

ELECTRON TUBE DEPARTMENT
COMPONENTS DIVISION
INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION CLIFTON NEW JERSEY

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

NOTE

THE DATA SHEETS INCLUDED HEREIN, REPRESENT RECOMMENDED TYPES FOR NEW EQUIPMENT DESIGN AND SHOULD NOT BE CONSTRUED AS AN INCLUSIVE CATALOG OF OUR COMPLETE TUBE LINE.

TECHNICAL DATA ON REPLACEMENT TYPES ARE AVAILABLE UPON REQUEST.

FOR YOUR FURTHER INFORMATION PLEASE REFER TO THE FOLLOWING SECTION WHICH PROVIDES A CONDENSED LISTING OF OUR TUBE PRODUCTS. ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

TRAVELING WAVE TUBES - CONDENSED LISTING

Frequency KMC	TYPE	Power Output (Watts)	DUTY	STYLE	Remarks	
1.7 - 4.0	F-6658	2	CW	L		
1.7 - 4.0	F-6868	10	CW	L		
2.0 - 4.0	F-6825	1000	Р	L		
2.0 - 4.0	F-6826	1000	Р	L	GRIDDED	
2.0 - 4.0	F-7338	1000	Р	L	40 DB GAIN F-6826	
2.0 - 4.0	F-7347	1000	Р	S	GRIDDED	
4.0 - 8.0	D-2023	1000	Р	S	GRIDDED	
4.0 - 8.0	X-370	10	CW	Р		
4.0 - 8.0	X-282	10	CW	S		
4.0 - 8.0	D-2009	2	Р	Рк		
5.0 - 6.0	F-7848	2000	Р	S		
5.0 - 6.0	F-7847	10	CW	S		
8.0 - 12.0	X-354	5	CW	Р		
8.0 - 12.0	F-7524	5 5 5 1	CW	S		
8.0 - 12.0	F-7525	5	CW	Рк		
8.0 - 12.0	F-7067		Р	S		
8.0 - 12.0	x-368	.05	CW	Р		
8.0 - 12.0	F-7066	.05	CW	S		
8.0 - 12.0	F-7526	.05	CW	Pĸ		
8.0 - 9.6	F-7340	1000	Р	L	GRIDDED	
8.0 - 9.6	D-95A	1000	Р	L	WAVEGUIDE 7340	
8.0 - 9.6	D-95B	1000	Р	L	FLYING LEAD 7340	
8.0 - 9.6	D-2014	1000	P	L	Special 7340	
8.0 - 9.6	F-6996	10	CW	L	6	
8.0 - 9.6	D-2013	10	CW	L	SPECIAL 6996	
8.0 - 9.6	D-2020	10	CW	L	FLYING LEAD 6996	
8.0 - 9.6	D-2024	10	CW	L	WAVEGUIDE 6996	
8.0 - 9.6	F-7341	5	CW	L	GRIDDED	
8.0 - 9.6	F-6867	0.1	CW	L		
8.5 - 9.6	F-7339	1000	Р	L		

STYLE CODE

L - LARGE DIAMETER (BOTH R-F LEADS AT SAME END)

S - SMALL DIAMETER (BOTH R-F LEADS AT OPPOSITE ENDS)

PK - PACKAGED WITH SOLENOID AS INTEGRAL PART

P - PPM FOCUSED

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY TRAVELING WAVE TUBE SOLENOIDS

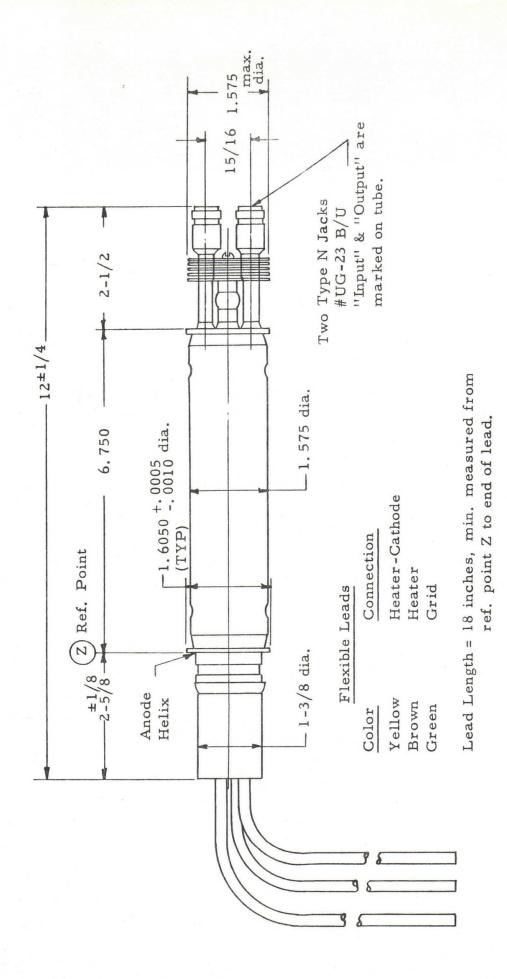
TRAVELING WAVE TUBE SOLENOIDS - CONDENSED LISTING

	Тиве	SOLENOID		VOLTAGE	CURRENT		CAS	E DIMENSI	ONS	WEIGHT
	TYPE	NUMBER	GAUSS	(VOLTS)	(AMPS)	COOLING	Н	W	L	(LBS)
	6658 6658 6658 6658	RT-250,446 RT-250,447 RT-90537 RT-90532	750 750 750 750	84 46 60 46	3.5 4.0 3.3 3.75	WATER Åir* Åir* Water	4-7/8 9-1/32 5-3/16 6-3/8	4-7/8 5-23/32 5-3/16 6-3/8	6-3/4 6-3/4 6-13/16 6-13/16	
	6825 6826 7338 7338	RT-250,212 RT-250,449 RT-250,448 RT-250,444	1200 1200 1200 1200	85 25 84 80	8.3 25 8.8 8.5	Air * Air ** Water Water	9 9-1/8 6-3/4 4-1/8	5-5/8 5-3/4 8-1/8 4-1/4	9-21/32 9-21/32 11-3/16 9-21/32	22 25
)	6867 6867	RT-90549 RT-250,199	1300 1300	86 86	5 5.1	Air * Air **	10-1/4 10-1/4	6-1/8 6-1/8	5 6 - 3/8	17 15
	6868 6868 6868 6868	RT-90537 RT-90532 RT-250,447 RT-250,446	1000 1000 1000 1000	80 62 62 115	4.4 5.0 5.3 4.6	Air* Water Air* Water	5-3/16 6-3/8 9-1/32 4-7/8	5-3/16 6-3/8 5-23/32 4-7/8	6-13/16 6-13/16 6-3/4 6-3/4	14 22 15 25
	6996 7341 D-2013 D-2020 D-2024	RT-250,447 RT-90532 RT-90532 RT-90532 RT-90532 RT-90532	1300 1300 1300 1300 1300	80 80 80 80 80	6.9 6.5 6.5 6.5	Åir ₩ater Water Water Water	9-1/32 6-3/8 6-3/8 6-3/8 6-3/8	5-23/32 6-3/8 6-3/8 6-3/8 6-3/8	6-3/4 6-13/16 6-13/16 6-13/16 6-13/16	22 22
	7340 7339 D-95A D-95B D-2014	RT-250,451 RT-250,451 RT-250,451 RT-250,451 RT-250,451 RT-250,451	2400 2400 2400 2400 2400	91 91 91 91 91	13 13 13 13 13	WATER WATER WATER WATER WATER	5-1/4 5-1/4 5-1/4 5-1/4 5-1/4	5-1/4 5-1/4 5-1/4 5-1/4 5-1/4	6-3/4 6-3/4 6-3/4 6-3/4 6-3/4	13 13 13 13 13
	7347	RT-250,445	1200	115	4	WATER	4-1/4	4-1/8	9-1/2	18
	7524	RT-250,452	1200	87	3.2	WATER	4-1/4	4-1/8	6-5/16	13
1	* -	400 CYCLE - 25 Amp D								

*** - 60 CYCLE - 115 VAC BLOWER

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY D-95B TRAVELING WAVE TUBE

GENERAL DESCRIPTION:


Type D-95B is a mechanically modified version of type D-95. Silicone rubber insulated flying leads attached to the tube with Silastic insulation are provided for altitude operation, in place of the Small Shell Duodecal 5 pin base.

Capacitance of control grid to all other elements is increased to 13 $\mu\mu fd$ by the base and lead configuration.

All other characteristics are the same as type D-95 and additional information can be obtained by referring to the D-95 data sheet.

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division P.O. Box 412 Clifton, New Jersey

TRAVELING WAVE TUBE TYPE D-95B

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

D-2009 TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

The D-2009 is a pulse traveling wave amplifier tube mounted integral with a solenoid which provides the magnetic field required to define the path of the electron beam.

The tube is designed for use as a pulsed r-f amplifier in the frequency range of 3950 to 8000 megacycles per second and includes a control grid for pulsing the electron beam.

The D-2009 is of all-metal shell construction and is provided with input and output coaxial cables and connectors for r-f connections.

ELECTRICAL:

Heater for oxide-coated, unipotential cathode		
Voltage	$6.3 \pm 10\%$	volts
Current	2.5	amperes
Frequency	3950 to 8000	mc
Gain (Note 1)	33	db
Peak Power Output (Note 1)	2	watts
Inter-electrode Capacitance		
Grid to all other electrodes	25	μμfd

MECHANICAL:

Mount	Special
Mounting Position	Any
Base	Moulded Rubber Flexible Leads
R-F Circuit Connectors	TNC Male
Type of Cooling	Air

D-2009 TRAVELING WAVE TUBE

MAXIMUM RATINGS:

Peak Power Output

Solenoid voltage

Gain

Cathode Voltage with respect to ground (No	te 2) -2500	volts
Peak Cathode Current	65	ma
Grid Voltage with respect to cathode (Note	3)	
for cut-off (10 db loss minimum through	ugh tube) 0	volts, min.
for beam-on	+150	volts, max.
Helix Current (Note 4)	1	ma average
Beam on Duty Cycle	. 04	
R-F Power Input	1.0	watt avg.
TYPICAL OPERATION:		
Frequency	4500	mc
Cathode Voltage with respect to ground	2350	volts
Peak Cathode Current	55	ma
Grid Voltage with respect to cathode	55	ma
Beam cut-off	0	volts
Beam-on	+115	volts
Peak Helix-Current	6	ma
Peak Shell Current	53	ma
Beam on Duty Cycle	. 03	

Solenoid Air flow	current			amps lbs/min.
Note 1:	Minimum performance over	r the frequency ba	nd of 3950 to	5850 mc

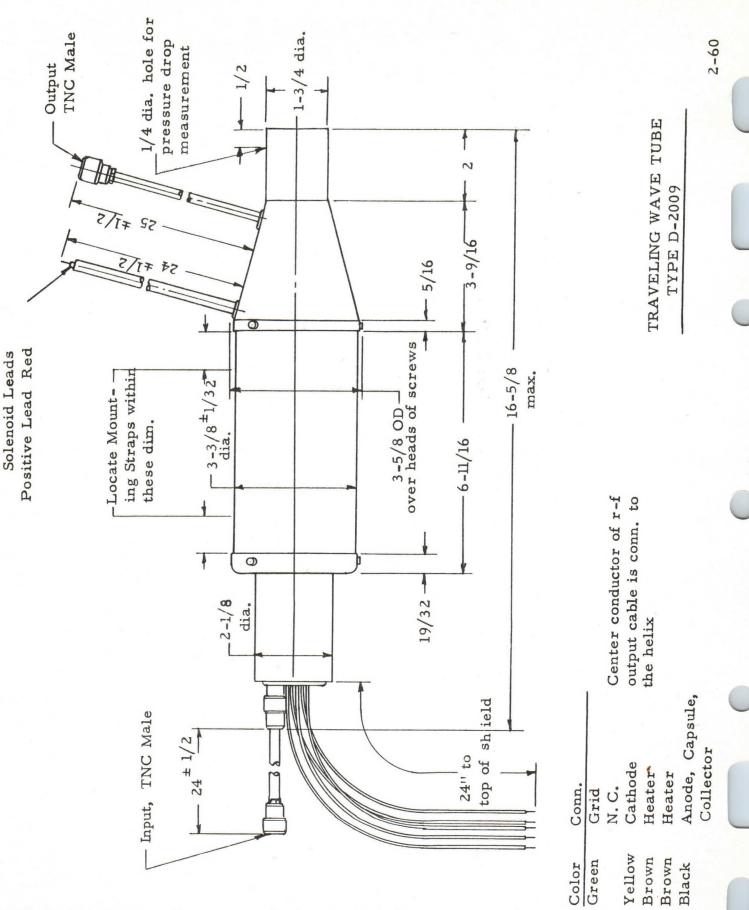
4 watts

db

26 volts

35

Note 1: Minimum performance over the frequency band of 3950 to 5850 mc is 35 db gain; 25 db gain from 3950 to 8000 mc.


- Note 2: Anode and collector are connected internally to the shell, and the outer coaxial conductor of the r-f connections is also at shell potential. The helix is connected to the center conductor of the coax line and a d-c connection to the helix must be provided externally in the r-f circuitry.
- Note 3: Positive voltage must not be applied to the grid in the absence of anode voltage.
- Note 4: Initial adjustments of voltage and magnetic field may be made at low duty cycles. 1 ma average helix current must not be exceeded at maximum duty cycle (.04).

<u>CAUTION</u>: The solenoid must be in operation before the beam voltage is applied.

- 3 -

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division Box 412 Clifton, New Jersey

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

D-2013 TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

The D-2013 is a 5 watt CW traveling wave amplifier tube having 33 db gain and 8000 to 9600 mc frequency range. It is constructed in a rugged metal envelope with a helix-type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "N" connectors. The tube is self-aligning in the external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide impregnated cathode are used. The tube is suitable for either CW or pulse service.

ELECTRICAL INFORMATION:

	/	
HEATER VOLTAGE	6.3 (-10%)	VOLTS
HEATER CURRENT	2.3	AMPERES
MAXIMUM FREQUENCY	9600	MC
MINIMUM FREQUENCY	8000	мс
MINIMUM COLD TRANSMISSION LOSS	50	DB
CAPACITANCE		
CONTROL ELECTRODE TO ALL OTHER ELEMENTS	10	UUFD
ALL GUN ELEMENTS TO SHELL	4.8	UUFD
SMALL SIGNAL VS GAIN CHARACTERISTIC (SEE CURVE,		
Power GAIN WITHIN 6 DB OF SMALL SIGNAL GAIN AT A	NY	
FREQUENCY FROM 8.0 TO 9.6 KMC		
Noise Figure	35	DB MAX.
ELECTRICAL RATINGS, ABSOLUTE VALUES:		

MAXIMUM ANODE VOLTAGE (NOTE 1)	3400	VOLTS
MAXIMUM SHELL CURRENT (NOTE 2)	3	MA
MAXIMUM COLLECTOR VOLTAGE (NOTE 3)	3500	VOLTS
MAXIMUM COLLECTOR DISSIPATION (NOTE 4)	200	WATTS
MAXIMUM CONTROL ELECTRODE VOLTAGE (NOTE 5)	-250	VOLTS

D-2013 TRAVELING WAVE TUBE

- 2 -

MECHANICAL INFORMATION:

TYPE OF CATHODE	OXIDE IMPREGNATED UNIPOTENTIAL			
BASE, SMALL SHELL DUODECAL, 5 PIN	JEDEC DESIGNATION B5-57			
TYPE OF ENVELOPE	METAL			
MAGNETIC FIELD STRENGTH (NOMINAL)	1300 GAUSS			
LENGTH OF MAGNETIC FIELD	6.75 INCHES UNIFORM			
MOUNTING POSITION	ANY			
WEIGHT (NOT INCLUDING SOLENOID)	1 POUND 7 OUNCES			
R-F CONNECTIONS	50 OHM COAX WITH TYPE			
	"N" JACK UG-23B/U			
TYPE OF COOLING	FORCED AIR			
GLASS TEMPERATURE	160°C MAX.			
COOLING AIR REQUIRED (NOTE 4)	70 CFM			

TYPICAL OPERATION AS POWER AMPLIFIER:

ANODE VOLTAGE	3200	VOLTS
SHELL CURRENT	1	MA
COLLECTOR VOLTAGE	3300	VOLTS
COLLECTOR CURRENT	50	MA
CONTROL ELECTRODE VOLTAGE	- 15	VOLTS
POWER OUTPUT	5	WATTS MINIMUM
GAIN	33	DB MIN.
DUTY CYCLE		
R-F	VARIABLE TO 1.0	
BEAM	1.0	

- Note 1: All voltages shown are with respect to cathode. Anode and helix are connected internally to the shell. The shell is normally operated at ground potnetial and the D-C connection is made to the shell of the solenoid.
- Note 2: The shell current is the difference between the cathode current and collector current. This current should be minimized and must be less than the maximum rating. It is desirable to monitor the current from shell to ground during operation and it is recommended that overload protection be provided to remove high voltage if the shell current exceeds 3 ma.
- Note 3: It is generally recommended that the collector be operated at 50 to 100 volts positive with respect to shell, and the potential Difference between collector and shell be limited to 300 volts maximum.
- NOTE 4: FORCED AIR COOLING OF COLLECTOR IS REQUIRED WHEN AVERAGE COLLECTOR POWER IS IN EXCESS OF 10 WATTS. AS THE COLLECTOR POWER IS INCREASED, THE AIR FLOW REQUIRED INCREASES. AT THE MAXIMUM COLLECTOR POWER OF 200 WATTS, A MINIMUM AIR FLOW OF 70 CFM THROUGH THE COOLING FINS IS REQUIRED.

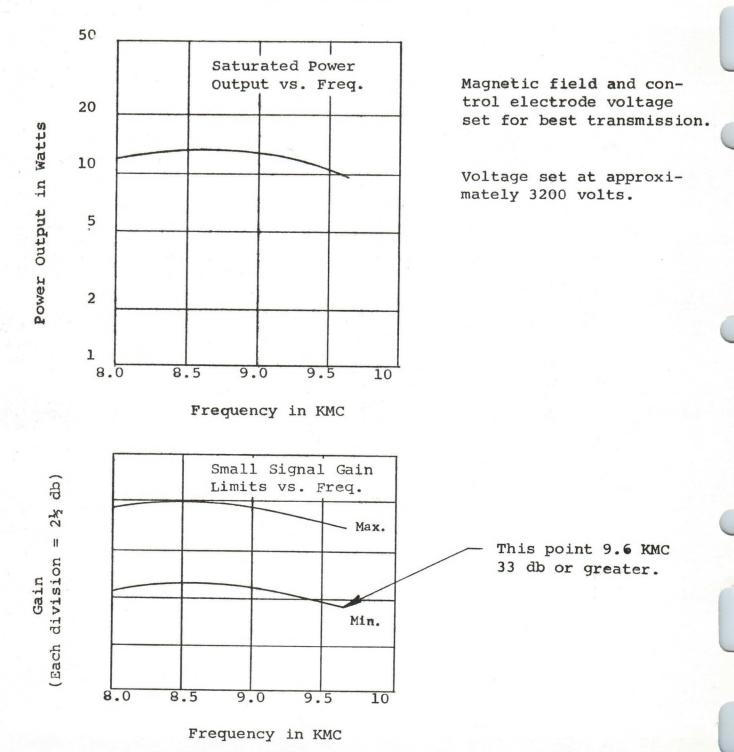
NOTE 5: THE CONTROL ELECTRODE VOLTAGE IS ADJUSTED FOR MAXIMUM BEAM TRANS-MISSION (COLLECTOR CURRENT/CATHODE CURRENT).

OPERATING PROCEDURE:

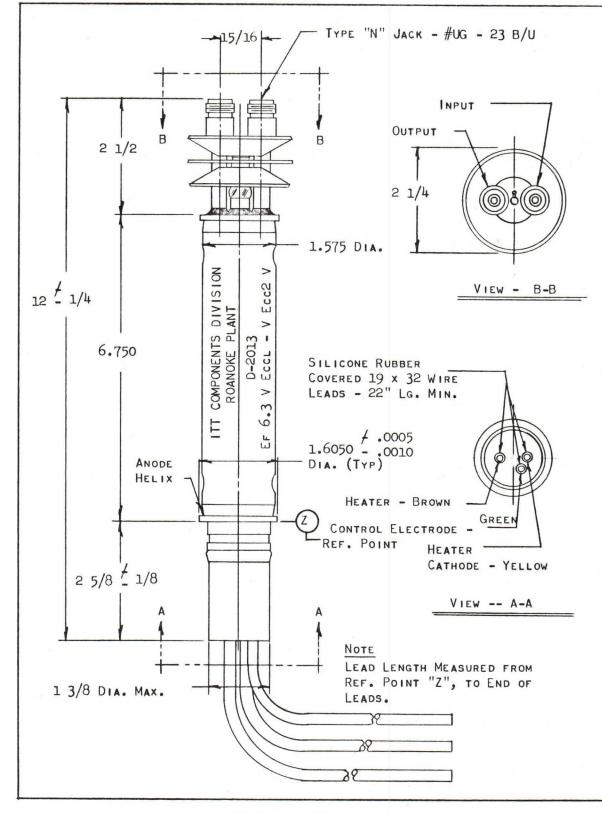
- INSERT TUBE IN SOLENOID, SECURE IN PLACE WITH STOPS PROVIDED, MAKE CONNECTIONS.
- 2. TURN ON COOLING AIR, SOLENOID VOLTAGE (ADJUST TO APPROXIMATELY 1300 GAUSS), HEATER VOLTAGE, COLLECTOR VOLTAGE (IF USED), CONTROL ELECTRODE VOLTAGE (APPROXIMATELY -20 VOLTS).
- 3. RAISE HIGH VOLTAGE TO DESIRED VALUE, ADJUSTING SOLENOID VOLTAGE AND CONTROL ELECTRODE VOLTAGE FOR MAXIMUM COLLECTOR CURRENT, AND OBSERV-ING CARE NOT TO EXCEED 3 MA SHELL CURRENT. IT MAY BE NECESSARY TO ROTATE THE TUBE IN THE SOLENOID TO THE POINT GIVING BEST TRANSMISSION.
- 4. The above procedure is not required after initial set up; however, heater voltage should be applied one minute before applying high voltage, and proper magnetic field and control electrode voltage must be applied before applying high voltage. Observance of the 3 ma maximum limit on shell current is essential to prevent tube damage.
- 5. HEATER WARM UP OF 2 MINUTES BEFORE APPLYING HIGH VOLTAGE IS RECOMMENDED.

STANDARD SOLENOIDS TO OPERATE THIS TUBE ARE AVAILABLE, AND SOLENOIDS DESIGNED FOR PARTICULAR APPLICATIONS CAN BE SUPPLIED.

ADDITIONAL INFORMATION FOR SPECIFIC APPLICATIONS CAN BE OBTAINED FROM THE:


ELECTRON TUBE APPLICATIONS SECTION ITT COMPONENTS DIVISION POST OFFICE BOX 7065 ROANOKE, VIRGINIA

10-60


D-2013 TRAVELING WAVE TUBE

TYPICAL CHARACTERISTICS

4 -

10-60

OUTLINE - D-2013

ELECTRON TUBE DEPARTMENT
COMPONENTS DIVISION

10-60

- 5 -

ELECTRON TUBE DEPARTMENT 🗖 COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY

D-2014 TRAVEL ING WAVE TUBE

DESCRIPTION:

THE D-2014 IS A 1 KILOWATT PULSE TRAVELING WAVE AMPLIFIER TUBE HAVING 33 DB GAIN AND 8000 TO 9600 MC FREQUENCY RANGE. IT IS CONSTRUCTED IN A RUGGED METAL ENVELOPE WITH A HELIX TYPE SLOW WAVE STRUCTURE. THE INTEGRAL MATCHING CIRCUIT IS IN 50 OHM COAXIAL LINE AND IS PROVIDED WITH TYPE 'N' CONNECTORS. THE TUBE IS SELF-ALIGNING IN THE EXTERNAL SOLENOID WHICH IS REQUIRED TO PROVIDE A UNIFORM MAGNETIC FIELD. A CONVERGENT BEAM GUN AND OXIDE IMPREGNATED CATHODE ARE USED. DUTY CYCLES UP TO .005 AND PULSE LENGTHS UP TO 10 MICROSECONDS CAN BE USED. SMALL SIGNAL GAIN (\neq 13 dbm input) variations within the band do not exceed \neq 2 db. POWER GAIN (1.0 KW OUTPUT) IS WITHIN 6 DB OF SMALL SIGNAL GAIN.

A CONTROL GRID SUITABLE FOR GRID PULSING IS PROVIDED.

ELECTRICAL INFORMATION:

HEATER VOLTAGE HEATER CURRENT	6.3 (±5%) 5.2	Volts Amperes	
MAXIMUM FREQUENCY (NOTE 1)	9600 8000	мс	
MINIMUM FREQUENCY (NOTE 1) MINIMUM TRANSMISSION LOSS		мс	
AT GRID BIAS = -200 VOLTS CAPACITANCE	60	DB	
CONTROL GRID TO ALL OTHER ELEMENTS	13	UUFD	
ELECTRICAL RATINGS. ABSOLUTE VALUES:			

MAXIMUM ANODE VOLTAGE (NOTE 2)	12,000	VOLTS
MAXIMUM SHELL CURRENT	1.5	AMPERE PEAK
MAXIMUM COLLECTOR DISSIPATION (NOTE 3)	180	WATTS AVERAGE
MAXIMUM R-F INPUT POWER	10	WATTS AVERAGE
MAXIMUM R-F OUTPUT POWER	10	WATTS AVERAGE
MAXIMUM DUTY CYCLE	.005	
MAXIMUM PULSE WIDTH	10	U SECONDS
MAXIMUM CATHODE CURRENT	3.0	AMPERES PEAK
MAXIMUM GRID VOLTAGE		
NEGATIVE	-300	VOLTS
Positive (Note 4)	£450	VOLTS
MAXIMUM GRID CURRENT	.27	AMPERES PEAK

D-2014 TRAVELING WAVE TUBE

MECHANICAL INFORMATION:

TYPE OF CATHODE	OXIDE IMPREGNATED UNIPOTENTIAL
BASE	MOLDED SILICONE RUBBER
	BASE WITH FLYING LEADS
TYPE OF NEVELOPE	METAL
MAGNETIC FIELD STRENGTH	2400 GAUSS
LENGTH OF MAGNETIC FIELD	6.75 INCHES UNIFORM
MOUNTING POSITION	ANY
WEIGHT OF TUBE	1 LB. 7 оZ.
R-F CONNECTIONS	TYPE N JACK UG-23 B/U
TYPE OF COOLING	FORCED AIR
AIR FLOW ON COLLECTOR RADIATOR (NOTE 3)	300 CEM
MAXIMUM GLASS TEMPERATURE	160 °C

- 2 -

TYPICAL OPERATION AS POWER AMPLIFIER:

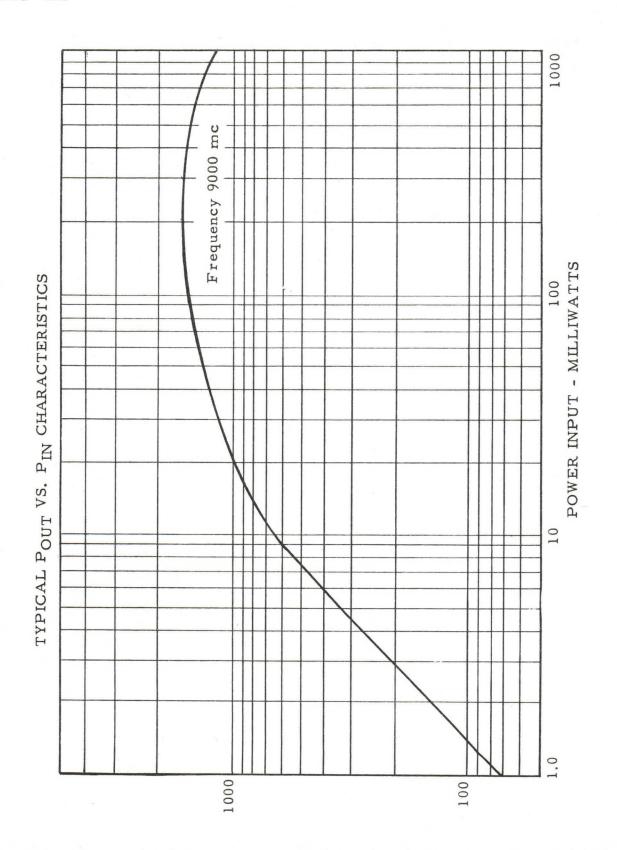
CENTER FREQUENCY	9000	MC
ANODE VOLTAGE (NOTE 2)	9600	VOLTS
CATHODE CURRENT	1.8	AMPERES PEAK
Power Output (at center frequency)	1.8	KW PEAK
BANDWIDTH	8.0 то 9.6	KMC
GAIN (NOTE 5)	33	DB MIN.
DUTY	.001	
PULSE WIDTH	2.0	U SECONDS
GRID BIAS (FOR CUT-OFF)	-100	VOLTS
GRID VOLTAGE DURING PULSE (NOTE 6)	/350	VOLTS
GRID CURRENT DURING PULSE	0.1	AMPERE PEAK

0000

- Note 1: Useful gain and power output exists below 8000 mc and above 9600 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated values.
- NOTE 2: ALL VOLTAGES SHOWN ARE WITH RESPECT TO CATHODE. ANODE AND HELIX ARE CONNECTED INTERNALLY TO THE SHELL. THE CENTER CONDUCTOR COAX. TERMINALS HAVE AN INTERNAL DC CONNECTION TO SHELL. THE SHELL IS NORMALLY OPERATED AT GROUND POTENTIAL AND CONNECTION IS MADE TO THE SHELL OF THE SOLENOID.
- NOTE 3: FORCED AIR COOLING IS REQUIRED WHEN AVERAGE COLLECTOR POWER IS IN EXCESS OF 10 WATTS. AS THE COLLECTOR POWER IS INCREASED, THE AIR FLOW REQUIRED INCREASES. AT THE MAXIMUM COLLECTOR POWER OF 150 WATTS, A MINIMUM AIR FLOW OF 30 CFM THROUGH THE COOLING FINS IS REQUIRED.

- NOTE 4: POSITIVE VOLTAGE MUST NOT BE APPLIED TO THE GRID IN THE ABSENCE OF ANODE VOLTAGE.
- Note 5: This gain is obtained over the 8.0 to 9.6 kmc bandwidth at 1 KW power output. Small signal gain is within 6 db of the power gain at any particular frequency.
- NOTE 6: THE POSITIVE GRID VOLTAGE PULSE SHOULD BE THE MINIMUM CONSISTENT WITH NORMAL POWER OUTPUT.

SPECIAL NOTE:


MISMATCH UP TO AND INCLUDING A SHORT CIRCUIT IN INPUT OR OUTPUT LINES WILL NOT CAUSE OSCILLATION.

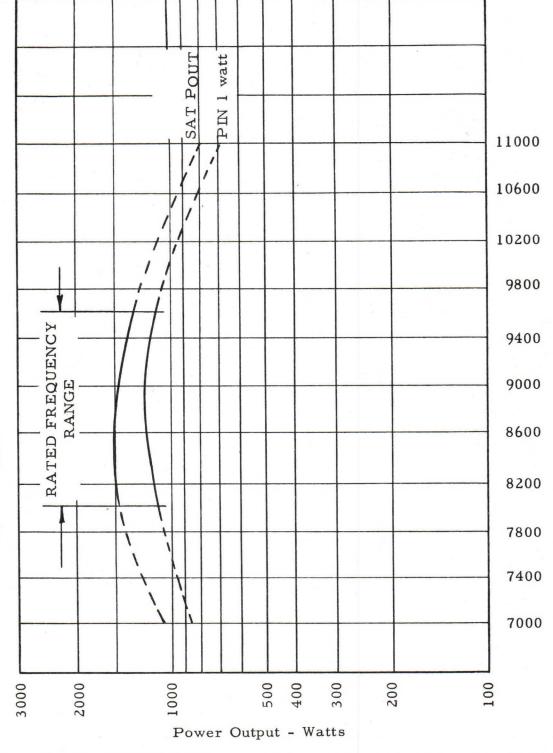
GENERAL OPERATING INSTRUCTIONS:

- 1. HEATER WARM UP OF 2 MINUTES BEFORE APPLYING HIGH VOLTAGE IS RECOMMENDED.
- 2. HIGH VOLTAGE MUST NOT BE APPLIED IN THE ABSENCE OF PROPER GRID BIAS AND MAGNETIC FIELD. POSITIVE GRID PULSE VOLTAGE MUST NOT BE APPLIED IN THE ABSENCE OF HIGH VOLTAGE.
- 3. INITIAL ADJUSTMENTS SHOULD BE DONE AT LOW DUTY CYCLE (LESS THAN .001) TO PREVENT TUBE DAMAGE DUE TO HIGH SHELL (INTERCEPTION) CURRENT.

ADDITIONAL INFORMATION FOR SPECIFIC APPLICATIONS CAN BE OBTAINED FROM THE:

ELECTRON TUBE APPLICATIONS SECTION ITT COMPONENTS DIVISION POST OFFICE BOX 7065 ROANOKE, VIRGINIA

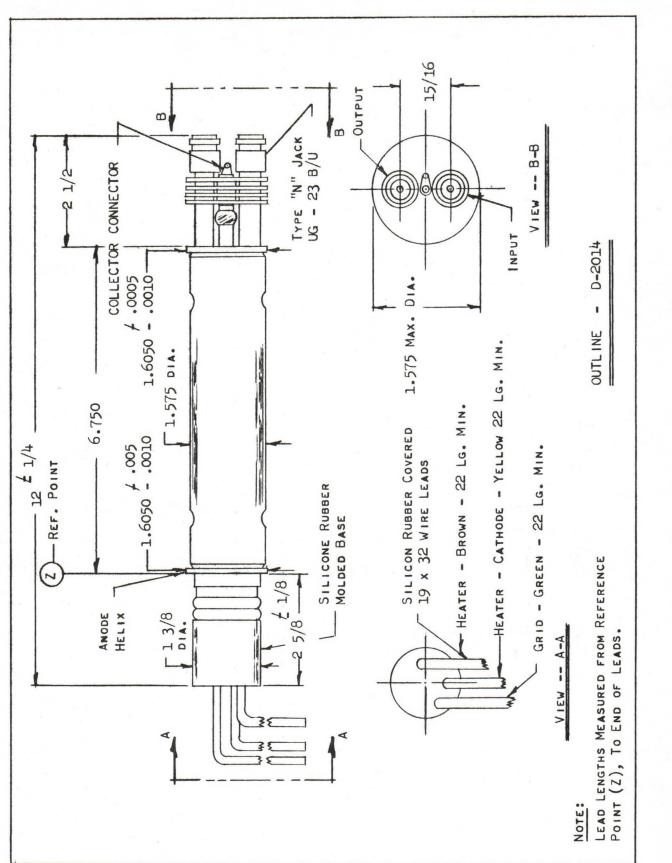
D-2014 TRAVELING WAVE TUBE


10-60

- 4 -

TYPICAL POUT VS. FREQUENCY CHARACTERISTICS

10-60


1

D-2014 TRAVELING WAVE TUBE

Frequency - Megacycles

- 5 -

- 6 -

engineering TUBE DATA D-2020 TRAVELING WAVE TUBE

 ${}^{\pm}Components$ Division

GENERAL DESCRIPTION:

Type D-2020 is a mechanically modified version of type F-6996. Silicone rubber insulated flying leads attached to the tube with Silastic insulation are provided for altitude operation, in place of the Small Shell Duodecal 5 pin base. A modified radiator, which though requiring the same air flow, can be cooled with lower velocity air, is provided.

Capacitance of the control electrode to all other elements is increased to 16 $\mu\mu$ fd by the base and lead configuration.

All other characteristics are the same as type F-6996 and additional information can be obtained by referring to the F-6996 data sheet.

Additional information for specific applications can be obtained from the

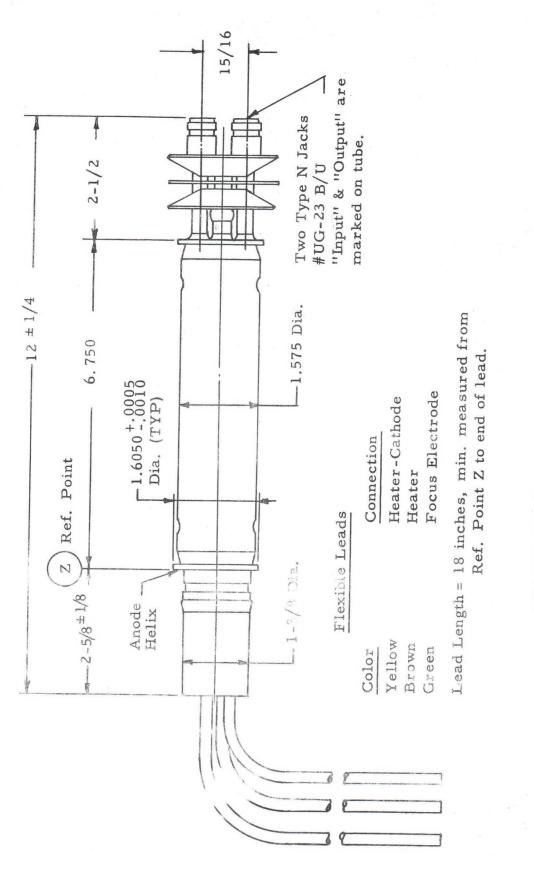
Electron Tube Applications Section ITT Components Division P.O. Box 412 Clifton, New Jersey

CL

BOX 412

P. O.

ELECTRON TUBE DEPARTMENT


4-60

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

IFTON

NEW

JERSEY

TRAVELING WAVE TUBE TYPE D-2020

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

D-2023 TRAVEL ING WAVE TUBE

TENTATIVE

DESCRIPTION:

THE D-2023 IS A 1 KILOWATT PULSE TRAVELING WAVE TUBE HAVING 30 DB GAIN AND 4.0 TO 8.0 FREQUENCY RANGE. IT IS CONSTRUCTED IN A RUGGED METAL-CERAMIC ENVELOPE WITH A HELIX TYPE SLOW WAVE STRUCTURE. THE INTEGRAL MATCHING CIRCUIT IS IN 50 OHM COAXIAL LINE AND IS PROVIDED WITH FEMALE TYPE TNC CONNECTORS. THE TUBE IS SELF-ALIGNING IN AN EX-TERNAL SOLENOID, WHICH IS REQUIRED TO PROVIDE A UNIFORM MAGNETIC FIELD. A CONVERGENT BEAM GUN AND OXIDE IMPREGNATED CATHODE ARE USED. DUTY CYCLES UP TO .01 CAN BE USED.

A CONTROL GRID FOR GRID PULSING IS PROVIDED.

ELECTRICAL INFORMATION:

Heater Voltage Heater Current Maximum Frequency Minimum Frequency	6.3 (⁷ -5%) 5.0 8.0 4.0	Volts Amps
MINIMUM TRANSMISSION LOSS AT GRID BIAS = .60 volts Capacitance	40	DB
CONTROL GRID TO ALL OTHER ELEMENTS ELECTRICAL RATINGS, ABSOLUTE VALUES:	22	UUFD

MAXIMUM ANODE VOLTAGE (NOTE 1) MAXIMUM HELIX CURRENT	10,000 0.35	VOLTS AMPS
MAXIMUM COLLECTOR DISSIPATION	240	WATTS
MAXIMUM R.F. INPUT POWER	5	WATTS
MAXIMUM DUTY CYCLE	.01	
MAXIMUM GRID VOLTAGE		
NEGATIVE	-200	VOLTS
POSITIVE	4400	VOLTS PEAK
MAXIMUM GRID CURRENT	0.3	AMPS PEAK

D-2023 TRAVELING WAVE TUBE

- 2 -

MECHANICAL INFORMATION:

Type of Cathode Gun Connections R-F Connections Magnetic Field Strength Mounting Position Type of Cooling (Note 2)

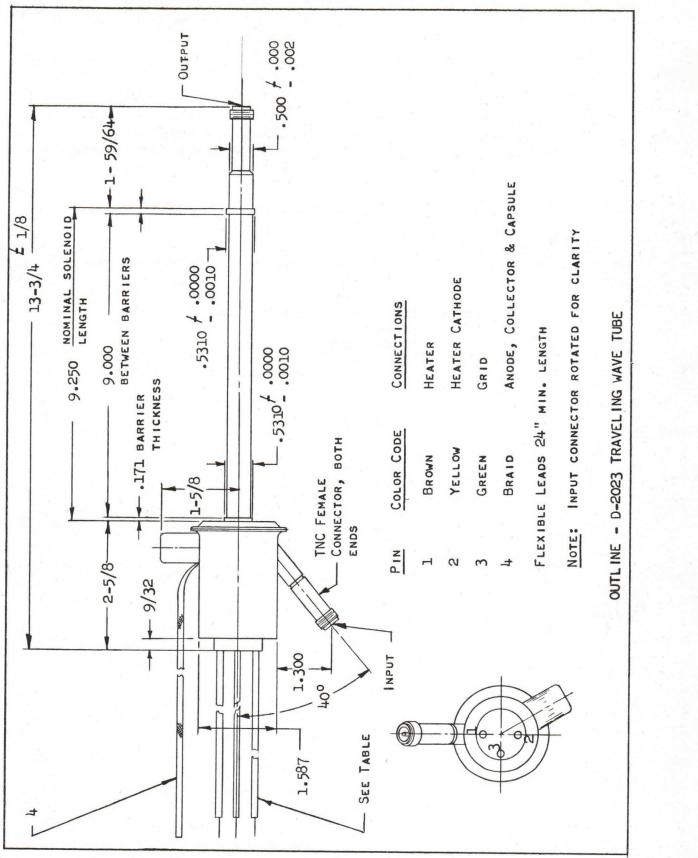
FLYING LEADS FEMALE TNC 2000 Gauss Any

OXIDE IMPREGNATED

TYPICAL OPERATION: (NOTE 3)

KMC
VOLTS
AMPS PEAK
KW PEAK
KMC
DB
MAX.
USEC.
VOLTS
VOLTS PEAK
AMPS PEAK

- NOTE 1: ALL VOLTAGES SHOWN ARE WITH RESPECT TO CATHODE. ANODE, COLLECTOR AND OUTER COAX CONDUCTOR OF THE R-F TERMINALS ARE CONNECTED INTERNALLY TO THE SHELL. THE HELIX IS CONNECTED TO THE CENTER CONDUCTOR OF THE COAX LINE AND A DC CONNECTION FROM THE HELIX TO THE SHELL MUST BE PROVIDED EXTERNALLY IN THE R-F CIRCUITRY.
- NOTE 2: A MAXIMUM OF 240 WATTS IS DISSIPATED AT THE COLLECTOR. A SUIT-ABLE HEAT SINK MUST BE PROVIDED TO CONDUCT HEAT FROM THE COL-LECTOR AND MAINTAIN ITS SURFACE TEMPERATURE BELOW 180°C MAXIMUM. COOLING OF THE EXTERNAL SOLENOID MUST BE PROVIDED SUCH THAT THE TUBE WHICH IS INSERTED INTO IT WILL NOT EXCEED 180°C.
- Note 3: The values of voltages to be used are provided in test data supplied with each tube. High voltage must not be applied in the absence of proper grid bias voltage. Positive grid pulse voltage must not be supplied in the absence of high voltage. Grid pulse voltage in excess of that indicated for each tube should not be used since beam defocussing will occur. Provisions must be made not to exceed maximum ratings, especially helix current and duty cycle. Initial adjustments are conveniently done at low duty cycle (less than .OO1) where misadjustment of parameters is much less likely to cause tube damage.


D-2023 TRAVELING WAVE TUBE

Note 4: Power output of 1 KW peak or more is obtained over the frequency range 4.0 to 7.5 KMC, and 800 watts or more over the frequency range 7.5 to 8.0 KMC. Power input required to obtain this power output does not exceed 1 watt.

ADDITIONAL INFORMATION FOR SPECIFIC APPLICATIONS CAN BE OBTAINED FROM THE:

ELECTRON TUBE APPLICATIONS SECTION ITT COMPONENTS DIVISION POST OFFICE BOX 7065 ROANOKE, VIRGINIA

- 3 -

Components Division

TRAVELING WAVE TUBE

FORMERLY F-6996-A

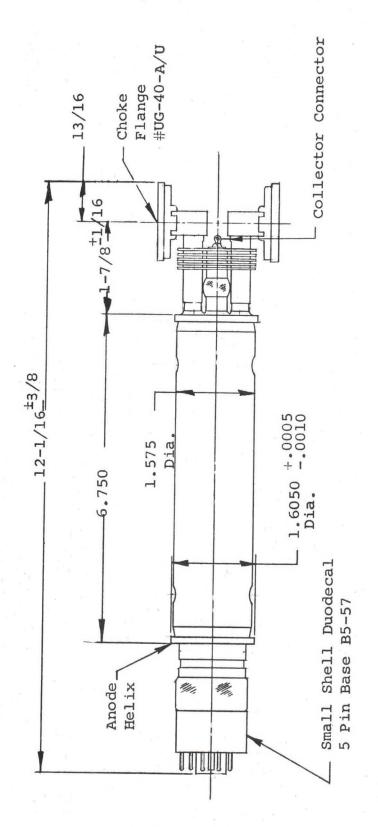
10-60

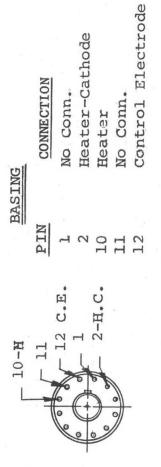
GENERAL DESCRIPTION:

TYPE D-2024 IS & MECHANICALLY MODIFIED VERSION OF TYPE F-6996. AN INTEGRAL MATCHING CIRCUIT IS PROVIDED AND THE RF TERMINALS CONSIST OF UG-40-AU CHOKE FLANGE WAVE GUIDE CONNECTORS.

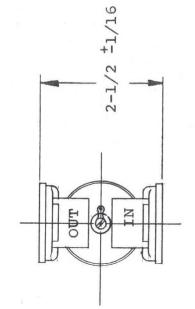
ALL OTHER CHARACTERISTICS ARE THE SAME AS TYPE F-6996 AND ADDITIONAL INFORMATION CAN BE OBTAINED BY REFERRING TO THE F-6996 DATA SHEET.

THE OUTLINE OF THE D-2024 IS ATTACHED.


ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION


P.O. BOX 412, CLIFTON,

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION


NEW

JERSEY

- 2

10-60

ELECTRON TUBE DIVISION

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

F-2057 TRAVELING WAVE TUBE

TENTATIVE

GENERAL DESCRIPTION:

The F-2057 is a 1000 watt pulse traveling wave amplifier tube having 30db gain and designed primarily for use in the 2000 to 4000 mc frequency range, It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with UG 19 B/U Type connectors. The tube is focused by a periodic permanent magnet which is integral with the tube. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .01 and pulse widths up to 100 microseconds can be used.

ELECTRICAL RATINGS, ABSOLUTE VALUES

Heater Voltage Heater Current Maximum Anode Voltage (Note 1)	6.3 (±10%) 3.0 8000	volts amperes volts	Maximum R+F Input Power Maximum R+F Output Power Maximum Duty Cycle	2 30 .01	watts average watts average
Maximum Shell Current Maximum Collector Voltage Maximum Collector Dissipation	0.8 8000 160	ampere peak volts watts average	Maximum Pulse Width (beam) Maximum Cathode Current	100 2.0	microseconds amp er e peak

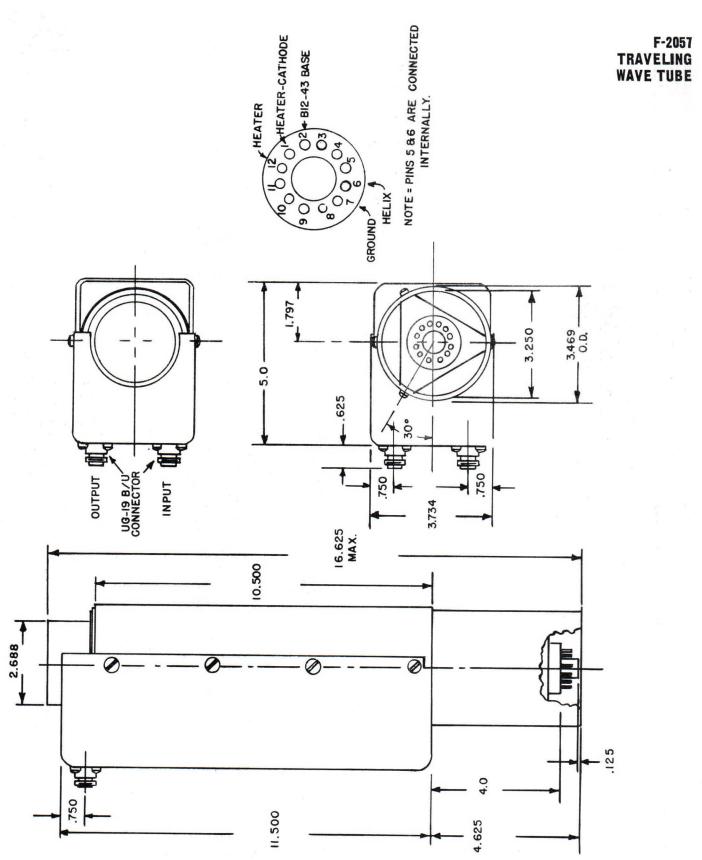
ELECTRICAL INFORMATION

Frequency	(Note 2)	4000	mc	Minimum Cold Transmission Loss	50	db
Frequency	(Note 2)	2000	mc			

MECHANICAL INFORMATION

Type of Envelope Metal Cooling Data 2 cfm of air Mounting Position Any	31	-	0		maximum
--	----	---	---	--	---------

TYPICAL OPERATION AS POWER AMPLIFIER


Frequency	2000 to 4000	mc	Power Output (Minimum)	1000	watts peak
Anode Voltage (Note 1)	7300	volts	Gain	30	db
Cathode Current	1.4	amperes peak	Duty	.01	
Collector Voltage (tied to shell)	7300	volts	Pulse Width	5	microseconds
Collector Current	0.9	amperes peak			

NOTE 1: All voltages shown are with respect to cathode. The shell is normally operated at ground potential and the anode connection is made to the shell of the package.

NOTE 2: Useful gain and power output exists below 2000 mc and above 4000 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated values.

NOTE 3: Heater warmup of two minutes before applying high voltage is recommended.

Maximum Minimum

ELECTRON TUBE DIVISION

CLIFTON, NEW JERSEY

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

F-2058 TRAVELING WAVE TUBE

Maximum

TENTATIVE

GENERAL DESCRIPTION

The F-2058 is a 1000 watt pulse traveling wave amplifier tube having 30 db gain and designed primarily for use in the 2900 to 3100 mc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "TNC" connectors. The tube is focused by a periodic permanent magnet which is integral with the tube. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .01 and pulse widths up to 100 micro-seconds can be used.

ELECTRICAL RATINGS, ABSOLUTE VALUES

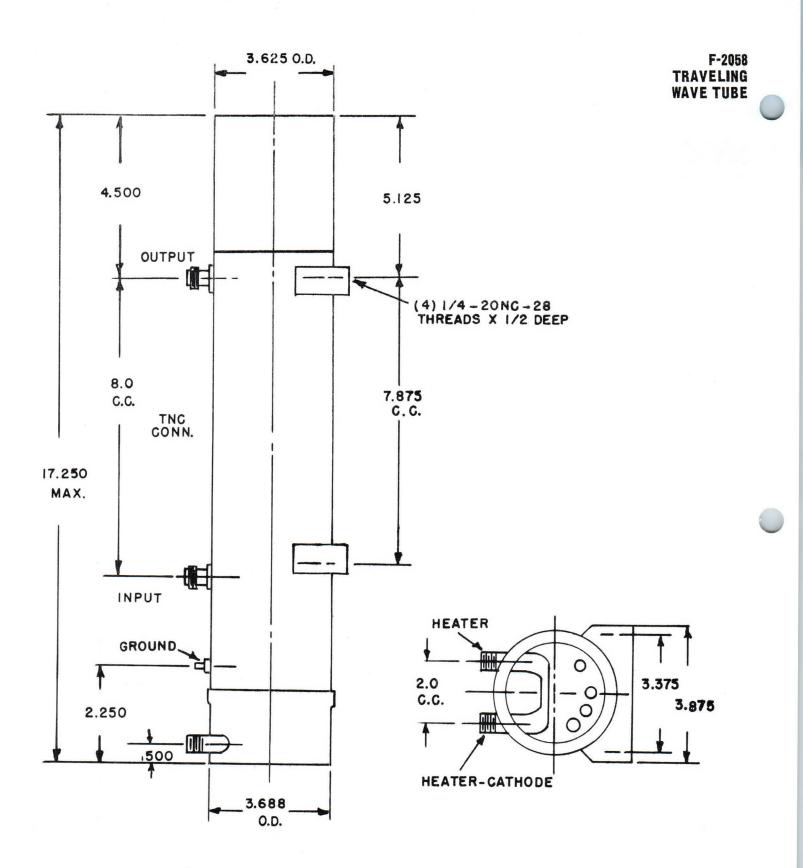
Heater Voltage	6.3 (±10%)	volts	Maximum R-F Input Power	2	watts average
Heater Current	3.0	amperes	Maximum R-F Output Power	30	watts average
Maximum Anode Voltage (Note 1)	8000	volts	Maximum Duty Cycle	.01	
Maximum Shell Current	0.8	ampere peak	Maximum Pulse Width (beam)	100	microseconds
Maximum Collector Voltage	8000	volts	Maximum Cathode Current	2.0	ampere peak
Maximum Collector Dissipation	160	watts average			

ELECTRICAL INFORMATION

Maximum Frequency (Note 2)	3100	mc	Minimum Cold Transmission Loss 5	0	db
Minimum Frequency (Note 2)	2900	mc			

MECHANICAL INFORMATION

Type of Cathode Base	Oxide Impregnated Unipotential (See Outline)	Weight R+F Connections	10 Pounds M Type "TNC"
Type of Envelope	Metal	Cooling Data	25 cfm of air
Mounting Position	Any		


TYPICAL OPERATION AS POWER AMPLIFIER

Frequency Anode Voltage (Note 1)	2900 to 3100 7300	mc volts	Power Output (minimum) Gain	1000	watts peak
Cathode Current	1.4	amperes peak	Duty	30 .01	db
Collector Voltage (tied to shell)	7300	volts	Pulse Width	5	microseconds
Collector Current	0.9	amperes peak			

NOTE 1: All voltages shown are with respect to cathode. The shell is normally operated at ground potential and the anode connection is made to the shell of the package.

NOTE 2: Useful gain and power output exists below 2900 mc and above 3100 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated.

NOTE 3: Heater warm up of two minutes before applying high voltage is recommended.

ELECTRON TUBE DIVISION

CLIFTON, NEW JERSEY

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

F-2059 TRAVELING WAVE TUBE

TENTATIVE

GENERAL DESCRIPTION

The F-2059 is a 100 watt pulse traveling wave amplifier tube having 46 db gain and designed primarily for use in the 2700 to 2900 mc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "TNC" connectors. The tube is focused by a periodic permanent magnet which is integral with the tube. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .01 and pulse widths up to 10 micro-seconds can be used. A control grid suitable for grid pulsing is provided.

ELECTRICAL RATINGS, ABSOLUTE VALUES

Heater Voltage Heater Current Maximum Anode Voltage (Note 1) Maximum Shell Current	6.3 (±10%) 3.0 5000 0.5	volts amperes volts ampere peak	Maximum Duty Cycle Maximum Pulse Width (beam) Maximum Cathode Current Maximum Grid Voltage	.01 10 1.0	microseconds ampere peak
Maximum Collector Voltage Maximum Collector Dissipation Maximum R-F Output Power	5000 20 5	volts watts average watts average	Negative Positive (with respect to cathode)	-100 200	volts

ELECTRICAL INFORMATION

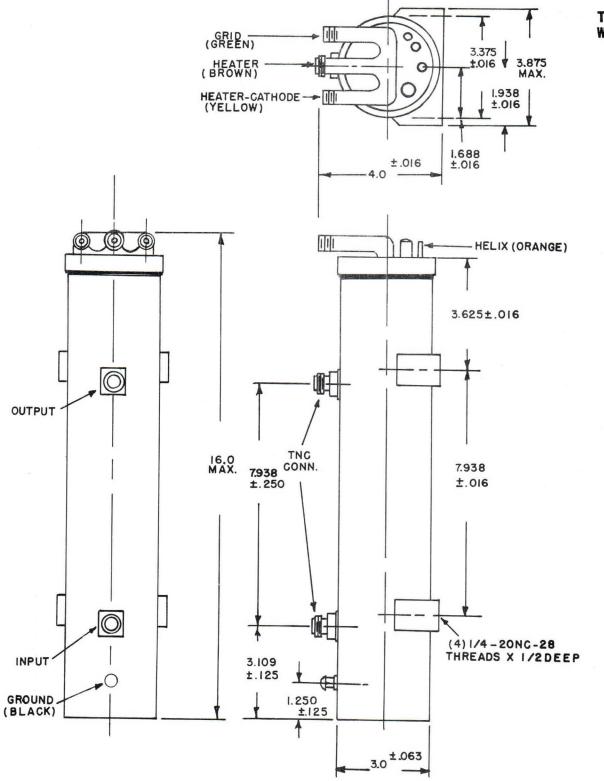
Maximum Frequency (Note 2)	2900	mc	Capacitance		
Minimum Frequency (Note 2)	2700	mc	Control Grid to All Other Elements	20	uufd
Minimum Cold Transmission Loss	50	db			

MECHANICAL INFORMATION

Type of Cathode	Oxide Impregnated Unipotential	Weight	10 Pounds Maximum
Base	(See Outline)	R•F Connections	Type "TNC"
Type of Envelope Mounting Position	Metal Any	Type of Cooling	Convection

TYPICAL OPERATION AS POWER AMPLIFIER

Frequency	2700 to 2900	mc	Gain	46	db
Anode Voltage (Note 1)	4400	volts	Duty	.01	
Cathode Current	0.5	amperes peak	Pulse Width	5	microseconds
Collector Voltage (tied to shell	4400	volts	Grid Bias (for cut-off)	-30	volts
Collector Current	0.3	amperes peak	Grid Voltage during Pulse	175	volts
Power Output (minimum)	100	watts peak			


NOTE 1: All voltages shown are with respect to cathode. The shell is normally operated at ground potential and the anode connection is made to the shell of the package.

NOTE 2: Useful gain and power output exists below 2700 mc and above 2900 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated values.

NOTE 3: Heater warm up of two minutes before applying high voltage is recommended.

NOTE 4: High voltage must be applied in the absence of proper grid bias.

F-2059 TRAVELING WAVE TUBE

.

F-2060 TRAVELING WAVE TUBE

TENTATIVE

GENERAL DESCRIPTION:

The F-2060 is a 1500 watt pulse traveling wave amplifier tube having 32 db gain and designed primarily for use in the 3350 to 3650 mc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "TNC" connectors. The tube is focused by a periodic permanent magnet which is integral with the tube. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to _.01 and pulse widths up to 100 microseconds can be used.

ELECTRICAL RATINGS, ABSOLUTE VALUES

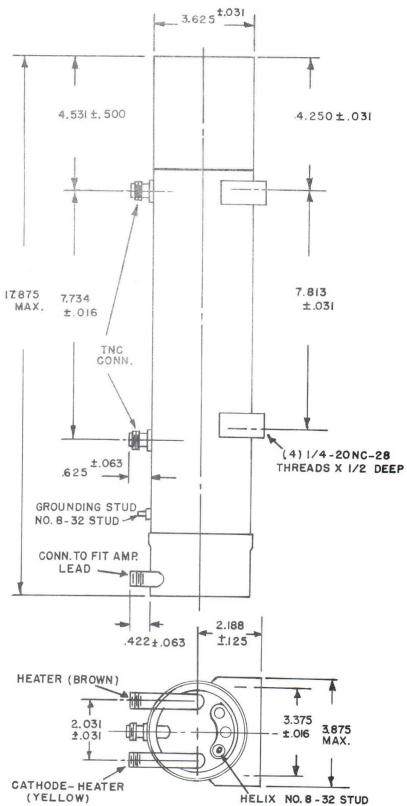
Heater Voltage	6.3 (±10%)	volts	Maximum R-F Input Power	2	watts average
Heater Current	3.0	amperes	Maximum R-F Output Power	30	watts average
Maximum Anode Voltage (Note 1)	8000	volts	Maximum Duty Cycle	.01	
Maximum Helix Current	0.8	ampere peak	Maximum Pulse Width (beam)	100	microseconds
Maximum Collector Voltage	8000	volts	Maximum Cathode Current	2.0	ampere peak
Maximum Collector Dissipation	160	watts average			

ELECTRICAL INFORMATION

Maximum Frequency (Note 2)	3650	mc	Minimum Cold Transmission Loss	50	db
Minimum Frequency (Note 2)	3350	mc			

MECHANICAL INFORMATION

Type of Cathode O Base Type of Envelope Mounting Position	xide Impregnated Unipotential (See Outline Drawing) Metal Any	Weight (not including magnet) R-F Connections Cooling Data	10 pounds Maximum "TNC" 25 cfm of air
--	--	--	---


TYPICAL OPERATION AS POWER AMPLIFIER

Frequency	3350 to 3650	mc	Gain	32	db
Anode Voltage (Note 1)	7200	volts	Duty	.01	
Cathode Current	1.4	amperes peak	Pulse Width	5	microseconds
Collector Voltage (tied to shell)	7200	volts	Small Signal Gain Variation	3	db
Collector Current	0.9	amperes peak	Saturated Power Variation	3	db
Power Output (Minimum)	1500	watts peak			

NOTE 1: All Voltages shown are with respect to cathode. The shell is normally operated at ground potential and the anode connection is made to the shell of the package.

NOTE 2: Useful gain and power output exists below 3350 mc and above 3650 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth may be lower than rated values.

NOTE 3: Heater warm up of two minutes before applying high voltage is recommended.

F-2060 TRAVELING WAVE TUBE

CLIFTON, NEW JERSEY

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

F-2061 TRAVELING WAVE TUBE

TENTATIVE

GENERAL DESCRIPTION:

The F-2061 is a 1000 watt pulse traveling wave amplifier tube having 30 db gain and designed primarily for use in the 2900 to 3100 mc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "TNC" connectors. The tube is focused by a periodic permanent magnet which is integral with the tube. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .02 and pulse widths up to 50 micro-seconds can be used.

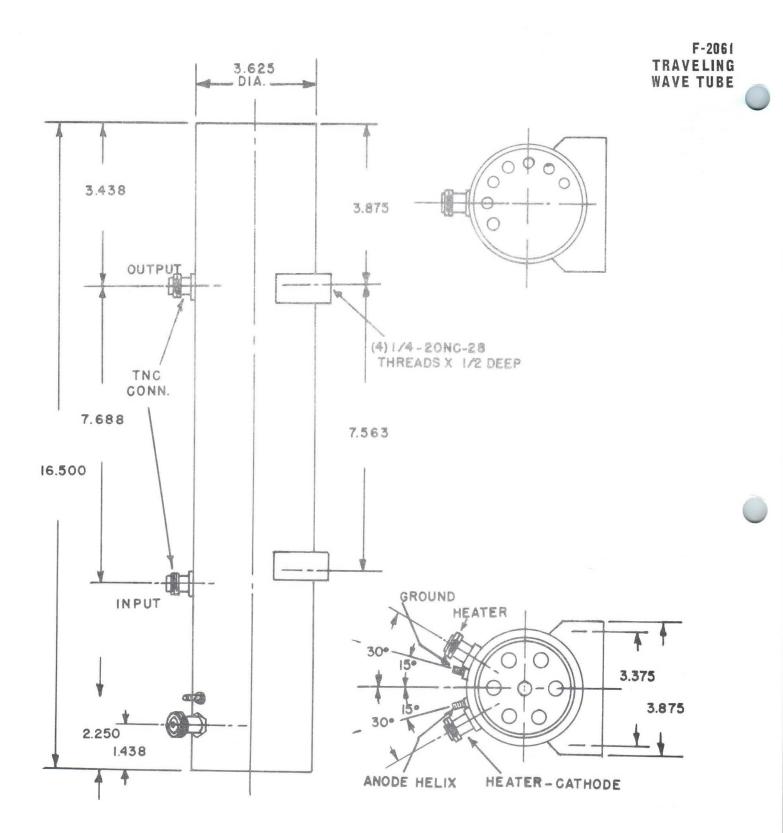
ELECTRICAL RATINGS, ABSOLUTE VALUES

Heater Voltage	6.3 (±10%)	volts	Maximum R-F Input Power	2	watts average
Heater Current	3.0	amperes	Maximum R-F Output Power	40	watts average
Maximum Anode Voltage (Note 1)	8000	volts	Maximum Duty Cycle	.02	
Maximum Shell Current	0.8	ampere peak	Maximum Pulse Width (beam)	50	microseconds
Maximum Collector Voltage	8000	volts	Maximum Cathode Current	2.0	ampere peak
Maximum Collector Dissipation	200	watts average			

ELECTRICAL INFORMATION

Maximum Frequency (Note 2)	3100	mc	Minimum Cold Transmission Loss	50	db
Minimum Frequency (Note 2)	2900	mc			

MECHANICAL INFORMATION


Type of Cathode	Oxide Impregnated Unipotential	Weight	10 pounds Maxi	mum
Base	(See Outline)	R-F Connections	Type "TNC"	
Type of Envelope Mounting Position	Metal Any	Cooling Data	25 cfm of air	

TYPICAL OPERATION AS POWER AMPLIFIER

Frequency Anode Voltage (Note 1)	2900 to 3100 7300	mc volts	Power Output (minimum) Gain	1000 30	watts peak db
Cathode Current	1.4	amperes peak	Duty	.02	
Collector Voltage (tied to shell)	7300	volts	Pulse Width	5	microseconds
Collector Current	0.9	amperes peak			

NOTE 1: All voltages shown are with respect to cathode. The shell is normally operated at ground potential and the anode connection is made to the shell of the package.

- NOTE 2: Useful gain and power output exists below 2900 mc and above 3100 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated values.
- NOTE 3: Heater warm up of two minutes before applying high voltage is recommended.

F-2062 TRAVELING WAVE TUBE

TENTATIVE

GENERAL DESCRIPTION:

The F-2062 is a 1000 watt pulse traveling wave amplifier tube having 30 db gain and designed primarily for use in the 2000 to 4000 mc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type **"TNC"** connectors. The tube is focused by a periodic permanent magnet which is integral with the tube. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .01 and pulse widths up to 10 microseconds can be used. A control grid suitable for grid pulsing is provided.

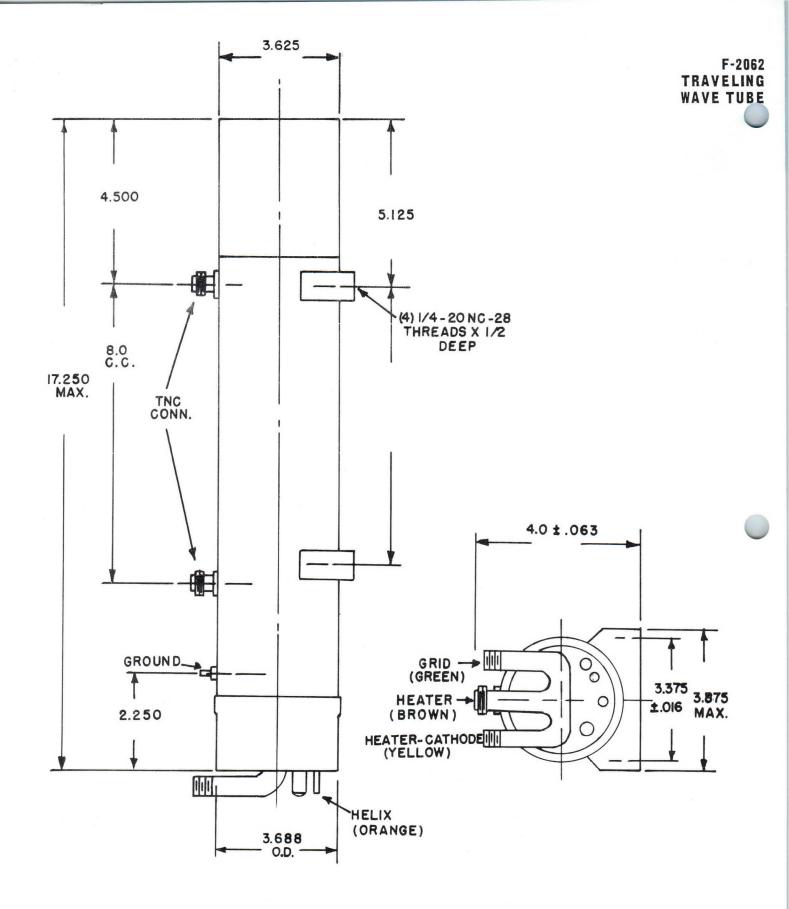
ELECTRICAL RATINGS, ABSOLUTE VALUES

Heater Voltage Heater Current Maximum Anode Voltage (Note 1) Maximum Helix Current Maximum Collector Voltage	6.3 (±10%) 3.0 8000 0.8 8000	volts amperes volts ampere peak volts	Maximum R+F Output Power Maximum Duty Cycle Maximum Pulse Width (beam) Maximum Cathode Current Maximum Grid Voltage	30 .01 10 2.0	watts average microseconds ampere peak
Maximum Collector Dissipation	120	watts average	Negative Positive (with respect to cathode)	-100	volts

ELECTRICAL INFORMATION

Maximum Frequency (Note 2) Minimum Frequency (Note 2) Minimum Cold Transmission Loss	4000 2000 50	mc mc db	Capacitance Control Grid to All Other Elements	20	uufd
Infinitian Cord Transmission 2033	50	ub			

MECHANICAL INFORMATION


Type of Cathode	Oxide Impregnated Unipotential	Weight	10 pounds Maximum
Base	(See Outline)	R-F Connections	Type "TNC"
Type of Envelope Mounting Position	Metal Any	Cooling Data	25 cfm of air

TYPICAL OPERATION AS POWER AMPLIFIER

Frequency	2000 to 4000	mc	Power Output (minimum)	1000	watts peak
Anode Voltage (Note 1)	7500	volts	Gain	30	db
Cathode Current	1.5	amperes peak	Duty	.01	
Collector Voltage (tied to shell)	7500	volts	Pulse Width	5	microseconds
Collector Current	1.0	amperes peak	Grid Bias (for cut-off)	-30	volts
			Grid Voltage during Pulse	175	volts

NOTE 1: All voltages shown are with respect to cathode. The shell is normally operated at ground potential and the anode connection is made to the shell of the package.

- NOTE 2: Useful gain and power output exists below 2000 mc and above 4000 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated values.
- NOTE 3: Heater warm up of two minutes before applying high voltage is recommended.
- NOTE 4: High voltage must not be applied in the absence of proper grid bias.

F-2063 TRAVELING WAVE TUBE

TENTATIVE

GENERAL DESCRIPTION:

The F-2063 is a 1000 watt pulse traveling wave amplifier tube having 33 db gain and designed primarily for use in the 2500 to 4000 mc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "TNC" connectors. The tube is focused by a periodic permanent magnet which is integral with the tube. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .01 and pulse widths up to 10 microseconds can be used. A control grid suitable for grid pulsing is provided.

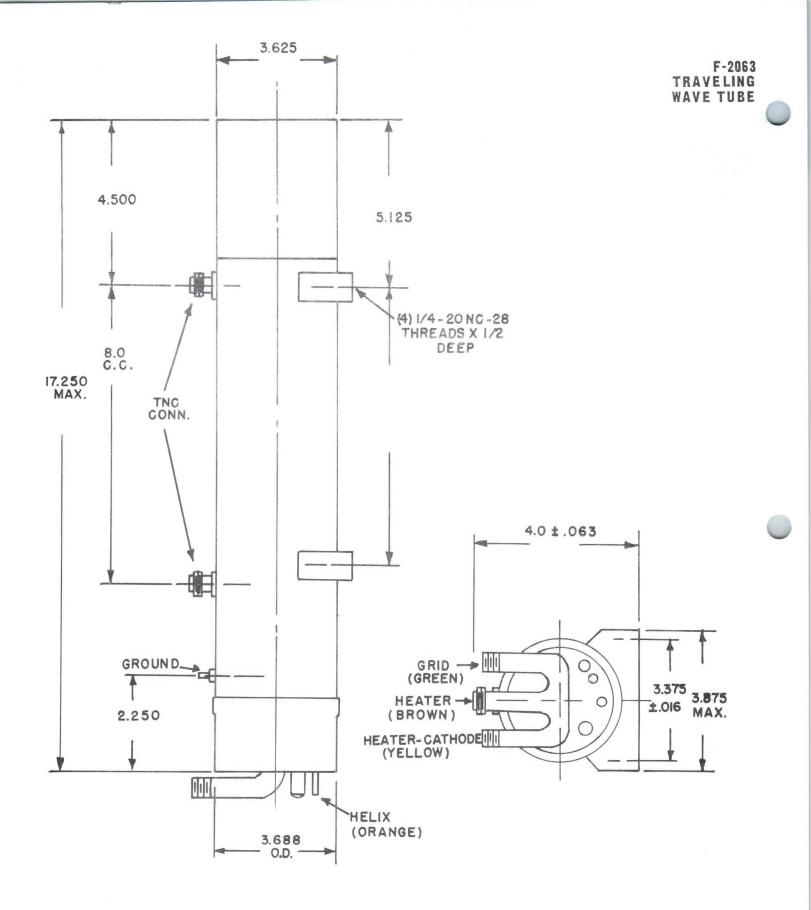
ELECTRICAL RATINGS, ABSOLUTE VALUES

Heater Voltage Heater Current Maximum Anode Voltage (Note 1)	6.3 (±10%) 3.0 8000	volts an:peres volts	Maximum Duty Cycle Maximum Pulse Width (beam) Maximum Cathode Current	.01 10 20	microseconds ampere peak
Maximum Helix Current	0.8	ampere peak	Maximum Grid Voltage	20	ampere peak
Maximum Collector Voltage	8000	volts	Negative	-100	volts
Maximum Collector Dissipation	120	watts average	Positive (with respect to cathode)	200	volts
Maximum R-F Output Power	30	watts average			

ELECTRICAL INFORMATION

Maximum Frequency (Note 2)	4000	mc	Capacitance		
Minimum Frequency (Note 2)	2500	mc	Control Grid to All Other Elements	20	uufd
Minimum Cold Transmission Loss	50	db		20	uuru

MECHANICAL INFORMATION


Type of Cathode	Oxide Impregnated Unipotential	Weight	10 pounds	Maximum
Base	(See Outline)	R-F Connections	Type "'TNC"	
Type of Envelope Mounting Position	Metal Any	Cooling Data	25 cfm of air	

TYPICAL OPERATION AS POWER AMPLIFIER

Frequency	2500 to 4000	mc	Power Output (minimum)	1000	watts peak
Anode Voltage (Note 1)	7500	volts	Gain	33	db
Cathode Current	1.5	amperes peak	Duty	.01	
Collector Voltage (tied to shell)	7500	volts	Pulse Width	5	microseconds
Collector Current	1.0	amperes peak	Grid Bias (for cut-off)	-30	volts
			Grid Voltage during Pulse	175	volts

NOTE 1: All voltages shown are with respect to cathode. The shell is normally operated at ground potential and the anode connection is made to the shell of the package.

- NOTE 2: Useful gain and power output exists below 2500 mc and above 4000 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated values.
- NOTE 3: Heater warm up of two minutes before applying high voltage is recommended.
- NOTE 4: High voltage must not be applied in the absence of proper grid bias.

ELECTRON TUBE DIVISION

CLIFTON, NEW JERSEY

F-2064 TRAVELING WAVE TUBE

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

TENTATIVE

GENERAL DESCRIPTION:

The F-2064 is a 2000 watt pulse traveling wave amplifier tube having 33 db gain and designed primarily for use in the 2800 to 3500 mc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "TNC" connectors. The tube is focused by a periodic permanent magnet which is integral with the tube. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .01 and pulse widths up to 10 micro-seconds can be used. A control grid suitable for grid pulsing is provided.

ELECTRICAL RATINGS, ABSOLUTE VALUES

Heater Voltage Heater Current Maximum Anode Voltage (Note 1) Maximum Helix Current	6.3 (±10%) 3.0 8000 0.8	volts amperes volts ampere peak	Maximum Duty Cycle Maximum Pulse Width (beam) Maximum Cathode Current Maximum Grid Voltage	.01 10 2.0	microseconds ampere peak
Maximum Collector Voltage Maximum Collector Dissipation Maximum R-F Output Power	8000 120 30	volts watts average watts average	Negative Positive (with respect to cathode)	-100 200	volts volts

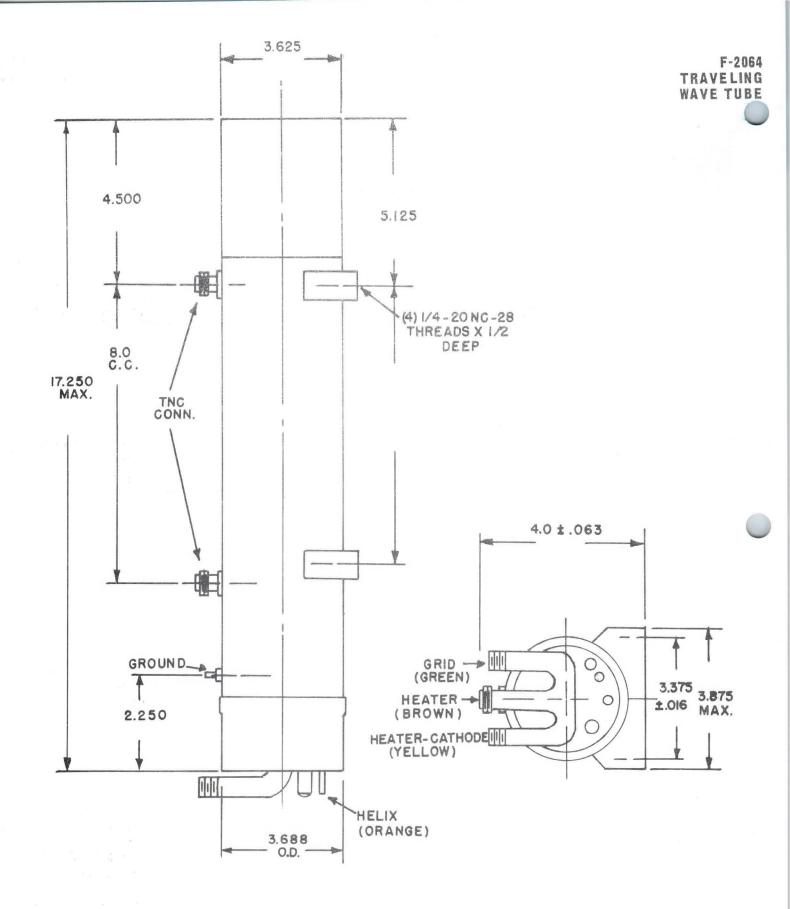
ELECTRICAL INFORMATION

Maximum Frequency (Note 2)	3500	mc	Capacitance		
Minimum Frequency (Note 2)	2800	mc	Control Grid to All Other Elements	20	uufd
Minimum Cold Transmission Loss	50	db			

MECHANICAL INFORMATION

Type of Cathode Base Type of Envelope Mounting Position	Oxide Impregnated Unipotential (See Outline) Metal Any	Weight R-F Connections Cooling Data	10 pounds Type "TNC" 25 cfm of air	Maximum
--	---	---	---	---------

TYPICAL OPERATION AS POWER AMPLIFIER


Frequency Anode Voltage (Note 1) Cathode Current	2800 to 3500 7500 1.5	mc volts amperes peak	Power Output (minimum) Gain Duty	1000 33 .01	watts peak db
Collector Voltage (tied to shell) Collector Current	7500 1.0	volts amperes peak	Pulse Width Grid Bias (for cut•off) Grid Voltage during Pulse	5 -30 175	microseconds volts volts

NOTE 1: All voltages shown are with respect to cathode. The shell is normally operated at ground potential and the anode connection is made to the shell of the package.

NOTE 2: Useful gain and power output exists below 2800 mc and above 3500 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated values.

NOTE 3: Heater warm up of two minutes before applying high voltage is recommended.

NOTE 4: High voltage must not be applied in the absence of proper grid bias.

F-2065 TRAVELING WAVE TUBE

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

TENTATIVE

GENERAL DESCRIPTION:

The F-2065 is a 1000 watt pulse traveling wave amplifier tube having 31 db gain and designed primarily for use in the 2000 to 4000 mc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type *TNC^{**} connectors. The tube is focused by a periodic permanent magnet which is integral with the tube. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .01 and pulse widths up to 100 micro-seconds can be used.

ELECTRICAL RATINGS, ABSOLUTE VALUES

Heater Voltage	6.3 (+10%)	volts	Maximum R-F Input Power	2	watts average
Heater Current	3.0	amperes	Maximum R-F Output Power	30	watts average
Maximum Anode Voltage (Note 1)	8000	volts	Maximum Duty Cycle	.01	
Maximum Shell Current	0.8	ampere peak	Maximum Pulse Width (beam)	100	microseconds
Maximum Collector Voltage	8000	volts	Maximum Cathode Current	2.0	ampere peak
Maximum Collector Dissipation	160	watts average			and the second second second

ELECTRICAL INFORMATION

Maximum Frequency (Note 2) Minimum Frequency (Note 2) 4000 mc

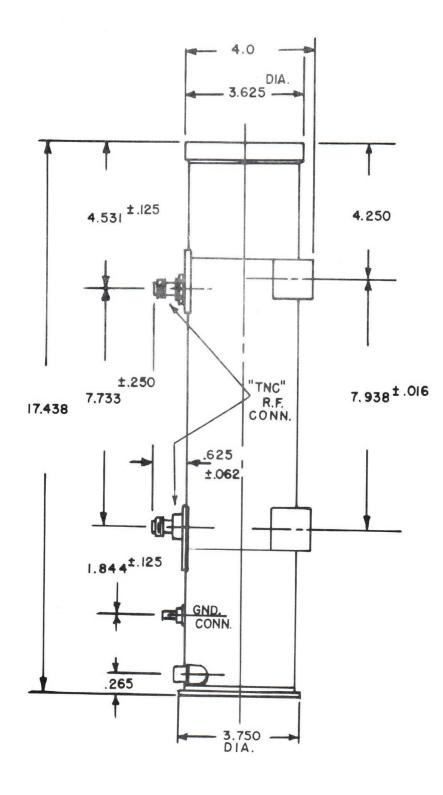
Minimum Cold Transmission Loss

50 0

MECHANICAL INFORMATION

Type of Cathode	Oxide Impregnated Unipotential	Weight	10 pounds	Maximum
Base	(See Outline)	R-F Connections	Type "'TNC"	
Type of Envelope Mounting Position	Metal Any	Cooling Data	25 cfm of air	

TYPICAL OPERATION AS POWER AMPLIFIER


Frequency Anode Voltage (Note 1)	2000 to 4000 7300	mc volts	Power Output (minimum) Gain	1000	watts peak db
Cathode Current	1.4	amperes peak	Duty	.01	40
Collector Voltage (tied to shell) Collector Current	7300 0.9	volts amperes peak	Pulse Width	5	microseconds

NOTE 1: All voltages shown are with respect to cathode. The shell is normally operated at ground potential and the anode connection is made to the shell of the package.

NOTE 2: Useful gain and power output exists below 2000 mc and above 4000 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated.

NOTE 3: Heater warm up of two minutes before applying high voltage is recommended.

F-2065 TRAVELING WAVE TUBE

ELECTRON TUBE DIVISION P.O. BOX 100 Easton, Pennsylvania 18042 Telephone 215 252-7331

F-2131

TRAVELING WAVE TUBE

NOTE 1: For proper conduction cooling the tube must be securely fastened to a flat heat sink surface. The use of heat sink compound (astrodyne 829 or equivalent) is recommended.

DESCRIPTION

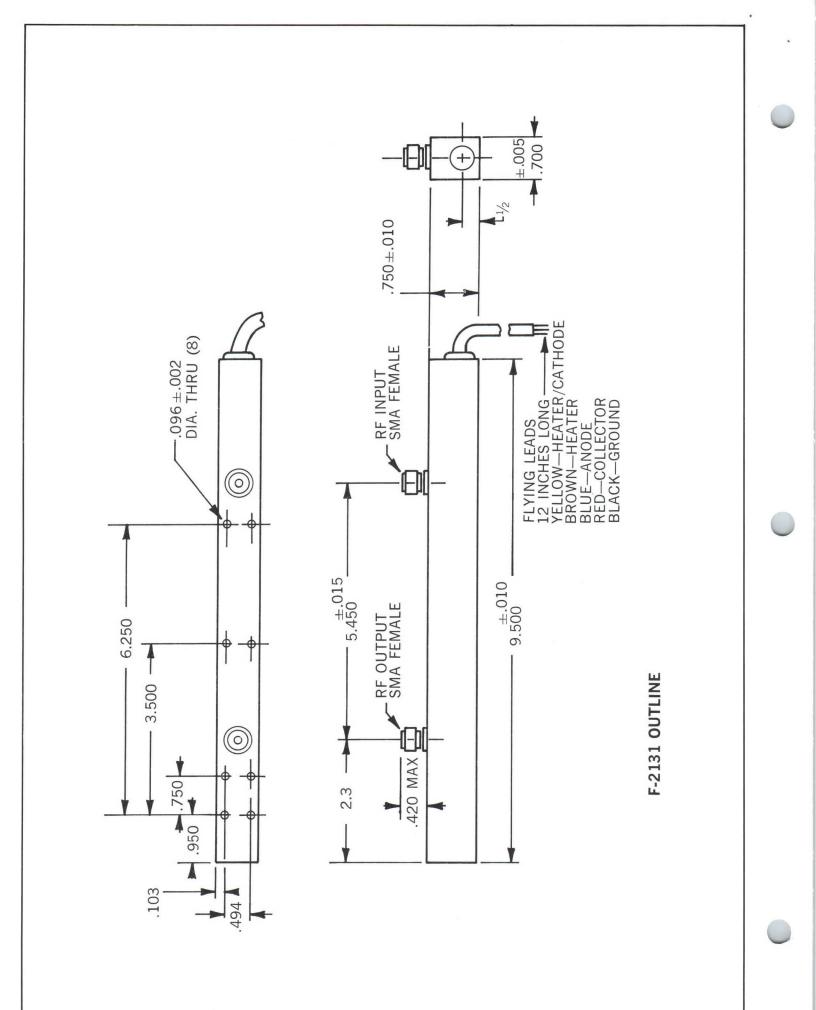
The tube type 2131 is a miniature, lightweight, 25 watt CW traveling wave tube amplifier covering the frequency range of 7.0 to 17 GHz with 50 dB small signal gain. The tube uses a helix type slow wave structure and is PPM focused with samarium cobalt magnets. It is of metal-ceramic construction for rugged environmental applications. The tube is conduction cooled and may be mounted in any position. The collector is isolated and may be depressed up to 50% of the cathode voltage. Type SMA coaxial fittings are provided for RF input and output. An anode electrode is provided that may be used for gain, current control and ion trapping.

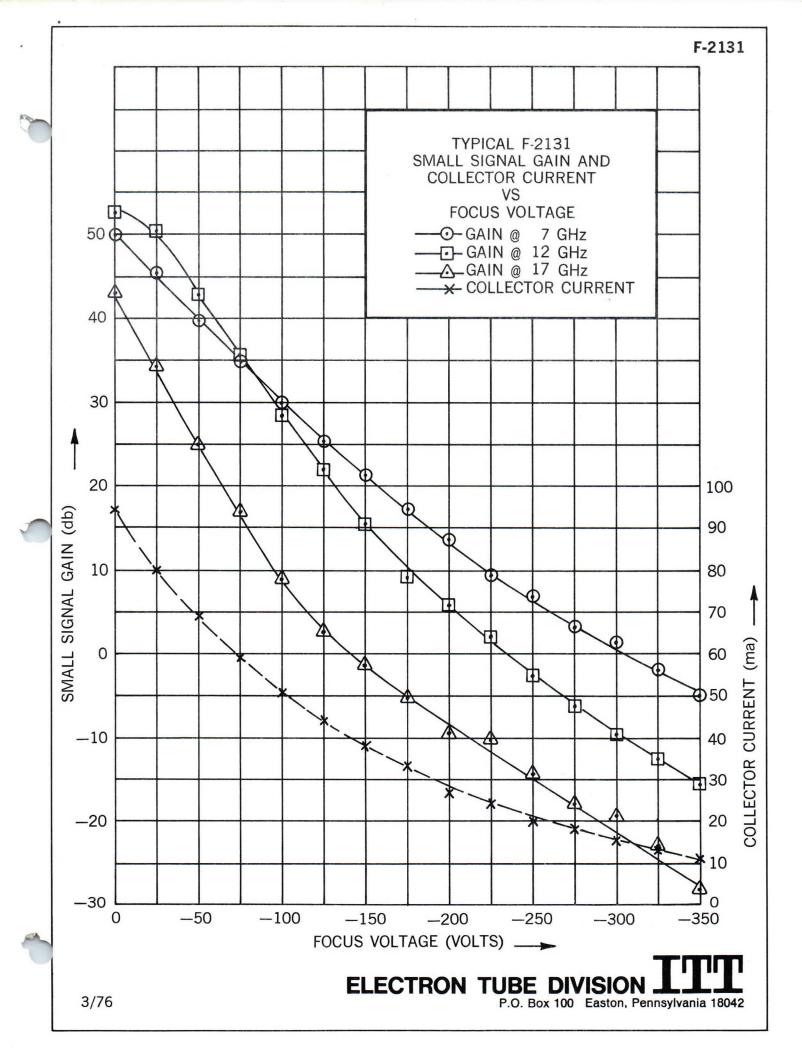
RF PERFORMANCE

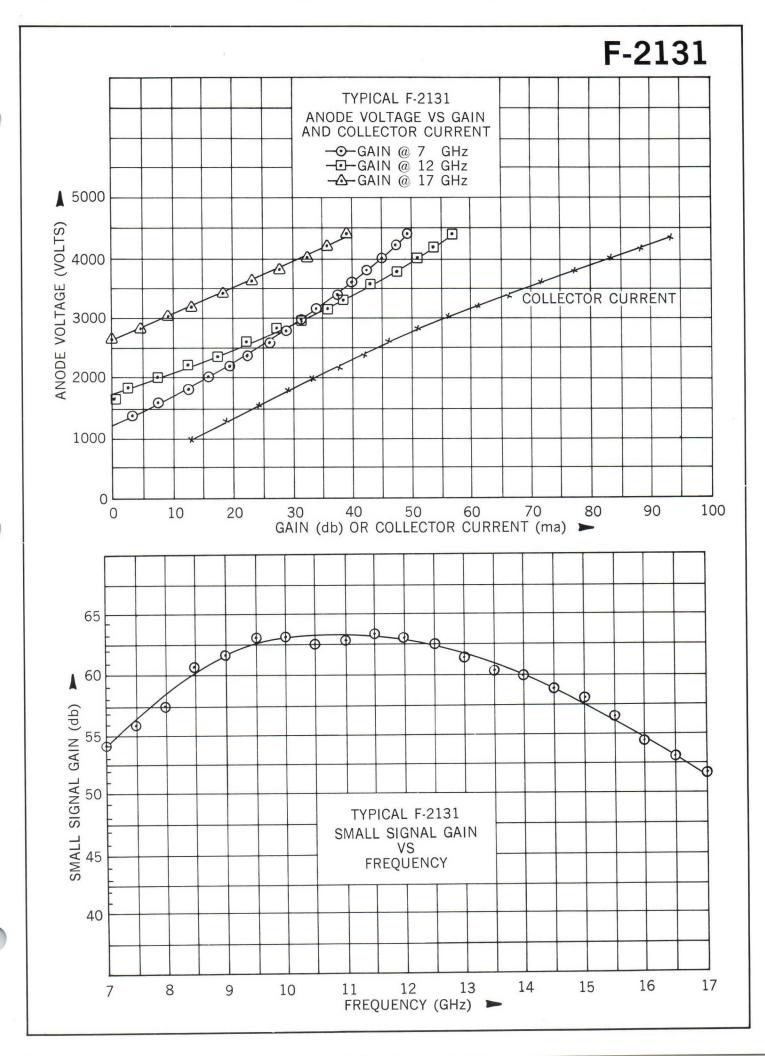
RF PERFORMANCE		
	Typical Values	Performance Limits
Frequency	7.0-17.0 GHz	7.0-17.0 GHz
Output Power	30 Watts	20 Watts Min.
Power Gain	57 dB	45 dB Min.
Noise Figure	30 dB	32 dB Max.
Duty Cycle	CW	CW

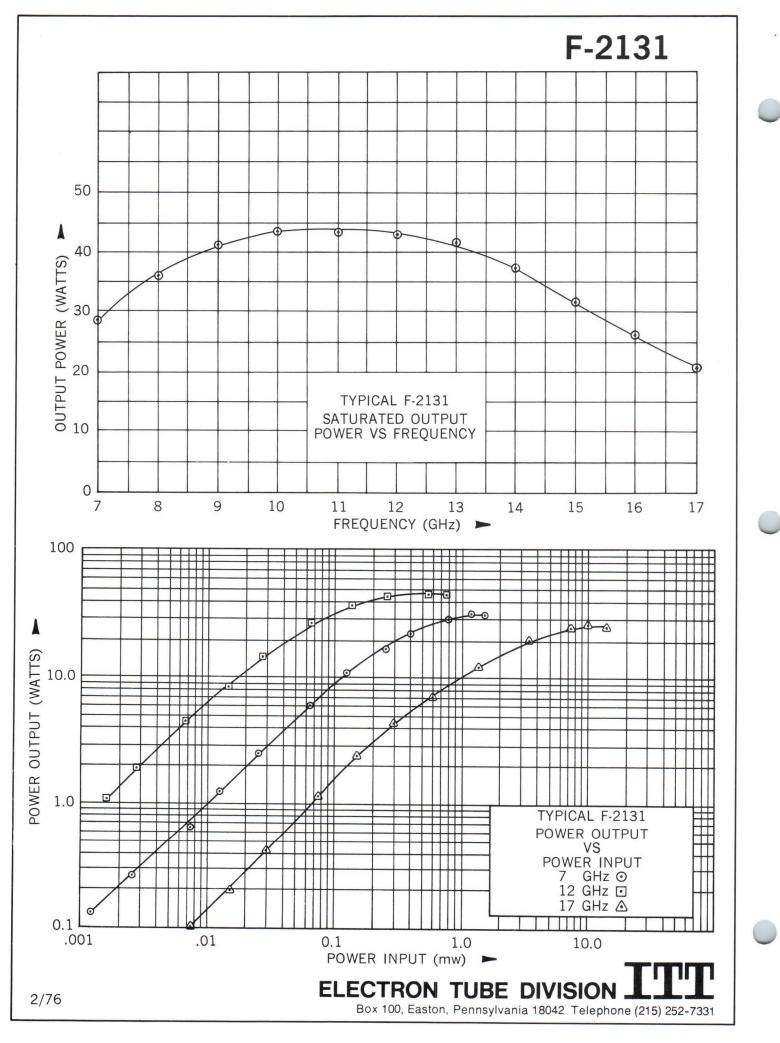
ELECTRICAL REQUIREMENTS

	Typical		Perf	ormance Lin	nits
	Values		Min.	Max.	Units
Cathode Voltage	-3900		-3600	-4000	Volts
Cathode Current	95		_	130	mA
Anode Voltage	180		-4000	500	Volts
Heater Voltage	6.3		6.0	6.6	Volts
Heater Current	.7			.8	Amp
Helix Current	5	-	-	12	mA
Collector Voltage	-1950		_	-2000	Volts


MECHANICAL


RF Connections	SMA Female
DC Connections	Flying Leads
Cooling (NOTE 1)	Conduction
Weight	.75 Pounds
Mounting Position	Any
Construction	Metal-Ceramic
Focusing	PPM


ENVIRONMENTAL


Shock	40G, 11 millisec
Vibration	30G, 5-2000 cycles
Temperature	—45 to +85° C

ELECTRON TUBE DIVISION TTT

ELECTRON TUBE DIVISION P.O. BOX 100 Easton, Pennsylvania 18042 Telephone 215 252-7331

F-2147

TRAVELING WAVE TUBE

NOTE 1: For proper conduction cooling, the tube must be securely fastened to a flat heat sink surface. The use of heat sink compound (Astrodyne 829 or equivalent) is recommended. Air cooling fins can also be supplied to make the tube air cooled.

DESCRIPTION

The tube type 2147 is a miniature, lightweight, very broad band 12 watt CW traveling wave tube amplifier covering the frequency range of 2.5 to 7.5 GHz with 50 dB small signal gain. The tube uses a helix type slow-wave structure and is PPM focused with samarium cobalt magnets. It is of metal-ceramic construction for rugged environmental applications. The tube can be either conduction or air cooled and may be mounted in any position. The collector is isolated and may be depressed up to 50% of the cathode voltage. Type SMA coaxial fittings are provided for RF input and output. The tube may also be equipped with QRM RF fittings which make the tube completely plug-in in a blind rack and panel mounting fashion. A very small AMP six-pin subminiature plug (#862584-1) is used for d.c. connection to the tube. An anode electrode is provided that may be used for gain, current control and ion trapping. A focus control is also provided which can also be used for gain control.

Typical Values

RF PERFORMANCE

	i ypical values
Frequency	2.5-7.5 GHz
Output Power	15 Watts
Power Gain	47 dB
Noise Figure	29 dB
Duty Cycle	CW

Performance Limits 2.5-7.5 GHz 12 Watts Min. 45 dB Min. 32 dB Max. CW

Units

Volts

Volts

Volts

Amp

Volts

mA

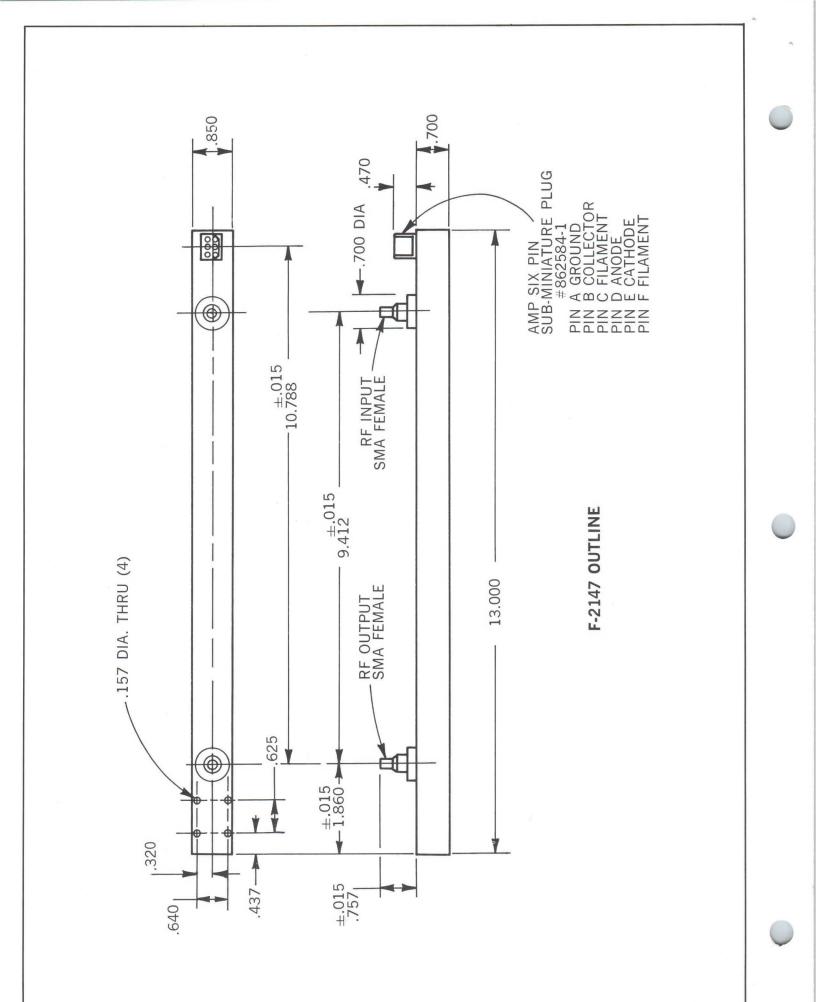
mA

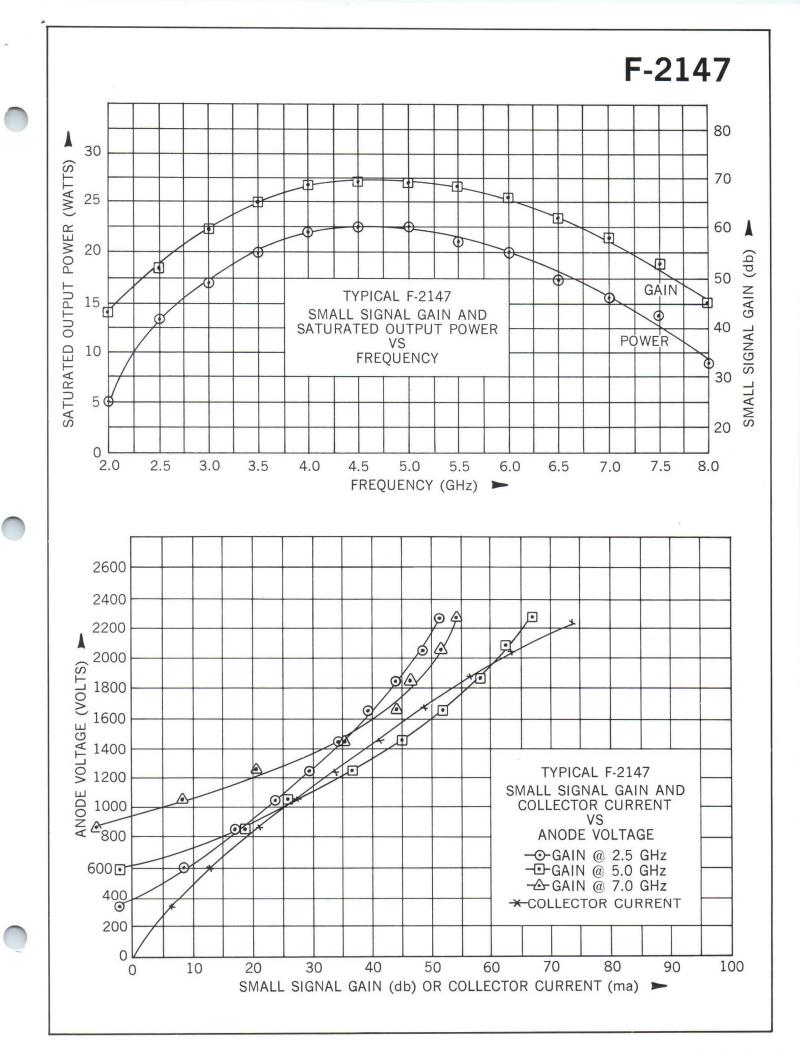
ELECTRICAL REQUIREMENTS

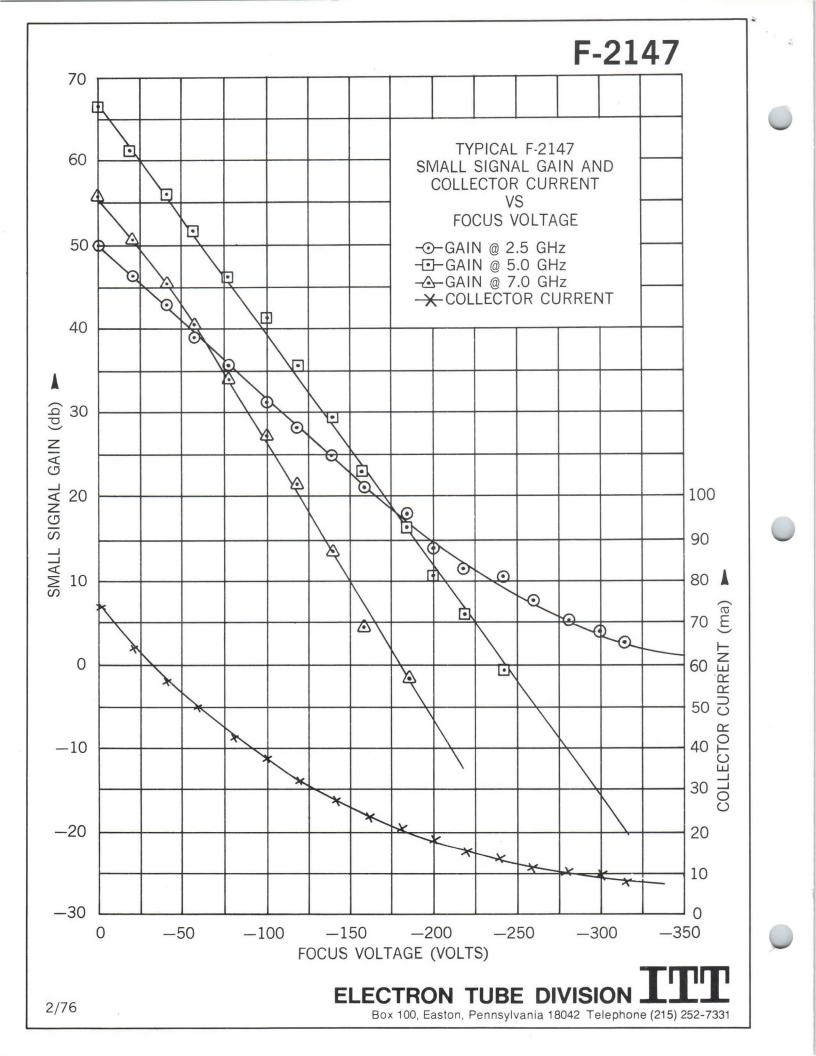
-	Typical	Perfo	ormance Lin	nits
	Values	Min.	Max.	U
Cathode Voltage	-2150	-2100	-2200	Vo
Cathode Current	80		95	m
Anode Voltage	180	-2200	500	Vo
Heater Voltage	6.3	6.0	6.6	Vo
Heater Current	.8		1.0	A
Helix Current	5	_	16	m
Collector Voltage	-950	_	-1075	Vo

MECHANICAL

RF Connections	SMA Female
DC Connections	AMP Six-Pin Subminiature
	#862584-1


Cooling (NOTE 1)	Conduction or Air Cooling
Weight	1.0 Pounds
Mounting Position	Any
Construction	Metal-Ceramic
Focusing	PPM


ENVIRON MENTAL


Shock	
Vibration	300
Temperature	

40G, 11 Millisec G, 5-2000 Cycles —40 to +85° C

ELECTRON TUBE DIVISION

TENTATIVE

DESCRIPTION:

The F-2502 is a cathode-pulsed traveling wave amplifier capable of providing 1000 watts peak output in the frequency band of 4000 - 8000 mc. The tube is of all-metal/ ceramic structure and is contained in a periodic permanent magnet focusing mount. The fundamental parameters of this tube are listed below:

2000 - 4000	G#G
3	kw min.
30	do mino
8000	Volts
1.5	Amperes max.
50	1990C . MOX.
.02	(.05 objective)
6.3	V
3.0	- X02X -
	PPM
7	1000
	Forced Air
17	inches, approx.
	1 30 8000 1.5 50 .02 6.3 3.0 7

Additional information for specific applications can be obtained from the

F-2507 BACKWARD WAVE OSCILLATOR

TENTATIVE

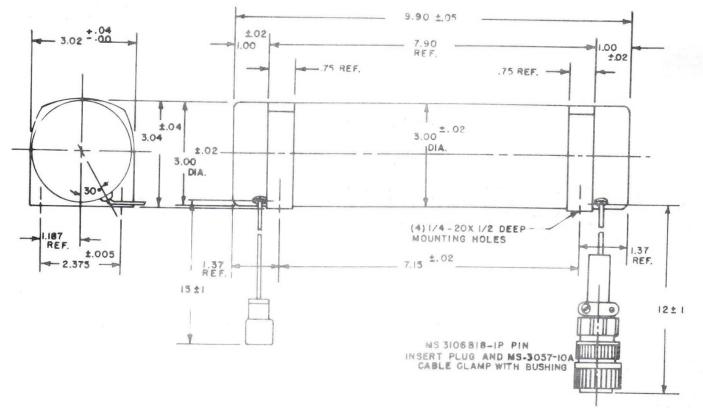
GENERAL

The F-2507 is a voltage-tunable, wide-band oscillator with a minimum output power of 100 milliwatts over its rated operating frequency range. This permanent magnet focused, highly stable device finds applications as a swept signal source in signal generators; master oscillator for frequency diversity transmitters; or typically as a local oscillator in radar or ECM receivers. The tube features a bifilar helix contained in a rugged envelope of simple mechanical design thus providing a highly reliable, compact unit. No cooling is required when the environment is below +60°C ambient temperature.

ELECTRICAL

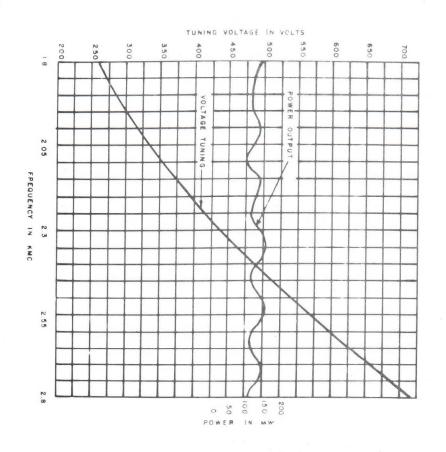
	TYPICAL	ABSOLUTE	UNITS		TYPICAL	ABSOLUTE	UNITS	
Frequency Power Output Power Output Variation Fine Grain Variation, Note 2 VSWR Output Impedance Heater Voltage	1.8 - 2.8 110 - 190 3 ± .8 2.5:1 50 6.3	100 min. 4 max. ± 1 max. 3:1 max. 50 6.0 min/	Gcs mw db db/100 mc Ohms Volts	Grid Voltage for no Oscillation (RF Cutoff) (with respect to cathode) Collector Voltage (with respect to Helix) Capacitance, Cathode to All Electrodes Capacitance, Grid to all	Oscillation (RF Cutoff) (with respect to cathode) Collector Voltage (with respect to Helix) Capacitance, Cathode to All Electrodes	-11 +100 39	-30 max. +150 max. 45 max.	Volts Vólts $\mu\mu{ m fd.}$
Heater Current Anode Voltage (with respect to cathode)	0.96 95	6.6 max. 1.2 max. 250 max.	Amps Volts	Electrodes Capacitance, Helix to all other Electrodes and	34	45 max.	$\mu\mu$ fd.	
Anode Current Cathode Current	0.15	1.0 max. 15.0 max.	Ma Ma	Capsule Spurious Output Below	180	250 max.	$\mu\mu$ fd.	
Helix Voltage (with respect to cathode)	250 to 700	200 to 850	Volts	Signal	50	40 min.	db.	
Helix Current Cathode Voltage	1.5 Zero (Ground)	3.0 max. Zero (Ground)	Ma Volts					

NOTE 1 The F-2507 will operate over the frequency range of 1.782 to 2.828 Gcs. with a 3 db reduction in the rated minimum output power.


NOTE 2 This value is determined by selecting the 100 mc region of the frequency range which has the greatest differences in power output. The difference between these power levels is divided by two and the plus or minus sign is affixed to denote the difference from an average power level.

MECHANICAL

Package Length Package Diameter Package Weight Power Cable Length	9.90 3.00 9 Ibs. –14 oz.	9.95 max. 3.02 max. 10 max.	Inches Inches Pounds	Output Cable Length (to end of Type "N" Connector)	15	14 min/16 max.	Inches
(to end of MS 3106B18-1P Plug	g)12	11 min/13 max.	Inches				


Additional information for specific applications can be obtained from the

F-2507

÷

...

ELECTRON TUBE DIVISION

CLIFTON, NEW JERSE

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

F-2508 BACKWARD WAVE OSCILLATOR

TENTATIVE

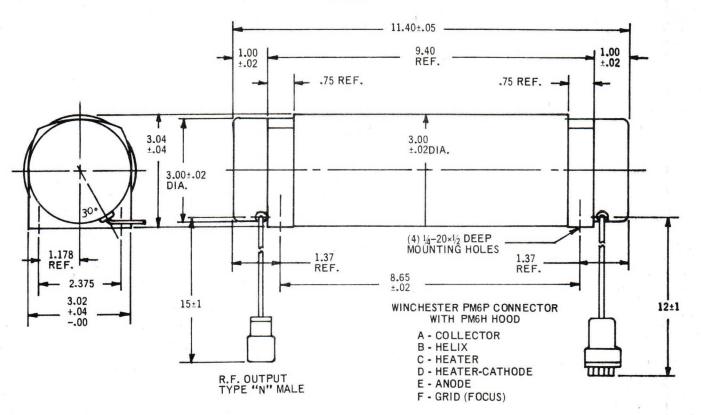
GENERAL

The F-2508 is a voltage-tunable, wide-band oscillator with a minimum output power of 100 milliwatts over its rated operating frequency range. This permanent magnet focused, highly stable device finds applications as a swept signal source in signal generators; master oscillator for frequency diversity transmitters; or typically as a local oscillator in radar or ECM receivers. The tube features a bifilar helix contained in a rugged envelope of simple mechanical design thus providing a highly reliable, compact unit. No cooling is required when the environment is below +60°C ambient temperature.

ELECTRICAL

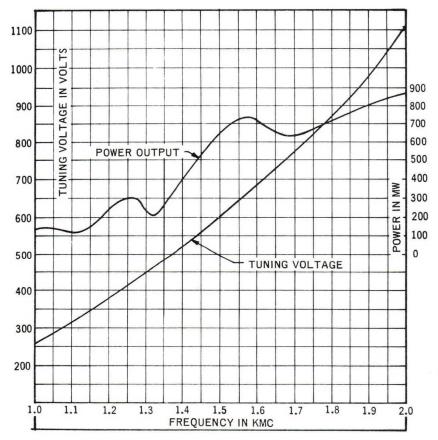
	TYPICAL	ABSOLUTE	UNITS		TYPICAL	ABSOLUTE	UNITS
Frequency Power Output	1.0 - 2.0 100 - 800	Note 1 100 min.	Gos mw.	*Grid Voltage for no Oscillation (RF Cutoff)	22		
Power Output Variation	9	10 max.	db	(with respect to Cathode)	-20	-30 max.	Volts
Fine Grain Variation, Note 2 VSWR	±1.5 2.5:1	±2.5 max. 3:1 max.	db 100 mc	*Collector Voltage, with respect to Helix Capacitance, Cathode to	+100	+150 max.	Volts
Output Impedance Heater Voltage	50 6.3	50 6.0 min/ 6.6 max.	Ohms Volts	all Electrodes Capacitance, Grid to all	42	50 max.	$\mu\mu$ fd.
Heater Current Anode Voltage (with	.96 +120	1.2 max. + 250 max.	Amps Volts	Electrodes Capacitance, Helix to all	30	45 max.	$\mu\mu$ fd.
respect to Cathode) Anode Current	0.2	1.0 max.	Ма	other Electrodes and Capsule Spurious Output below	210	300 max.	$\mu\mu$ fd.
Cathode Current *Helix Voltage	15 Zero 8.0	25 max. Zero 10.0 max.	Ma Volts Ma	Signal	50	40 min.	db
Helix Current *Cathode Voltage (with respect to Helix)	-250 to -1150	-200 to -1300	Volts				

*The above data shows tube operation with the helix at ground potential (Zero volts). If desired as an alternate, any one of the asterisked elements may be operated at ground potential provided the other electrode potentials are set at the appropriate relative levels.


NOTE 1 The F-2508 will operate over the frequency range of .99 to 2.02 Gcs. with a 3 db reduction in the rated minimum output power.

NOTE 2 This value is determined by selecting the 100 mc region of the frequency range which has the greatest difference in power output. The difference between these power levels is divided by two and the plus or minus sign is affixed to denote the difference from an average power level.

MECHANICAL


Package Length Package Diameter	11.40 3.25	11.45 max. 3.27 max.	Inches Inches	Output Cable Length (to end of Type			
Package Weight	14 lbs4 oz.	14.5 max.	Pounds	"N" Connector)	15	14 min/16 max.	Inches
Power Cable Length (to end of Win- chester PM6P Con-							
nector)	12	11 min/13 max.	Inches				

Additional information for specific applications can be obtained from the

TENTATIVE PERMANENT - MAGNET BACKWARD-WAVE OSCILLATOR F-2508

TYPICAL TUNING CURVE AND POWER OUTPUT BWO TYPE F-2508

9-63

CLIFTON, NEW JERSEY

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

F-2509 BACKWARD WAVE OSCILLATOR

TENTATIVE

GENERAL

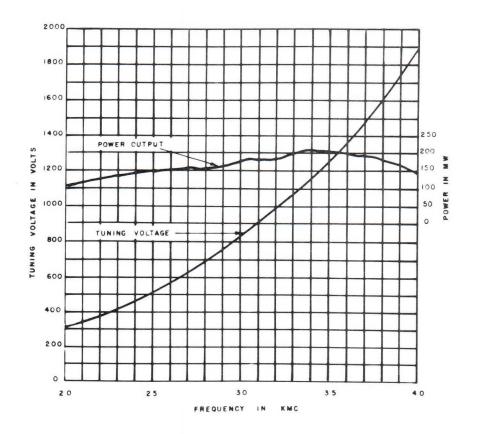
The F-2509 is a voltage-tunable, wide-band oscillator with a minimum output power of 100 milliwatts over its rated operating frequency range. This permanent magnet focused, highly stable device finds applications as a swept signal source in signal generators; master oscillator for frequency diversity transmitters; or typically as a local oscillator in radar or ECM receivers. The tube features a bifilar helix contained in a rugged envelope of simple mechanical design thus providing a highly reliable, compact unit. No cooling is required when the environment is below +60 °C ambient temperature.

ELECTRICAL

	TYPICAL A	BSOLUTE	UNITS	ΤY	PICAL	ABSOLUTE	UNITS
Frequency Power Output Power Output	2.0 - 4.0 100 - 250	Note 1 100 min.	Gcs mw	*Grid Voltage for no Oscillation (RF Cutoff)(with respe	ct		
Variation	5	6 max.	db	to Cathode)	-11	-30 max.	Volts
Fine Grain Variation, Note 2	±1.0	±1.5 max.	db/200 mc	*Collector Voltage (with respect to			
VSWR	2.0:1	2.5:1		Helix)	+100	+150 max.	Volts
Output Impedance	50	50	Ohms	Capacitance, Cathode	9		
Heater Voltage	6.3	6.0 min./6.6 max	. Volts	to all Electrodes	42	50 max.	$\mu\mu$ fd.
Heater Current Anode Voltage (with	.96	1.2 max.	Amps	Capacitance, Grid to all Electrodes	30	45 max.	$\mu\mu$ fd.
respect to Cathode)106	250 max.	Volts	Capacitance, Helix			
Anode Current	0.15	1.0 max.	Ma	to all other			
Cathode Current	10.4	15 max.	Ma	Electrodes and			
*Helix Voltage	Zero	Zero	Volts	Capsule	210	300 max.	$\mu\mu$ fd.
Helix Current	1.9	3.0 max.	Ma	Spurious Output			
*Cathode Voltage				below Signal	50	40 min.	db
(with respect							
to Helix)	-300 to -1800	-200 to -2100	Volts				

*The above data shows tube operation with the helix at ground potential (Zero volts). If desired as an alternate, any one of the asterisked elements may be operated at ground potential provided the other electrode potentials are set at the appropriate relative levels.

NOTE 1 The F-2509 will operate over the frequency range of 1.98 to 4.04 Gcs. with a 3 db reduction in the rated minimum output power.


NOTE 2 This value is determined by selecting the 200 mc region of the frequency range which has the greatest differences in power output. The difference between these power levels is divided by two and the plus or minus sign is affixed to denote the difference from an average power level.

MECHANICAL

Package Length Package Diameter Package Weight Power Cable Length (to end of Win- chester PM6P	11.40 3.00 14 lbs-4 oz.	11.45 max. 3.02 max. 14.5 max.	Inches Inches Pounds	Output Cable Length (to end of Type "N" Connector)	15	14 min/16 max.	Inches
Connector)	12	11 min/13 max.	Inches				

Additional information for specific applications can be obtained from the

CLIFTON, NEW JERSEY

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

F-2510 BACKWARD WAVE OSCILLATOR

TYPICAL ABSOLUTE UNITS

TENTATIVE

GENERAL

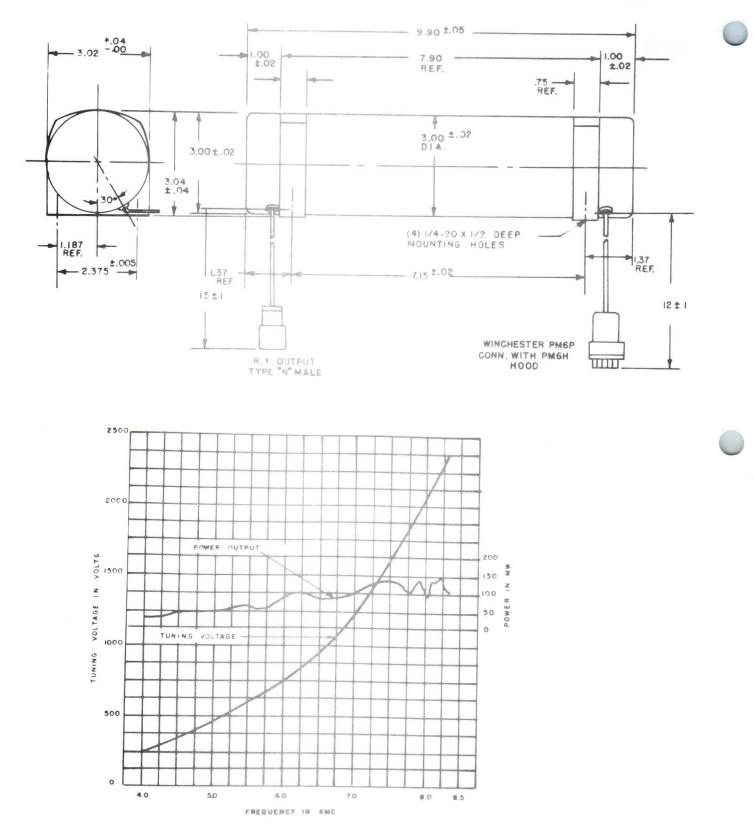
The F-2510 is a voltage-tunable, wide-band oscillator with a minimum output power of 25 milliwatts over its rated operating frequency range. This permanent magnet focused, highly stable device finds applications as a swept signal source in signal generators; master oscillator for frequency diversity transmitters; or typically as a local oscillator in radar or ECM receivers. The tube features a unifilar helix contained in a rugged envelope of simple mechanical design thus providing a highly reliable, compact unit. No cooling is required when the environment is below +60°C ambient temperature.

ELECTRICAL

TYPICAL ABSOLUTE UNITS

Frequency Power Output Power Output Variation Fine Grain Variation, Note 2	4.0 - 8.2 25 - 175 8 ±1.5	Note 1 25 min. 10 max. 12 max.	Gcs mw db db/420 mc	Helix Current *Cathode Voltage (with respect to Helix) *Grid Voltage for no	3.5 -250 to -2400	6.0 max. -200 to -2500	Ma Volts
VSWR Output Impedance Heater Voltage	2.5:1 50 6.3	3:1 max. 50 6.0 min./	Ohms Volts	Oscillation (RF Cutoff) (with respect to Cathode) *Collector Voltage (with	-13	-30 max.	Volts
Heater Current	.96	6.6 max. 1.2 max.	Amps	respect to Helix) Capacitance, Cathode to	+100	+150 max.	Volts
Anode Voltage (with respect to Cathode) Anode Current	150 0.3	250 max. 1.0 max.	Volts Ma	all Electrodes Capacitance, Grid to all Electrodes	39 32	50 max. 45 max.	μμfd. μμfd.
Cathode Current *Helix Voltage	12 Zero	15 max. Zero	Ma Volts	Capacitance, Helix to all other Electrodes and	52	40 max.	μμια.
				Capsule Spurious Output below	150	200 max.	$\mu\mu$ fd.
				Signal	50	40 min.	db

*The above data shows tube operation with the helix at ground potential (Zero volts). If desired as an alternate, any one of the asterisked elements may be operated at ground potential provided the other electrode potentials are set at the appropriate relative levels.


NOTE 1 The F-2510 will operate over the frequency range of 3.96 to 8.282 Gcs with a 3 db reduction in the rated minimum output power.

NOTE 2 This value is determined by selecting the 420 mc region of the frequency range which has the greatest differences in power output. The difference between these power levels is divided by two and the plus or minus sign is affixed to denote the difference from an average power level.

MECHANICAL

Package Length Package Diameter Package Weight Power Cable Length (to end of Win- chester PM6P Con-	9.90 3.00 9 lbs - 14 oz.	9.95 max. 3.02 max. 10 max.	Inches Inches Pounds	Output Cable Length (to end of Type "N" Connector)	15	14 min./16 max.	Inches
nector)	12	11 min./13 max.	Inches				

Additional information for specific applications can be obtained from the

CLIFTON, NEW JERSEY

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

F-2511 BACKWARD WAVE OSCILLATOR

TENTATIVE

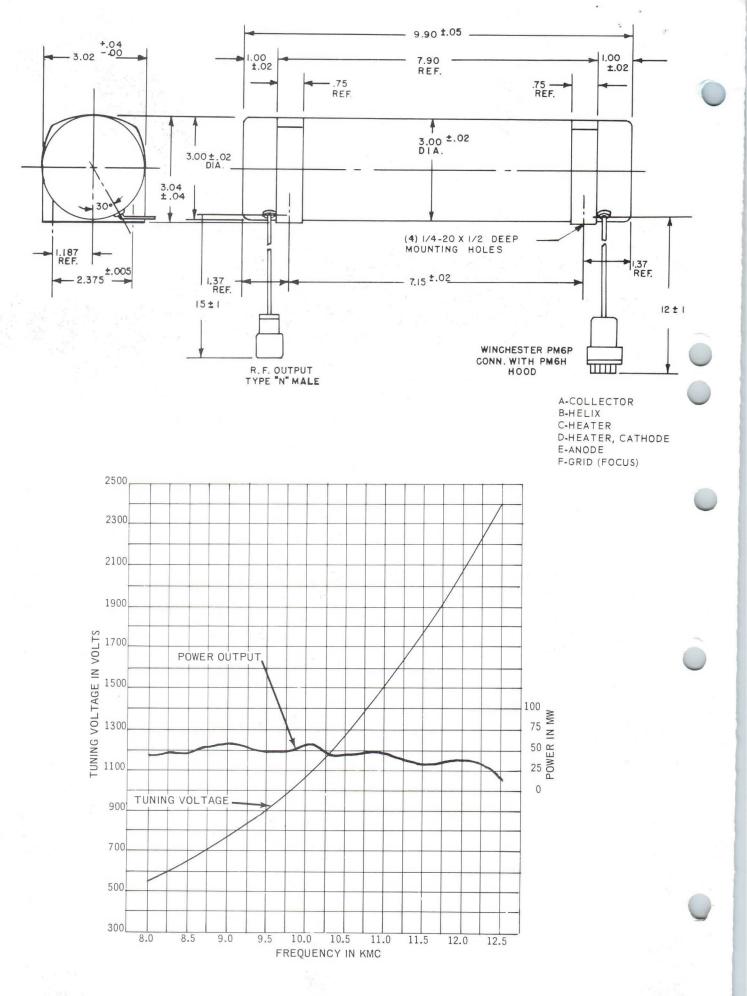
GENERAL

The F-2511 is a voltage-tunable, wide-band oscillator with a minimum output power of 25 milliwatts over its rated operating frequency range. This permanent magnet focused, highly stable device finds applications as a swept signal source in signal generators; master oscillator for frequency diversity transmitters; or typically as a local oscillator in radar or ECM receivers. The tube features a unifilar helix contained in a rugged envelope of simple mechanical design thus providing a highly reliable, compact unit. No cooling is required when the environment is below +60°C ambient temperature.

ELECTRICAL

	TYPICAL	ABSOLUTE	UNITS		TYPICAL	ABSOLUTE	UNITS
Frequency Power Output	8.0 - 12.4 25 - 130	Note 1 25 min.	Gcs mw	*Grid Voltage for no Oscillation (RF Cutoff) (with respect to Cathode)	-15	-30 max.	Volts
Power Output Variation Fine Grain Variation, Note VSWR	8 2 ±1.5 2.5:1	9 max. ±2 max. 3:1 max.	db db/440 mc —	*Collector Voltage (with respect to Helix) Capacitance, Cathode to	+100	+150 max.	Volts
Output Impedance	50	50	Ohms Volts	all Electrodes	40	50 max.	$\mu\mu$ fd.
Heater Voltage Heater Current	6.3 .96	6.0 min. 6.6 max. 1.2 max.	Amps	Capacitance, Grid to all Electrodes	29	45 max.	$\mu\mu$ fd.
Anode Voltage (with respect to Cathode) Anode Current	150 0.5	250 max.	Volts Ma	Capacitance, Helix to all other Electrodes and Capsule Spurious Output below	80	150 max.	$\mu\mu$ fd.
Cathode Current *Helix Voltage Helix Current *Cathode Voltage (with respect to Helix)	10.0 Zero 4.0 -550 to -2400	15 max. Zero 6.0 max. -450 to -2500	Ma Volts Ma Volts	Signal	50	40 min.	db

*The above data shows tube operation with helix at ground potential (Zero Volts). If desired as an alternate, any one of the asterisked elements may be operated at ground potential, provided the other electrode potentials are set at the appropriate relative levels.


NOTE 1 The F-2511 will operate over the frequency range of 7.92 to 12.524 Gcs. with a 3 db reduction in the rated minimum output power.

NOTE 2 This value is determined by selecting the 440 mc region of the frequency range which has the greatest differences in power output. The difference between these power levels is divided by two and the plus or minus sign is affixed to denote the difference from an average power level.

MECHANICAL

Package Length Package Diameter Package Weight Power Cable Length (to end of Win-	9.9 3.0 9 lbs14 oz.	9.95 max. 3.02 max. 10 max.	Inches Inches Pounds	Output Cable Length (to end of Type "N" Connector)	15	14 min./16 max.	Inches
chester PM6P Con- nector)	12	11 min./13 max.	Inches				

Additional information for specific applications can be obtained from the

ELECTRON TUBE DIVISION

CLIFTON, NEW JERSEY

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

F-2513 BACKWARD WAVE OSCILLATOR

TENTATIVE

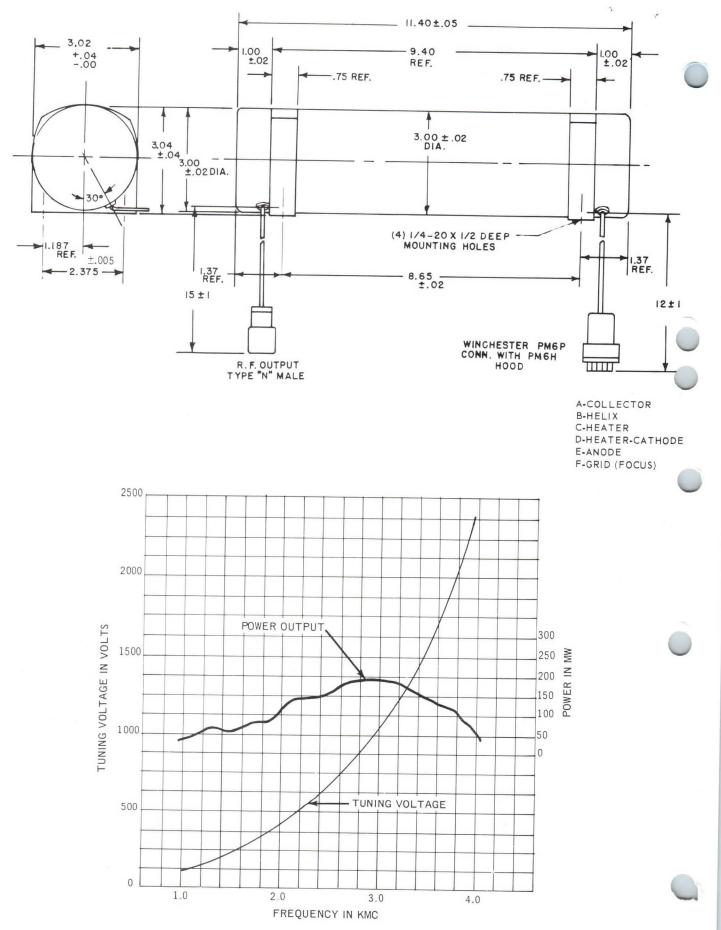
GENERAL

The F-2513 is a voltage-tunable, wide-band oscillator with a minimum output power of 25 milliwatts over its rated operating frequency range. This permanent magnet focused, highly stable device finds applications as a swept signal source in signal generators; master oscillator for frequency diversity transmitters; or typically as a local oscillator in radar or ECM receivers. The tube features a bifilar helix contained in a rugged envelope of simple mechanical design thus providing a highly reliable, compact unit. No cooling is required when the environment is below +60°C ambient temperature.

ELECTRICAL

	TYPICAL	ABSOLUTE	UNITS		TYPICAL	ABSOLUTE	UNITS
Frequency Power Output Power Output Variation Fine Grain Variation, Note VSWR Output Impedance Heater Voltage	1.0 - 4.0 25 - 150 11 2 ±3 2.5:1 50 6.3	Note 1 25 min. 15 max. ±3 max. 3:1 max. 50 6.0 min./ 6.6 max.	Gcs mw db db/300 mc Ohms Volts	*Grid Voltage for no Oscillation (RF Cutoff) (with respect to Cathode) *Collector Voltage (with respect to Helix) Capacitance, Cathode to all Electrodes Capacitance, Grid to) -11 +100 42	-20 max. +150 max. 50 max.	Volts Volts µµfd.
Heater Current	.96	1.2 max.	Amps	all Electrodes	30	45 max.	$\mu\mu$ fd.
Anode Voltage (with respect to Cathode) Anode Current	95 .15	250 max. 1.0 max.	Volts Ma	Capacitance, Helix to all other Electrodes and Capsule	220	300 max.	μµfd.
Cathode Current *Helix Voltage Helix Current *Cathode Voltage (with respect to Helix)	12 Zero 5 -100 to -2400	20 max. Zero 8 max. -90 to -2500	Ma Volts Ma Volts	Spurious Output below Signal	50	40 min.	db

*The above data shows tube operation with helix at ground potential (Zero Volts). If desired as an alternate, any one of the asterisked elements may be operated at ground potential, provided the other electrode potentials are set at the appropriate relative levels.


NOTE 1 The F-2513 will operate over the frequency range of .99 to 4.04 Gcs. with a 3 db reduction in the rated minimum output power.

NOTE 2 This value is determined by selecting the 300 mc region of the frequency range which has the greatest differences in power output. The difference between these power levels is divided by two and the plus or minus sign is affixed to denote the difference from an average power level.

MECHANICAL

Package Length Package Diameter Package Weight Power Cable Length	11.40 3.00 14 lbs4 oz.	11.45 max. 3.02 max. 14.5 max.	Inches Inches Pounds	Output Cable Length (to end of Type "N" Connector)	15	14 min./16 max.	Inches
(to end of Win- chester PM6P Con- nector)	12	11 min./13 max.	Inches				

Additional information for specific applications can be obtained from the

F-2516 BACKWARD WAVE OSCILLATOR

TENTATIVE

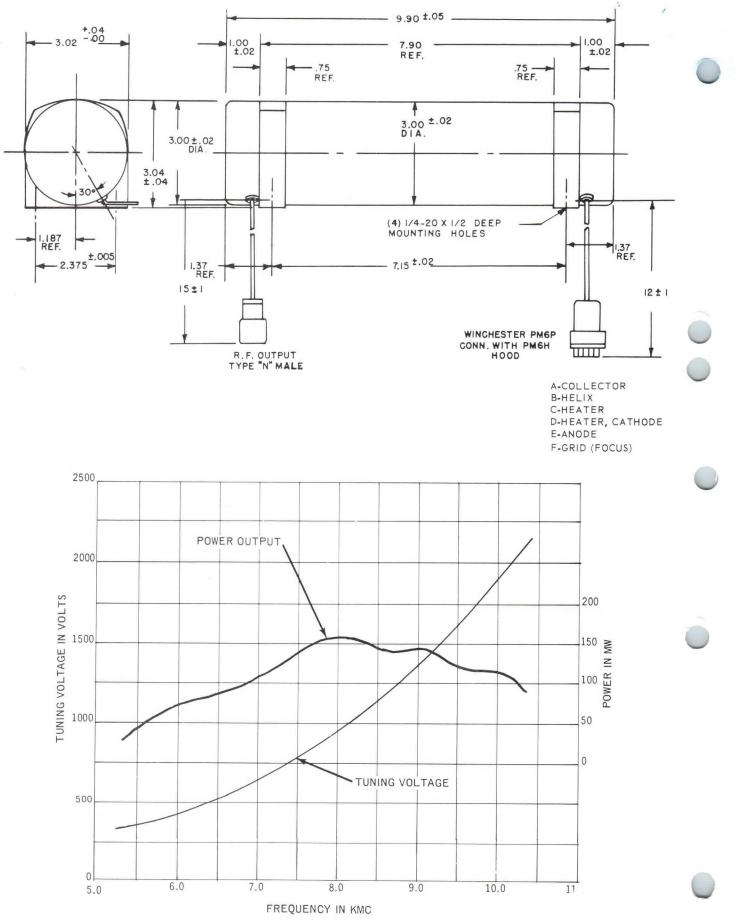
GENERAL

The F-2516 is a voltage-tunable, wide-band oscillator with a minimum output power of 20 milliwatts over its rated operating frequency range. This permanent magnet focused, highly stable device finds applications as a swept signal source in signal generators; master oscillators for frequency diversity transmitters; or typically as a local oscillator in radar or ECM receivers. The tube features a bifilar helix contained in a rugged envelope of simple mechanical design thus providing a highly reliable, compact unit. No cooling is required when the environment is below +60°C ambient temperature.

ELECTRICAL

	TYPICAL	ABSOLUTE	UNITS	т	YPICAL	ABSOLUTE	UNITS
Frequency Power Output Power Output Variation	5.3 - 10.3 25 - 200 9	20 min. 10 max.	Gcs mw db db/500 mc	*Grid Voltage for no Oscillation (RF Cutoff) (with respect to cathode) *Collector Voltage (with	-20	-30 max.	Volts
Fine Grain Variation, Note	2 ±2 2.5:1	±2.5 3.5:1	ub/500 mc	respect to Helix)	+100	+150 max.	Vdc
Output Impedance Heater Voltage	50 6.3	50 6.0 min./	Ohms Volts	Capacitance, Cathode to all Electrodes	40	50 max.	$\mu\mu$ fd.
Heater Current	0.96	6.6 max. 1.2 max.	Amps	Capacitance, Grid to all Electrodes	30	45 max.	$\mu\mu$ fd.
Anode Voltage (with respect to Cathode)	200	250 max.	Volts	Capacitance, Helex to all other Electrodes and			
Anode Current	.25	1.0 max.	Ма	Capsule Spurious Output below	120	200 max.	$\mu\mu$ fd.
Cathode Current *Helix Voltage Helix Current *Cathode Voltage (with respect to Helix)	10 Zero 4.0 -245 to -2400	15 max. Zero 6.0 -200 to -2500	Ma Volts Ma Volts	Signal	50	40 min.	db.

*The above data shows tube operation with helix at ground potential (Zero Volts). If desired as an alternate, any one of the asterisked elements may be operated at ground potential, provided the other electrode potentials are set at the appropriate relative levels.


NOTE 1 The F-2516 will operate over the frequency range of 5.247 to 10.4 Gcs. with a 3 db reduction in rated minimum output power.

NOTE 2 This value is determined by selecting the 500 mc region of the frequency range which has the greatest difference in power output. The difference between these power levels is divided by two and the plus or minus sign affixed to denote the difference from an average power level.

MECHANICAL

Package Length Package Diameter Package Weight Power Cable Length (to end of Win- chester PM6P Con-	9.90 3.00 9 Ibs14 oz.	9.95 max. 3.02 max. 10 max.	Inches Inches Pounds	Output Cable Length (to end of Type "N" Connector)	15	14 min./16 max.	Inches
nector)	12	11 min./13 max.	Inches				

Additional information for specific applications can be obtained from the

ELECTRON TUBE DIVISION

CLIFTON, NEW JERSEY

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

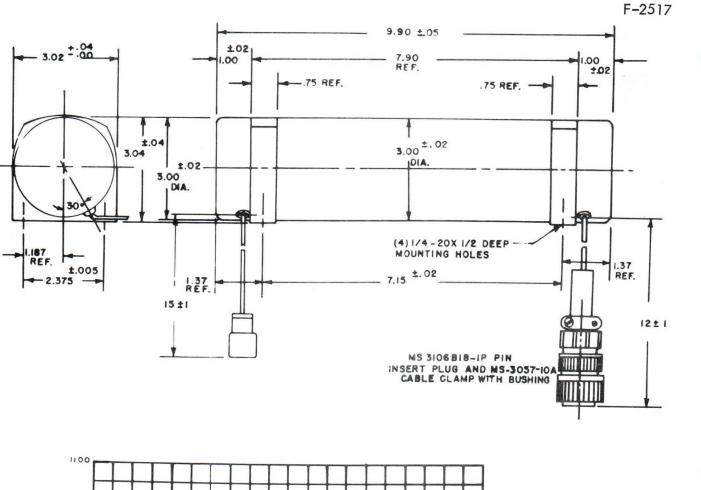
F-2517 BACKWARD WAVE OSCILLATOR

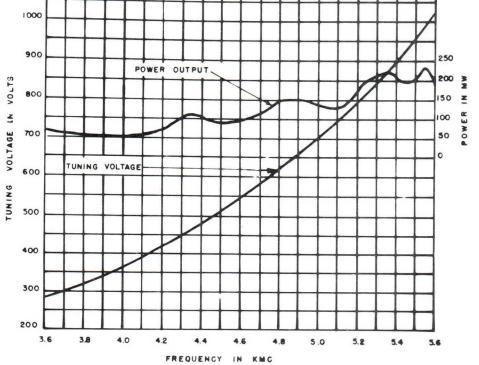
TENTATIVE

GENERAL

The F-2517 is a voltage-tunable, wide-band oscillator with a minimum output power of 50 milliwatts over its rated operating frequency range. This permanent magnet focused, highly stable device finds applications as a swept signal source in signal generators; master oscillator for frequency diversity transmitters; or typically as a local oscillator in radar or ECM receivers. The tube features a bifilar helix contained in a rugged envelope of simple mechanical design thus providing a highly reliable, compact unit. No cooling is required when the environment is below +60°C ambient temperature.

ELECTRICAL


	TYPICAL	ABSOLUTE	UNITS		TYPICAL	ABSOLUTE	UNITS
Frequency Power Output	3.7 - 5.5 50 - 250	Note 1 50 min.	Gcs mw	Grid Voltage for no Oscillation (RF Cutoff)			
Power Output Variation	7	8 max.	db	(with respect to Cathode)	-11	-30 max.	Volts
Fine Grain Variation, Note 2 VSWR Output Impedance	2.5:1	±2 max. 3:1 max.	db/180 mc	Collector Voltage (with respect to Helix)	+100	+150 max.	Volts
Heater Voltage	50 6.3	50 6.0 min./	Ohms Volts	Capacitance, Cathode to all Electrodes	42	50 max.	$\mu\mu$ fd.
Heater Current	.98	6.6 max. 1.20 max.	Amps	Capacitance, Grid to all Electrodes	30	45 max.	$\mu\mu$ fd.
Anode Voltage Anode Current (with	130	250 max.	Volts	Capacitance, Helix to all other Electrodes and			
respect to Cathode)	.25	1.0 max.	Ма	Capsule	210	300 max.	$\mu\mu$ fd.
Cathode Current	15.0	20 max.	Ма	Spurious Output below Signal	20	10 .	
Helix Voltage (with respect to Cathode	300 to 960	200 to 1100	Volts	Signal	30	40 min.	db
Helix Current	1.5	3.0 max.	Ма				
Cathode Voltage	Zero (ground)	Zero (ground)	Volts				


- NOTE 1 The F= 2517 will operate over the frequency range of 3.663 to 5.555 Gcs. with a 3 db reduction in the rated minimum output power.
- NOTE 2 This value is determined by selecting the 180 mc region of the frequency range which has the greatest differences in power output. The difference between these power levels is divided by two and the plus or minus sign is affixed to denote the difference from an average power level.

MECHANICAL

Package Length Package Diameter Package Weight Power Cable Length (to end of	9.90 3.00 9 lbs. –14 oz.	9.95 max. 3.02 max. 10 max.	Inches Inches Pounds	Output Cable Length (to end of Type ""N" Connector)	15	14 min./16 max.	Inches
MS3106B18-IP Plug)	12	11 min./13 max.	Inches				

Additional information for specific applications can be obtained from the

F-2518 BACKWARD WAVE OSCILLATOR

TENTATIVE

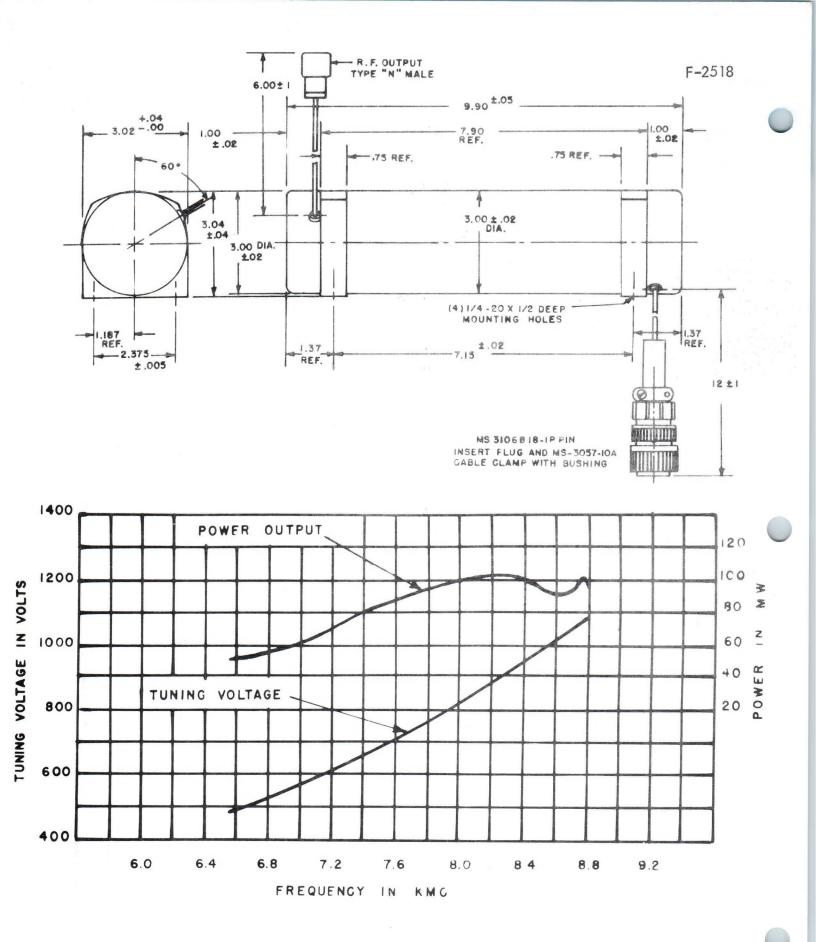
GENERAL

The F-2518 is a voltage-tunable, wide-band oscillator with a minimum output power of 50 milliwatts over its rated operating frequency range. This permanent magnet focused, highly stable device finds applications as a swept signal source in signal generators; master oscillator for frequency diversity transmitters; or typically as a local oscillator in radar or ECM receivers. The tube features a bifilar helix contained in a rugged envelope of simple mechanical design thus providing a highly reliable, compact unit. No cooling is required when the environment is below +60° C ambient temperature.

ELECTRICAL

	TYPICAL	ABSOLUTE	UNITS	יד	YPICAL	ABSOLUTE	UNITS
Frequency Power Output Power Output Variation	6.6 - 8.7 50 - 150 5	Note 1 50 min. 6 max.	Gcs mw db	Helix Current Cathode Voltage Grid Voltage for no Oscillation (RF	3.0 Zero (Gro	5.0 max. und) Zero (Ground)	Ma Volts
Fine Grain Variation, Note 2	± 2.0	±2.5 max.	db/210 mc	Cutoff) (with respect to Cathode	e) –15	-30 max.	Volts
VSWR	2.5:1	3:1 max.	-	Collector Voltage			
Output Impedance Heater Voltage	50 6.3	50 6.0 min/6.6 max	Ohms . Volts	(with respect to Helix)	+100	+150 max.	Volts
Heater Current Anode Voltage	.97 225	1.2 max. 250 max.	Amps Volts	Capacitance, Cathode to all Electrodes	40	50 max.	$\mu\mu$ fd.
(with respect to Cathode)				Capacitance, Grid to all Electrodes	33	45 max.	$\mu\mu$ fd.
Anode Current	0.5	1.0 max.	Ма	Capacitance, Helix to			
Cathode Current Helix Voltage (with	8.0 460 to 1025	12 max. 400 to 1200	Ma Volts	all other Electrode and Capsule	101	200 max.	$\mu\mu$ fd.
respect to Cathode	e)			Spurious Output below Signal	50	40 min.	db

NOTE 1 The F-2518 will operate over the frequency range of 6.534 to 8.787 Gcs. with a 3 db reduction in the rated minimum output power.


NOTE 2 This value is determined by selecting the 210 mc region of the frequency range which has the greatest differences in power output. The difference between these power levels is divided by two and the plus or minus sign is affixed to denote the difference from an average power level.

MECHANICAL

Package Length Package Diameter Package Weight Power Cable Length	9.90 3.00 9 Ibs14 oz.	9.95 max. 3.02 max. 10 max.	Inches Inches Pounds	Output Cable Length (to end of Type "N" Connector)	6	5 min/7 max.	Inches
(to end of MS3106B18-IP Plug) 12	11 min/13 max.	Inches				

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Electron Tube Division Post Office Box 104 Clifton, New Jersey

ELECTRON TUBE DIVISION

CLIFTON, NEW JERSEY

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

F-2519 BACKWARD WAVE OSCILLATOR

TENTATIVE

GENERAL

The F-2519 is a voltage-tunable, wide-band oscillator with a minimum output power of 75 milliwatts over its rated operating frequency range. This permanent magnet focused, highly stable device finds applications as a swept signal source in signal generators; master oscillator for frequency diversity transmitters; or typically as a local scillator in radar or ECM receivers. The tube features a bifilar helix contained in a rugged envelope of simple mechanical design thus providing a highly reliable, compact unit. No cooling is required when the environment is below +60°C ambient temperature.

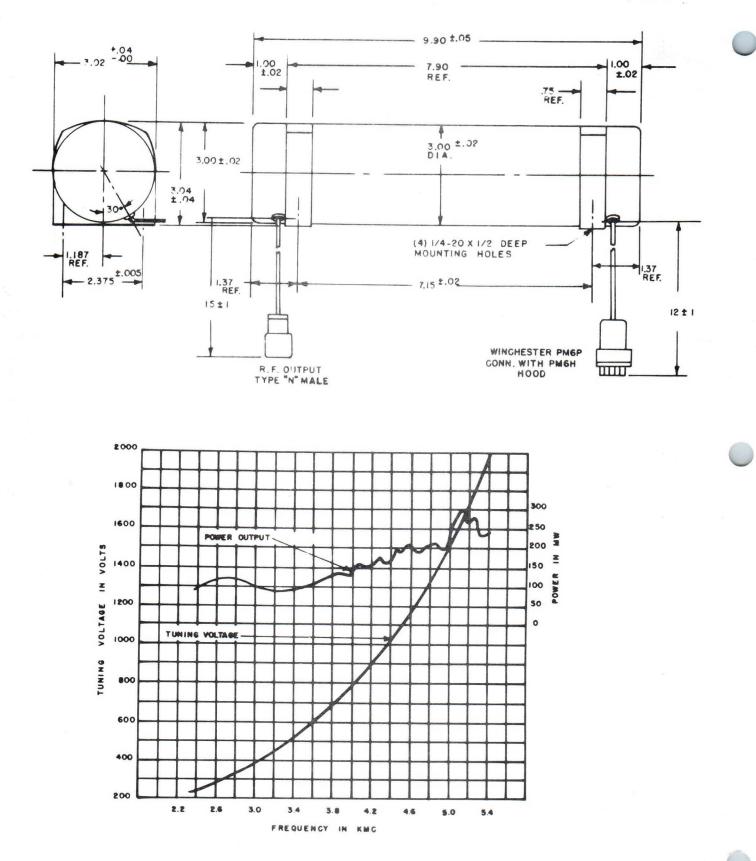
ELECTRICAL

	TYPICAL	ABSOLUTE	UNITS		TYPICAL	ABSOLUTE	UNITS
Frequency Power Output	2.4 -5.3 75 - 300	Note 1 75 min.	Gcs mw	*Grid Voltage for no Oscillation (RF Cutoff)			
Fower Output Variation	6	8 max.	db	(with respect to Cathode) *Collector Voltage (with	-11	-30 max.	Volts
Fine Grain Variation, Note 2 VSWR	+1.0 2.5:1	+1.5 max. 3:1 max.	db 290 mc _	respect to Helix)	+100	+150 max.	Volts
Output Impedance Heater Voltage	50 6.3	50 6.0 min.	Ohms Volts	Capacitance, Cathode to all Electrodes	42	50 max.	$\mu\mu$ fd.
Heater voltage		6.6 max.		Capacitance, Grid to all	20	45 max.	
Heater Current Anode Voltage (with	.98	1.2 max.	Amps	Electrodes Capacitance, Helix to all	30	45 IIIdX.	$\mu\mu$ fd.
respect to Cathode)	120	250 max.	Volts	other Electrodes and	000	200	£.)
Anode Current Cathode Current	0.15 14.0	1.0 max. 20 max.	Ma Ma	Capsule Spurious Output below	220	300 max.	$\mu\mu$ fd.
*Helix Voltage	Zero	Zero	Volts	Signal	50	40 min.	db.
Helix Current	3.0 220 to	5.0 max. -150 to	Ma Volts				
*Cathode Voltage (with respect to Helix)	-1850	-2100	V0113				

*The above data shows tube operation with helix at ground potential (Zero Volts). If desired as an alternate, any one of the asterisked elements may be operated at ground potential, provided the other electrode potentials are set at the appropriate relative levels.

NOTE 1 The F-2519 will operate over the frequency range of 2.376 to 5.353 Gcs. with a 3 db reduction in the rated minimum output power.

NOTE 2 This value is determined by selecting the 290 mc region of the frequency range which has the greatest differences in power output. The difference between these power levels is divided by two and the plus or minus sign is affixed to denote the difference from an average power level.


MECHANICAL

Package Length Package Diameter Package Weight Power Cable Length (to end of Win-	9.90 3.00 9 lbs. 14 oz.	9.95 max. 3.02 max. 10 max.	Inches Inches Pounds	Output Cable Length (to end of Type ""N" Connector)	15	14 min./16 max.	Inches
chester PM6P Connector)	12	11 min./13 max.	Inches				

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Electron Tube Division Post Office Box 104 Clifton, New Jersey

F-2519

F-2520 BACKWARD WAVE Oscillator

TENTATIVE

ELECTRON TUBE DIVISION

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

GENERAL

CLIFTON, NEW JERSEY

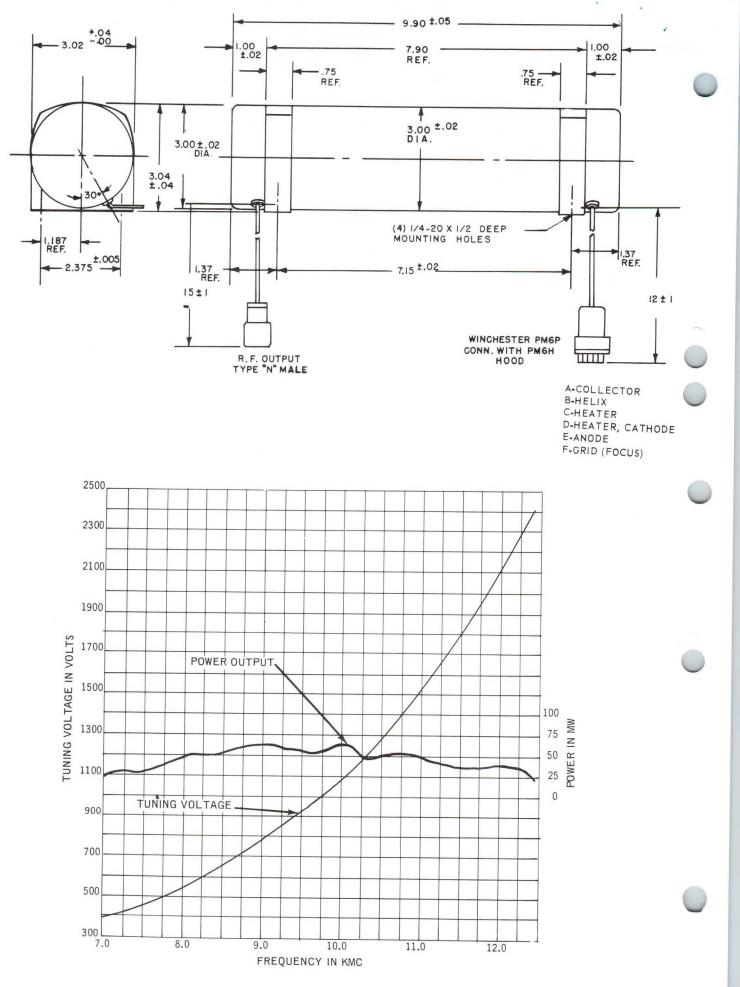
The F-2520 is a voltage-tunable, wide-band oscillator with a minimum output power of 20 milliwatts over its rated operating frequency range. This permanent magnet focused, highly stable device finds applications as a swept signal source in signal generators: master oscillator for frequency diversity transmitters; or typically as a local oscillator in radar or ECM receivers. The tube features a unifilar helix contained in a rugged envelope of simple mechanical design thus providing a highly reliable, compact unit. No cooling is required when the environment is below +60°C ambient temperature.

ELECTRICAL

	TYPICAL	ABSOLUTE	UNITS		TYPICAL	ABSOLUTE	UNITS
Frequency Power Output Power Output Variation	7.0 - 12.4 25 - 150 8	Note 1 20 min. 10 max.	Gcs mw db	*Grid Voltage for no Oscillation (RF Cutoff) (with respect to Cathode)	-15	-30 max,	Volts
Fine Grain Variation, Note 2 VSWR	±1.5 2.5:1	±2 max. 3:1 max.	db/540 mc	*Collector Voltage (with respect to Helix)	+100	+150	Volts
Output Impedance Heater Voltage	50 6.3	50 6.0 min/	Ohms Volts	Capacitance, Cathode to all Electrodes	40	50 max.	$\mu\mu$ fd.
Heater Current	.96	6.6 max. 1.2 max.	Amps	Capacitance, Grid to all Electrodes Capacitance, Helix to all	30	45 max.	$\mu\mu$ fd.
Anode Voltage (with respect to Cathode) Anode Current	200 0.5	250 max. 1.0 max.	Volts Ma	other Electrodes and Capsule	80	150 max.	$\mu\mu$ fd.
Cathode Current *Helix Voltage Helix Current	8.0 Zero 4.0	15 max. Zero 6.0 max.	Ma Volts Ma	Spurious Output below Signal	50	40 min.	db.
*Cathode Voltage (with respect to Helix)	-390 to -2400	-300 to -2500	Volts				

*The above data shows tube operation with helix at ground potential (Zero volts). If desired as an alternate, any one of the asterisked elements may be operated at ground potential, provided the other electrode potentials are set at the appropriate relative levels.

NOTE 1 The F-2520 will operate over the frequency range of 6.93 to 12.524 Gcs. with a 3 db reduction in the rated minimum output power.


NOTE 2 This value is determined by selecting the 540 mc region of the frequency range which has the greatest differences in power output. The difference between these power levels is divided by two and the plus or minus sign is affixed to denote the difference from an average power level.

MECHANICAL

Package Length Package Diameter Package Weight Power Cable Length	9.90 3.00 9 Ibs14 oz.	9.95 max. 3.02 max. 10 max.	Inches Inches Pounds	Output Cable Length (to end of Type "'N" Connector)	15	14 min/16 max.	Inches
(to end of Winchester PM6P Co nector)	n- 12	11 min/13 max.	Inches				

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Electron Tube Division Post Office Box 104 Clifton, New Jersey

ELECTRON TUBE DIVISION

CLIFTON, NEW JERSEY

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

F-2521 BACKWARD WAVE OSCILLATOR

TENTATIVE

GENERAL

The F-2521 is a voltage-tunable, wide-band oscillator with a minimum output power of 250 milliwatts over its rated operating frequency range. This permanent magnet focused, highly stable device finds applications as a swept signal source in signal generators; master oscillator for frequency diversity transmitters; or typically as a local oscillator in radar or ECM receivers. The tube features a bifilar helix contained in a rugged envelope of simple mechanical design thus providing a highly reliable, compact unit. No cooling is required when the environment is below +60°C ambient temperature.

ELECTRICAL

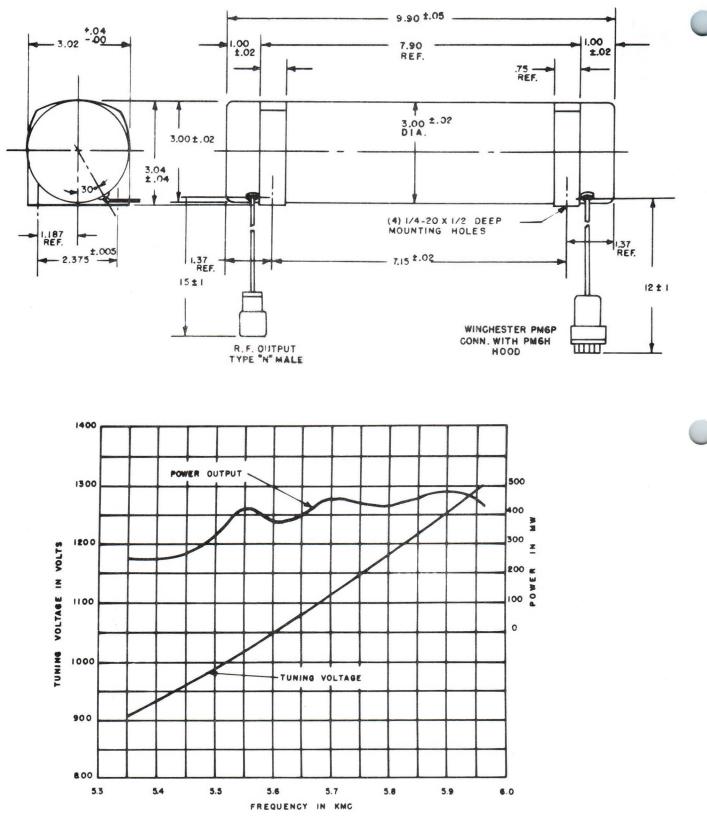
	TYPICAL	ABSOLUTE	UNITS		TYPICAL	ABSOLUTE	UNITS
Frequency	5.4-5.9	Note 1, Note 3	Gcs	*Grid Voltage for no Oscillation (RF Cutoff)			
Power Output	250-480	250 min.	mw	(with respect to cathode)	-25	-30 max.	Volts
Power Output Variation	3	4 max.	db.	*Collector Voltage (with			
Fine Grain Variation, Note 2	+.8	±1.0 max.	db 50 mc	respect to Helix)	+100	+150 max.	Volts
VSWR	2.5:1	3:1 max.	-	Capacitance, Cathode to			
Output Impedance	50	50	Ohms	all Electrodes	42	50 max.	$\mu\mu$ fd.
Heater Voltage	6.3	6.0 min./	Volts	Capacitance, Grid to all			1.1
		6.6 max.		Electrodes	30	45 max.	$\mu\mu$ fd.
Heater Current	.96	1.2 max.	Amps	Capacitance, Helix to all			Entre
Anode Voltage (with respect				other Electrodes and			
to Cathode)	210	250 max.	Volts	Capsule	210	300 max.	μµfd.
Anode Current	.25	1.0 max.	Ma	Spurious Output below			
Cathode Current	20	25 max.	Ma	Signal	50	40 min.	db.
*Helix Voltage	Zero	Zero	Volts				
Helix Current	3.0	6.0 max.	Ма				
Cathode Voltage (with							
respect to Helix)	-937 to -1256	-800 to -1400	Volts				

*The above data shows tube operation with helix at ground potential (Zero Volts). If desired as an alternate, any one of the asterisked elements may be operated at ground potential, provided the other electrode potentials are set at the appropriate relative levels.

NOTE 1 The F-2521 will operate over the frequency range of 5.346 to 5.959 Ccs. with a 3 db reduction in the rated minimum output power.

NOTE 2 This value is determined by selecting the 50 mc region of the frequency range which has the greatest differences in power output. The difference between these power levels is divided by two and the plus or minus sign is affixed to denote the difference from an average power level.

NOTE 3 The F-2521 will operate over the frequency range of 4 to 7 Gcs. at a reduced power output of not less than 20 milliwatts. Under this type of operation a typical cathode voltage range of -370 to -2390 volts will apply. However, caution must be observed that the <u>cathode current does not exceed 14 ma and the cathode voltage does not exceed -2500 volts</u>. A typical anode voltage of 125 volts will be required for this type of operation and the maximum anode voltage must be such that the cathode current does not exceed 14 ma.


MECHANICAL

Package Length Package Diameter Package Weight Power Cable Length (to end of Win chester PM6P	9.90 3.00 9 lbs14 oz.	9.95 max. 3.02 max. 10 max.	Inches Inches Pounds	Output Cable Length (to end of type "N" Connector)	15	14 min/16 max.	Inches
Connector)	12	11 min/13 max.	Inches				

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Electron Tube Division Post Office Box 104 Clifton, New Jersey

F-2521

0

ELECTRON TUBE DIVISION

CLIFTON, NEW JERSEY

F-2544 Backward Wave Oscillator

TENTATIVE

GENERAL:

The F-2544 is a voltage-tunable, wide-band oscillator with a minimum output power of 10 milliwatts over its rated operating frequency range. This permanent magnet focused, highly stable device finds applications as a swept signal source in signal generators; master oscillator for frequency diversity transmitters; or typically as a local oscillator in radar or ECM receivers. The tube features a unifilar helix contained in a rugged envelope of simple mechanical design thus providing a highly reliable, compact unit. No cooling is required when the environment is below +60°C ambient temperature.

ELECTRICAL:	Typical	Absolute	Units
Frequency	4.0 - 8.0	-	Gcs
Power Output	15 - 200	10 min.	mw
Power Output Variation	10	12 max.	db
Fine Gain Variation, Note 1	±2.0	±2.5 max.	db/400 mc
VSWR	2.5:1	3:1 max.	-
Output Impedance	50	50	Ohms
Heater Voltage	6.3	6.0 min./6.6 max	. Volts
Heater Current	.96	1.2 max.	Amps
Anode Voltage (with respect to cathode)	150	250 max.	Volts
Anode Current	0.3	1.0 max.	Ma
Cathode Current	12	15 max.	Ma

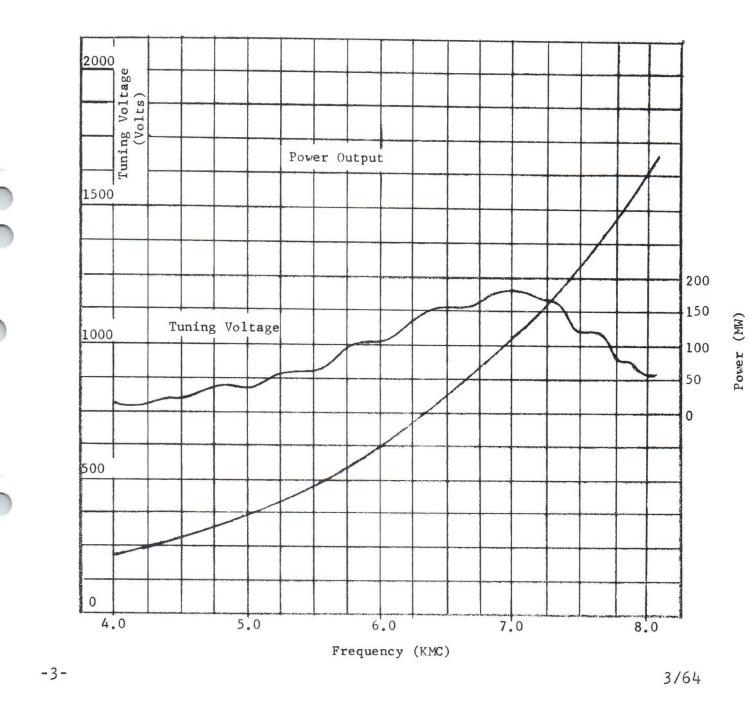
F-2544 Backward Wave Oscillator

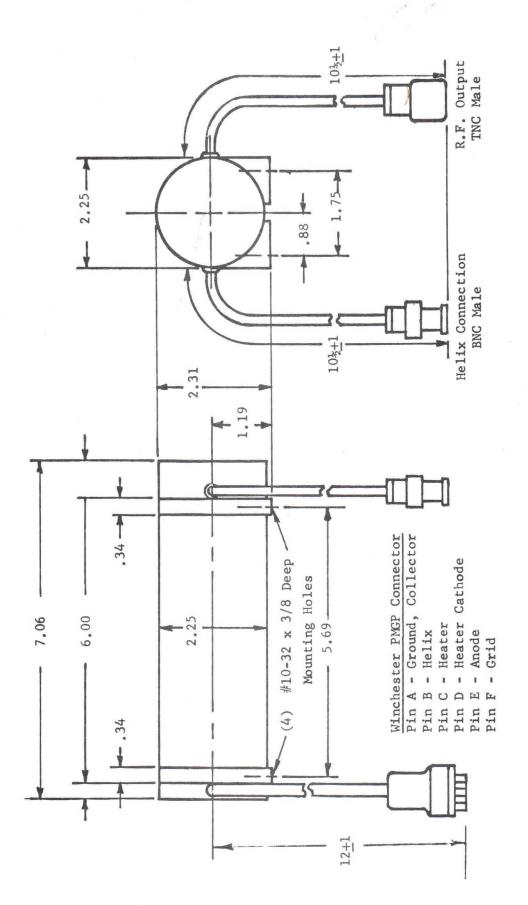
	-2-		
	Typical	Absolute	Units
Helix Voltage	Zero	Zero	Volts
Helix Current	3.5	6.0 max.	Ma
Cathode Voltage (with respect to helix)	-215 to -1700	-180 to -2000	Volts
Grid Voltage for no Oscillation (RF Cutoff) (with respect to cathode)	-13	-30 max.	Volts
Collector Voltage	Zero	Zero	Volts
Capacitance, Cathode to all Electrodes	18	25 max.	۰ fd
Capacitance, Cathode to all Electrodes	15	25 max.	۲ęч
Capacitance, Helix to all other Electrodes & Capsule	170	200 max.	.fd
Spurious Output below Signal	50	40 min.	db
Note 1. This value is determined	l by selecting the 4	00 mc region of the	

Note 1. This value is determined by selecting the 400 mc region of the frequency range which has the greatest differences in power output. The difference between these power levels is divided by two and the plus or minus sign is affixed to denote the difference from an average power level.

Package Length	7.06	7.08 max.	Inches
Package Diameter	2.50	2.52 max.	Inches
Package Weight	3 lbs., 6 oz.	3.5 max.	Pounds
Power Cable Length (to end of Winchester PM6P Connector)	12	11 min./13 max.	linches
Output Cable Length (to end of Type "N" Connector)	10 1/2	9 1/2 min./ 11 1/2 max.	Inches

MECHANICAL:


3/64


· · ·

Tuning Curve and Power Output

BWO Type F-2544

ELECTRON TUBE DIVISION CLIFTON, NEW JERSEY

Permanent-Magnet Backward-Wave Oscillator

F-2544

TENTATIVE

-4-

ELECTRON TUBE DIVISION

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

CLIFTON, NEW JERSEY

F-2900 REFLEX KLYSTRON

DESCRIPTION:

Type F-2900 Reflex Klystrons are millimeter wavelength tubes designed for operation in the 33 to 38 Gc frequency range. Each tube is fixed tuned and will deliver a minimum power output of one watt at its specific operating frequency in this range.*

The specific operating frequency may be shifted 2% while maintaining a minimum output of 1 watt, by using the MT-80 mechanical tuner which is available as an optional accessory.

The electronic tuning range as measured between the half power points is 0.1% of the specific operating frequency.

The small size and rugged construction of these tubes make them suitable as test equipment primary signal sources, receiver local oscillators, parametric amplifier pumps and low power transmitters.

TYPICAL OPERATION:

perating Frequency sam Voltage sam Current effector Voltage with respect to cathode)	34.7 2000 40 780	Gc Volts ma Volts	Grid Voltage (with respect to cathode) Power Output Electronic Tuning (between 3 db points) Heater Voltage Heater Current	-50 1.1 35 6.3 1.2	Volts Watt mc Volts Amperes
--	---------------------------	----------------------------	---	--------------------------------	---

MAXIMUM RATINGS:

MECHANICAL SPECIFICATIONS:

Beam Voltage Beam Current

Be

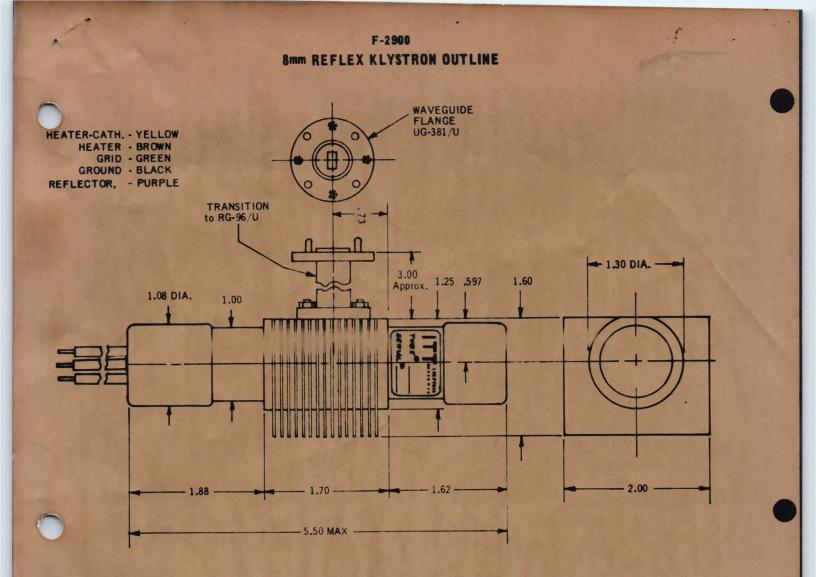
2500 Volts 50 ma Reflector Voltage Grid Voltage

-25 to -1000 \ 0 to -100 \

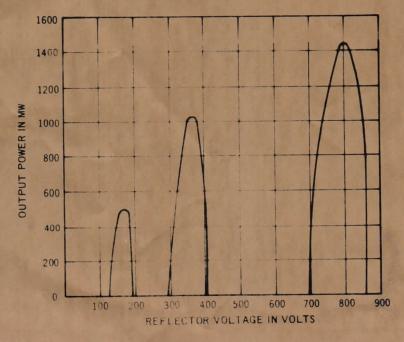
Volts Volts

Cathode Cooling Weight Base Connection

Dispenser Type Forced Air 20 oz. Flying Leads Physical Dimensions RF Connection Mounting Position


UG-381/U Flange RG-96/U Waveguide

See Outline Drawing


Any

* Specify frequency required when ordering.

2-64

OUTPUT MODE PATTERN VERSUS REFLECTOR VOLTAGE For tube type F-2900

2-64

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY F-6658 TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

The F-6658 is a 1 to 5 watt CW traveling wave amplifier tube having 30 db gain and 1700 to 4000 mc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "N" connectors. The tube is self aligning in the external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide impregnated cathode are used. A control grid suitable for use as a gain control is provided. The tube is suitable for either CW or pulse service, utilizing the full bandwidth or portions of it. It is also suitable for frequency shifting, such as serrodyne operation.

ELECTRICAL RATINGS, ABSOLUTE VALUES:

$6.3 (\pm 10\%)$	volts
2.5	amperes
1250	volts
5	ma
1550	volts
100	watts
-250	volts
4000	mc
1700	mc
50	db
12	μμfd
4.5	μμfd
	1250 5 1550 100 -250 4000 1700 50 12

F-6658 TRAVELING WAVE TUBE

MECHANICAL INFORMATION:

Type of Cathode Base, Small Shell Duodecal, 5 Pin Type of Envelope Magnetic Field Strength (Nominal) Length of Magnetic Field Mounting Position Weight (not including Magnet) R-F Connections Type of Cooling Glass Temperature Cooling Air Required (Note 4) Oxide Impregnated Unipotential JEDEC Designation B-5-57 Metal 750 gauss 6.75 inches uniform Any l pound, 7 ounces 50 ohm coax with Type N Jack UG-23B/U Forced Air 160°C max. 10 cfm

TYPICAL OPERATION AS POWER AMPLIFIER:

Anode Voltage Shell Current Collector Voltage Collector Current Control Electrode Voltage Power Output (see Curves) Gain (see Curves) Duty Cycle R-F Beam 1000 volts 3 ma 1100 volts 47 ma 0 volts 1 watt 30 db nominal

Variable to 1.0

1.0

TYPICAL OPERATION AS LINEAR AMPLIFIER: (Input powers less than -10 dbm)

Anode Voltage 900 volts Shell Current 2.0 ma **Collector Voltage** 1000 volts **Collector Current** 40 ma Control Electrode Voltage 0 volts Gain (see Curves) 35 db nominal Noise Figure 30 db Duty Cycle R-F Variable to 1.0 Beam 1.0

- 2 -

- Note 1: All voltages shown are with respect to cathode. Anode and helix are connected internally to the shell. The shell is normally operated at approximate ground potential and the d-c connection is made to the shell of the solenoid.
- Note 2: The shell current is the difference between the cathode current and collector current. Since this current, in general, should be minimized, it is desirable to measure the current from shell to ground. It is recommended that overload protection be provided to remove high voltage if the shell current exceeds 5 milliamperes.
- Note 3: It is generally desirable to operate the collector at 100 to 200 volts positive with respect to shell, and potential difference between collector and shell should be limited to 300 volts maximum.
- Note 4: Forced air cooling of collector is required for average collector power in excess of 10 watts. As the collector power is increased, the air flow required increases. At the maximum collector power of 100 watts, a minimum air flow of 10 cfm through the cooling fins is required.
- Note 5: This electrode is a remote cutoff grid, suitable for use as a gain control providing approximately 30 db control range but is not suitable for low level pulsing of the beam. It is recommended that, where feasible, provision should be made to operate the tube with small voltage on this electrode (-5 to -10 volts) as this permits operation of the tube at approximately optimum conditions with very low interception (shell current). It may also be operated fixed at cathode potential, if desired.

OPERATING PROCEDURE:

- (1) Insert tube in solenoid, secure in place with stops provided, make connections.
- (2) Turn on cooling air, solenoid voltage (adjust to approximately 750 gauss), heater voltage, collector voltage (if used), control electrode voltage (if used).
- (3) Raise high voltage to desired value, readjusting magnetic field if necessary to obtain minimum shell current. At no time should shell current exceed 5 ma.
- (4) After initial set up as above, tube voltages may be applied simultaneously; however, it is recommended that heater voltage, solenoid voltage, and cooling air be supplied at least 2 minutes before applying high voltage. Observance of the 5 ma maximum limit for shell current is essential to prevent tube damage.

F-6658 TRAVELING WAVE TUBE

The data presented here is representative of operation of this type as an amplifier with maximum bandwidth and does not indicate the maximum performance obtainable under specific conditions, particularly narrower bandwidths.

Standard solenoids to operate this tube are available, and solenoids designed for particular applications can be supplied.

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division Box 7065 ROANOKE, VIRGINIA

P_{in} in dbm

F-6658 TRAVELING WAVE TUBE

Control Electrode Voltage

- 5 -

F-6658 TRAVELING WAVE TUBE

20 E Power Output vs. Frequency = 1 m.w Pin 10 Power Output in Watts 5 2 1 0.5 1.5 2.0 2.5 3.0 3.5 4.0 Frequency in KMC 50 F 40 Gain in db 30 20 Small Signal Gain

vs. Frequency

3.5

4.0

3.0

TYPICAL CHARACTERISTICS

- 6 -

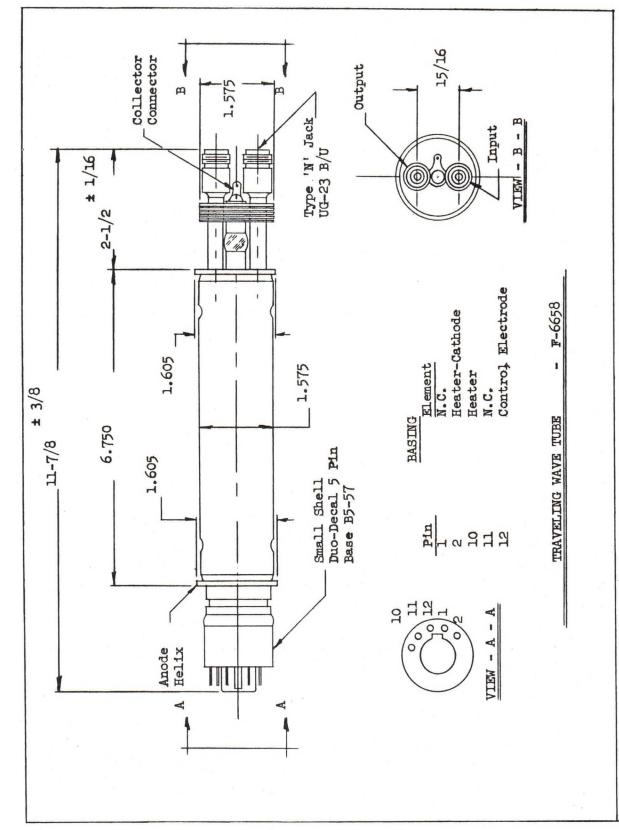
All curves shown with magnetic field set for minimum shell current in range of 600 to 750 gauss.

Curves A, B, C, and E voltage is set for maximum Pout at f = 4.0 KMC, Pin = mw lapprox. 1000 volts).

Curve D shows typical shape and range of control electrode characteristic.

Curve F voltage is set for maximum gain at f = 4.0 KMC, $P_{in} = -20 \text{ dbm}$ (approx. 900 volts).

10


0

1.5

2.0

2.5

Frequency in KMC

- 7 -

ELECTRON TUBE DEPARTMENT ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION 2-60

ELECTRON TUBE DEPARTMENT COMPONEN'IS DIVISION

F-6825 TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

The F-6825 is a 1 kilowatt pulse traveling wave amplifier tube having 30 db gain and 2000 to 4000 mc frequency range. It is constructed in a rugged metal envelope with a helix-type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "N" connectors. The tube is self aligning in the external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .005 and pulse widths up to 15 microseconds can be used.

ELECTRICAL RATINGS, ABSOLUTE VALUES:

Heater Valters		
Heater Voltage	6.3 (±10%)	volts
Heater Current	5.0	amperes
Maximum Anode Voltage (Note 1)	8500	volts peak
Maximum Shell Current (Note 2)	0.5	ampere peak
Maximum Collector Voltage (Note 3)	9000	volts peak
Maximum Collector Dissipation (Note 4)	150	watts average
Maximum R-F Input Power	10	watts average
Maximum R-F Output Power	20	watts average
Maximum Duty Cycle	.005	8-
Maximum Pulse Width (Beam)	15	microseconds
Maximum Cathode Current	2.5	amperes peak
ELECTRICAL INFORMATION:		
Maximum Frequency (Note 5)	4000	mc
Minimum Frequency (Note 5)	2000	mc
Minimum Cold Transmission Loss	60	db
Capacitance	50	
All Gun Elements to Shell	4.2	μμfd

F-6825 TRAVELING WAVE TUBE

- 2 -

MECHANICAL INFORMATION:

Type of Cathode	Oxide Impregnated Unipotential	
Base, Small Shell Duodecal, 5 Pin	JEDEC Designation B5-57	
Type of Envelope	Metal	
Magnetic Field Strength	1200 gauss	
Length of Magnetic Field	9.625 inches uniform	
Mounting Position	Any	
Weight (not including Magnet)	1 pound, 14 ounces	
R-F Connections	50 ohm coax with Type N Jack UG-23B/U	
Type of Cooling	Forced Air	
Air Flow on Collector Radiator (Note 4)	30 cfm	
Glass Temperature	160°C max.	

TYPICAL OPERATION AS POWER AMPLIFIER:

Center Frequency Anode Voltage (Note 1) Cathode Current Collector Voltage (tied to Shell) Collector Current Power Output (at center frequency) Bandwidth to 3 db power points Gain (Note 6) Duty Pulse Width

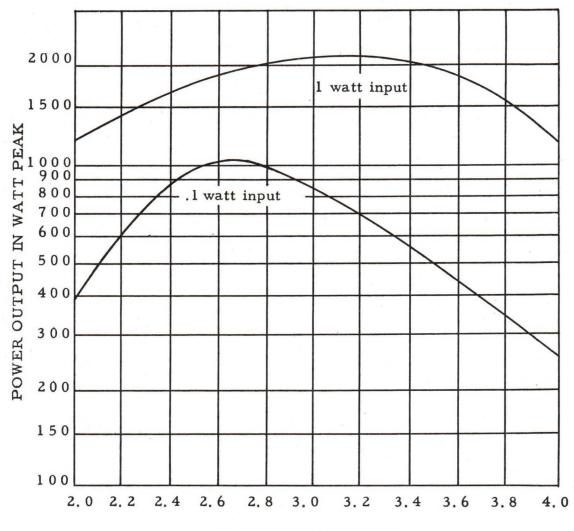
- 3000 mc
 8000 volts peak
 1.8 amperes peak
 8000 volts peak
 1.5 amperes peak
 2 kw peak
 2.0-4.0 kmc
 30 db
 .001
 2 μ seconds
- Note 1: All voltages shown are with respect to cathode. Anode and helix are connected internally to the shell. The shell is normally operated at ground potential and the anode connection is made to the shell of the solenoid.
- Note 2: The shell current is the difference between cathode current and collector current. Since this current in general should be minimized, it may be desirable to measure current from shell to ground. In making this measurement, care should be taken that both the tube and solenoid are completely insulated from ground. Once operating characteristics (voltage, current, and magnetic field) have been established, shell should be grounded.
- Note 3: The tube may be operated with the collector tied to the shell (anode and helix) or may be operated at several hundred volts positive with respect to shell with slight improvement in beam transmission. The potential difference between collector and shell must be limited to 500 volts maximum.

F-6825 TRAVELING WAVE TUBE

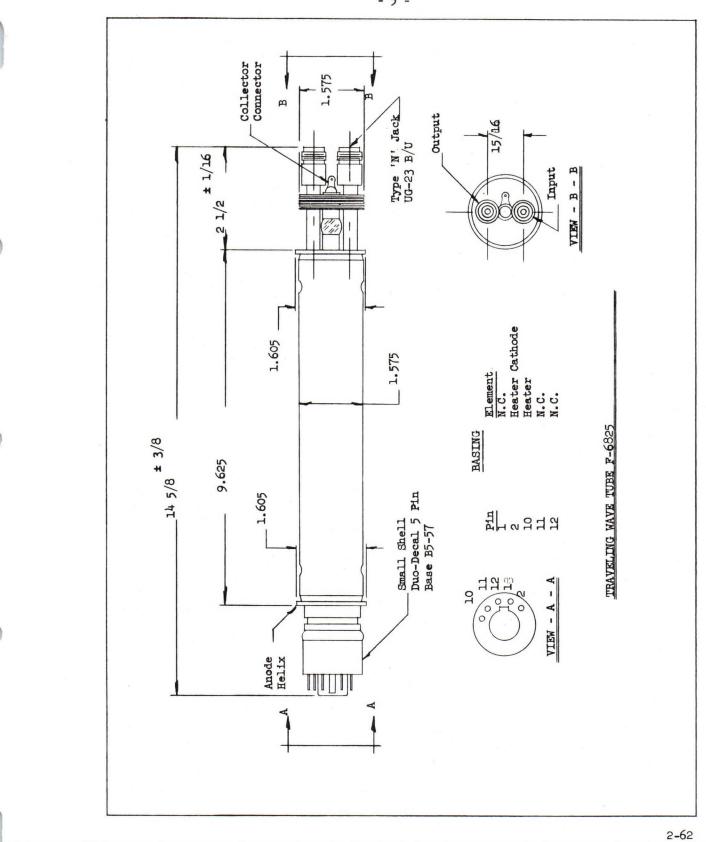
- Note 4: Forced air cooling is required for average collector power in excess of 10 watts. As the collector power is increased, the air flow required increases. At the maximum collector power of 150 watts, a minimum air flow of 20 cfm through the cooling fins is required.
- Note 5: Useful gain and power output exists below 2000 mc and above 4000 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will usually be lower than rated values.
- Note 6: This gain is obtained over the 2.0 to 4.0 kmc bandwidth at the power level indicated. Since this is in the power saturation region, small signal gain will be approximately 10 db higher.

OPERATING INSTRUCTIONS:

- (1) Heater warm up of 2 minutes before applying high voltage is recommended.
- (2) Initial adjustments should be done at low duty cycle (less than . 001) to prevent tube damage due to high shell (interception) current.


Standard solenoids to operate this tube are available, and solenoids designed for particular application can be supplied.

Additional information for specific applications can be obtained from the


Electron Tube Applications Section ITT Components Division Box 7065 ROANOKE, VIRGINIA F-6825 TRAVELING WAVE TUBE

4

FREQUENCY IN KMC

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

- 5 -

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY F-6826 TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

The F-6826 is a 1 kilowatt pulse traveling wave amplifier tube having 30 db gain and 2000 to 4000 mc frequency range. It is constructed in a rugged metal envelope with a helix-type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "N" connectors. The tube is self aligning in the external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .005 and pulse lengths up to 10 microseconds can be used.

A control grid suitable for grid pulsing is provided.

ELECTRICAL RATINGS, ABSOLUTE VALUES:

Heater Voltage	6.3 (±10%)	volts
Heater Current	5.0	amperes
Maximum Anode Voltage (Note 1)	8500	volts
Maximum Shell Current (Note 2)	0.5	ampere peak
Maximum Collector Voltage (Note 3)	9000	volts
Maximum Collector Dissipation (Note 4)	100	watts avg.
Maximum R-F Input Power	10	watts avg.
Maximum R-F Output Power	10	watts avg.
Maximum Duty Cycle	. 005	
Maximum Pulse Width (beam)	10	µ seconds
Maximum Cathode Current	2.5	amperes peak
Maximum Grid Voltage		
Negative	-300	volts
Positive (Note 7)	+6% of	anode voltage
ELECTRICAL INFORMATION:		
Maximum Frequency (Note 5)	4000	mc
Minimum Frequency (Note 5)	2000	mc
Minimum Cold Transmission Loss	60	db
Capacitance		
Control Grid to all other Elements	9	μμfd

MECHANICAL INFORMATION:

Type of Cathode Base, Small Shell Duodecal, 6 Pin Type of Envelope Magnetic Field Strength Length of Magnetic Field Mounting Position Weight (not including magnet) R-F Connections

Type of Cooling Air Flow on Collector Radiator (Note 4) Glass Temperature

TYPICAL OPERATION AS POWER AMPLIFIER:

Center Frequency Anode Voltage (Note 1) Cathode Current Collector Voltage (tied to Shell) Collector Current Power Output (at center frequency) Bandwidth to 3 db power points Gain (Note 6) Duty Pulse Width Grid Bias (for cut-off) Grid Voltage during Pulse (Note 8) Grid Current during Pulse Oxide Impregnated Unipotential JEDEC Designation B6-63 Metal 1200 Gauss 9.625 Inches Uniform Any 1 lb. 14 ozs. 50 ohm coax with Type "N" Jack UG-23B/U Forced Air 20 cfm 160°C max.

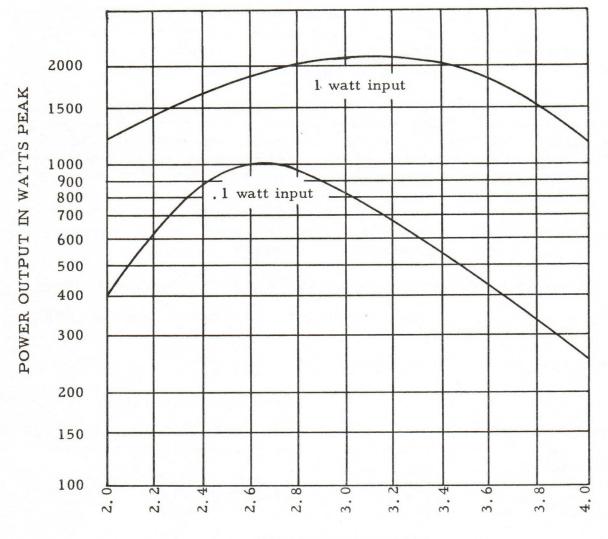
3000	mc
7500	volts
1.8	amperes peak
7500	volts
1.4	amperes peak
1.5	kw peak
2.0-4.0	kmc
30	db
.001	
2	µ seconds
-100	volts
+350	volts
0.1	ampere peak

- Note 1: All voltages shown are with respect to cathode. Anode and helix are connected internally to the shell. The shell is normally operated at ground potential and the anode connection is made to the shell of the solenoid.
- Note 2: The shell current is the difference between cathode current and collector current. Since this current, in general, should be minimized, it may be desirable to measure current from shell to ground. In making this measurement, care should be taken that both the tube and solenoid are completely insulated from ground. Once operating characteristics (voltage, current, and magnetic field) have been established, shell should be grounded.

Note 3: The tube may be operated with the collector tied to the shell (anode and helix) or may be operated at several hundred volts positive with respect to shell with slight improvement in beam transmission. The potential difference between collector and shell must be limited to 500 volts maximum.

- 3 -

- Note 4: Forced air cooling is required for average collector power in excess of 10 watts. As the collector power is increased, the air flow required increases. At the maximum collector power of 100 watts, a minimum air flow of 20 cfm through the cooling fins is required.
- Note 5: Useful gain and power output exists below 2000 mc and above 4000 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated values.
- Note 6: This gain is obtained over the 2.0 to 4.0 kmc bandwidth at the power level indicated. Since this is in the power saturation region, small signal gain will be approximately 10 db higher.
- Note 7: Positive voltage must not be applied to the grid in the absence of anode voltage.
- Note 8: The positive grid voltage pulse should be the minimum consistent with normal power output.


GENERAL OPERATING INSTRUCTIONS:

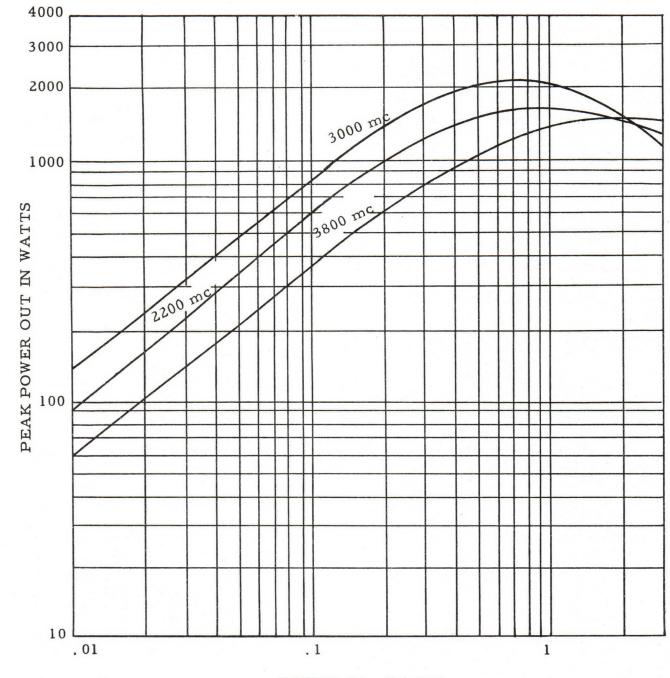
- (1) Heater warm up of 2 minutes before applying high voltage is recommended.
- (2) High voltage must not be applied in the absence of proper grid bias and magnetic field. Positive grid pulse voltage must not be applied in the absence of high voltage.
- (3) Initial adjustments should be done at low duty cycle (less than . 001) to prevent tube damage due to high shell (interception) current.

Standard solenoids to operate this tube are available, and solenoids designed for particular applications can be supplied.

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division Box 412 - Clifton, New Jersey F-6826 TRAVELING WAVE TUBE

TYPICAL Pout VS. FREQUENCY CHARACTERISTIC

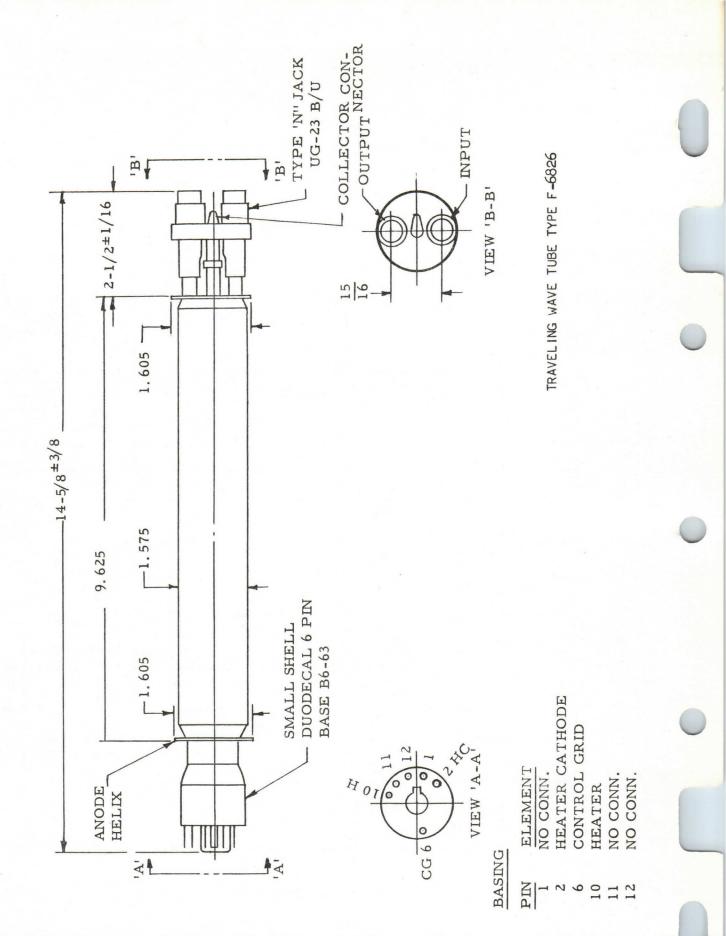

FREQUENCY IN KMC

4 -

F-6826 TRAVELING WAVE TUBE

TYPICAL POWER IN - POWER OUT CHARACTERISTIC

- 5 -



POWER IN - WATTS

Π

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

2-60

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY F-6867 TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

The F-6867 is a 100 milliwatt CW traveling wave amplifier tube having 30 db gain and 8000 to 9600 mc frequency range. It is constructed in a rugged metal envelope with a helix-type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is normally provided with type "N" connectors. The tube is self-aligning in the external solenoid which is required to provide a uniform magnetic field. A control electrode suitable for use as a gain control is provided. The tube is suitable for either CW or pulse service.

ELECTRICAL RATINGS, ABSOLUTE VALUES:

Heater Voltage	6.3 (±10%)	volts
Heater current	0.85	amperes
Maximum Anode Voltage (Note 1)	1500	volts
Maximum Shell Current (Note 2 and Note 6)	3	ma
Maximum Collector Voltage (Note 3)	1600	volts
Maximum Collector Dissipation (Note 4)	25	watts
Maximum Control Electrode Voltage (Note 5)	-250	volts
ELECTRICAL INFORMATION		
Maximum Frequency	9600	mc
Minimum Frequency	8000	mc
Minimum Cold Transmission Loss	50	db
Capacitance		
Control Electrode to All Other Elements	7	μμfd
All Gun Elements to Shell	4.5	μμfd

MECHANICAL INFORMATION:

Type of Cathode Base, Small Shell Duodecal, 5 Pin Type of Envelope Magnetic Field Strength Length of Magnetic Field Mounting Position Weight (not including Magnet) R-F Connections

Type of Cooling Maximum Glass Temperature Cooling Air Required (See Note 4) Oxide Coated Unipotential JEDEC Designation B5-57 Metal 1300 Gauss 5.25 inches uniform Any 1 lb. 4 ozs. 50 ohm coax with Type "N" Jack UG-23B/U Forced Air 160°C 5 cfm

TYPICAL OPERATION AS INTERMEDIATE POWER AMPLIFIER:

Anode Voltage	1400	volts
Shell Current	2	ma
Collector Voltage	1500	volts
Collector Current	8	ma
Control Electrode Voltage (Note 5)	-15	volts
Power Output	100	milliwatts
Bandwidth	8.0 to 9.6	kmc
Gain over Bandwidth (Small Signal)	30	db min.
Gain over Bandwidth (Power)	25	db min.
Duty Cycle		1
R-F	Variable to 1.0	
Beam	1.0	

- Note 1: All voltages shown are with respect to cathode. Anode and helix are connected internally to the shell. The shell is normally operated at ground potential and the d-c connection is made to the shell of the solenoid.
- Note 2: The shell current is the difference between the cathode current and collector current. Since this current in general should be minimized, it may be desirable to measure the current from shell to ground. It is desirable that overload protection be provided so that if shell current exceeds 3 ma, high voltage is removed.

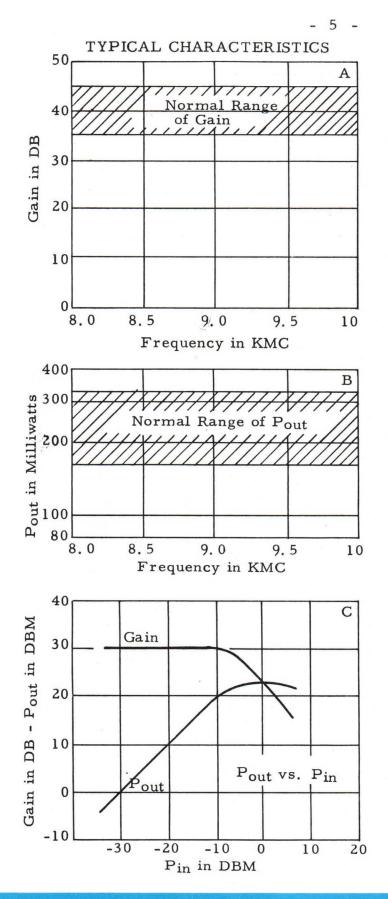
F-6867 TRAVELING WAVE TUBE

- Note 3: It is generally desirable to operate the collector at 100 volts positive with respect to shell, and potential difference between collector and shell should be limited to 300 volts maximum.
- Note 4: Forced air cooling of collector is required for average collector power in excess of 10 watts. As the collector power is increased, the air flow required increases. At the maximum collector power of 25 watts, a minimum air flow of 5 cfm through the cooling fins is required.
- Note 5: The control electrode voltage is adjusted for maximum beam transmission (collector current/cathode current). It may further be used as a gain control or for introducing modulation, but cannot be operated less negative than the value required for proper transmission.
- Note 6: In some cases, it may be necessary to rotate the tube in the solenoid to the point giving best transmission.

OPERATION PROCEDURE:

- (1) Insert tube in solenoid, secure in place with stops provided, make connections.
- (2) Turn on cooling air, solenoid voltage (adjust to approximately 1300 gauss), heater voltage, collector voltage (if used), control electrode voltage approximately -20 volts).
- (3) Raise high voltage to desired value, adjusting solenoid voltage and control electrode voltage for maximum collector current, and observing care not to exceed 3 ma shell current. It may be necessary to rotate the tube in the solenoid to the point giving best transmission.
- (4) The above procedure is not required after initial set up; however, heater voltage should be applied two minutes before applying high voltage, and proper magnetic field and control electrode voltage must be applied before applying high voltage. Observance of the 3 ma maximum limit on shell current is essential to prevent tube damage.

- 3 -

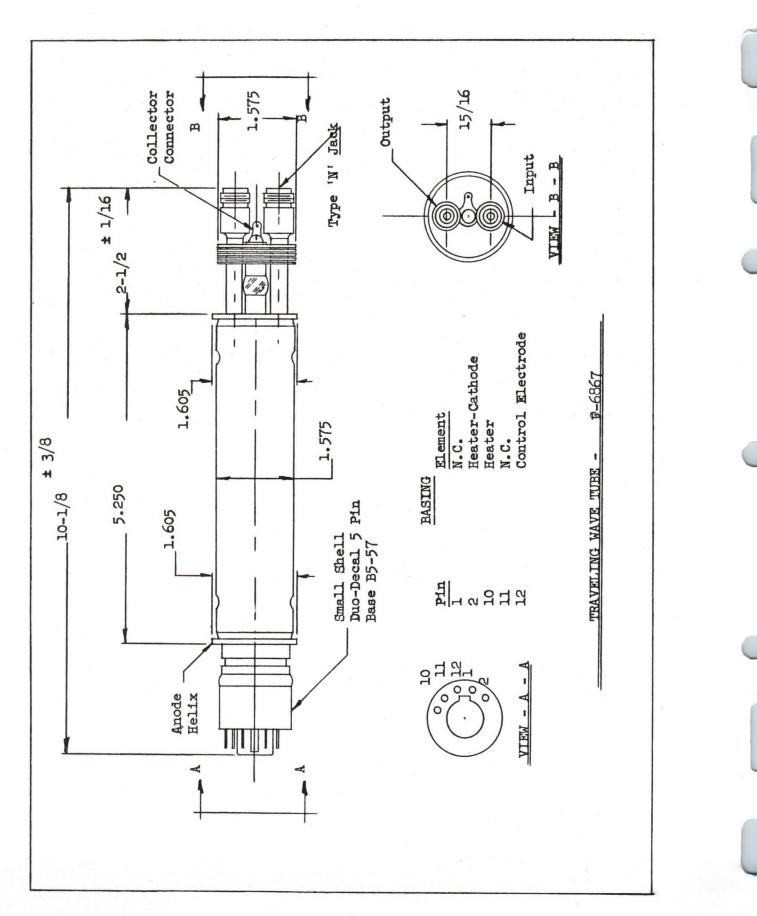

This tube has been designed primarily for operation in the 8000 to 9600 mc frequency range. Useful power and gain exist over a larger frequency range. Additional information for specific applications can be obtained from the Vacuum Tube Engineering Department.

- 4 -

Standard solenoids for this tube type are available and solenoids designed for specific applications can be supplied.

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division Box 7065 ROANOKE, VIRGINIA



All data shown with magnetic field adjusted for best transmission in range of 900 to 1300 gauss and control electrode voltage adjusted for maximum collector current with shell current less than 3 ma.

For curve A, voltage is adjusted for maximum gain at f = 9.0 kmc and $P_{in} < -10$ dbm (approx. 1250 volts).

For curves B and C, voltage is adjusted for maximum $P_{out at}$ f = 9.0 kmc and P_{in} = 0.5 mw (approx. 1400 volts).

2-60

F-6868 TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

The F-6868 is a 10 watt CW traveling wave amplifier tube having 30 db gain and 1700 to 4000 mc frequency range. It is constructed in a rugged metal envelope with a helix-type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "N" connectors. The tube is selfaligning in the external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide impregnated cathode are used. A control electrode suitable for use as a gain control is provided. The tube is suitable for either CW or pulse service uitlizing the full bandwidth or portions of it. It is also suitable for frequency shifting, such as serrodyne operation.

ELECTRICAL RATINGS, ABSOLUTE VALUES:

Heater Voltage	6.3 (±10%)	volts
Heater Current	2.5	amperes
Maximum Anode Voltage (Note 1)	1500	volts
Maximum Shell Current (Note 2)	5	ma
Maximum Collector Voltage (Note 3)	1750	volts
Maximum Collector Dissipation (Note 4)	150	watts
Maximum Control Electrode Voltage (Note 5)	-250	watts
ELECTRICAL INFORMATION:		
Maximum Frequency	4000	mc
Minimum Frequency	1700	mc
Minimum Cold Transmission Loss Capacitance	50	db
Control Electrode to all other elements	12	μμfd
All Gun elements to Shell	4.5	μμfd

MECHANICAL INFORMATION:

Type of Cathode Base, Small Shell Duodecal, 5 Pin Type of Envelope Magnetic Field Strength (nominal) Length of Magnetic Field Mounting Position Weight (not including magnet) R-F Connections

Type of Cooling Glass Temperature Cooling Air Required (Note 4)

TYPICAL OPERATION AS POWER AMPLIFIER:

Anode Voltage Shell Current Collector Voltage Collector Current Control Electrode Voltage Power Output (see Curves) Gain (see Curves) Duty Cycle R-F Beam

- Oxide Impregnated Unipotential JEDEC Designation B5-57 Metal 1000 gauss 6.75 inches uniform Any 1 lb. 7 ozs. 50 ohm coax with Type "N" Jack UG-23B/U Forced Air 160°C max. 30 cfm
 - 1200 volts 3 ma 1400 volts 70 ma 0 volts 10 watts nominal 30 db nominal
- Variable to 1.0 1.0

TYPICAL OPERATION AS LINEAR AMPLIFIER:

(Input powers less than -10 dbm)

Anode Voltage	1150	volts
Shell Current		ma
Collector Voltage		volts
Collector Current		ma
Control Electrode Voltage	0	volts
Gain (see Curves)		db nominal
Noise Figure		db
Duty Cycle		
R-F	Variable to 1.0	
Beam	1.0	

Note 1: All voltages shown are with respect to cathode. Anode and helix are connected internally to the shell. The shell is normally operated at approximate ground potential and the d-c connection is made to the shell of the solenoid.

- 3 -

Note 2: The shell current is the difference between the cathode current and collector current. Since this current, in general, should be minimized, it is desirable to measure the current from shell to ground. It is recommended that overload protection be provided to remove high voltage if the shell current exceeds 5 ma.

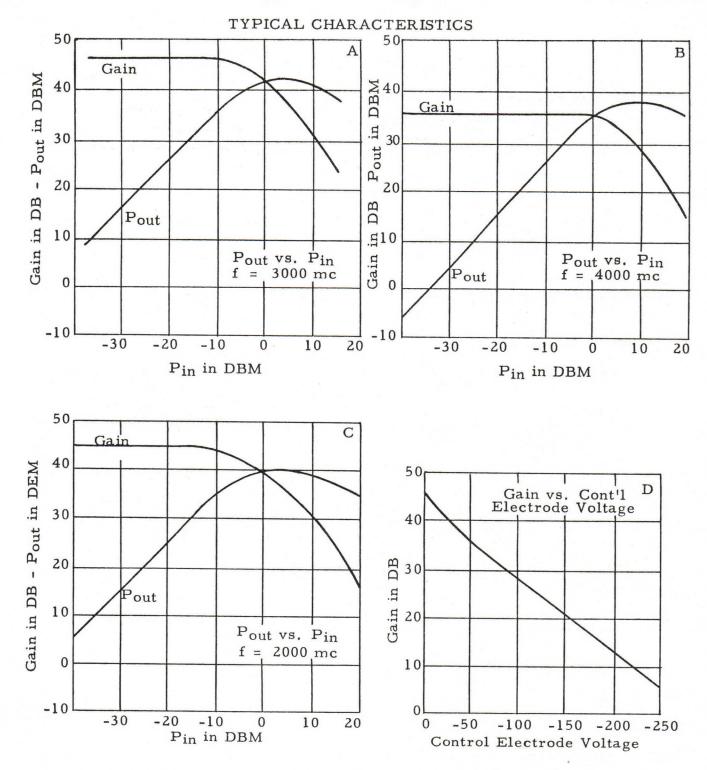
Note 3: It is generally desirable to operate the collector at 100 to 200 volts positive with respect to shell, and potential difference between collector and shell should be limited to 300 volts maximum.

- Note 4: Forced air cooling of collector is required for average collector power in excess of 10 watts. As the collector power is increased, the air flow required increases. At the maximum collector power of 150 watts, a minimum air flow of 30 cfm through the cooling fins is required.
- Note 5: This electrode is a remote cutoff grid, suitable for use as a gain control providing approximately 30 db control range but is not suitable for low level pulsing of the beam. It is recommended that, where feasible, provision should be made to operate the tube with small negative voltage on this electrode (-5 to -10 volts) as this permits operation of the tube at approximately optimum conditions with very low interception (shell current). It may also be operated fixed at cathode potential, if desired.

OPERATING PROCEDURE:

- (1) Insert tube in solenoid, secure in place with stops provided, make connections.
- (2) Turn on cooling air, solenoid voltage (adjust to approximately 1000 gauss), heater voltage, collector voltage (if used), control electrode voltage (if used).
- (3) Raise high voltage to desired value, readjusting magnetic field if necessary to obtain minimum shell current. At no time should shell current exceed 5 ma.

(4) After initial set up as above, tube voltages may be applied simultaneously; however, it is recommended that heater voltage, solenoid voltage, and cooling air be applied at least two minutes before applying high voltage. Observance of the 5 ma maximum limit for shell current is essential to prevent tube damage.

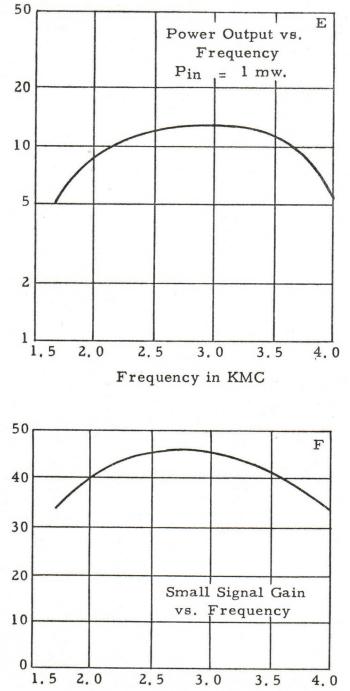

- 4 -

The data presented here is representative of operation of this type as an amplifier with maximum bandwidth and does not indicate the maximum performance obtainable under specific conditions, particularly narrower bandwidths.

Standard solenoids to operate this tube are available, and solenoids designed for particular applications can be supplied.

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division Box 412 Clifton, New Jersey

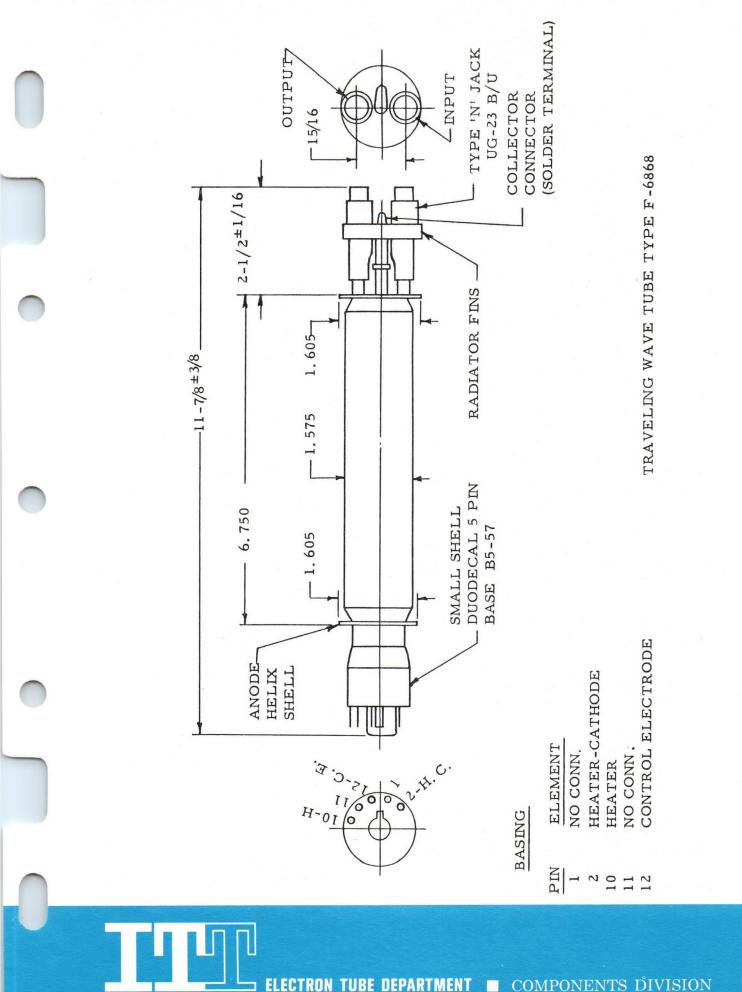

- 5

-

2-60

TYPICAL CHARACTERISTICS

- 6 -



All curves shown with magnetic field set for minimum shell current in range of 750 to 1000 gauss.

For curves A, B, C, and E, voltage is set for maximum P_{out} at f = 4.0 kmc with P_{in} = 1 mw approx. 1200 v.).

For curve F, voltage is set for maximum gain at f = 4.0 kmc with P_{in} = -20 dbm. (approx. 1150 v.).

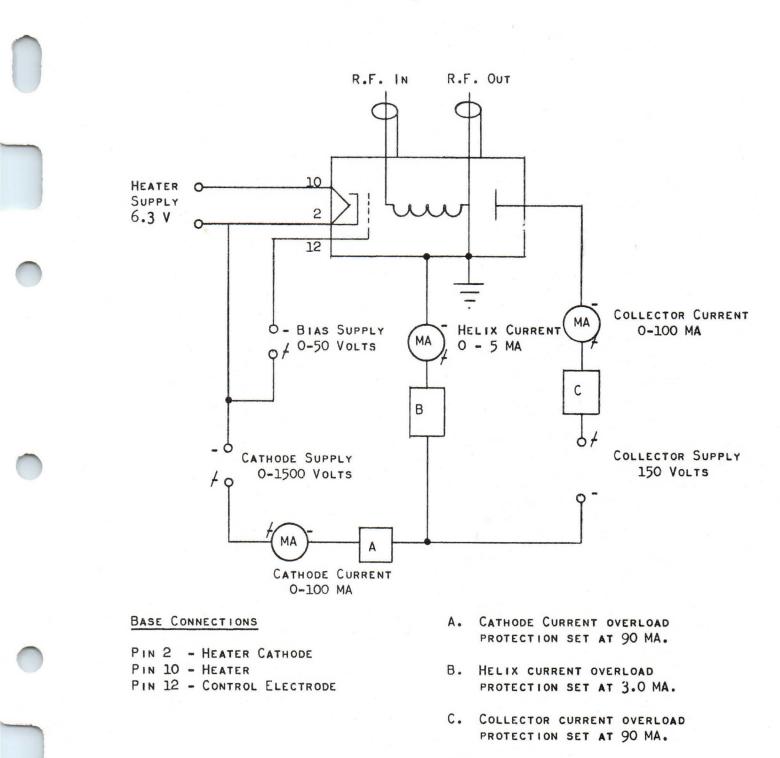
Curve D shows typical shape and range of control electrode characteristic.

COMPONENTS DIVISION CORPORATION, CLIFTON, NEW JERSEY ON TUBE

OPERATING INSTRUCTIONS FOR THE F-6868 TRAVELING WAVE TUBE

WHEN PLACING THE F-6868 TRAVELING WAVE TUBE IN OPERATION FOR THE FIRST TIME, THE FOLLOWING PROCEDURE SHOULD BE FOLLOWED:

- 1. MAKE A VISUAL INSPECTION OF THE TUBE TO CHECK FOR LOOSE CONNECTIONS OR GLASS CRACKS.
- 2. PLACE THE TUBE IN THE PROPER SOLENOID AND MAKE CONNECTIONS TO THE TUBE AND SOLENOID.
 - A) HEATER, HEATER/CATHODE, AND CONTROL ELECTRODE CONNECTIONS ARE MADE TO THE BASE OF THE TUBE. THE COLLECTOR CONNECTION IS MADE TO A SOLDER LUG ON THE RADIATOR. THE SHELL/HELIX CONNECTION IS MADE TO THE SHELL OF THE TUBE AND/OR THE CASE OF THE SOLENOID WHICH IS GROUNDED.
- 3. APPLY COOLING TO THE SOLENOID AND TO THE RADIATOR OF THE TUBE.
- 4. VOLTAGES ARE APPLIED IN THE FOLLOWING ORDER:
 - A) HEATER VOLTAGE (6.3 VOLTS).
 - B) SOLENOID VOLTAGE (ADJUST SOLENOID CURRENT FOR PROPER MAGNETIC FIELD 1000 GAUSS).
 - C) CONTROL ELECTRODE VOLTAGE. (USUALLY ZERO VOLTS WITH RESPECT TO CATHODE, BUT MAY BE USED TO CONTROL OUTPUT OF TUBE BY APPLYING NEGATIVE VOLTAGE WITH RESPECT TO CATHODE. THIS ELECTRODE SHOULD NEVER GO POSITIVE WITH RESPECT TO CATHODE.)
 - D) COLLECTOR VOLTAGE (/150 VOLTS WITH RESPECT TO SHELL).
 - E) CATHODE VOLTAGE. ADJUST SLOWLY TO THE VALUE INDICATED ON THE DATA SHEET; USUALLY ABOUT MINUS 1250 VOLTS WITH RESPECT TO THE SHELL. AT ALL TIMES OBSERVE HELIX CURRENT AND DO NOT PERMIT TO RISE ABOVE 3.0 MA. IT IS POSSIBLE FOR HELIX CURRENT TO READ NEGATIVE WITHOUT DAMAGE TO THE TUBE, BUT BEFORE OPERATION UNDER THIS CONDITION IS PERMITTED, POLARITY OF THE HELIX CURRENT METER SHOULD BE CHECKED TO BE SURE IT IS CORRECT.


OPERATING INSTRUCTIONS FOR THE F-6868 TRAVELING WAVE TUBE (CONTINUED)

- 5. R.F. INPUT TO THE TUBE SHOULD BE LIMITED TO 1.0 WATT AND R.F. OUTPUT SHOULD BE LIMITED TO 20 WATTS.
- 6. THE CATHODE VOLTAGE MAY BE ADJUSTED FOR OPTIMUM POWER OUTPUT AT THE DESIRED FREQUENCIES.

THE FOLLOWING PRECAUTIONS SHOULD BE TAKEN WHEN OPERATING THE TRAVELING WAVE TUBE:

- Never operate the F-6868 without proper cooling of the collector. 50 CFM directed across the radiator fins should be sufficient. In any case, the temperature of the glass to metal seals should not be permitted to exceed 160°C.
- 2. Never operate the F-6868 without the proper magnetic field. Be sure sufficient cooling is supplied to tube and solenoid.
- 3. NEVER OPERATE THE F-6868 WITH HELIX CURRENT IN EXCESS OF 3.0 MA. UNDER MOST CONDITIONS HELIX CURRENT WILL BE 1.0 MA OR LESS. IT IS IMPORTANT THAT HELIX OVERLOAD PROTECTION BE PROVIDED.
- 4. BE SURE COAXIAL CABLES TO BE CONNECTED TO THE TUBE INPUT AND OUTPUT CONNECTORS ARE ASSEMBLED CORRECTLY. IF THE INNER CONDUCTOR OF THE CABLE CONNECTION IS TOO LONG, PRESSURE WILL BE APPLIED TO A GLASS BEAD INSIDE THE TUBE, CAUSING PERMANENT DAMAGE TO THE TUBE. IF THE INNER CONDUCTOR OF THE CABLE CONNECTOR IS TOO SHORT, A POOR CONNECTION WILL RESULT IN POOR R.F. PERFORMANCE.

THE ATTACHED SCHEMATIC IS A SUGGESTED METHOD OF CONNECTING THE F-6868 SHOW-ING LOCATION OF PROTECTION CIRCUITS AND METER POLARITY.

NOTE: ALL OVERLOADS SHOULD OPERATE TO DISCONNECT HIGH VOLTAGE.

CONNECTION DIAGRAM FOR F-6868 TWT TUBE

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY

- 3 -

F-6996 TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

The F-6996 is a 10 watt CW traveling wave amplifier tube having 30 db gain and 8000 to 9600 mc frequency range. It is constructed in a rugged metal envelope with a helix-type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "N" connectors. The tube is self-aligning in the external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide impregnated cathode are used. The tube is suitable for either CW or pulse service.

ELECTRICAL RATINGS, ABSOLUTE VALUES:

Heater Voltage	6.3 (±10%)	volts
Heater Current	2.3	amperes
Maximum Anode Voltage (Note 1)	3400	volts
Maximum Shell Current (Note 2)	3	ma
Maximum Collector Voltage (Note 3)	3500	volts
Maximum Collector Dissipation (Note 4)	200	watts
Maximum Control Electrode Voltage (Note 5)	-250	volts
ELECTRICAL INFORMATION:		
Maximum Frequency	9600	mc
Minimum Frequency	8000	mc
Minimum Cold Transmission Loss	50	db
Capacitance		
Control Electrode to All Other Elements	10	μμfd
All Gun Elements to Shell	4.8	μμfd

MECHANICAL INFORMATION:

Type of Cathode Base, Small Shell Duodecal, 5 Pin Type of Envelope Magnetic Field Strength (Nominal) Length of Magnetic Field Mounting Position Weight (not including Magnet) R-F Connections

Type of Cooling Glass Temperature Cooling Air Required (Note 4)

TYPICAL OPERATION AS POWER AMPLIFIER:

Anode Voltage Shell Current Collector Voltage Collector Current Control Electrode Voltage Power Output Gain Duty Cycle R-F Beam Oxide Impregnated Unipotential **JEDEC** Designation B5-57 Metal 1300 Gauss 6.75 inches uniform Anv 1 1b. 7 ozs. 50 ohm coax with type "N" Jack UG-23B/U Forced Air 160°C max. 70 cfm

3200	volts
1	ma
3300	volts
50	ma
-15	volts
10	watts nominal
30	db nominal

Variable to 1.0 1.0

Note 1: All voltages shown are with respect to cathode. Anode and helix are connected internally to the shell. The shell is normally operated at approximate ground potential and the d-c connection is made to the shell of the solenoid.

- 2 -

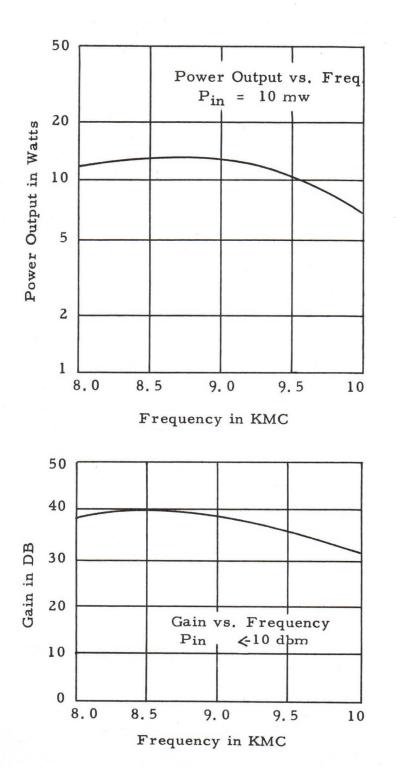
- Note 2: The shell current is the difference between the cathode current and collector current. Since this current, in general, should be minimized, it is desirable to measure the current from shell to ground. It is recommended that overload protection be provided to remove high voltage if the shell current exceeds 3 ma.
- Note 3: It is generally desirable to operate the collector at 50 to 100 volts positive with respect to shell, and potential difference between collector and shell should be limited to 300 volts maximum.

- F-6996 TRAVELING WAVE TUBE
- Note 4: Forced air cooling of collector is required for average collector power in excess of 10 watts. As the collector power is increased, the air flow required increases. At the maximum collector power of 200 watts, a minimum air flow of 70 cfm through the cooling fins is required.
- Note 5: The control electrode voltage is adjusted for maximum beam transmission (collector current/cathode current).

OPERATING PROCEDURE:

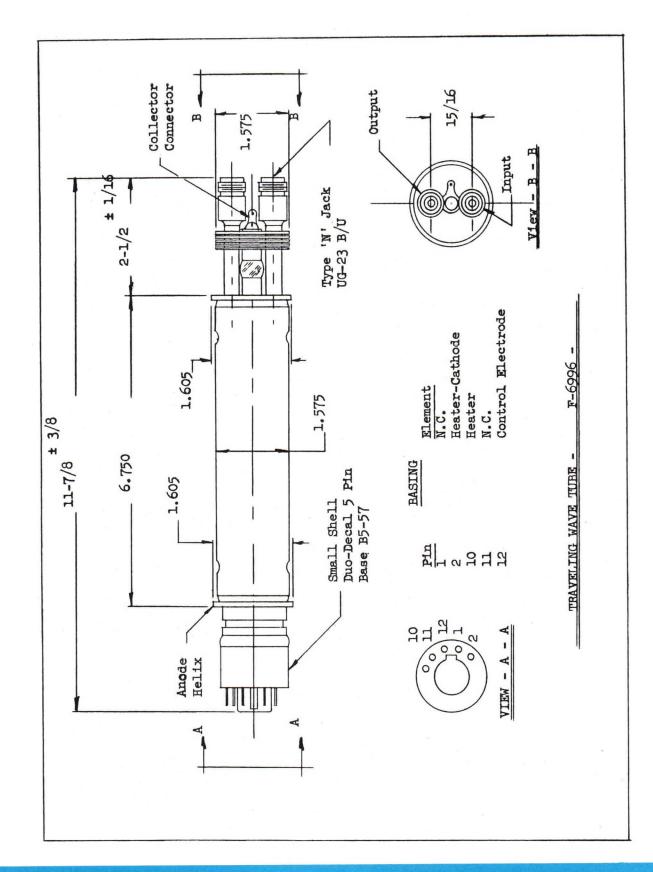
- (1) Insert tube in solenoid, secure in place with stops provided, make connections.
- (2) Turn on cooling air, solenoid voltage (adjust to approximately 1300 gauss), heater voltage, collector voltage (if used), control electrode voltage (approximately -20 volts).
- (3) Raise high voltage to desired value, adjusting solenoid voltage and control electrode voltage for maximum collector current, and observing care not to exceed 3 ma shell current. It may be necessary to rotate the tube in the solenoid to the point giving best transmission.
- (4) The above procedure is not required after initial set up; however, heater voltage should be applied one minute before applying high voltage, and proper magnetic field and control electrode voltage must be applied before applying high voltage. Observance of the 3 ma maximum limit on shell current is essential to prevent tube damage.
- (5) Heater warm up of 2 minutes before applying high voltage is recommended.

Standard solenoids to operate this tube are available, and solenoids designed for particular applications can be supplied.


Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division Box 7065 ROANOKE, VIRGINIA

- 3 -


TYPICAL CHARACTERISTICS

4

Magnetic field and control electrode voltage set for best transmission.

Voltage set at approximately 3200 volts.

- 5 -

2-60

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

TENTATIVE

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY

DESCRIPTION

The F-7066 is a 50 mw CW traveling wave amplifier tube having 30 db gain and 8.0 to 12.0 kmc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with female TNC connectors. The tube is self-aligning in the external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide coated cathode are used. The tube is suitable for either CW or pulse service.

ELECTRICAL RATINGS, ABSOLUTE VALUES

Heater Voltage	6.3 ([±] 5%)	volts
Heater Current	0.85	ampere
Maximum Anode Voltage (Note 1)	1600	volts
Maximum Helix Current (Note 2)	2	ma
Maximum Collector Dissipation (Beam Power)	15	watts
Maximum Control Electrode Voltage (Note 3)	-500	volts
ELECTRICAL INFORMATION:		
Maximum Frequency	12.0	kmc
Minimum Frequency	8.0	kmc
Minimum Cold Transmission Loss	50	db
Capacitance		
Control Electrode to All Elements	10	μμf (max.)

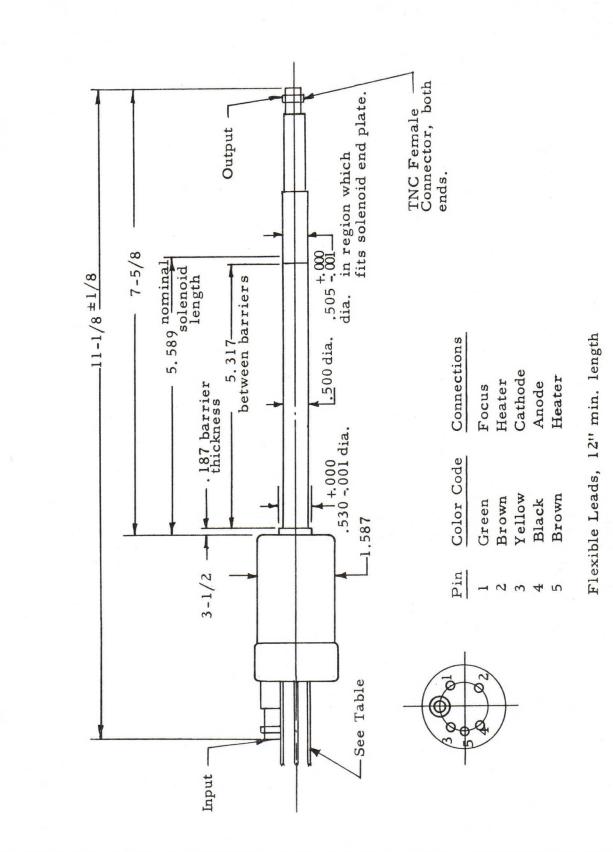
MECHANICAL:

Type of Cathode	Oxide Coated	Unipotential
Gun Connections		Flying Leads
R-F Connections		Female TNC
Magnetic Field Strength (nominal)	900	gauss
Mounting Position		Any
Weight (tube only)	1	pound
Type of Cooling	Conduction to	Solenoid

TYPICAL OPERATION:

Anode Voltage Anode Current Helix Current Control Electrode Voltage (Note 4) Power Output Gain Duty Cycle (Note 4) R-F Beam 1500 volts
5 ma
0.5 ma
-15 volts
50 mw, nominal
30 db, nominal

Variable to 1.0 1.0


Note 1: All voltages shown are with respect to cathode. Anode and collector are connected internally to the shell, and the outer coax conductor of the r-f connections is also at shell potential. The helix is connected to the center conductor of the coax line and a d-c connection to the helix must be provided externally in the r-f circuitry.

- 2 -

- Note 2: The helix current should, in general, be minimized and must be less than the maximum rating. The control electrode voltage and magnetic field (solenoid current) can be properly adjusted before connection of r-f cables by monitoring current to the center coax conductor. It is desirable, when possible, to monitor this current during operation and to provide overload protection. In pulsed beam operation, the peak helix current may exceed 2 ma, but care should be taken to operate at reasonably low values and average current must not exceed 2 ma.
- Note 3: The control electrode voltage is adjusted for best transmission for CW operation (normally about -15 volts). Beam gate off can be accomplished by applying voltage of -400 to -500 volts. Operation in the region of control electrode voltage between approximately -15 volts and -400 volts can be utilized with the control electrodes used as a gain control.
- Note 4: Gated beam operation can also be utilized by applying -400 to -500 volts to the control electrode for gate off and approximately -15 volts (this value adjusted for best transmission) for gate on. In this type of operation, the values of power output, anode current and helix current become peak values.

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division Box 412 - Clifton, New Jersey

3 -

OUTLINE - F-7066 TRAVELING WAVE TUBE

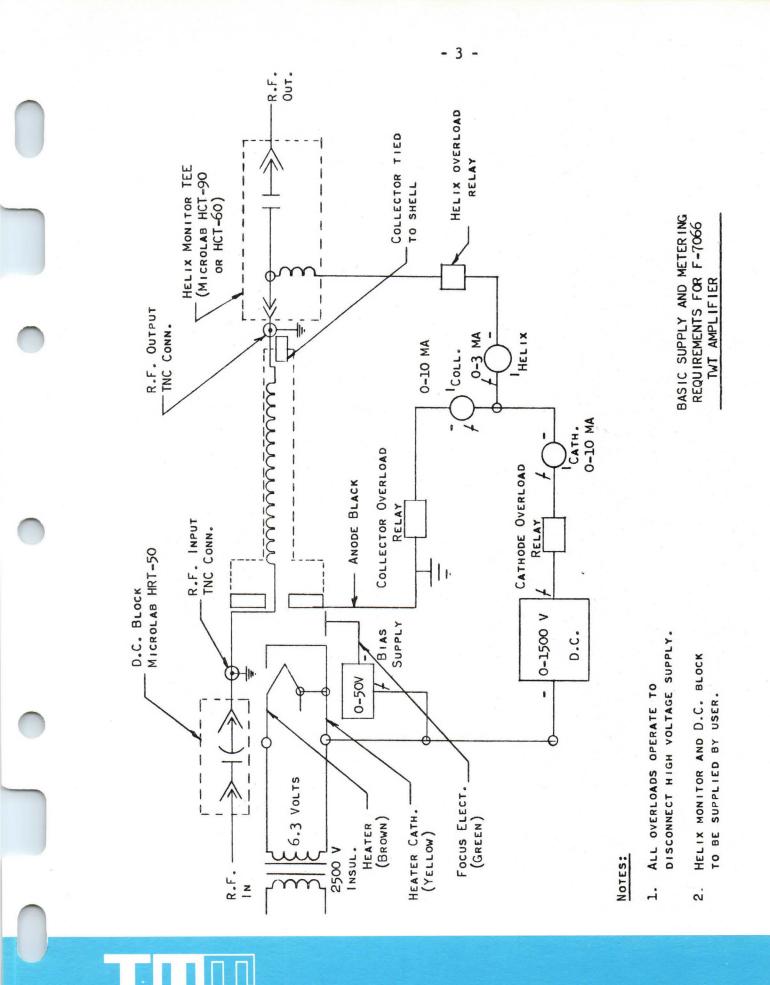
2-60

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

OPERATING INSTRUCTIONS FOR THE F-7066 TRAVELING WAVE TUBE

THE F-7066 IS A 50 MILLIWATT CW TRAVELING WAVE TUBE OPERATING OVER THE BAND OF 8.0 TO 12.0 KMC. IT REQUIRES A MAGNETIC FIELD OF 900 GAUSS FOR PROPER FOCUSING. BASIC POWER REQUIREMENTS ARE 10 MA AT 1500 V AND A 50 VOLT BIAS SUPPLY, AS WELL AS 6.3 VOLTS AT 1.0 AMPERE FOR THE HEATER.

WHEN PLACING THE F-7066 IN OPERATION FOR THE FIRST TIME, THE FOLLOWING PRO-CEDURE SHOULD BE FOLLOWED:


- 1. MAKE A VISUAL INSPECTION OF THE TUBE TO CHECK FOR LOOSE CONNECTIONS OR OTHER MECHANICAL DEFECTS.
- PLACE THE TUBE IN THE PROPER SOLENOID AND MAKE CONNECTIONS TO THE TUBE AND SOLENOID. OBSERVE COLOR-CODING OF THE TUBE LEADS AND POLARITY MARKING ON THE SOLENOID.
- 3. APPLY COOLING TO THE SOLENOID.
- 4. APPLY THE FOLLOWING VOLTAGES IN THE FOLLOWING ORDER:
 - 4.1 HEATER VOLTAGE (6.3 VOLTS).
 - 4.2 SOLENOID VOLTAGE (ADJUST SOLENOID CURRENT TO YIELD 900 GAUSS).
 - 4.3 CONTROL ELECTRODE VOLTAGE (APPLY BIAS VOLTAGE SPECIFIED ON DATA SHEET SUPPLIED WITH TUBE.)
 - 4.4 CATHODE VOLTAGE (ADJUST SLOWLY TO THE VALUE INDICATED ON THE DATA SHEET; USUALLY ABOUT MINUS 1400 VOLTS WITH RESPECT TO THE SHELL. AT ALL TIMES MONITOR HELIX CURRENT AND OBSERVE THE 2.0 MA MAXIMUM LIMIT.)
- 5. R.F. INPUT SHOULD BE LIMITED TO 10 MW.
- 6. THE CATHODE VOLTAGE MAY BE OPTIMIZED FOR OPTIMUM POWER OUTPUT AT THE DESIRED FREQUENCIES.

- 2 -

THE FOLLOWING PRECAUTIONS SHOULD BE TAKEN WHEN OPERATING THE TRAVELING WAVE TUBE:

- 1. NEVER OPERATE THE F-7066 WITHOUT PROPER MAGNETIC FIELD. BE SURE SUF-FICIENT COOLING IS SUPPLIED TO TUBE AND SOLENOID.
- 2. NEVER OPERATE THE F-7066 WITH HELIX CURRENT IN EXCESS OF 2.0 MA. UNDER MOST CONDITIONS HELIX CURRENT WILL BE 1.0 MA OR LESS. IT IS IMPORTANT THAT HELIX OVERLOAD PROTECTION BE PROVIDED.
- 3. BE SURE COAXIAL CABLES TO BE CONNECTED TO THE TUBE INPUT AND OUTPUT CONNECTORS ARE ASSEMBLED CORRECTLY. IF THE INNER CONDUCTOR OF THE CABLE CONNECTOR IS TOO LONG, PRESSURE WILL BE APPLIED TO A CERAMIC BEAD, WHICH MAY CAUSE DAMAGE TO THE TUBE. IF IT IS TOO SHORT, A POOR CONNECTION WILL RESULT CAUSING POOR R.F. PERFORMANCE.

THE ATTACHED SCHEMATIC IS A SUGGESTED METHOD OF CONNECTING THE F-7066 AND SHOWS THE LOCATION OF PROTECTION CIRCUITS AND METER POLARITY.

TENTATIVE

DESCRIPTION:

The F-7067 is a 1 watt pulse traveling wave amplifier tube having 30 db gain and 8.0 to 12.0 kmc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with female TNC connectors. The tube is self-aligning in the external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide impregnated cathode are used. The tube is for pulse service, at a maximum duty cycle of .04. A grid suitable for pulsing is provided.

ELECTRICAL RATINGS, ABSOLUTE VALUES:

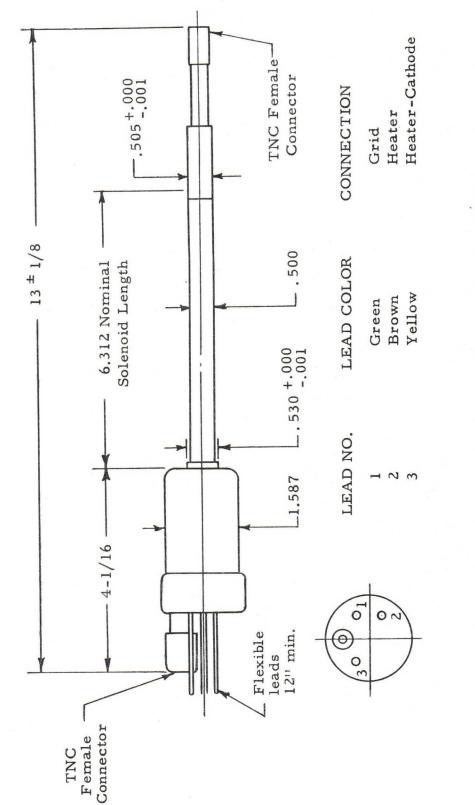
Heater Voltage	6.3 (±10%)	volts
Heater Current	2.3	amperes
Maximum Anode Voltage (Note 1)	4500	volts
Maximum Helix Current (Note 2)	15	ma peak
Maximum Collector Dissipation (beam power)	10	watts
Maximum Grid Voltage (Note 3)		
Positive	+100	volts
Negative	-100	volts
ELECTRICAL INFORMATION:		
Maximum Frequency	12.0	kmc
Minimum Frequency	8.0	kmc
Minimum Cold Transmission Loss	50	db
Capacitance		
Control Electrode to all elements	15	μµf max.

F-7067 TRAVELING WAVE TUBE

MECHANICAL INFORMATION:

Type of Cathode	Oxide Impregnated Unipotential
Gun Connections	Flying Leads
R-F Connections	Female TNC Connectors
Magnetic Field Strength (nominal)	1200 gauss
Mounting Position	Any
Weight (tube only)	1 pound
Type of Cooling	Conduction to Solenoid

2 -


TYPICAL OPERATION:

Anode Voltage	3600	volts
Anode Current	50	ma peak
Helix Current	5	ma peak
Grid Voltage		
Bias	-10	volts
Applied Voltage Pulse	120	volts peak
Power Output (nominal) (Note 4)	1	watts peak
Gain (nominal)	30	db
Duty Cycle	. 01	

- Note 1: All voltages shown are with respect to cathode. Anode and collector are connected internally to the shell, and the outer coaxial conductor of the r-f connections is also at shell potential. The helix is connected to the center conductor of the coaxial line and a d-c connection to the helix must be provided externally in the r-f circuitry.
- Note 2: Initial adjustments of voltage and magnetic field may be made at low duty cycles. 5 ma helix current must not be exceeded at maximum duty cycle (.04).
- Note 3: Positive voltage must not be applied to the grid in the absence of anode voltage.
- Note 4: 2 watts power output at 30 db gain can be obtained from 8.0 to 11.0 kmc.

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division P.O. Box 412 Clifton, New Jersey

OUTLINE - F-7067 TRAVELING WAVE TUBE

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

1

- 3 -

F-7338 TRAVELING WAVE TUBE

FORMERLY F-6826A

TENTATIVE

DESCRIPTION:

The F-7338 is a 1 kilowatt pulse traveling wave amplifier tube having 40 db gain and 2000 to 4000 mc frequency range. It is constructed in a rugged metal envelope with a helix-type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "N" connectors. The tube is self-aligning in the external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .005 and pulse lengths up to 10 microseconds can be used.

A control grid suitable for grid pulsing is provided.

ELECTRICAL RATINGS, ABSOLUTE VALUES:

Capacitance - control grid to all other elements

Heater Voltage	6.3 (±10%)	volts
Heater Current	5.0	amperes
Maximum Anode Voltage (Note 1)	8500	volts
Maximum Shell Current (Note 2)	0.5	ampere peak
Maximum Collector Voltage (Note 3)	9000	volts
Maximum Collector Dissipation (Note 4)	100	watts avg.
Maximum R-F Input Power	10	watts avg.
Maximum R-F Output Power	10	watts avg.
Maximum Duty Cycle	. 005	
Maximum Pulse Width (Beam)	10	μ sec.
Maximum Cathode Current	2.5	amperes peak
Maximum Grid Voltage		
Negative	-300	volts
Positive (Note 7)	+6 %	of anode voltage
ELECTRICAL INFORMATION:		
Maximum Frequency (Note 5)	2000	mc
Minimum Frequency (Note 5)	4000	mc
Minimum Cold Transmission Loss	60	db

9 µµfd

MECHANICAL INFORMATION:

Type of Cathode Base, Small Shell Duodecal, 6 Pin Type of Envelope Magnetic Field Strength Length of Magnetic Field Mounting Position Weight (not including magnet) R -F Connections

Type of Cooling Air flow on Collector Radiator (Note 4) Glass Temperature

TYPICAL OPERATION AS POWER AMPLIFIER:

Center Frequency Anode Voltage (Note 1) Cathode Current Collector Voltage (tied to shell) Collector Current Power Output (at center frequency) Bandwidth (Note 6) Gain (Note 6) Duty Pulse Width Grid Bias (for cut-off) Grid Voltage during Pulse (Note 8) Grid Current during Pulse Oxide Impregnated Unipotential JEDEC Designation B6-63 Metal 1200 gauss 9.625 inches uniform Any 1 lb. 14 ozs. 50 ohm coax with Type "N" Jack UG-23B/U Forced Air 20 cfm 160°C max.

- $\begin{array}{cccc} 3000 & mc \\ 7800 & volts \\ 1.8 & amperes peak \\ 7500 & volts \\ 1.4 & amperes peak \\ 1.8 & kw peak \\ 2.0 & to & 4.0 & kmc \\ & 40 & db \\ .001 & & & \\ & 2 & \mu \ sec. \\ -100 & volts \\ & +350 & volts \\ & 0.1 & amperes peak \end{array}$
- Note 1: All voltages shown are with respect to cathode. Anode and helix are connected internally to the shell. The shell is normally operated at ground potential and the anode connection is made to the shell of the solenoid.
- Note 2: The shell current is the difference between cathode current and collector current. Since this current, in general, should be minimized, it may be desirable to measure current from shell to ground. In making this measurement, care should be taken that both the tube and solenoid are completely insulated from ground. Once operating characteristics (voltage, current, and magnetic field) have been established, shell should be grounded.

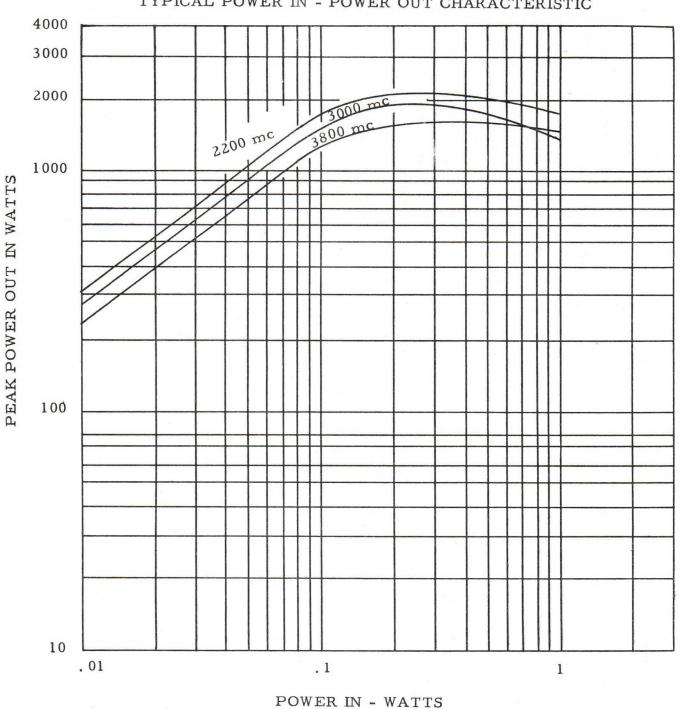
2 - 60

- Note 3: The tube may be operated with the collector tied to the shell (anode and helix) or may be operated at several hundred volts positive with respect to shell with slight improvement in beam transmission. The potential difference between collector and shell must be limited to 500 volts minimum.
- Note 4: Forced air cooling is required for average collector power in excess of 10 watts. As the collector power is increased, the air flow required increases. At the maximum collector power of 100 watts, a minimum air flow of 20 cfm through the cooling fins is required.
- Note 5: Useful gain and power output exists below 2000 mc and above 4000 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated values.
- Note 6: The following gain, power, bandwidth relations apply: The minimum power and gain is 1 kw at 40 db from 2400 to 3600 mc, and 500 watts at 37 db from 2000 to 4000 mc. Small signal gain is less than 50 db over the operating bandwidth. Saturated power output of at least 1 kw can be obtained from 2200 to 4000 mc. Bandwidth between 6 db small signal points is greater than 500 mc and bandwidth between 10 db small signal points is greater than 1800 mc.
- Note 7: Positive voltage must not be applied to the grid in the absence of anode voltage.
- Note 8: The positive grid voltage pulse should be the minimum consistent with normal power output.

GENERAL OPERATING INSTRUCTIONS:

- (1) Heater warm up of 2 minutes before applying high voltage is recommended.
- (2) High voltage must not be applied in the absence of proper grid bias and magnetic field. Positive grid uplse voltage must not be applied in the absence of high voltage.
- (3) Initial adjustments should be done at low duty cycle (less than . 001) to prevent damage due to high shell (interception) current.

F-7338 TRAVELING WAVE TUBE

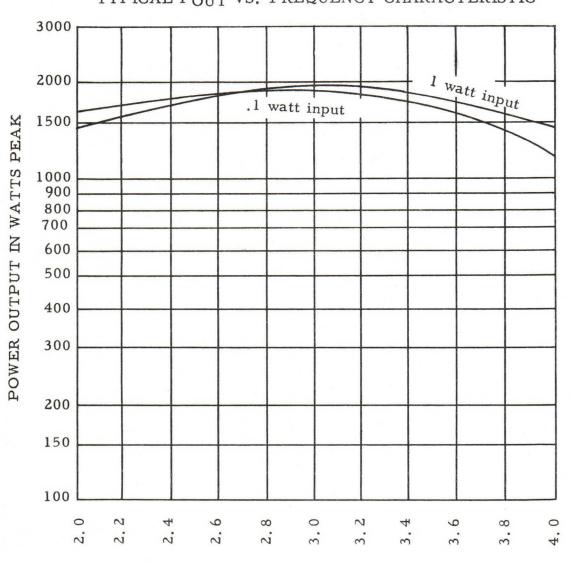

Standard solenoids to operate this tube are available, and solenoids designed for particular applications can be supplied.

- 4 -

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division Box 412 Clifton, New Jersey

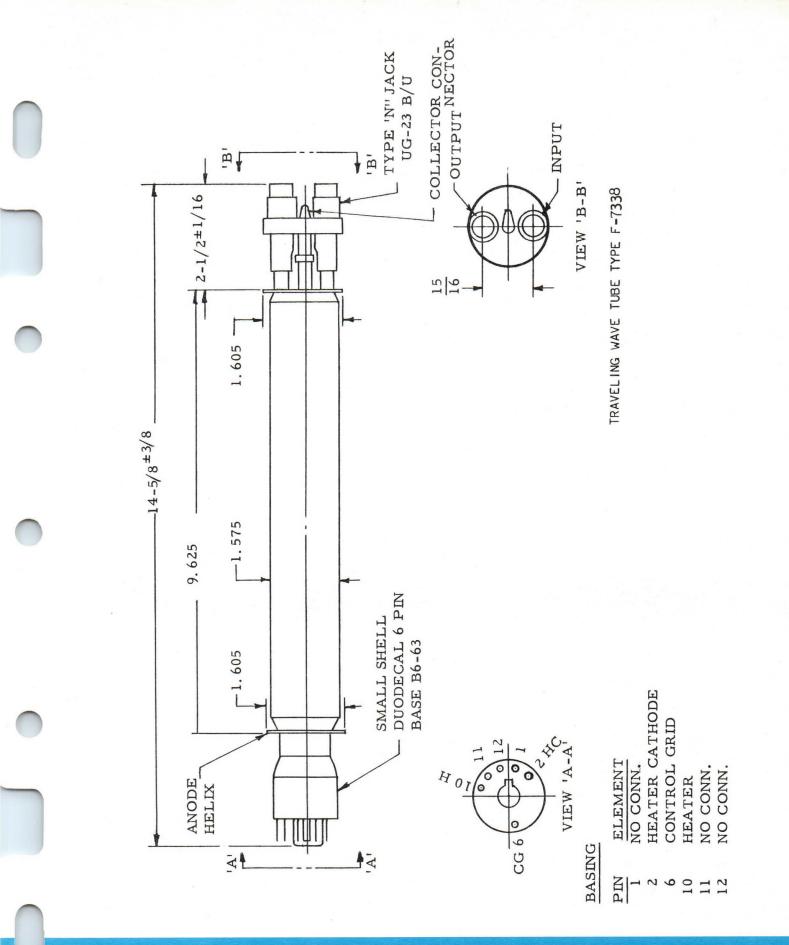
F-7338 TRAVELING WAVE TUBE


TYPICAL POWER IN - POWER OUT CHARACTERISTIC

ELECTRON TUBE DEPARTMENT
COMPONENTS DIVISION

ΠП

2-60


F-7338 TRAVELING WAVE TUBE

TYPICAL POUT VS. FREQUENCY CHARACTERISTIC

- 6 -

FREQUENCY IN KMC

1

F-7339 TRAVELING WAVE TUBE

FORMERLY TYPE D-92

TENTATIVE

DESCRIPTION:

The F-7339 is a 1 kilowatt pulse traveling wave amplifier tube having 27 db gain and 8500 to 9600 mc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "N" connectors. The tube is self-aligning in the external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .005 and pulse widths up to 10 microseconds can be used.

ELECTRICAL RATINGS, ABSOLUTE VALUES:

Heater Voltage	6.3 (±10%)	volts	
Heater Current	2.5	amperes	
Maximum Anode Voltage (Note 1)	12	kilovolts peak	
Maximum Shell Current (Note 2)	0.5	ampere peak	
Maximum Collector Voltage (Note 3)	12.5	kilovolts peak	
Maximum Collector Dissipation (Note 4)	150	watts average	
Maximum R-F Input Power	5	watts average	
Maximum R-F Output Power	10	watts average	
Maximum Duty Cycle	. 005	0	
Maximum Pulse Width (Beam)	10	microseconds	
Maximum Cathode Current	2.5	amperes peak	
ELECTRICAL INFORMATION:			
Maximum Frequency (Note 5)	9600	mc	
Minimum Frequency (Note 5)	8500	mc	
Minimum Cold Transmission Loss	60	db	
Capacitance			
All Gun Elements to Shell	5	μμfd	

MECHANICAL INFORMATION:

Type of Cathode Base, Small Shell Duodecal, 5 Pin Type of Envelope Magnetic Field Strength Length of Magnetic Field Mounting Position Weight (not including magnet) R-F Connections

Type of Cooling Air Flow on Collector Radiator (Note 4) Glass Temperature

TYPICAL OPERATION AS POWER AMPLIFIER:

Center Frequency Anode Voltage (Note 1) Cathode Current Collector Voltage (tied to Shell) Collector Current Power Output (at center frequency) Bandwidth for Po = 1 kilowatt Gain (Note 6) Duty Pulse Width Oxide Impregnated Unipotential JEDEC Designation B5-57 Metal 2000-2800 Gauss 6.75 inches uniform Any 1 lb. 7 ozs. 50 ohm coax with Type "N" Jack UG-23B/U Forced Air 30 cfm 160°C max.

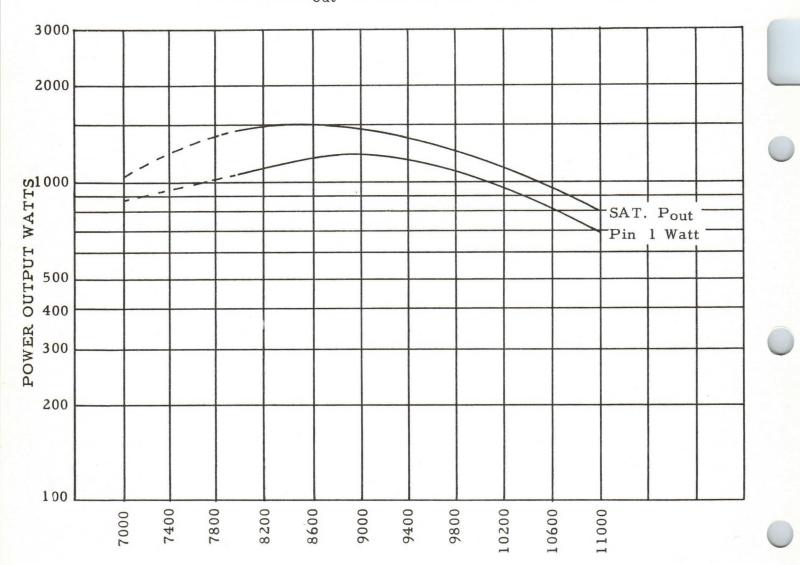
> 9000 mc 11 kilovolts peak 1.8 amperes peak 11 kilovolts peak 1.5 amperes peak 1.5 kilowatts peak 8.5 to 9.6 kmc 27 db .001 2 microseconds

- Note 1: All voltages shown are with respect to cathode. Anode and helix are connected internally to the shell. The shell is normally operated at ground potential and the anode connection is made to the shell of the solenoid.
- Note 2: The shell current is the difference between cathode current and collector current. Since this current, in general, should be minimized, it may be desirable to measure current from shell to ground. In making this measurement, care should be taken that both the tube and solenoid are completely insulated from ground. Once operating characteristics (voltage, current, and magnetic field) have been established, shell should be grounded.

- F-7339 TRAVELING WAVE TUBE
- Note 3: The tube may be operated with the collector tied to the shell (anode and helix) or may be operated at several hundred volts positive with respect to shell with slight improvement in beam transmission. The potential difference between collector and shell must be limited to 500 volts maximum.

- 3 -

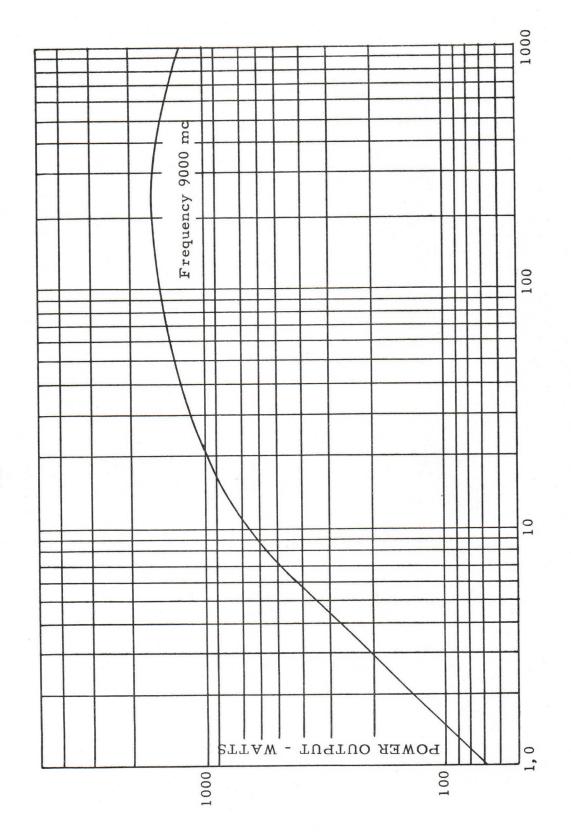
- Note 4: Forced air cooling is required for average collector power in excess of 10 watts. As the collector power is increased, the air flow required increases. At the maximum collector power of 150 watts, a minimum air flow of 30 cfm through the cooling fins is required.
- Note 5: Useful gain and power output exists below 8500 mc and above 9600 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will usually be lower than rated values.
- Note 6: This gain is obtained over the 8.5 to 9.6 kmc bandwidth at the power level indicated. Since this is in the power saturation region, small signal gain will be approximately 10 db higher.


OPERATING INSTRUCTIONS:

- (1) Heater warm up of 2 minutes before applying high voltage is recommended.
- (2) Initial adjustments should be done at low duty cycle (less than . 001 to prevent tube damage due to high shell (interception) current.

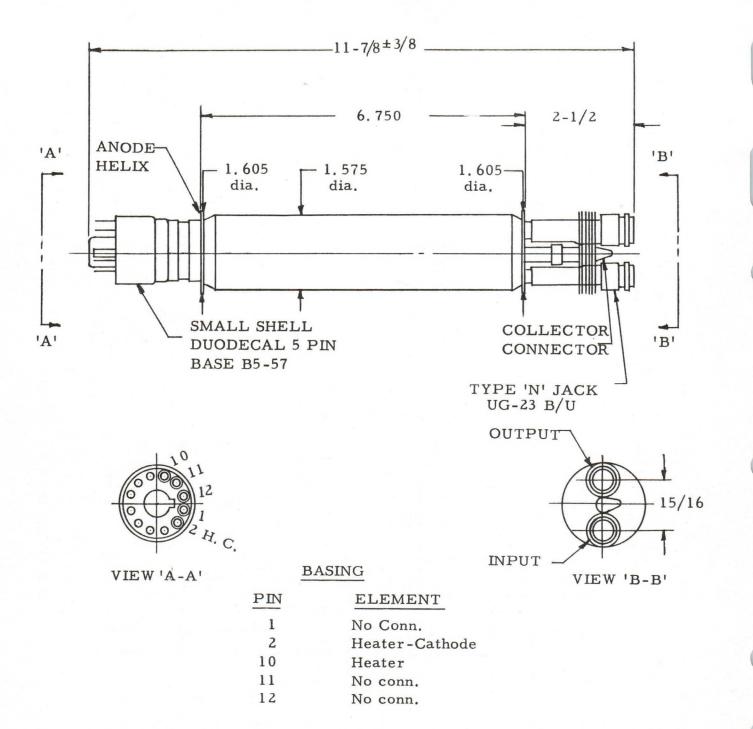
Standard solenoids to operate this tube are available, and solenoids designed for particular applications can be supplied.

Additional information for specific applications can be obtained from the


Electron Tube Applications Section ITT Components Division Box 412 Clifton, New Jersey F-7339 TRAVELING WAVE TUBE

TYPICAL \mathbf{P}_{out} vs. Frequency characteristics

FREQUENCY - MEGACYCLES


TYPICAL Pout VS. Pin CHARACTERISTIC

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

POWER INPUT - MILLIWATTS

F-7339 TRAVELING WAVE TUBE

OUTLINE

TRAVELING WAVE TUBE F-7339

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

F-7340 TRAVELING WAVE TUBE

(FORMERLY D-95)

DESCRIPTION:

The F-7340 is a 1 kilowatt pulse traveling wave amplifier tube having 30 db gain and 8000 to 9600 mc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type 'N' connectors. The tube is self-aligning in the external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .005 and pulse lengths up to 10 microseconds can be used.

A control grid suitable for grid pulsing is provided.

ELECTRICAL RATINGS, ABSOLUTE VALUES:

Heater Voltage	6.3 (±5%)	volts
Heater Current	5.2	amperes
Maximum Anode Voltage (Note 1)	12,000	volts
Maximum Shell Current	1.5	ampere peak
Maximum Collector Dissipation (Note 2)	180	watts average
Maximum R-F Input Power	10	watts average
Maximum R-F Output Power	10	watts average
Maximum Duty Cycle	.005	0
Maximum Pulse Width	10	µ seconds
Maximum Cathode Current	3.0	amperes peak
Maximum Grid Voltage		1 1
Negative	-300	volts
Positive (Note 5)	+450	volts
Maximum Grid Current	.27	ampere peak
ELECTRICAL INFORMATION:		
Maximum Frequency (Note 3)	9600	mc
Minimum Frequency (Note 3)	8000	mc
Minimum Transmission Loss		
at Grid Bias = -200 volts	60	db

F-7340 TRAVELING WAVE TUBE

ELECTRICAL INFORMATION (Continued)

Capacitance Control Grid to All Other Elements

9 µµfd

MECHANICAL INFORMATION:

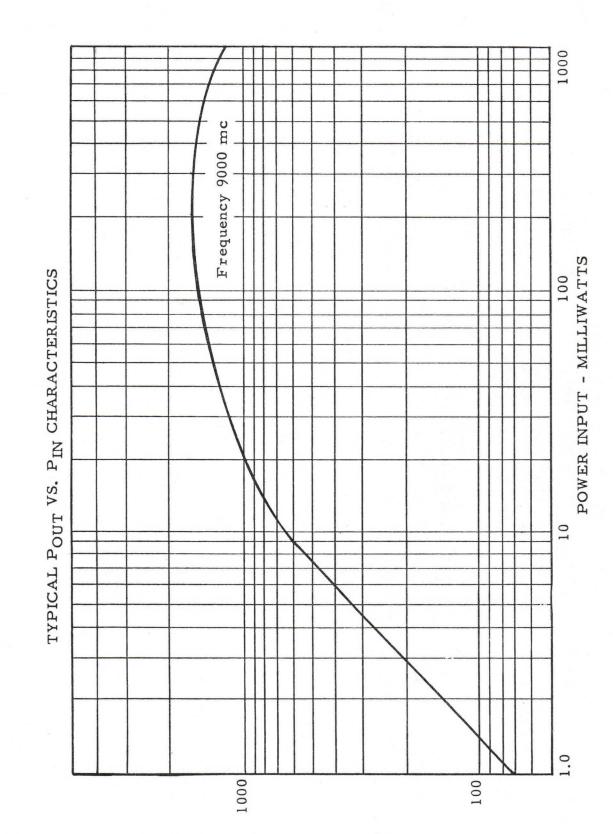
Type of Cathode	Oxide Impregnated Unipotential	
Base (Note 8)	JEDEC Designation B6-65	
Molded Silicone Rubber Base with		
Flying Leads or Small Shell Duodeca	al, 6 Pin	
Type of Envelope	Metal	
Magnetic Field Strength	2400 gauss	
Length of Magnetic Field	6.75 inches uniform	
Mounting Position	Any	
Weight of Tube	1 lb. 7 oz.	
R-F Connections (Note 8)	Type N Jack UG-23 B/U	
Type of Cooling	Forced Air	
Air Flow on Collector Radiator (Note 2)	300 cfm	
Maximum Glass Temperature	160 °C	

TYPICAL OPERATION AS POWER AMPLIFIER:

Center Frequency	9000	mc
Anode Voltage (Note 1)	9600	volts
Cathode Current	1,8	amperes peak
Power Output (at center frequency)	1.8	kw peak
Bandwidth	8.0 to 9.6	kmc
Gain (Note 4)	30	db
Duty	. 001	
Pulse Width	2.0	µ seconds
Grid Bias (for cut-off)	-100	volts
Grid Voltage during Pulse (Note 6)	+350	volts
Grid Current during Pulse	0.1	ampere peak

- F-7340 TRAVELING WAVE TUBE
- Note 1: All voltages shown are with respect to cathode. Anode and helix are connected internally to the shell. Helix connection is center conductor of coax. Shell is normally operated at ground potential and connection is made to the shell of the solenoid.
- Note 2: Forced air cooling is required for average collector power in excess of 10 watts. As the collector power is increased, the air flow required increases. At the maximum collector power of 150 watts, a minimum air flow of 30 cfm through the cooling fins is required.
- Note 3: Useful gain and power output exists below 8000 mc and above 9600 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated values.
- Note 4: This gain is obtained over the 8.0 to 9.6 kmc bandwidth at the power level indicated. Since this is in the power saturation region, small signal gain will be approximately 10 db higher. Fine grain structure of small signal gain is normally less than ± 3 db.
- Note 5: Positive voltage must not be applied to the grid in the absence of anode voltage.
- Note 6: The positive grid voltage pulse should be the minimum consistent with normal power output.
- Note 7: Mismatch up to and including a short circuit in input or output lines will not cause oscillation.
- Note 8: Unless otherwise specified on Purchase Order, tube will be provided with small shell duodecal base and type N jack. Waveguide flange, UG 40 A/U, r-f connections can also be provided.

GENERAL OPERATING INSTRUCTIONS:

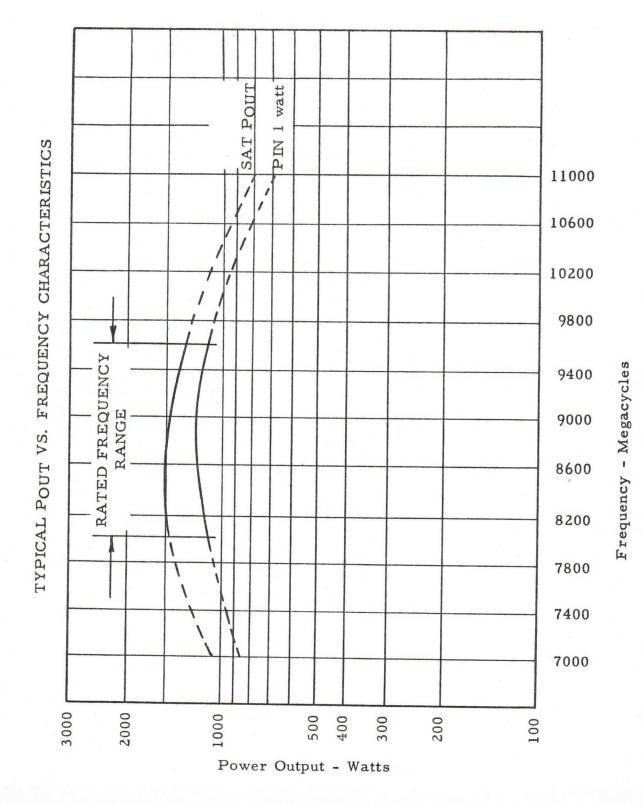

 Heater warm up of 2 minutes before applying high voltage is recommended.

- 4 -

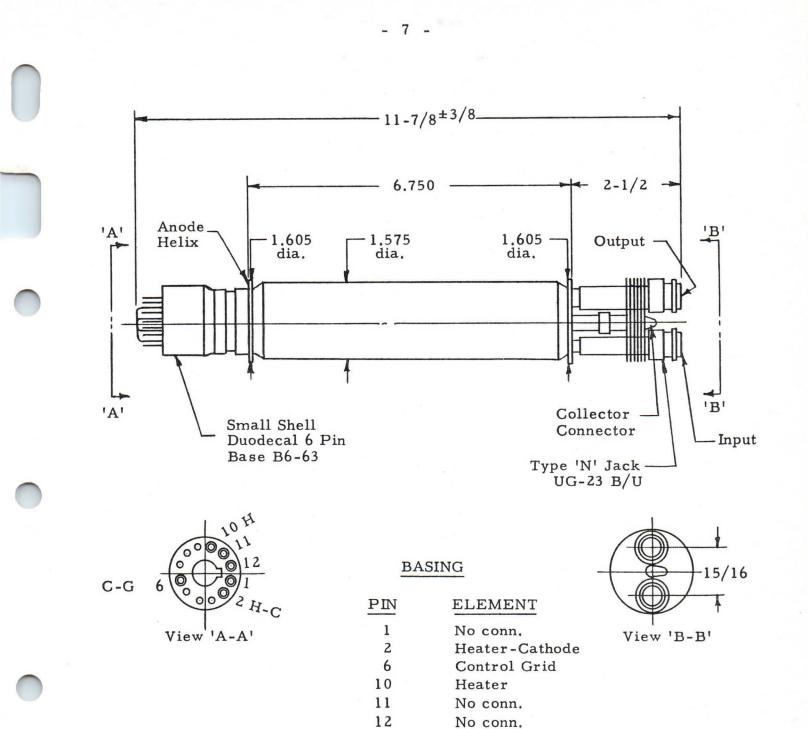
- (2) High voltage must not be applied in the absence of proper grid bias and magnetic field. Positive grid pulse voltage must not be applied in the absence of high voltage.
- (3) Initial adjustments should be done at low duty cycle (less than .001) to prevent tube damage due to high shell (interception) current.

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division P.O. Box 412 Clifton, New Jersey


ЛП

DADTHENT - COMPONENTS DIVISION


10-60

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

F-7340 TRAVELING WAVE TUBE F-7340 TRAVELING WAVE TUBE

- 6 -

OUTLINE

TRAVELING WAVE TUBE F-7340

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

* F-7341 TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

The F-7341 is a 5 watt pulse traveling wave amplifier tube having 25 db gain and 8000 to 9600 mc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with type "N" connectors. The tube is self-aligning in the external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide impregnated cathode are used.

The tube is mechanically and electrically similar to type F-6996 except that a mesh type grid, suitable for grid pulsing, is provided in place of the focus element used in F-6996. Operation is limited by this grid to pulse service, at a miximum duty cycle of .04.

ELECTRICAL RATINGS, ABSOLUTE VALUES

Heater Voltage	$6.3 (\pm 10\%)$	volts
Heater Current	2.3	amperes
Maximum Anode Voltage (Note 1)	3400	volts
Maximum Shell Current (Note 2)	20	ma peak
Maximum Collector Voltage (Note 3)	3500	volts
Maximum Collector Dissipation (Note 4)	10	watts
Maximum Duty Cycle	. 04	
Maximum Grid Voltage (Note 5)		
Negative	-100	volts
Positive	+150	volts peak
Maximum Grid Current	6	ma peak
ELECTRICAL INFORMATION:		
Minimum Frequency	8000	mc
Maximum Frequency	9600	mc
Minimum Cold Insertion Loss (Note 7)	50	db
Capacitance - Grid to all other elements	15	μµf max.

* FORMERLY TYPE D-2004

F-7341 TRAVELING WAVE TUBE

MECHANICAL INFORMATION:

Type of Cathode Base, Small Shell Duodecal, 6 Pin (Note 6) Type of Envelope Magnetic Field Strength Length of Magnetic Field Mounting Position Weight (not including magnet) R-F Input and Output Impedance Type Connector Type of Cooling Glass Temperature Oxide Impregnated Unipotential JETEC B6-63 Metal 1000 gauss 6.75 inches uniform Any 1 lb. 7 oz. 50 ohm coax. Type ''N'' Jack UG-23 B/U See Note 4 160 °C max.

TYPICAL OPERATION AS POWER AMPLIFIER:

Anode Voltage Shell Current Collector Voltage Collector Current Grid Voltage Bias Applied Voltage Pulse Grid Current Power Output Gain Duty Cycle

3200	volts
10	ma peak
3200	volts
50	ma peak

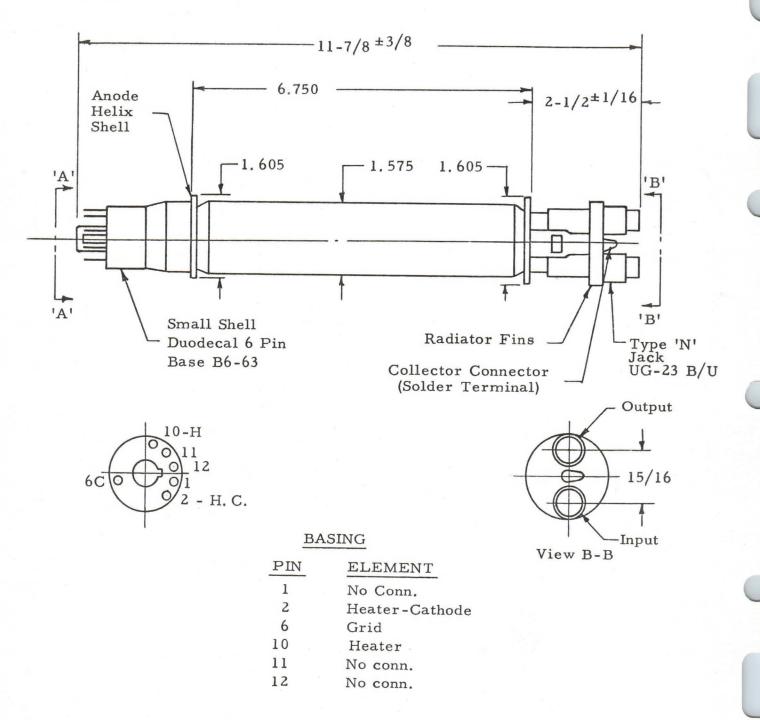
0	volts
120	volts peak
3	ma peak
5	watts nominal
25	db nominal
. 03	

- 2 -

- 3 -

F-7341 TRAVELING WAVE TUBE

- Note 1: All voltages shown are with respect to cathode. The shell is normally operated at approximately ground potential and the d-c connection is made to the shell of the solenoid. Anode and helix are connected internally to the shell.
- Note 2: Initial adjustments of voltage and magnetic field may be made at low duty cycles. 20 ma shell current must not be exceeded at maximum duty cycle (.04).
- Note 3: The collector is normally connected to the shell. A viewing resistor (recommended not to exceed 200 ohms) can be conveniently inserted in this connection.
- Note 4: Convection cooling of the tube is adequate at sea level and ambients below 30°C when air circulation is not restricted. Under more severe environments, 10 cfm (or equivalent at altitudes) should be provided through the collector radiator. Cooling provisions for the solenoid are separate from the tube requirement.
- Note 5: Positive voltage must not be applied to the grid in the absence of anode voltage.
- Note 6: A molded silicone rubber base, with flying leads, can be provided where altitude conditions must be met.
- Note 7: The minimum cold insertion loss applies for grid voltage of -10 volts or more negative.


Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division P.O. Box 412 Clifton, New Jersey

DEPARTMENT

COMPONENTS DIVISION

F-7341 TRAVELING WAVE TUBE

4 -

OUTLINE

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY

F-7347 TRAVELING WAVE TUBE

Formerly D-2001

DESCRIPTION:

The F-7347 is a 1 kilowatt pulse traveling wave amplifier tube having 30 db gain and 2000 to 4000 mc frequency range. It is constructed in a rugged metal-ceramic envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with female type TNC connectors. The tube is self-aligning in an external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .005 and pulse lengths up to 10 microseconds can be used.

A control grid suitable for grid pulsing is provided.

ELECTRICAL RATINGS, ABSOLUTE VALUES:

Heater Voltage	6.3 (±6%)	volts
Heater Current	5.2	amperes
Maximum Anode Voltage (Note 1)	8000	volts
Maximum Helix Current	0.5	ampere peak
Maximum Collector Dissipation (Note 2)	100	watts average
Maximum R-F Input Power	10	watts average
Maximum R-F Output Power	15	watts average
Maximum Duty Cycle	. 005	
Maximum Cathode Current	2.5	amperes peak
Maximum Grid Voltage		
Negative	-300	volts
Positive (Note 5)	+400	volts
Maximum Grid Current	. 5	ampere peak
ELECTRICAL INFORMATION:		
Maximum Cold Input VSWR (Note 7)	4.0	
Maximum Frequency (Note 3)	4000	mc
Minimum Frequency (Note 3)	2000	mc

ELECTRICAL INFORMATION (Continued)

Minimum Transmission Loss at Grid Bias = -67 volts	10	db
Capacitance		
Control grid to all other elements	2.2.	uufd

MECHANICAL INFORMATION:

1
ds
orm
ox.
f

2 -

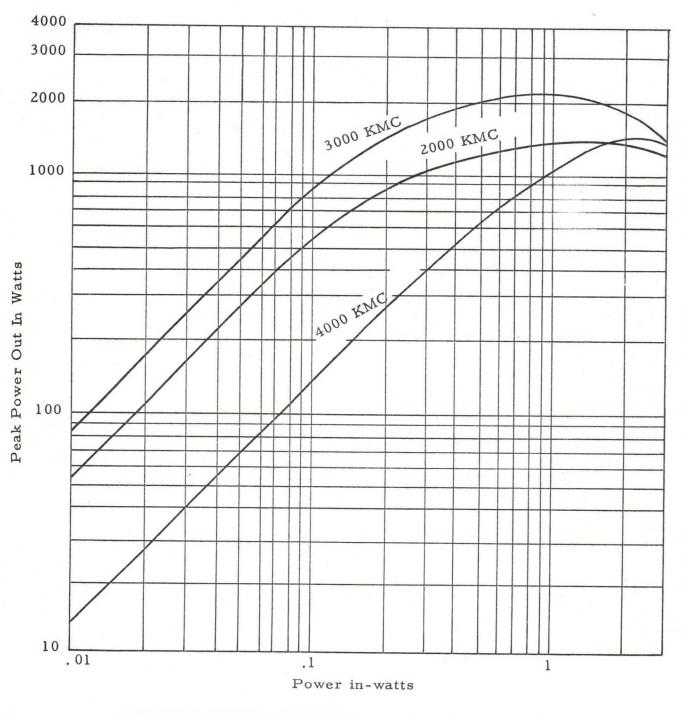
TYPICAL OPERATION AS POWER AMPLIFIER:

Center Frequency	3000	mc	
Anode Voltage (Note 1)	7500	volts	
Cathode Current	1.8	amperes peak	
Power Output (at center frequency)	1.8	kw peak	
Bandwidth	2.0 to 4.0	kmc	
Gain (Note 4)	30	db	
Duty	. 002		
Pulse Width	10	µ seconds	
Grid Bias (for cut-off)	-100	volts	
Grid Voltage during Pulse (Note 6)	+300	volts	
Grid Current during Pulse	0.2	ampere peak	

- Note 1: All voltages shown are with respect to cathode. Anode and collector are connected internally to the shell. Helix connection is center conductor of coax. External d-c connection is required between shell and helix. Shell is normally operated at ground potential and connection is made to the shell of the solenoid.
- Note 2: Conduction cooling for the collector must be provided by a suitable device.

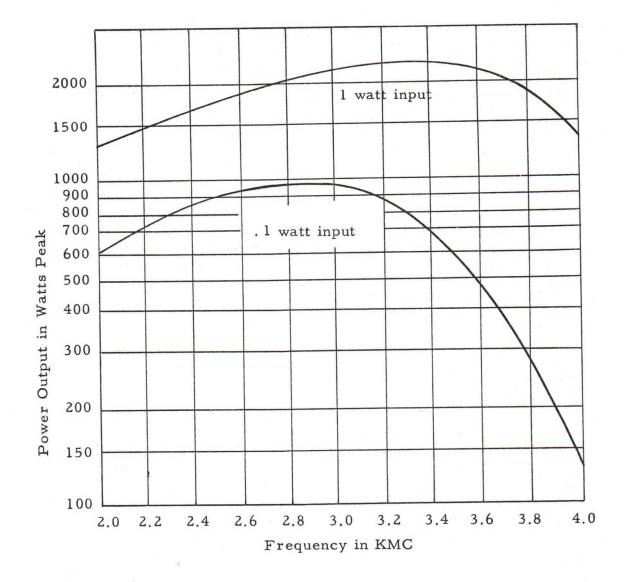
Note 3: Useful gain and power output exists below 2000 mc and above 4000 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated values.

- 3 -

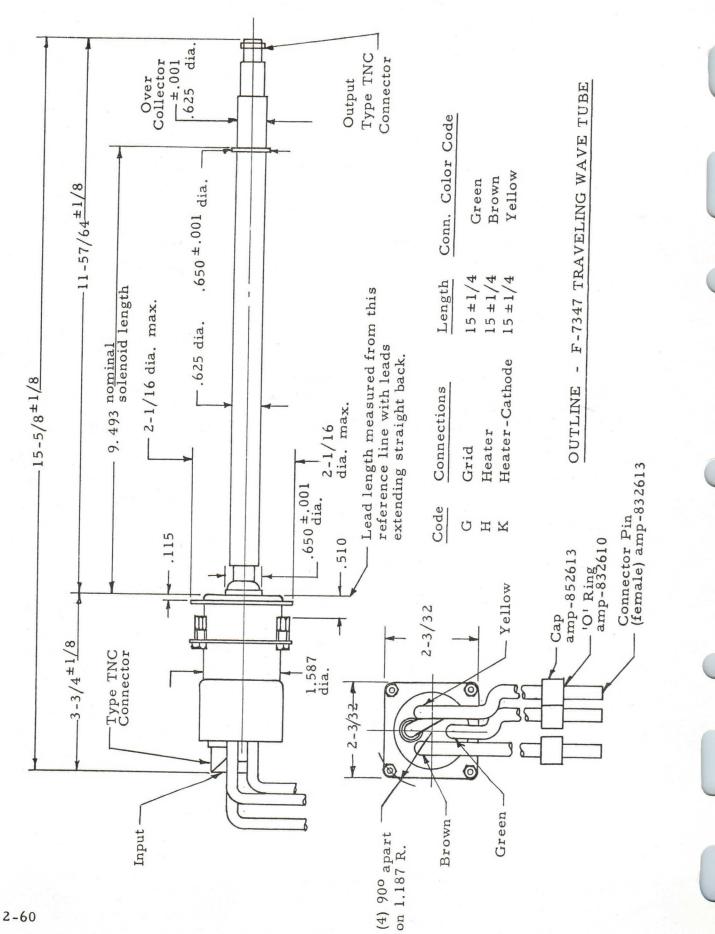

- Note 4: This gain is obtained over the 2.0 to 4.0 kmc bandwidth at the power level indicated. Since this is in the power saturation region, small signal gain will be approximately 10 db higher.
- Note 5: Positive voltage must not be applied to the grid in the absence of anode voltage.
- Note 6: The positive grid voltage pulse should be the minimum consistent with normal power output; otherwise shortened life or destruction of the tube may result.
- Note 7: Mismatch up to and including a short circuit in input or output lines will not cause oscillation.

GENERAL OPERATING INSTRUCTIONS:

- (1) Heater warm up of 2 minutes before applying high voltage is recommended.
- (2) High voltage must not be applied in the absence of proper grid bias and magnetic field. Positive grid pulse voltage must not be applied in the absence of high voltage.
- (3) Initial adjustments should be done at low duty cycle (less than .001) to prevent tube damage due to high shell (interception) current.


Additional information for specific applications can be obtained from the

Electron Tube Applications Sections ITT Components Division P.O. Box 412 Clifton, New Jersey F-7347 TRAVELING WAVE TUBE


TYPICAL POWER IN-POWER OUT CHARACTERISTIC

F-7347 TRAVELING WAVE TUBE

- 5 -

TYPICAL Pout VS FREQUENCY CHARACTERISTIC

- (

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY F-7524 TRAVEL ING WAVE TUBE

TENTATIVE

DESCRIPTION:

The F-7524 is a 5 watt CW traveling wave amplifier tube having 20 db gain and 8.0 to 12.0 kmc frequency range. It is constructed in a rugged metal ceramic envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with female TNC connectors. The tube is self-aligning in the external solenoid which is required to provide a uniform magnetic field. A convergent beam gun and oxide impregnated cathode are used. The tube is suitable for either CW or pulse service.

ELECTRICAL RATINGS, ABSOLUTE VALUES:

Heater Voltage	6.3 (±5%)	volts	
Heater Current	1.7	amperes	
Maximum Anode Voltage (Note 1)	4000	volts	
Maximum Helix Current (Note 2)	2	ma	
Maximum Collector Dissipation (beam power)	240	watts	
Maximum Control Electrode Voltage (Note 3)	-500	volts	
ELECTRICAL INFORMATION:			
Maximum Frequency	12.0	kmc	
Minimum Frequency	8.0	kmc	
Minimum Cold Transmission Loss	50	db	
Capacitance			
Control Electrode to All Elements	10	µµf, max.	

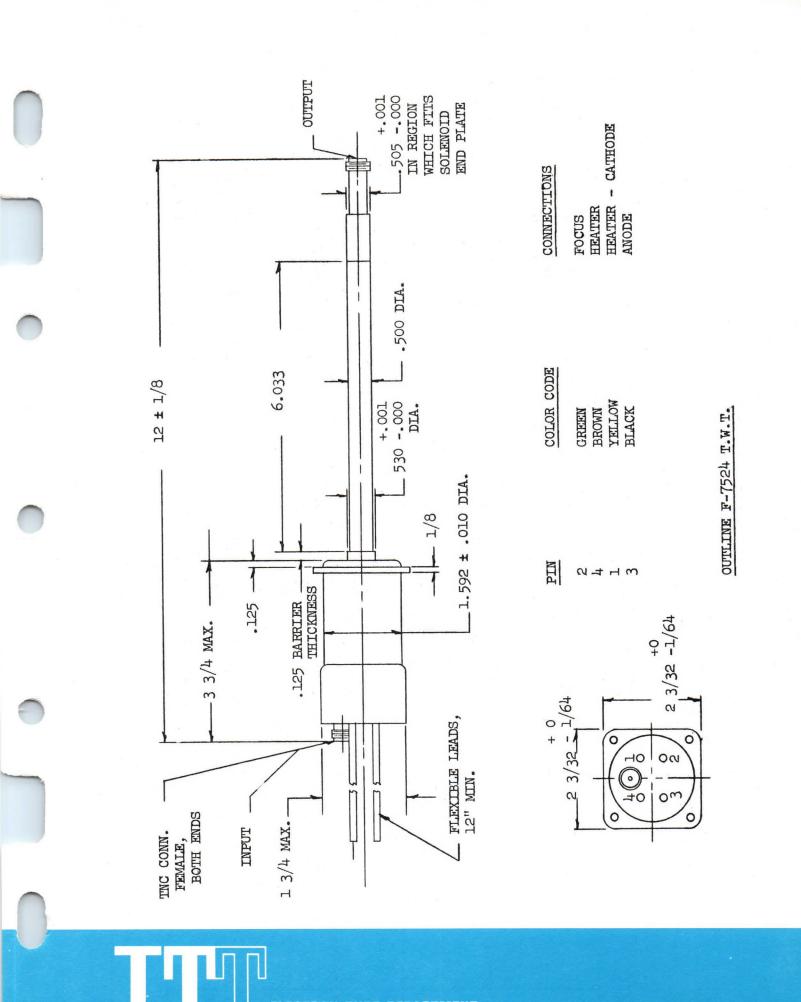
MECHANICAL INFORMATION:

Type of Cathode Oxide Coated Unipotential **Gun Connections** Flying Leads **R-F** Connections Female TNC Connectors Magnetic Field Strength (nominal) 1200 gauss Mounting Position Any Weight (Tube only) 1 pound Type of Cooling Dependent on package

* FORMERLY D-2005

F-7524 TRAVELING WAVE TUBE

TYPICAL OPERATION:


Anode Voltage	3600	volts
Anode Current	50	ma
Helix Current	0.5	ma
Control Electrode Voltage (Note 4)	-30	volts
Power Output	5	watts nominal
Gain	20	db nominal
Duty Cycle (Note 4)		
R-F	Variable to 1.0	
Beam	1.0	

- 2 -

- Note 1: All voltages shown are with respect to cathode. Anode and collector are connected internally to the shell, and the outer coax conductor of the r-f connections is also at shell potential. The helix is connected to the center conductor of the coax line and a d-c connection to the helix must be provided externally in the r-f circuitry.
- Note 2: The helix current should, in general, be minimized and must be less than the maximum rating. The control electrode voltage and magnetic field (solenoid current) can be properly adjusted before connection of r-f cables by monitoring current to the center coax conductor. It is desirable, when possible, to monitor this current during operation and to provide overload protection. In pulsed beam operation, the peak helix current may exceed 2 ma but care should be taken to operate at reasonably low values and average current must not exceed 2 ma.
- Note 3: The control electrode voltage is adjusted for best transmission for CW operation (normally about -30 volts). Beam gate off can be accomplished by applying voltage of -400 to -500 volts. Operation in the region of control electrode voltage between approximately -50 volts and -400 volts is not permitted.
- Note 4: Gated beam operation can also be utilized by applying -400 to -500 volts to the control electrode for gate off and approximately -30 volts (this value adjusted for best transmission) for gate on. In this type of operation, the values of power output, anode current, and helix current become peak values.

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division Box 412 - Clifton, New Jersey

ELECTRON TUBE DEPARTMENT JBE DEPARTMENT COMPONENTS DIVISION TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

F-7525 TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

THE F-7525 IS A 5 WATT CW TRAVELING WAVE AMPLIFIER TUBE HAVING 20 DB GAIN AND 8.0 TO 12.0 KMC FREQUENCY RANGE. IT IS CONSTRUCTED IN A RUGGED METAL CERAMIC ENVELOPE WITH A HELIX TYPE SLOW WAVE STRUCTURE. THE INTEGRAL MATCH-ING CIRCUIT IS IN 50 OHM COAXIAL LINE AND IS PROVIDED WITH FEMALE TNC CON-NECTORS. THE TUBE IS PACKAGED IN AN OIL COOLED SOLENOID WITH INTEGRAL COLLECTOR COOLER, WHICH IS REQUIRED TO PROVIDE A UNIFORM MAGNETIC FIELD. A CONVERGENT BEAM GUN AND OXIDE IMPREGNATED CATHODE ARE USED. THE TUBE IS SUITABLE FOR EITHER CW OR PULSE SERVICE.

ELECTRICAL INFORMATION:

	1	
HEATER VOLTAGE	6.3 ([±] 5%)	VOLTS
HEATER CURRENT	1.7	AMPERES
MAXIMUM FREQUENCY	12.0	КМС
MINIMUM FREQUENCY	8.0	КМС
MINIMUM COLD TRANSMISSION LOSS	50	DB
CAPACITANCE		
CONTROL ELECTRODE TO ALL ELEMENTS	10	UUF MAX.
ELECTRICAL RATINGS, ABSOLUTE VALUES:		
MAXIMUM ANODE VOLTAGE (NOTE 1)	4000	VOLTS
MAXIMUM HELIX CURRENT (NOTE 2)	3	MA
MAXIMUM COLLECTOR DISSIPATION (BEAM POWER)	240	WATTS
MAXIMUM CONTROL ELECTRODE VOLTAGE (NOTE 3)	-500	VOLTS
SOLENOID DATA:		
TYPE OF COOLANT	OS 45	OIL
PRESSURE MAXIMUM	100	PSI
FLOW	1	GALLON/MIN.
SOLENOID CURRENT	1 то 2	
SOLENOID VOLTAGE	140 то 200	VOLTS D.C.

* FORMERLY D-2005-A

F-7525 TRAVELING WAVE TUBE

MECHANICAL INFORMATION:

TYPE OF CATHODE GUN CONNECTIONS R-F TERMINALS MOUNTING POSITION

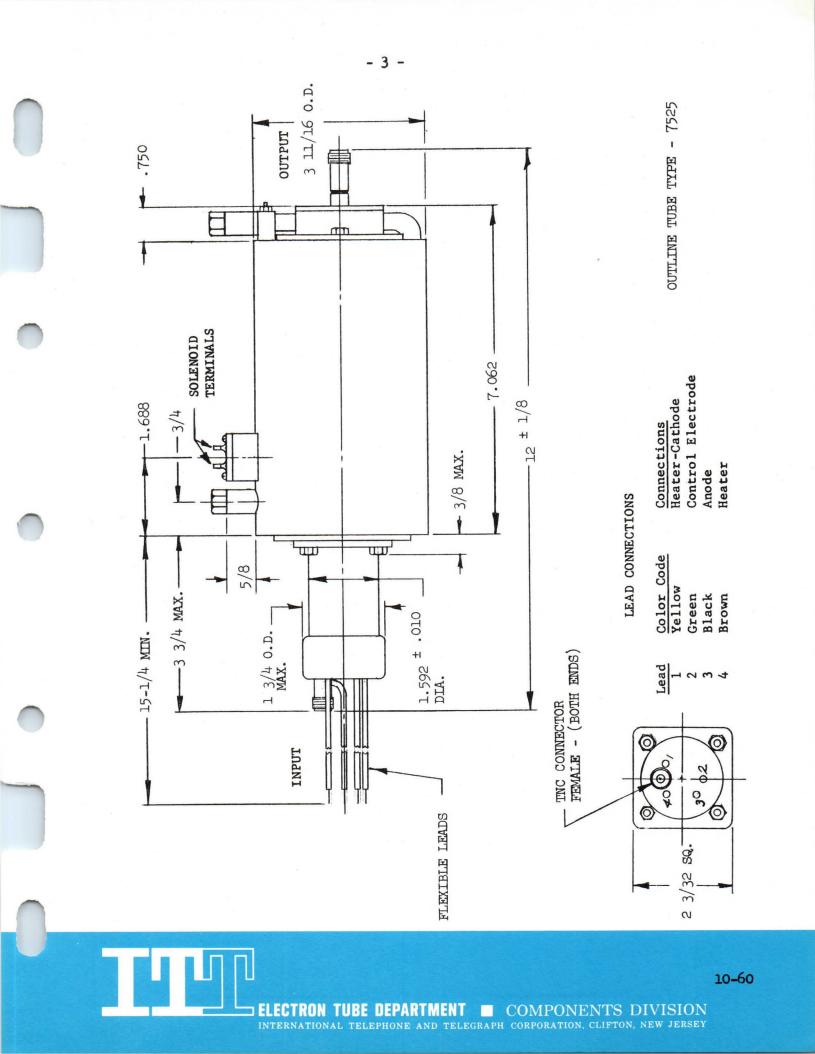
Oxide Coated Unipotential Flying Leads Female TNC Connectors Any

TYPICAL OPERATION:

ANODE VOLTAGE ANODE CURRENT HELIX CURRENT CONTROL ELECTRODE VOLTAGE (NOTE 3) POWER OUTPUT GAIN DUTY CYCLE (NOTE 3) R-F BEAM

3800	VOLTS
50	MA
1.0	MA
-30	VOLTS
5	WATTS NOMINAL
20	DB NOMINAL

VARIABLE TO 1.0 1.0


Note 1: All voltages shown are with respect to cathode. Anode, collector and outer coax conductor of the R-F terminals are connected internally to the shell and are operated at ground potential. The helix is connected to the center conductor of the coax line and a D.C. connection from the helix to the shell must be provided externally in the R-F circuitry.

- 2 -

- Note 2: The helix current should be minimized and must be less than the maximum rating. It is desirable to monitor this current during operation and to provide overload protection. In pulsed beam operation, the peak helix current may exceed 3 ma but care should be taken to operate at reasonably low values and average current must not exceed 3 ma.
- Note 3: The control electrode voltage is adjusted for best transmission for CW operation (normally about -30 volts). Beam gate off can be accomplished by applying voltage of -400 to -500 volts. The tube should not be operated with control electrode voltage in the range of -50 to -400 volts. For gated beam (pulse) operation, the values of power output, anode current and helix current become peak values.

ADDITIONAL INFORMATION FOR SPECIFIC APPLICATIONS CAN BE OBTAINED FROM THE:

ELECTRON TUBE APPLICATIONS SECTION ITT COMPONENTS DIVISION POST OFFICE BOX 7065 ROANOKE, VIRGINIA

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY

F-7526 TRAVEL ING WAVE TUBE

DESCRIPTION:

THE F-7526 IS A 50 MW CW TRAVELING WAVE AMPLIFIER TUBE HAVING 30 DB GAIN AND 8.0 TO 12.0 KMC FREQUENCY RANGE. IT IS CONSTRUCTED IN A RUGGED METAL ENVELOPE WITH A HELIX TYPE SLOW WAVE STRUCTURE. THE INTEGRAL MATCHING CIRCUIT IS IN 50 OHM COAXIAL LINE AND IS PROVIDED WITH FEMALE TNC CONNECTORS. THE TUBE IS PACKAGED IN AN OIL COOLED SOLENOID WITH INTEGRAL COLLECTOR COOLER, WHICH IS REQUIRED TO PROVIDE A UNIFORM MAG-NETIC FIELD. A CONVERGENT BEAM GUN AND OXIDE COATED CATHODE ARE USED. THE TUBE IS SUITABLE FOR EITHER CW OR PULSE SERVICE.

ELECTRICAL INFORMATION:

	1	
HEATER VOLTAGE HEATER CURRENT Maximum Frequency Minimum Frequency Minimum Cold Transmission Loss	6.3 (- 5%) 0.85 12.0 8.0 50	Volts Ampere Kmc Kmc Db
CAPACITANCE Control Electrode to all Elements	15	UUF (MAX.)
ELECTRICAL RATINGS, ABSOLUTE VALUES:		
Maximum Anode Voltage (Note 1) Maximum Helix Current (Note 2) Maximum Collector Dissipation (Beam Power) Maximum Control Electrode Voltage (Note 3)	1600 2 15 -500	Volts ma Watts Volts
SOLENOID DATA:		
Solenoid Current Solenoid Voltage Type of Coolant Pressure Maximum Flow	.6 to 1.13 150 to 200 0S 45 100 1	Amps VDC Oil PSI Gallon/min.

F-7526 TRAVELING WAVE TUBE

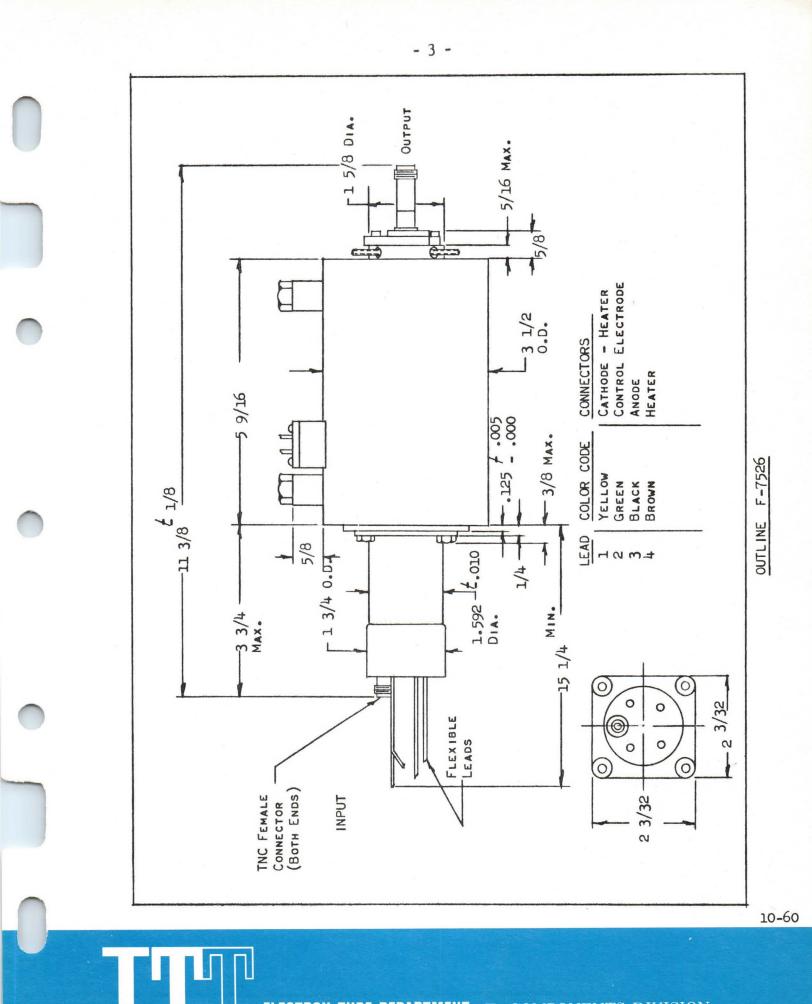
- 2 -

MECHANICAL:

TYPE OF CATHODE GUN CONNECTIONS R-F CONNECTIONS MOUNTING POSITION Oxide Coated Unipotential Flying Leads Female TNC Any

TYPICAL OPERATION:

ANODE VOLTAGE ANODE CURRENT HELIX CURRENT CONTROL ELECTRODE VOLTAGE (NOTE 3) SOLENOID CURRENT SOLENOID VOLTAGE POWER OUTPUT GAIN DUTY CYCLE (NOTE 3) R-F BEAM


1400	VOL	TS
5	MA	
0.5	MA	
-15	VOL	TS
0.9	AMP	S
170	VOL	TS
50	MW	NOMINAL
30	DB	NOMINAL

VARIABLE TO 1.0 1.0

- Note 1: All voltage shown are with respect to cathode. Anode, collector and outer coax conductor of the R-F terminals are connected internally to the shell and are operated at ground potential. The helix is connected to the center conductor of the coax line and a D.C. connection from the helix to the shell must be provided externally in the R-F circuitry.
- NOTE 2: THE HELIX CURRENT SHOULD BE MINIMIZED AND MUST BE LESS THAN THE MAXIMUM RATING. IT IS DESIRABLE TO MONITOR THIS CURRENT DURING OPERATION AND TO PROVIDE OVERLOAD PROTECTION. IN PULSED BEAM OPERATION, THE PEAK HELIX CURRENT MAY EXCEED 2 MA, BUT CARE SHOULD BE TAKEN TO OPERATE AT REASONABLY LOW VALUES AND AVERAGE CURRENT MUST NOT EXCEED 2 MA.
- Note 3: The control electrode voltage is adjusted for best transmission for CW operation (Normally about -5 volts). Beam gate off can be accomplished by applying voltage of -400 to -500 volts. The tube should not be operated with control electrode voltage in the range of approximately -5 to -400 volts. For gated beam (pulse) the values of power output, anode current and helix current become peak values.

ADDITIONAL INFORMATION FOR SPECIFIC APPLICATIONS CAN BE OBTAINED FROM THE:

ELECTRON TUBE APPLICATIONS SECTION ITT COMPONENTS DIVISION POST OFFICE BOX 7065 ROANOKE, VIRGINIA

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

7640 TRAVELING WAVE TUBE

TENTATIVE

GENERAL DESCRIPTION:

The 7640 is a 1000 watt pulse traveling wave amplifier tube having 30db gain and designed primarily for use in the 2000 to 4000 mc frequency range. It is constructed in a rugged metal envelope with a helix type slow wave structure. The integral matching circuit is in 50 ohm coaxial line and is provided with UG 19 B/U Type connectors. The tube is focused by a periodic permanent magnet which is integral with the tube. A convergent beam gun and oxide impregnated cathode are used. Duty cycles up to .01 and pulse widths up to 100 microseconds can be used.

ELECTRICAL RATINGS, ABSOLUTE VALUES

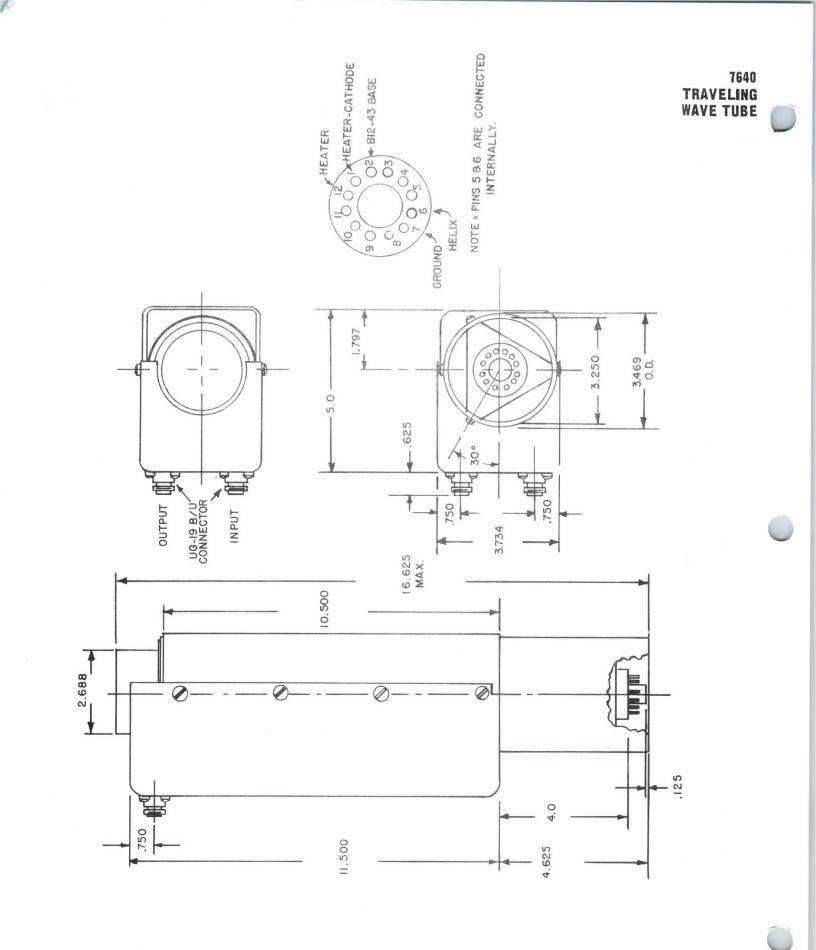
Heater Voltage	6.3 (±10%)	volts	Maximum R-F Input Power	2	watts average
Heater Current	3.0	amperes	Maximum R-F Output Power	30	watts average
Maximum Anode Voltage (Note 1)	8000	volts	Maximum Duty Cycle	.01	
Maximum Shell Current	0.8	ampere peak	Maximum Pulse Width (beam)	100	microseconds
Maximum Collector Voltage	8000	volts	Maximum Cathode Current	2.0	ampere peak
Maximum Collector Dissipation	160	watts average			

ELECTRICAL INFORMATION

Maximum Frequency (Note 2) 4000 m	ic Minimum	Cold Transmission Loss	50	db
Minimum Frequency (Note 2)	2000 m	IC			

MECHANICAL INFORMATION

Type of Cathode Base Type of Envelope Mounting Position	Oxide Impregnated Unipotential JETEC Designation B12-43 Metal Any	Weight R-F Connections Cooling Data	10 pounds UG-19 B/U 2 cfm of air	maximum
--	--	---	--	---------


TYPICAL OPERATION AS POWER AMPLIFIER

Frequency	2000 to 4000	mc	Power Output (Minimum)	1000	watts peak
Anode Voltage (Note 1)	7300	volts	Gain	30	db
Cathode Current	1.4	amperes peak	Duty	.01	
Collector Voltage (tied to shell)	7300	volts	Pulse Width	5	microseconds
Collector Current	0.9	amperes peak			

NOTE 1: All voltages shown are with respect to cathode. The shell is normally operated at ground potential and the anode connection is made to the shell of the package.

NOTE 2: Useful gain and power output exists below 2000 mc and above 4000 mc and can be utilized by adjusting anode voltage to optimize the frequency range desired. However, bandwidth cannot be extended both upward and downward simultaneously and maximum gain and power output outside the normal bandwidth will be lower than rated values.

NOTE 3: Heater warmup of two minutes before applying high voltage is recommended.

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

F-7847 TRAVELING WAVE TUBE

FORMERLY X-319

TENTATIVE

DESCRIPTION:

THE F-7847 IS A 10 WATT CW TRAVELING WAVE AMPLIFIER TUBE HAVING 27 DB GAIN AND 5.0 TO 6.0 FREQUENCY RANGE. IT IS CONSTRUCTED IN A RUGGED METAL ENVELOPE WITH A HELIX TYPE SLOW WAVE STRUCTURE. THE INTEGRAL MATCHING CIRCUIT IS IN 50 OHM COAXIAL LINE AND IS PROVIDED WITH FEMALE TNC CONNECTORS. THE TUBE IS SELF-ALIGNING IN THE EXTERNAL SOLENOID, WHICH IS REQUIRED TO PROVIDE A UNIFORM MAGNETIC FIELD. A CONVERGENT BEAM GUN AND OXIDE COATED CATHODE ARE USED. THE TUBE IS SUITABLE FOR EITHER CW OR PULSE SERVICE.

ELECTRICAL INFORMATION:

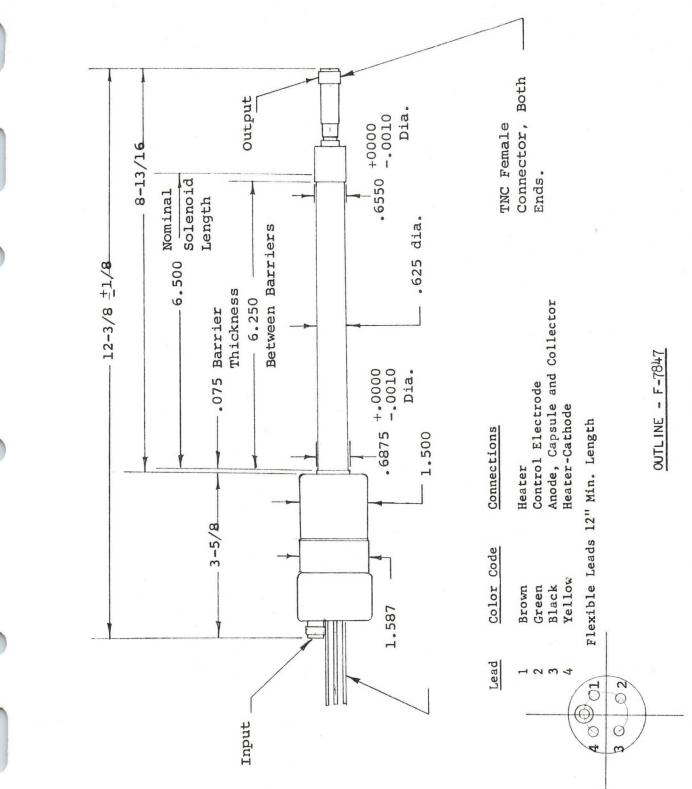
	/	
HEATER VOLTAGE	6.3 (-5%)	VOLTS
HEATER CURRENT	2.2	AMPERES
MAXIMUM FREQUENCY	6.0	
MINIMUM FREQUENCY	5.0	
MINIMUM COLD TRANSMISSION LOSS	55	DB
CAPACITANCE		
CONTROL ELECTRODE TO ALL ELEMENTS	15	UUF
ELECTRICAL RATINGS, ABSOLUTE VALUES:		
MAXIMUM ANODE VOLTAGE (NOTE 1)	3000	VOLTS
MAXIMUM HELIX CURRENT (NOTE 2)	2	MA
MAXIMUM COLLECTOR DISSIPATION (BEAM POWER)		
(NOTE 3)	196	WATTS
MAXIMUM CONTROL ELECTRODE VOLTAGE	0	VOLTS

MECHANICAL:

Type of Cathode	OXIDE COA	TED	UNIPOTENTIAL
GUN CONNECTIONS	FLY	ING	LEADS
R-F CONNECTIONS	FEM	ALE	TNC
MAGNETIC FIELD STRENGTH	120	0 0	GAUSS
MOUNTING POSITION			ANY
WEIGHT (TUBE ONLY)	1	4	οΖ.
TYPE OF COOLING (NOTE 4)	WATER	OR	AIR

F-7847 TRAVELING WAVE TUBE

- 2 -


TYPICAL OPERATION:

ANODE VOLTAGE	2800	VOLTS
ANODE CURRENT	67	MA
HELIX CURRENT	1.0	MA
CONTROL ELECTRODE VOLTAGE	0	VOLTS
POWER OUTPUT	10	WATTS
GAIN	27	DB
DUTY CYCLE (NOTE 5)		
R-F	VARIABLE TO 1.0	
BEAM	1.0	

- Note 1: All voltages shown are with respect to cathode. Anode, collector and outer coax conductor of the R-F terminals are connected internally to the shell and are operated at ground potential. The helix is connected to the center conductor of the coax line and a D.C. connection to the helix must be provided externally in the R-F circuitry.
- Note 2: The helix current should be minimized and must be less than the maximum rating. It is desirable to monitor this current during operation and to provide overload protection. In pulsed beam operation, the peak helix current may exceed 2 ma, but care should be taken to operate at reasonably low values and average current must not exceed 2 ma.
- NOTE 3: THE BEAM VOLTAGE SHOULD BE APPLIED TO THE TUBE ONLY AFTER THE MAGNETIC FIELD IS TURNED ON AND WATER OR AIR IS FLOWING THROUGH THE COLLECTOR COOLING JACKET.
- NOTE 4: COOLING METHOD DEPENDS ON TYPE OF COLLECTOR COOLING JACKET USED.
- NOTE 5: GATED BEAM OPERATION CAN BE UTILIZED BY PULSING ANODE VOLTAGE IN THIS TYPE OF OPERATION, THE VALUES OF POWER OUTPUT, ANODE CURRENT AND HELIX CURRENT BECOME PEAK VALUES.

ADDITIONAL INFORMATION FOR SPECIFIC APPLICATIONS CAN BE OBTAINED FROM THE:

ELECTRON TUBE APPLICATIONS SECTION ITT COMPONENTS DIVISION POST OFFICE BOX 7065 ROANOKE, VIRGINIA

1

- 3 -

engineering TUBE DATA F-78

F-7848 TRAVELING WAVE TUBE

Components Division

TENTATIVE

DESCRIPTION:

THE F-7848 IS A 2 KILOWATT PULSE TRAVELING WAVE AMPLIFIER TUBE HAVING 27 DB GAIN AND 5400 TO 5900 MC FREQUENCY RANGE. IT IS CONSTRUCTED IN A RUGGED METAL-CERAMIC ENVELOPE WITH A HELIX TYPE SLOW WAVE STRUCTURE. THE INTEGRAL MATCHING CIRCUIT IS IN 50 OHM COAXIAL LINE AND IS PROVIDED WITH FEMALE TNC CONNECTORS. THE TUBE IS SELF-ALIGNING IN AN EXTERNAL SOLENOID WHICH IS REQUIRED TO PROVIDE A UNIFORM MAGNETIC FIELD. A CON-VERGENT BEAM GUN AND OXIDE IMPREGNATED CATHODE ARE USED. DUTY CYCLES UP TO .005 AND PULSE LENGTHS UP TO 6 MICROSECONDS CAN BE USED:

ELECTRICAL INFORMATION:

HEATER VOLTAGE Heater Current Frequency Range (Note 1)	5400 мс то	5.2	Volts Amperes mc
MINIMUM TRANSMISSION LOSS, NO VOLTAGES	APPLIED	60	DB
CAPACITANCE CATHODE TO ALL OTHER ELEMENTS		25	UUFD
		/	0010

ELECTRICAL RATINGS, ABSOLUTE VALUES:

BOX 412,

P. O.

HEATER VOLTAGE HEATER CURRENT MAXIMUM ANODE VOLTAGE (NOTE 2) MAXIMUM HELIX CURRENT MAXIMUM COLLECTOR DISSIPATION (NOTE 3) MAXIMUM R-F INPUT POWER MAXIMUM R-F OUTPUT POWER	6.3 (⁴ -5%) 5.6 17,000 0.4 225 10	Volts Amperes Volts Ampere Peak Watts Average Watts Average
Maximum R-F Output Power Maximum Duty Cycle Maximum Cathode Current Load VSWR	15 .005 3.7 3.5 : 1	WATTS AVERAGE Amperes peak max.

ELECTRON TUBE DEPARTMENT

COMPONENTS DIVISION

CLIFTON

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

NEW

JERSEY

- 2 -

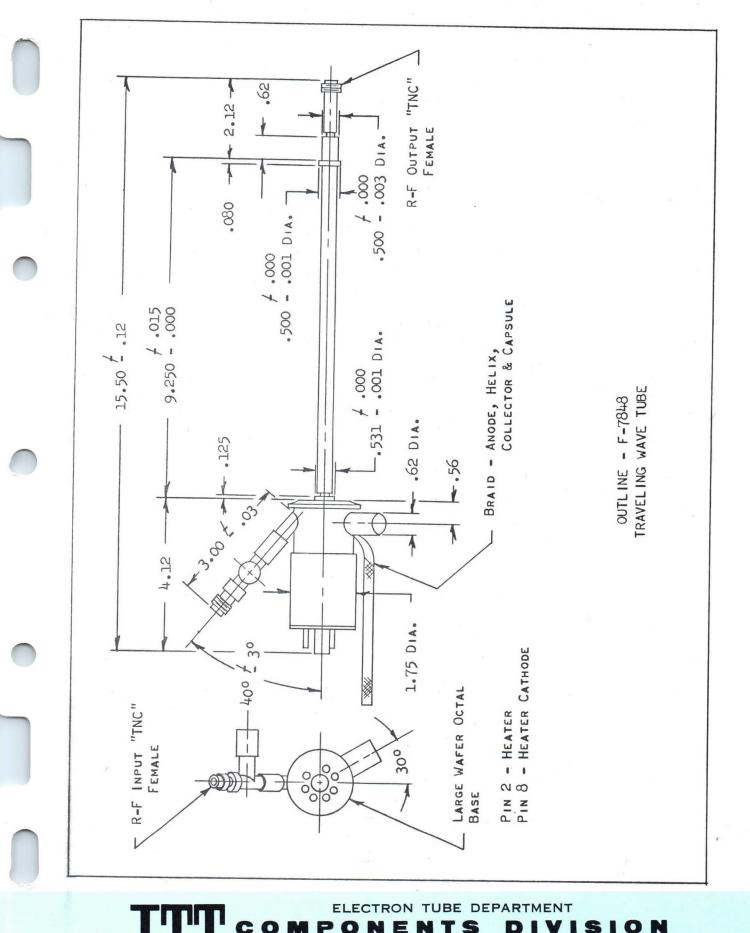
MECHANICAL INFORMATION:

TYPE OF CATHODE Base Type of Envelope Magnetic Field Strength Mounting Position Weight of Tube R-F Connections	Oxide	LARGE WATER METAL 2000 1.5	UNIPOTENTIAL Octal Base Ceramic Gauss Any Lbs. approx. Type TNC	
MAXIMUM TUBE TEMPERATURE		177	°C	

TYPICAL OPERATION AS POWER AMPLIFIER OVER FREQUENCY RANGE:

ANODE VOLTAGE (NOTE 1)	10,000	VOLTS
CATHODE CURRENT	2.5	AMPERES PEAK
Power Output	2.0	KW PEAK MIN.
GAIN	27	DB MIN.
Duty	.002	
Pulse Width	2	U SECONDS

- NOTE 1: USEFUL GAIN AND POWER OUTPUT EXISTS BELOW 5000 MC AND ABOVE 6000 MC AND CAN BE UTILIZED BY ADJUSTING ANODE VOLTAGE TO OPTIMIZE THE FREQUENCY RANGE DESIRED. HOWEVER, BANDWIDTH CANNOT BE EXTENDED BOTH UPWARD AND DOWNWARD SIMULTANEOUSLY AND MAXIMUM GAIN AND POWER OUTPUT OUTSIDE THE NORMAL BANDWIDTH WILL BE LOWER THAN RATED VALUES.
- NOTE 2: ALL VOLTAGES SHOWN ARE WITH RESPECT TO CATHODE. ANODE, HELIX, COL-LECTOR, AND OUTER COAX CONDUCTOR OF THE R-F CONNECTIONS ARE CON-NECTED INTERNALLY TO THE SHELL. AN INTERNAL DC CONNECTION IS PRO-VIDED BETWEEN THE CENTER LEAD OF THE R-F COAX TERMINALS AND THE SHELL.
- NOTE 3: CONDUCTION COOLING FOR THE COLLECTOR MUST BE PROVIDED BY A SUITABLE DEVICE.


GENERAL OPERATING INSTRUCTIONS:

1 G

- (1) HEATER WARM UP OF 2 MINUTES BEFORE APPLYING HIGH VOLTAGE IS RECOMMENDED.
- (2) HIGH VOLTAGE MUST NOT BE APPLIED IN THE ABSENCE OF MAGNETIC FIELD.
- (3) INITIAL ADJUSTMENTS SHOULD BE DONE AT LOW DUTY CYCLE (LESS THAN .001) TO PREVENT TUBE DAMAGE DUE TO HIGH SHELL (INTERCEPTION) CURRENT.

ADDITIONAL INFORMATION FOR SPECIFIC APPLICATIONS CAN BE OBTAINED FROM THE:

ELECTRON TUBE APPLICATIONS SECTION ITT COMPONENTS DIVISION Post Office Box 7065 Roanoke, Virginia

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

BOX 412, CLIFTON, NEW JERSEY

P. 0

engineering **TUBE DATA**

X-282 TRAVEL ING WAVE TUBE

Components Division

TENTATIVE

DESCRIPTION:

THE X-282 IS A 10 WATT CW TRAVELING WAVE AMPLIFIER TUBE IN THE 4.0 TO 8.0 FREQUENCY RANGE AND HAVING 25 DB GAIN WHEN OPERATED AS A LOW-LEVEL AMPLI-FIER. IT IS CONSTRUCTED IN A RUGGED METAL ENVELOPE WITH A HELIX-TYPE SLOW-WAVE STRUCTURE. THE INTEGRAL MATCHING CIRCUIT IS IN 50 OHM COAXIAL LINE AND IS PROVIDED WITH FEMALE TNC CONNECTORS. THE TUBE IS SELF-ALIGNING IN THE EXTERNAL SOLENOID, WHICH IS REQUIRED TO PROVIDE A UNIFORM MAGNETIC FIELD. A CONVERGENT BEAM GUN AND OXIDE COATED CATHODE ARE USED.

ELECTRICAL INFORMATION:

	,	
HEATER VOLTAGE	6.3 (±5%)	VOLTS
HEATER CURRENT	1.5	AMPERES
MAXIMUM FREQUENCY	8.0	
MINIMUM FREQUENCY	4.0	
MINIMUM COLD TRANSMISSION LOSS	55	DB
CAPACITANCE		
CONTROL ELECTRODE TO ALL ELEMENTS	15	UUF

ELECTRICAL RATINGS, ABSOLUTE VALUES

BOX

412

CL

MAXIMUM ANODE VOLTAGE (NOTE 1)	3000	VOLTS
MAXIMUM HELIX CURRENT (NOTE 2)	2	MA
MAXIMUM COLLECTOR DISSIPATION (BEAM POWER) (NOTE 3)	196	WATTS
MAXIMUM POSITIVE CONTROL ELECTRODE VOLTAGE	0	VOLTS

MECHANICAL:

TYPE OF CATHODE GUN CONNECTIONS **R-F** CONNECTIONS MAGNETIC FIELD STRENGTH MOUNTING POSITION WEIGHT (TUBE ONLY) TYPE OF COOLING (NOTE 4)

P. O.

OXIDE COATED UNIPOTENTIAL FLYING LEADS FEMALE TNC 1200 GAUSS ANY 14 OUNCES WATER OR AIR

ELECTRON TUBE DEPARTMENT COMPONENTS

DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION

TON

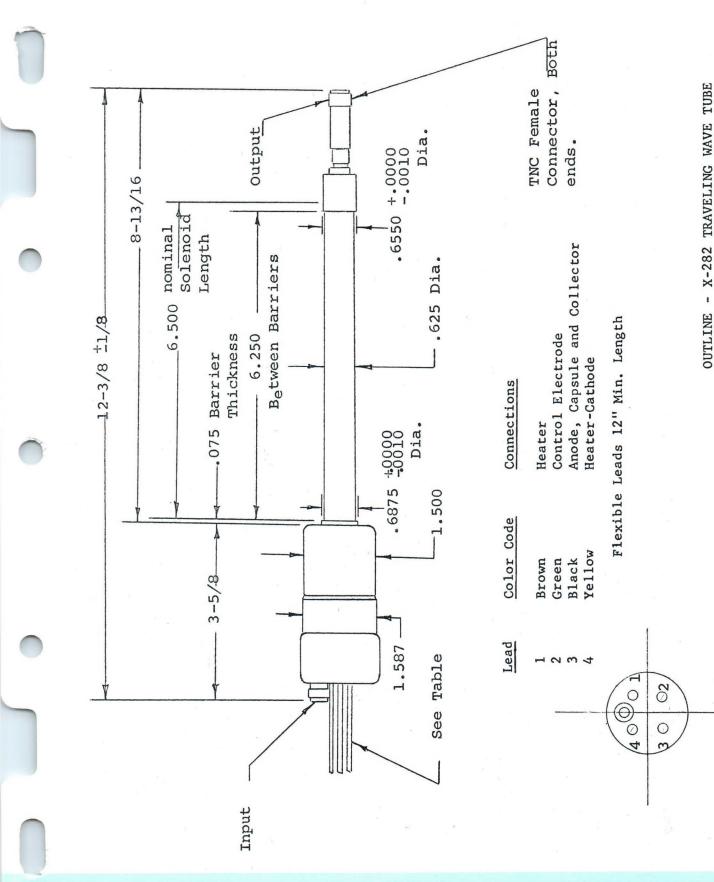
RSE

10-60

X-282 TRAVELING WAVE TUBE

TYPICAL OPERATION:

AS POWER AMPLIFIER		
FREQUENCY	6	
ANODE VOLTAGE	2600	VOLTS
ANODE CURRENT	55	MA
HELIX CURRENT	1.0	MA
CONTROL ELECTRODE VOLTAGE	0	VOLTS
POWER OUTPUT	10	WATTS
GAIN	28	DB
DUTY	1.0	
AS LOW LEVEL AMPLIFIER		
FREQUENCY	6	
Anode Voltage	2550	VOLTS
ANODE CURRENT	53	MA
HELIX CURRENT	1.0	MA
CONTROL ELECTRODE VOLTAGE	0	VOLTS
Power Output	300	MW
GAIN	33	DB
DUTY	1.0	


- 2 -

- NOTE 1: ALL VOLTAGES SHOWN ARE WITH RESPECT TO CATHODE. ANODE AND COL-LECTOR ARE CONNECTED INTERNALLY TO THE SHELL, AND THE OUTER COAX CONDUCTOR OF THE R-F CONNECTIONS IS ALSO AT SHELL POTENTIAL. THE HELIX IS CONNECTED TO THE CENTER CONDUCTOR OF THE COAX LINE AND A D-C CONNECTION TO THE HELIX MUST BE PROVIDED EXTERNALLY IN THE R-F CIRCUITRY.
- NOTE 2: THE HELIX CURRENT SHOULD BE MINIMIZED AND MUST BE LESS THAN THE MAXIMUM RATING. IT IS DESIRABLE TO MONITOR THIS CURRENT DURING OPERATION AND TO PROVIDE OVERLOAD PROTECTION.
- NOTE 3: THE BEAM VOLTAGE SHOULD BE APPLIED TO THE TUBE ONLY AFTER THE MAGNETIC FIELD IS TURNED ON AND WATER OR AIR IS FLOWING THROUGH THE COLLECTOR COOLING JACKET.

NOTE 4: COOLING METHOD DEPENDS ON TYPE OF COLLECTOR COOLING JACKET USED.

ADDITIONAL INFORMATION FOR SPECIFIC APPLICATIONS CAN BE OBTAINED FROM THE:

ELECTRON TUBE APPLICATIONS SECTION ITT COMPONENTS DIVISION POST OFFICE BOX 7065 ROANOKE, VIRGINIA

INTE

1 2

4

С

L

IFTON

вох

Ρ.

0

.

ELECTRON TUBE DEPARTMENT

MPONENTS DIVIS

NEW

J

10-60

N

SIO ORATION

ERSEY

- 3 -

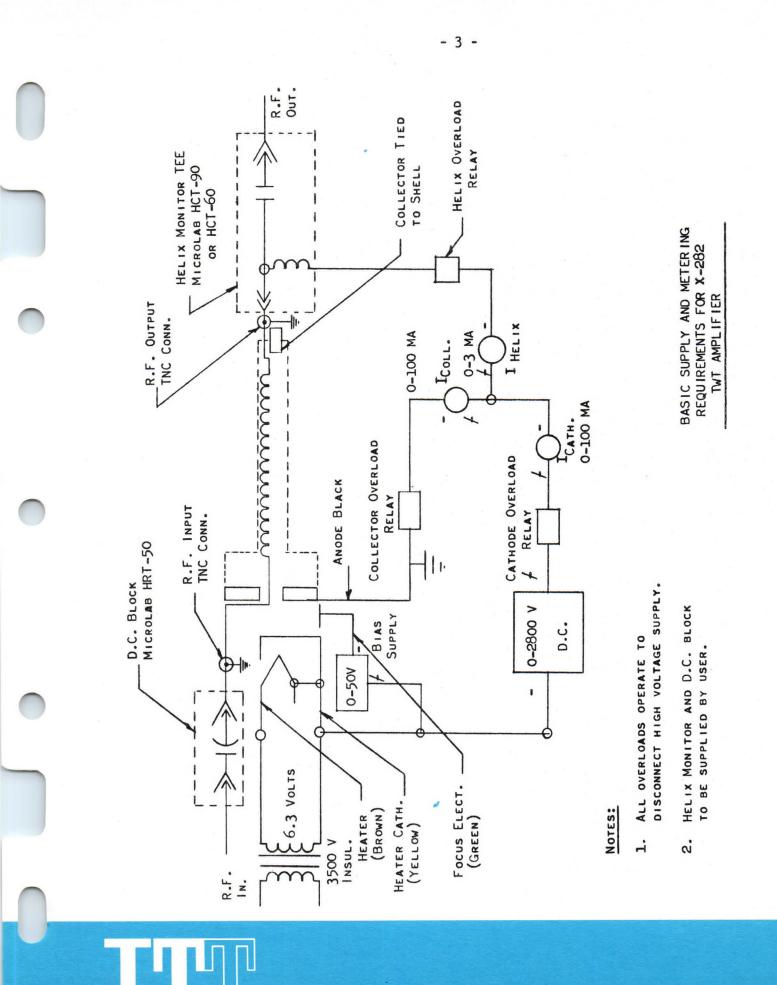
ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

OPERATING INSTRUCTIONS FOR THE X-282 TRAVELING WAVE TUBE

The X-282 is a 10 Watt CW Traveling Wave Tube operating over the band of 4 to 8 kmc. It requires a magnetic field of 1200 Gauss for proper focusing. Basic power requirements are 70 ma at 2800 V and a 50 Volt bias supply, as well as 6.3 V at 2.2 Amps for the heater.

WHEN PLACING THE X-282 IN OPERATION FOR THE FIRST TIME, THE FOLLOWING PROCEDURE SHOULD BE FOLLOWED:

- Make a visual inspection of the tube to check for loose connections or other mechanical defects.
- PLACE THE TUBE IN THE PROPER SOLENOID AND MAKE CONNECTIONS TO THE TUBE AND SOLENOID. OBSERVE COLOR-CODING OF THE TUBE LEADS AND POLARITY MARKING ON THE SOLENOID.
- 3. APPLY COOLING TO THE SOLENOID AND TO COLLECTOR.
- 4. APPLY THE FOLLOWING VOLTAGES IN THE FOLLOWING ORDER:
 - 4.1 HEATER VOLTAGE (6.3 VOLTS).
 - 4.2 SOLENOID VOLTAGE (ADJUST SOLENOID CURRENT TO YIELD 1200 GAUSS).
 - 4.3 CONTROL ELECTRODE VOLTAGE (APPLY BIAS VOLTAGE SPECIFIED ON DATA SHEET SUPPLIED WITH TUBE.)
 - 4.4 CATHODE VOLTAGE (ADJUST SLOWLY TO THE VALUE INDICATED ON THE DATA SHEET; USUALLY ABOUT MINUS 2700 VOLTS WITH RESPECT TO THE SHELL. AT ALL TIMES MONITOR HELIX CURRENT AND OBSERVE THE 2.0 MA MAXIMUM LIMIT.)
- 5. R.F. INPUT SHOULD BE LIMITED TO 200 MW.
- 6. THE CATHODE VOLTAGE MAY BE OPTIMIZED FOR OPTIMUM POWER OUTPUT AT THE DESIRED FREQUENCIES.


X-282 TRAVELING WAVE TUBE

- 2 -

THE FOLLOWING PRECAUTIONS SHOULD BE TAKEN WHEN OPERATING THE TRAVELING WAVE TUBE:

- 1. Never operate the X-282 without proper magnetic field. Be sure sufficient cooling is supplied to tube and solenoid.
- 2. NEVER OPERATE THE X-282 WITH HELIX CURRENT IN EXCESS OF 2.0 MA. UNDER MOST CONDITIONS HELIX CURRENT WILL BE 1.0 MA OR LESS. IT IS IMPORTANT THAT HELIX OVERLOAD PROTECTION BE PROVIDED.
- 3. BE SURE COAXIAL CABLES TO BE CONNECTED TO THE TUBE INPUT AND OUTPUT CONNECTORS ARE ASSEMBLED CORRECTLY. IF THE INNER CONDUCTOR OF THE CABLE CONNECTOR IS TOO LONG, PRESSURE WILL BE APPLIED TO A CERAMIC BEAD, WHICH MAY CAUSE DAMAGE TO THE TUBE. IF IT IS TOO SHORT, A POOR CONNECTION WILL RESULT CAUSING POOR R.F. PERFORMANCE.

THE ATTACHED SCHEMATIC IS A SUGGESTED METHOD OF CONNECTING THE X-282 AND SHOWS THE LOCATION OF PROTECTION CIRCUITS AND METER POLARITY.

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY

X-354 TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

THE X-354 IS A SUPER-HIGH-FREQUENCY, MEDIUM-POWER TRAVELING WAVE AMPLI-FIER TUBE EMPLOYING A HELICAL WAVE PROPAGATING STRUCTURE. THE TUBE IS DESIGNED FOR USE AS A CONTINUOUS WAVE AMPLIFIER IN THE FREQUENCY RANGE OF 8 TO 12 KILOMEGACYCLES PER SECOND. IT IS OF ALL-METAL SHELL CON-STRUCTION, AND TYPE TNC FEMALE COAXIAL LINE R-F CONNECTORS ARE PROVIDED AS AN INTEGRAL PART OF THE STRUCTURE. THE TUBE IS SELF-ALIGNING IN THE PERMANENT MAGNET WHICH PROVIDES THE MAGNETIC FIELD REQUIRED TO DEFINE THE PATH OF THE ELECTRON BEAM.

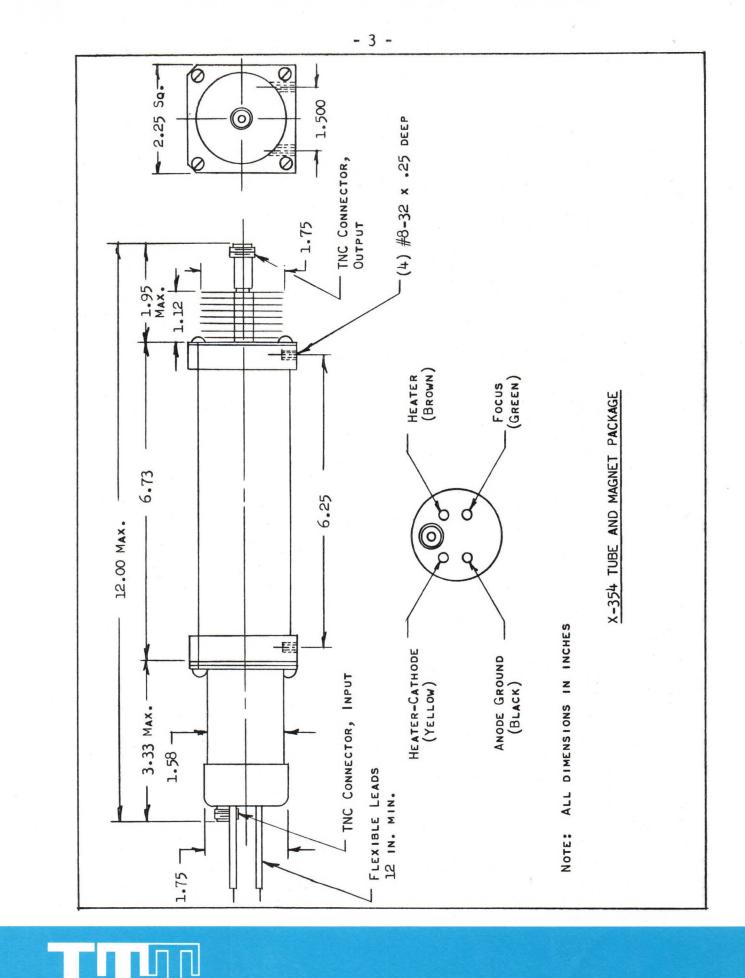
ELECTRICAL DATA:

HEATER, FOR OXIDE-COATED, UNIPOTENTIAL CATHODE		
VOLTAGE	6.3	VOLTS
CURRENT	2.0	AMPERES
FREQUENCY	8 то 12	КМС
GAIN (SMALL SIGNAL) (NOTE 1)	33	DB
GAIN (AT RATED POWER OUT) (NOTE 1)	25	DB
Power Output (Note 1)	5	WATTS

MECHANICAL DATA:

MOUNT MOUNTING POSITION BASE

OVERALL TUBE LENGTH R-F CIRCUIT CONNECTORS TYPE OF COOLING SPECIAL ANY MOULDED RUBBER FLEXIBLE LEADS 12 INCHES TNC FEMALE AIR OR WATER COOLED COLLECTOR X-354 TRAVELING WAVE TUBE


MAX IMUM RATINGS:

HELIX VOLTAGE WITH RESPECT TO GROUND (EXTERNALLY)	0	VOLTS
ANODE VOLTAGE WITH RESPECT TO GROUND	0	VOLTS
COLLECTOR VOLTAGE WITH RESPECT TO GROUND	0	VOLTS
Cathode Voltage with Respect to Ground	-4000	VOLTS
CATHODE CURRENT	60	MA
COLLECTOR CURRENT	60	MA
HELIX CURRENT	5	MA
Focus Electrode Voltage with Respect to Cathode	-100	VOLTS
BEAM DUTY CYCLE	100	PERCENT

NOTE 1: MINIMUM PERFORMANCE OVER THE FREQUENCY BAND OF 8 TO 12 KMC WITH OPERATING CONDITIONS OPTIMIZED NEAR THE CENTER OF THE BAND.

ADDITIONAL INFORMATION FOR SPECIFIC APPLICATIONS CAN BE OBTAINED FROM THE:

ELECTRON TUBE APPLICATIONS SECTION ITT COMPONENTS DIVISION POST OFFICE BOX 7065 ROANOKE, VIRGINIA

10-60

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

X-354C TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

THE X-354C IS A SUPER-HIGH-FREQUENCY, MEDIUM-POWER TRAVELING WAVE AMPLIFIER TUBE EMPLOYING A HELICAL-WAVE-PROPAGATING STRUCTURE. THE TUBE IS DESIGNED FOR USE AS A CONTINUOUS-WAVE AMPLIFIER IN THE FREQUENCY RANGE OF 8 TO 12 KILOMEGACYCLES PER SECOND.

THE X-354C IS OF ALL-METAL SHELL CONSTRUCTION, AND TYPE TNC GRFF-184 COAXIAL-LINE R-F CONNECTORS ARE PROVIDED AS AN INTEGRAL PART OF THE STRUCTURE.

THE TUBE IS SELF-ALIGNING IN THE PERMANENT MAGNET WHICH PROVIDES THE MAG-NETIC FIELD REQUIRED TO DEFINE THE PATH OF THE ELECTRON BEAM.

ELECTRICAL DATA:

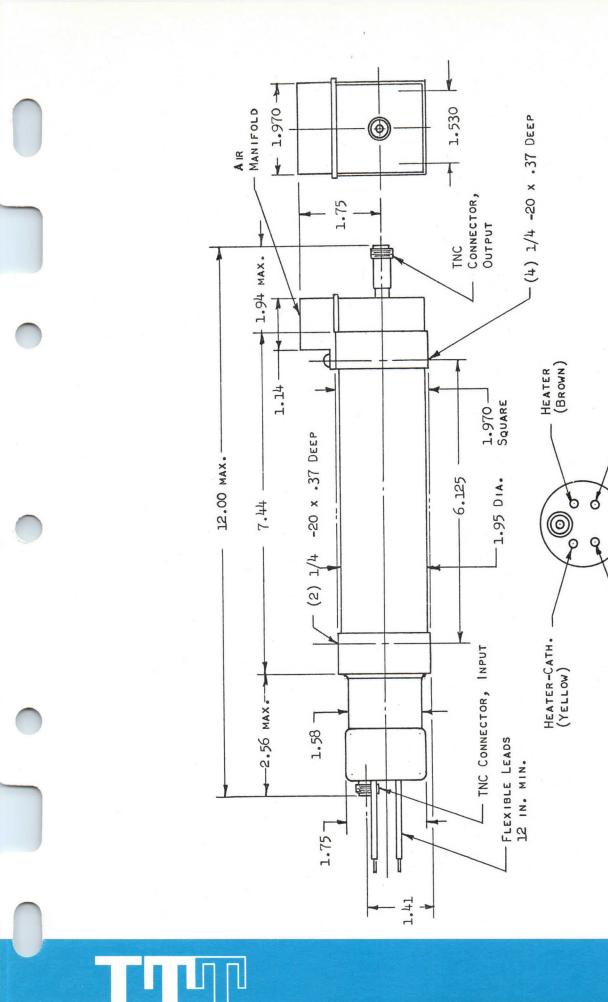
HEATER, FOR OXIDE-COATED, UNIPOTENTIAL C Voltage Current Frequency Gain - Small Signal (Note 1)	Сатноде 6.3 1.5 8 то 12 36	Volts Amperes KMC db	
GAIN - SMALL SIGNAL (NOTE 1) GAIN - AT RATED POWER OUT (NOTE 1)	33	DB	
Power Output (Note 1)	2	WATTS	

MECHANICAL DATA:

Mount Mounting Position Base

OVER-ALL TUBE LENGTH R-F CIRCUIT CONNECTORS TYPE OF COOLING SPECIAL ANY Moulded Rubber flexible leads 12 Inches TNC Female Air or water Cooled collector X-354C TRAVELING WAVE TUBE

MAXIMUM RATINGS:


HELIX VOLTAGE WITH RESPECT TO GROUND (EXTERNALLY)	0	VOLTS
ANODE VOLTAGE WITH RESPECT TO GROUND	0	VOLTS
COLLECTOR VOLTAGE WITH RESPECT TO GROUND	0	VOLTS
CATHODE VOLTAGE WITH RESPECT TO GROUND	-3200	VOLTS
CATHODE CURRENT	38	MA
COLLECTOR CURRENT	38	MA
HELIX CURRENT	3.5	MA
GRID VOLTAGE WITH RESPECT TO CATHODE	-100	VOLTS
BEAM DUTY CYCLE	100	PER CENT

NOTE 1:

MINIMUM PERFORMANCE OVER THE FREQUENCY BAND OF 8 TO 12 KMC WITH OPERAT-ING CONDITIONS OPTIMIZED NEAR THE CENTER OF THE BAND.

ADDITIONAL INFORMATION FOR SPECIFIC APPLICATIONS CAN BE OBTAINED FROM THE:

ELECTRON TUBE APPLICATIONS SECTION ITT COMPONENTS DIVISION POST OFFICE BOX 412 CLIFTON, NEW JERSEY

X-354C TUBE AND MAGNET PACKAGE

FOCUS (GREEN)

ANODE GROUND -(Black)

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

X-368 TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

THE X-368 IS A SUPER-HIGH-FREQUENCY, INTERMEDIATE-POWER, TRAVELING WAVE AMPLIFIER TUBE, EMPLOYING A HELICAL WAVE PROPAGATING STRUCTURE. THE TUBE IS DESIGNED FOR USE AS A CONTINUOUS WAVE AMPLIFIER IN THE FRE-QUENCY RANGE OF 8 TO 12 KILOMEGACYCLES PER SECOND. IT IS OF ALL-METAL SHELL CONSTRUCTION, AND TYPE TNC FEMALE COAXIAL LINE R-F CONNECTORS ARE PROVIDED AS AN INTEGRAL PART OF THE STRUCTURE. THE TUBE IS SELF-ALIGNING IN THE PERMANENT MAGNET WHICH PROVIDES THE MAGNETIC FIELD REQUIRED TO DEFINE THE PATH OF THE ELECTRON BEAM.

ELECTRICAL DATA:

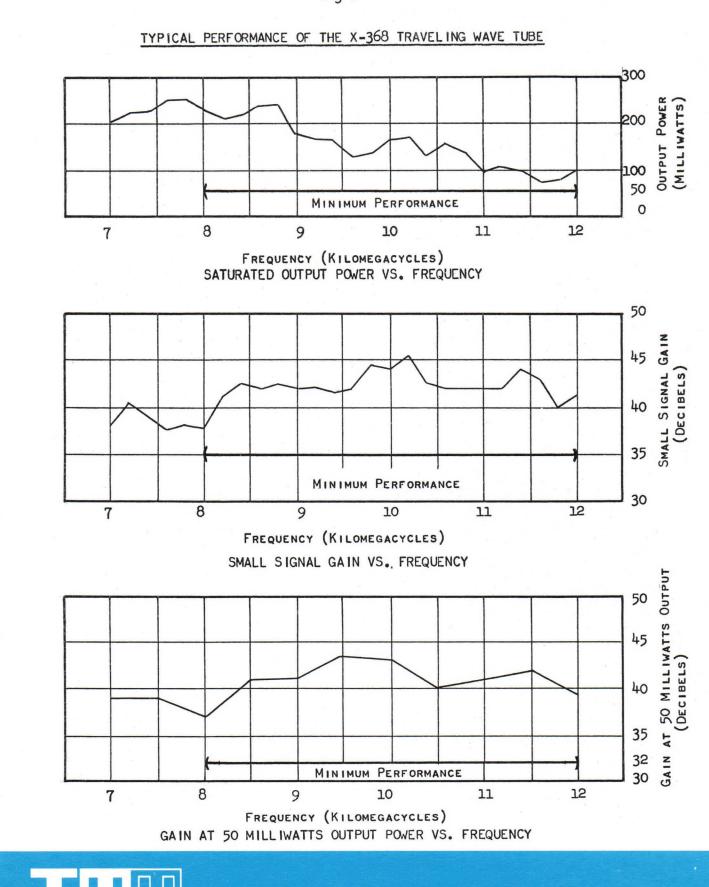
HEATER, FOR OXIDE-COATED, UNIPOTENTIAL CATHODE		
VOLTAGE	6.3	VOLTS
CURRENT	0.85	AMPERE
FREQUENCY	8 TO 12	KMC
GAIN (SMALL SIGNAL)(NOTE 1)	35	DB
GAIN (AT RATED POWER OUT) (NOTE 1)	30	DB
POWER OUTPUT (NOTE 1)	50	MW
CAPACITANCE (CONTROL ELECTRODE TO ALL ELEMENTS)	20	UUFD

MECHANICAL DATA:

MOUNT	SPECIAL
MOUNTING POSITION	ÂNY
BASE	MOULDED RUBBER
	FLEXIBLE LEADS
SIZE	11 1/4 x 2 1/4 x 2 1/4 INCHES
R-F CIRCUIT CONNECTORS	TNC FEMALE
TYPE OF COOLING	CONDUCTION
TYPE OF COOLING	CONDUCTION

X-368 TRAVELING WAVE TUBE

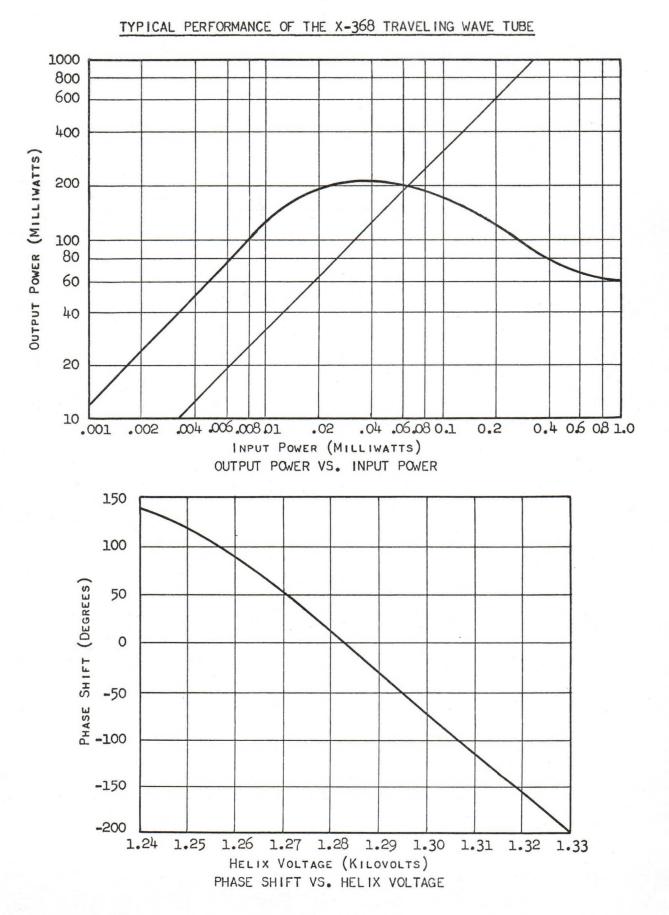
- 2 -

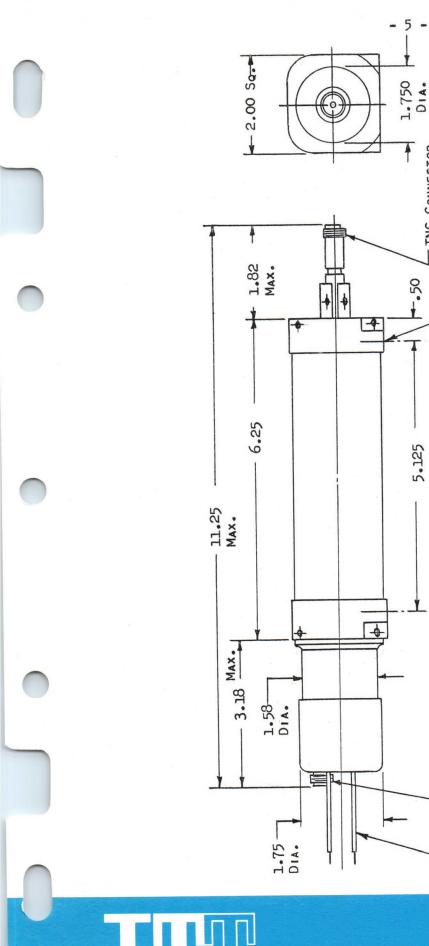

MAX IMUM RATINGS:

HELIX VOLTAGE WITH RESPECT TO GROUND (EXTERNALLY)	0	VOLTS
ANODE VOLTAGE WITH RESPECT TO GROUND	0	VOLTS
COLLECTOR VOLTAGE WITH RESPECT TO GROUND	0	VOLTS
CATHODE VOLTAGE WITH RESPECT TO GROUND	-1600	VOLTS
CATHODE CURRENT	8	MA
COLLECTOR CURRENT	8	MA
HELIX CURRENT	2	MA
Focus Electrode Voltage with Respect to Cathode	-100	VOLTS
BEAM DUTY CYCLE	100	PERCENT

NOTE 1: MINIMUM PERFORMANCE OVER THE FREQUENCY BAND OF 8 TO 12 KMC WITH OPERATING CONDITIONS OPTIMIZED NEAR THE CENTER OF THE BAND.

ADDITIONAL INFORMATION FOR SPECIFIC APPLICATIONS CAN BE OBTAINED FROM THE:


ELECTRON TUBE APPLICATIONS SECTION ITT COMPONENTS DIVISION POST OFFICE BOX 412 CLIFTON, NEW JERSEY


ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY

1-62

- 3 - -

- 4 -

- (4) 1/4 - 20 X .37 DEEP - TNC CONNECTOR Ουτρυτ -.50 Focus (Green) HEATER (Brown) 5.125 6 9 8 Q TNC CONNECTOR, INPUT HEATER-CATHODE (YELLOW) ANODE-GROUND (BLACK) FLEXIBLE LEADS 12 IN. MIN.

-

X-368 TUBE AND MAGNET PACKAGE

SUPERSEDES OUTLINE DATED 10-60)

(NOTE:

1-62

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY

X-370 TRAVELING WAVE TUBE

TENTATIVE

DESCRIPTION:

THE X-370 IS A SUPER-HIGH-FREQUENCY TRAVELING WAVE AMPLIFIER TUBE, EMPLOYING A HELICAL WAVE PROPAGATING STRUCTURE. THE TUBE IS DESIGNED FOR USE AS AN R-F AMPLIFIER IN THE FREQUENCY RANGE OF 4000 TO 8000 MEGA-CYCLES PER SECOND. IT IS OF ALL-METAL SHELL CONSTRUCTION, AND TYPE TNC COAXIAL LINE R-F CONNECTORS ARE PROVIDED AS AN INTEGRAL PART OF THE STRUCTURE. THE TUBE IS SELF-ALIGNING IN A PERMANENT MAGNET WHICH PROVIDES THE MAGNETIC FIELD REQUIRED TO DEFINE THE PATH OF THE ELECTRON BEAM.

ELECTRICAL DATA:

HEATER, FOR OXIDE-COATED, UNIPOTENTIAL CATHODE			
VOLTAGE	6.3	VOLTS	
CURRENT	2.0	AMPERES	
FREQUENCY	4000-8000	мс	
POWER OUTPUT (NOTE 1)	10	WATTS	
GAIN, OPERATED AS			
POWER AMPLIFIER (NOTE 1)	30	DB	
LOW-LEVEL AMPLIFIER (NOTE 1)	34	DB	

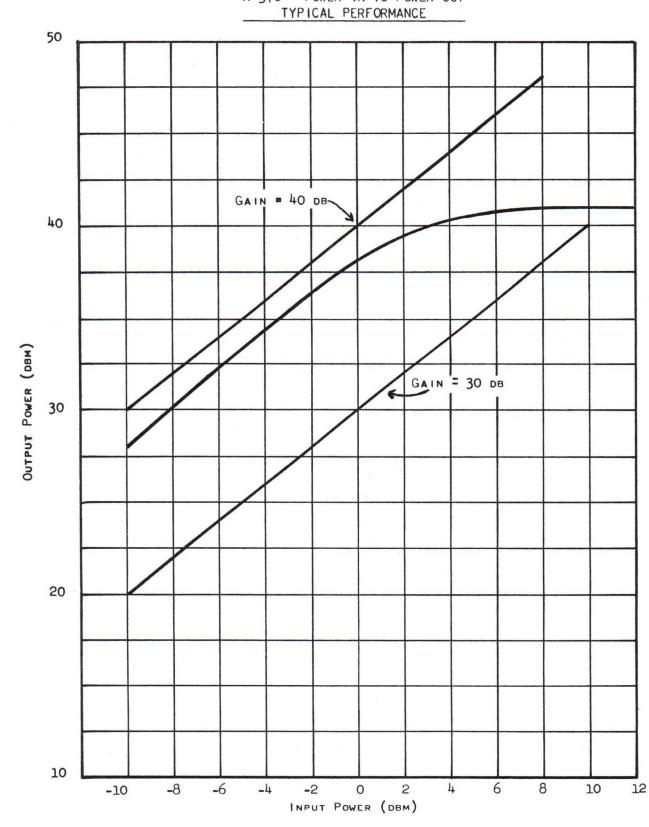
MECHANICAL DATA:

Mount Mounting Position		SPECIAL Any
BASE		MOULDED RUBBER
		WITH FLYING LEADS
SIZE	12 1/4 x 2 1/4 x 2 1/4 6.5	NCHES
NET WEIGHT	6.5	POUNDS
R-F CIRCUIT CONNECTORS		TYPE TNC
TYPE OF COOLING		AIR COOLED

NOTE 1: MINIMUM PERFORMANCE OVER THE FREQUENCY BAND OF 4000 TO 8000 MC.

X-370 TRAVELING WAVE TUBE

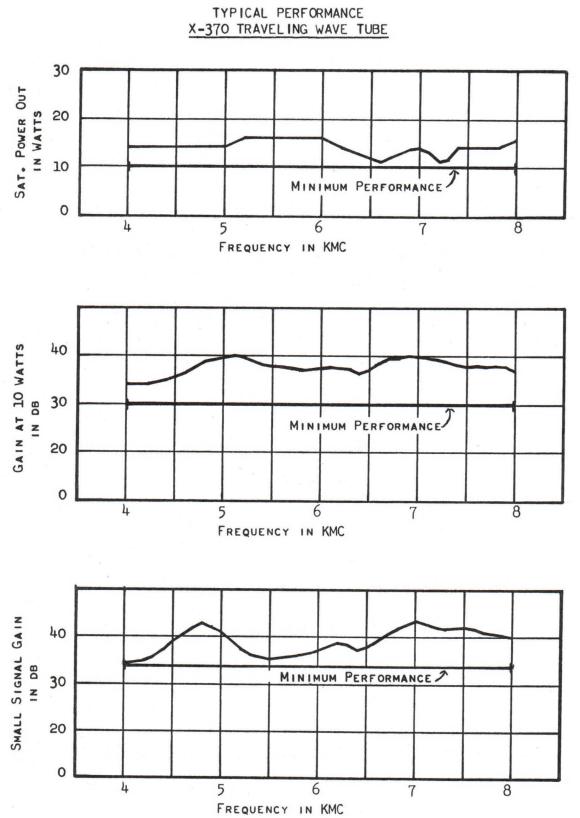
MAX IMUM RATINGS:

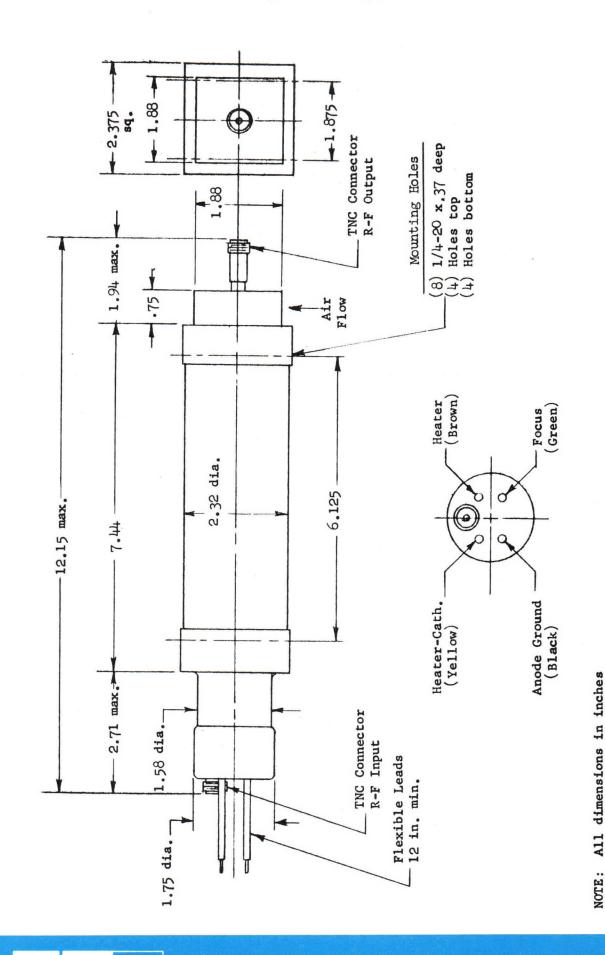

CATHODE VOLTAGE WITH RESPECT TO GROUND -3,000 VOLTS CATHODE CURRENT 70 MA FOCUS ELECTRODE VOLTAGE RANGE WITH RESPECT TO CATHODE -15 то О VOLTS ANODE VOLTAGE ANODE CONNECTED INTERNALLY TO SHELL SHELL CURRENT 70 MA HELIX VOLTAGE WITH RESPECT TO SHELL \$500 VOLTS HELIX CURRENT 3 MA COLLECTOR VOLTAGE ANODE CONNECTED INTERNALLY TO SHELL COLLECTOR CURRENT SAME AS SHELL COLLECTOR DISSIPATION 200 WATTS R-F POWER INPUT 1. WATT AVERAGE LOAD VSWR 3.0:1

TYPICAL OPERATION:

AS A POWER AMPLIFIER		
FREQUENCY	6,000	MC
CATHODE VOLTAGE	2,800	VOLTS
CATHODE CURRENT	65	MA
Foucs Electrode Voltage with Respect to Cathode	-5	VOLTS
SHELL CURRENT	63	MA
HELIX CURRENT	2	MA
POWER OUTPUT	10	WATTS
POWER GAIN	30	DB
DUTY	1.0	
AS A LOW-LEVEL AMPLIFIER		
FREQUENCY	6,000	MC
CATHODE VOLTAGE	2,600	VOLTS
CATHODE CURRENT	55	MA
Focus Electrode Voltage with Respect to Cathode	-5	VOLTS
SHELL CURRENT	54	MA
HELIX CURRENT	1.5	MA
POWER OUTPUT	300	MW
POWER GAIN	34	DB
DUTY	1.0	

ADDITIONAL INFORMATION FOR SPECIFIC APPLICATIONS CAN BE OBTAINED FROM THE


ELECTRON TUBE APPLICATIONS SECTION ITT COMPONENTS DIVISION POST OFFICE BOX 412 CLIFTON, NEW JERSEY


X-370 - POWER IN VS POWER OUT

- 3 -

6-62

- 4 -

X-370 TUBE AND MAGNET PACKAGE

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

x-388* backward wave converter tube

TENTATIVE

GENERAL CHARACTERISTICS:

The X-388 is a single tube designed to convert UHF signals in the band from 496-897 megacycles to a 50 megacycle intermediate frequency output signal.

The tube consists of a backward-wave amplifier and a backward wave oscillator in the same vacuum envelope. The r-f input signal is fed to the amplifier section where its level is increased. It is then mixed with the oscillator signal in the common electron beam that interacts with both r-f structures, to yield an i-f output signal which can be adjusted over a fairly large frequency range. This tube uses a 50 megacycle i-f.

The X-388 is a glass tube, mounted in an aluminum capsule. Solenoid focusing is required. A type "TNC" r-f input connector and a "TSM" i-f output connector are included as an integral part of the capsule. A type "TNC" 1-o output connector can be supplied if required.

ELECTRICAL DATA:

Operating Frequency Bandwidth Noise Figure I-F Output Conversion Gain Image Rejection 496-897 megacycles 10-25 megacycles 20 db 50 megacycles Unity 40 db

- Note: The image rejection is dependent upon the intermediate frequency selected. This tube utilizes a 50 megacycle i-f. An increase in the i-f would result in a higher level of image rejection.
- * This number identifies a particular experimental tube design, such number and identification data being subject to change without notice. This tube is for experimental purposes only, carries no obligation for future manufacture, and should not be used for design purposes without prior arrangement.

x-388 BACKWARD WAVE CONVERTER TUBE

-2-

MECHANICAL DATA:

Mounting Position Capsule Length Capsule Outside Diameter R-F Input Connector I-F Output Connector L-O Output Connector (if required) D-C Connections

MAXIMUM RATINGS:

Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage Amplifier Helix No. 1 Voltage) Amplifier Helix No. 2 Voltage) Capsule Voltage Oscillator Helix Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Amplifier Helix No. 1 Current) Amplifier Helix No. 2 Current) Capsule Current Oscillator Helix Current Collector Current Solenoid Magnetic Field

Horizontal (preferred) 54 inches 3-1/4 inches Type "TNC" Coaxial, female Type "TSM" Coaxial, male Type "TNC" Coaxial, female Color coded flying leads

7.5 Volts maximum
4.5 Amperes maximum
-100 to -1200 Volts maximum
8 ma maximum
0 to -10 Volts maximum)
15 to 80 Volts maximum)
15 to 100 Volts maximum)
15 to 300 Volts maximum) to cathode
100 to 500 Volts maximum)

Zero Volts (Ground)

-100 to +50 Volts maximum 250 Volts maximum .3 ma maximum .5 ma maximum

.3 ma maximum 8 ma maximum 500 Gauss maximum

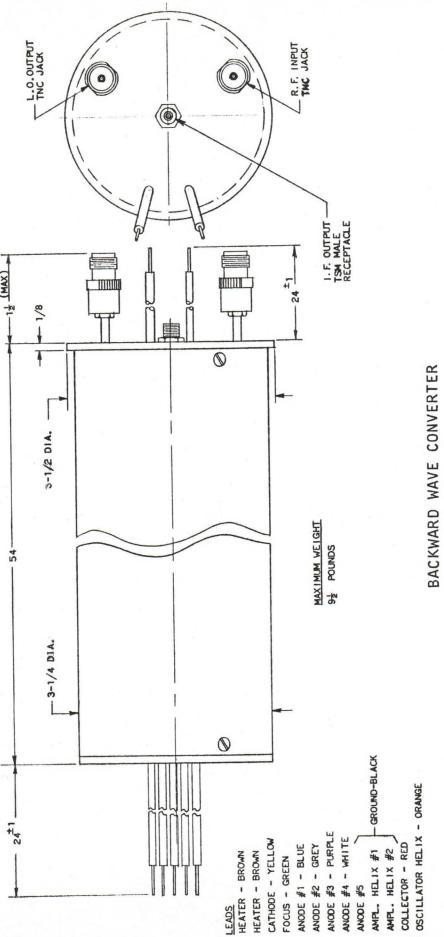
X-388 BACKWARD WAVE CONVERTER TUBE

3-62

COMPONENTS DIVISION

TYPICAL OPERATION:

R-F Frequency L-O Frequency **I-F** Frequency Conversion Gain Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage Amplifier Helix No. 1 Voltage) Amplifier Helix No. 2 Voltage) Capsule Voltage Oscillator Helix Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Amplifier Helix No. 1 Current) Amplifier Helix No. 2 Current) Capsule Current Oscillator Helix Current Collector Current Solenoid Magnetic Field


750 megacycles 700 megacycles 50 megacycles 0 db 7.0 Volts dc 3.9 Amperes -410 Volts with respect to ground 3.0 ma **O Volts** 42 Volts 49 Volts) with respect to cathode 56 Volts 164 Volts) O Volts (Ground) -55 Volts) 200 Volts) with respect to ground 0 ma .06 ma .05 ma .05 ma .06 ma .04 ma .08 ma .02 ma 2.6 ma 450 Gauss

Additional information for specific application can be obtained from the

ELECTRON TUBE DEPARTMENT

Electron Tube Application Section ITT Components Division P.O. Box 412 Clifton, New Jersey

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY

-1<u>+</u> (MAX) -1

54

TYPE X-388

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY X-389* BACKWARD WAVE AMPLIFIER TUBE

TENTATIVE

GENERAL CHARACTERISTICS:

The X-389 is a backward wave amplifier tube with a helical wave propagation structure employing continuous beam operation. The tube is designed for use as a narrow band medium noise r-f amplifier with a pass band that can be electronically tuned over the frequency range of 496 to 897 megacycles.

The X-389 is a glass envelope tube mounted in an aluminum capsule and requires a solenoid to focus the electron beam. Type "TNC" female r-f connectors are included as an integral part of the capsule.

ELECTRICAL DATA:

Frequency Range Pass Band (3 db) Small Signal Gain Noise Figure

MECHANICAL DATA:

Mounting Position Capsule Length Capsule Diameter Net Weight R-F Connectors D-C Connections Cooling 496 - 897 megacycles
1 - 5 megacycles
20 db minimum
15 db maximum

Horizontal (preferred) 45 inches 3-1/4 inches 8 pounds Type "TNC" Female Color Coded Flying Leads Not Required

* This number identifies a particular experimental tube design, such number and identification data being subject to change without notice. This tube is for experimental purposes only, carries no obligation for future manufacture and should not be used for design purposes without prior arrangement. X-389 BACKWARD WAVE AMPLIFIER TUBE

MAXIMUM RATINGS:

Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage) Helix No. 1 Voltage) Helix No. 2 Voltage) Capsule Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Helix No. 1 Current) Helix No. 2 Current) Capsule Current Collector Current Solenoid Magnetic Field

TYPICAL OPERATION:

Frequency (Center of Pass Band) Pass Band (3 db) Small Signal Gain Noise Figure Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage) Helix No. 1 Voltage) Helix No. 2 Voltage) Capsule Voltage

7.5 Volts maximum 4.5 Amperes maximum -100 to -1200 Volts maximum 5.0 ma maximum -10 to +10 Volts maximum) +5 to 80 Volts maximum +5 to 100 Volts maximum) W +20 to 200 Volts maximum) t +70 to 400 Volts maximum)

With respect to cathode

Zero Volts (Ground) 250 Volts maximum .2 ma maximum .3 ma maximum 5 ma maximum

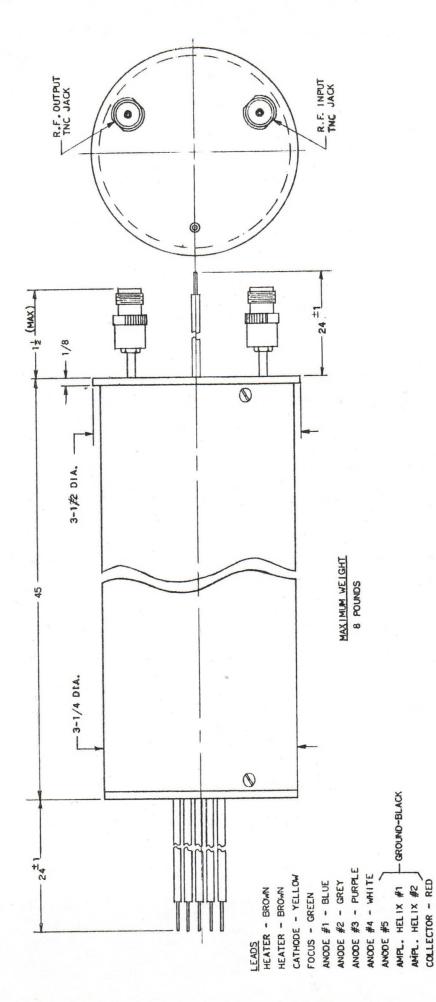
500 Gauss maximum

750 megacycles 3 megacycles 23 db 13 db 7.0 Vdc 3.9 Adc -410 Vdc with respect to ground 1.2 ma) 0 Vdc) 19 Vdc) 9 Vdc) with respect to cathode 65 Vdc) 180 Vdc)

Zero Volts (Ground)

X-389 BACKWARD WAVE AMPLIFIER TUBE

3-62


Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Helix No. 1 Current) Helix No. 2 Current) Capsule Current Magnetic Field

200 Volts with respect to ground 0 ma .03 ma .02 ma .01 ma .01 ma .01 ma 1.1 ma 450 gauss

Additional Information For Specific Applications Can Be Obtained from the:

-3-

Electron Tube Applications Section ITT Components Division P.O. Box 412 Clifton, New Jersey

TYPE X-389

BACKWARD WAVE AMPLIFIER

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY x-390* BACKWARD WAVE CONVERTER TUBE

TENTATIVE

GENERAL CHARACTERISTICS

The X-390 is a single tube designed to convert UHF signals in the band from 853-1543 megacycles to a 50 megacycle intermediate frequency output signal.

The tube consists of a backward-wave amplifier and a backward wave oscillator in the same vacuum envelope. The r-f input signal is fed to the amplifier section where its level is increased. It is then mixed with the oscillator signal in the common electron beam that interacts with both r-f structures, to yield an i-f output signal which can be adjusted over a fairly large frequency range. This tube uses a 50 megacycle i-f.

The X-390 is a glass tube, mounted in an aluminum capsule. Solenoid focusing is required. A type TNC r-f input connector a "TSM" i-f output connector are included as an integral part of the capsule. A type "TNC" l-o output connector can be supplied if required.

ELECTRICAL DATA

Operating Frequency	853-1543 megacycles
Bandwidth of Input Section	10-25 megacycles
Noise Figure	20 db
I-F Output	50 megacycles
Conversion Gain	Unity
Image Rejection	35 db

Note: The image rejection is dependent upon the intermediate frequency selected. This tube utilizes a 50 megacycle i-f, an increase in the i-f would result in a higher level of image rejection.

*This number identifies a particular experimental tube design, such number and identification data being subject tochange without notice. This tube is for experimental purposes only, carries no obligation for future manufacture, and should not be used for design purposes without prior arrangement. X-390 BACKWARD-WAVE CONVERTER TUBE

MECHANICAL DATA

Mounting Position Capsule Length Capsule Outside Diameter R-F Input Connector I-F Output Connector L-O Output Connector (if required) D. C. Connections

MAXIMUM RATINGS

Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage Amplifier Helix No. 1 Voltage Amplifier Helix No. 2 Voltage Capsule Voltage Oscillator Helix Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Amplifier Helix No. 1 Current) Amplifier Helix No. 2 Current) Capsule Current Oscillator Helix Current Collector Current Solenoid Magnetic Field

Horizontal (preferred) 47-1/2 inches 3-1/2 inches Type "TNC" coaxial, female Type "TSM" coaxial, male Type "TNC" coaxial, female Color coded flying leads

7.5 Volts maximum 4.5 Amperes maximum -200 to -1450 Volts maximum 8 ma maximum 0 to -10 Volts maximum) +10 to +75 Volts maximum) W +10 to +100 Volts maximum) W +30 to +300 Volts maximum) +80 to +900 Volts maximum)) 2ero Volts (Ground)

-50 to +55 Volts maximum

250 Volts maximum

.3 ma maximum .3 ma maximum

.3 ma maximum .3 ma maximum

.3 ma maximum

.3 ma maximum

With respect to cathode

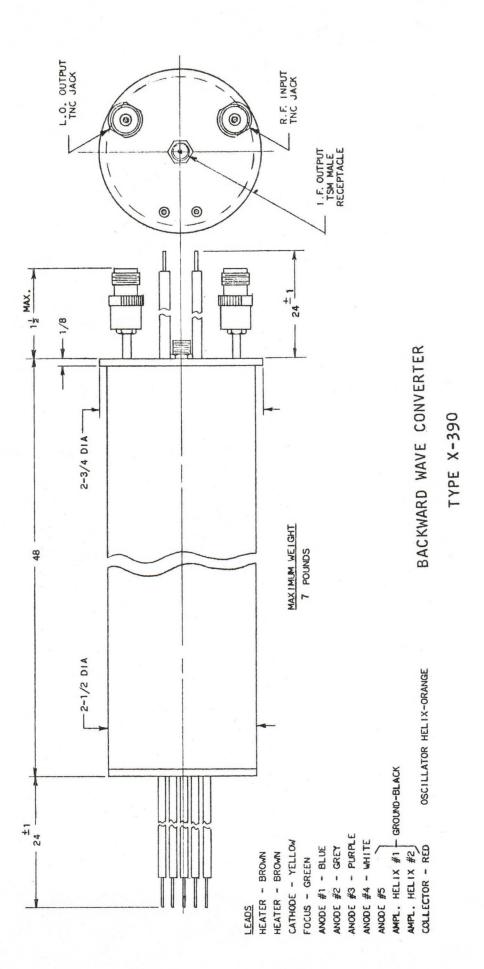
.5 ma maximum .3 ma maximum 8 ma maximum

600 Gauss maximum

-2-

X-390 BACKWARD-WAVE CONVERTER TUBE

TYPICAL OPERATION


R-F Frequency L-O Frequency I-F Frequency Conversion Gain Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage Amplifier Helix No. 1 Voltage) Amplifier Helix No. 2 Voltage) Capsule Voltage Oscillator Helix Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Amplifier Helix No. 1 Current) Amplifier Helix No. 2 Current) Capsule Current Oscillator Helix Current Collector Current Solenoid Magnetic Field

1200 megacycles megacycles 1150 megacycles 50 0 db 7.0 Volts Amperes 3.9 Volts with respect to ground -545 4.0 ma 0 Volts) 39 Volts With respect to cathode 51 Volts) 70 Volts 230 Volts Volts (Ground) 0 -40 Volts) 200 Volts) with respect to ground 0 ma .07 ma ma .04 .04 ma .05 ma .06 ma .08 ma .02 ma 3.6 ma 500 Gauss

Additional information for specific application can be obtained from the:

-3-

Electron Tube Application Section ITT Components Division P. O. Box 412 Clifton, New Jersey

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

TENTATIVE

GENERAL CHARACTERISTICS

The X-391 is an L-band backward wave amplifier tube with a helical wave propagation structure employing continuous beam operation. The tube is designed for use as a narrow band medium noise r-f amplifier with a pass band that can be electronically tuned over the frequency range of 853 to 1543 megacycles.

The X-391 is a glass envelope tube mounted in an aluminum capsule and requires a solenoid to focus the electron beam. Type "TNC" female r-f connectors are included as an integral part of the capsule.'

ELECTRICAL DATA

Frequency Range Pass Band (3 db) Small Signal Gain Noise Figure 853 - 1543 mcs 2 - 8 mcs 20 db minimum 15 db maximum

MECHANICAL DATA

Mounting Position Capsule Length Capsule Diameter Net Weight R-F Connectors D-C Connections Cooling Horizontal (preferred) 40 inches 2-1/2 inches 6 pounds Type "TNC" Female Color Coded Flying Leads Not Required

*This number identifies a particular experimental tube design, such number and identification data being subject to change without notice. This tube is for experimental purposes only, carries no obligation for future manufacture and should not be used for design purposes without prior arrangement. X-391 BACKWARD WAVE AMPLIFIER TUBE

MAXIMUM RATINGS

Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage) Helix No. 1 Voltage) Helix No. 2 Voltage) Capsule Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Helix No. 1 Current) Helix No. 2 Current) Capsule Current Collector Current Solenoid Magnetic Field

TYPICAL OPERATION

Frequency (Center of Pass Band) Pass Band (3 db) Small Signal Gain Noise Figure Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage) Helix No. 1 Voltage) Helix No. 2 Voltage) Capsule Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current

7.5 Volts dc maximum 4.5 Amperes maximum -175 to -1300 Volts maximum 4 ma maximum -10 to +10 Volts maximum) +5 to +70 Volts maximum) +5 to +100 Volts maximum) with respect +30 to +300 Volts maximum) to cathode +80 to +800 Volts maximum)

Zero Volts (Ground)

250 Volts maximum .2 ma maximum

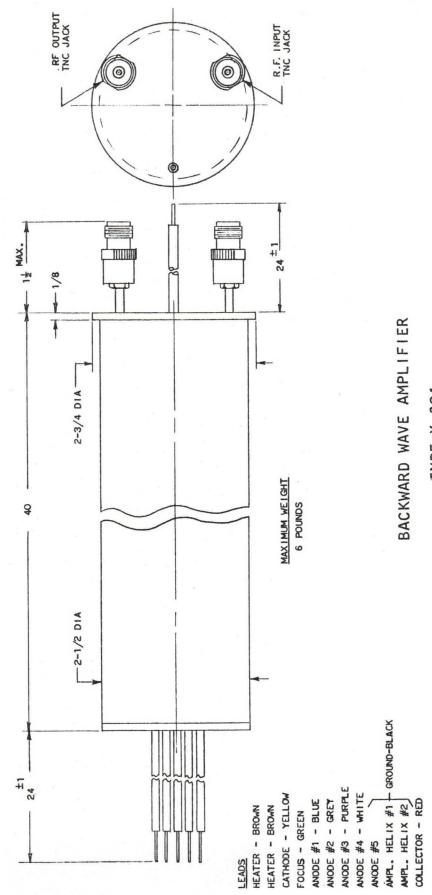
```
.3 ma maximum
```

4 ma maximum 600 Gauss maximum

1200 megacycles 5 megacycles 23 db 12 db 7.0 Vdc 3.9 Adc -545 Vdc with respect to ground 2.0 ma -8 Vdc) +15 Vdc) +30 Vdc) with respect to cathode +150 Vdc) +300 Vdc)

Zero Volts (Ground)

200 Volts with respect to ground 0 ma .02 ma .03 ma


X-391 BACKWARD WAVE AMPLIFIER TUBE

Anode No. 3 Anode No. 4 Current Anode No. 5 Current Helix No. 1 Current) Helix No. 2 Current) Capsule Current) Collector Current Magnetic Field .02 ma .01 ma .01 ma .01 ma 1.9 ma 500 gauss

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division P.O. Box 412 Clifton, New Jersey

-3-

TYPE X-391

X-392* BACKWARD WAVE CONVERTER TUBE

TENTATIVE

GENERAL CHARACTERISTICS

The X-392 is a single tube designed to convert UHF signals in the band from 1470-2670 megacycles to a 130 megacycle intermediate frequency output signal.

The tube consists of a backward-wave amplifier and a backward wave oscillator in the same vacuum envelope. The r-f input signal is fed to the amplifier section where its level is increased. It is then mixed with the oscillator signal in the common electron beam that interacts with both r-f structures, to yield an i-f output signal which can be adjusted over a fairly large frequency range. This tube uses a 130 megacycle i-f.

The X-392 is a glass tube, mounted in an aluminum capsule. Solenoid focusing is required. A type "TNC" r-f input connector and a "TSM" i-f output connector are included as an integral part of the capsule. A type "TNC" 1-o output connector can be supplied if required.

ELECTRICAL DATA

Operating Frequency Bandwidth of Input Section Noise Figure I-F Output Conversion Gain Image Rejection 1470-2670 megacycles 10-30 megacycles 20 db 130 megacycles Unity 35 db

NOTE: The image rejection is dependent upon the intermediate frequency selected. This tube utilizes a 130 megacycle i-f, an increase in the i-f would result in a higher level of image rejection.

MECHANICAL DATA

Mounting PositionHorizontal (preferred)Capsule Length39 inchesCapsule Outside Diameter2 inchesR-F Input ConnectorType "TNC" coaxial, femaleI-F Output ConnectorType "TSM" coaxial, maleL-O Output Connector (if required)Type "TNC" coaxial, femaleD.C. ConnectionsColor Coded Flying leads

*This number identifies a particular experimental tube design, such number and identification data being subject to change without notice. This tube is for experimental purposes only, carries no obligation for future manufacture, and should not be used for design purposes without prior arrangement. X-392 BACKWARD-WAVE CONVERTER TUBE

MAXIMUM RATINGS

Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage Amplifier Helix No. 1 Voltage) Amplifier Helix No. 2 Voltage) Capsule Voltage Oscillator Helix Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Amplifier Helix No. 1 Current) Amplifier Helix No. 2 Current) Capsule Current Oscillator Helix Current Collector Current Solenoid Magnetic Field

TYPICAL OPERATION

R-F Frequency L-O Frequency **I-F** Frequency Conversion Gain Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage Amplifier Helix No. 1 Voltage) Amplifier Helix No. 2 Voltage) Capsule Voltage Oscillator Helix Voltage Collector Voltage

6.5 Volts dc maximum 4 Amperes maximum -200 to -1400 Volts maximum 8 ma maximum 0 to -10 Volts maximum) +10 to +70 Volts maximum) +10 to +300 Volts maximum) +70 to +900 Volts maximum)

With respect to cathode

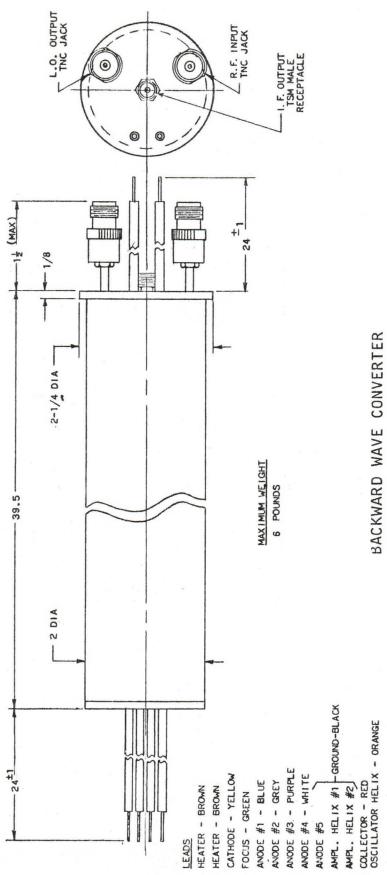
Zero Volts (Ground) -50 to +100 Volts maximum 250 Volts maximum .3 ma maximum .5 ma maximum .3 ma maximum

> 2200 megacycles 2070 megacycles 130 megacycles +3 db 6.3 Volts dc 3.5 Amperes -680 Volts with respect to ground 4.0 ma 0 Volts) 35 Volts) 47 Volts) With respect to cathode 230 Volts) 550 Volts)

0 Volts (Ground)

-30 Volts) With respect to ground

X-392 BACKWARD-WAVE CONVERTER TUBE


-3-

Focus Current 0 ma .06 ma Anode No. 1 Current .05 ma Anode No. 2 Current Anode No. 3 Current .05 ma Anode No. 4 Current .06 ma Anode No. 5 Current .04 ma Amplifier Helix No. 1 Current) .08 ma Amplifier Helix No. 2 Current) Capsule Current Oscillator Helix Current .02 ma 3.6 ma Collector Current 650 Gauss Solenoid Magnetic Field

Additional information for specific application can be obtained from the

Electron Tube Application Section ITT Components Division P.O. Box 412 Clifton, New Jersey

3-62

TYPE X-392

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

X-393* BACKWARD WAVE AMPLIFIER TUBE

TENTATIVE

GENERAL CHARACTERISTICS

The X-393 is an S-band backward wave amplifier tube with a helical wave propagation structure employing continuous beam operation. The tube is designed for use as a narrow band medium noise r-f amplifier with a pass band that can be electronically tuned over the frequency range of 1470 to 2670 megacycles.

The X-393 is a glass envelope tube mounted in an aluminum capsule and requires a solenoid to focus the electron beam. Type "TNC" female r-f connectors are included as an integral part of the capsule.

ELECTRICAL DATA

Frequency Range Pass Band (3 db) Small Signal Gain Noise Figure 1470 - 2670 mcs 3 - 15 mcs 20 db minimum 15 db maximum

MECHANICAL DATA

Mounting Position Capsule Length Capsule Diameter Net Weight R-F Connectors D-C Connections Cooling Horizontal (preferred) 32 inches 2 inches 5 pounds Type "TNC" Female Color Coded Flying Leads Not Required

*This number identifies a particular experimental tube design, such number and identification data being subject to change without notice. This tube is for experimental purposes only, carries no obligation for future manufacture and should not be used for design purposes without prior arrangement.

3-62

X-393 BACKWARD WAVE AMPLIFIER TUBE

MAXIMUM RATINGS

Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage) Helix No. 1 Voltage) Helix No. 2 Voltage) Capsule Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Helix No. 1 Current) Helix No. 2 Current) Capsule Current Collector Current Solenoid Magnetic Field

TYPICAL OPERATION

Frequency (Center of Pass Band) Pass Band (3 db) Small Signal Gain Noise Figure Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage) Helix No. 1 Voltage) Helix No. 2 Voltage) Capsule Voltage Collector Voltage Focus Current Anode No. 1 Current

6.5 Volts dc maximum
4 Amperes maximum
-200 to -1350 Volts maximum
4 ma maximum
-10 to +10 Volts maximum)
+5 to +70 Volts maximum)
+10 to +150 Volts maximum) with respect
+20 to +250 Volts maximum) to cathode
+70 to +700 Volts maximum)

Zero Volts (Ground)

250 Volts maximum .2 ma maximum .3 ma maximum

4 ma maximum 700 Gauss maximum

2200 megacycles 9 megacycles 23 db 12 db 6.3 Vdc 3.5 ADC -680 Vdc with respect to ground 2.0 ma -7 Vdc) +18 Vdc) +15 Vdc) with respect to cathode +210 Vdc) +450 Vdc)

Zero Volts (Ground)

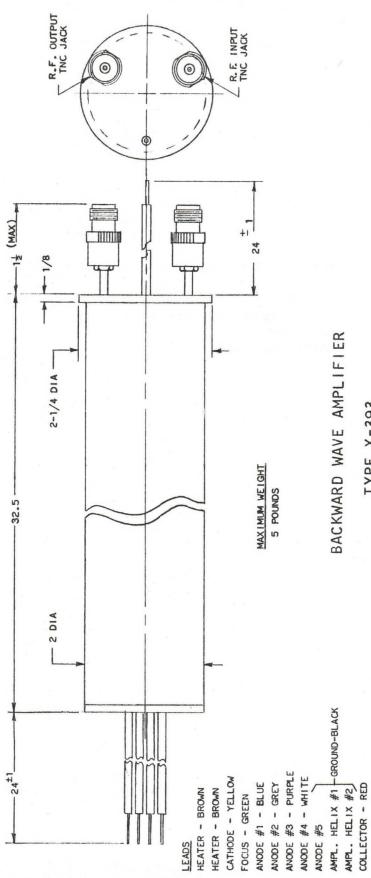
200 Volts with respect to ground 0 ma .03 ma

X-393 BACKWARD WAVE AMPLIFIER TUBE

-3-

Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Helix No. 1 Current) Helix No. 2 Current) Capsule Current) Collector Current Magnetic Field

Π


.01 ma .01 ma .01 ma .01 ma .03 ma 1.9 ma 650 gauss

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division P.O. Box 412 Clifton, New Jersey

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

3-62

TYPE X-393

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

TENTATIVE

GENERAL CHARACTERISTICS

The X-394 is a single tube designed to convert SHF signals in the band from 2540-4050 megacycles to a 180 megacycle intermediate frequency output signal.

The tube consists of a backward-wave amplifier and a backward wave oscillator in the same vacuum envelope. The r-f input signal is fed to the amplifier section where its level is increased. It is then mixed with the oscillator signal in the common electron beam that interacts with both r-f structures, to yield an i-f output signal which can be adjusted over a fairly large frequency range. This tube uses a 180 megacycle i-f.

The X-394 is a glass tube, mounted in an aluminum capsule. Solenoid focusing is required. A type TNC r-f input connector and a "TSM" i-f output connector are included as an integral part of the capsule. A type "TNC" 1-o output connector can be supplied if required.

ELECTRICAL DATA

Operating Frequency Bandwidth of Input Section Noise Figure I-F Output Conversion Gain Image Rejection 2540-4050 megacycles 10-40 megacycles 20 db 180 megacycles Unity 35 db

NOTE: The image rejection is dependent upon the intermediate frequency selected. This tube utilizes a 180 megacycle i-f, an increase in the i-f would result in a higher level of image rejection.

MECHANICAL DATA

Mounting Position Capsule Length Capsule Outside Diameter R-F Input Connector I-F Output Connector L-O Output connector (if required) D.C. Connections Any 31 inches 1-3/8 inches Type "TNC" coaxial, female Type "TSM" coaxial, male Type "TNC" coaxial, female Color coded flying leads.

*This number identifies a particular experimental tube design, such number and identification data being subject to change without notice. This tube is for experimental purposes only, carries no obligation for future manufacture, and should not be used for design purposes without prior arrangement. X-394 BACKWARD WAVE CONVERTER TUBE

MAXIMUM RATINGS

Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage Amplifier Helix No. 1 Voltage) Amplifier Helix No. 2 Voltage) Capsule Voltage Oscillator Helix Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Amplifier Helix No. 1 Current) Amplifier Helix No. 2 Current) Capsule Current Oscillator Helix Current Collector Current Solenoid Magnetic Field

TYPICAL OPERATION

R-F Frequency L-O Frequency I-F Frequency Conversion Gain Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage Amplifier Helix No. 1 Voltage) Amplifier Helix No. 2 Voltage) Capsule Voltage

6.5 Volts dc maximum
4.0 Amperes maximum
-250 to -1500 Volts maximum
8 ma maximum
0 to -10 Volts maximum)
+15 to +75 Volts maximum)
+15 to +150 Volts maximum) with respect
+30 to +350 Volts maximum) to cathode
+100 to +900 Volts maximum)

Zero Volts (Ground)

-2-

-50 to +100 Volts maximum 250 Volts maximum .3 ma maximum' .3 ma maximum .3 ma maximum .3 ma maximum .3 ma maximum .5 ma maximum .3 ma maximum

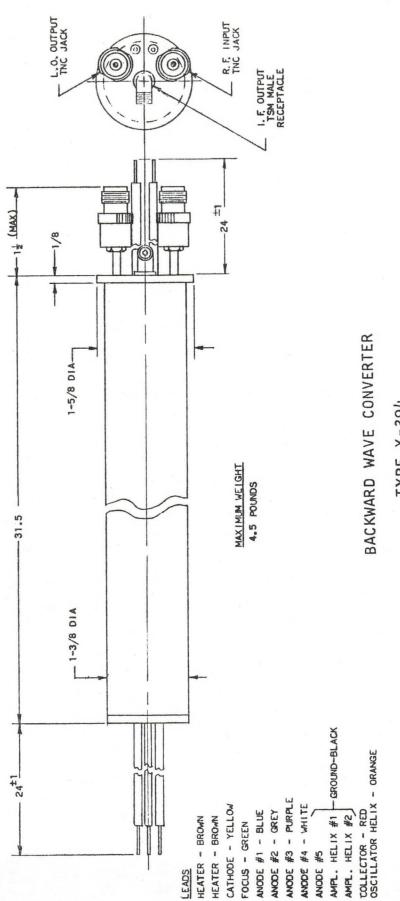
8 ma maximum 750 Gauss maximum

3500 megacycles 3320 megacycles 180 megacycles 0 db 6.3 Volts dc 3.5 Amperes -820 Volts with respect to ground 4.5 ma 0 Volts) 54 Volts) 60 Volts) With respect to cathode 210 Volts) 320 Volts)

O Volts (Ground)

X-394 BACKWARD-WAVE CONVERTER TUBE

Oscillator Helix Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Amplifier Helix No. 1 Current) Amplifier Helix No. 2 Current) Capsule Current Oscillator Helix Current Collector Current Solenoid Magnetic Field -20 Volts) 200 Volts) with respect to ground 0 ma .08 ma .06 ma .05 ma .06 ma .06 ma .08 ma .08 ma .02 ma 4.1 ma


650 Gauss

Additional information for specific application can be obtained from the

Electron Tube Application Section ITT Components Division P.O. Box 412 Clifton, New Jersey

-3-

3-62

TYPE X-394

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

TENTATIVE

GENERAL CHARACTERISTICS

The X-395 is an S-band backward wave amplifier tube with a helical wave propagation structure employing continuous beam operation. The tube is designed for use as a narrow band medium noise r-f amplifier with a pass band that can be electronically tuned over the frequency range of 2540 to 4050 megacycles.

The X-395 is a glass envelope tube mounted in an aluminum capsule and requires a solenoid to focus the electron beam. Type "TNC" female r-f connectors are included as an integral part of the capsule.

ELECTRICAL DATA

Frequency Range Pass Band (3 db) Small Signal Gain Noise Figure 2540 - 4050 mcs 6 - 22 mcs 20 db minimum 15 db maximum

MECHANICAL DATA

Mounting Position Capsule Length Capsule Diameter Net Weight R-F Connectors D-C Connections Cooling Any 24 inches 1-3/8 inches 3-1/2 pounds Type "TNC" Female Color Coded Flying Leads Not Required

*This number identifies a particular experimental tube design, such number and identification data being subject to change without notice. This tube is for experimental purposes only, carries no obligation for future manufacture and should not be used for design purposes without prior arrangement. X-395 BACKWARD WAVE AMPLIFIER TUBE

MAXIMUM RATINGS

Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage) Helix No. 1 Voltage) Helix No. 2 Voltage) Capsule Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Helix No. 1 Current) Helix No. 2 Current) Capsule Current Collector Current Solenoid Magnetic Field

TYPICAL OPERATION

Frequency (Center of Pass Band) Pass Band (3 db) Small Signal Gain Noise Figure Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage) Helix No. 1 Voltage) Helix No. 2 Voltage) Capsule Voltage Collector Voltage

4 Amperes maximum -250 to -1400 Volts maximum 4 ma maximum -10 to +10 Volts maximum) +5 to +80 Volts maximum) +5 to 200 Volts maximum) with respect +20 to 300 Volts maximum) to cathode +70 to 800 Volts maximum)

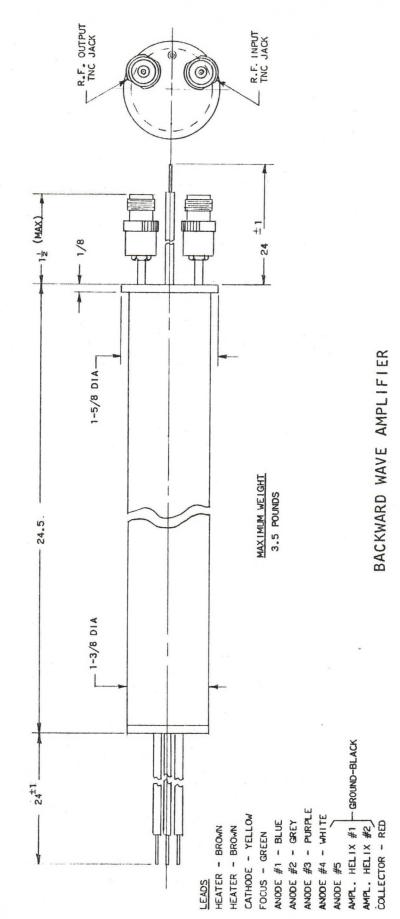
Zero Volts (Ground)

6.5 Volts dc maximum

250 Volts maximum .2 ma maximum .3 ma maximum

4 ma maximum 750 Gauss maximum

3500 megacycles 14 megacycles 24 db 12 db 6.3 Vdc 3.5 Adc -820 Vdc with respect to ground 2.0 ma -7 Vdc) +18 Vdc) +15 Vdc) with respect to cathode +200 Vdc) +300 Vdc)


Zero Volts (Ground) 200 Volts with respect to ground

X-395 BACKWARD WAVE AMPLIFIER TUBE

Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Helix No. 1 Current) Helix No. 2 Current) Capsule Current) Collector Current Magnetic Field 0 ma .05 ma .02 ma .03 ma .05 ma .02 ma .03 ma 1.8 ma 700 gauss

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division P.O. Box 412 Clifton, New Jersey

TYPE X-395

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY

X-396* BACKWARD WAVE CONVERTER TUBE

TENTATIVE

GENERAL CHARACTERISTICS

The X-396 is a single tube designed to convert SHF signals in the band from 3850-6000 megacycles to 280 megacycle intermediate frequency output signal.

The tube consists of a backward-wave amplifier and a backward wave oscillator in the same vacuum envelope. The r-f input signal is fed to the amplifier section where its level is increased. It is then mixed with the oscillator signal in the common electron beam that interacts with both r-f structures, to yield an i-f output signal which can be adjusted over a fairly large frequency range. This tube uses a 280 megacycle i-f.

The X-396 is a glass tube, mounted in an aluminum capsule. Solenoid focusing is required. A type TNC r-f input connector and a "TSM" i-f output connector are included as an integral part of the capsule. A type "TNC" 1-o output connection can be supplied if required.

ELECTRICAL DATA

Operating Frequency Bandwidth of Input Section Noise Figure I-F Output Conversion Gain Image Rejection 3850-6000 megacycles 12-60 megacycles 20 db 280 megacycles Unity 35 db

Note: The image rejection is dependent upon the intermediate frequency selected. This tube utilizes a 280 megacycle i-f, an increase in the i-f would result in a higher level of image rejection.

*This number identifies a particular experimental tube design, such number and identification data being subject to change without notice. This tube is for experimental purposes only, carries no obligation for future manufacture, and should not be used for design purposes without prior arrangement. X-396 BACKWARD-WAVE CONVERTER TUBE

-2-

MECHANICAL DATA

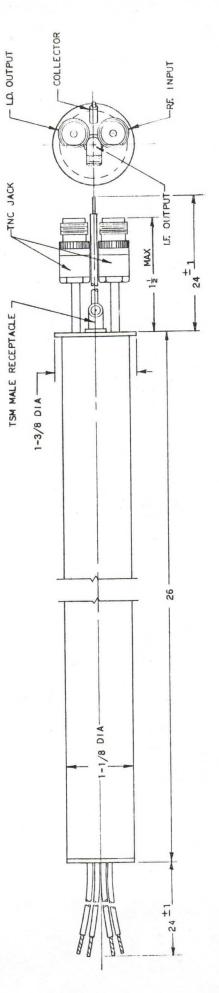
Mounting Position Capsule Length Capsule Outside Diameter R-F Input Connector I-F Output Connector L-O Output Connector D-C Connections Any 24 inches 1-1/8 inches Type "TNC" coaxial, female Type "TSM" coaxial, male Type "TNC" coaxial female Color coded flying leads

MAXIMUM RATINGS

Heater Voltage	6.5	Volts dc maximum	n	
Heater Current	2	Amperes maximum		
Cathode Voltage -300 t	to -1300	Volts maximum		
Cathode Current	8	ma maximum		
Focus Voltage 0) to -10	Volts maximum)		
	5 to +75	Volts maximum)		
-	to +100	Volts maximum)	With respect	to
	to +300	Volts maximum)	cathode	
	•	Volts maximum)		
Anode No. 5 Voltage)		,		
Amplifier Helix No. 1 Voltage)				
	Zero Volts	(Ground)		
Capsule Voltage)				
	to +100	Volts maximum		
Collector Voltage		Volts maximum		
Focus Current	• 3			
Anode No. 1 Current	•3			
Anode No. 2 Current	•3			
Anode No. 3 Current	•3			
Anode No. 4 Current	•3	ma maximum		
Anode No. 5 Current	• 3	ma maximum		
Amplifier Helix No. 1 Current)				
Amplifier Helix No. 2 Current)	.5	ma maximum		
Capsule Current)				
Oscillator Helix Current	•3	ma maximum		
Collector Current	8	ma maximum		
Solenoid Magnetic Field	800	Gauss maximum		

X-396 BACKWARD-WAVE CONVERTER TUBE

TYPICAL OPERATION


R-F Frequency L-O Frequency **I-F** Frequency Conversion Gain Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage Amplifier Helix No.1 Voltage) Capsule Voltage Oscillator Helix Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Amplifier Helix No. 1 Current) Amplifier Helix No. 2 Current) Capsule Current Oscillator Helix Current Collector Current Solenoid Magnetic Field

5000 megacycles 4720 megacycles 280 megacycles +2 db 6.3 Volts dc 1.9 Amperes -610 Volts with respect to ground 4.5 ma 0 Volts) 40 Volts) 50 Volts) With respect to cathode 120 Volts) 240 Volts) Volts (Ground) 0 -10 Volts) 200 with respect to ground Volts) 0 ma .1 ma .05 ma .05 ma .06 ma .04 ma .12 ma .04 ma 4.0 ma 700 Gauss

Additional information for specific application can be obtained from the:

-3-

Electron Tube Application Section ITT Components Division P. O. Box 412 Clifton, New Jersey

.

LEADS

2 POUNDS

HEATERS - BROWN CATHODE - YELLOW FOCUS - CARELOW FOCUS - GREEN ANODE NO. 1 - BLUE ANODE NO. 2 - GREY ANODE NO. 3 - PURPLE ANODE NO. 3 - PURPLE ANODE NO. 3 - WHITE ANODE NO. 3 - WHITE ANODE NO. 3 - WHITE ANDE NO. 2 ANDE N

TYPE X-396

BACKWARD WAVE CONVERTER

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY X-397* BACKWARD WAVE AMPLIFIER TUBE

TENTATIVE

GENERAL CHARACTERISTICS

The X-397 is a C-band backward wave amplifier tube with a helical wave propagation structure employing continuous beam operation. The tube is designed for use as a narrow band medium noise r-f amplifier with a pass band that can be electronically tuned over the frequency range of 3850 to 6000 megacycles.

The X-397 is a glass envelope tube mounted in an aluminum capsule and requires a solenoid to focus the electron beam. Type "TNC" female r-f connectors are included as an integral part of the capsule.

ELECTRICAL DATA

Frequency Range Pass Band (3 db) Small Signal Gain Noise Figure

MECHANICAL DATA

Mounting Position Capsule Length Capsule Diameter Net Weight R-F Connectors D. C. Connections Cooling 3850-6000 megacycles 8 to 33 megacycles 20 db minimum 15 db maximum

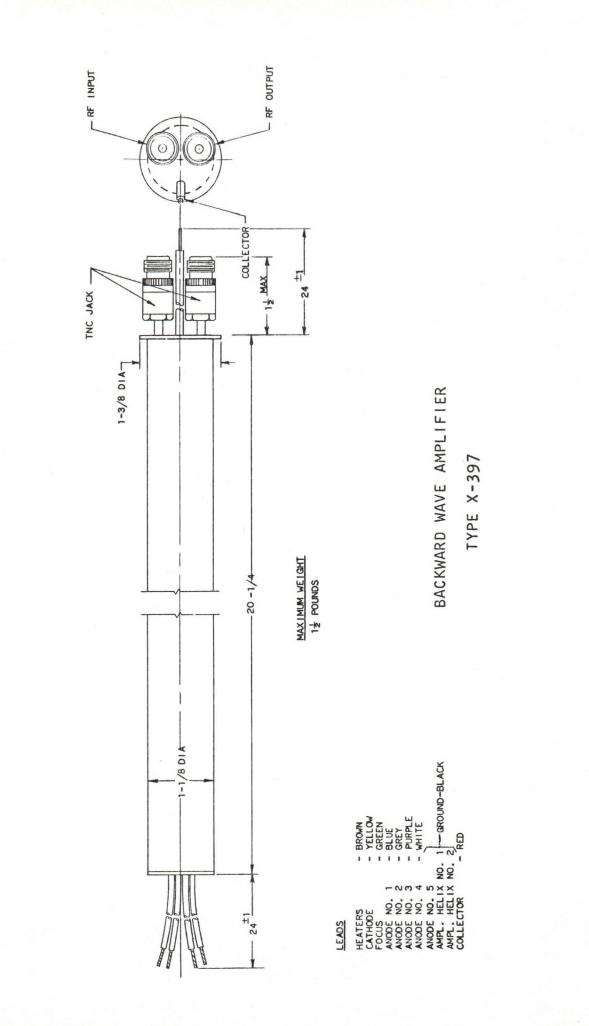
Any 20 inches 1-1/8 inches 2 pounds Type "TNC", female Color Coded Flying Leads Not Required

*This number identifies a particular experimental tube design, such number and identification data being subject to change without notice. This tube is for experimental purposes only, carries no obligation for future manufacture and should not be used for design purposes without prior arrangement. X-397 BACKWARD WAVE AMPLIFIER TUBE

-2-

MAXIMUM RATINGS

Heater Voltage		6.5	Volts dc maxim	um
Heater Current		2	Amperes maximum	
	-250 to .	-1200	Volts maximum	
Cathode Current		4	ma maximum	
Focus Voltage	-10 to	+10	Volts maximum)	
Anode No. 1 Voltage		+80	Volts maximum)	
Anode No. 2 Voltage	+5 to		Volts maximum)	
Anode No. 3 Voltage	+20 to			with respect to
Anode No. 4 Voltage	+70 to		Volts maximum)	-
Anode No. 5 Voltage)	110 00	1000	,,	
Helix No. 1 Voltage)				
Helix No. 2 Voltage)			Zero Volts (Gr	ound)
			2010 10100 (01	ound)
Capsule Voltage)		250	Volts maximum	
Collector Voltage Focus Current		.2	ma maximum	
		.2	ma maximum	
Anode No. 1 Current		.2	ma maximum	
Anode No. 2 Current		.2	ma maximum	
Anode No. 3 Current Anode No. 4 Current		.2	ma maximum	
		.2	ma maximum	
Anode No. 5 Current Helix No. 1 Current)		. 2	ma maximum	
Helix No. 2 Current)		2	ma maximum	
		• 3		
Capsule Current)		4	ma maximum	
Collector Current		800	Gauss maximum	
Solenoid Magnetic Field		000	Gauss maximum	
TYPICAL OPERATION				
Deserve (Contrar of Deser	Dend	5000		
Frequency (Center of Pass	Band)	5000	megacycles megacycles	
Pass Band (3 db)		20	db	
Small Signal Gain		23	db	
Noise Figure		12		
Heater Voltage		6.3	Vdc	
Heater Current		1.9 -610	Adc	at to amound
Cathode Voltage			Vdc with respe	et to ground
Cathode Current		2.0	ma	
Focus Voltage		-5	Vdc)	
Anode No. 1 Voltage		+15	Vdc)	next to esthade
Anode No. 2 Voltage		+12		pect to cathode
Anode No. 3 Voltage		+80	Vdc)	
Anode No. 4 Voltage		+200	Vdc)	
Anode No. 5 Voltage)				
Helix No. 1 Voltage)			Toma Valta / Co	(have)
Helix No. 2 Voltage)			Zero Volts (Gr	ouna)
Capsule Voltage)		200	Volte with men	nect to ground
Collector Voltage		200	Volts with res	peer to ground
Focus Current		0	ma	


X-397 BACKWARD WAVE AMPLIFIER TUBE

Anode No. 1 Current	.10	ma
Anode No. 2 Current	.05	ma
Anode No. 3 Current	.03	ma
Anode No. 4 Current	.02	ma
Anode No. 5 Current	.03	ma
Helix No. 1 Current)		
Helix No. 2 Current)	.05	ma
Capsule Current)		
Collector Current	1.7	ma
Magnetic Field	700	gauss

Additional information for specific applications can be obtained from the:

-3-

Electron Tube Applications Section ITT Components Division P. O. Box 412 Clifton, New Jersey

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

TENTATIVE

GENERAL CHARACTERISTICS

The X-398 is a single tube designed to convert SHF signals in the band from 5700-8400 megacycles to a 320 megacycle intermediate frequency output signal.

The tube consists of a backward-wave amplifier and a backward wave oscillator in the same vacuum envelope. The r-f input signal is fed to the amplifier section where its level is increased and it mixes with the oscillator signal. Mixing is accomplished in the common electron beam that interacts with both r-f structures, to yield an i-f output signal which can be adjusted over a fairly large frequency range. This tube uses a 320 megacycle i-f.

The X-398 is a glass tube, mounted in an aluminum capsule. Solenoid focusing is required. A type "TNC" r-f input connector and a "TSM" i-f output connector are included as an integral part of the capsule. A type "TNC" 1- output connector can be supplied if required.

ELECTRICAL DATA

Operating Frequency Bandwidth of Input Section Noise Figure I-F Output Conversion Gain Image Rejection

5700-8400 megacycles 17-84 megacycles 20 db 320 megacycles Unity 35 db

Note: The image rejection is dependent upon the intermediate frequency selected. This tube utilizes a 320 megacycle i-f, an increase in the i-f would result in a higher level of image rejection.

MECHANICAL DATA

Mounting Position Capsule Length Capsule Outside Diameter R-F Input Connector I-F Output Connector L-O Output Connector(if required) D.C. Connections

19 inches 7/8 inches Type "TNC" Coaxial, female Type "TSM" Coaxial, male Type "TNC" Coaxial female Color coded flying leads.

*This number identifies a particular experimental tube design, such number and identification data being subject tochange without notice. This tube is for experimental purposes only, carries no obligation for future manufacture, and should not be used for design purposes without prior arrangement.

Any

X-398 BACKWARD WAVE CONVERTER TUBE

MAXIMUM RATINGS

Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage Amplifier Helix No. 1 Voltage) Amplifier Helix No. 2 Voltage) Capsule Voltage Oscillator Helix Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Amplifier Helix No. 1 Current) Amplifier Helix No. 2 Current) Capsule Current Oscillator Helix Current Collector Current Solenoid Magnetic Field

> ale nai

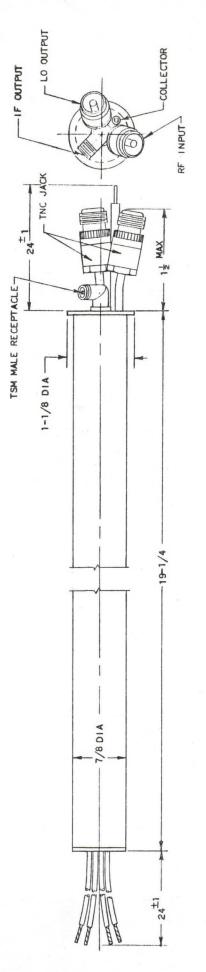
```
6.5 Volts dc maximum
                 Amperes maximum
            2
-250 to -1300
                 Volts maximum
            8
                ma maximum
     0 to -10
                 Volts Maximum)
     15 to 80
                Volts Maximum)
                                 with respect
    15 to 150
                Volts Maximum)
                                 to cathode
                Volts Maximum)
    30 to 300
   100 to 900
                Volts Maximum)
   Zero Volts (Ground)
-50 to +100
                Volts Maximum
          250
                Volts maximum
                ma maximum
           • 3
           • 3
                ma maximum
           • 3
                ma maximum
           .3
                ma maximum
           • 3
                ma maximum
                ma maximum
           .3
           .5
                ma maximum
           .3
                ma maximum
            8
                ma maximum
          900
                ma maximum
```

-2-

X-398 BACKWARD WAVE CONVERTER TUBE

TYPICAL OPERATION

R-F Frequency L-O Frequency **I-F** Frequency Conversion Gain Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage Amplifier Helix No. 1 Voltage) Amplifier Helix No. 2 Voltage) Capsule Voltage Oscillator Helix Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Amplifier Helix No. 1 Current) Amplifier Helix No. 2 Current) Capsule Current Oscillator Helix Current Collector Current Solenoid Magnetic Field


7000 megacycles 6680 megacycles 320 megacycles +2 db 6.3 Volts dc 1.9 Amperes -640 Volts with respect to ground 4.0 ma O Volts) 49 Volts) 62 Volts) with respect to cathode 220 Volts) 380 Volts) O Volts (Ground) -25 Volts) with respect to ground 200 Volts) 0 ma .10 ma .08 ma .06 ma .06 ma .04 ma .08 ma .02 ma 3.6 ma 800 Gauss

Additional information for specific application can be obtained from the

Electron Tube Application Section ITT Components Division P.O. Box 412 Clifton, New Jersey

3-62

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

MAXIMUM WEIGHT 1-1/4 POUNDS

LEADS

HEATERS HEATERS HEROWN CATHODE CATHODE FELLOW FOCUS GREEN ANODE NO. 1 BLUE ANODE NO. 3 HURPLE ANODE NO. 3 HURPLE ANODE NO. 4 WHITE ANODE NO. 4 WHITE ANODE NO. 2 HURPLE ANOLE NO. 2 COLLECTOR NO. 2 COUND-BLACK COLLECTOR RELIX - INNER CONDUCTOR OF L 0 OUTPUT JACK

TYPE X-398

BACKWARD WAVE CONVERTER

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

X-399* BACKWARD WAVE AMPLIFIER TUBE

TENTATIVE

GENERAL CHARACTERISTICS

The X-399 is a C-band backward wave amplifier tube with a helical wave propagation structure employing continuous beam operation. The tube is designed for use as a narrow band medium noise r-f amplifier with a pass band that can be electronically tuned over the frequency range of 5700 to 8400 megacycles.

The X-399 is a glass envelope tube mounted in an aluminum capsule and requires a solenoid to focus the electron beam. Type "TNC" female r-f connectors are included as an integral part of the capsule.

ELECTRICAL DATA

Frequency Range Pass Band (3 db) Small Signal Gain Noise Figure

MECHANICAL DATA

Mounting Position Capsule Length Capsule Diameter Net Weight R-F connectors D.C. Connections Cooling 5700 - 8400 megacycles 11 - 45 megacycles 20 db minimum 15 db maximum

Any 16 inches 7/8 inches 1 pound Type "TNC" female Color Coded Flying Leads Not Required

*This number identifies a particular experimental tube design, such number and identification data being subject to change without notice. This tube is for experimental purposes only, carries no obligation for future manufacture and should not be used for design purposes without prior arrangement. X-399 BACKWARD WAVE AMPLIFIER TUBE

MAXIMUM RATINGS

Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage) Helix No. 1 Voltage) Helix No. 2 Voltage) Capsule Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Helix No. 1 Current) Helix No. 2 Current) Capsule Current Collector Current Solenoid Magnetic Field

TYPICAL OPERATION

Frequency (Center of Pass Band) Pass Band (3 db) Small Signal Gain Noise Figure Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage) Helix No. 1 Voltage) Helix No. 2 Voltage) Capsule Voltage Collector Voltage Focus Current

2 Amperes maximum -250 to -1200 Volts maximum 4 ma maximum -10 to +10 Volts maximum) +5 to +80 Volts maximum) +5 to +150 Volts maximum) with respect +20 to +300 Volts maximum) to cathode +90 to +800 Volts maximum)

Zero Volts (Ground)

6.5 Volts dc maximum

-2-

250 Volts maximum .2 ma maximum .3 ma maximum

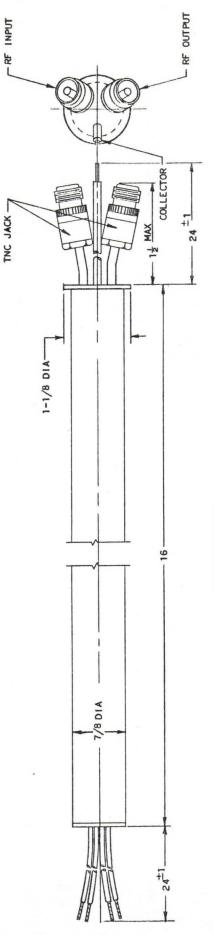
4 ma maximum 900 Gauss maximum

7000 megacycles 28 megacycles 22 db 14 db 6.3 Vdc 1.9 Adc -640 Vdc with respect to ground 2.0 ma -6 Vdc) +10 Vdc) with respect to cathode +8 Vdc) +260 Vdc) +350 Vdc)

Zero Volts (Ground)

200 Volts with respect to ground. O ma

X-399 BACKWARD WAVE AMPLIFIER TUBE


.1 ma Anode No. 1 Current .08 ma Anode No. 2 Current .03 ma Anode No. 3 Current .02 ma Anode No. 4 Current .02 ma Anode No. 5 Current Helix No. 1 Current) .03 ma Helix No. 2 Current) Capsule Current 1.7 ma Collector Current 800 gauss Magnetic Field

Additional information for specific applications can be obtained from the

Electron Tube Applications Section ITT Components Division P.O. Box 412 Clifton, New Jersey

-3-

3-62

MAXIMUM WEIGHT 1 POUND

> LEADS HEATERS - BROWN CATHODE FOCUS FOCUS ANODE NO. 1 - BLUE ANODE NO. 2 - GREEN ANODE NO. 2 - GREEN ANODE NO. 3 - PURPLE ANDDE NO. 2 - WHITE ANDL HELLX NO. 2 ANDL. AND

TYPE X-399

BACKWARD WAVE AMPLIFIER

X-400* BACKWARD WAVE CONVERTER TUBE

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

TENTATIVE

GENERAL CHARACTERISTICS

The X-400 is a single tube designed to convert SHF signals in the band from 8000-12,700 megacycles to a 480 megacycle intermediate frequency output signal.

The tube consists of a backward-wave amplifier and a backward wave oscillator in the same vacuum envelope. The r-f input signal is fed to the amplifier section where its level is increased and it mixes with the oscillator signal. Mixing is accomplished in the common electron beam that interacts with both r-f structures, to yield an i-f output signal which can be adjusted over a fairly large frequency range. This tube uses a 480 megacycle i-f.

The X-400 is a glass tube, mounted in an aluminum capsule. Solenoid focusing is required. A type "TNC" r-f input connector and a "TSM" i-f output connector are included as an integral part of the capsule. A type "TNC" l-o output connector can be supplied if required.

ELECTRICAL DATA

Operating Frequency Bandwidth of Input Section Noise Figure I-F Output Conversion Gain Image Rejection 8000-12,700 megacycles 25-127 megacycles 20 db 480 megacycles Unity 35 db

Note: The image rejection is dependent upon the intermediate frequency selected. This tube utilizes a 480 megacycle i-f, an increase in the i-f would result in a higher level of image rejection.

MECHANICAL DATA

Mounting Position Capsule Length Capsule Outside Diameter R-F Input Connector I-F Output Connector L-O Output Connector (if required) D.C. Connections

Any 17 inches 7/8 inches Type "TNC" Coaxial, female Type "TSM" Coaxial, male Type "TNC" Coaxial, female Color coded flying leads

*This number identifies a particular experimental tube design, such number and identification data being subject to change without notice. This tube is for experimental purposes only, carries no obligation for future manufacture, and should not be used for design purposes without prior arrangement. X-400 BACKWARD-WAVE CONVERTER TUBE

MAXIMUM RATINGS

Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltagd Anode No. 5 Voltage Amplifier Helix No. 1 Voltage) Amplifier Helix No. 2 Voltage) Capsule Voltage Oscillator Helix Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Amplifier Helix No. 1 Current) Amplifier Helix No. 2 Current) Capsule Current Oscillator Helix Current Collector Current Solenoid Magnetic Field

TYPICAL OPERATION

R-F Frequency L-O Frequency I-F Frequency Conversion Gain Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage 6.5 Volts dc maximum
2 Amperes maximum
-250 to -1500 Volts maximum
8 ma maximum
0 to -10 Volts maximum)
5 to 100 Volts maximum) With respect
10 to 150 Volts maximum) to cathode
30 to 300 Volts maximum)
70 to 900 Volts maximum)

Zero Volts (Ground)

-2-

-50 to +100 Volts maximum 250 Volts maximum .3 ma maximum .5 ma maximum

.3 ma maximum 8 ma maximum 1000 Gauss maximum

10,000 megacycles 9,520 megacycles 480 megacycles 0 db 6.3 Volts dc 1.9 Amperes -650 Volts with respect to ground 4.0 ma 0 Volts) +40 Volts) +55 Volts) with respect to cathode +90 Volts) +250 Volts) 0 Volts (Ground)

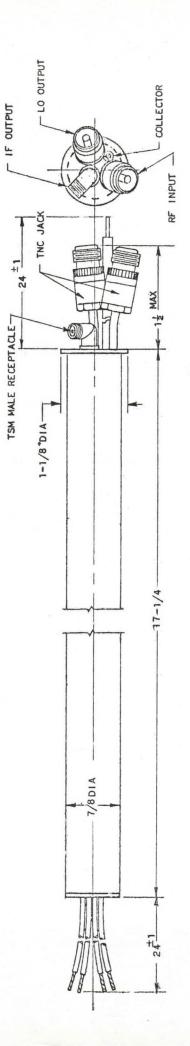
X-400 BACKWARD WAVE CONVERTER TUBE

-3-

Amplifier Helix No. 1 Voltage) O Volts (Ground) Amplifier Helix No. 2 Voltage) Capsule Voltage -40 Volts) Oscillator Helix Voltage 200 Volts) with respect to ground Collector Voltage Focus Current 0 ma .06 ma Anode No. 1 Current Anode No. 2 Current .05 ma .05 ma Anode No. 3 Current Anode No. 4 Current .06 ma Anode No. 5 Current .04 ma Amplifier Helix No. 1 Current) .08 ma Amplifier Helix No. 2 Current) Capsule Current .02 ma Oscillator Helix Current 3.6 ma Collector Current Solenoid Magnetic Field 900 Gauss

ELECTRON

TUBE


Additional information for specific application can be obtained from the

Electron Tube Application Section ITT Components Division P.O. Box 412 Clifton, New Jersey

DEPARTMENT

INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION, CLIFTON, NEW JERSEY

COMPONENTS DIVISION

		UT JACK
		OUTF
		L'
	REAR REAR	HELIX - INNER CONDUCTOR OF L O OUTPUT JACK
LEADS	ERS ODE E NO. 2 E NO. 3 HELLY FCTOR	OSCILLATOR HE

TYPE X-400

BACKWARD WAVE AMPLIFIER

X-401* BACKWARD WAVE AMPLIFIER TUBE

ELECTRON TUBE DEPARTMENT COMPONENTS DIVISION

TENTATIVE

GENERAL CHARACTERISTICS

The X-401 is an X-band backward wave amplifier tube with a helical wave propagation structure employing continuous beam operation. The tube is designed for use as a narrow band medium noise r-f amplifier with a pass band that can be electronically tuned over the frequency range of 8,000 to 12,700 megacycles.

The X-401 is a glass envelope tube mounted in an aluminum capsule and requires a solenoid to focus the electron beam. Type "TNC" female r-f connectors are included as an integral part of the capsule.

ELECTRICAL DATA

Frequency Range Pass Band (3 db) Small Signal Gain Noise Figure 8,000 to 12,700 megacycles 16-65 megacycles 20 db minimum 15 db maximum

MECHANICAL DATA

Mounting Position Capsule Length Capsule Diameter Net Weight R-F Connectors D.C. Connections Cooling Any 16 inches 7/8 inches 1 pound Type "TNC" Female Color Coded Flying Leads Not Required

*This number identifies a particular experimental tube design, such number and identification data being subject to change without notice. This tube is for experimental purposes only, carries no obligation for future manufacture and should not be used for design purposes without prior arrangement. X-401 BACKWARD WAVE AMPLIFIER TUBE

MAXIMUM RATINGS

Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage) Helix No. 1 Voltage) Helix No. 2 Voltage) Capsule Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Helix No. 1 Current) Helix No. 2 Current) Capsule Current Collector Current Solenoid Magnetic Field

		-		dc maxim es maximu	
-250	to			maximum	
· · ·		4	ma ma:	ximum	
-10	to	+10	Volts	maximum)	
5	to	100	Volts	maximum)	with respect
5	to	150	Volts	maximum)	to cathode
30	to	300	Volts	maximum)	to cathode
70	to	800	Volts	maximum)	
		Zer	Volt	s (Ground)

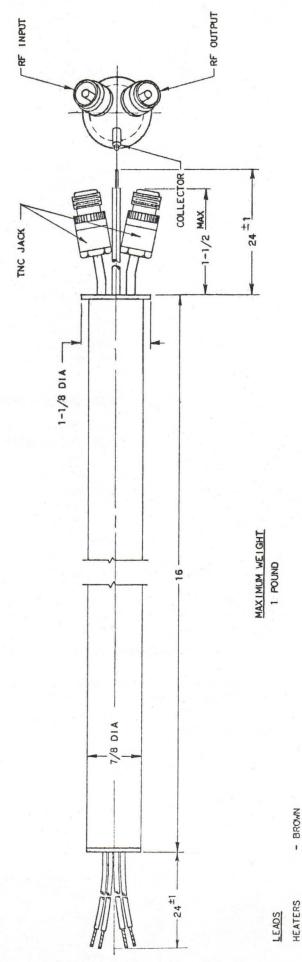
250	Volts maximum
.2	ma maximum
•3	ma maximum
4	ma maximum
1000	Gauss maximum

-2-

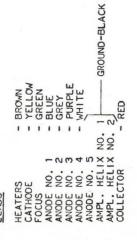
X-401 BACKWARD WAVE AMPLIFIER TUBE

TYPICAL OPERATION

Frequency (Center of Pass Band) Pass Band (3 db) Small Signal Gain Noise Figure Heater Voltage Heater Current Cathode Voltage Cathode Current Focus Voltage Anode No. 1 Voltage Anode No. 2 Voltage Anode No. 3 Voltage Anode No. 4 Voltage Anode No. 5 Voltage) Helix No. 1 Voltage) Helix No. 2 Voltage) Capsule Voltage Collector Voltage Focus Current Anode No. 1 Current Anode No. 2 Current Anode No. 3 Current Anode No. 4 Current Anode No. 5 Current Helix No. 1 Current) Helix No. 2 Current) Capsule Current Collector Current Magnetic Field


10,000 megacycles 40 megacycles 25 db 13 db 6.3 Vdc 1.9 Adc -650 Vdc with respect to ground 2.0 ma -8 Vdc) +20 Vdc) +18 Vdc)with respect to ground +80 Vdc) +230 Vdc) Zero Volts (Ground) 200 Volts with respect to ground 0 ma .10 ma .03 ma .02 ma .02 ma .01 ma .10 ma 1.7 ma 900 Gauss

Additional information for specific applications can be obtained from the


Electron Tube Applications Section ITT Components Division P. O. Box 412 Clifton, New Jersey

-3-

3-62

