \mathrm{c}_{\circ}$)

$$
\begin{array}{rlrl}
\text { Anode supply voltage }-\mathrm{Ra} & =39 \mathrm{k} \Omega & & 200-220 \mathrm{~V} \text { r.m. s。 } \\
\mathrm{Ra} & =47 \mathrm{k} \Omega & 220-250 \mathrm{~V} \text { r.m. } \mathrm{s}_{\circ}
\end{array}
$$

Filters

For many applications the use of a light filter may be advantageous. 'Circular polarized' filters (Type HNCP, supplied by Polarizers (U. K.) Ltd. , 28, Stamford Street, London, S.E. 1) eliminate reflected light and improve contrast. Coloured filters of glass, Perspex or Gelatine can also be used to advantage, amber or red tinted filters making Long Life Digitrons appear identical with other Digitrons.
*Registered Trade Mark
RG-7-1

DIGITRON - Long Life 10 Digit Side-Viewing Cold-Cathode Numerical Register Tube

Mechanical Data

Mounting position	Any	
Base		B26A
Socket	B17A, B26A or B27A	

Base Connections (underside view)

Pin 1 Cathode 6
2 Cathode 5
5 Cathode 4
6 Anode
7 Cathode 3
9 Cathode 2

10 Cathode 1
14 Cathode 0
15 Cathode 9
16 Cathode 8
17 Cathode 7

Note: All other pins are to be left unconnected.
 Cold-Cathode Numerical Register Tube

*DIGITRON - Long Life 10 Digit End-Viewing Cold-Cathode Numerical Register Tube

Limit Ratings

Maximum cathode current	1.8 mA
Minimum voltage to ensure breakdown	150 V

Characteristics

Abstract

Nominal running voltage at 1.4 mA 140 V A cathode left floating will assume some potential between that of the anode and the glowing cathode.

Recommended Operating Conditions

Under the recommended d.c. operating conditions with the cathodes switched sequentially every 24 hours, an average life of 10,000 hours can be expected.
D.C. operation

Anode supply voltage $\mathrm{Ra}=82 \mathrm{k} \Omega \quad 250 \mathrm{~V}$
$\mathrm{Ra}=47 \mathrm{k} \Omega \quad 200 \mathrm{~V}$
A.C. operation
(Unsmoothed half-wave rectified 50 c. p.s. a.c.)
Anode supply voltage $-\mathrm{Ra}=82 \mathrm{k} \quad 200-220 \mathrm{~V}$ r.m. S. $\mathrm{Ra}=120 \mathrm{k} \quad 220-250 \mathrm{~V}$ romos.

Filters

For many applications the use of a light filter may be advantageous. 'Circular polarized' filters (Type HNCP, supplied by Polarizers (U. K.) Ltd., 28, Stamford Street, London, S.E. 1) eliminate reflected light and improve contrast. Coloured filters of glass, Perspex or Gelatine can also be used to advantage, amber or red tinted filters making Long Life Digitrons appear identical with other Digitrons.

DIGITRON - Long Life 10 Digit End-Viewing
Cold-Cathode Numerical Register Tube

Mechanical Data

Mounting position	Any
Base	B17A
Socket	B17A

Base Connections (underside view)

Pin
1 Cathode 3
2 Cathode 9
4 Cathode 0
5 Cathode 7
6 Cathode 8
10 Cathode 6
11 Cathode 5
12 Anode
13 Cathode 1

14 Cathode 2
15 Cathode 4

Note: All other pins are to be left unconnected.

Operating Characteristics
*Registered Trade Mark

*DIGITRON-Long Life IO Digit End-Viewing Cold Cathode Numerical Register Tube

Characteristics and Recommended Operating Conditions(at room temperature unless otherwise stated)
Minimum anode to cathode voltage to ensure breakdown (see Note 1) 170 V
Nominal running voltage at 2 mA 140 V
D.C. Operation-
Recommended Cathode Current 2 mA
Minimum positive bias on non-conducting cathodes 60 V (See Note 2)
Half wave A.C. supply
Recommended Cathode Current, average 1.5 mApeak 7 mA
Minimum positive bias on non-conducting cathodes 40 V
(See Note 2)
Life expectancy (2 mA cathode current) (See Note 3)Continuous ionisation of one cathode
$>5,000$ hours
Sequentially switching cathodes every 100 hours
or less $>30,000$ hours
Absolute Maximum Ratings
Cathode current (each digit)-
Maximum average (averaging time $=20 \mathrm{mS}$) 2.5 mA
Maximum peak 10 mA
Minimum for D.C. operation 1.0 mA
Bulb temperature-
Maximum $+70^{\circ} \mathrm{C}$
Minimum (See Note 3) $-50^{\circ} \mathrm{C}$
Notes-
(1) At temperatures below $0^{\circ} \mathrm{C}$ anode supply should be at least 200 V .
(2) Under limit conditions some deterioration of the glow appearance may occur during life. To minimise this, the voltage between the conducting and non-conducting cathodes should be as high as possible.
(3) At $-50^{\circ} \mathrm{C}$ the life expectancy of the tube is reduced.

> * Registered Trade Mark

*DIGITRON-Long Life 10 Digit End-Viewing
 GR10M Cold Cathode Numerical Register Tube

Mechanical Data

> Mounting position

Any
Base
Socket
Base Connections (underside view)

CENTRE LINE OF CHARACTERS

Pin 2 Anode
Cathode 0
Cathode 9
Cathode 8
Cathode 7
Cathode 6
Cathode 5
10 Cathode 4
11 Cathode 3
12 Cathode 2
13 Cathode 1
Note-All other pins are to be left unconnected

The dome of the tube is filter coated

* Registered Trade Mark

*DIGITRON-Long Life 10 Digit End-Viewing Cold-Cathode Numerical Register Tube

Typical Circuit for D.C. Operation

Typical Circuit for A.C. Operation
*Registered Trade Mark

GR10M

Sum of the Total Probe Current to all Non-Illuminating Cathodes Plotted against Cathode Bias Voltage.
*Registered Trade Mark

*DIGITRON-Long Life 7 Character End-Viewing GR 7 M Cold Cathode Register Tube Containing

 Characters $+,-, V, A, \Omega, \%$, and \simCharacteristics \& Recommended Operating Conditions(at room temperature unless otherwise stated)Minimum anode to cathode voltage to ensure breakdown 160 V
Nominal running voltage at 2 mA 140 V
D.C. Operation -
Recommended Cathode Current 2mA
Min. Positive bias on non-conducting cathodes (See Note 1) 60 VHalf-wave A.C. Supply -Recommended Cathode Current, average 1.5 mApeak 7 mA
Min. Positive bias on non-conducting cathodes (See Note 1) 40 V
Life Expectancy (2mA Cathode Current)
Continuous ionisation of one Cathode $>5,000$ hoursSequentially Switching Cathodes every100 hours or less $>30,000$ hours
Absolute Maximum Ratings
Cathode current (each character) -Maximum average (averaging time $=20 \mathrm{mS}$)$2 \cdot 5 \mathrm{~mA}$
Maximum peak 10 mA
Minimum for D.C. operation 1.0 mA
Bulb temperature -
Maximum $+70^{\circ} \mathrm{C}$
Minimum

$$
-50^{\circ} \mathrm{C}
$$

Notes: -

(1) Under limit conditions some deterioration of the glow appearance may occur during life. To minimise this, the voltage between the conducting and non-conducting cathodes should be as high as possible.

[^0]

GR $7 \mathrm{M}^{*}$ DIGITRON-Long Life 7 Character End-Viewing Cold-Cathode Register Tube Containing Characters $+,-\mathrm{V}, \mathrm{A}, \Omega, \%$, and \sim

Mechanical Data

Mounting position
Any
Base
B13B
Socket B13B

Base Connections

(underside view)
CENTRE LINE OF CHARACTERS

Pin
2 Anode
3 Cathode Ω
4 Cathode \%
6 Cathode V
7 Cathode +
9 Cathode ~
10 Cathode A
12 Cathode -
Note - All other pins are to be left unconnected.

The dome of the tube is filter coated

[^1]* Registe id Trade Mark

CIRCUITS

Dekatron Circuits

The recommended Dekatron drive and coupling circuits are given in the following pages together with a number of suitable pulse shaping circuits. Although in the majority of cases the Dekatron counter symbol has been used, the drive circuits are equally applicable to computing and selector tubes, when the anode resistor and guide bias are correctly chosen. To compensate for the reduction in tube current which would occur in selectors, the anode resistor is reduced by an amount approximately equal to the cathode resistors.

In all the double-pulse Dekatron circuits except those with a sine wave input, the guides are taken to a positive bias which should not be less than the maximum positive potential reached by the output cathode(s). For counters this value is approximately +18 volts and for selectors approximately +36 volts.

The guides of a single pulse Dekatron operate with a positive bias of 72 volts, although the output cathode of this tube should not be allowed to rise more than +10 volts above the earthed common cathodes.

Wherever possible, the circuits which follow have been designed to operate with potentials of $+475 \mathrm{~V},+300 \mathrm{~V},-20 \mathrm{~V}$ and -100 V supplies. To provide these supplies an arrangement comprising two 150 volt stabilizers has been given enabling +300 volts to be obtained from a 475 volt power supply. The -20 volts can be obtained from a potential divider across a - 100 volt power unit, and the impedance of the -20 volts supply must not be greater than $4 \mathrm{k} \Omega$.

Resetting

To enable counters to be set at zero, two h.t. negative lines should be provided. One directly earthed receives the returns from

[^2]

CIRCUITS

the Dekatron output cathodes (or the potential dividers feeding them), the cathodes of any coupling tubes and the negative bias supplies for these tubes. The other line, described as the reset line, takes all the remaining returns and is connected to earth via a resistor which is shorted during counting.

Operation of a key or relay which removes the short allows current from the counters and biasing resistors to flow through the unshorted resistor. This raises the potential of all the Dekatron's electrodes except the one to which it is desired to reset.

The value of the reset resistor depends on the number of decades and couplings used, and should be chosen to produce a p.d. of 100 volts.

Circuits

Dekatron Block Schematic Circuits

Circuits

The above circuit uses two GD.150M tubes to provide a stabilized +300 V supply from +475 V . The +165 V supply is used for trigger bias with GTE.175M trigger tubes in Dekatron coupling circuits.

Stabilized Voltage Supplies for use with Dekatron Circuits

Circuits

LKIO8

	Counters	Selectors
$\begin{array}{r} \mathrm{R} 1 \\ \text { *R2 } \\ \mathrm{R} 3 \end{array}$	$\begin{gathered} 820 \mathrm{k} \Omega \\ 150 \mathrm{k} \Omega \max . \\ 39 \mathrm{k} \Omega \end{gathered}$	$\begin{gathered} 680 \mathrm{k} \Omega \\ 150 \mathrm{k} \Omega \max . \\ 47 \mathrm{k} \Omega \end{gathered}$

	Input to previous stage	
	Rect. Pulses	Sine Wave
C1	$.001 \mu \mathrm{~F}$	$.01 \mu \mathrm{~F}$
C2	$.001 \mu \mathrm{~F}$	$.001 \mu \mathrm{~F}$
C3	$.002 \mu \mathrm{~F}$	$.002 \mu \mathrm{~F}$

* The cathode load resistor of the previous stage must not be $<150 \mathrm{k} \Omega$

Cold-cathode Trigger Tube Circuit for coupling two $4 \mathrm{kc} / \mathrm{s}$ Dekatrons (0-500 "carries" per second)

Circuits

LiSLUE 4

	Counters	GSIOC	GSI2D
R1	$10 \mathrm{k} \Omega$	$22 \mathrm{k} \Omega$	$22 \mathrm{k} \Omega$
R2	$820 \mathrm{k} \Omega$	$680 \mathrm{k} \Omega$	$910 \mathrm{k} \Omega$
R3	$150 \mathrm{k} \Omega$	$150 \mathrm{k} \Omega$	$270 \mathrm{k} \Omega$
E	+18 V	+36 V	+36 V

NOTE:-Suitable input circuits are LK105 and LK106. Sine wave drive LK104 may be used at a minimum frequency of 400 c.p.s.

Amplifier for Coupling two Double-pulse Dekatrons

	Counters	Selectors
R1	$820 \mathrm{k} \Omega$	$680 \mathrm{k} \Omega$
R2	$10 \mathrm{k} \Omega$	$22 \mathrm{k} \Omega$
R3	$150 \mathrm{k} \Omega \max$.	$150 \mathrm{k} \Omega \max$.
E	+18 V	+36 V

$$
V_{P}=-145 \pm 15 \mathrm{~V} \quad t_{1}=>80 \mu \mathrm{~S} \quad \mathrm{t}_{2}=>170 \mu \mathrm{~S}
$$

NOTE:-When this circuit is used to precede circuit LK 109 (Triode Amplifier Cct.) the $\cdot 02 \mu \mathrm{~F}$ input capacitor should be reduced to $4.700 \rho F$

Integrated-pulse Drive for $\mathbf{4 k / c s}$ Dekatron

Circuits

	Counters	Selectors
R1	$820 \mathrm{k} \Omega$	$680 \mathrm{k} \Omega$
R2	$10 \mathrm{k} \Omega$	$22 \mathrm{k} \Omega$
R3	$150 \mathrm{k} \Omega \max$.	$150 \mathrm{k} \Omega \max$.
E	+18 V	+36 V

$$
V_{P 1}=V_{P 2}=-80 \pm 10 \mathrm{~V} \quad t_{1}=t_{2}=>60 \mu \mathrm{~S}
$$

Paired-pulse Drive for $\mathbf{4 k c} / \mathrm{s}$ Dekatron

Circuits

R1	Counters	Selectors
	$150 \mathrm{k} \Omega$ max.	$680 \mathrm{k} \Omega$ $150 \mathrm{k} \Omega$ max.

Frequency	$4 \mathrm{kc} / \mathrm{s}$	$2 \mathrm{kc} / \mathrm{s}$	$1 \mathrm{kc} / \mathrm{s}$	$500 \mathrm{c} / \mathrm{s}$	$200 \mathrm{c} / \mathrm{s}$	$100 \mathrm{c} / \mathrm{s}$	$50 \mathrm{c} / \mathrm{s}$
	C	680 pF	$.002 \mu \mathrm{~F}$	$.005 \mu \mathrm{~F}$	$.01 \mu \mathrm{~F}$	$.02 \mu \mathrm{~F}$	$.05 \mu \mathrm{~F}$
$.1 \mu \mathrm{~F}$							
Drive Amplitude	$40-70 \mathrm{~V}$ r.m.s.						

Continuous Sine-wave Drive for $\mathbf{4} \mathbf{~ k c} / \mathbf{s}$ Dekatron

Circuits

In the continuous sine-wave drive circuit LK. 104 the correct phase relationship is not achieved until a few cycles have elapsed. In order to count trains of sine-waves it is necessary to convert them into pulses suitable for the integrated pulse drive LK.105. The above circuit fulfils this requirement.

Sine-wave Shaping Circuit

Circuits

Output Pulse	C
$25 \mu \mathrm{~S}$	100 pF
$80 \mu \mathrm{~S}$	470 pF

The above circuit is designed to feed either the integrated pulse drive LK.105, or the GC10D single pulse drive LK.107. Triggering is achieved with a short positive pulse of amplitude greater than 20 V .

Multivibrator Pulse Shaping Circuit

Circuits

GC10D	GS10D	$4 \mathrm{kc} / \mathrm{s}$ Dekatron
$25 \mu \mathrm{~S}$	$35 \mu \mathrm{~S}$	$80 \mu \mathrm{~S}$
Pulse Amplitude $>+20 \mathrm{~V}$		

Gate Circuit for use with Single and Double-pulse Dekatron Drive Circuits

In order to prevent spurious counting due to contact bounce, it is essential to precede the integrated pulse drive LK. 105 with a quenching circuit.

Contact Input

Circuits

This circuit has been designed for use with either a P50A, germanium junction photo-cell, or an OCP71, photo-transistor. A positive going pulse is produced at the output whenever the light focused on the cell is interrupted. This pulse is suitable for driving the cold-cathode coupling circuit LK.108. The 150 V supply rail should be stabilized and may be obtained from the stabilizing circuit LK. 103.

Photo-cell Input for $4 \mathrm{kc} / \mathrm{s}$ Dekatron

Circuits

The grid and cathode of the pulse amplifier are used as a limiting diode for the GS10D output cathode voltage.

Coupling Circuit from GS10D to GS10C or other $4 \mathrm{kc} / \mathrm{s}$ Dekatron

Circuits

Drive	Input		C1	R1	R2	D1
	Duration	Amplitude				
Random pulse	> $25 \mu \mathrm{~S}$	$145 \mathrm{~V}{ }_{-12 \mathrm{~V}}^{+50}$. $02 \mu \mathrm{~F}$	$1 \mathrm{M} \Omega$	Not req'd.	Q3/3
Sinewave	-	65-100 V r.m.s.	To suit lowest frequency	Not req’d.	$100 \mathrm{k} \Omega$	Not req'd.

The grid and cathode of the pulse amplifier are used as a limiting diode for the GC10D output
If a -20 V rail is available, the junction A of the 470 k resistor and 47 pf capacitor may be taken divider.

GC10D Single-pulse Drive with Coupling suitable for Integrated-pulse Drive LK105

Circuits

Detail of Binary Counting Stage with Pulse
Amplifier for Driving GC10D Circuit LK107

GR10A Connected to Conventional Decade Scaler

Circuits

To zero the circuit S.1A and S.1B should be operated together. The same contacts may also be used to zero cascaded decades.

Trigger Tube Ring Counter incorporating *Digitron Readout 1kp.p.s. max.

* Registered Trade Mark

Circuits

To zero the circuit S.1A and S.1B should be operated together.
The same contacts may also be used to zero cascaded decades.

Trigger Tube Ring Counter Max. Frequency 1 kc/s

Circuits

Transistor Blocking Oscillator Drive of *Dekatrons
*Registered Trade Mark

Circuits

Twin Photo Input to Reversible *Dekatron
Note:-Ratio of Light/Dark Approx. 1:2
*Registered Trade Mark

Circuits

UNDER REVISION

Reversible Drive and Coupling Circuit for GCA10G/GSA10G

Circuits

UNDER REVISION

GCA10G/GSA10G Transistor Drive and Coupling Circuits

Circuits

UNDER REVISION

GCA10G/GSA10G Pentode Coupling Circuit

Circuits

*Digitron Display from 1-2-4-8 Binary Coded Decimal Input

* Registered Trade Mark

Circuits

*Digitron Display from 1-2-4-2 Binary Coded Decimal Input

* Registered Trade Mark

Circuits

This circuit accepts pulses as small as $25 \mathrm{~V}, 100 \mu \mathrm{~S}$ into $1 \mathrm{M} \Omega$; and operates a $50 \mathrm{~V}, 25 \mathrm{~mA}$ relay or electromagnetic counter for approx. 50 mS . The value of C determines the duration of the relay energizing pulse. Maximum speed 15 p.p.s.

Electronic to Electro-magnetic Coupling Circuit

Circuits

Timing period
$R \max .=470 \mathrm{M} \Omega$
$=1.6$ R.C. secs. R in $M \Omega$
C in $\mu \mathrm{F}$
C min. $=470 \mathrm{pF}$
Simple R.C. Timer for Nominal 240 V A.C. Operation

Circuits

ALL DIODES TYPE OA202 OR EQUIVALENT

Max. speed 5 kp.p.s.-For speeds below 250 p.p.s. Diodes marked * can be omitted. Min. Dekatron Cathode Voltage 20 V .
No Connection is necessary to the ' O ' position of the selector switch ' A ' wafers.

Pre-set Batch Counter-using Ring Counter Coincidence Circuit

SPARK GAP TUBES

Prospective users are invited to contact the Research Laboratory of the Tube Division when planning apparatus using Spark Gap Tubes. These are not held in stock, but are designed to meet each customer's requirements.

The tubes are available either as diodes or triggered gaps, and can be manufactured with striking voltages better than $\pm 5 \%$ of the nominal voltage over the range 500 V to 50 kV , with peak currents of many thousands of amperes.

The size of the tubes depends on the rating, but an average tube is approximately 2.25 cm . ($7_{8}^{\prime \prime}$) diameter and 5.0 cm . (2") long, exclusive of end caps or flying leads.

Breakdown Voltage
$2 \mathrm{kV} \pm 100 \mathrm{~V}$
Maximum discharge energy 16 J
Maximum storage capacitor
Insulation at 1.5 kV
$8 \mu \mathrm{~F}$
$10 \mathrm{M} \Omega \mathrm{min}$.

NOTES

(1) When the applied voltage has a very fast rise time, it is essential that some light reaches the tube. For slow capacitor charging waveforms, the tube may be used in complete darkness.
(2) As supplied, the gap is symmetrical. Discharges introduce asymmetry, and the life will be shortened if the polarity is changed after some discharges have taken place.
(3) The standard tube has one end cap and one tapped hole. End caps with threaded stud suitable for fitting into the tapped hole will be supplied on request.

Striking Voltage	$-500-630 \mathrm{~V}$
Max. Discharge Energy	-1.5 J
Leakage current at 450V	$-<1 \mu \mathrm{~A}$
Max. Repetition Rate	$-10 \mathrm{p.sec}$.

Typical number of discharges -40×10^{6} (in circuit below with discharge energy of .07J and rate of 1 per sec.)

INDEX

Tube Type						CV Code
GC10/2P	-
GD120A/S	CV. 1110
GTR120A/S		CV. 45
* GDT120M	-
* GDT120T	-
GR2G	-
GR2H	-
GR4G	-
* GR10G	-
* GR10H	-
GR10W	-
GR12G	-
GR12H	-
* GS10E	-
VS10G	CV. 5290
VS10G/M	-
VS10H	CV. 6103
VS10K	-

*These tubes have been superseded by, or are being superseded by, new and improved tubes.

The data sheets have been included for the benefit of engineers who have to maintain equipment containing the above tubes or modify equipment to current tube types,

Once the present stocks are exhausted it will not be possible to accept further orders.
\square

Miniature Bi-directional IO-way Computing Tube

Limit Ratings

Maximum counting rate: sine wave and rectangular pulses 1,000 p.p.s.
Minimum counting rate 1 p.p. hour
Maximum total anode current $500 \mu \mathrm{~A}$
Minimum total anode current $315 \mu \mathrm{~A}$
Minimum anode to cathode supply voltage
(normal room illumination) 320 V
Maximum potential difference between cathodes
and guides
Maximum output cathode load $150 \mathrm{k} \Omega$
Output pulse produced across the above 35 V

Characteristics

Running voltage at $350 \mu \mathrm{~A} \quad 190 \mathrm{~V}$ approx.

Recommended Operating Conditions

*Anode current	$350 \mu \mathrm{~A} \pm 10 \%$
$* *$ Guide bias	+18 V
Bias on output cathode resistor	-20 V
Forced resetting pulse	-120 V
Double pulse drive-amplitude	$-80 \mathrm{~V} \pm 10 \mathrm{~V}$
Double pulse drive-durations	$300 \mu \mathrm{~S}$
Integrated pulse drive—amplitude	$-145 \mathrm{~V} \pm 15 \mathrm{~V}$
Integrated pulse drive—duration	$350 \mu \mathrm{~S}$
Integrated pulse drive—min. quiescent time	$650 \mu \mathrm{~S}$
Sine wave drive—amplitude	$40-75 \mathrm{~V}$ r.m.s.

* The required anode current may be obtained from a 475 V supply
via an $820 \mathrm{k} \Omega$ resistor.
** This does not apply in the case of the sine wave drive.

Miniature Bi-directional IO-way Computing Tube

Mechanical Data

Mounting position

Alignment
Weight
Escutcheon
Base

Any.
For visual indication the tube is viewed through the dome of the bulb.
Cathode " O " is approximately aligned with pin No. 5.
13 g (nominal).
N. 84338.

B7G

Base Connections (underside view)

Pin 1 Do not connect
2 1st Guides
3 Common cathodes
4 2nd Guides
5 Cathode 0
6 Cathode 9
7 Anode

Limit Ratings

Minimum anode current	10 mA
Maximum anode current	75 mA
Minimum anode supply voltage	180 V

Characteristics

$$
\begin{aligned}
& \text { Running voltage at } 75 \mathrm{~mA} \\
& \text { Maximum change in } V_{R} \text { for a current change from } \\
& 10 \text { to } 75 \mathrm{~mA}
\end{aligned}
$$

N.B. Equilibrium conditions are reached after 10 minutes operation.

Voltage Stabilizer

Mechanical Data

Mounting position	Any.
Weight	54 g (nominal).
Base	British 4 pin.

Base Connections
(underside view)

Pin 1 Anode
2 Cathode
$\left.\begin{array}{l}3 \\ 4\end{array}\right\}$ No connections

Primed Voltage Stabilizer

Limit Ratings

Minimum anode current 10 mA
Maximum anode current 75 mA
Minimum anode supply voltage when the primer is connected as (1) below 135 V
Minimum anode supply voltage when the primer is connected as (2) below 190 V

Primer Connections

(1) $\mathrm{To}+190 \mathrm{~V}$ via $47 \mathrm{k} \Omega$ or any other arrangement causing the primer current to be approx. 1.3 mA .
(2) Through $15 \mathrm{k} \Omega$ to the main anode.

Characteristics

Running voltage at $75 \mathrm{~mA} \quad 115-135 \mathrm{~V}$

Maximum change in V_{R} for a current change from 10 to 75 mA
Primer striking voltage 190 V

Primer running voltage 120 V (nominal)
N.B.-Equilibrium conditions are reached after 10 minutes operation.

Mechanical Data

Mounting position
Any
Weight
Base

Base Connections (underside view)

Pin 1 Anode
3 No connection
4 Primer

$$
2 \text { Cathode }
$$

54 g (nominal)
British 4 pin

Primed Trigger Tube

An inexpensive trigger tube with light diode

Limit Ratings

Maximum anode voltage to prevent self-
ignition in all tubes (Trigger voltage 0 V)
$+340 \mathrm{~V}$
Maximum trigger to cathode voltage at which breakdown will not occur in any tubes (anode voltage 315 V)

Cathode 0 V , Trigger +105 V
Trigger 0 V , Cathode +70 V
Minimum trigger voltage necessary to cause
breakdown in all tubes (anode voltage 315 V) +155 V
Maximum cathode current 9 mA
Minimum cathode current 3 mA
Minimum supply voltage for priming diode 315 V

Characteristics

Anode running voltage at 4.5 mA (N.B.-Tubes may exhibit jumps of up to 20 V in operation $).$	$94-130 \mathrm{~V}$
Deionization time $\left(\mathrm{I}_{\mathrm{a}}=4.5 \mathrm{~mA}\right)$	
lonisation time $\quad\left(\mathrm{V}_{\mathrm{T}}=175 \mathrm{~V}\right.$ pulse $)$	$500 \mu \mathrm{~ms}$ max. \leftarrow

Recommended Operating Conditions

Anode supply voltage 315 V
Cathode current 3.4 mA
Anode load resistor $\quad 47 \mathrm{k} \Omega$
Trigger bias with respect to cathode +80 V
(Trigger resistor $330 \mathrm{k} \Omega$)
Light anode to be connected via $10 \mathrm{M} \Omega$ to +315 V .
Light cathode to be connected via $10 \mathrm{M} \Omega$ to 0 V .
N.B. \leftarrow Indicates a change from previous data sheets.

Primed Trigger Tube

An inexpensive trigger tube with light diode suitable for operation in poor light conditions

Mechanical Data
Mounting position
Any
Base

Base Connections
(underside view)

1 Trigger
2
3 . Cathode
4 Do not connect
5 Light cathode
6 Light anode
7 Anode

Primed Trigger Tube

An inexpensive trigger tube with light diode
GDT120M suitable for operation in poor light conditions

Distribution of Trigger Striking Volts

Primed Trigger Tube
A high current inexpensive trigger tube with light
Limit RatingsMaximum anode voltage to prevent self-ignition in all tubes (triggervoltage 0 V)400 V
Maximum trigger to cathode voltage atwhich breakdown will not occur in anytubes (anode voltage 315 V)
Cathode 0 V , Trigger +100 VTrigger 0 V , Cathode +80 V
Minimum trigger voltage necessary to causebreakdown in all tubes (anode voltage 315 V) +155 V
Maximum cathode current (D.C.) 25 mA
Maximum cathode current (peak) max. duration 100 mS 60 mA
Minimum cathode current 5 mA
Minimum supply voltage for priming diode 315 V
Characteristics
Anode running voltage at 25 mA $94-130 \mathrm{~V} \leftarrow$ (N.B.-Tubes may exhibit jumps of up to 20 V in operation at low currents)
Deionization time ($\mathrm{l}_{\mathrm{a}}=25 \mathrm{~mA}$) lonization time $\quad\left(\mathrm{V}_{\mathrm{T}}=175 \mathrm{~V}\right.$ pulse $)$

5 mS max. 1 mS

Recommended Operating Conditions

Anode supply voltage 315 V
Cathode current 25 mA
Anode load resistor $8.2 \mathrm{k} \Omega$
Trigger bias with respect to cathode $+80 \mathrm{~V}$(Trigger resistor $100 \mathrm{k} \Omega$)Light anode to be connected via $10 \mathrm{M} \Omega$ to +315 VLight cathode to be connected via $10 \mathrm{M} \Omega$ to 0 VN.B. \leftarrow Indicates a change from previous data sheets.
N.B. \leftarrow Indicates a change from previous data sheets.

Primed Trigger Tube
A high current inexpensive trigger tube with light diode suitable for operation in poor light conditions

Mechanical Data

Mounting position
Any
Base
B9A

Base Connections
(underside view)

Anode
2 Do not connect
3 Trigger
$\left.\begin{array}{l}4 \\ 5\end{array}\right\}$ Cathode
6 Do not connect
7 Light cathode
8 Light anode
9 Anode

Limit Ratings

Maximum cathode current (+ sign)	5 mA
Maximum cathode current (- sign)	3 mA
Minimum voltage necessary to ensure breakdown	180 V

Characteristics

Nominal running voltage 168 V
A cathode left floating will assume some potential between that of the anode and the glowing cathode.

Recommended Operating Conditions

Under the recommended D.C. operating conditions with the characters switched sequentially every 24 hours, an average life of 4,000 hours can be expected.
Anode supply voltage 250 V
Cathode + series resistor $15 \mathrm{k} \Omega$
Cathode - series resistor $\quad 27 \mathrm{k} \Omega$

* Registered Trade Mark

Mechanical Data

*DIGITRON-2 Character Side-Viewing Cold-Cathode + and - Register Tube

MAINTENANCE TYPE ONLY

* DIGITRON - 2 Character End-Viewing Cold-Cathode + and - Register Tubes

Limit Ratings

Maximum cathode current (+ sign)	2 mA
Maximum cathode current (- sign)	1.5 mA
Minimum voltage necessary to ensure breakdown	150 V

Characteristics

> Nominal running voltage A cathode left floating will assume some potential between that of the anode and glowing cathode

Recommended Operating Conditions

Anode supply voltage 250 V
Cathode + series resistor $82 \mathrm{k} \Omega$
Cathode - series resistor $120 \mathrm{k} \Omega$

MAINTENANCE TYPE ONLY

DIGITRON - 2 Character End-Viewing Cold-Cathode + and - Register Tubes

Mechanical Data

The characters are viewed through the dome of the bulb. They will appear upright (within \pm 10°) when the tube is mounted with the line through pins 3 and 12 vertical, pin 12 being uppermost.
Base
B17
Socket
B17A
Base Connections
(underside view)

Pin 16 Anode
Pin $6+$
Pin 15
Note - All other pins are to be left unconnected.

MN-8-1
ISSUE 2

* DIGITRON - 2 Character End-Viewing Cold-Cathode + and - Hegister Tubes

GR 2 H

$\stackrel{Y}{0}$

Operating Characteristics

* Registered Trade Mark

*DIGITRON-4 Character Side Viewing Cold-Cathode Fraction Register Tube

Limit Ratings

Maximum cathode current-1	5 mA
Maximum cathode current- $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$	7 mA
Minimum voltage necessary to ensure breakdown	200 V

Characteristics

Nominal running voltage $\mathrm{la}=5 \mathrm{~mA}$
A cathode left floating will assume some potential between that of the anode and the glowing cathode.

Recommended Operating Conditions

Under the recommended D.C. operating conditions with the characters switched sequentially every 24 hours, an average life of 3,500 hours can be expected.
D.C. operation

Anode supply voltage $-\mathrm{Ra}=12 \mathrm{k} \Omega$ 250 V
A.C. operation
(Unsmoothed half-wave rectified 50 c.p.s. A.C.)
Anode supply voltage - $\mathrm{Ra}=12 \mathrm{k} \Omega \quad 200-220 \mathrm{~V}$ r.m.s.

$$
\mathrm{Ra}=18 \mathrm{k} \Omega \quad 220-250 \mathrm{~V} \text { r.m.s. }
$$

Cathode 1 equalizing resistor $10 \mathrm{k} \Omega$

[^3]DIGITRON-4 Character Side Viewing Cold-Cathode Fraction Register Tube

*DIGITRON - 4 Character Side-Viewing Cold-Cathode Fraction Register Tube

Operating Characteristics
*Registered Trade Mark

*DIGITRON-IO Digit Side-Viewing Cold-Cathode Numerical Register Tube

GR10G

Limit Ratings

$$
\text { Maximum cathode current } 9 \mathrm{~mA}
$$

Minimum voltage necessary to ensure breakdown 220 V

Characteristics

$$
\begin{array}{lc}
\text { Nominal running voltage } & 180 \mathrm{~V} \\
\text { A cathode left floating will assume some potential } \\
\text { between that of the anode and the glowing cathode. }
\end{array}
$$

Recommended Operating Conditions

Under the recommended D.C. operating conditions with the characters switched sequentially every 24 hours, an average life of 5,000 hours can be expected.
D.C. operation

Anode supply voltage $-\mathrm{Ra}=10 \mathrm{k} \Omega$
A.C. operation
(Unsmoothed half-wave rectified 50 c.p.s. A.C.)
Anode supply voltage $-\mathrm{Ra}=12 \mathrm{k} \Omega \quad 200-220 \mathrm{~V}$ r.m.s.
$\mathrm{Ra}=18 \mathrm{k} \Omega \quad$ 220-250 V r.m.s.
Cathode 1 equalizing resistor $8 \cdot 2 \mathrm{k} \Omega$
Cathode 7 equalizing resistor
$4.7 \mathrm{k} \Omega$

* Registered Trade Mark

DIGITRON-IO Digit Side-Viewing Cold-Cathode Numerical Register Tube

Mechanical Data
Mounting position
Base
Socket
Base Connections (underside view)

Pin 1 Cathode 6
2 Cathode 5
5 Cathode 4
6 Anode
7 Cathode 3
9 Cathode 2
10 Cathode 1
14 Cathode 0
15 Cathode 9
16 Cathode 8
17 Cathode 7
Note-All other pins are to be left unconnected.

Any
B26A
B17, B26A or B27A

*DIGITRON - 10 Digit Side-Viewing
 Cold-Cathode Numerical Register Tube

GR10G

Operating Characteristics
*Registered Trade Mark

Limit Ratings

$$
\begin{array}{lr}
\text { Maximum cathode current } & 2.5 \mathrm{~mA} \\
\text { Minimum voltage to ensure breakdown } & 150 \mathrm{~V}
\end{array}
$$

Characteristics
Nominal running voltage at 2 mA 140 V
Minimum pre-bias voltage (glowing cathode at 0 V) +25 V
Maximum pre-bias voltage (glowing cathode at 0 V) +100 V
A cathode left floating will assume some potential between that of the anode and the glowing cathode. Pre-biasing ensures that the non-glowing electrodes are clamped at a predetermined level and cathodes are selected bringing them to the 0 V line.

Recommended Operating Conditions

Under the recommended operating conditions, with the cathodes switched sequentially every 24 hours, an average life of 4000 hours can be expected.
D.C. operation

Anode supply voltage- $R_{a}=82 \mathrm{k} \Omega \quad 250 \mathrm{~V}$

$$
\mathrm{R}_{\mathrm{a}}=47 \mathrm{k} \Omega \quad 200 \mathrm{~V}
$$

A.C. operation

(Unsmoothed half-wave rectified 50 c.p.s. A.C.)
$\begin{aligned} \text { Anode supply voltage- } \mathrm{R}_{\mathrm{a}} & =120 \mathrm{k} & & 220-250 \mathrm{~V} \text { r.m.s. } \\ \mathrm{R}_{\mathrm{a}} & =82 \mathrm{k} & & 200-220 \mathrm{~V} \text { r.m.s. }\end{aligned}$
*Registered Trade Mark

*DIGITRON - IO Digit End-Viewing Cold-Cathode Numerical Register Tube

Mechanical Data

Mounting position
Any

Base
B17A

Socket
B17A

Base Connections
(underside view)
centre line of characters

Pin 1 Cathode 3
2 Cathode 9
4 Cathode 0
5 Cathode 7
6 Cathode 8
10 Cathode 6
11 Cathode 5
12 Anode
13 Cathode 1
14 Cathode 2
15 Cathode 4
Note: All other pins are to be left unconnected.

*DIGITRON - 10 Digit End-Viewing Cold-Cathode Numerical Register Tube

Operating Characteristics
*Registered Trade Mark

*DIGITRON-IO Digit Side-Viewing Miniature ColdCathode Numerical Register Tube, with flying leads

Limit Ratings

$$
\begin{array}{lc}
\begin{array}{ll}
\text { Maximum cathode current } & 4 \mathrm{~mA} \\
\text { Minimum voltage necessary to ensure breakdown } & 220 \mathrm{~V} \\
& \\
\text { Characteristics } & 160 \mathrm{~V} \\
\text { Nominal running voltage } & \\
\text { A cathode left floating will assume some potential } \\
\text { between that of the anode and the glowing cathode. }
\end{array}
\end{array}
$$

Recommended Operating Conditions

Under the recommended D.C. operating conditions with the characters switched sequentially every 24 hours, an average life of 3,000 hours can be expected.
D.C. operation

Anode supply voltage $-\mathrm{Ra}=18 \mathrm{k} \Omega \quad 220 \mathrm{~V}$
A.C. operation
(Unsmoothed half-wave rectified 50 c.p.s. A.C.)
Anode supply voltage - $\mathrm{Ra}=27 \mathrm{k} \Omega \quad 200-220 \mathrm{~V}$ r.m.s.
$\mathrm{Ra}=47 \mathrm{k} \Omega \quad 220-250 \mathrm{~V}$ r.m.s.

GR10W DIGITRON-I0 Digit Side-Viewing Miniature ColdCathode Numerical Register Tube, with flying leads

Mechanical Data

Mounting position Base

Flying lead

Lead
Base Connections
(underside view)

1 Cathode 1
2 Cathode 2
3 Cathode 3
4 Cathode 4
5 Omitted
6 Cathode 5
7 Omitted
Lead
8 Cathode 6
9 Omitted
10 Cathode 7
11 Cathode 8
12 Cathode 9
13 Cathode 0
14 Anode
N.B.-To prevent damage to the tube, the leads should not be soldered or bent nearer than $5 \mathrm{~mm}\left(\frac{1^{\prime \prime}}{4}\right)$ from the glass seal.

*DIGITRON - IO Digit Side-Viewing
 Miniature Cold-Cathode Numerical

GR10W
Register Tube, with flying leads

Operating Characteristics
*Registered Trade Mark

MAINTENANCE TYPE ONLY

* DIGITRONS - 12 Character Side-ViewingGR12G Tube contains the letters A to L inclusiveGR12H Tube contains the letters L to X excluding P and Qbut additionally including E.
Limit Ratings
Maximum cathode current:-
Letter I 5 mA
Letters L and T 5.5 mA
Letters J and F 7.5 mA
Remaining letters 9.0 mA
Minimum voltage necessary to ensure breakdown 220 V
Characteristics
Nominal running voltage:-
Letter I at 4.5 mA170V
Letters L and T at 5.0 mA 175 V
Letters J and F at 6.25 mA 185V
Remaining letters at 7.5 mA 175 V
A cathode left floating will assume some potentia]between that of the anode and the glowing cathode.

It should be noted that non-glowing cathodes must not be returned to a bias rail, but should be left disconnected.Recommended Operating Conditions
D.C. operationAnode Supply Voltage $-\mathrm{Ra}=10 \mathrm{~K} \Omega$250V
A.C. operation
(Unsmoothed half-wave rectified 50 c. p. S. A. C.) Anode Supply Voltage $-\mathrm{Ra}=12 \mathrm{~K} \Omega$ 200-220V r.m.s. $\mathrm{Ra}=18 \mathrm{k} \Omega$ 220-250V r.m.s.
Cathode equalizing resistors ($\mathrm{Va}=250 \mathrm{~V}$ only).Letter I8. $2 \mathrm{k} \Omega$Letters L and T4. $7 \mathrm{k} \Omega$

* Registered Trade Mark

DIGITRONS - 12 Character Side-Viewing Cold-Cathode Letter Tubes

Mechanical Data

MN-13-1

MAINTENANCE TYPE ONLY

* DIGITRONS - 12 Character Side-Viewing

Operating Characteristics

* Registered Trade Mark

Magnetically Screened High Current IO-way Trochotron Beam Switching Tube

Electrical Characteristics identical to the VS10 G

Mechanical Data

Mounting position
Any.
This tube may be mounted in close proximity to similar tubes, and to magnetic material.
Weight
670 g
Base B26A

Sockets
B26A or B27A

Base Connections

(underside view)

Cathode

Heater	Vh	6.3 V
Ih	0.5 A	

Limit Ratings

Maximum heater to cathode voltage $\pm 75 \mathrm{~V}$
Maximum spade to cathode voltage (V_{s} max.) 32 V
Minimum spade to cathode voltage ($\mathrm{V}_{\mathrm{s}} \mathrm{min}$.) 28 V
Maximum target to cathode voltage (V_{T} max.) 150 V
Minimum target to cathode voltage (V_{T} min.) 14 V
Minimum switching-grid to cathode voltage ($\mathrm{V}_{\mathrm{SG}} \mathrm{min}$.) 15 V
Minimum spade resistor $\mathrm{V}_{\mathrm{S}}=28 \mathrm{~V}$ $100 \mathrm{k} \Omega$
Maximum spade resistor $\mathrm{V}_{\mathrm{s}}=28 \mathrm{~V}$ $150 \mathrm{k} \Omega$
Characteristics $\left(\mathrm{V}_{\mathrm{s}}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=150 \mathrm{k} \Omega\right)$
Holding spade current $400 \mu \mathrm{~A}$ nom.Target current1.7 mA nom.
Recommended Operating Conditions (for counting up to $1 \mathrm{Mc} / \mathrm{S}$)
V_{s} 30 V
Rs $150 \mathrm{k} \Omega \pm 10^{\prime \prime}$,
(Each spade must be connected to a separate spade resistor with not more than $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}(10 \mathrm{~mm})$ of connecting lead).

V_{T}	.30 V
R_{T}	$6.8 \mathrm{k} \Omega$

(Any number of targets may be taken to a common target resistor).
$\mathrm{V}_{\text {SG }} \quad 15 \mathrm{~V}$
$\mathrm{V}_{5 G}$ pulse amplitude -17 V
t puise $\quad 0.5 \mu \mathrm{~S}$
Rsg $47 \mathrm{k} \Omega$
C input coupling
330 pF

Mechanical Data

Mounting position

Weight
Base
Sockets
Base Connections (underside view)

Pin 1 Spade 0
2 Target 9
3 Target 8
4 Odd Switching grids
5 Target 7
6 Spade 7
7 Target 6
8 Target 5
9 Spade 5
10 Target 4
11 Do not connect
12 Target 3
13 Target 2
14 Spade 2
15 Target 1
16 Even Switching grids
17 Target 0
19 Spade 9
20 Spade 8
21 Heater
22 Spade 6
23 Spade 4
24 Spade 3
25 Heater
26 Spade 1
27 Cathode

Any: providing that the tube is kept at least $2^{\prime \prime}$ from any magnetic material or $4^{\prime \prime}$ from a similar tube, a strong magnet or a mu-metal screen.

220 g
B26A
B26A or B27A

REFERENCES

The list of articles which follows has been included to give existing and prospective users of Dekatron tubes an insight into the wide range of applications in which the tubes have been used. It is anticipated that these references will be of particular value to lecturers and students of electronic engineering.
(1) The Dekatron.
R. C. Bacon and J. R. Pollard, Electronic Engineering, May 1950.
(2) An Electronic Digital Computer.
R. C. M. Barnes and others, Electronic Engineering, August 1951.
(3) The Single Pulse Dekatron.
J. R. Acton, Electronic Engineering, February 1952.
(4) New Trigger Circuits for use with Cold Cathode Counting Tubes.
J. L. W. Churchill, J. Brit. I.R.E., September 1952.
(5) A Dekatron C.R.O. Time Marker.
J. H. L. McAuslan, Electronic Engineering, December 1952.
(6) An Electronic Batching Counter.
R. T. Craxton, Electronic Engineering, October 1953.
(7) Measurement of the Size Distribution of Spray Particles.
L. K. Wheeler and E. S. Trickett, Electronic Engineering, October 1953.
(8) Polycathode Counter Tube Applications.
J. H. L. McAuslan and K. J. Brimley, Electronics, November 1953.
(9) Selective Calling for Radio-Telephone Systems.
J. R. Pollard, Electronic Engineering, December 1953.
(10) Time Marker for Electrocardiography.
M. A. Bullen, Journal of Scientific Instruments, January 1954.
(11) A High-Speed Precision Tachometer.
W. R. Bland and B. J. Cooper, Electronic Engineering, January 1954.
(12) Decimal Counting Tubes.
K. Kandiah, Electronic Engineering, February 1954.
(13) Cold-Cathode Counting Tubes in Cascade.
D. T. Whelan, Electronic Engineering, March 1954.
(14) A Cold-Cathode Batching-Counter.
P. E. Tooke, Electronic Engineering, April 1954.
cont'd

REFERENCES

(15) An Accurate Voltage Integrator for Magnetic Field Measurements.
F. W. Fuller and L.V.Hibbard, Journal of Scientific Instruments, February 1954.
(16) A Cold-Cathode Scaling Unit.
C. D. Florida and R.Williamson, Electronic Engineering, May 1954.
(17) A Low-Frequency Pulse Train Generator.
J. E. Flood and J. B. Warman, Electronic Engineering, January 1955.
(18) A Scaler for the Measurement of Half Life in the Range 3 seconds to 30 minutes.
J. L. W. Churchill and W. W. Evans, Electronic Engineering, February 1955.
(19) Counting Circuit Batches Components.
P. E. Tooke, Electronics, February 1955.
(20) Multi-Electrode Counting Tubes.
K. Kandiah and D. W. Chambers, J. Brit. I.R.E., April 1955.
(21) A High-Speed Revolution Counter.
E. L. Harrington, Electronic Engineering, April 1955.
(22) Automatic Tare Allowance, Control, and Printing for Dial Weighing-Machines.
R. A. Lolley and J. H. L. McAuslan, Transactions of the Society of Instrument Technology, June 1955.
(23) The Dekatron in Nuclear Instrumentation.
L. C. Burnett and M. Hawkes, Atomics, September 1955.
(24) The Use of Cold-Cathode Counting Tubes for the Control of Resistance Welding.
T. W. Brady, Electronic Engineering, February 1956.
(25) Aerosoloscope Counts Particles in Gas.
E. S. Gordon, D. C. Maxwell and N. E. Alexander, Electronics, March 1956.
(26) A Digital Differential.
W. H. P. Leslie, Electronic Engineering, May 1956.
(27) Air Speed-Record Electronic Timing.
N. B. Acred and G. Bishop, British Communications and Electronics, June 1956.
(28) An Electronic Timing Unit.
N. B. Acred and G. Bishop, Electronic Engineering, July 1956.
(29) A Time Marker for Electrophysiology.
R. H. Kay, Electronic Engineering, October 1956.

REFERENCES

(30) Dekatron Drive Circuit and Application.
M. Graham, W. A. Higinbotham and S. Rankowitz, The Review of Scientific Instruments, December 1956.
(31) A Film Reader Measures Recorded Radar Echoes.
A. Shapiro, Electronics, January 1957.
(32) Counter Circuits Analyses Ignition.
E. E. Weller, N. W. Schubbring and M. E. Fitch, Electronics, May 1957.
(33) Automatic Counting Techniques as Applied to Comparison Measurement.
C. C. H. Washtell, Journal Brit. I.R.E., July 1957.
(34) A Very High Speed Precision Tachometer.
J. K. Goodwin, Electronic Engineering, January 1958.
(35) A Versatile Pulse Pattern Generator.
P. H. Cutler, L. R. Peters, Electronic Engineering, January 1958.
(36) A Decimal Product Accumulator.
R. R. Hoge, Journal Brit. I.R.E., February 1958.
(37) Transistor Circuits for use with Cold-Cathode Gas-Filled MultiCathode Counter Valves.
J. B. Warman, D. M. Bibb, Electronic Engineering, March 1958.
(38) A Low Cost Cold-Cathode Trigger Tube.
A. Turner, Electronic Engineering, April 1958.
(39) Dekatrons and Electro-Mechanical Registers operated by Transistors.
G. B. B. Chaplin, R. Williamson, Proc. I.E.E., Part B, May 1958.
(40) A Reversible Dekatron Counter.
D. L. A. Barber, Electronic Engineering, January 1959.
(41) The Use of Dekatrons for Pulse Distribution.
G. H. Stearman, Electronic Engineering, February 1959.
(42) Circuit for a Reversible Dekatron Counter.
K. F. Bacon, Electronic Engineering (Correspondence), March 1959.
(43) A Transistor Characteristic Curve Tracer.
J. F. Young, Electronic Engineering, June 1959.
(44) An Electronic Clock Coder for Radio Beacons.
J. W. Nichols, A. C. MacKellar, A. J. B. Baty, Electronic Engineering, August 1959.
(45) The Digitron.
D. N. MacLoughlin, D. Reaney, A. W. Turner, Electronic Engineering, March 1960.

[^0]: * Registered Trade Mark

[^1]: * Registe :d Trade Mark

[^2]: cont'd

[^3]: * Registered Trade Mark

