P.D. Seitran.

Conduction cooled power traveling wave tube with long life and high reliability for broadband radio relay systems with a power output of 22 W in the frequency range 10.7 to 13.25 GHz .

By using the most contemporary technic (double stage collector) an efficiency up to 38% is reached. The dissipated heat is low and indipendent of the RF input power. If the RF input power fails, no temperature rise will occur.
The tube is focused by an integrated periodic permanent magnet.
The RF power is coupled in and out by way of coaxial connections.
For operation of the tube RW 1125 a power supply can be delivered under the typedesignation RWN 1125 (supply voltage 24 V , by choice minus or plus connected with case; other supply voltages on request).

Weight:
Dimensions:
RF connections:
Mounting Position:
approx. $1.4 \mathrm{~kg}(3.1 \mathrm{lbs})$
approx. $42 \mathrm{~mm} \times 52 \mathrm{~mm} \times 262 \mathrm{~mm}\left(1.65^{\prime \prime} \times 2.05^{\prime \prime} \times 10.3^{\prime \prime}\right)$
Siemens socket connector 1.4/4.4 (50 Ω)
any

Heating

Heater voltage	U_{F}	6.3 ± 0.2	$\left.V^{1}\right)$
Heater current	I_{F}	0.64	A
Preheating time	t_{h}	none	

indirected by dc, +pole on cathode, parallel supply. Metal capillary dispenser cathode.

Characteristics ($\mathrm{f}=12.7 \mathrm{GHz}, I_{\mathrm{K}}=43$ to 53 mA)

Gain
Gain slope (Load VSWR $\leqq 1.2$)
VSWR cold
Cold attenuation

Typical Operation for $\mathrm{P}_{2}=\mathbf{2 2} \mathrm{W}$

Frequency range	f	10.7 to 11.7	11.7 to 12.7	12.7 to 13.25	GHz
Power output	P_{2}	22	22	22	W
Power input	P_{1}	$2 \pm 1 \mathrm{~dB}$	$2 \pm 1 \mathrm{~dB}$	$2 \pm 1 \mathrm{~dB}$	mW
Collector 1 voltage	$U_{C 1}$	1450	1450	1300	V
Collector 2 voltage	$U_{\text {c } 2}$	600	600	550	V
Helix voltage	$U_{\text {H }}$	3100 to 3500	3100 to 3500	3100 to 3500	$\checkmark{ }^{3}$)
Grid 2 voltage	$U_{\mathrm{G} 2}$	≈ 2600	≈ 2600	≈ 2600	$\checkmark{ }^{4}$)
Cathode current	1 K	43 to 53	43 to 53	43 to 55	mA
Collector 1 current with Rf	$I_{\text {c }}$	≈ 27	≈ 27	≈ 31	mA
Collector 2 current with RF	Ic2	≈ 20	≈ 20	≈ 18	mA
Collector 1 current without RF	$I_{10} 0$	≈ 3	≈ 3	≈ 3	mA
Collector 2 current without RF	$l_{\text {C2O }}$	≈ 45	≈ 45	≈ 45	mA
Helic current	IH_{H}	≈ 1	≈ 1	≈ 1	mA
Grid 2 current	162	$\leq \pm 0.1$	$\leqq \pm 0.1$	$\leqq \pm 0.1$	mA
Noise figure	F	$\leqq 27$	$\leqq 27$	$\leqq 27$	dB
AM/PM conversion	$k_{\text {p }}$	$\leqq 5$	$\leqq 5$	$\leqq 5$	\% dB^{5})
Total efficiency	η total	≈ 38	≈ 38	≈ 38	\%

[^0]Typical Operation for $P_{2}=11 \mathbf{W}$

Frequency range	t	10.7 to 11.7	11.7 to 12.7	12.7 to 13.25	GHzi
Power output	P_{2}	11	11	11	W
Power input	P_{1}	$1 \pm 1 \mathrm{~dB}$	$1 \pm 1 \mathrm{~dB}$	$1 \pm 1 \mathrm{~dB}$	mW
Collector 1 voltage	$U_{\text {C } 1}$	1200	1150	1100	V
Collector 2 voltage	$U_{\text {c2 }}$	600	600	550	V
Helix voltage	U_{H}	2900 to 3400	2900 to 3400	2900 to 3400	V 1)
Grid 2 voltage	$U_{G 2}$	≈ 2200	≈ 2200	≈ 2200	$\left.\checkmark{ }^{2}\right)$
Cathode current	I_{k}	33 to 43	33 to 43	33 to 43	mA
Collector 1 current with RF	$I_{\text {c }}$	≈ 14	≈ 14	≈ 14	mA
Collector 2 current with RF	$I_{\text {C2 }}$	≈ 23	≈ 23	≈ 23	mA
Collector 1 current without RF	$I_{\text {clo }}$	≈ 2	≈ 2	≈ 2	mA
Collector 2 current without RF	IC2 0	≈ 36	≈ 36	≈ 36	mA
Helix current	$I_{\text {H }}$	≈ 1	≈ 1	≈ 1	$m A$
Grid 2 current	$I_{\text {G } 2}$	$\leqq \pm 0.1$	$\leqq \pm 0.1$	$\leq \pm 0.1$	mA
Noise figure	F	$\leqq 26$	$\leqq 26$	$\leqq 26$	dB
AM/PM conversion	$k_{\text {p }}$	$\leqq 4.5$	$\leqq 4.5$	$\leqq 4.5$	\% $/ \mathrm{dB}^{3}$
Total efficiency	η total	≈ 30	≈ 30	≈ 30	\%

[^1]
Maximum Ratings (absolute values)

Cold collector i voltage	U_{110}	\max	3000	V
Collector 1 voltage	$U_{C 1}$	max	1800	V リ
Collector 1 dissipation	$P_{C 1}$	max	55	W
Cold collector 2 voltage	$U_{\text {C2 }} \mathrm{O}$	max	1000	V
Collector 2 voltage	$U_{\text {c2 }}$	max	800	$\checkmark{ }^{2}$)
Collector 2 dissipation	$P_{\text {c2 }}$	max	50	W
Cold helix voitage	$U_{\text {Ho }}$	\max	3800	V
Helix voltage	U_{H}	max	3600	V
Helix current	$I_{\text {H }}$	max	4	$m A^{3}$)
Grid 2 voltage	$U_{G 2}$	max	3600	V
Grid 2 current	$I_{\text {G } 2}$	\max	± 0.3	mA
Cathode curren:	$I_{\text {K }}$	max	60	mA
Load reflection	$P_{\text {refl }}$	max	3	W
Case temperature	$t_{\text {case }}$	max	100	${ }^{\circ} \mathrm{C}{ }^{4}$)
Ambient temperature	$t_{\text {amp }}$	min	-30	${ }^{\circ} \mathrm{C}$
Ambient temperature	$t_{\text {amp }}$	max	65	${ }^{\circ} \mathrm{C}$
Storage temperature	$t_{\text {stor }}$	min	-40	${ }^{\circ} \mathrm{C}$
Storage temperature	$t_{\text {stor }}$	max	70	${ }^{\circ} \mathrm{C}$
Storage life		max	5	years

[^2]

C1: Collector 1
C2 : Collector 2
G2: Grid 2
F : Heater
F/K: Heater/Cathode
$\stackrel{\perp}{=}$: Ground

TWT-amplifier with long life and high reliability for broadband radio relay systems with a power output of 11 W in the frequency range 5.9 to 6.42 .5 GHz .

It consists of a RW 88 tube and a RWN $88 / 24$ power supply for 24 V supply voltage or, RWN $88 / 30$ for 30 V supply voltage (mounting recommendation see "drilling diagram for front panel").
The amplifier operates with a constant helix voltage. The power output will be set by a step switch for grid 2 voltage (single-dial control). For monitoring of cathode and helix current are provided connections. After switching off due to excessive helix current the power supply switches on 4 to 6 times until definit switch off. Further switch on cycles can be released by "Reset" command.
The total efficiency of the amplifier is nominal 23%.

Weight of tube:
Weight of power supply:
Dimensions of tube:
Dimensions of power supply: RF connections:
Low-voltage feed:
Mounting position:
approx. $1.4 \mathrm{~kg}(3.1 \mathrm{lbs})$
approx. 2.8 kg
approx. $46 \mathrm{~mm} \times 54 \mathrm{~mm} \times 262 \mathrm{~mm}\left(1.8^{\prime \prime} \times 2.1^{\prime \prime} \times 10.3^{\prime \prime}\right)$
approx. $50 \mathrm{~mm} \times 310 \mathrm{~mm} \times 190 \mathrm{~mm}\left(2^{\prime \prime} \times 12.2^{\prime \prime} \times 7.5^{\prime \prime}\right)$ N connector, female soldering terminals any

Typical Operation

Frequency range	f	5.9 to 6.425	GHz
Power output	$P_{2}{ }^{\text {a }}$	11	W
Drive power	P_{1}	$1.4 \pm 1 \mathrm{~dB}$	mW
Setting accurancy of the power output with step-switch			
for grid 2 voltage		± 0.25	dB
Gain slope	$\Delta V p / \Delta f$	≈ 0.01	$\mathrm{dB} / \mathrm{MHz}$
Noise figure	F	$\leqq 25$	dB
AM/PM conversion	k_{p}	$\leqq 5$	\% $\mathrm{dB}^{\text {1 }}$
RF-leakage		≥ 70	dB
Input current for RWA 88/24	I_{1}.	≈ 2	A
Input current for RWA 88/30	I_{1}	≈ 1.6	A
Total efficiency	η total	≈ 23	\%

[^3]
Required supply voltage data

RWA 88/24.		
Voltage	$24 \pm 2 \%$	V
Current	2.5	A
RWA 88/30		
Voltage	$30+2.5$	V
Current	$2.0-0.5$	A

Permissible voltage-current diagram see page 7

Impedance	0.1Ω and $2 \mu \mathrm{~A}$ in series	
Ripple (100 Hz to 18 kHz)	$\leqq 120$	mVpp
$(16 . . \mathrm{Hz}$ to 500 kHz$)$	$\leqq 10$	mVpp
$(>500 \mathrm{kHz})$	$\leqq 5$	mVpp
(equal for $I=2.5$ or 2.0 A and resistive load)		

Maximum Ratings (absolute values)

Load reflection	$P_{\text {refl }}$ max	2.5	W
Operating temperature of tube case			
(see temperature measuring point)	max	115	${ }^{\circ} \mathrm{C}$
Power supply front plate temperature in operation (hottest point)	max	70	${ }^{\circ} \mathrm{C}$
Switching-on temperature	\min	-20	${ }^{\circ} \mathrm{C}$
Storage temperature of tube		-40 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature of power supply		-20 to 75	${ }^{\circ} \mathrm{C}$
Altitude	max	3000	

[^4]
Drawing for tube RW 88

C1 : Collector 1
C2 : Collector 2
G2 : Grid 2
F : Heater
F/K : Heater/Cathode
$\stackrel{\perp}{=}$: Ground

Drawing for power supply RWN 88/24 or RWN 88/30

10. 75 (5) y

Drilling diagram for front panel

RWA 88/24: Permissible current-voltage range of the supply voltage

RWA 88/30: Permissible current-voltage range of the supply voltage

Conduction cooled power traveling wave tube with long life and high reliability for broadband radio relay systems with a power output of 11 W in the frequency range 5.9 to 6.425 GHz .

By using the most contemporary technic (double stage collector) an efficiency up to 35% is reached. The dissipated heat is low and indipendent of the RF input power. If the RF input power fails, no temperature rise will occur.

The tube is focused by an integrated periodic permanent magnet. The RF power is coupled in and out by way of coaxial connections.

For operation of the tube RW 88 a power supply can be delivered under the typedesignation RWN 88/24 (supply voltage $24 \mathrm{~V} \pm 2 \%$) or RWN 88/30 (supply voltage 30 to 32 V).

Weight:
Dimensions:
RF connections:
Mountirig position:
approx. $1.4 \mathrm{~kg}(3.1 \mathrm{lbs})$
approx. $46 \mathrm{~mm} \times 54 \mathrm{~mm} \times 262 \mathrm{~mm}\left(1.8^{\prime \prime} \times 2.1^{\prime \prime} 10.3^{\prime \prime}\right)$
N connector, female
any

Heating

Heater voltage	U_{F}	6.3 ± 0.2	V
Heater current	I_{F}	0.64	A
Preheating time	t_{h}	none	
indirect by dc, + pole on cathode, parallel supply			
Metal capillary dispenser cathode			

Characteristics ($f=5.9$ to $6.425 \mathrm{GHz}, I_{\mathrm{K}}=23$ to 33 mA)

		min	nom	max	
Gain	V_{p}		39		dB
Gain slope (Load VSWR $\leqq 1.2$)	$\Delta V_{p} / \Delta f$		0.01		$\mathrm{dB} / \mathrm{MHz}$
VSWP. coid	s			1.8	
Cold attenuation	α	80			$d B$

Typical Operation

Frequence range	f	5.9 to 6.425	GHz
Power output	P_{2}	11	W
Power input	P_{1}	$1.4 \pm 1 \mathrm{~dB}$	mW
Collector 1 voltage	$U_{C 1}$	1300	V
Collector 2 voltage	$U_{C 2}$	650	V
Helix voltage	$U_{\text {H }}$	$2375 \pm 1 \%$	V
Grid 2 voltage	$U_{G 2}$	1200 to 1800	V
Cathode current	$I_{\text {K }}$	23 to 33	$m A$
Collector 1 current with RF	$I_{\text {c1 }}$	≈ 14	$m A$
Collector 2 current with RF	$I_{\text {c2 }}$	≈ 12	mA
Collector 1 current without RF	1 CrO	≈ 1	mA
Collector 2 current without RF	$I_{\text {C2 } 20}$	≈ 25	mA
Helix current	$I_{\text {H }}$	≈ 1	mA
Grid 2 current	$I_{\text {G2 }}$	$\leqq \pm 0.1$	mA
Noise figure	F	$\leqq 25$	dB
AM/PM conversion	$k_{\text {p }}$	$\leqq 5$	\% dB
Total efficiency	η total	≈ 34	\%

[^5]
Maximum Ratings (absolute values)

Cold collector 1 voltage	$U_{\mathrm{C} 10}$	\max	2500	V
Collector 1 voltage	$U_{\mathrm{C} 1}$	\min	1250	V
Collector 1 voltage	$U_{\mathrm{C} 1}$	\max	1500	V
Collector 1 dissipation	$P_{\mathrm{C} 1}$	\max	30	W
Cold collector 2 voltage	$U_{\mathrm{C} 20}$	\max	1200	V
Collector 2 voltage	$U_{\mathrm{C} 2}$	\min	600	V
Collector 2 voltage	$U_{\mathrm{C} 2}$	\max	800	V
Collector 2 dissipation	$P_{\mathrm{C} 2}$	\max	20	W
Cold helix voltage	$U_{\mathrm{H} 0}$	\max	3200	V
Helix voltage	U_{H}	\max	3000	V
Helix current	I_{H}	\max	4	mA
Grid 2 voltage	$U_{\mathrm{G} 2}$	\max	3000	V
Grid 2 current	$I_{\mathrm{G} 2}$	\max	± 0.3	mA
Cathode current	I_{K}	\max	40	mA
Load reflection	$P_{\text {refl }}$	\max	2.5	W
Case temperature	$t_{\text {case }}$	\max	115	${ }^{\circ} \mathrm{C}$
Ambient temperature	$t_{\text {amb }}$	\min	-30	${ }^{\circ} \mathrm{C}$
Ambient temperature	$t_{\text {amb }}$	\max	65	${ }^{\circ} \mathrm{C}$
Storage temperature	$t_{\text {stor }}$	\min	-40	${ }^{\circ} \mathrm{C}$
Storage temperature	$t_{\text {stor }}$	\max	70	${ }^{\circ} \mathrm{C}$
Storage life		\max	5	years

For operating instructions, recommendations for the design of a power supply and detailed datas please refer to the obligatory specifications.

[^6]
Drawing RW 88

Drawing RW 88 C

The power supply RWN 88/24 or RWN 88/30 delivers all voltages necessary to operate the traveling wave tube RW 88 and includes the protective and controlling devices to protect the tube against overloads and damage.
The power supply type RWN $88 / 24$ operate with a supply voltage of $24 \mathrm{~V} \pm 2 \%$, the power supply RWN $88 / 30$ with $30+2.5 \mathrm{~V}$.
Mechanical Data (see page 6)

Height:	$310 \pm 1 \mathrm{~mm}$
Width:	$50 \pm 1 \mathrm{~mm}$
Depth:	$190 \pm 1 \mathrm{~mm}$
Weight:	$\max .2 .8 \mathrm{~kg}$

Low-voltage feed: soldering terminals
High-voltage connector: Siemens C42392
Reliability and Life
MTBF $\geqq 120000$ hours

Efficiency

$\eta_{i}=70$ to 74% (dissipated heat of the power supply 16 to 19 W) \{according to operation of traveling wave tube RW 88)

9. 75 (1) y

Required supply voltage data

RWN 88/24
Voltage

$$
24 \pm 2 \%
$$

V i)
Current
2.1 to 2.8

A ${ }^{2}$)
RWN 88/30
Voltage
Current
Permissible voltage-current diagram
$30+2.5$

Impedance
Ripple
$(100 \mathrm{~Hz}$ to 18 kHz$)$
$(18 \mathrm{kHz}$ to 500 kHz)
1.7 to 2.2

V 1)
see page 7
0.1Ω and $2 \mu \mathrm{H}$ in series
(>500 kHz)
$\leqq 120$
$m V p p$
(>500 kHz §5 mVpp
(equal for $I=3 \mathrm{~A}$ or 2,4 A and resistive load)
At higher ripples and higher internal resistance of the supply voltage the ripple of the output voltages enlarges itself.

Environmental conditions

Temperature

Front plate temperature in operation (hottest point)
Switching-on temperature

-10 to +70	${ }^{\circ} \mathrm{C}$
$\min -20$	${ }^{\circ} \mathrm{C}$
-20 to +75	${ }^{\circ} \mathrm{C}$

Humidity (in operation)
95% up to $t_{\mathrm{amb}}=40^{\circ} \mathrm{C}$, linear decreasing to 50% at $t_{\mathrm{amb}} \geqq 50^{\circ} \mathrm{C}$ (not bedewed)

Altitude

Maximum permissible altitude 3000 m

Dissipated heat

The heat must be dissipated over the front plate.

[^7]
Output voltages

Heating

Voltage	U_{F}	$6.3 \pm 1 \%$	V
Ripple	$U_{\mathrm{f} m \mathrm{~m}}$	$\leqq 0.1$	Vpp
Stability		$\leqq \pm 3$	$\%$
Current range	I_{F}	0.5 to 0.7	A
Maximum current	$I_{F \text { max }}$	1.5	A

The heater voltage source is short-circuit proof for any length of time.
The heater voltage is changeable about $\pm 0.2 \mathrm{~V}$ by exchanging a resistor.

Helix

Voltage	U_{H}	2375 or $2400 \pm 0.3 \%$	V
Ripple	$u_{\text {h mm }}$	see page 7	
Stability		$\leqq \pm 1$	\%
Current range	$I_{\text {H }}$	0 to 4	mA
Output impedance	$Z_{2}(0$ to 1 Hz$)$	$\leqq 500$	Ω
	$\mathrm{Z}_{2}(1 \mathrm{~Hz}$ to 10 MHz$)$	≤ 20	k Ω
Output capacity	C_{2}	0.2	$\mu \mathrm{F}$

At an equal or higher I_{H} of $3.5 \mathrm{~mA}(\pm 10 \%)$ the load $Q_{H}=\int I_{H} \mathrm{dt}$ will be proofed. If load is above $8 \mathrm{mAs}(\pm 20 \%$) the power supply switches off.

The helix voltage can be changed about $\pm 30 \mathrm{~V}$ by exchanging a resistor.
The helix voltage source is short-circuit proof until power supply is switched off.

[^8]
Grid 2

Voltage	$U_{\text {G2 }}$	1200 to 1800	V
Ripple	$u_{9} \mathrm{~mm}$	see page 7	
Stability		$\leqq \pm 3$	\%
Current range	$I_{\text {G2 }}$	-0.3 to +0.3	mA
Output impedance	Z_{2} (0 to 10 MHz)	$\leqq 150$	$k \Omega$

The grid 2 voltage is adjustable from the front plate in steps of 50 V .
The grid 2 voltage range can be changed to 1350 to 1950 V soldering in a wire-bridge.
The gride 2 voltage source is short-circuit proof for any length of time.

Collectors

The collector voltage source is short-circuit proof for any length of time.

[^9]
Switching processes

Switching-on
All voltages excopt the grid 2 voltage are arvailable at the terminals within 1.5 s following a switch-on pulse (result by applying the input voltage, by automatic switch on or by "Reset" command).
The grid 2 voltage is lower than 200 V . After 1 s the grid 2 voltage is switched to its nominal value (rise time τ approx. 200 ms).

Switching-off

The grid 2 voltage will be reduced to 200 V within 40 ms . All other voltages are reduced to 10% of its nominal value within 0.5 s .

Automatic switch on
After switching off due to excessive helix current the power supply switches on 4 to 6 times until definit switch off. Further switch on cycles can be released by "Reset" command.

Connecting pointsfortest, control and signalpurposes on the powersupplyRWN88 Connection" indic."
After response of the helix overload current protection device this connection will be switched to -pole of the 24 V supply voltage by a NPN transistor ($60 \mathrm{~V}, 200 \mathrm{~mA}$).

Connection "Reset"
By switching this connection to -pole of the 24 V supply voltage an automatic switch on cycle (Reset command) is released.

Connection " I_{k} "
Formeasurements of cathode current.
If a coil ammeter is used with $R_{\mathrm{i}}=2.5 \mathrm{k} \Omega$ and full scale voltage of 500 mV the full scale voltage corresponds with $I_{K}=50 \mathrm{~mA}(\pm 5 \%)$.

Connection " I_{H} "
For measurements of helix voltage.
If a coil ammeter is used with $R_{\mathrm{i}}=2.5 \mathrm{k} \Omega$ and full scale voltage of 500 mV the full scale voltage corresponds with $I_{\mathrm{H}}=10 \mathrm{~mA}(\pm 2 \%)$.

[^0]: I) If the maximum variation of the heater voltage exceeds the absolute limits of $\pm 0.2 \mathrm{~V}$, the operating performance of the tube will be impaired and its life shortened.
 ${ }^{2}$) At input and output of cold tube in the frequency range 10.7 to 13.25 GHz .
 3) A fix setting value for any frequency ranges will be stated later.
 4) It is adjusted at a power input of 2 mW for a power output of 11 W .
 ${ }^{5}$) $A M / P M$ conversion is the phase shift of the output signal when changing the input by 1 dB .

[^1]: 1) A fix setting value for any frequency ranges will be stated later.
 ${ }^{2}$) It is adjusted at a power input of 1 mW for a power output of 11 W .
 ${ }^{3}$) $A M / P M$ conversion is the phase shift of the output signal when changing the input by 1 dB .
[^2]: 1) The collector 1 voltage must not fall more than 50 V below the indicated operating value (stability and accuracy included).
 ${ }^{2}$) The collector 2 voltage must not fall more than 30 V below the indicated operating value (stability and accuracy included).
 ${ }^{3}$) Switch-off value of the protection relay.
 ${ }^{\text {a }}$) Measured on the temperature measuring point (see drawing).
 For operating instructions, recommendations for the design of a power supply and detailed datas please refer to the obligatory specifications.
[^3]: 1) $A M / P M$ conversion is the phase shift of the output signal when changing the input by 1 dB .
[^4]: ${ }^{1}$) By choice minus or plus connected with case.

[^5]: 1) If the maximum variation of the heater voltage exceeds the absolute limits of $\pm 0.2 \mathrm{~V}$, the operating performance of the tube will be impaired and its life shortened.
 ${ }^{2}$) At input and output of cold tube in the frequency range 5.9 to 6.425 GHz .
 ${ }^{3}$) It is adjusted at a power input of 1.4 mW for a power output of 22 W .
 ${ }^{\text {4 }}$) $A M / P M$ conversion is the phase shift of the output signal when changing the input by 1 dB .
[^6]: 1) Switch-off value of the protection relay
 ${ }^{2}$) Measured on the temperature measuring point (see drawing)
[^7]: 1) By choice minus or plus connected with case.
 ${ }^{\text {2) }}$ According to operating of traveling wave tube RW 88 (11 or 15 W).
[^8]: 1) switchable
[^9]: 1) The total collector current $I_{\mathrm{C} 1}+I_{\mathrm{C} 2}$ must be lower than 40 mA .

 SIEMENS AKTIEi!JESELLSCHAFT
 9. $75(4) \mathrm{y}$

