

Power and Special Purpose Tubes

LIST OF ABBREVIATIONS AND SYMBOLS MICROWAVE TUBES Symbols Microwave Tubes

1

Symbols for Electrodes

B

SIEMENS

U

С	Collector
dl	Delay line
g	Grid, focusing electrode, accelerating electrode
h	Helix
i.C. (int con)	Internal connection
k	Cathode
р	Plate

Several grids, focusing and accelerating electrodes are numbered 1, 2, 3... according to their relative position from the cathode, the lowest number being closest to the cathode.

Symbols for Voltages

Eb eb	dc plate or collector voltage Plate pulse voltage
Ebb	dc plate or collector supply voltage
Ec	dc grid voltage, dc focusing voltage, dc accelerating voltage
ec	Grid pulse voltage
Ecc	dc grid, focusing or accelerating supply voltage
Edl	dc delay line voltage
Ef	Heater voltage
Eg	rms value of ac component of grid voltage
eg	Peak grid voltage
Eh	dc helix voltage
Ehk	Heater - cathode voltage
Eip	dc ion pump voltage
Ep	rms value of ac component of plate voltage with respect to cathode
ep	Peak plate voltage

Symbols Microwave Tubes

LIST OF ABBREVIATIONS AND SYMBOLS MICROWAVE TUBES

Symbols for Currents

Ib	dc plate or collector current
Ibo	Zero signal dc plate current
ib	Plate pulse current
Ic	dc grid current
	dc focusing current
	dc accelerating current
ic	Grid pulse current
Idl	Delay line current
I_{f}	Heater current
Ig	rms value of ac component of grid current
ig	Peak grid current
Ih	Helix current
ih	Peak helix current
Iip	dc ion pump current
Ik	dc cathode current
ik	Peak cathode current
Ip	rms value of ac component of plate current
ip	Peak plate current

Symbols for Power Values

P _d Pd P _{dl} P _{d syn} P _g P _h P _i P _o Po Po syn P _p	Average drive power Peak or pulse drive power Delay line power dissipation Synchron drive power Power dissipation of grid, focusing or accelerating electrode Helix power dissipation Power input (plate) Average power output Peak power output Plate or collector power dissipation
P _{sat}	Saturation power

SIEMENS

2

LIST OF ABBREVIATIONS AND SYMBOLS MICROWAVE TUBES

Symbols Microwave Tubes

Symbols for Capacitances

S.

SIEMENS

1

-

Cin	Input capacitance	
C _{mn}	Capacitance between the electrodes m and n	
C _{mn/p}	Capacitance of electrodes m and n with respect to electrode p	2
Cout	Output capacitance	

Symbols for Resistances

Rb	dc resistance of external plate or collector circuit (bypassed)
R _g	Resistance in series with grid
Rk	Resistance in series with cathode
Rp	Resistance in series with plate

Other Symbols

Du	The product of time of pulse and pulse repetition rate (Duty cy	cle)
F	Frequency	0201
C	Gain	
	2 tone intermedulation natio	
	2 tone intermodulation ratio	
IM 3	S tone intermodulation ratio	
NE	Noise factor	
P	Pressure drop	
Prr	Pulse recurrence rate	
S	Transconductance	
Т	Temperature	
TA	Ambient temperature	
TE	Envelope temperature	
tk	Cathode - conditioning time, preheating time	
Tp	Collector or plate temperature	
tp	Pulse duration	
Τ _M	Magnet system temperature	
Tsurf	Surface temperature	
V	Air flow rate	
VSWR	Voltage standing wave ratio	
a	Cold attenuation	
Ц	Amplification factor	
1	1	

3

Symbols Microwave Tubes

LIST OF ABBREVIATIONS AND SYMBOLS MICROWAVE TUBES

SIEMENS

Dimensions

A	Amperes (may be either ac rms or dc)
a	Amperes (peak value)
Aac	ac amperes (rms)
ac	Alternating current
Adc	dc amperes
°C	Degrees centigrade
cm	Centimeter
cps (Hz)	Cycles per second
CW	Continuous wave
db	Decibels
dc	Direct current
Gc (GHz)	Gigacycles (kilomegacycles)
kc (kHz)	Kilocycles
kv	Peak kilovolts
kVdc	dc kilovolts
kW	kilowatts
kw	Peak kilowatts
if	Intermediate frequency
m	Meter or one - thousandth
m^3/h	Cubic meter per hour
mA	ac (rms) or dc milliamperes
ma	Peak milliamperes
mAac	ac milliamperes (rms)
mAdc	dc milliamperes
Mc (MHz)	Megacycles
Meg	Megohms
min	Minutes
mm	Millimeter
ms	Milliseconds
rf	Radio frequency
rms	Root mean square
V	Volts (may be either ac rms or dc)
v	Volts, peak value
W	Watts
W	Peak watts
μAac	ac microamperes (rms)
µAdc	dc microamperes
μf	Microfarads
μs	Microseconds
μμf	Micromicrofarads

SIEMENS AKTIENGESELLSCHAFT

POWER TRAVELING WAVE TUBE F = 1.7 to 2.3 Gc

RW 2

S&H Sach-Nr. Q00041-X3251

Design and Application

Power traveling wave tube especially designed for broadband radio relay systems with an average power output of 20 W and an average small-signal gain of 40 db. The magnet system including the tube and the connections is provided with rf shielding.

The tube is a periodic permanent magnet focused traveling wave tube and is a plug-in match in its associated magnet system MRW 2. The magnet system has a particularly small leakage field. The tube is designed to operate with depressed collector.

The magnet system may be delivered by choice with a conduction cooler (MRW 2a) or with a convection cooler (MRW2b). The rf-power is coupled in and out by way of waveguides.

The rf input and output ports are designed for connection to coaxial cable.

special type, included in magnet system
approx. 200 gm net (7 ozs)
approx. 12 kg (27 lbs)
approx. 100 x 130 x 384 mm without tube socket
$(4 \times 5 1/8 \times 15 ins)$
170 x 170 x 560 mm
(6 5/8 x 6 5/8 x 22 ins)
optional 50 Ω , N connector 3/7 or
coax. 7/16
60 %, coax. 3.5/9.5 or
coax. 7/16
any (see cooling)

10

Heating

Heater voltage Heater current Preheating time indirect by ac, parallel s Metal capillary dispenser	E _f I _f t _k upply cathode	= ≈ ≈>= e		6.3 0.8 2		Vac (1) Aac min (2)
Characteristics (f	= 2.0 C	Gc, $I_k =$	85 mA)			
			min.	nom.	max.	
Peak saturation power Small signal gain Average gain at 20 W CW VSWR Cold attenuation	Ρ _{sat} G G α	ниии	27 40 36	35 44 40 1.35 80	1.85	W db db (3) db
Operating frequency Power output Gain	F P _o G	= =	2 20 40	2 10 37		Gc W db
Collector voltage Helix voltage Grid No.2 voltage Grid No.1 voltage	E _b E _h E _{c2} E _{c1}	II & & II	1600 1900 ± 2 600 ± 1 -20	$ \begin{array}{r} 1300 \\ 1850 \pm \\ 50 & 600 \pm \\ -40 \end{array} $	200 150	Vdc (4) Vdc (5) Vdc (5) Vdc (4,6)
Helix current Grid No.2 current Cathode current Noise factor AM/PM conversion	I _h I _{c2} I _k NF	и ли и и и	3 0.1 85 21 3.8	1.5 0.1 65		mAdc mAdc mAdc (4) db o/db (7)

All voltages are referred to the cathode

- (1) If the maximum variation of the heater voltage exceeds the absolute limits of ⁺ 2 % the operating performance of the tube will be impaired and its life shortened.
- (2) Once the tube has been operated at full voltages and currents, the preheating time for subsequent operation may be reduced to ≥ 45 sec.
- (3) At input and output of cold tube in the frequency range 1.7 to 2.3 Gc
- (4) Setting values
- (5) The spreads quoted are intended for use when designing the power supply.
- (6) It is advisable to obtain E_{c1} by means of a cathode resistor.
- (7) AM/PM conversion is the phase shift of the rf output signal when changing the input by 1 db.

Maximum Ratings (absol

(absolute values)

Collector supply voltage	Ebb	max	1900	Vdc
Collector voltage	Ebb	max	1800	Vdc
Collector dissipation	Pp	max	150	W
Helix voltage	E _h	max	2300	Vdc
Helix voltage	E _h	min	1600	Vdc
Helix current	I _h	max	7	mAdc
Peak helix current	ⁱ h	max	10	ma (1)
Grid No. 2 voltage	E _c 2	max	900	Vdc
Grid No. 2 dissipation	P _{c2}	max	0.2	W
Grid No. 1 voltage	-Ec1	max	100	Vdc
Grid No. 1 voltage	+E _{c1}	max	0	Vdc
Cathode current	Ik	max	100	mAdc
Load VSWR		max	2.0	
Collector temp rature	Т	max	270	°C (2)
Magnet system temperature	Т	max	100	°C (3)
Ambient temperature	TA	min	-20	°C
Ambient temperature	ТА	max	55	oc (4)

(1) During starting and due to power supply surges

- (2) Without rf-signal, the temperature of the collector may rise for three days maximum up to 300 °C
- (3) Measured at the output waveguide flange. It may be necessary to remove the lacquer from the measuring point.
- (4) See "cooling", page 4

Operating Instructions

1

1

The traveling wave tube RW 2 is operated in conjunction with a magnet system MRW 2. The advantages of the periodic permanent magnetic focusing of the RW 2 are the particularly small dimensions of the magnet system and an extremely low leakage field. The sensitivity to temperature changes is low.

3

The magnet system should only be mounted by way of the fixing holes provided for this purpose. With operation in radio link systems, directional couplers should be connected to the tube input and output to avoid distoriton due to multiple reflexions. The rf waveguide to the magnet system should be flexible to prevent any mechanical stress on the input and output ports of the magnet system.

All voltages applied to the tube are referred to the cathode.

The voltage drop in the heater supply leads must be taken into account. The voltage must be set such that it is exactly 6.3 V at the socket. When using the standard cable of 1.1 m length supplied with the connector socket the total voltage drop is 0.1 V.

The Grid No. 1 voltage can be obtained from a cathode resistor R_k . The Grid No.2 voltage must be variable within the range quoted. It is tapped from a voltage divider R_1 , the total resistance of which must not exceed 2.5 Meg. Stability and residual hum voltage (helix voltage) depend upon the equipment requirements.

The collector voltage need not be stabilized, but it must not fall more than 50 Vdc below the indicated operating value.

A protective relay must be inserted in the helix supply circuit to disconnect the helix and Grid No. 2 voltage, when the maximum permissible helix current is exceeded.

When using an independent voltage source for Grid No. 2, the voltage must be automatically switched off immediately if the helix voltage fails.

This may be achieved by interlocking the protection circuits.

When the collector voltage fails, the helix voltage and Grid No. 2 voltage must be disconnected either by the overload relay in the helix circuit or by a voltage interlocking system.

Cooling

To dissipate the heat from the collector the magnet system may either be provided with conduction cooling (MRW 2a) or convection cooling (MRW 2b).

Conduction Cooling

The heat dissipated by the collector is conducted to two Cu-plates, mounted on two opposite sides of the magnet system. The heat (max. 55 W per plate) must be conducted from these plates. The temperature of the plate must not exceed $115 \, ^{\circ}$ C in this case. The plates are insulated from the collector and can be earthed.

Convection Cooling

When using the air-cooled version with the tube operating under the 20 W conditions detailed on page 2, an air stream with a flow rate of approx. 100 liters/min is required to cool the collector. At reduced ratings the tube can be operated at a maximum collector dissipation of 65 W in an ambient of up to 40 °C without forced cooling, provided the tube is horizontal and a natural circulation of air through the cooler assembly can be guaranteed.

Starting

For safe handling of the equipment, the magnet system must be properly grounded. For this purpose a solder tag is provided near the output port, see page 6.

1. Connect of supply leads. (initial starting)

The collector voltage is connected by means of an e.h.t. cable to the solder tag under the coverplate of the cooling system (see page 6). The helix connection is soldered to the tag near the output port (see page 6).

The other voltages are applied to the tube via the supply cable. The individual leads are color-coded as follows:

Heaterf.f:brown, brown-yellowCathodek:yellowGrid No. 1g1:green, red*)Grid No. 2g2:blueEarth:black

*) connect green and red lead together!

- 2. Unscrew the retaining nut.
- 3. Insert the tube in magnet system, push on tube socket and screw on nut until stop is reached (avoid tilting the socket).
- 4. Apply heater voltage and preheat tube.
- 5. Apply air cooling.
- 6. Apply collector voltage
- 7. Switch-on helix and Grid No. 2 voltages simultaneously (the time difference between applying the voltages to both electrodes must not exceed 0.2 sec). Make sure that full voltages are applied immediately and not increased gradually to full value.
- 8. Adjust cathode current by varying Grid No. 2 voltage.
- 9. Adjust helix current to minimum with the aid of radial field correction (pair of rings at input end of magnet system) and axial field correction (additional single ring at input end of magnet system).
- 10. Apply rf input signal and readjust helix voltage for optimum gain at specified power output.
- 11. Repeat field correction according to point 8.

For interruption in operation up to 10 sec duration the tube may be switched on without preheating.

Switching off

8

.

The operating voltages can be switched off either simultaneously or in the reverse order to that in which they were applied.

Form and direction of the connector socket

Ordering numbers for traveling wave tube RW 2 and RW-connector sockets

Designation	Design	Ordering numbers	Fig.
Traveling wave tube RW	2	Q00041-X3251	
RW-connector socket	axial	Q00081-X2321	1
RW-connector socket	bend in direction A	Q00081-X2322	2
RW-connector socket	bend in direction B	Q00081-X2323	2
RW-connector socket	bend in direction C	Q00081-X2324	2
RW-connector socket	bend in direction D	Q00081-X2325	2
RW-connector socket	axial	Q00081-X2315	1
RW-connector socket	bend in direction A	Q00081-X2316	2
RW-connector socket	bend in direction B	Q00081-X2317	2
RW-connector socket	bend in direction C	Q00081-X2318	2
RW-connector socket	bend in direction D	Q00081-X2319	2

(1) 0.1 m of this length as free leads.

(2) When ordering please specify total length of cable and length of free leads.

Ordering numbers for magnet systems MRW 2

	Design			Ordering numbers Q00043-X				
Designation	Cooling	Cooling in direct.	Collect. connect. at side	Coaxia 3.5/9.5	al con $\left \frac{3}{7^{1}}\right $	nection 7/16	15 6/16	Fig.
Magn.syst. MRW 2a11 Magn.syst. MRW 2a12 Magn.syst. MRW 2a21 Magn.syst. MRW 2a22	Con- duction	B-D B-D A-C A-C	A C D B	2401 2405 2402 2406	2411 2415 2411 2416	2421 2425 2421 2426	2431 2435 2431 2436	3a 3b 3c 3d
Magn.syst. MRW 2b11 Magn.syst. MRW 2b12 Magn.syst. MRW 2b21 Magn.syst. MRW 2b22	Con- vection	B-D B-D A-C A-C	A C D B	2403 2407 2404 2408	2413 2417 2414 2418	2423 2427 2424 2428	2433 2437 2434 2438	3e 3f 3g 3h

(1) N-connector

£

¥

RW 2

5

*

<u>#</u>

RöK 3506 E / 1.11.65

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE

2

6

Characteristics $P_{o max} = f(E_h)$

Characteristics $G = f(E_h)$

Ż

Characteristics $P_{o \max} = f(E_h)$

RöK 3506 E / 1.2.67

& SIEMENS

.

Characteristics $I_{h} = f(E_{b})$

Characteristics $I_k = f(E_{c2})$

.

Characteristics $I_k = f(E_{c1})$

*

-

Characteristics $G = f(E_h)$

RöK 3506 E / 1.2.67

SIEMENS

Characteristics $G = f(P_0)$

*

Characteristics $P_{o \text{ sat}}, E_{h} = f(F)$

Characteristics $\kappa_p = f(P_0)$

Characteristics $K_{p,c} = f(E_h)$

#
Characteristics $\frac{P_{o}(nF)}{P_{o}(F)} = f(E_{h})$

SIEMENS AKTIENGESELLSCHAFT

Printed in Germany

RöK 3506 E/1.2.67

POWER TRAVELING WAVE TUBE F = 2.4 to 2.8 Gc

RW 21

S&H Sach-Nr. Q00041-X325.6

Design and Application

Power traveling wave tube for a frequency range from 2.4 to 2.8 Gc with an average saturation power output of 32 W and an average small-signal gain of 42 db. The tube is particularly suitable for use in tv transmission networks (school tv) and in broadband-telecommunication systems.

The tube is a periodic permanent magnet focused traveling wave tube and is a plug-in match in its associated magnet system. The magnet system has a particularly small leakage field. The tube is designed to operate with depressed collector.

Cooling may be effected by conduction or convection.

The rf input and output ports are designed for connection to coaxial cable. The magnet system including the tube and the connections is provided with rf shielding.

Weight of magnet system	:approx. 12.5 kg (28 lbs)
Weight of tube	: approx. 200 gm net (7 ozs)
Dimensions of magnet system	:100 x 130 x 384 mm without tube socket
	$(4 \ge 5 \ 1/8 \ge 15 \ ins)$
Dimensions of the tube packing	: 170 x 170 x 560 mm
	(6 5/8 x 6 5/8 x 22 ins)
rf connector	: optional 50 Ω , N connector 3/7 or
	coaxial connection 7/16
	60Ω , coaxial connection 3.5/9.5 or
	coaxial connection 6/16
Mounting position	: any (see cooling)

1

Heating, Characteristics Typical Operation

Heating

Heater voltage	Ef	=	6.3	$V_{ac}(1)$
Heater current	I _f	*	0.8	Aac
Preheating time	tk	>=	2	$\min(2)$

indirect by a.c., parallel supply Metal capillary dispenser cathode

Characteristi	cs	(f = 2.6)	Gc, I	k = 85 mA	7)			
				min.	nom.	max.		
Saturation	power	Psat	=	27	32		W	
Small sign	al gain	G	=	39	42		db	
Gain at 20	WCW	G	Ŧ	36	40		db	1 - 1
VSWR			=		1.35	1,85		(3)
Cold atten	uation	a	=		80		db	

Typical Operation I

TV transmitter with common vision and sound transmission (USA school tv), negative modulation

Video carrier frequency	F	=	2.6	2.6	2.6	Gc
Synchron power output	Psyn	=	10	10	16	W
3 tone intermodulation ratio	IM3	=	-27	-30	-27	db(4)(5)
Minimum gain	G	= •	37	38	37	db
Collector voltage	Eb	=	1600	1500	1500	Vdc
Helix voltage	Eh	=	1850	1850	1850	Vdc(6)
Grid No.2 voltage	E _c 2	=	600	600	600	Vdc
Grid No.1 voltage	E _{c1}	=	-20	-20	-20	Vdc
Helix current	Ih	*	1	1.5	3	mAdc(7)
Grid No.2 current	I _{c2}	< H	0.1	0.1	0.1	mAdc
Cathode current	Ik	=	85	90	90	mAdc
Sync pulse compression		V II	30	20	30	70

(1) If the maximum variation of the heater voltage exceeds the absolute limits of $\frac{1}{2}$ 2 % the operating performance of the tube will be impaired and its life shortened.

- (2) Once the tube has been operated at full voltages and currents, the preheating time for subsequent operation may be reduced to ≥ 45 sec.
- (3) At input and output of cold tube in the frequency range 2.4 to 2.8 Gc
- (4) These figures are valid for a difference in level between picture carrier (during sync pulses) and sound carrier of 10 db
- (5) See page 3
- (6) Helix voltage for optimal small signal gain + 100 V
- (7) For black level CW output power approx. 50 % of the synchron output power

(5)

The distortion of a tv signal produced by non-linear effects can be determined by passing a simulated tv signal consisting of unmodulated picture carrier F_v , sound carrier F_s and sideband F_{sb} through the traveling wave tube. The non-linear effects in the amplifier produce spurious frequencies within the tv channel and one of these, F_{sp} has a particularly large amplitude compared with any others within the channel and is therefore of concern. If the amplitudes of the 3 input frequencies are selected as indicated in fig. 1, the amplitude ratio between the frequencies F_{sb} and F_v corresponds to the white-to-black amplitude range of a tv signal. The frequency response of the television receiver used has been taken into account here, namely that the picture carrier is reduced by 6 db to the Nyquist flank.

A measure of the intermodulation products of interest is expressed by the difference in power output, in decibels, at the side-band frequency F_{sb} and the spurious frequency F_{sp} . This difference in level is given in the operating data as the 3 tone intermodulation ratio IM₃ and is referred to the sync power level at which the tube is operating. In fig. 1 and fig. 2 the sync power level is assumed to be 0 db.

Virtually the same information on intermodulation products produced by non-linear effects in the amplifier may also be obtained by using the 2 tone method. In this case the tube is driven by 2 unmodulated carriers of equal amplitude having frequencies F_1 and F_2 , as shown in fig. 2. Of interest are the spurious frequencies $2F_1 - F_2$ and $2F_2 - F_1$ at the output, which are third order intermodulation products. The ratio, in decibels, of the power output at one of the spurious frequencies to the power output at one of the input frequencies gives the 2 tone intermodulation ratio IM₂, and is once again a typical measure of amplifier performance. This ratio is generally referred to the sync power level, which is 6 db above the input signals as shown in fig. 2.

A relationship between the 3 tone and 2 tone intermodulation ratios can be found mathematically and is also verifiable by experiment. This relationship depends on the difference in level between picture carrier (during sync pulses) and to sound carrier. If the difference is 7 db, as standardized in Europe, to a close approximation the formula $IM_3 = IM_2 + 3$ db is valid. It must be taken into account, that both IM_2 and IM_3 are negative values. If this difference is 10 db, the 2 tone and 3 tone intermodulation ratios are identical.

3

Typical Operation Maximum Ratings

Typical Operation II

Operating frequency	F	=	2.6	Gc
Power output	Po	=	20	$W^{(1)}$
Gain	G	*	40	db
Collector voltage	Eb	=	1600	Vdc(2)
Helix voltage	Eh	*	1800	Vdc
Grid No.2 voltage	E _{c2}	~	600	Vdc
Grid No.1 voltage	E _{c1}	=	-20	Vdc(2,3)
Helix current	Ih	*	3	mAdc
Grid No.2 current	I _{c2}	< 11	0.1	mAdc
Cathode current	Ik	=	85	$mAdc^{(2)}$
Noise factor	NF	×	25	db
AM/PM-conversion		*	5	$^{\rm 0/db}(4)$

Maximum Ratings

(absolute values)

Collector supply voltage	Ehh	max	1900	Vdc
Collector voltage	Eb	max	1800	Vdc
Collector dissipation	Pp	max	150	W
Helix voltage	Eh	max	2200	Vdc
Helix voltage	Eh	min	1600	Vdc
Helix current	Ih	max	7	mAdc(5)
Helix dissipation	Ph	max	12	W
Grid No.2 voltage	E _c 2	max	900	Vdc
Grid No. 2 dissipation	P _c 2	max	0.2	W
Grid No.1 voltage	E _{c1}	min	-100	Vdc
Grid No.1 voltage	Eci	max	0	Vdc
Load VSWR	CI	max	2	
Cathode current	Ik	max	100	mAdc
Collector temperature	T	max	270	°C (6)
Magnet system temperature	T.	max	100	°C (1)
Ambient temperature	ΤA	min	-20	°C
Ambient temperature	TA	max	55	o _C (8)

 The tube is designed to operate at reduced cathode current in applications requiring lower output. In such cases the manufacturer should be consulted.

(2) Setting value

(3) It is advisable to obtain the Grid No.1 voltage by means of the cathode resistor.

- (4) AM/PM-conversion is the rate of change of (1) the phase of the rf output voltage relative to the phase of the rf input voltage with respect to (2) the rf driving power at a constant value of rf output power. This is expressed in degrees per decibel.
- (5) The helix current may rise momentarily to 10 mAdc due to power supply surges and during starting.
- (6) Without rf signal, the temperature of the collector may rise for a short time (max. 3 days) up to 300 °C.
- (7) Measured at the coax output. It may be necessary to remove the lacquer from the measuring point.

(8) See cooling, page 5.

Operating Instructions

The traveling wave tube RW 21 is operated in conjunction with a magnet system MRW 21. The advantages of the periodic permanent magnetic focusing of the RW 21 are the particularly small dimensions of the magnet system and an extremely small leakage field. The magnet system should only be mounted by way of the fixing holes provided for this purpose. The rf co-axial leads to the magnet system should be flexible to prevent any mechanical stress on the coax input and output of the magnet system.

All voltages applied to the tube are referred to the cathode. The voltage drop in the heater supply leads must be taken into account. The voltage must be set exactly 6.3 V at the socket. The total voltage drop in the normal connecting cable supplied (length 1.1 m) is 0.1 V.

The Grid No. 1 voltage can be obtained from the cathode resistor R_k .

The Grid No. 2 voltage must be variable between 500 ... 800 Vdc.

The Grid No. 2 voltage is tapped from a voltage divider R_1 , the total resistance of which must not exceed 2.5 Meg.

The helix voltage must be variable between 1600 and 2000 Vdc. Stability and residual hum voltage depend upon the equipment requirements.

It is not necessary to stabilize the collector voltage but precautions must be taken to ensure that the maximum ratings, particular the admissible collector dissipation, are not exceeded.

When using a separate voltage source for Grid 2 precautions must be taken to ensure that this voltage is automatically switched off when the helix voltage fails. When collector voltage fails, the helix voltage and Grid 2 voltage must be automatically switched off (by means of a protection relay).

Cooling

To dissipate the heat from the collector the magnet system may either be provided with conduction cooling (MRW 21 a) or convection cooling (MRW 21 b)

Conduction cooling

The heat at the collector is conducted to two Cu-plates, mounted on two opposite sides of the magnet system. The heat (max. ca. 70 W per plate) must be conducted from these plates. The temperature of the plate must not exceed 115 °C in this case. The plates are insulated from the collector and can be earthed.

Cooling, Starting Switching off

Conduction cooling

An air flow of approx. 100 l/min is required when the tube is operated according to the data on page 2. At reduced ratings the tube may be operated without additional cooling at an ambient temperature of 40 $^{\circ}$ C up to a collector dissipation of max. 65 W.

In this case the tube has to be mounted in horizontal position and a natural vertical air circulation is provided throught the radiator.

Starting

For safe handling of the equipment, the magnet system must be properly grounded. The following describes the starting sequence:

1) Connection of dc-leads.

The collector voltage is connected by means of a high voltage cable to the solder tag under the coverplate of the cooling system. (see page 8) The helix connection is soldered to the tag near the coax-output. (see page 8) The other voltages are applied to the tube via the supply cable. The individual leads are color-coded as follows:

Heater	f,f	:	brown, brown- yellow
Cathode	k	:	yellow
Grid No.1	g ₁	:	green, red *)
Grid No.2	g2	:	blue
Earth			black

*) connect green and red lead together

- 2) Unscrew the retaining nut and remove the connector socket.
- 3) Insert the tube in magnet system, push on tube socket and screw on nut until stop is reached. (avoid tilting the socket)
- 4) Apply heater voltage and preheat tube for at least 2 min.
- 5) Switch-on air cooling
- 6) Apply collector voltage
- 7) Switch-on helix and Grid No. 2 voltages simultaneously. The full voltages should be applied immediately and not increased gradually to full value.
- 8) Adjust cathode current by varying Grid No. 2 voltage
- 9) Adjust helix current to minimum with the aid of radial field correction (pair of rings at input end of magnet system) and axial field correction (additional at input end of magnet system).
- 10) Apply rf input signal and readjust helix voltage for optimum gain at specified power output.
- 11) Repeat field correction according to point 9 For interruption of operating up to 10 sec duration the tube may be switched on without preheating.

Switching off

The operating voltages can be switched off either simultaneously or in the reverse order to that in which they were applied.

7

Ordering numbers for traveling wave tube RW 21 and RW-connector sockets

Designation	Design		Ordering numbers	Fig.
Traveling wave tube RW 21			Q00041-X3256	
RW-connector socket RW-connector socket RW-connector socket RW-connector socket RW-connector socket	axial bend in direction A bend in direction B bend in direction C bend in direction D	standard cable length 1.2 m (1)	Q00081-X2321 Q00081-X2322 Q00081-X2323 Q00081-X2324 Q00081-X2325	1 2 2 2 2
RW-connector socket RW-connector socket RW-connector socket RW-connector socket RW-connector socket	axial bend in direction A bend in direction B bend in direction C bend in direction D	cable length as required(2)	Q00081-X2315 Q00081-X2316 Q00081-X2317 Q00081-X2318 Q00081-X2319	1 2 2 2 2

(1) 0.1 m of this length as free leads.

(2) When ordering please specify total length of cable and length of free leads.

Ordering numbers for magnet systems MRW 21

		Design	Ordering numbers Q00043-X					
Designation	Cooling	Cooling in	Collect. connect.	Coa	xial co	onnectio	ons	Fig.
		direct.	at side	3.5/9.5	3/71)	7/16	6/16	
Magn.syst. MRW 21a11		B-D	A	2442	2451	2461	2471	3a
Magn.syst. MRW 21a12	Con-	B-D	C	2445	2455	2465	2475	3b
Magn.syst. MRW 21a21	duction	A-C	D	2442	2452	2462	2472	3c
Magn.syst. MRW 21a22		A-C	В	2446	2456	2466	2476	3d
Magn.syst. MRW 21b11		B-D	А	2443	2453	2463	2473	3e
Magn.syst. MRW 21b12	Con-	B-D	C	2447	2457	2467	2477	3f
Magn.syst. MRW 21b21	vection	A-C	D	2444	2454	2464	2474	3g
Magn.syst. MRW 21b22		A-C	В	2448	2458	2468	2478	3h

(1) N-connector

Form and direction of the connector socket

RW 21

The various arrangements of the cooler assembly and collector connection

9

Characteristics $G = f(P_0)$

RöK3515E/1.11.65

8

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE

Printed in Germany

RöK 3515E / 1.11.65

POWER TRAVELING WAVE TUBE F = 3.6 to 4.3 Gc

RW 4

S&H-Sach-Nr. Q00041-X3253

1

Design and Application

Power traveling wave tube especially designed for broadband radio relay systems with an average power output of 10 watts and an average gain of 40 db. The magnet system including the tube and the connections is provided with rf shielding. The RW4 is a periodic permanent magnet focused traveling wave tube and is a plug-in match in its associated magnet system MRW4. The magnet system has a particularly small leakage field. It is designed to operate with depressed collector.

The magnet system may be delivered by choice with a conduction cooler (MRW4a) or with a convection cooler (MRW4b).

The rf power is coupled in and out by way of waveguides.

Tube base: special type Weight of tube: approx. 100 gm net Weight of magnet system: approx. 10 kg (22.05 lbs) $100 \ge 120 \ge 275 \text{ mm}$ (without tube socket) Dimensions of magnet system: 4" x 4 3/4" x 11" F 40, DIN 47302, 58.17 x 7 mm, 2.29" x 0.28" Waveguide: Flange: UGF 40, DIN 47303 Mounting position: any (see cooling) 170 x 170 x 460 mm, 6.7"x6.7"x18.1" Dimensions of packing:

Heating

Heater voltage Heater current Preheating time	E _f I _f t _k	II & /II		6.3 0.8 2		Vac (1) Aac min (2)
indirect by ac, parallel Metal capillary dispense	supply er catho	de				
Characteristics $(F = 4)$.0 Gc,	I _k = 60 n	nA)			
			min	nor	n max	
Pulse saturation power	Psat	=	16	22		W
Low signal gain	G	=	38	42		db
Gain	$G(P_0 = 2)$	10W)=	36	40		db
VSWR		=		1.2	1.5	(3)
Cold attenuation	a	-		80)	db
Typical Operation						
Operating frequency	F	=		4	4	Gc
Power output	Po	=		10	5	W
Gain	G	18		40	41	db
Collector voltage	Eb	11		1300	1050	Vdc (5)
Helix.voltage	Eh	*	2050	200	2050±200	Vdc (8)
Grid No. 2 voltage	E _{c2}	×	450	±150	450+150	Vdc (8)
Grid No. 1 voltage	E _{c1}	-		-20	-20	Vdc (5,6)
Helix current	Ih	8		2	1	mAdc
Grid No. 2 current	Ic2	<=		0.1	0.1	mAdc
Cathode current	IL	=		60	60	mAdc(5)
Noise factor	NF	*		22	22	db
AM/PM conversion	kp	*		3		°/db(7)

All voltages are referred to the cathode

(1) If the maximum variation of the heater voltage exceeds the absolute limits of $\pm 2\%$ the operating performance of the tube will be impaired and its life shortened.

- (2) Once the tube has been operated at full voltages and currents, the preheating time for subsequent operation may be reduced to ≥ 45 sec.
- (3) At input and output of cold tube in the frequency range 3.6...4.3 Gc.
- (4) For tube operation at lower power output levels than 10 W it is also possible to reduce the cathode current by adjusting the grid voltages.
- (5) Setting values
- (6) It is advisable to obtain E_{c1} by means of a cathode resistor.
- (7) AM/PM conversion is the phase shift of the RF output signal when changing the input by 1 db.
- (8) The spreads quoted are intended for use when designing the power supply.

Maximum Ratings

(absolute values)

Ebb	max	1600	Vdc
Eb	max	1500	Vdc
Pp	max	85	W
Eh	max	2300	Vdc
E _h	min	1800	Vdc
Ih	max	6	mAdc
ⁱ h	max	8	ma (1)
E _{c2}	max	600	Vdc
P _{c2}	max	0.2	W
-E _{c1}	max	100	Vdc
$+E_{c1}$	max	0	Vdc
Ik	max	70	mAdc
	max	2	
Т	max	270	°C (2)
Т	max	100	o _C (3)
TA	min	-20	°C
TA	max	55	°C (4)
	E_{bb} E_{b} P_{p} E_{h} I_{h} i_{h} E_{c2} P_{c2} $-E_{c1}$ $+E_{c1}$ I_{k} T T T T	Ebb max Eb max Pp max Eh max Eh max Eh max Eh max Eh max Ih max Ih max Pc2 max Pc2 max Ik max Ik max T max T max TA min	E_{bb} max1600 E_b max1500 P_p max85 E_h max2300 E_h min1800 I_h max6 i_h max600 P_{c2} max0.2 $-E_{c1}$ max0 I_k max70 I_k max270Tmax100TAmin-20TAmax55

- (1) During starting and due to power supply surges.
- (2) Without rf signal, the temperature of the collector may rise for three days maximum up to 300 °C.
- (3) Measured at the output waveguide flange. It may be necessary to remove the lacquer from the measuring point.
- (4) See "cooling", page 4

Operating Instructions

The traveling wave tube RW 4 is operated in conjunction with its associated magnet system MRW 4. The advantages of the periodic permanent magnetic focusing of the RW 4 are the particularly small dimensions of the magnet system and an extremely low leakage field. The sensitivity to temperature changes is low.

The magnet system should only be mounted by way of the fixing holes provided for this purpose. With operation in radio link systems, directional couplers should be connected to the tube input and output to avoid distortion due to multiple reflexions. The rf waveguide to the magnet system should be flexible to prevent any mechanical stress on the input and output ports of the magnet system.

All voltages applied to the tube are referred to the cathode.

The voltage drop in the heater supply leads must be taken into account. The voltage must be set such that it is exactly 6.3 V at the socket. When using the standard cable of 1.1 m length supplied with the connector socket the total voltage drop is 0.1 V.

The Grid No. 1 voltage can be obtained from a cathode resistor R_k . The Grid No. 2 voltage must be variable within the range quoted. It is tapped from a voltage divider R_1 , the total resistance of which must not exceed 2.5 Meg. Stability and residual hum voltage (helix voltage) depend upon the equipment requirements.

The collector voltage need not be stabilized, but it must not fall more than 50 Vdc below the indicated operating value.

A protective relay must be inserted in the helix supply circuit to disconnect the helix and Grid No. 2 voltage, when the maximum permissible helix current is exceeded.

When using an independent voltage source for Grid No. 2, the voltage must be automatically switched off immediately if the helix voltage fails.

This may be achieved by interlocking the protection circuits.

When the collector voltage fails, the helix voltage and Grid No. 2 voltage must be disconnected either by the overload relay in the helix circuit or by a voltage interlocking system.

Cooling

To dissipate the heat from the collector the magnet system may either be provided with conduction cooling (MRW 4a) or convection cooling (MRW 4b). Conduction Cooling

The heat dissipated by the collector is conducted to two Cu-plates, mounted on two opposite sides of the magnet system. The heat (max. 40 W per plate) must be conducted from these plates. The temperature of the plate must not exceed 115 °C in this case. The plates are insulated from the collector and can be earthed.

Convection Cooling

At ambient temperatures up to +55 °C the forced air cooling can be achieved by using a chimney provided the magnet system is mounted horizontally and air circulates naturally in a vertical direction through the radiator on the magnet system. This chimney should have a cross section of 50 x 100 mm and a height of 800 mm. If the magnet system is mounted other than horizontally, additional cooling by a weak forced air stream is necessary. In this case, the deciding factor is the admissible collector temperature which should not exceed the absolute maximum limit of 270 °C.

Starting

For safe handling of the equipment, the magnet system must be properly grounded. For this purpose a solder tag is provided near the output port, see page 6.

1. Connect of supply leads. (initial starting).

The collector voltage is connected by means of an e.h.t. cable to the solder tag under the coverplate of the cooling system (see page 6). The helix connection is soldered to the tag near the output port (see page 6).

The other voltages are applied to the tube via the supply cable. The individual leads are color-coded as follows:

Heater		f,f	:	brown,	brow	/n-yellow
Cathode		k	0 e	yellow		
Grid No.	1	g1	:	green,	red	*)
Grid No.	2	g2	•	blue		
Earth			:	black		

*) connect green and red lead together!

- 2. Unscrew the retaining nut.
- 3. Insert the tube in magnet system, push on tube socket and screw on nut until stop is reached (avoid tilting the socket).
- 4. Apply heater voltage and preheat tube.
- 5. Apply collector voltage.
- 6. Switch-on helix and Grid No. 2 voltages simultaneously (the time difference between applying the voltages to both electrodes must not exceed 0.2 sec). Make sure that full voltages are applied immediately and not increased gradually to full value.
- 7. Adjust cathode current by varying Grid No. 2 voltage.
- 8. Adjust helix current to minimum with the aid of radial field correction (pair of rings at input end of magnet system) and axial field correction (additional single ring at input end of magnet system).
- 9. Apply rf input signal and readjust helix voltage for optimum gain at specified power output.
- 10. Repeat field correction according to point 8.

For interruption in operation up to 10 sec duration the tube may be switched on without preheating.

Switching off

The operating voltages can be switched off either simultaneously or in the reverse order to that in which they were applied.

Magnet System MRW 4

6

Ordering Numbers for Traveling Wave Tube RW 4 and Associated Elements

The various arrangements of the cooler assembly and collector connection

Ordering numbers for traveling wave tube RW 4 and associated elements

	D	esign			
Designation	Cooling	Cooling in direct.	Collector connection at side	Ordering numbers	fig.
Traveling wave tube RW 4				Q00041-X3253	
Magn.syst.MRW 4 a 11 Magn.syst.MRW 4 a 12 Magn.syst.MRW 4 a 21 Magn.syst.MRW 4 a 22	Conduction	B-D B-D A-C A-C	A C D B	Q00043-X2321 Q00043-X2325 Q00043-X2322 Q00043-X2326	1a 1b 1c 1d
Magn.syst.MRW 4 b 11 Magn.syst.MRW 4 b 12 Magn.syst.MRW 4 b 21 Magn.syst.MRW 4 b 22	Convection	B-D B-D A-C A-C	A C D B	Q00043-X2323 Q00043-X2327 Q00043-X2324 Q00043-X2328	1e 1f 1g 1h
RW-connector socket RW-connector socket RW-connector socket RW-connector socket RW-connector socket	axial bend in direction A bend in direction B bend in direction C bend in direction D bend in direction D bend in direction A length 1.2 m (1)			Q00081-X2321 Q00081-X2322 Q00081-X2323 Q00081-X2324 Q00081-X2325	2 3 3 3 3
RW-connector socket RW-connector socket RW-connector socket RW-connector socket RW-connector socket	axial bend in direction A bend in direction B bend in direction C bend in direction D cable length as required(2)			Q00081-X2315 Q00081-X2316 Q00081-X2317 Q00081-X2318 Q00081-X2319	2 3 3 3 3

(1) 0.1 m of this length as free leads

(2) when ordering please specify total length of cable and length of free leads

.

SIEMENS & HALSKE AKTIENGESELLSCHAFT

W E R N E R W E R K F Ü R B A U E L E M E N T E

Printed in Germany

POWER TRAVELING WAVE TUBE f = 3.6 to 4.2 Gc

RW 42

S&H-Sach-Nr. Q00041-X3261

Design and Application

Power traveling wave tube especially designed for broadband radio relay systems with an average power output of 16 watts and an average gain of 39 db The magnet system including the tube and the connections is provided with rf shielding. The RW 42 is a periodic permanent magnet focused traveling wave tube and is a plug-in match in its associated magnet system MRW 4. The magnet system has a particularly small leakage field. It is designed to operate with depressed collector.

The magnet system may be delivered by choice with a conduction cooler (MRW 4 a) or with a convection cooler (MRW 4 b). The rf power is coupled in and out by way of waveguides.

Tube base: Weight of tube: Weight of magnet system: Dimensions of magnet system:

Waveguide: Flange: Mounting position: Dimensions of packing: special type approx. 100 gm net approx. 10 kg (22.05 lbs) 100 x 120 x 275 mm (without tube socket) 4" x 4 3/4" x 11" F 40, DIN 47302, 58.17x7mm, 2.29" x 0, 28" UGF 40, DIN 47303 any (see cooling) 170 x 170 x 460 mm, 6.7" x 6.7" x 18.1"

ATTENTION please!

The Tube RW 42 must be used in connection with the amplifier MRW 42

Heating

				(4)
Heater voltage	Ef	=	6.3	Vac ⁽¹⁾
Heater current	If	*	0.8	Aac (2)
Cathode heating time	tk	>=	2	$\min(2)$

indirect by ac, parallel supply Metal capillary dispenser cathode

Characteristics

 $(f = 4.0 \text{ Gc}, I_k = 70 \text{ mAdc})$

			min	nom	max	
Pulse saturation						
power	Psat	=		30		W
Average gain (Po=16	5 W) G	=	36	39		db
Small-signal gain	G	=	38	41		db
VSWR		=		1.2	1.5	(3)
Cold attenuation	a	=		80		db

Typical Operation

F	=	4	4	Gc
Po	=	16	10	W (4)
G	=	39	40	db
Eb Eh Ec2 Ec1		1500 2300 <u>+</u> 250 500 <u>+</u> 150 -20	1350 2250±250 500±150 -20	Vdc ⁽⁵⁾ Vdc (7) Vdc (7) Vdc ⁽⁵ ,6)
I _h I _{c2} I _k NF	а и и л и	2,5 0.1 70 3.4	2 0.1 70 1.8 20	mAdc mAdc mAdc (5) °/db db
	F P_{o} G E_{b} E_{h} E_{c2} E_{c1} I_{h} I_{c2} I_{k} NF	$F = P_{o}$ $G = G$ $E_{b} = E_{c2}$ $E_{c1} = E_{c2}$ $I_{h} \approx I_{c2}$ $I_{k} = R$ $NF \approx R$	$F = 4 P_{o} = 16 G = 39 E_{b} = 1500 E_{h} = 2300 \pm 250 E_{c2} = 500 \pm 150 E_{c1} = -20 I_{h} \approx 2,5 I_{c2} \leq 0.1 I_{k} = 70 \approx 3.4 NF \approx$	$F = 4 4 4$ $P_{0} = 16 10$ $G = 39 40$ $E_{b} = 1500 1350$ $E_{h} = 2300 \pm 250 2250 \pm 250$ $E_{c2} = 500 \pm 150 500 \pm 150$ $E_{c1} = -20 -20$ $I_{h} \approx 2,5 2$ $I_{c2} \leq 0.1 0.1$ $I_{k} = 70 70$ $\approx 3.4 1.8$ $NF \approx 20$

All voltages are referred to the cathode

 (1) If the maximum variation of the heater voltage exceeds the absolute limits of ⁺ 2 %, the operating performance of the tube will be impaired and its life shortened.

- (2) Once the tube has been operated at full voltages and currents, the preheating time for subsequent operation may be reduced to ≥ 45 sec.
- (3) At input and output of cold tube in the frequency range of 3.6 to 4.2 Gc.
- (4) For the tube operation at lower power output levels than 16 W it is also possible to reduce the cathode current by adjusting the grid voltages. Please consult the tube manufacturer for further details.

(5) Setting values

(6) It is advisable to obtain E_{c1} by means of cathode resistor.

(7) The spreads quoted are intended for use when designing the power supply.

Maximum Ratings

(absolute values)

Collector supply voltage	Ebb	max	1800	Vdc
Collector voltage	Eb	max	1600	Vdc
Collector dissipation	Pp	max	110	W
Helix voltage	E _h	max	2500	Vdc
Helix voltage	E _h	min	1800	Vdc
Helix current	I _h	max	5	mAdc
Peak helix current	ih	max	8	madc (1)
Grid No.2 voltage	E _{c2}	max	700	Vdc
Grid No.2 dissipation	P _{c2}	max	0.2	W
Grid No.1 voltage	-Ec1	max	100	Vdc
Grid No.1 voltage	$+E_{c1}$	max	0	Vdc
Cathode current	Ik	max	75	mAdc
Load VSWR		max	2	
Collector temperature	Т	max	270	°C (2)
Magnet system temperature	eΤ	max	100	°C (3)
Ambient temperature	ТА	min	-20	°C
Ambient temperature	ТА	max	55	°C (4)

(1) During starting and due to power supply surges.

- (2) Without rf signal, the temperature of the collector may rise for three days maximum up to 300 °C.
- (3) Measured at the output waveguide flange. It may be necessary to remove the lacquer from the measuring point.

(4) See "cooling", page 4

Operating Instructions

The traveling wave tube RW 42 is operated in conjunction with its associated magnet system MRW4. The advantages of the periodic permanent magnetic focusing of the RW 42 are the particularly small dimensions of the magnet system and an extremely low leakage field. The sensitivity to temperature changes is low.

The magnet system should only be mounted by way of the fixing holes provided for this purpose. With operation in radio link systems, directional couplers should be connected to the tube input and output to avoid distortion due to multiple reflexions. The rf waveguide to the magnet system should be flexible to prevent any mechanical stress on the input and output ports of the magnet system. All voltages applied to the tube are referred to the cathode.

The voltage drop in the heater supply leads must be taken into account. The voltage must be set such that it is exactly 6.3 V at the socket. When using the standard cable of 1.1 m length supplied with the connector socket the total voltage drop is 0.1 V.

The Grid No. 1 voltage can be obtained from a cathode resistor R_k . The Grid No.2 voltage must be variable within the a/m range. It is tapped from a voltage divider R_1 , the total resistance of which must not exceed 2.5 Meg. Stability and residual hum of the helix voltage depend upon the equipment requirements.

The collector voltage need not to be stabilized, but it must not fall more than 50 Vdc below the indicated operating value.

A protective relay must be inserted in the helix supply circuit to disconnect the helix and Grid No.2 voltage, when the maximum permissible helix current is exceeded.

When using an independent voltage source for Grid No.2, the voltage must be automatically switched off immediately if the helix voltage fails. This may be achieved by interlocking the protection circuits.

When the collector voltage fails, the helix voltage and Grid No.2 voltage must be disconnected either by the overload relay in the helix circuit or by a voltage interlocking system.

Cooling

To dissipate the heat from the collector the magnet system may either be provided with conduction cooling (MRW4a) or convection cooling (MRW 4 b).

Conduction Cooling

The heat dissipated by the collector is conducted to two Cu-plates, mounted on two opposite sides of the magnet system. The heat (max. 55 W per plate) must be conducted from these plates. The temperature of the plate must not exceed 115 °C in this case. The plates are insulated from the collector and can be earthed.

Convection Cooling

An additional cooling by low air-flow is required, when using the convection--cooled system. In this case it is important that the maximum admissible collector temperature of 270 $^{\circ}$ C (absolute limit) is not exceeded.

Starting

For safe handling of the equipment, the magnet system must be properly grounded. For this purpose a solder tag is provided near the output port, see page 6.

1. Connect of supply leads. (Initial starting)

The collector voltage is connected by means of ane.h.t. cable to the solder tag under the coverplate of the cooling system (see page 6). The helix connection is soldered to the tag near the output port (see page 6).

The other voltages are applied to the tube via the supply cable. The individual leads are color-coded as follows:

Heater	f,f	*	brown,	brow	vn-y	elle	DW
Cathode	k	:	yellow				
Grid No.1	g1	:	green,	red	*)		
Grid No.2	g2	*	blue				
Earth			black				

*) connect green and red lead together !

- 2. Unscrew the retaining nut.
- 3. Insert the tube in magnet system push on tube socket and screw on nut until stop is reached (avoid tilting the socket).
- 4. Apply heater voltage and preheat tube.
- 5. Apply collector voltage.
- 6. Switch-on helix and Grid No.2 voltages simultaneously (the time difference between applying the voltages to both electrodes must not exceed 0.2 sec). Make sure that full voltages are applied immediately and not increased gradually to full value.
- 7. Adjust cathode current by varying Grid No.2 voltage.
- 8. Adjust helix current to minimum with the aid of radial field correction (pair of rings at input end of magnet system) and axial field correction (additional single ring at input end of magnet system).
- 9. Apply rf input signal and readjust helix voltage for optimum gain at specified power output.
- 10. Repeat field correction according to point 8.

For interruption in operation up to 10 sec duration the tube may be switched on without preheating.

Switching off

The operating voltages can be switched off either simultaneously or in the reverse order to that in which they were applied.

RöK 3516 E/1.10.65

Magnet System MRW 42

RöK3516E/ 1.10.65

6

The various arrangements of the cooler assembly and collector connection

Ordering numbers for traveling wave tube RW 42 and associated elements

	I	Design			
designation	Cooling	Cooling in direct.	Collector connection at side	Ordering numbers	fig.
Traveling wave tube RW 42				Q00041-X3261	
Magn.syst.MRW 4 a11 Magn.syst.MRW 4 a12 Magn.syst.MRW 4 a21 Magn.syst.MRW 4 a22	Conduction	B-D B-D A-C A-C	A C D B	Q00043-X2321 Q00043-X2325 Q00043-X2322 Q00043-X2326	1a 1b 1c 1d
Magn.syst.MRW 4 b11 Magn.syst.MRW 4 b12 Magn.syst.MRW 4 b21 Magn.syst.MRW 4 b22	Convection	B-D B-D A-C A-C	A C D B	Q00043-X2323 Q00043-X2327 Q00043-X2324 Q00043-X2328	1e 1f 1g 1h
RW-connector socket RW-connector socket RW-connector socket RW-connector socket RW-connector socket	axial bend in dir bend in dir bend in dir bend in dir	ection A ection B ection C ection D	Q00081-X2321 Q00081-X2322 Q00081-X2323 Q00081-X2324 Q00081-X2325	2 3 3 3 3	
RW-connector socket RW-connector socket RW-connector socket RW-connector socket RW-connector socket	axial bend in direction A bend in direction B bend in direction C bend in direction D required (2)			Q00081-X2315 Q00081-X2316 Q00081-X2317 Q00081-X2318 Q00081-X2319	2 3 3 3 3

(1) 0.1 mm of this length as free leads

(2) When ordering please specify total length of cable and length of free leads

.

*
SIEMENS

K3

SIEMENS & HALSKE AKTIENGESELLSCHAFT wernerwerk für bauelemente

K4

TRAVELING WAVE TUBE F = 7.1 to 7.8 Gc

RW 70

S&H-Sach-Nr. Q00041-X3258

Design and Application

Traveling wave tube for wideband radio relay systems, with an average output power of 4 W and an average gain of 38 db.

The tube is a permanent magnet focused traveling wave tube and is a plug-in match in its associated magnet system MRW 70. Cooling may be effected by natural air circulation. The rf input and output ports are designed for connection with waveguide. The magnet system including the tube and the connections is provided with rf shielding.

Weight of tube	:	approx. 180 g (5 1/2 ozs)
Weight of magnet system	:	approx. 9.2 kg (20.3 lbs)
Dimensions of the magnet system	:	$136 \times 128 \times 230 \text{ mm} (5 1/2 \times 5 \times 9 \text{ ins})$
Waveguide	:	F 70; DIN 47302; 34,85 x 5 mm
Flange	:	UGF 70, DIN 47303
Mounting position	:	any (see page 4 "cooling")

H	eating								
	Heater voltage	E_{f}	=		6.3	3		V (1)	
	Heater current	I_{f}	*		0.5	5		А	
	Preheating time	t _k	> =		2	2		min	e
	indirect ac or dc, paralle Cathode: oxide	l supply							
CI	haracteristics (F	$= 7.5 \text{ Gc}, \text{ I}_{\text{k}}$	≈ 33 m	A)					
				min	nor	n	max		
	Pulse saturation power	Psat	=			7		W	
	Gain at 4 W CW	G	=	34	38	3		db	
	VSWR		=				1.65	(2)	
	Cold attenuation	a	=		80)		db	
T	ypical Operation								
	Operating frequency	F	=		7.5			Gc	
	Output power	Po	=		4			W	
	Gain	G	=		38			db	
	Collector voltage	Eb	*		1600			Vdc	6
	Helix voltage	E _h	*		1600			Vdc	
	Grid No.2 voltage	E _{c2}	*		470			Vdc	
	Cathode resistor	R _k	=		1100			kohms	(3)
	Helix current	Ih	*		2			mAdc	
	Grid No.2 current	I _{c2}	< =		0.1			mAdc	-
	Cathode current	Ik	~		33			mAdc	

(1) If the maximum variation of the heater voltage exceeds the absolute limits of +2 and -4 % the operating performance of the tube will be impaired and its life shortened.

(2) At input and output of cold tube in the frequency range of 7.1 to 7.8 Gc.

(3) Grid No.1 voltage \approx -35 V

Maximum Ratings (a

(absolute values)

Collector voltage	Eb	max	1800	Vdc
Collector dissipation	Pp	max	60	W
Helix voltage	Eh	max	1800	Vdc
Helix current	Ih	max	4	mAdc
Peak helix current	ih	max	6	mAdc(1)
Grid No.2 voltage	E _{c2}	max	600	Vdc
Grid No.1 voltage neg.	-Ec1	max	100	Vdc
Grid No.1 voltage pos.	$+E_{c1}$	max	0	Vdc
Cathode current	Ik	max	35	mAdc
Collector temperature	T	max	270	°C (2)
Ambient temperature	TA	min	-20	°C
Ambient temperature	TA	max	+55	°C

Operating Instructions

The traveling wave tube RW 70 is operated in conjunction with its associated magnet system MRW 70. The advantages of the permanent magnetic focusing of the RW 70 are the particularly small dimensions of the magnet system and an extremely low leakage field. The sensitivity to temperature changes is low. The magnet system is magnetically virtually neutral.

The magnet system should only be mounted by way of the fixing holes provided for this purpose. With operation in radio link systems, directional couplers should be connected to the tube input and output to avoid distortion due to multiple reflexions. The rf waveguide to the magnet system should be flexible to prevent any mechanical stress on the input and output ports of the magnet system. All voltages applied to the tube are referred to the cathode.

The Grid No.1 voltage is obtained from a cathode resistor R_k . The Grid No.2 voltage must be variable within the range from 370 to 570 V. It is tapped from a voltage divider R_1 , the total resistance of which must not exceed 1 Meg. The helix voltage E_h which is less or equal to the collector voltage E_b must be variable between 1400 and 1800 V (admissible voltage drop across the protection relay 20 V). A protection relay must be incorporated in the helix voltage supply lead which automatically switches off the helix current is exceeded. E_h and E_{c2}) if the maximum admissible value of helix current is exceeded. When using an independent voltage source for Grid No.2, the voltage must be automatically switched off immediately if the helix voltage \approx collector voltage fails. This may be achieved by interlocking the protection circuits. Heater and cathode are at approx. 1800 V with respect to earth, and the transformer insulation must therefore be designed to withstand this potential difference.

- (1) For short periods during run up and mains surges.
- (2) Without rf signal, the temperature of the collector may rise for three days maximum up to 300 °C.

Cooling

The tube can be operated without additional cooling when mounted horizontally with the rf connector above or below, and natural air circulation in a vertical direction through the radiator is assured. If the magnet system is mounted in any other position, forced air cooling with a weak air stream is necessary.

Starting

For safe handling of the equipment, the magnet system must be properly ground-ed.

1. Connect of supply leads (initial starting)

The helix voltage lead is connected to the earth terminal on the magnet system. All other supply leads are connected to the appropriate pin of the connector socket or the collector terminal (see page 5) (or to the safety switch as required).

- 2. Insert the tube into the magnet system and connect-up the socket.
- 3. Apply heater voltage and preheattube for at least 2 minutes.
- 4. Switch on the power supply for the collector (E_b) , helix (E_h) and grid No.2 (E_{c2}) voltages. All voltages must either be supplied simultaneously at their full value, or when run up, in the same voltage ratio as valid for normal operation.
- 5. Adjust grid No.2 voltage for minimum helix current.
- 6. Loosen the clamping disc and adjust the helix current for minimum with the aid of the field correction, then tighten the clamping disc again.
- 7. Apply rf input signal and readjust helix voltage for optimum gain at specified power output.
- 8. Repeat field correction according to point 6.

Switching off

The operating voltages should be switched off simultaneously.

Magnet System RW 70

RW 70

Printed in Germany

POWER TRAVELING WAVE TUBE F = 5.8 to 8.5 Gc

RW 80

S&H-Sach-Nr. Q00041-X3255

Design and Application

Power traveling wave tube with an average power output of 15 W up to 7 Gc respectively with an average power output of 10 W up to 8.5 Gc for use in radio relay systems.

The RW 80 is a periodic permanent magnet focused traveling wave tube and is a plug-in match in its associated magnet system MRW 80. The magnet system has a particularly small leakage field. The tube is designed to operate with depressed collector. The magnet system including the tube and the connections is provided with rf shielding.

The magnet system may be delivered by choice with a conduction cooler (MRW 80a) or with a convection cooler (MRW 80b). The rf power is coupled in and out by way of waveguides.

Tube base	:	special type	(1)
Weight of magnet system	:	approx. 9.5 kg (21 lbs)	
Weight of tube	:	approx. 110 gm net (3.9 ozs)	
Dimensions of magnet system	:	100x112x264 mm without tube socket	
		(3.9x4.4x10.4 ins)	
Dimensions of tube packing	:	175x175x475 mm (6.9x6.9x18.7 ins)	
Waveguide	:	F 70, DIN 47302, 34.85x5 mm	
Flange	:	UGF 70, DIN 47303	
Mounting positon	:	any (see "cooling")	

(1) The connector socket including cable can be supplied in axial form or with 90° bend to the axis, as desired (see page 8).

Heating, Characteristics

Heating

Heater voltage	E_{f}	=	6.3	Vac(1)
Heater current	I_{f}	~	0.8	Aac
Preheating time	tk	2	2	min (2)

indirect by ac, parallel supply Metal capillary dispenser cathode

Characteristics I

 $(F = 6.0 \text{ Gc}, I_k = 50 \text{ mA})$

			min	nom	max		
Pulse saturation power	Psat		22	30		W	
Small signal gain	G	=	38	42		db	
Gain at 15 W CW	G	=	36	40		db	
VSWR		=		1.25	1.5		(3)
Cold attenuation	a	=		80		db	

Characteristics II

 $(F = 8.0 \text{ Gc}, I_k = 50 \text{ mA})$

			min	nom	max	
Pulse saturation power	Psat	=		18		W
Small signal gain	G	=	35	39		db
Gain at 10 W CW	G	2	33	37		db
Cold attenuation	a			80		db

(1) If the maximum variation of the heater voltage exceeds the absolute limits of $\pm 2 \%$ the operating performance of the tube will be impaired and its life shortened.

(2) Once the tube has been operated at full voltages and currents, the preheating time for subsequent operation may be reduced to ≥ 45 sec.

(3) At input and output of cold tube in the frequency range of 5.8 to 8.5 Gc

Typical Operation

(F = 6.0 Gc)

Power output Gain	P _o G		15 40	10 41	5 41,5	W db
Collector voltage Helix voltage Grid No.2 voltage Grid No.1 voltage	Eb Eh Ec2 -Ec2		1500 2900 <u>+</u> 250 550 <u>+</u> 120 40	1300 2900±250 550±120 40	1200 2900±250 550±120 40	Vdc (1) Vdc (2) Vdc (2) Vdc (1,3)
Cathode current Helix current Grid No.2 current Noise factor AM/PM conversion	I _k I _h I _C 2 NF	11 N N N N	50 1.5 0.1 22 5	50 1 0.1 22 3	50 1 0.1 22 1.5	mAdc (1,4) mAdc (1) mAdc db o/db (5)
Typical Operation	(F = 6.0)) Gc)				
Power output Gain Collector voltage Helix voltage Grid No.2 voltage Grid No.1 voltage Cathode current Helix current Grid No.2 current Noise factor AM/PM conversion	Po G E_b E_c^2 $-E_c^2$ I_k I_h I_c^2 NF (F = 7.0)		10 38 1350 2900±250 550±120 55 45 1.2 0.1 22 3.7	5 35 1200 2900±250 550±120 80 40 1.0 0.1 22 2.5	2 32 1200 2850±250 500±120 90 35 1.0 0.1 22 1.2	W db V dc(1) V dc(2) V dc(2) Vdc (1,3) mA (1) mA mA db o/db (5)
Power output	Po	=	15	10	5	W
Gain	G	=	39.5	40.5	41	db
Collector voltage Helix voltage Grid No.2 voltage Grid No.1 voltage	Eb Eh Ec2 -Ec	= = = = =	1450 2850±250 550±120 40	$ \begin{array}{r} 1300 \\ 2850 \pm 250 \\ 550 \pm 120 \\ 40 \end{array} $	1200 2850±250 550 <u>+</u> 120 40	Vdc (1) Vdc (2) Vdc (2) Vdc (1,3)
Cathode current Helix current Grid No.2 current Noise factor	I _k I _h I _{c2} NF	แ พ∧แ พ	50 1.5 0.1 22	50 1 0.1 22	50 1 0.1 22	mAdc ^(1,4) mAdc mAdc db

Footnotes see page 4

Ty	ypical Operation (F =	8.4 Gc)			
	Power output	Po	=	10	5	W
	Gain	G	=	37.5	38	db
	Collector voltage	Eъ	=	1300	1200	Vdc (1)
	Helix voltage	Eh	=	2800±250	2800±250	Vdc(2)
	Grid No.2 voltage	E _{c2}	=	550 <u>+</u> 120	550 <u>+</u> 120	Vdc (2)
	Grid No.1 voltage	-Ec1	=	40	40	Vdc (1,3)
	Cathode current	Ik	=	50	50	mAdc(1,4)
	Helix current	Ih	*	1.5	1	mAdc
	Grid No.2 current	I _{C2}	\leq	0.1	0.1	mAdc
	Noise factor	NF	*	22	22	db
M	aximum Ratings (ab	solute v	values)			
	Collector supply voltage		Ebb	max	1700	Vdc
	Collector voltage		Eb	max	1600	Vdc
	Collector dissipation		Pp	max	80	W
	Helix voltage		Eh	max	3200	Vdc
	Helix voltage		Eh	min	2400	Vdc
	Helix current		Ih	max	3.5	mAdc
	Peak helix current		ih	max	5	ma (6)
	Grid No.2 voltage		E _{c2}	max	700	Vdc
	Grid No.2 dissipation		Pc2	max	0.2	W
	Grid No.1 voltage neg.		-Ec1	max	100	Vdc
	Grid No.1 voltage pos.		+Ec1	max	0	Vdc
	Load VSWR			max	2.0	
	Cathode current		Ik	max	55	mAdc
	Collector temperature		Т	max	270	°C (7)
	Magnet system temperature	e	Т	max	100	°C (8)
	Ambient temperature		TA	max	55	oc (9)
	Ambient temperature		TA	min	-20	°C

(1) Setting values

(2) The spreads quoted are intended for use when designing the power supply.

(3) It is advisable to obtain E_{c1} voltage by means of a cathode resistor.

- (4) A variation of 7 mA cathode current in the range 48 to 55 mA produces a change in gain of approximately 0.5 db.
- (5) AM/PM conversion is the phase shift of the rf output signal when changing the input by 1 db.
- (6) During starting and due to power supply surges
- (7) Without rf-signal, the temperature of the collector may rise for three days maximum up to 300 $^{\circ}$ C.
- (8) Measured at the waveguide (rf-output). It may be necessary to remove the lacquer from the measuring point.

(9) See "cooling"

Operating Instructions

The traveling wave tube RW 80 is operated in conjunction with a magnet system MRW 80. The advantages of the periodic permanent magnetic focusing of the RW 80 are the particularly small dimensions of the magnet system and an extremely low leakage field. The sensitivity to temperature changes is low. The magnet system should only be mounted by way of the fixing holes provided for this purpose. With operation in radio link systems, directional couplers should be connected to the tube input and output to avoid distortion due to multiple reflexions. The rf waveguide to the magnet system should be flexible to prevent any mechanical stress on the input and output ports of the magnet system.

All voltages applied to the tube are referred to the cathode.

The voltage drop in the heater supply leads must be taken into account. The voltage must be set such that it is exactly 6.3 V at the socket. When using the standard cable of 1.1 m length supplied with the connector socket the total voltage drop is 0.1 V.

The Grid No.1 voltage can be obtained from a cathode resistor R_k . The Grid No.2 voltage must be variable within the range quoted. It is tapped from a voltage divider R_1 , the total resistance of which must not exceed 2.5 Meg. Stability and residual hum voltage (helix voltage) depend upon the equipment requirements.

The collector voltage need not be stabilized, but it must not fall more than 50 Vdc below the indicated operating value.

A protective relay must be inserted in the helix supply circuit to disconnect the helix and Grid No.2 voltage, when the maximum permissible helix current is exceeded.

When using an independent voltage source for Grid No.2, the voltage must be automatically switched off immediately if the helix voltage fails.

This may be achieved by interlocking the protection circuits.

When the collector voltage fails, the helix voltage and Grid No.2 voltage must be disconnected either by the overload relay in the helix circuit or by a voltage interlocking system.

Cooling

To dissipate the heat from the collector the magnet system may either be provided with conduction cooling (MRW 80 a) or convection cooling (MRW 80 b).

Conduction Cooling

The heat dissipated by the collector is conducted to two Cu-plates, mounted on two opposite sides of the magnet system. The heat (max 40 W per plate) must be conducted from these plates. The temperature of the plate must not exceed 115 °C in this case. The plates are insulated from the collector and can be earthed.

Convection Cooling

If the tube is operated with a collector dissipation of less than 65 W and an ambient temperature of less than 40 $^{\circ}$ C no additional cooling is necessary provided that the tube is mounted in horizontal position with a natural vertical air circulation through the radiator. At higher collector dissipation up to 75 W a chimney with a cross section of 50 x 100 mm and a height of 800 mm will be sufficient, if cooling by a slight forced air flow (appr. 10 1/min) shall not be used. In any other case forced air cooling is necessary not to exceed the absolute limit of collector temperature of 270 $^{\circ}$ C.

Starting

For safe handling of the equipment, the magnet system must be properly grounded. (A solder tag is provided near the output port, see page 8).

1. Connection of dc-leads (initial starting):

The collector voltage is connected by means of a high voltage cable to the solder tag under the coverplate of the cooling system (see page 8). The helix connection is soldered to the tag near the output port (see page 8). The other voltages are applied to the tube via the supply cable. The individual leads are color-coded as follows:

Heater	f,f	:	brown,	brow	n-yellow
Cathode	k	•	yellow		
Grid No.1	g 1	:	green,	red	*)
Grid No.2	g ₂	:	blue		
Earth	_	•	black		

*) connect green and red lead together!

- 2. Unscrew the retaining nut
- 3. Insert the tube in magnet system, push on tube socket and screw on nut until stop is reached (avoid tilting the socket).

- 4. Apply heater voltage and preheat tube.
- 5. Apply collector voltage.
- 6. Switch on helix and Grid No.2 voltages simultaneously (the time difference between applying the voltages to both electrodes must not exceed 0.2 sec.). Make sure that full voltages are applied immediately and not increased gradually to full value.
- 7. Adjust cathode current by varying Grid No.2 voltage.
- Adjust helix current to minimum with the aid of radial field correction (pair of rings at input end of magnet system) and axial field correction (additional ring at input end of magnet system).
- 9. Apply rf input signal and readjust helix voltage for optimum gain at specified power output.
- 10. Repeat field correction according to point 9. For interruption in operation up to 10 sec duration the tube may be switched on without preheating.

Switching off

The operating voltages can be switched off either simultaneously or in the reversed order to that in which they were applied.

Magnet System MRW 80

The various arrangements of the cooler assembly and collector connection

Ordering numbers for traveling wave tube RW 80 and associated elements

	Des	ign			
Designation	Cooling Cooling in direct.		Collect. connect. at side	Ordering numbers	Fig.
Traveling wave tube RW 80				Q00041-X3255	
Magn.syst.MRW 80a11 Magn.syst.MRW 80a12 Magn.syst.MRW 80a21 Magn.syst.MRW 80a22	Conduction	B-D B-D A-C A-C	A C D B	Q00043-X2361 Q00043-X2365 Q00043-X2362 Q00043-X2366	1a 1b 1c 1d
Magn.syst.MRW 80b11 Magn.syst.MRW 80b12 Magn.syst.MRW 80b21 Magn.syst.MRW 80b22	Convection	Convection B-D A-C A-C		Q00043-X2363 Q00043-X2367 Q00043-X2364 Q00043-X2368	1e 1f 1g 1h
RW-connector socket RW-connector socket RW-connector socket RW-connector socket RW-connector socket	axial bend in dire bend in dire bend in dire bend in dire	ction A ction B ction C ction D	Q00081-X2321 Q00081-X2322 Q00081-X2323 Q00081-X2324 Q00081-X2325	2 3 3 3 3	
RW-connector socket RW-connector socket RW-connector socket RW-connector socket RW-connector socket	axial bend in direction A bend in direction B bend in direction C bend in direction D cable length as required ⁽²⁾			Q00081-X2315 Q00081-X2316 Q00081-X2317 Q00081-X2318 Q00081-X2319	2 3 3 3 3

(1) 0.1 m of this length as free leads.

(2) When ordering please specify total length of cable and length of free leads.

7

-

K5

SIEMENS & HALSKE AKTIENGESELLSCHAFT

WERNERWERK FÜR BAUELEMENTE

Printed in Germany

POWER TRAVELING WAVE TUBE F = 5.8 to 8.5 Gc

RW 81

S&H-Sach-Nr. Q00041-X3259

Design and Application

Power traveling wave tube with an average power output of 20 W up to 7 Gc respectively with an average power output of 15 W up to 8.5 Gc and an average gain of 39 db for use in radio relay systems.

The RW 81 is a periodic permanent magnet focused traveling wave tube and is a plug-in match in its associated magnet system MRW 80. The magnet system has a particularly small leakage field. The tube is designed to operate with depressed collector. The magnet system including the tube and the connections is provided with rf shielding.

The magnet system may be delivered by choice with a conduction cooler (MRW 80a) or with a convection cooler (MRW 80b). The rf power is coupled in and out by way of waveguides.

Tube base	:	special type	(1)
Weight of magnet system	:	approx. 9.5 kg (21 lbs)	
Weight of tube	:	approx. 110 gm net (3.9 ozs)	
Dimensions of magnet system	:	100x112x264 mm without tube socket	
		(3.9x4.4x10.4 ins)	
Dimensions of tube packing	:	175x175x475 mm (6.9x6.9x18.7 ins)	
Waveguide	:	F 70, DIN 47302, 34.85x5 mm	
Flange	:	UGF 70, DIN 47303	
Mounting position	:	any (see "cooling")	

 The connector socket including cable can be supplied in axial form or with 90° bend to the axis, as desired (see page 8).

Heating

	Heater voltage Heater current Preheating time	E _f If t _k	II ~ X II		6.3 0.8 2		Vac (1) Aac min (2)
	indirect by ac, parallel a Metal capillary dispense	supply r cathode					
Cha	racteristics (F = 6.	0 Gc, $I_k = 6$	5 mA	A)			
				min	nom	max	
	Pulse saturation power	Peat	=	27	35		W
	Small signal gain	G	=	39	43		db
	Gain at 20 W CW	G	=	37	41		db
	VSWR		=		1.25	1.5	(3)
	Cold attenuation	α	=		80		db
Тур	ical Operation (F = 6	6.0 Gc)					
	Power output	Po	=	20		10	W
	Gain	G	=	41		40	db
	Collector voltage	Eb	=	1600		1300	V (4)
	Helix voltage	Eh	=	2950±250		2950±250	V (5)
	Grid No.2 voltage	Ec2	=	750+150		700 <u>+</u> 150	V (5)
	Grid No.1 voltage	E _{c1}	=	-50		-50	V (4,6)
	Cathode current	Ik	=	65		60	mA(4,7)
	Helix current	Ih	*	2		1.5	mA
	Grid No.2 current	I _{c2}	11>	0.1		0.1	mA
	Noise factor	NF	*	22		22	db
	AM/PM conversion		*	3.5		2	o/db (8)
	AM/PM conversion		*	3.5		2	0/

(1) If the maximum variation of the heater voltage exceeds the absolute limits of $\frac{4}{2}$ % the operating performance of the tube will be impaired and its life shortened.

(2) Once the tube has been operated at full voltages and currents, the preheating time for subsequent operation may be reduced to ≥ 45 sec.

(3) At input and output of cold tube in the frequency range 5.8 to 8.5 Gc

(4) Setting values

(5) The spreads quoted are intended for use when designing the power supply.

(6) It is advisable to obtain E_{c1} voltage by means of a cathode resistor.

(7) A variation of 1 mA cathode current in the range 58 to 65 mA produces a change in gain of approximately 0.5 db.

(8) AM/PM conversion is the phase shift of the rf output signal when changing the input by 1 db.

Typical Operation

W db

Vdc (1) Vdc (2) Vdc (2) Vdc (1,3) mAdc (1,4)

mAdc mAdc db

Power output	Po	=	15
Gain	G	=	35
Collector voltage	Eb	=	1500
Helix voltage	Eh	=	2850±250
Grid No.2 voltage	E _{c2}	=	750±150
Grid No.1 voltage	E _{c1}	=	-50
Cathode current	Ik	=	65
Helix current	Iw	~	2
Grid No.2 current	I _c 2	< =	0.1
Noise factor	NF	*	22

(F = 8.0 Gc)

Maximum Ratings (absolute values)

Collector supply voltage	Ebb	max	1800	Vdc
Collector voltage	Eb	max	1700	Vdc
Collector dissipation	Pp	max	110	W
Helix voltage	$\mathbf{E}_{\mathbf{h}}$	max	3200	Vdc
Helix voltage	Eh	min	2400	Vdc
Helix current	Iw	max	3.5	mAdc
Peak helix current	iw	max	6	madc(5)
Grid No.2 voltage	E _{c2}	max	900	Vdc
Grid No.2 dissipation	P _{c2}	max	0.2	W
Grid No.1 voltage	-Ec1	max	100	Vdc
Grid No.1 voltage	$+E_{c1}$	max	0	Vac
Load VSWR		max	20	
Cathode current	Ik	max	70	mAdc
Collector temperature	Т	max	270	°C (6)
Magnet system temperature	Т	max	100	°C (7)
Ambient temperature	TA	min	-20	°C
Ambient temperature	ТА	max	55	°C (8)

(1) Setting values

- (2) The spreads quoted are intended for use when designing the power supply.
- (3) It is advisable to obtain E_{C1} voltage by means of a cathode resistor.
- (4) A variation of 1 mA cathode current in the range 58 to 65 mA produces a change in gain of approximately 0.5 db.
- (5) During starting and due to power supply surges
- (6) Without rf signal, the temperature of the collector may rise for three days maximum up to 300 $^{\circ}C$.
- (7) Measured at the waveguide (rf output). It may be necessary to remove the lacquer from the measuring point.
- (8) See "cooling"

Operating Instructions

The traveling wave tube RW 81 is operated in conjunction with a magnet system MRW 80. The advantages of the periodic permanent magnetic focusing of the RW 81 are the particularly small dimensions of the magnet system and an extremely low leakage field. The sensitivity to temperature changes is low. The magnet system should only be mounted by way of the fixing holes provided for this purpose. With operation in radio link systems, directional couplers should be connected to the tube input and output to avoid distortion due to multiple reflexions. The rf waveguide to the magnet system should be flexible to prevent any mechanical stress on the input and output ports of the magnet system.

All voltages applied to the tube are referred to the cathode.

The voltage drop in the heater supply leads must be taken into account. The voltage must be set such that is is exactly 6.3 V at the socket. When using the standard cable of 1.1 m length supplied with the connector socket the total voltage drop is 0.1 V.

The Grid No.1 voltage can be obtained from a cathode resistor R_k . The Grid No.2 voltage must be variable within the range quoted. It is tapped from a voltage divider R_1 , the total resistance of which must not exceed 2.5 Meg. Stability and residual hum voltage (helix voltage) depend upon the equipment requirements.

The collector voltage need not be stabilized, but it must not fall more than 50 Vdc below the indicated operating value.

A protective relay must be inserted in the helix supply circuit to disconnect the helix and Grid No.2 voltage, when the maximum permissible helix current is exceeded.

When using an independent voltage source for Grid No.2, the voltage must be automatically switched off immediately if the helix voltage fails.

This may be achieved by interlocking the protection circuits.

When the collector voltage fails, the helix voltage and Grid No.2 voltage must be disconnected either by the overload relay in the helix circuit or by a voltage interlocking system.

Cooling

To dissipate the heat from the collector the magnet system may either be provided with conduction cooling (MRW 80 a) or convection cooling (MRW 80 b).

Conduction Cooling

The heat dissipated by the collector is conducted to two Cu-plates, mounted on two opposite sides of the magnet system. The heat (max 40 W per plate) must be conducted from these plates. The temperature of the plate must not exceed 115 °C in this case. The plates are insulated from the collector and can be earthed.

Convection Cooling

If the tube is operated with a collector dissipation of less than 65 W and an ambient temperature of less than 40 $^{\circ}$ C no additional cooling is necessary provided that the tube is mounted in horizontal position with a natural vertical air circulation through the radiator. At higher collector dissipation up to 75 W a chimney with a cross section of 50 x 100 mm and a height of 800 mm will be sufficient, if cooling by a slight forced air flow (appr. 10 l/min) shall not be used. In any other case forced air cooling is necessary not to exceed the absolute limit of collector temperature of 270 $^{\circ}$ C.

Starting

For safe handling of the equipment, the magnet system must be properly grounded. (A solder tag is provided near the output port, see page 7).

1. Connection of dc-leads (initial starting):

The collector voltage is connected by means of a high voltage cable to the solder tag under the coverplate of the cooling system (see page 7). The helix connection is soldered to the tag near the output port (see page 7). The other voltages are applied to the tube via the supply cable. The individual leads are color-coded as follows:

Heater	f,f	:	brown,	brown-yellow	J
Cathode	k	:	yellow		
Grid No.1	g1	:	green,	red *)
Grid No.2	g2	:	blue		
Earth		:	black		

*) connect green and red lead together!

- 2. Unscrew the retaining nut
- 3. Insert the tube in magnet system, push on tube socket and screw on nut until stop is reached (avoid tilting the socket).

- 4. Apply heater voltage and preheat tube.
- 5. Apply collector voltage.
- 6. Switch on helix and Grid No.2 voltages simultaneously (the time difference between applying the voltages to both electrodes must not exceed 0.2 sec.). Make sure that full voltages are applied immediately and not increased gradually to full value.
- 7. Adjust cathode current by varying Grid No.2 voltage.
- 8. Adjust helix current to minimum with the aid of radial field correction (pair of rings at input end of magnet system) and axial field correction (additional ring at input end of magnet system).
- 9. Apply rf input signal and readjust helix voltage for optimum gain at specified power output.
- 10. Repeat field correction according to point 9. After interruption in operation up to 10 sec duration the tube may be switched on without preheating.

Switching off

The operating voltages can be switched off either simultaneously or in the reversed order to that in which they were applied.

The various arrangements of the cooler assembly and collector connection

Form and direction of the connector socket fig.2 fig.3 fig.3 shown in direction of the connector socket fig.2 fig.3 to the connector socket fig.3 to the connector socket fig.4 fig.3 to the connector socket fig.4 fig.3 to the connector socket fig.4 fig.

Ordering numbers for traveling wave tube RW 81 and associated elements

	D	esign			
Designation	Cooling	Cooling in direct.	Collector connection at side	Ordering numbers	Fig.
Traveling wave tube RW81				Q00041-X3259	
Magn.syst.MRW 80a11 Magn.syst.MRW 80a12 Magn.syst.MRW 80a21 Magn.syst.MRW 80a22	Conduction	B-D B-D A-C A-C	A C D B	Q00043-X2361 Q00043-X2365 Q00043-X2362 Q00043-X2366	1a 1b 1c 1d
Magn.syst.MRW 80b11 Magn.syst.MRW 80b12 Magn.syst.MRW 80b21 Magn.syst.MRW 80b22	Convection	B-D B-D A-C A-C	A C D B	Q00043-X2363 Q00043-X2367 Q00043-X2364 Q00043-X2368	1e 1f 1g 1h
RW-connector socket RW-connector socket RW-connector socket RW-connector socket RW-connector socket	axial bend in direc bend in direc bend in direc bend in direc	ction A ction B ction C ction D	standard cable length 1.2 m (1)	Q00081-X2321 Q00081-X2322 Q00081-X2323 Q00081-X2324 Q00081-X2325	2 3 3 3 3
RW-connector socket RW-connector socket RW-connector socket RW-connector socket RW-connector socket	axial bend in direc bend in direc bend in direc bend in direc	ction A ction B ction C ction D	cable length as required (2)	Q00081-X2315 Q00081-X2316 Q00081-X2317 Q00081-X2318 Q00081-X2319	2 3 3 3 3 3

(1) 0.1 m of this length as free leads

(2) When ordering please specify total length of cable and length of free leads

シ

K1

Characteristics $P_{o} = f(P_{j})$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE

Printed in Germany

RöK3519E/1.1.66

K2

S&H-Sach-Nr. Q00041-X4652

Design and Application

Forced air cooled high-power traveling wave tube for the frequency range from 470 to 960 Mc with an average pulse saturation power of 500 W and an average gain of 30 db.

The tube is intended for use in Band IV/V UHF TV transmitters and translators, FM sound transmitters and link amplifiers. It is focused by a permanent magnet, and is replaceable within this magnet system.

The tube is designed for use with coaxial input and output circuits.

Base

Weight of tube Weight of magnet system Dimensions of magnet system

rf connector

Mounting position

- : special type
- : 3 kg (6.6 lbs)
- : 40 kg (88 lbs)
- : approx. 200 x 220 x 750 mm (8 x 8.5 x 29.5 ins)
- : coaxial connection, 50 or $60 \ \Omega$ (various standardized connections, see page 10)

: any in stationed equipment
Heating, Characteristics

Heating

Heater voltage	E_{f}	=	6.3	Vac (1)
Heater current	I_{f}	*	2.8	Aac

indirect by ac, parallel supply Metal capillary dispenser cathode

Characteristics

 $(F = 700 \text{ Mc}, I_k = 700 \text{ mA}, E_h = 3100 \text{ V})$

			min	nom	max	
Pulse saturation power	Psat	=	450	550		W
Gain at 200 W CW	G	=	29	33	(db
VSWR		Ξ		1.35	1.85	(2)
Cold attenuation	a	=		80	c	lb

 If the heater voltage variation exceeds the admissible 2 % of the setting value (absolute limits) the operational performance and life of the tube will be impaired.

- (2) At tube input and output in the frequency range 470 to 960 Mc.
- (3) Collector voltage always has to be 200 Vdc less than the helix voltage.

(4) During switch-on or as a result of mains surges.

(5) Measured at the outer edge of the last cooling fin on the side of air outlet.

(6) Measured at the magnet system near rf input and output (see page 9).

(7) It is recommended to set the grid No.1 voltage by using a cathode resistor.

Maximum Ratings

(absolute values)

Collector voltage	Eb	max	3100	Vdc	(3)
Collector voltage at zero	Ebo	max	4000	Vdc	
collector current					
Collector dissipation	Pp	max	2500	W	
Helix voltage	Eh	max	3300	Vdc	
Helix voltage at zero helix	Eho	max	4000	Vdc	
current					
Helix current	Ih	max	30	mAdc	(.)
Peak helix current	ih	max	40	ma	(4)
Grid No. 2 voltage	Ec2	max	1000	Vdc	
Grid No. 1 voltage negative	- Ec1	max	200	Vdc	
Grid No. 1 voltage positive	+Ec1	max	0	Vdc	
Cathode current	Ik	max	750	mAdc	
Reflected CW power		max	20	W	(-)
Collector temperature	Т	max	200	oC	(5)
Magnet system temperature	Т	max	55	oC	(6)
Ambient temperature	TA	min	- 20	oC	

Typical Operation

TV-band			IV	V	
Video carrier frequency	Fv	=	550	700	Mc
Synchron power output	Psvn	=	170	210	W
Gain	G	=	30	33	db
Collector voltage	Eb	=	3000	2900	Vdc
Helix voltage	Eh	=	3200	3100	Vdc
Grid No.2 voltage	Ecz	æ	550	600	Vdc
Grid No.1 voltage	-E _{c1}	11	100	100	Vdc (7)
Helix current	Ih	Ξ	15	15	mAdc
Grid No.2 current	I _c 2	< 1	+0.5	+0.5	mAdc
Cathode current	Ik	=	700	700	mAdc
Linearity (10 to 65 %	R	≧	0.95	0.95	
Differential phase of the		< =	3	3	degrees
Gain variation within the			1	0.5	db
channel					

Footnotes on page 2

3

Maximum Ratings

(absolute values)

Collector voltage	Eb	max	3100	Vdc	(1)	
Collector voltage at zero	Ebo	max	4000	Vdc		*
collector current						
Collector dissipation	Pp	max	2500	W		*
Helix voltage	Eh	max	3300	Vdc		
Helix voltage at zero helix	Eho	max	4000	Vdc		
current						
Helix current	Ih	max	20	mAdc	(-)	
Peak helix current	ih	max	30	ma	(2)	
Grid No. 2 voltage	Ec2	max	1000	Vdc		
Grid No. 1 voltage negative	- Ec1	max	200	Vdc		
Grid No. 1 voltage positive	+Ec1	max	0	Vdc		
Cathode current	Ik	max	800	mAdc		
Reflected CW power		max	20	W		
Collector temperature	Т	max	200	oC	(3)	
Magnet system temperature	Т	max	55	oC	(4)	
Ambient temperature	TA	min	- 20	oC		

Typical Operation

Video carrier frequency	f	=	700	Mc (F)
Synchron power output	Psvn	=	50	W (5)
3 tone intermodulation ratio	IM ₃	=	-34	db (6,7)
Gain	G	=	35	db
Collector voltage	Eb	=	2900	Vdc
Helix voltage	Eh	=	3100	Vdc
Grid No. 2 voltage	E _c 2	=	700	Vdc
Grid No. 1 voltage	-Ec1	=	100	Vdc (8)
Helix current	Ih	æ	8	mAdc
Grid No. 2 current	I _{c2}	=	+0.5	mAdc
Cathode current	Ik	=	750	mAdc

(1) Collector voltage always has to be 200 Vdc less than the helix voltage.

(2) During switch-on or as a result of mains surges.

(3) Measured at the outer edge of the last cooling fin on the side of air outlet.

(4) Measured at the magnet system near rf-input and output (see page 9).

(5) A sync power output of more than 100 W can be obtained, if the linearity is subjectively judged only from the picture quality.

(6) See page 5

(7) These figures are valid for a difference in level between picture carrier (during sync pulses) and sound carrier of 7 db.

(8) It is recommended to set the grid No. 1 voltage by using a cathode resistor.

(6)

The distortion of a tv signal produced by non-linear effects can be determined by passing a simulated tv signal consisting of unmodulated picture carrier F_v , sound carrier F_s and sideband F_{sb} through the traveling wave tube. The non-linear effects in the amplifier produce spurious frequencies within the tv channel and one of these, F_{sp} has a particularly large amplitude compared with any others within the channel and is therefore of concern. If the amplitudes of the 3 input frequencies are selected as indicated in fig. 1, the amplitude ratio between the frequencies F_{sb} and F_v corresponds to the white-to-black amplitude range of a tv signal. The frequency response of the television receiver used has been taken into account here, namely that the picture carrier is reduced by 6 db to the Nyquist flank.

A measure of the intermodulation products of interest is expressed by the difference in power output, in decibels, at the side-band frequency F_{sb} and the spurious frequency Fsp. This difference in level is given in the operating data as the 3 tone intermodulation ratio IM₃ and is referred to the sync power level at which the tube is operating. In fig. 1 and fig. 2 the sync power level is assumed to be 0 db.

Virtually the same information on intermodulation products produced by non-linear effects in the amplifier may also be obtained by using the 2 tone method. In this case the tube is driven by 2 unmodulated carriers of equal amplitude having frequencies F_1 and F_2 , as shown in fig. 2. Of interest are the spurious frequencies $2 F_1 - F_2$ and $2 F_2 - F_1$ at the output, which are third order intermodulation products. The ratio, in decibels, of the power output at one of the spurious frequencies to the power output at one of the input frequencies gives the 2 tone intermodulation ratio IM₂, and is once again a typical measure of amplifier performance. This ratio is generally referred to the sync power level, which is 6 db above the input signals as shown in fig. 2.

A relationship between the 3 tone and 2 tone intermodulation ratios can be found mathematically and is also verifiable by experiment. This relationship depends on the difference in level between picture carrier (during sync

pulses) and to sound carrier. If the difference is 7 db, as standardized in Europe, to a close approximation the formula $IM_3 = IM_2 + 3$ db is valid. It must be taken into account, that both IM_2 and IM_3 are negative values. If this difference is 10 db, the 2 tone and 3 tone intermodulation ratios are identical.

Operating Instructions

The traveling wave tube YH 1020 can only be operated in conjunction with its appropriate magnet system MYH 1020. This magnet has a low stray field and is practically insensitive to temperature. When mounting the magnet system the distance between the magnet system and large ferromagnetic parts (e.g. mounting supports) should be 60 mm (2.4°) and between the magnet system and small ferromagnetic parts (e.g. screws) 30 mm (1.2°) . Between two magnet systems the distance should amount to at least 90 mm (3.6°) . The tube can be replaced by opening out the magnet system along its axis of symmetry. All voltages applied to the tube are referred to the cathode.

The voltage drop in the cable should be considered when setting the heater voltage to the specified value. When using the socket and 1.1 meter length of cable supplied with the tube, the voltage drop in the cable is 0.25 V. The grid No. 1 voltage can be derived from the cathode resistor R_k . The supply voltages applied to grid No. 2 (E_{c2}), helix (E_h) and collector (E_b) are taken from a single power supply unit. (In case of deviations from this the manufacturer should be consulted.) The helix voltage should be variable between 2 700 and 3 300 Vdc, and the grid No. 2 voltage between 350 and 1,000 Vdc (see also footnote 1) on page 8). The grid No. 2 voltage is derived from the potential divider R1, the total resistance of which should not exceed 0.1 Meg. The collector voltage is lower than the helix voltage by an amount corresponding to the voltage drop across R2 (see operating data pages 2 and 3).

A protection relay should be incorporated in the helix supply line which automatically cuts out the combined voltage supply if the helix value rises above the limiting values.

In order to protect grid No. 1 and grid No. 2 a series resistance of 10 k Ω must be incorporated in each supply line.

For protection of grid No. 1 and grid No. 2 one resistor each of 10 k Ω has to be mounted into the supply line.

The heater and cathode are at a potential of approximately 3000 Vdc with respect to earth and the insulation of the heater transformer must therefore be designed accordingly.

RöK 3509 E/1. 4.66

Cooling

The collector must be cooled by an air flow of approx. 3000 1/min, pressure drop approx. 30 mm of water.

The air cooling system must be included in the protection circuit so that the power supply inclusive heater voltage is switched off if the air fails.

The decisive factor influencing the design of the cooling system is that the maximum admissible collector temperature of 200° C (absolute limit), as measured on the outer edge of the last cooling fin, must not be exceeded.

Installation

The magnet system must be properly earthed at the earthing point provided (see page 9).

Insertion of tube into magnet system (precise details are contained in the comprehensive assembly instructions).

- 1. Slide tube into field straightener and screw together. The field straightener is an integral part of the magnet system.
- 2. Place tube and field straightener in the opened out magnet system and fasten with screws.
- 3. Place focusing ring on the field straightener in the middle of the setting marks for field correction (see page 9).
- 4. Close magnet system.

coded as follows:

- 5. Push socket onto tube base and screw retaining nut tight up to stop (connector socket should not be canted).
- 6. Fix the coaxial rf connectors to the tube input and output ports.

When mounting the magnet system and coaxial rf connectors and other connecting cables, any turning or bending moments on the tube input and output should be kept to a minimum.

Connection of supply voltage and switch-on sequence

Connect the individual leads (the first time the tube is placed in service): The collector voltage is applied to the tube through the high-voltage cable attached to the magnet system. The helix voltage lead is connected to the earthing plug socket on the earthing plug socket on the magnet system (see page 9). The remaining electrode voltages are applied to the tube via the supply cable screwed to the base of the tube. The individual leads in this cable are color-

heater: brownheater/cathodef/k: brown-yellow (1)cathodek: yellow (1)grid No.1g1: greengrid No.2g2: blueearth: black

The red lead must not be connected.

- 2. Switch-on air cooling (see also instructions under "cooling").
- 3. Switch-on all operating voltages, including heater voltage, simultaneously (see "Typical Operation" I resp.II and concerning characteristics). (2)
- 4. Adjust cathode current by varying grid No.2 voltage.
- 5. Adjust helix current to minimum with the aid of axial field correction ring (large ring on the connector socket and of the magnet system).
- 6. Apply rf signal to input and repeat field correction as under 5.
- (1) The cathode is internally connected to one side of the heater. It is advisible to connect to the cathode via the yellow lead in order to prevent hum troubles. The heater voltage is then applied separately through the brown and brown--yellow leads. If it is in fact decided to also connect heater and cathode additionally outside the tube, only the brown-yellow lead is to be connected to the yellow cathode lead.
- (2) During the switch on phase the grid No. 2 voltage (E_{C2}) must be reduced automatically by at least 300 V. Suitable circuit proposals on request. At first operation or after longer non-operational periods (> 1 month) the tube should be run for approximately 10 minutes with $E_{C2} = 0$ V. On initial service and after very long non-operational periods, the starting period should be extended or repeated several times.

Magnet System YH 1020

YH 1020

YH 1020

Designation	Design	Ordering numbers	Fig.
Traveling wave tube YH 1020		Q00041-X4652	
Magn.syst.MYH 1020 a Magn.syst.MYH 1020 b	Coax.connector(right) Coax.connector (left)	Q00043-X2391 Q00043-X2392	page9 page9
Coax.connector Coax.connector Coax.connector Coax.connector Coax.connector Coax.connector Coax.connector Coax.connector Coax.cable M6/16 L50	60Ω, 3.5/9.5 60Ω, 6/16 50Ω, 4.1/9.5 50Ω, 7/16 N-Connector C-Connector BNC-Connector 60Ω, 6/16; length 0.5 m	Q00081-X2401 Q00081-X2402 Q00081-X2403 Q00081-X2404 Q00081-X2405 Q00081-X2406 Q00081-X2407 Q00081-X2407	
RW-connector socket RW-connector socket RW-connector socket RW-connector socket RW-connector socket	axial bend in direction A bend in direction B bend in direction C bend in direction D } standard cable length 1.2 m (1)	Q00081-X2321 Q00081-X2322 Q00081-X2323 Q00081-X2324 Q00081-X2325	page 9 page 9 page 9 page 9
RW-connector socket RW-connector socket RW-connector socket RW-connector socket RW-connector socket	axial bend in direction A bend in direction B bend in direction C bend in direction D required (2)	Q00081-X2315 Q00081-X2316 Q00081-X2317 Q00081-X2318 Q00081-X2319	page 9 page 9 page 9 page 9

(1) 0.1 m of this length as free leads

(2) when ordering please specify total length of cable and length of free leads

10

÷

÷

Characteristics $G = f(E_h)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FUR BAUELEMENTE

Printed in Germany

RöK3509 E / 1.11.65

HIGH-POWER TRAVELING WAVE TUBE F = 5.925 to 6.425 Gc

YH 1040

S&H-Sach-Nr. Q00041-X4654

Preliminary Data

Design and Application

High-power traveling wave tube for the frequency range from 5.925 to 6.425 Gc with a CW output power of 2 kilowatts and a gain of 30 db. The YH 1040 is a periodic permanent-magnet focused traveling wave tube and is designed to operate with depressed collector. Initial starting can be carried out be the customer according to the comprehensive instructions provided. After interruption of operation the preheated tube may be run at full power immediately. The tube is replaceable and can be mounted in the magnet system MYH 1040 within a short time.

The rf power is coupled in and out by way of waveguides. The collector and delay line are water-cooled.

Length of tube	:	approx. 920 mm (36 ins)
Dimensions of magnet system	:	approx. 920x220x335 mm (36x8.5x13 ins)
Weight of magnet system	:	approx. 60 kg (132 lbs)
Weight of tube	:	approx. 9.5 kg (21 lbs)
Waveguide	:	F 70; DIN 47302, 34.85 x 15 mm
Flange	:	UGF 70; DIN 47303

1

Heating

	Heater voltage	E_{f}	=	6.5	Vac (1,2)
	Heater current	If	=	2.5	Aac
	Preheating time	tk	> =	5	min
	indirect by ac, metal c	apillary	y dispenser catho	ode	
Cha	aracteristics (F = 6	.3 Gc,	$I_{k} = 1.1 \text{ Adc})$		
	Pulse saturation power	Peat	=	3	kW
	$Gain(P_0 = 2 kW)$	G	=	30	db
	VSWR		<	1.5	(3)
	Cold attenuation	a	=	80	db
Tvi	pical Operation				
- /1					
	CW Operation				
	Operating frequency	F	=	6.3	Gc
	Output power	Po	=	2	kW
	Gain	G	=	30	db
	Collector voltage	Eb	=	10	kVdc (4)
	Delay line voltage	Ed1	~	16	kVdc(1,4)
	Grid No.2 voltage	Ec2	~	2.6	kVdc(1)
	Grid No.1 voltage	E _{c1}	~	-500	Vdc (1)
	Cathode current	Ik	*	1.1	Adc
	Delay line current	Id 1	*	100	mAdc
	Grid No.2 current	I _C 2	<	2	mAdc
	0.2 db band width		=	30	Mc

(1) The exact setting value will be indicated for individual tubes.

(2) If the maximum variation of the heater voltage exceeds the absolute limits of \pm 2% the operating performance of the tube will be impaired and its life shortened. Stand-by operation is possible with $E_f = 5.6$ V, other electrode being switched off.

By increasing the heater voltage to its nominal value, and switching-on the remaining electrode voltages simultaneously, the tube can then be operated immediately at full rf power.

(3) At input and output of cold tube in the frequency-range 5.925 to 6.425 Gc.

(4) See Operating Instructions page 4.

Maximum Ratings

(absolute values)

Collector voltage	E _b	max	15	kVdc (1)
Collector voltage	Eb	min	9	kVdc
Collector dissipation	Pp	max	16.5	kW
Delay line voltage	E _{d1}	max	17.5	kVdc
Delay line current (without rf)	^I d1	max	40	mAdc
Delay line current (with rf)	I _{d1}	max	150	mAdc
Grid No.2 voltage	E _{c2}	max	3.5	kVdc
Grid No.2 dissipation	P _{c2}	max	8	W
Grid No.1 voltage neg.	-Ec1	min	50	Vdc
Grid No.1 voltage neg.	-E _{c1}	max	2	kVdc
Load VSWR		max	1.5	
Cathode current	Ik	max	1.2	Adc
CW power output	Po	max	2.2	kW
Ambient temperature	TA	min	-20	°C (2)
Ambient temperature	TA	min	60	°C (2)

 The collector voltage must be at least 1 kVdc lower than the delay line voltage

(2) For operation at lower or higher ambient temperatures please consult the tube manufacturer.

4

3

Operating Instructions

The traveling wave tube YH 1040 can be operated only in conjunction with a magnet system MYH 1040. The periodic permanent magnet focusing results in a small leakage field; the magnet system has a low sensitivity to temperature changes.

Ferromagnetic materials must be kept at a minimum distance from the magnet system as mounted in the equipment cabinet. Depending on size of material the following minimum distances apply

1. Small parts (screws) 10 mm (3/8 ins)

2. Larger parts (cabinet walls mounting brackets) 50 mm (2 ins)

3. Between two closed magnet systems 170 mm (6 3/4 ins)

In order to exchange the tube, the magnet can be swung open along the vertical axis.

All voltages applied to the tube are referred to the cathode.

To protect the tube, it is recommended that directional couplers be connected 'o the output.

If the tube shall operate with a collector voltage higher than 10 kVdc, the collector voltage must be adjustable in steps of \leq 500 Vdc between 10 kVdc and the desired operating value for starting the tube.

The delay line voltage should be adjustable between 8.5 and 17 kVdc with an accuracy of \pm 50 V.

The grid No. 2 voltage must be adjustable between 1.2 and 4 kVdc, to be picked off from the voltage divider R_1 .

The grid No. 1 voltage can be generated by the cathode current across resitor $R_k \approx 100$ Ohms and an additional power supply adjustable between 0 and 3 kVdc.

The necessary stabilization of the delay line, grid No.2 and grid No.1 voltages and permissible hum depend on the requirements of each type of operation. For communication transmissions to CCI specifications 0.1 % must be met

(this value refers to the peak value of the superimposed spurious voltages). The heater and the cathode are at a potential of 17 kVdc with respect to ground. The heating transformer must therefore be dimensioned for this potential difference. The delay line lead must be provided with a protective device (S), which disconnects the operating voltages within 300 µs if the permissible maximum value of the delay line current is exceeded.

Ion Getter Pumps

For the collector-sided ion getter pump, a power supply is necessary delivering a dc voltage of 3 kVdc and a dc current of 10 mAdc. The cathode-sided ion getter pump is started by connecting the ion getter pump terminal with grid Nr.1 terminal. The electrode voltages must be automatically disconnected if a pressure of 10^{-6} Torr is exceeded.

During pauses in operation and storage of the tube, the collector-sided ion getter pump must be kept in operation.

Cooling

To dissipate the heat developed, the collector and the delay line must be cooled by distilled water.

The cooling circuits must be dimensioned as follows:

Collector: Water flow $\approx 25 \text{ ltr/min}$

Pressure \approx 3 atm Temperature at inlet < 25 °C Temperature at outlet < 35 °C

Delay line : Water flow $\approx 2 \text{ ltr}/\text{min}$

Pressure ≈ 3 atm Temperature at inlet < 25 °C Temperature at outlet< 35 °C

Appropriate measures have to be taken to prevent the formation of condensed water.

In view of the voltage difference between collector and delay line, it must be ensured that the water supply pipes are appropriately insulated.

The tube must be protected in such a way that the supply voltages are disconnected if there is a failure in the cooling system.

Starting

The tube is easily and quickly mounted into the magnet system, and centers itself automatically when laid into the magnet. The magnet system must be properly earthed.

The leads to the electrodes are color-coded as follows:

Heater	f	:	brown
Heater/cathode	f/k	:	yellow
Grid No.1	g1	:	green
Grid No.2	g2	:	blue
Collector	C	:	red

The lead for the delay line is connected to the magnet system.

The tube can be run up by the end user with the aid of the comprehensive instructions supplied.

After the tube has been run up for the first time, the preheated tube may be switched on immediately at full rf power.

Magnet System YH 1040

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE

Printed in Germany

BACKWARD-WAVE OSCILLATOR F = 26.5 to 42 Gc

Design and Application

Backward-wave oscillator with an electronic tuning range of 26.5 to 42 Gc and an average power output of 60 mW and a minimum power output of 10 mW. The oscillator is particularly suitable for measurements in the EHF range, for waveguide transmission systems, short-range EHF radar systems, and microwave spectroscopy.

Tube and magnet system form a single unit.

Weight of oscillator unit: Dimensions of packing: 7.7 kg 190 x 190 x 390 mm

RWO 40

Heating, Capacitances Typical Operation, Maximum Ratings

Heating

ater voltage	E_{f}	=	6	.3		Vac (1)	
ater current	If	*		1		Aac	
hode heating time	tk	> =		2		min	
irect by ac, parallel su -dispenser cathode	pply						
itances							
pacitance $C_{\sigma 1}/k_{\sigma 2} \sigma_{\sigma 3}$		=		6		μμք	
pacitance $C_{\sigma^2/k}$ of σ^3		=		5		μμf	
pacitance $C_{g3/k}$, g1, g2		=		4		μμ	
al Operation							
equency range	ੱਜ	=	26.	5 to 42		Gc	
erage nower output	P	=	20.	60		mW	
nimum power output	Po min	=		10		mW	
au line voltage	5 11	-	500	to 2700		Vdc(2,3))
id No. 3 voltage	Edl	~	2	00		Vdc(2)	
id No. 2 voltage	Ec3	≈ ≈	15	00		Vdc (2)	
id No.1 voltage	-E	~ ~		60		Vdc (2)	
av line current	-Lc1	~ ~		13		mAdc	
id No. 3 current	I a 2	~ ~		3		mAdc	
id No.2 current	I _{c2}	~ ~	0	.4		mAdc	
um Batings (abs	olute valu	ies)					
ay line voltage	Ed1	max	28	00		Vdc	
ay line dissipation	P _{d1}	max		40		W	
id No.3 voltage	E _c 3	max	5	00		Vdc	
d No.3 dissipation	Pg3	max	1	. 5		W	
id No.2 voltage	Ec2	max	20	00		Vdc	
id No.2 dissipation	Pg2	max		1		W	
gative grid No. 1 voltage	Ect	max	10	to 400		Vdc	
chode current	Ik	max		18		mAdc	
bient temperature	TA	min	-	20		°C	3
bient temperature	TA	max		55		°C	
	ter voltage ter current hode heating time .rect by ac, parallel su -dispenser cathode .rect by ac, parallel su -dispenser cathode .rect by ac, parallel su -dispenser cathode	ter voltage E_f ter current I_f hode heating time t_k rect by ac, parallel supply -dispenser cathode itances pacitance $C_{g1/k}$, $g2$, $g3$ pacitance $C_{g2/k}$, $g1$, $g3$ pacitance $C_{g3/k}$, $g1$, $g2$ acitance $C_{g3/k}$, $g1$, $g2$ il Operation equency range F erage power output P_o min ay line voltage E_{c1} d No.3 voltage E_{c2} d No.4 voltage $-E_{c1}$ ay line current I_{d1} d No.3 current I_{c2} num Ratings (absolute value ay line voltage E_{c3} d No.2 current I_{c2} num Ratings E_{c1} d No.3 dissipation P_{g3} d No.2 dissipation P_{g2} gative grid No.1 voltage E_{c1} hode current I_k bient temperature T_A	ter voltage E_f = ter current I_f \approx hode heating time t_k = rect by ac, parallel supply -dispenser cathode itances pacitance $C_{g1/k}$, g_2 , g_3 = pacitance $C_{g3/k}$, $g_{1,g2}$ = acitance $C_{g3/k}$, $C_{g3/k}$ = acitance $C_{$	ter voltage $E_f = 6$ ter current $I_f \approx$ hode heating time $t_k =$ rect by ac, parallel supply -dispenser cathode acitance $C_{g1/k}$, $g2$, $g3 =$ bacitance $C_{g2/k}$, $g1$, $g3 =$ acitance $C_{g3/k}$, $g1$, $g2 =$	ter voltage $E_f = 6.3$ ter current $I_f \approx 1$ hode heating time $t_k = 2$ rect by ac, parallel supply -dispenser cathode tances vacitance $C_{g1/k}, g2, g3 = 6$ vacitance $C_{g2/k}, g1, g3 = 5$ vacitance $C_{g3/k}, g1, g2 = 4$ u Operation equency range $F = 266.5 \text{ to } 42$ rrage power output $P_o \text{ av} = 60$ nimum power output $P_o \text{ min} = 10$ ay line voltage $E_{c1} \approx 200$ d No.3 voltage $E_{c2} \approx 1500$ d No.4 voltage $-E_{c1} \approx 60$ ay line current $I_{c1} \approx 3$ d No.2 current $I_{c2} \approx 0.4$ um Ratings (absolute values) ay line voltage $E_{c3} \approx 300$ d No.3 dissipation $P_{d1} \max 40$ d No.3 dissipation $P_{d2} \max 500$ d No.2 voltage $E_{c2} \approx 1500$ d No.2 current $I_{c2} \approx 0.4$	ter voltage $E_f = 6.3$ ter current $I_f \approx 1$ hode heating time $t_k \stackrel{>}{=} 2$.rect by ac, parallel supply -dispenser cathode tances vacitance $C_{g1/k, g2, g3} = 6$ vacitance $C_{g2/k, g1, g3} = 5$ vacitance $C_{g3/k, g1, g2} = 4$ d Operation equency range $F = 26.5$ to 42 rrage power output $P_{o av} = 60$ nimum power output $P_{o min} = 10$ ay line voltage $E_{c3} \approx 200$ d No.3 voltage $E_{c2} \approx 4500$ d No.4 voltage $E_{c2} \approx 1500$ d No.4 voltage $E_{c1} \approx 60$ ay line current $I_{c2} \approx 0.4$ umm Ratings (absolute values) ay line voltage $E_{c3} max 400$ d No.3 voltage $E_{c3} max 400$ d No.3 voltage $E_{c3} max 400$ d No.3 voltage $E_{c3} max 400$ d No.4 voltage $E_{c3} max 400$ d No.5 current $I_{c2} \approx 0.4$	ter voltage $E_f = 6.3$ $Vac^{(1)}$ ter current $I_f \approx 1$ Aac hode heating time $t_k \stackrel{2}{=} 2$ min -dispenser cathode itances vacitance $C_{g1/k, g2, g3} = 6$ $\mu\mu f$ acitance $C_{g2/k, g1, g3} = 5$ $\mu\mu f$ acitance $C_{g3/k, g1, g2} = 4$ $\mu\mu f$ in up over output $P_{0 av} = 4$ $\mu\mu f$ in up over output $P_{0 av} = 60$ mW in up over output $P_{0 min} = 10$ mW ay line voltage $E_{c1} \approx 200$ Vdc (2) d No.2 voltage $E_{c2} \approx 1500$ Vdc (2) d No.4 voltage $-E_{c1} \approx 60$ Vdc (2) ay line current $I_{c3} \approx 3$ mAdc d No.3 current $I_{c3} \approx 3$ mAdc d No.3 current $I_{c2} \approx 0.4$ mAdc ium Ratings (absolute values) ay line voltage $E_{c1} = x2800$ Vdc d No.3 voltage $E_{c2} \approx 1.500$ Vdc d No.4 voltage $-E_{c1} \approx 60$ Vdc up Nadc d No.3 current $I_{c3} \approx 3$ mAdc d No.3 current $I_{c3} \approx 1$ mAdc d No.3 current $I_{c2} \approx 0.4$ mAdc up Ratings (absolute values) ay line dissipation $P_{g1} max 40$ W d No.3 voltage $E_{c2} max 10$ to 400 Vdc d No.3 voltage $E_{c2} max 10$ to 400 Vdc d No.3 voltage $E_{c1} max 10$ mAdc max 10 to 400 Vdc d No.3 voltage $E_{c1} max 10$ to 400 Vdc d No.2 voltage $E_{c1} max 10$ to 400 Vdc d No.2 voltage $E_{c1} max 10$ to 400 Vdc hode current $I_k max 18$ mAdc bient temperature T_A min -20 °C

- (1) With regard to the life of the tube the variation of the heater voltage may amount to ⁺ 2 %. With respect to the requested frequency stability of the oscillator a much better stabilisation of the heater voltage will practically be necessary in any case.
- (2) The exact setting value is shown on a curve delivered with each tube.
- (3) Collector and delay line are electrically interconnected.

Operating Instructions

The tube and the permanent magnet required for guiding the beam form a single unit. The energy is coupled out through a rf waveguide R 320 DIN 47302 page 1 which is rigidly linked with the unit, and its associated flange UG-599/U.

Designations of the grids: g_1 = focusing electrode (Wehnelt) g_2 = accelerating electrode g_3 = focusing electrode

In the interest of good frequency stability, only regulated operating voltages, especially the delay line voltage and grid No.3 voltage should be used. The delay line voltage serves for setting the chosen operating frequency and must therefore be adjustable between 400 and 3000 Vdc. (See frequency range as function of collector and delay line voltage, K1). The other voltages should be adjustable within the limits indicated.

For protection of the tube, protective relays should be inserted in the grid No.2 and grid No.3 leads so that the grid No.3 and grid No.2 voltages are disconnected if the permissible grid dissipations are exceeded, or the power supplies for grids No.3 and No.2 should be protected in such a manner that they will be rapidly disconnected if any other operating voltage should fail or be disconnected.

A corresponding power supply (incl. collector connections) with an amplitudemodulation device RWON 11 and without an amplitude-modulation device RWON 111 can be supplied.

Modulation

Backward-wave oscillator RWO 40 may be operated with frequency modulation as well as with amplitude modulation by means of pulses or square waves. In the case of frequency modulation, the chosen modulation voltage is superimposed on the delay line voltage. The frequency swing can be adjusted by way of amplitude control. For keying the tube, a square-wave voltage of 250 volts peak-to-peak is applied between grid No.1 and cathode, care having to be taken to ensure that the permissible limits of the grid No.1 voltage (-10 to -400 volts) are not exceeded.

For modulation with square-wave pulses, it is practical to apply the bias required for continuous-wave operation to grid No.1 and to modulate the tube by superimposing pulses of sufficient magnitude (250 volts peak-to-peak). In this case, normal operating voltages are applied to the other electrodes.

With square wave modulation the g2,g3 and delay line voltage supplies should have low source resistance, so as to ensure that as soon as the pulses are applied, the correct electrode voltages are also applied.

The devices required for the a/m modulations are contained already in the power supply RWON 11 available for RWO 40.

Cooling

For removing the heat, the radiator must be cooled with an air flow of about 150 l/min.

The cooling-air system must be protected in such a manner that the supply voltages are disconnected when the cooling system is cut out.

Starting

Color code of leads:

- f : brown
 f : brown-yellow
 g1: green
 g2: blue
 g3: red
 d1: black
 k : yellow
- 1. Switch on air cooling
- 2. Switch on heater voltage
- 3. Switch on grid No.1 voltage to the operating value
- 4. Switch on delay line voltage (Edl) and grid No.3 voltage (E_{c3})
- 5. Switch on grid No.2 (E_{c2}) voltage to the value given on the attached card.

- 6. Adjust the tube to the required frequency by setting the delay line voltage as per the setting curve delivered with each tube.
- 7. Adjust grid No.3 voltage for optimum power.

Switching off

On no account switch the delay line voltage off first since the tube can be damaged.

1. Switch off grid No.2 voltage (E_{c2})

2. Switch off remaining supply voltages

After long breaks in operation (some weeks), it is recommended that the tube be operated at the following reduced voltages before switching on the full operating voltages for about 2 hours.

 $E_{d1} \approx 1000 \text{ Vdc}$ $E_{c3} \approx 200 \text{ Vdc}$ $E_{c2} \approx 1000 \text{ Vdc}$ $E_{c1} \approx -70 \text{ Vdc}$

RWO 40

SIEMENS & HALSKE AKTIENGESELLSCHAFT wernerwerk für bauelemente

Printed in Germany

RöK 3503E/1.2.66

BACKWARD-WAVE OSCILLATOR F = 40 to 61 Gc

RWO 60

S&H Sach-Nr. Q00046-X3302

Design and Application

Backward-wave oscillator with an electronic tuning range of 40 to 61 Gc at an average power output of 20 mW and a minimum power output of 2 mW. The oscillator is particularly suitable for measurements in the EHF range, for waveguide transmission systems, short-range EHF radar systems, and micro-wave spectroscopy.

Tube and magnet system form a single unit.

Weight of oscillator unit: Dimensions of packing: 7.7 kg 190 x 190 x 390 mm

RWO 60

Heating, Capacitances Typical Operation, Maximum Ratings

Heating

	Heater voltage Heater current Cathode heating time	E _f I _f t _k	π ≈ >=	6.3 1 2	Vac (1) Adc min
	indirect by ac, parallel su MK-dispenser cathode	pply			
Са	apacitances				
	Capacitance C _{g1} /k, g2, g3 Capacitance C _{g2} /k, g1, g3 Capacitance C _{g3} /k, g1, g2		= =	6 5 4	μμf μμf μμf
Ту	pical Operation				
	Frequency range Average power output Minimum power output	F P _{o av} P _o min	=	40 to 61 20 2	Gc mW mW
*	Delay line voltage Grid No.3 voltage Grid No.2 voltage Grid No.1 voltage Delay line current Grid No.3 current Grid No.2 current	$Ed1$ E_{c3} E_{c2} $-E_{c1}$ I_{d1} I_{c3} I_{c2}		500 to 2400 200 2500 200 13 2 0.3	Vdc (2) Vdc Vdc (3) mAdc mAdc mAdc
Ma	aximum Ratings (absol	lute val	ues)		
	Delay line voltage Delay line dissipation Grid No.3 voltage Grid No.3 dissipation Grid No.2 voltage Grid No.2 dissipation Negative grid No.1 voltage Cathode current	E_{d1} P_{d1} E_{c3} P_{g3} E_{c2} P_{g2} E_{c1} I_{k}	max max max max max max max max	2800 40 500 1.5 2600 1 10 to 400 18 -20	Vdc W Vdc W Vdc W Vdc mAdc
	Ambient temperature	T _A	max	55	°C

 With regard to the life of the tube the variation of the heater voltage may amount to ± 2 %. With respect to the requested frequency stability of the oscillator a much better stabilisation of the heater voltage will practically be necessary in any case.

(2) The exact setting value is shown on a curve delivered with each tube.

(3) Collector and delay line are electrically interconnected.

Operating Instructions

The tube and the permanent magnet required for guiding the beam form a single unit. The energy is coupled out through an rf waveguide R 620 DIN 47302 which is rigidly linked with the unit, and its associated flange UG-385/U.

Designations of the grids: g_1 = focusing electrode (Wehnelt) g_2 = acceleration electrode g_3 = focusing electrode

In the interest of good frequency stability, only regulated operating voltages, especially the delay line voltage and grid No.3 voltage should be used. The delay line voltage serves for setting the chosen operating frequency and must therefore be adjustable between 500 and 2500 Vdc. (See frequency range as function of collector and delay line voltage, K1). The other voltages should be adjustable within the limits indicated.

For protection of the tube, protective relays should be inserted in the grid No.2 and grid No.3 lead so that the grid No.3 and grid No.2 voltages are disconnected if the permissible grid dissipations are exceeded, or the power supplies for grids No.3 and No.2 should be protected in such a manner that they will be rapidly disconnected if any other operating voltage should fail or be disconnected.

A corresponding power supply (incl. collector connections) with an amplitude--modulation device RWON 11 and without an amplitude-modulation device RWON 111 can be supplied.

3

Modulation

Backward-wave oscillator RWO 60 may be operated with frequency modulation as well as with amplitude modulation by means of pulses or square waves. In the case of frequency modulation, the chosen modulation voltage is superimposed on the delay line voltage. The frequency swing can be adjusted by way of amplitude control. For keying the tube, a square-wave voltage of 250 volts peak-to-peak is applied between grid No.1 and cathode, care having to be taken to ensure that the permissible limits of the grid No.1 voltage (-10 to -400 volts) are not exceeded.

For modulation with square-wave pulses, it is practical to apply the bias required for continuous-wave operation to grid No.1 and to modulate the tube by superimposing pulses of sufficient magnitude (250 volts peak-to-peak). In this case, normal operating voltages are applied to the other electrodes.

With square wave modulation the g2, g3 and delay line voltage supplies should have low source resistance, so as to ensure that as soon as the pulses are applied, the correct electrode voltages are also applied.

The devices required for the a/m modulations are contained already in the power supply RWON 11 available for RWO 60.

Cooling

For removing the heat, the radiator must be cooled with an air flow of about 150 l/min.

The cooling-air system must be protected in such a manner that the supply voltages are disconnected when the cooling system is cut out.

Starting

Color code of leads:

f	•	brown
fk	0 0	brown-yellow
g1	8 0	green
g2	6 0	blue
g3	•	red
h	:	black
k	:	yellow

1. Switch on air cooling

2. Switch on heater voltage

3. Switch on grid No.1 voltage to the operating value.

4. Switch on delay line voltage (E_{d1}) and grid No. 3 voltage (E_{c3})

- 5. Switch on grid No.2 (E_{c2}) voltage to the values given on the attached card.
- 6. Adjust the tube to the required frequency by setting the delay line voltage as per setting curve delivered with each tube.
- 7. Adjust grid No.3 voltage for optimum power.

Switching off

On no account switch the delay line voltage off first since the tube can be damaged.

- 1. Switch off grid No.2 voltage (E_{c2})
- 2. Switch off remaining supply voltages

After long breaks in operation (some weeks), it is recommended that the tube be operated at the following reduced voltages before switching on the full operating voltages for about 2 hours.

 $E_{d1} \approx 1000 \text{ Vdc}$ $E_{c3} \approx 200 \text{ Vdc}$ $E_{c2} \approx 1000 \text{ Vdc}$ $E_{c1} \approx -70 \text{ Vdc}$

RWO 60

Characteristics $F = f(E_{dl})$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE

RöK3511 E / 1.2.66

BACKWARD-WAVE OSCILLATOR

F = 60 to 90 Gc

S&H Sach-Nr. Q00046-X3303

Design and Application

Backward-wave oscillator with an electronic tuning range of 60 to 90 Gc at an average power output of 5 mW and a minimum power output of 1 mW. The oscillator is particularly suitable for measurements in the EHF range, for waveguide transmission systems, short-range EHF radar systems, and micro-wave spectroscopy.

Tube and magnet system form a single unit.

Weight of oscillator unit Dimensions of packing :

7.7 kg 190 x 190 x 390 mm

1

RWO 80

Heating, Capacitances Typical Operation, Maximum Ratings

SIEMENS

Heating

	Heater voltage Heater current Cathode heating time	E _f If t _k	∎ ≈ ∧ ≡	6.3 1 2		V _{ac} (1) Aac min
	indirect by ac, parallel sup MK-dispenser cathode	ply				
Ca	apacitances					
	Capacitance C _{g1/k} ,g2,g3 Capacitance C _{g2/k} ,g1,g3 Capacitance C _{g3/k} ,g1,g2		= =	6 5 4		μμք μμք
Ту	vpical Operation					
	Frequency range Average power output Minimum power output	F P _{o av} P _o min	а а	60 to 5 1	90	Gc mW mW
	Delay line voltage Grid No.3 voltage Grid No.2 voltage Grid No.1 voltage Delay line current Grid No.3 current Grid No.2 current	E_{d1} E_{c3} E_{c2} $-E_{c1}$ I_{d1} I_{c3} I_{c2}	n <i>x x x x</i>	500 to 200 2500 250 13 2 0.3	2500	Vdc (2,3) Vdc (2) Vdc (2) Vdc (2) mAdc mAdc mAdc
M	aximum Ratings (absolute	e values)				
	Delay line voltage Delay line dissipation Grid No.3 voltage Grid No.3 dissipation Grid No.2 voltage Grid No.2 dissipation Negative grid No.1 voltage Cathode current	E_{d1} P_{d1} E_{c3} P_{g3} E_{c2} P_{g2} E_{c1} I_{k}	max max max max max max max	2800 40 500 1.5 2600 1 10 to 4 18	400	Vdc W Vdc W Vdc W Vdc M Vdc mAdc
	Ambient temperature Ambient temperature	T _A T _A	min max	-20 55		°C

(1) With regard to the life of the tube the variation of the heater voltage may amount to ⁺/₋ 2 %. With respect to the requested frequency stability of the oscillator a much better stabilisation of the heater voltage will practically be necessary in any case.

(2) The exact setting value is shown on a curve delivered with each tube.

(3) Collector and delay line are electrically interconnected.

Operating Instructions

The tube and the permanent magnet required for guiding the beam form a single unit. The energy is coupled out through a rf waveguide R 740 DIN 47302 which is rigidly linked with the unit, and its associated flange UG-387/U.

Designation of the grids: g₁ = focusing electrode (Wehnelt) g₂ = accelerating electrode g₃ = focusing electrode

In the interest of good frequency stability, only regulated operating voltages esp. the delay line voltage and grid No.3 voltage should be used. The delay line voltage serves for setting the chosen operating frequency and must therefore be adjustable between 500 and 2500 Vdc (see frequency range as function of collector and delay line voltage, K1). The other voltages should be adjustable within the limits indicated.

For protection of the tube, protective relay should be inserted in the grid No.2 and grid No.3 leads so that the grid No.3 and grid No.2 voltages are disconnected if the permissible grid dissipations are exceeded, or the power supplies for grids No.3 and No.2 should be protected in such a manner that they will be rapidly disconnected if any other operating voltage should fail or be disconnected.

A corresponding power supply (incl. collector connections) with an amplitude--modulation device RWON 11 and without an amplitude-modulation device RWON 111 can be supplied.

3

Modulation

Backward-wave oscillator RWO 80 may be operated with frequency modulation as well as with amplitude modulation by means of pulses or square waves. In the case of frequency modulation, the chosen modulation voltage is superimposed on the delay line voltage. The frequency swing can be adjusted by way of amplitude control. For keying the tube, a square-wave voltage of 250 volts peak-to-peak is applied between grid No.1 and cathode, care having to be taken to ensure that the permissible limits of the grid No.1 voltage (-10 to -400 volts) are not exceeded.

For modulation with square-wave pulses, it is practical to apply the bias required for continuous-wave operation to grid No.1 and to modulate the tube by superimposing pulses of sufficient magnitude (250 volts peak-to-peak). In this case, normal operating voltages are applied to the other electrodes. With square wave modulation the g2, g3 and delay line voltage supplies should have low source resistance, so as to ensure that as soon as the pulses are applied, the correct electrode voltages are also applied.

The devices required for the a/m modulations are contained already in the power supply RWON 11 available for RWO 80.

Cooling

For removing the heat, the radiator must be cooled with an air flow of about 150 l/min.

The cooling-air system must be protected in such a manner that the supply voltages are disconnected when the cooling system is cut out.

Starting

The following switch-on procedure must be observed and the correct sequence definitely used:

Color code of leads:

- f : brown
 f : brown-yellow
 g1 : green
 g2 : blue
 g3 : red
 d1 : black
 k : yellow
- 1. Switch on air cooling
- 2. Switch on heater voltage
- 3. Switch on grid No.1 voltage to the operating value.
- 4. Switch on delay line voltage (E_{d1}) and grid No.3 voltage (E_{c3}) .

- 5. Switch on grid No.2 (E_{c2}) voltage to the value given on the attached card.
- 6. Adjust tube to the required frequency by setting the delay line voltage as per the setting curve delivered with each tube.
- 7. Adjust grid No.3 voltage for optimum power.

Switching off

On no account switch the delay line voltage off first since the tube can be damaged.

- 1. Switch off grid No.2 voltage (E_{c2})
- 2. Switch off remaining supply voltages

After long breaks in operation (some weeks), it is recommended that the tube be operated at the following reduced voltages before switching on the full operating voltages for about 2 hours.

 $E_{d1} \approx 1000 \text{ Vdc}$ $E_{c3} \approx 200 \text{ Vdc}$ $E_{c2} \approx 1000 \text{ Vdc}$ $E_{c1} \approx -70 \text{ Vdc}$
RWO 80

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE

Printed in Germany

RöK3512E/1.2.66

K1

SIEMENS AKTIENGESELLSCHAFT