

Power and Special Purpose Tubes

LIST OF ABBREVIATIONS AND SYMBOLS MICROWAVE TUBES Symbols Microwave Tubes

Symbols for Electrodes

B

SIEMENS

с	Collector
dl	Delay line
g	Grid, focusing electrode, accelerating electrode
h	Helix
i.C. (int con)	Internal connection
k	Cathode
р	Plate

Several grids, focusing and accelerating electrodes are numbered 1, 2, 3... according to their relative position from the cathode, the lowest number being closest to the cathode.

Symbols for Voltages

Eb	dc plate or collector voltage
eb	Plate pulse voltage
Ebb	dc plate or collector supply voltage
Ec	dc grid voltage, dc focusing voltage, dc accelerating voltage
ec	Grid pulse voltage
Ecc	dc grid, focusing or accelerating supply voltage
Edl	dc delay line voltage
E_{f}	Heater voltage
E _g	rms value of ac component of grid voltage
eg	Peak grid voltage
Eh	dc helix voltage
Ehk	Heater - cathode voltage
Eip	dc ion pump voltage
Ep	rms value of ac component of plate voltage with respect to cathode
ep	Peak plate voltage

Symbols Microwave Tubes

LIST OF ABBREVIATIONS AND SYMBOLS MICROWAVE TUBES

Symbols for Currents

Ib	dc plate or collector current
Ibo	Zero signal dc plate current
ib	Plate pulse current
Ic	dc grid current
	dc focusing current
	dc accelerating current
ic	Grid pulse current
Idl	Delay line current
I_{f}	Heater current
Ig	rms value of ac component of grid current
ig	Peak grid current
Ih	Helix current
ih	Peak helix current
Iip	dc ion pump current
Ik	dc cathode current
ik	Peak cathode current
Ip	rms value of ac component of plate current
ip	Peak plate current

Symbols for Power Values

Pd	Average drive power
Pd	Peak or pulse drive power
Pdl	Delay line power dissipation
Pd syn	Synchron drive power
Pg	Power dissipation of grid, focusing or accelerating electrode
Ph	Helix power dissipation
Pi	Power input (plate)
Po	Average power output
Po	Peak power output
P _{o syn}	Synchron power output
Pp	Plate or collector power dissipation
Psat	Saturation power

G

SIEMENS

LIST OF ABBREVIATIONS AND SYMBOLS MICROWAVE TUBES Symbols Microwave Tubes

Symbols for Capacitances

SIEMENS

Cin	Input capacitance
C _{mn}	Capacitance between the electrodes m and n
C _{mn/p}	Capacitance of electrodes m and n with respect to electrode p
Cout	Output capacitance

Symbols for Resistances

Rb	dc resistance of external plate or collector circuit (bypassed)
R _o	Resistance in series with grid
Rk	Resistance in series with cathode
Rp	Resistance in series with plate

Other Symbols

Du	The product of time of pulse and pulse repetition rate (Duty cycle)
F	Frequency
G	Gain
IM 2	2 tone intermodulation ratio
IM3	3 tone intermodulation ratio
NF	Noise factor
P	Pressure drop
Prr	Pulse recurrence rate
S	Transconductance
Т	Temperature
TA	Ambient temperature
TE	Envelope temperature
tk	Cathode - conditioning time, preheating time
Тъ	Collector or plate temperature
tp	Pulse duration
ŤM	Magnet system temperature
Tsurf	Surface temperature
V	Air flow rate
VSWR	Voltage standing wave ratio
a	Cold attenuation
μ	Amplification factor

Symbols Microwave

Tubes

LIST OF ABBREVIATIONS AND SYMBOLS MICROWAVE TUBES

SIEMENS

Dimensions

А	Amperes (may be either ac rms or dc)
a	Amperes (peak value)
Aac	ac amperes (rms)
ac	Alternating current
Adc	dc amperes
°C	Degrees centigrade
cm	Centimeter
cps (Hz)	Cycles per second
CW	Continuous wave
db	Decibels
dc	Direct current
Gc (GHz)	Gigacycles (kilomegacycles)
kc (kHz)	Kilocycles
kv	Peak kilovolts
kVdc	dc kilovolts
kW	kilowatts
kw	Peak kilowatts
if	Intermediate frequency
m	Meter or one - thousandth
m ³ /h	Cubic meter per hour
mA	ac (rms) or dc milliamperes
ma	Peak milliamperes
mAac	ac milliamperes (rms)
mAdc	dc milliamperes
Mc (MHz)	Megacycles
Meg	Megohms
min	Minutes
mm	Millimeter
ms	Milliseconds
rf	Radio frequency
rms	Root mean square
V	Volts (may be either ac rms or dc)
V	Volts, peak value
W	Watts
W	Peak watts
μAac	ac microamperes (rms)
μAdc	dc microamperes
μf	Microfarads
μs	Microseconds
μμf	Micromicrofarads

SIEMENS AKTIENGESELLSCHAFT

PLANAR TRIODE

Sachnummer Q00035-X3251

Design and Application

Air-cooled disk-seal triode of metal-ceramic design, for oscillators, frequency multipliers, and amplifiers up to approximately 7 Gc. With dissipations < 10 W, the tube may be operated without air cooling. The tube is designed for plug-in connection at one end and is therefore easily replaceable. This tube is also available without radiator under the type designation RH 7 C.

Dimensions in mm

	and the second		P
	min	max	
A	58.60	61.30	
В	34.80	36.50	
С	15.30	15.90	
D	23.80	24.80	
E	3.90	4.30	
F	4.80	5.80	
Н	18.00	19.20	
J	7.44	7.56	
K	29.60	31.10	
L	8.60	8,80	
M	22.60	23.40	
N	8.90	10.10	
P	16.90	19.80	
R	14.95	15.10	
S	10.70	11.00	
Т	12.95	13.10	
U	4.00	4.20	
W		0.60	
X		0.60	
Y	7.20	7.35	
AA	3.00	6.50	(1)
AB	11.60	15.00	(1)
AC	32.80	34.60	(1)
AD	19.50	28.50	(1)
TR		0.15	(2)
TU		0.3	(2)
TY		0.15	(2)

- (1) For connection of contact
 springs
- (2) Deviation from center

Weight: approx. 65 gm net, approx. 85 gm gross Dimensions of packing: 55 x 55 x 145 mm

1

Heating, Capacitances Characteristics

لي SIEMENS

Η	eating							
								4)
	Heater voltage	Ef	=		6.0		V	1)
	Heater current	If	*		0.8		A	
	indirect by AC, para	allel supply						
	Metal dispenser cath	node						
	-							
Ca	apacitances							
	G 11	C					C	
	Grid to cathode	Cgk	=		2.6 ± 0.6		μμΙ	
	Plate to grid	C gp	<		1.7.10.2		μμι	
	Flate to cathode	C_{pk}	=		24 ± 0.7		μμι	
	Dista to cathode	$C_{gk}(E_{f}=0.0V, I_{k}=0)$	<		5.4 0.7		μμι	
	Flate to Cathode	$C_{pk}(E_f = 0.0 \text{ V}, I_k = 0)$	Ξ		0.035		μμι	
CI	aracteristics							
				min	nom	max		
	Plate supply voltage	Epp	=		420		Vdc	
	Grid supply voltage	Ecc	=		+20		Vdc	
	Cathode resistor	Rk	=		390		ohms	;
	Plate current	Ib	=	55	60	65	mAdo	C
	Transconductance	Sm	=	13000	16000	20000	μmhc	S
	Amplification factor	μ	n		60			

(1) If the tube is operated as oscillator or amplifier with a cathode current of less than 70 mA, the heater voltage must be reduced to obtain maximum tube life. The curve below shows the minimum heater voltage as a function of the cathode current. The mean value of E_f over long periods of time should be on or above the curve, it should never exceed 6.1 V. The characteristics on Sheet K4 provide examples of the power output obtainable with reduced heater voltage. The heater voltage should be maintained within $\pm 2\%$ (absolute limits) of the value set.

Maximum Ratings | (absolute values)

	Plate voltage at zero Plate voltage Plate dissipation Negative grid voltage Grid dissipation Grid current	plate	curren	t Ebo Eb Pp -Ec +Ec Pg Ic	max max max max max max max		800 600 30 50 0 0.2 12		Vdc Vdc W Vdc Vdc W mAdc(1)
	Grid resistor			Rg P:	max		50000		ohms w (2)
	Cathode current			Ik	max		75		mAdc
	Peak cathode current	t		ik	max		250		madc
	Surface temperature			tsurf	max		180		oC
Ope	rating Characteristic	s							
	CW Oscillator								
	Frequency	F	=	4	4	4	6	6	Gc (3)
	Heater voltage	Ef	=	5.4	5.7	6.0	5.7	6.0	V
	Plate supply voltage	Ebb	=	260	320	420	320	420	Vdc
	Grid supply voltage	Ecc	=	+10	+20	+20	+20	+20	Vdc
	Cathode resistor	Rk	=	800	800	800	800	800	onms (-/
	Plate current	$I_{\mathbf{b}}$	=	20	45	60	45	60	mAdc
	Grid current	Ic	\approx	5	7	9	6	9	mAdc
	Power output	Po	=	0.4	1.7	4.5	0.65	1.8	W
	Frequency Doubler								
	Frequency	F	=		3/6				Gc
	Heater voltage	E_{f}	=		5.8				Vdc
	Plate supply voltage	Ebb	=		420				Vdc
	Grid supply voltage	Ecc	=		+20				Vdc
	Cathode resistor	Rk	=		1000				ohms (4)
	Power input	Pi	=		500				mW
	Plate current	Ib	Ξ		35				mAdc
	Grid current	Ic	*		3				mAdc
	Power output	Po	=		440				mW

- The specified value must not be exceeded even briefly (e.g. in tuning an oscillator).
- (2) For grounded-grid operation.
- (3) At frequencies above 5 Gc, rotation-symmetrical plate circuits must be used to avoid peripheral waves.
- (4) A variable cathode resistor of the specified rating must be used for adjusting the plate current to the specified value.

Frequency Tripler								
Frequency	F		=		2/6			Gc
Heater voltage	Ef		=		5.7			Vdc
Plate supply voltage	Ebb		=		420			Vdc
Grid supply voltage	Ecc		=		+20			Vdc
Cathode resistor	Rk		=		2000			ohms(1)
Power input	Pi		=		500			mW
Plate current	Ib		=		20			mAdc
Grid current	IC		*		1			mAdc
Power output	Po		=		130			mW
Amplifier								
<u>T</u>								
Frequency		F		=	1		3	Gc
Bandwidth		В		=	20	3	80	Mc
Heater voltage		E_{f}		=	6.0	6.	0	Vdc
Plate voltage		Eъ		=	400	40	00	Vdc
Plate current		Ib		=	60	6	0	mAdc
$Gain(P_0 < 1 W)$		G		=	14	1	4	db
Power output ($G = 10$	db)	Po		=	9		6	W

(1) A variable cathode resistor of the specified rating must be used for adjusting the plate current to the specified value.

Operating Instructions

Mounting

The tube should be mounted with the aid of adequately resilient spring contacts. It may be operated in any position. The reference edge (cf. dimensional drawing of the tube, page 1) is to serve at the same time as fitting edge.

Cooling

The maximum temperature at the surface of the tube is 180° C (absolute limit). To dissipate the heat from the radiator a sufficient air flow through a suitable air duct is necessary. The minimum air flow and associated air pressure required for an air duct having the dimensions indicated in the drawing can be determined from the diagram below.

As the constructional design of the ventilation system has to be adapted to the particular type of equipment in which the tube is used, it cannot be furnished as an accessory together with the tube.

If the tube is operated with a dissipation of less than 10 W in concentric coaxial circuits, the heat sink provided by the contact springs and the coaxial circuits is, as a rule, sufficient so that air cooling can be dispensed with.

RöK 3522 E/1.8.66

Characteristics $E_{kg} = f(E_{pg})$

SIEMENS

SIEMENS

SIEMENS AKTIENGESELLSCHAFT

Printed in Germany

RöK 3522 E / 1.8.66

PLANAR TRIODE

RH 7 C YD 1070 8413

S&H-Sach-Nr. Q00035-X3252

Design and Application

Ceramic disc-seal triode with contact cooling or air cooling for use as oscillator or amplifier up to approx. 7 Gc and as frequency multiplier up to approx. 9Gc.

This tube is also available with radiator under the type designation RH 6 C.

Dimensions in mm

	min.	max.	
А		48.40	
В	37.90	39.40	
D		9.00	
E	3.90	4.30	
F	4.80	5.80	
G	4.60	4.85	
Н	21.00	22.20	1
J		8.80	(1)
K	32.70	34.00	
L	8.60	8.80]
М		7.00	
R	8.80	8.90	
S	13.65	14.05	1
Т	12.95	13.10	1
U	4.00	4.20	1
W		0.60	1
Y	7.20	7.35]
AA	3.00	8.00	(2)
AB	14.80	18.20	(2)
AC	35.70	37.70	(2)
AD	23.00	32.00	(2)
TR		0.15	(3)
ΤU		0.30	(3)
ΤY		0.15	(3)

- (1) Admissible length of clamp contact
- (2) For connection of contact springs
- (3) Deviation from center

Weight: approx. 11 gm net, approx 30 gm gross Dimensions of packing: $55 \ge 55 \ge 145$ mm

RH 7 C 7D 1070 8413	Heating, Capac Characteris		SIEMENS	
Heating				
Heater voltage	Ef	=	6.0	Vac (1)
Heater current	If	~	0.8	А
Metal dispenser catho Capacitances	de			
Grid to cathode	Cak	=	2.6 + 0.6	μμf
Plate to grid	Cgp	=	1.7±0.2	μμf
Plate to cathode	Cpk	\leq	0.020	μμf
Grid to cathode	$C_{gk}(E_{f}=6, 0 V, I_{k}=0)$) =	3.4±0.7	μμf
Plate to cathode	$C_{pk}(E_{f}=6,0V,I_{k}=0)$) ≦	0.035	μμf
Characteristics				
		min	nom max	
Plate supply voltage	Ebb	=	420	Vdc
Grid supply voltage	Ecc	=	+ 20	Vdc
Cathode resistor	Rk	=	390	ohms
Plate current	Ib	= 55	60 65	mAdc
Transconductance	Sm	=13000	16000 20000	µmhos

(1) If the tube is operated as oscillator or amplifier with a cathode current of less than 70 mA, the heater voltage must be reduced to obtain maximum tube life. The curve below shows the minimum heater voltage as a function of the cathode current. The mean value of E_f over long periods of time should be on or above the curve, it should never exceed 6.1 V. The characteristics on Sheet K 4 provide examples of the power output obtainable with reduced heater voltage. The heater voltage should be maintained within $\frac{1}{2}$ % (absolute limits) of the value set.

2

60

2

Amplification factor

μ

Maximum Ratings, Operating Characteristics RH 7 C YD 1070 8413

Maximum Ratings	(absolu	te valu	ies)						
Plate voltage at zer Plate voltage Plate dissipation Negative grid volta Positive grid volta Grid dissipation Grid current Grid resistor Power intput Cathode current Peak cathode curre	o plate c ge ge ent e	urrent	Ebo Eb Pp -Ec Pg Ic Rg Pi Ik ik tsur	cf	max max max max max max max max max max	5(800 600 25 50 0.2 12 0000 1 75 250 180	Vdc Vdc Vdc Vdc W mAdc(2) ohms W (3) mAdc mAdc oC)
Operating Characteris	stics								
CW Oscillator									
Frequency Heater voltage Plate supply voltage Grid supply voltage Cathode resistor Plate current	F Ef Ebb Ecc Rk In		4 5.4 260 +10 800 20	4 5.7 320 +20 800 45	4 6.0 420 +20 800 60	6 5.7 320 +20 800 45	6 6.0 420 +20 800 60	Gc (4) Vdc Vdc ohms (5) mAdc)
Grid current Power output	I _c P _o	≈ =	5 0.4	7 1.7	9 4.5	6 0.65	8 1.8	mAdc W	
Frequency Doubler									
Frequency Heater voltage Plate supply voltag Grid supply voltage Cathode resistor Power input	F Ef Ebb Ecc Rk Pi	= = = =		3/ 5. 42 +2 100 50	6 8 0 0 0 0	4.5 5 4 + 10 5	5/9 5.8 120 -20 000 500	Gc Vdc Vdc ohms (5) mW)
Plate current Grid current Power output	I _b I _c P _o	= ≈ =		3 44	5 3 0	1	35 3 50	mAdc mAdc mW	

(1) For further informations see "Cooling" page 5

(2) The specified value must not be exceeded even briefly (e.g. in tuning an oscillator).

(3) For grounded-grid operation.

(4) At frequencies above 5 Gc, rotation-symmetrical plate circuits must be used to avoid peripheral waves.

(5) A variable cathode resistor of the specified rating must be used for adjusting the plate current to the specified value.

3

Frequency Tripler					
Frequency	F	=	2/6	3/9	Gc
Heater voltage	$\mathbf{E}_{\mathbf{f}}$	=	5.7	5.7	Vdc
Plate supply voltage	Ebb	=	420	420	Vdc
Grid supply voltage	Ecc	=	+20	+20	Vdc (1)
Cathode resistor	Rk	=	2000	2000	ohms (1)
Power input	P_i	=	500	500	mW
Plate current	Ib	=	20	20	mAdc
Grid current	Ic	=	1	1	mAdc
Power output	Po	Ξ	130	40	mW
Amplifier					
Frequency	F	=	1	3	Gc
Bandwidth	B	=	20	30	Mc
Heater voltage	Ef	=	6.0	6.0	Vdc
Plate voltage	Eb	=	400	400	Vdc
Plate current	Ib	=	60	60	mAdc
$Gain(P_0 < 1 W)$	G	=	14	14	db
Power output $(G = 10 db)$	Po	=	9	6	W

(1) A variable cathode resistor of the specified rating must be used for adjusting the plate current to the specified value.

4

Operating Instructions

Mounting

The tube should be mounted with the aid of adequately resilient spring contacts. It may be operated in any position. The reference edge (see dimensional drawing of the tube, page 1) is to serve at the same time as fitting edge. The evacuation tubulation must not be used as dc voltage lead.

Cooling

The heat must be removed from the plate by means of contact cooling. Particularly good thermal contact must be provided at a dissipation of approximately > 10 W. To convey the heat to the environment or to large metal parts, e.g. the chassis, it is recommended to clamp a suitable adapter to the plate connection. Under certain circumstances it may be practical to design the adapter as a radiator and to provide for additional air cooling. It may also be necessary to provide the cathode connection with a heat sink. In all applications it is essential that the maximum admissible temperature of 180° C (absolute limit) should not be exceeded at any point of the tube surface.

PH 7 C		C
KIT/C	Characteristics	H
YD 1070	$I_{\rm b} = f(E_{\rm c})$	SIEMENS
8413	D C	

RH 7 C YD 1070	Dimensions of lecher line plate circuits (typical values)	SIEMENS
0413		

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE

Printed in Germany

PLANAR TRIODE

S&H-Sach-Nr. Q00035-X5002

Design and Application

Air-cooled planar power triode of metal-ceramic design, for oscillators, modulators, mixers, amplifiers and frequency multipliers operating up to approx. 3.5 Gc.

Weight: Dimensions of package: approx 70 gm net

Table of dimensions									
(in mm)									
	min.	max.							
А	46.10	47.63	1						
В		38.96	1						
С		37.46	1						
D	32.74	33.76]						
E		28.83]						
F	23.35	23.80							
G	11.73	12.12							
H		1.02							
Ι	3.17	4.70							
J	19.31	20.98							
K	0.41	1.17							
L	31.34	32.11							
М	29.90	30.35	1						
N	26.03	26.39							
P		20.12							
R	16.63	16.97							
S		13.84	1						
Т	5.41	5.66							
U	8.00	8.26	1						
V		2.18	1						
W		2.54							
X		0.89							
Y	2.67	3.68	(1)						
Z	16.51	21.59							
AA	0.89	9.17	(2)						
AB	30.10	32.13	(2)						
AC	38.96	43.89	(2)						
AD	37.46	46.10	(2)						
NR		0.50	(3)						
NU		0.50	(3)						
RU		0.50	(3)						
TU		0.30	(3)						

- (1) Holes for extractor
- (2) Connection for contact surface
- (3) Center variation

approx 105 gm gro**ss** 55x55x145 mm

1

2 C 39 BA

Heating, Capacitances Characteristics, Maximum Ratings

Heating						
Heater voltage Heater current Preheating time	E _f I _f tı-	= = 2	(0.95 + 0 - 0	.10 .05	V (1 A min (2
indirect by ac or dc, par	allel supply	_				
Capacitances						
			min	nom	max	
Grid to cathode C_g/k Plate to grid C_a/g Plate to cathode C_g/k Grid to cathode C_g/k (E Plate to cathode C_g/k (E	E _f =6.0V,I _k E _f =6.0V,I _k	= = = = 0) = = 0) =	5.6 1.95	6.3 2.05 7.5	7.0 2.15 0.035 0.045	μμf μμf μμf μμf μμf
Characteristics						
			min	nom	max	
Plate voltage Cathode resistor	Eb R _k	=		600 30		Vdc ohm s
Plate current Transconductance Amplification factor	I _b S _m μ		60 20000	75 25000 100	95 30000	mAdc µmhos
Maximum Ratings (a	bsolute value	s for	f≦3 Gc)		
Plate voltage (unmodulate Plate voltage (100% modu Plate dissipation Grid negative bias	ed) Eb lated) Eb Pp -Ec	max max max max		1000 600 100 150		Vdc Vdc W Vdc
Peak grid negative bias Peak grid positive bias Grid current	-e _c e _c Ic	max max max		400 30 50		v v mAdc
Cathode current Bulb temperature	Pg Ik T	max max max		125 250		mAdc oC

- (1) In the interest of long tube life, the heater voltage should be matched to the required cathode current. Under dynamic operation, the back heating of the cathode which occurs at frequencies in the region of transit time must be compensated for by a reduction of heater voltage. Standard values should be taken from the curves on page 9 and the maximum heater voltage variation should not exceed ⁺ 5 %.
- (2) For pulsed operation, 6 V is normally required for preheating. For CW operation preheating should be effected at the voltage indicated in the curve on page 9 (f < 0.5 Gc). In case of power interruption up to 5 sec or CW operation with $E_b \stackrel{<}{=} 300$ Vdc and $I_k \stackrel{<}{=} 30$ mAdc, preheating is not necessary.

2

Operating Characteristics					
CW Oscillator	_				
Frequency Heater voltage Plate voltage	F E _f Eb	= =	2.5 4.5 600	2.5 4.5 800	Gc V Vdc
Plate current Grid current Power output	Ib Ic Po	= ≈ =	100 10 16	100 8 24	mAdc mAdc W
Frequency Doubler					
Frequency Heater voltage Plate voltage Negative grid voltage Power intput Plate current Power output	$F \\ E_{f} \\ E_{b} \\ -E_{c} \\ P_{i} \\ I_{b} \\ P_{o} $		1/2 5.6 400 15 1.5 55 5.2		Gc V Vdc Vdc W mAdc W
Special Tests and Ratings					
End of Life (1) Plate current Transconductance Power output	I _b S _m P _o		4 5 15000 10		mAdc µmhos W

Test conditions: I_b , S_m see Characteristics

 P_o see Operating Characteristics as CW oszillator when E_b = 600 Vdc

(1) The tubes satisfy the life tests according to MIL-E-1/1107. The life of the tube depends on the load and particularly on the tube temperature and the plate voltage. It is therefore recommended that the tube output required in each case be attained with the lowest possible plate voltage, and that the tube temperature be kept as low as possible by adequate cooling.

Operating Instructions

On account of the metal-ceramic design, the 2 C 39 BA, as compared with the 2 C 39 A, displays higher mechanical stability, smaller mechanical tolerances, improved thermal conductivity, smaller frequency spread, and higher power output.

This tube may be used advantageously wherever the power output of the 2C 39A is no longer sufficient and higher temperatures have to be expected.

Mounting

Where possible, the tube should be mounted in the coaxial resonators with the aid of adequately resilient spring contacts. The tube may be mounted in any position.

Cooling

The admissible maximum temperature at the outer surfaces of the tube is 250° C. For the removal of heat, the tube must be cooled with air. For maximum plate dissipation and assuming the use of an air duct of the dimensions indicated, an air current of approx. 350 ltr/min is required for cooling the radiator in the case of an inlet temperature of 25° C. If necessary, the other surfaces should be cooled as well with a gentle air current. As the constructional design of the ventilation system has to be adapted to the particular type of equipment in use, it cannot be furnished as an accessory together with the tube. The dimensions indicated in the diagram are recommended for the guiding piece for cooling the radiator.

RöK 3526E/1.8.66

Characteristics $I_{b} = f(E_{c}), I_{b}I_{c} = f(E_{b})$

2 C 39 BA

2 C 39 BA

2 C 39 BA

2C 39BA

RöK3526E/1.8.66

K4

Dimensions of Coaxial Resonators (Standard Values)

2 C 39 BA

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE

Printed in Germany

PLANAR TRIODE

7289

Sachnummer Q00035-X8001

Design and Application

Air-cooled disk-seal power triode of metal-ceramic design, for oscillators, modulators, mixers, amplifiers and frequency multipliers operating up to approx. 2.5 Gc, as well as for pulsed operation up to approx. 3.0 Gc. The shock and vibration resistance of the tube with its close electrical and mechanical tolerances replaces advantageously the planar triodes 3 CX 100 A 5, 2 C 39 A and 2 C 39 BA.

Weight:		
Dimensions	of	package:

approx 70 gm net

	(in mm)	
	min.	max.]
A	46.10	47.63	1
В		38.96	1
С		37.46	1
D	32.74	33.76	1
E		28.83	1
F	22.35	23.75	1
G	11.73	12.12	1
Η		1.02	
I	3.17	4.70	1
J	19.46	20.98	1
K	0.63	1.17	1
L	31.34	32.11	
M	29.97	30.35	
N	26.03	26.29]
Р		20.12	1
R	16.63	16.89	
S	12 IX	13.84	1
Ι	5.41	5.66	1
U	8.00	8.26	
V		2.18	Ī
W		2.54	
X		0.89	
Y	2.67	3.68	(1)
Z	16.51	21.59	(2)
AA	0.89	9.17	(2)
AB	30.10	32.13	(2)
AC	38.96	43.89	(2)
AD	37.46	46.10	(2)
NR		0.50	(3)
NU		0.50	(3)
RU		0.50	(3)
TU		0.30	(3)
(4) TT	1 (

Table of dimensions

(1) Holes for extractor

(2)Connection for contact surface

(3) Center variation

approx 105 gm gro**ss** 55x55x145 mm

7289	Characteristics		% Siemens				
Heating							
Heater voltage	Ef	=		6.0		V	(1)
Heater current	If	=	0	$.95^{+0.10}_{-0.05}$		А	
Preheating time	^t k	>=		1		min	(2)
indirect by ac or dc,	parall	el supp	ly				
Capacitances							
			min	nom	max		
Grid to cathode	Cgk	=	5.6	6.3	7.0	μμf	
Plate to grid	Cpg	=	1.95	2.05	2.15	μµf	
Plate to cathode	Cpk	=			0.035	μµf	
Characteristics							
			min	nom	max		
Plate voltage	Eb	=		600		Vdc	
Cathode resistor	Rk	=		30		ohms	
Plate current	Ib	=	60	75	95	mAdc	
Transconductance	Sm	=	20000	25000	30000	μmhos	8
Amplification factor	μ	~		100			

- (1) In the interest of long tube life, the heater voltage should be matched to the required cathode current. Under dynamic operation, the back heating of the cathode which occurs at frequencies in the region of transit time must be compensated for by a reduction of heater voltage. Standard values should be taken from the curves on page 9 and the maximum heater voltage variation should not exceed ± 5 %.
- (2) For pulsed operation, 6 V is normally required for preheating. For CW operation preheating should be effected at the voltage indicated in the curve page 9 (f < 0.5 Gc). In the case of power outages of up to 5 sec or CW operation with $E_b \leq 300$ Vdc and $I_k \leq 30$ mAdc, preheating is not necessary.

Operating Characteristics

CW Oscillator					
Frequency	F	=	2.5	2.5	Gc
Heater voltage	$\mathbf{E}_{\mathbf{f}}$	=	4.5	4.5	V
Plate voltage	Eb	=	600	800	Vdc
Plate current	Ib	=	100	100	mAdc
Grid current	Ic	*	10	8	mAdc
Power output	Po	=	16	24	W
Frequency Doubler					
Frequency	F	=		1/2	Gc
Heater voltage	E_{f}	=		5.6	V
Plate voltage	Eb	=		400	Vdc
Negative grid voltage	-Ec	=		15	Vdc
Power input	Pi	=		1.5	W
Plate current	Ib	=		55	mAdc
Power output	Po	=		5.2	W
Plate pulsed Oscillator					
Frequency	F	=		3.0	Gc
Heater voltage	E_{f}	=		5.8	V
Plate pulse voltage	еъ	=		3500	v
Pulse length	tp	=		3.0	μsec
Duty factor	Du	=	0.	0025	
Plate current	Ib	=		7.5	mAdc
Grid current	Ic	=		4.5	mAdc
Power output during pulse	Po	×		2	kw

3

Maximum Ratings

(absolute values)

$C \ \ensuremath{\mathbb{W}}$ Operation and grid pulsed operation

Frequency	F	max	2.5	Gc
Plate voltage (unmodulated)	Eb	max	1000	Vdc
Plate voltage (100 $\%$ modulated)	Eb	max	600	Vdc
Plate dissipation	Pp	max	100	W
Grid negative bias	-Ec	max	150	Vdc
Peak grid negative bias	-еЪ	max	400	v
Peak grid positive bias	еЪ	max	30	v
Grid current	Ic	max	50	mAdc
Grid dissipation	Pg	max	2	W
Cathode current	I_k	max	125	mAdc
Envelope temperature	ΤE	max	300	oC

Plate pulsed operation

Frequency	F	max	3.0	Gc
Plate pulse voltage	еЪ	max	3500	v
Grid negative bias	-Ec	max	150	V
Pe a k grid negative bias	-ec	max	750	v
Peak grid positive bias	ec	max	250	v
Plate pul s e current	ib	max	3	adc
Grid pulse current	ic	max	1.8	adc
Plate dissipation	Pp	max	27	W
Grid No. 2 dissipation	Pg	max	2	W
Pulse length	tp	max	3	μsec
Duty factor	Du	max	0.0025	
Envelope temperature	TE	max	300	°C

Operating Instructions

Mounting

Where possible, the tube should be mounted in the coaxial resonators with the aid of adequately resilient spring contacts. The tube may be mounted in any position.

Cooling

The admissible maximum temperature at the outer surfaces of the tube is $300 \, {}^{\circ}\text{C}$. For the removal of heat, the tube must be cooled with air. For maximum plate dissipation and assuming the use of an air duct of the dimensions indicated, an air current of approx. $350 \, \text{ltr/min}$ is required for cooling the radiator in the case of an inlet temperature of $25 \, {}^{\circ}\text{C}$. If necessary, the other surfaces should be cooled as well with a gentle air current. As the constructional design of the ventilation system has to be adapted to the particular type of equipment in use, it cannot be furnished as an accessory together with the tube. The dimensions indicated in the diagram are recommended for the guiding piece for cooling the radiator.

K1

SIEMENS

7289

Characteristics $P_{o} = f(F), E_{f} = f(I_{k})$

SIEMENS

SIEMENS

Characteristics $P_{o} = f(F_{out})$

SIEMENS AKTIENGESELLSCHAFT

Printed in Germany

7289

PLANAR TRIODE

S&H-Sach-Nr. Q00035-X4652

Design and Application

Air-cooled planar power triode of metal-ceramic design especially for use as a grid-pulsed or plate-pulsed oscillator, frequency multiplier or amplifier up to 3 Gc.

Special model of the 2 C 39 BA with matrix oxide cathode for increased pulse operation. The tube is a plug-in replacement for the 7815 R.

Image: contract surface Image: contract surface
Y Y

Weight: Dimensions of package: approx 70 gm net

	min.	max.	
A	46.10	47.63	
В		38.96	
С		37.46	
D	32.74	33.76	
F	23.35	23.80	
G	11.73	12.12	
Η		1.02	
Ι	3.17	4.70	
J	19.31	20.98	
K	0.41	1.17	
L	31.34	32.11	
М	29.90	30.35	
Ν	26.03	26.39	
Р	19.10	20.12	
R	16.63	16.97	
S		13.84	
Т	5.41	5.66	
U	8.00	8.26	
V		2.18	
W		2.54	
Х		0.89	
Y	2.67	3.68	(1)
Z	16.51	21.59	(2)
AA	0.89	9.17	$\left(\begin{array}{c} 2 \end{array} \right)$
AB	30.10	32.13	(2)
AC	38.96	43.89	(2)
AD	37.46	46.10	(2)
NR		0.50	(3)
NU		0.50	(3)
RU		0.50	(3)
TU		0.30	(3)
	And and a support of the support of		

Table of dimensions (in mm)

(1) Holes for extractor

(2) For connection of contact springs

(3) Center variation

approx 105 gm gro**ss** 55x55x145 mm

Heating

Heater voltage	Ef	=	6.0	v (1)
Heater current	If	=	1.05 ± 0.1	А
Preheating time	tk	≧	1	min

indirect by ac or dc, parallel supply Cathode: Matrix oxide cathode

Capacitances

			min	nom	max	
Grid to cathode	Cgk	=	5.6	6.3	7.0	μμf
Plate to grid	Cpg	=	1.95	2.05	2.15	μμf
Plate to cathode	Cpk	=			0.035	μµf

Characteristics

Plate voltage	Eb	=	600	Vdc
Cathode resistor	R_k	=	30	ohms
Plate current	Ib	=	70	mAdc
Transconductance	Sm	=	25000	µmhos
Amplification factor	μ	*	100	
Negative grid voltage($I_b = 1 \text{ mA}$)	-Ec	< =	15	Vdc

(1) In the interest of a long life. the heater voltage should be adapted to the required cathode current. The back-heating effect of the cathode occuring in the transit region after the tube has gone into oscillation, must be counterbalanced by reducing the heater voltage. This effect depends especially on the frequency, plate current, and duty factor. For application above 500 Mc the manufacturer must be consulted regarding the optimum heater voltage.

The heater voltage should not vary by more than ± 5 %.

Maximum Ratings

(absolute values)

Flate Fulsed Operation	Plate	Pulsed	Operation
------------------------	-------	--------	-----------

Frequency	F	max	3	Gc
Plate pulse voltage	еЪ	max	3500	vdc
Plate current	Ib	max	10	mAdc
Plate pulse current	ib	max	3	adc
Plate dissipation	Pp	max	100	W
Negative grid voltage	-Ēc	max	150	Vdc (1)
Grid current	Ic	max	5	mAdc
Grid dissipation	Pg	max	2	W
Pulse duration	tp	max	6	μ s ec ⁽²⁾
Duty cycle	Du	max	0.0033	(2)
Envelope temperature	TE	max	250	oC
Grid Pulsed Operation				
Frequency	F	max	3	Gc
Plate voltage	Eb	max	2000	Vdc
Plate current	Ib	max	10	mAdc
Plate pulse current	ib	max	3	adc
Plate dissipation	Pp	max	100	W
Negative grid voltage	-Ē _c	max	150	Vdc (1)
Grid current	Ic	max	5	mAdc
Grid dissipation	Pg	max	2	W
Pulse duration	tp	max	6	µsec (2)
Duty cycle	Du	max	0.0033	(2)
Envelope temperature	TE	max	250	oC
CW Operation and Pulse Ope	ration wi	th $E_{b} < 1000$	Vdc	
Frequency	F	max	3	Gc
Plate voltage	Eb	max	1000	Vdc
Plate voltage (100 % modulation	on) Eb	max	600	Vdc
Plate dissipation	Pp	max	100	V
Negative grid voltage	E _c	max	150	Vdc
NT / 1 1 1/			100	

Negative gild voltage	L C	max	100	vuc
Negative peak grid voltage	-ec	max	400	v
Positive peak grid voltage	ec	max	30	v
Grid current	Ic	max	50	mAdc
Grid dissipation	Pg	max	2	W
Cathode current	Ik	max	125	mAdc
Cathode current (100% plate				
modulation)	Ik	max	100	mAdc
Envelope temperature	TE	max	250	°C

(1) The grid to cathode voltage may momentarily rise to a maximum of + 250 to -750 V.

(2) In case of longer pulse length or of higher duty factor please consult the manufacturer.

3

Operating Characteristics

Grid Pulsed Amplifier

Frequency	F	=	1.1	Gc
Heater voltage	Ef	=	6.0	V
Plate voltage	Eb	=	1700	Vdc
Negative grid voltage	-Ec	=	45	Vdc
Pulse drive power	Pd	=	400	w
Pulse length	tp	=	3.5	μsec
Duty factor	Du	=	0.001	
Plate pulse current	ib	=	1.9	adc
Grid pulse current	ic	=	1.1	adc
Power output during pulse	e po	~	1500	W
Plate Pulsed Oscillator				
Frequency	F	=	2.5	kMc
Heater voltage	Ef	=	5.8	V
Plate pulse voltage	eb	=	3500	v
Pulse length	tp	=	5	μsec
Duty factor	Du	=	0.003	
Plate current	Ib	=	9	mAdc
Plate pulse current	ib	=	3	adc
Grid current	Ic	=	3	mAdc
Pulse power output	Po	~	2000	w

Operating Instructions

Mounting

It is advisable to mount the tube so that the contact areas shown as permissible on the dimensional drawing (sheet 1) are supported by sufficiently resilient contact collars in the coaxial circuitry. The reference edge as shown in the dimensional drawing must also be used as stop edge. No other stop edges are permissible. Should it be desirable to clamp the tube to the socket to avoid its jumping out as a result of shock or vibration, the clamping pressure should act only on the stop edge, the position of the tube being inconsequential.

Owing to the small electrode spacings and hence the relatively high field strength between electrodes, momentary flashover may occur especially in grid pulsed operation. To avoid damage to the tube, it is recommended to interpose a protective resistor in the plate lead for limiting the current peaks encountered with such flashover to a value not exceeding ten times value of the permissible maximum.

Another reason for recommending this protective measure is that during tuning the load may be higher than under normal operating conditions. This fact also makes it advisable to tune the tube at a lower anode voltage when operating it close to the permissible maximum ratings.

In a grounded-cathode circuit the output power shows a saturation with increasing input power, however, the grounded-grid circuit makes it possible to achieve a higher output power when the input power is further increased.

This will involve higher grid currents, higher cathode back-heating effect and distortion of the RF signal. Under normal operating conditions the mean grid current should not exceed 30 % of the mean cathode current. At higher operating frequencies a still lower percentage is recommended. The load must be correctly matched to the anode circuit.

Cooling

Maximum permissible temperature at the outer surfaces of the tube is 250° C. In the interest of long life it is recommended not to exceed the maximum permissible value of 250° C. For removing the heat, the tube must be air-cooled. With maximum plate dissipation and with use of an air duct of the specified dimensions, the rate of air flow for cooling the radiator at an incoming temperature of 25° C must be about 350 1/min. If necessary, the rest of the surface must also be cooled by a small air flow. As the constructive design of the cooling facilities has to be adapted to the particular equipment layout used, no supply of these as an accessory to the tube is provided for. For the duct for cooling the radiator the dimensions specified in the diagram are recommended.

Dimensions in mm

RöK3528E/1.8.66

Characteristics $i_{\rm k} = f(t_{\rm p})$

YD 1040

SIEMENS AKTIENGESELLSCHAFT

Printed in Germany

RöK 3528E/1.8.66

K2

Sachnummer Q00035-X4654

Design and Application

Conduction-cooled planar triode of metal-ceramic design especially for use as a grid-pulsed or plate-pulsed oscillator, frequency multiplier or amplifier up to 3 Gc .

The tube is a plug-in replacement for the 7815.

Weight: Dimensions of package:

approx 60 gm net

Table	of	dimensions
	(in	mm)

	min	max
А	46.10	47.63
В	1	38.96
С		37.46
D	32.74	33.76
F	23.35	25.65
G	11.73	12.12
H		1.02
Ι		4.70
J	19.46	20.98
K	10.85	11.35
L	21.34	21.84
М	29.97	30.35
N	26.03	26.29
P	19.10	20.12
R	16.63	16.89
S		13.84
Т	5.41	5.66
U	8.00	8.26
V		2.18
W		2.54
AA	0.89	9.17 (
AB	30.10	32.13 (
AC	38.96	43.89 (
AD	37.46	46.10 (
NR		0.50 (
NU		0.50 (
RU		0.50 (
TU		0.30 (

(1) For connection of contact springs

(2) Center variation

approx 95 gm gross 55 x 55 x 145 mm

Heating

(1)

V

A

min

	8			
	Heater voltage	E_{f}	=	6.0
	Heater current	I_{f}	=	1.05 <u>+</u> 0.1
	Preheating time	tk	≧	1
	indirect by ac or dc Cathode: Matrix oxid	, paralle e cathode	l supply	
C	apacitances			

				min	non	n	max	
Grid to cat	hode	Cgk	=	5.6	6.3	3	7.0	μµf
Plate to gr	id	Cgp	=	1.85	2.00)	2.10	μμf
Plate to ca	thode	C _{pk}	=			(0.035	μμf
Characteristic	C S							
Plate volta	ge	Eb	=		600)		Vdc
Cathode re	sistor	Rk	=		200)		ohms
Plate curre	ent	Iъ	=		25	5		mAdc
Transcondu	uctance	Sm	=		12500)		µmhos
Amplificati	on factor	μ	*		85	5		
Negative gr	rid voltage							
$(I_b = 1)$	mA)	-E _c	<=		15	5		Vdc

(1) In the interest of a long life, the heater voltage should be adapted to the required cathode current. The back-heating effect of the cathode occuring in the transit region after the tube has gone into oscillation, must be counterbalanced by reducing the heater voltage. This effect depends especially on the frequency, plate current, and duty factor. For application above 500 Mc the manufacturer must be consulted regarding the optimum heater voltage.

The heater voltage should not vary by more than ± 5 %.

Maximum Ratings

Maximum Ratings

(absolute values)

Plate Pulsed Operation

Frequency	F	max	3	Gc
Plate pulse voltage	ep	max	3500	vdc
Plate current	Ib	max	10	mAdc
Plate pulse current	ip	max	3	adc
Plate dissipation	Pp	max	10	W $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$
Negative grid voltage	-Ec	max	150	Vdc (2)
Grid current	Ic	max	5	mAdc
Grid dissipation	Pg	max	2	W
Pulse duration	tp	max	6	µsec (3)
Duty factor	Du	max	0.0033	(3)
Envelope temperature	TE	max	250	°C
Grid Pulsed Operation				
Frequency	F	max	3	Gc
Frequency Plate voltage	F	max	3	Gc Vdc
Frequency Plate voltage Plate current	F Eb Ib	max max max	3 2000 10	Gc Vdc mAdc
Frequency Plate voltage Plate current Plate pulse current	F Eb Ib	max max max max	3 2000 10 3	Gc Vdc mAdc adc
Frequency Plate voltage Plate current Plate pulse current Plate dissipation	F Eb Ib ip Pr	max max max max max	3 2000 10 3 10	Gc Vdc mAdc adc W (1)
Frequency Plate voltage Plate current Plate pulse current Plate dissipation Negative grid voltage	F Eb Ib ip Pp -Ec	max max max max max max	3 2000 10 3 10 150	Gc Vdc mAdc adc W (1) Vdc (2)
Frequency Plate voltage Plate current Plate pulse current Plate dissipation Negative grid voltage Grid current	F Eb Ib Pp -Ec Ic	max max max max max max max	3 2000 10 3 10 150 1.8	Gc Vdc mAdc adc W (1) Vdc (2) mAdc
Frequency Plate voltage Plate current Plate pulse current Plate dissipation Negative grid voltage Grid current Grid dissipation	F Eb Ib ^{ip} Pp -Ec Ic Po	max max max max max max max max	3 2000 10 3 10 150 1.8 2	Gc Vdc mAdc adc W (1) Vdc (2) mAdc W (2)
Frequency Plate voltage Plate current Plate pulse current Plate dissipation Negative grid voltage Grid current Grid dissipation Pulse duration	F Eb Ib ip Pp -Ec Ic Pg tp	max max max max max max max max	3 2000 10 3 10 150 1.8 2 6	Gc Vdc mAdc adc W (1) Vdc (2) mAdc W µsec (3)
Frequency Plate voltage Plate current Plate pulse current Plate dissipation Negative grid voltage Grid current Grid dissipation Pulse duration Duty factor	F Eb Ib ip Pp -Ec Ic Pg tp Du	max max max max max max max max max	3 2000 10 3 10 150 1.8 2 6 0,0033	Gc Vdc mAdc adc W (1) Vdc (2) mAdc W µsec (3) (3)
Frequency Plate voltage Plate current Plate pulse current Plate dissipation Negative grid voltage Grid current Grid dissipation Pulse duration Duty factor Envelope temperature	F Eb Ib ip Pp -Ec Ic Pg tp Du TE	max max max max max max max max max max	3 2000 10 3 10 150 1.8 2 6 0,0033 250	Gc Vdc mAdc adc W (1) Vdc (2) mAdc W µsec (3) (3) oC

CW Operation and Pulse Operation with $E_b < 1000 Vdc$

Frequency	F	max	3	Gc
Plate voltage	Eb	max	1000	Vdc
Plate voltage (100 % modulation)	Eb	max	600	Vdc ,
Plate dissipation	Pn	max	10	W (1)
Negative grid voltage	EC	max	150	Vdc
Negative peak grid voltage	-ec	max	400	v
Positive peak grid voltage	ec	max	30	v
Grid current	IC	max	50	mAdc
Grid dissipation	Pø	max	2	W
Cathode current	Ik	max	125	mAdc
Cathode current (100 % plate	Ik			
modulation)		max	100	mAdc
Envelope temperature	ΤE	max	250	°C

(1) The dissipation may amount up to 100 W in case of an adequate cooling of the tube, so that the maximum admissible envelope temperature of 250 °C at the hottest spot of the tube will not be exceeded (see page 5 "Cooling")

(2) The peak to cathode voltage may momentarily rise to a maximum of + 250 to - 750 V.

(3) In case of longer pulse length or of higher duty factor please consult the manufacturer •

3

Operation Characteristics Operating Instructions

0	perating Characteristics				
	Grid Pulsed Amplifier				
	Frequency	F	=	1.1	Gc
	Heater voltage	Ef	=	6.0	V
	Plate voltage	Eb	=	1700	Vdc
	Negative grid voltage	-E	=	45	Vdc
	Pulse drive power	Pd	=	400	w
	Pulse length	tp	=	3.5	µsec
	Duty factor	Du	=	0.001	
	Plate pulse current	ib	Ξ	1.9	adc
	Grid pulse current	ic	=	1.1	adc
	Pulse power output	Ро	~	1500	w
	Plate Pulsed Oscillator				
	Energioneur	F	_	2 5	Ge
	Heater weltage	F	_	5.8	V
	Plate pulse voltage		_	3500	v
	Plate pulse voltage	еb	_	5	USEC
	Pulse length	^c p	_	0.003	μσεε
	Duty factor	Du	_	0.005	mAde
	Plate current	¹ b	_	3	adc
	Crid current	±b T	_	3	mAde
	Dulse nower output	¹ C	~	2000	w
	r arse hower outhat	Po		1000	

Operating Instructions

Mounting

It is advisable to mount the tube so that the contact areas shown as permissible on the dimensional drawing (sheet 1) are supported by sufficiently resilient contact collars in the coaxial circuitry. The reference edge as shown in the dimensional drawing must also be used as stop edge. No other stop edges are permissible. Should it be desirable to clamp the tube to the socket to avoid its jumping out as a result of shock or vibration, the clamping pressure should act only on the stop edge, the position of the tube being inconsequential.

Owing to the small electrode spacings and hence the relatively high field strength between electrodes, momentary flashover may occur especially in grid pulsed operation. To avoid damage to the tube, it is recommended to interpose a protective resistor in the plate lead for limiting the current peaks encountered with such flashover to a value not exceeding ten times value of the permissible maximum.

Cooling

Sufficient conduction or air cooling must be provided to ensure that the maximum body temperature of 250 °C is not exceeded under all operating conditions. In the interest of long tube life it is advisable to increase the air flow rate such that the body temperature remains well below the maximum limit of 250 °C. Tube reliability will be seriously impaired if the maximum temperature is exceeded.

The collector dissipation power can also be conducted away to some form of external cooling circuit, for example copper bands connected to large metallic surfaces such as the equipment chassis. A heat sink with radiator fins may also be used. An insulator must be used to electrically isolate the collector from the cooling arrangement. Because of their high thermal and low electrical conducturity. Beryllium or Aluminium Oxide ceramic are particularly suitable materials. It is in any case necessary to provide adequate thermal contact between the various of the cooling system.

Adequate heat conduction from the grid and cathode connections may also be necessary.

SIEMENS AKTIENGESELLSCHAFT

Printed in Germany

RöK3529E/1.10.66

Design and Application

Planar power triode of metal-ceramic construction for oscillators, mixers and amplifiers up to approx. 3 Gc. Special features of this tube provided with a metal capillary dispenser cathode include high current rating and insensitivity against back heating even at high operating frequencies. Therefore the YD 1042 is especially suited for use at CW operation with high amplitudes of the input signal and at pulse operation with high duty factors (e.g. PPM or PCM operation). In its mechanical dimension the YD 1042 is equivalent to the 2 C 39 BA. The tube is designed for air cooling.

Weight: appr	ox	. 70	gm	net,	a	ppi	°OX	. 10	05	gm	gross
Dimensions	of	pack	age	: 55	x	55	x	145	m	m	

	(in mm)	
	min	max	
A	46.10	47.63	
В		38.96	
C		37.46	
D	32.74	33.76	
E		28.83	
F	22.35	23.80	
G	11.73	12.12	
Η		1.02	
I	3.18	4.70	
J	19.46	20.98	
K	0.64	1.17	
L	31.34	32.11	
M	29.90	30.35	
N	26.04	26.29	
P		20.12	
R	16.64	16.97	
S		13.84	
Т	5.41	5.66	
U	8.00	8.26	
V		2.18	
W		2.54	
X		0.89	
Y	2.67	3.68	(1
Z	16.51	21.59	
AA	0.89	9.17	(2
AB	30.10	32.13	(2
AC	38.96	43.89	(2
AD	37.46	46.10	(2
NR		0.50	(3
NU		0.50	(3
RU		0.50	(3
TU		0.30] (3

(1) Holes for Extractor

(2) For connection of contact springs

(3) Center variation

1

Heating

	Heater voltage	$\mathbf{E_{f}}$	=	6.0 + 2 %	Vac				
	Heater current	I_{f}	*	1.3	Aac				
	indirect by ac, parallel supply								
	Metal capillary dispens	ser catho	de						
C	Capacitances								
L									
	Grid to cathode	Cgk	=	6.8	μμf				
	Plate to grid	Cpg	=	2	μμf				
	Plate to cathode	Cpk	< <	0.035	μμf				
C	Characteristics								
	Plate voltage	Eb	Ξ	600	Vdc				
	Cathode resistor	Rk	=	30	ohms				
	Plate current	Ib	=	75	mAdc				
	Transconductance	Sm	Ŧ	25000	μmhos				
	Amplification factor	μ	*	100					
	Negative grid voltage	-Ec	=	15	Vdc				

 $(I_b = 1 \text{ mAdc})$

& SIEMENS

Maximum Ratings Operating Characteristics

RF-Amplifier, Class B, Grounded Grid

Maximum Ratings

(absolute values)

Frequency	F	< =	3	Gc
Plate voltage	Eb	max	1200	Vdc
Plate dissipation	Pp	max	120	W
Grid negative bias	-E _c	max	150	Vdc
Peak grid negative bias	-ec	max	400	v
Peak grid positive bias	ec	max	25	v
Grid current	Ic	max	30	mAdc
Grid dissipation	Pg	max	1.5	W
Cathode current	Ik	max	400	mAdc
Bulb temperature	TE	max	250	°C

Operating Characteristics

Frequency	F	=	2.3	Gc
Heater voltage	$\mathbf{E}_{\mathbf{f}}$	=	6.3	V
Plate voltage	Eb	=	1000	Vdc
Negative grid voltage	-E _c	=	15	Vdc
Plate current	Ib	=	135	mAdc
Grid current	Ic	=	18	mAdc
Power output	Po	Ξ	50	W
Drive power	Pd	=	5	W
Plate dissipation	Pp	=	85	W
Bandwidth	В	=	25	Mc

3

Operating Instructions

Mounting

Where possible, the tube should be mounted in the coaxial resonators with the aid of adequately resilient spring contacts. The mounting position is optional.

Cooling

The admissible maximum temperature at the outer surfaces of the tube is 250 °C. For the removal of heat, the tube must be cooled with air. For maximum plate dissipation and assuming the use of an air duct of the dimensions indicated, an air current of approx. $425 \, ltr./min$ is required for cooling the radiator in the case of an inlet temperature of 25 °C. If necessary, the other surfaces should be cooled as well with a gentle air current. As the constructional design of the ventilation system has to be adapted to the particular type of equipment in use, it cannot be furnished as an accessory together with the tube. The dimensions indicated in the diagram are recommended for the guiding piece for cooling the radiator.

K1

RöK 3531 E / 1.11.66

Plate and cathode tuning curves (approximate values)

42

SIEMENS AKTIENGESELLSCHAFT

Printed in Germany

PLANAR TRIODE

YD 1050

Sachnummer Q00035-X4653

Design and Application

Air cooled planar power triode of metal-ceramic design especially for use as oscillator, frequency multiplier or amplifier up to 2.5 Gc esp. for use as preamplifier, driver or output stages in telivision transposers.

Weight: Dimensions of package approx 70 gm net

Table of dimensions						
	(in mm)				
<u></u>	min	max				
A	46.10	47.63				
В		38.96				
С		37.47				
D	32.74	33.76				
E		28.83				
F		23.75				
G	11.73	12.12				
Η		1.02				
I	3.18	4.70				
J	19.31	20.98				
K	0.64	1.17				
L	31.34	32.11				
Μ	29.90	30.35				
N	26.04	26.39				
Р		20.12				
R	16.64	16.97				
S		13.84				
Т	5.41	5.66				
U	8.00	8.26				
V		2.18				
W		2.54				
Х		0.89				
Y	2.67	3.68	(1)			
Z	16.51	21.59	(1)			
AA	0.89	9.17	(2)			
AB	30.10	32.13	(2)			
AC	38.96	43.89	(2)			
AD	37.47	46.10	(2)			
NR		0.50	(3)			
NU		0.50	(3)			
RU		0.50	(3)			
TU		0.30	(3)			

(1) Holes for extractor

(2) For connection of

contact springs (3) Center variation

approx 105 gm gross 55x55x1**4**5 mm

Heating

Heater voltage	E_{f}	=	6.0	v	(1)
Heater current	I_{f}	=	0.9 to 1.05	А	
Preheating time	tk	2	1	m in	(2)

indirect by ac or dc, parallel supply

Cap**a**citances

			min	max	
Grid to cathode	Cgk	=	6.3	7.0	μμf
Plate to grid	Cpg	=	2.2	2.5	μμf
Plate to cathode	Cpk	=		0.045	μµf

Characteristics

			min	nom	max	
Plate voltage	Eb	=		500		Vdc
Cathode resistor	Rk	=		30		ohms
Plate current	Ib	=	83	100	125	mAdc
Transconductance	Sm	=	22000	27000	32000	μmhos
Amplification factor	μ	*		60		

- (1) In the interest of a long life, the heater voltage should be adapted to the required cathode current. The back-heating effect of the cathode occuring in the transit region after the tube has gone into oscillation, must be counterbalanced by reducing the heater voltage. Standard values are shown on curve page 7. The heater voltage should not vary by more than ± 5 %. (ref. to 6.0 V)
- (2) For mains supply failures up to 5 sec, or when the tube is CW operated at $E_b \leq 300$ V and $I_k \leq 30$ mA, the preheating time can be omitted.

Operation Characteristics						
CW Operation						
Frequency	F	=	0.5		2.5	Gc
Heater voltage	E_{f}	=	5.8		4.8	V
Plate voltage	Eb	=	600		600	Vdc
Plate current	Ib	=	80		100	mAdc
Grid current	I	æ	25		6	mAdc
Pulse power output	Po	=	26		16	w
TV Frequency Transpose: Signals	r, Ban	d V, (Common	Transmis	sion of Audio an	nd Video
Frequency	F	=		700		Gc
Heater voltage	Ef	=		5.6		V
Plate voltage	Eb	=		800		V
Negative grid voltage	-Ec1	=		8		μsec
Zero plate current	Ibo	=		80		mAdc
Plate current	Ib	=		95		mAdc
Synchron power output	Posy	n=		10	(IM3 > 51 db)	W (1, 2, 3, 4)
Synchron power input	Pdsy	nmax		1	(IM3 > 60 db)	W (2)
Gain	G	=		14		db

Maximum Ratings

(absolute values)

CW Operation and Pulse Operation with $E_b < 1000 \text{ Vdc}$

Plate voltage	E	max	850	Vdc
Thate voltage	D	1110072	400	TAT
Plate dissipation	Pp	max	100	٧V
Negative grid voltage	-Êc1	max	150	Vdc
Negative peak grid voltage	-ec1	max	4 00	v
Positive peak grid voltage	ec1	max	25	v
Grid current	Ic1	max	50	mAdc
Grid dissipation	Pg	max	2	W
Cathode current	Ik	max	125	mAdc
Envelope temperature	TE	max	250	°C

(1) Power output at 85 % circuit efficiency

- (2) IM3 third order intermodulation radio measured according to the ARD specification 5/6
- (3) With 9 Mc 1 db bandwidth
- (4) Visual to aural carrier separation 7 db

Operating Instructions

Mounting

It is advisable to mount the tube so that the contact areas are supported by sufficiently resilient contact collars in the coaxial circuitry. The tube may be mounted in any position.

Cooling

Maximum permissible temperature at the outer surfaces of the tube is 250 °C. For removing the heat, the tube must be air-cooled. With maximum plate dissipation and with use of an air duct of the specified dimensions, the rate of air flow for cooling the radiator at an incoming temperature of 25 °C must be about 350 1/min. With respect to the life time of the tube it is recommended however, to increase the rate of airflow so that the plate temperature is kept below the maximum permissible temperature of 250 °C as far as possible. If necessary, the rest of the surface must also be cooled by a small air flow. As the constructive design of the cooling facilities has to be adapted to the particular equipment layout used, no supply of these as an accessory to the tube is provided for. For the duct for cooling the radiator the dimensions specified in the diagram are recommended.

Characteristics $I_{b} = f(E_{c}), I_{c} = f(E_{b})$

YD 1050

Characteristics $P_{o} = f(F)$

RöK 3530E / 1.11.66

Characteristics $P_{O} = f(F)$

& SIEMENS

RöK 3530E / 1.11.66

& SIEMENS

T

Dimensions of Coaxial Resonators (typical values)

SIEMENS

SIEMENS AKTIENGESELLSCHAFT

Printed in Germany

RöK 3530E/1.11.66

PLANAR TRIODE

Order No. Q35-X4651

Design and Application

Planar triode of metal ceramic design with contact cooling for use as oscillator or amplifier up to approx. 5 GHz and as frequency multiplier up to approx. 7 GHz, esp. for use as TV transposer and as driver tube for the YL 1042.

Table	of	dime	ensions
	(in	mm)

			1
	min	max	
А		48.40]
В	37.90	39.40	
D		9.00	ĺ
E	3.90	4.30	Ι
F	4.80	5.80]
G	4.60	4.85	
Η	21.00	22.20	
J		8.80	(1)
K	32,70	34.00	
L	8.60	8.80	
M		7.00	Ī
R	8.80	8.95]
S	13.65	14.05	
Т	12.95	13.15	1
U	4.00	4.20	1
W		0.60]
Y	7.20	7.40	
AA	3.00	8.00	(2)
AB	14.80	18.20	(2)
AC	35.70	37.70	(2)
AD	23.00	32.00	(2)
TR		0.15	(3)
TU		0.30	(3)
ТΥ		0.15	(3)

(1) Admissible length of clamp contact

(2) For connection of contact springs

(3) Center variation

Weight: approx. 11 gm net, Dimensions of packing: 55 x 55 x 145 mm (2 1/8" x 2 1/8" x 5 3/4") approx. 30 gm gross

1

16000

70

8.5

Heating, Capacitances, Characteristics

Heating				
Heater voltage	E_{f}	=	6.0	V (1)
Heater current	If	~	0.33	А
indirect by ac or dc. Oxide cathode	, parallel supply			
Capacitances				
Grid to cathode	Cgk	=	2.8	μμf
Plateto grid	C _{pg}	=	1.75	μμf
Plate to cathode	C _{pk}	< .	0.025	μμf (2)
Grid to cathode	C_{gk} (Ef=6.0 V, Ik=0)	=	3.4	μμf
Plate to cathode	C_{pk} (Ef=6.0 V,Ik=0)	< -	0.035	μμf (3)
Characteristics				
Plate voltage	Eb	=	250	Vdc
Cathode resistor	R _k	=	75	ohms
Plate current	Ib	=	25	mAdc

(1) The heater voltage variation should not exceed ± 5 %. Once the desired operating output power has been reached it is advisable in the interests of long tube life to compensate the back heating effects by reducing the heater voltage to the appropriate value given in the data. If operating points other than those given in the data are required, the tube manufacturer should be consulted.

~

~

(2) Average value 0.0165 µµf

Sm

NF

Transconductance

Noise factor

(F = 800 MHz)

Amplification factor μ

(3) Average value 0.027 µµf

2

YD 1100 8859

µmhos

db

Maximum Ratings Operating Characteristics

RF-Amplifier and CW Oscillator with $P_0 = 2$ Watts

Maximum Ratings								
Plate voltage		Eb		max		450		Vdc
Plate dissipation	L	Pp		max		15		W
Negative grid vol	ltage	-Ec1		max		70		Vdc
Grid current		Ic		max		6		mAdc(1)
Grid resistor		Rg		max		50000		ohms
Cathode current		Ik		max		30		mAdc
Surface tempera	ture	Tsurf		max		180		°C
Operating Characte	ristics							
Frequency		F		11		2		GHz
Heater voltage		E_{f}		=		5.6		Vdc
Plate voltage		Eb		=		250		Vdc
Cathode resistor		Rk		=		150		ohms (2)
Plate current		Ib		=		22		mAdc
Grid current		Ic		*		5		mAdc
Power output		Po		*		2		W
Linear Amplifier	r							
Maximum Ratings								
Plate voltage		Eb		max		450		Vdc
Plate dissipation	L	Pp		max		15		W
Negative grid vo.	ltage	$-\dot{E}_{c1}$		max		70		Vdc
Grid current		Ic		max		3		mAdc
Grid resistor		Rg		max		50000		ohms
Cathode current		Ik		max		35		mAdc
Surface tempera	ture	Tsurf		max		180		°C
Operating Characte	ristics	as TV Tra	anspose	r, Ban	d V, cor	nmon visua	l and a	ural
Frequency		F		=	750			MHz
Heater voltage		Ef		=	5.8			Vdc
Plate voltage		Eh		=	400			Vdc
Negative grid vol	ltage	-Ec1		=	3.5			Vdc
Zero signal plate	current	Iho		=	30			mAdc
Plate current		Ib		=	32			mAdc
Synchronpowero	utput	Posyn		>	1.25	(IM3 > 51 c	lb)	W(3, 4, 5, 6)
Synchron power	input	Pdsyn		*	60	(IM3 > 60 d	lb)	mW(4)
Gain		G		*	13.5	,		db

(1) The specified value must not be exceeded briefly e.g. in tuning the oscillator

- (2) A variable cathode resistor of the specified rating must be used for adjusting the plate current to the specified value
- (3) With 85 % circuit efficiency (at the band pass filter output)
- (4) IM3 third order intermodulation ratio
- (5) Visual to aural carrier separation 7 db

(6) With 9 MHz 1 db bandwidth

Operating Instructions

In the transit time region the life of a planar triode depends to a great extent on the degree of back bombardement of the cathode. It is therefore advisable to obtain the required power output from class A or AB operation wherever possible. At higher frequencies and in class C operation increased back-heating and thus reduction in life must be expected. The manufacturer should be consulted for optimum operating condition in Class AB or C service.

Also, attention is drawn to curve k5. The upper curve only applies to rf powers of less than 100 mW and static operation, the other curves to the maximum possible powers (P_0 inversaly proportionally to E_f).

Because of small electrode spacing and thus relatively high field strengths between the electrodes, short-duration flashover can occur particularly if the tube is grid pulsed. To prevent tube damage, a series protection resistor should be included in the plate supply which limits any current peaks thereby occuring to less than ten times (10 x) the maximum admissible value.

This protective measure also serves another purpose, namely to prevent an overload during the tuning process. For this reason it is also advisable to tune the circuit at a lower plate voltage if the tube is normally operated near the maximum ratings. Whereas the input/output characteristic of the grounded cathode stage tends to saturation, in the grounded grid circuit a further increase of input power results in a rise of output power, producing higher grid currents, cathode back-heating and distortion of the rf signal. Normally the average grid current should not exceed 30 % of the average cathode current, whereby with increasing frequency this percentage should be even lower. The load impedance must be correctly matched to the plate circuit.

Mounting

The tube is best held by sufficiently elastic contact springs in the concentric cavity contacting on the surfaces as indicated in the dimensional drawing page 1. If the tube must be fixed rigidly to prevent it jumping out of the resonator under adverse conditions, only the surface indicated in the drawing on page 1 should be used for this purpose. The mounting position is optional.

Cooling

4

The anode is conduction cooled. Sufficient heat conduction away from the cathode contact, as normally provided by the cavity resonator, should also be ensured. In any case the limiting factor is the requirement that the maximum temperature of 180 °C (absolute value) is not exceeded at any point on the tube surface. The radiator suitable natched to the cavity can also be fixed to the anode, and here the thermal contact at the junction must be good.

RöK 3513E/1.10.69

Characteristics $E_{kg} = f (E_{pg})$

YD 1100 8859

YD 1100 8859

5

YD 1100 8859

SIEMENS AKTIENGESELLSCHAFT

Printed in West Germany

RöK 3513 E/1.10.69

POWER TETRODE for Linear Amplifier

YL 1042

Sachnummer Q00051-X1042

Design and Application

Metal-ceramic, forced-air cooled, planar tetrode with crossed wire grids, cut off frequency 2 Gc. Particularly suited for use in HF SSB communication transmitters and linear amplifiers in TV transposers with concurrent visual and aural amplification. The YL 1042 can also be used as driver tube for the YL 1050. Due to its stability under severe shock and vibration the tube is ideal for use in mobile equipment.

Table	of	dimensions
(in	mm)

	min	nom	max
A	46.4	48.0	49.6
В	27.4	29.0	30.6
С	25.3	26.3	27.3
D	8.9	9.5	10.1
E	3.6		
F	4.2		
Η	3.9	4.5	5.1
J	3.0		
K			1.3
L	31.5	31.8	32.0
M	27.6		
Ν	25.0		
Р	18.7		
Q			6.6
R	12.4		

Weight: approx. 60 gm net Mounting position: any

The radiator and connections lie inside or outside concentric circles with the following diameters:

Radiator:	inside	33.4	mm Ø
Plate connection:	inside	28.4	mm Ø
g2-connection:	inside	25.9	mm Ø
g1-connection:	inside	19.4	mm Ø
Cathode connection:	inside	13.2	mm Ø
Heater connection:	outside	6.0	mm Ø

YL 1042

Heating					
Heater voltage	E_{f}	=	6.3	V	(1)
Heater current	I_{f}	*	1.05	A	
Preheating time	tk	>=	1	min	
indirect by ac or dc					
Matrix oxide cathode					
Capacitances					
Grid No. 1 to cathode, heater	C _{g1/kf}	=	10	μμf	
Grid No. 1 to grid No. 2	Cg1g2	=	15	μμf	
Grid No. 2 to plate	Cg2p	=	3.75	μμf	
Grid No. 1 to plate	Cg1p	<=	0.03	μμf	
Grid No. 2 to cathode, heater	C _{g2/kf}	< =	0.2	μμf	
Plate to cathode, heater	$C_{a/kf}$	≤ =	0.01	μμf	
Characteristics					
Plate voltage	Eb	. =	1000	Vdc	
Grid No. 2 voltage	E _{c2}	=	200	Vdc	
Plate current	Ib	=	125	mAdc	
Transconductance	Sm	=	20	mA/V	
Amplification factor of grid	µg2g1	*	18		
No. 2 with respect to grid No. 1					

(1) If the maximum variation of the heater voltage exceeds the absolute limits of \pm 5 % the operating performance of the tube will be impaired and its life shortened.

Maximum Ratings

(absolute values)

Frequency	F	\leq	1250	Mc	(1)
Plate voltage	Eb	max	1000	Vdc	
Screen voltage	E _{c2}	max	330	Vdc	
Negative grid No. 1 voltage	-Ec1	max	75	Vdc	
Cathode current	Ik	max	180	mAdc	
Plate dissipation	Pp	max	115	W	(2)
Screen grid input power	Pig2	max	2	W	
Grid No. 1 current	I _{g1}	max	16	mAdc	
Grid grid No. 1 resistor	R _{g1}	max	30000	ohms	
Surface temperature	Tsurf	max	250	oC	

Typical Operation

single side band modulation with suppressed carrier single tone (3), grounded cathode, class AB₁

Frequency	F	=	60	Mc	
Heater voltage	Ef	=	6.3	V	
Power output	Po	=	55	W	(4)
Plate voltage	Eb	=	1000	Vdc	
Screen voltage	E _{c2}	=	300	Vdc	
Negative grid No. 1 voltage	-Ec1	=	14	Vdc	
Zero signal plate current	Ibo	=	40	mAdc	(5)
Plate current	Ib	=	120	mAdc	
Power input	Pi	=	120	W	
Plate dissipation	Pp	*	60	W	(2)

Typical Operation

television transmitter with common transmission of audio and video signals, grounded grid, class AB1

Frequency	F	=	860	Mc
Heater voltage	Ef	=	6.3	V
Synchron power output	Posyn	\geq	15 (IM3 > 51 db)	W (6,7,8,9)
Synchron power input	Pd syn	=	0.6 (IM3 > 60 db)	$_{\mathrm{W}}$ (7)
Plate voltage	Eb	=	900	Vdc
Screen voltage	Ec2	=	300	Vdc
Negative grid No. 1 voltage	- Ec1	=	10	Vdc
Zero signal plate current	Ibo	=	100	mAdc
Plate current	Ib	=	120	mAdc
Power input	Pi	=	108	W
Gain	G	≧	13.5	db

(1) Maximum ratings for operation with higher frequencies upon request

(2) See "cooling"

(3) Monofrequency rf input signal with constant amplitude

(4) With 90 % circuit efficiency

- (5) Setting of plate current with cathode resistor.
- (6) With 70 % circuit efficiency (at the band pass filter output)
- (7) IM3 third order intermodulationrratio measured according to the ARD specification 5/6

(8) With 8 Mc 1 db bandwidth

(9) Visual to aural carrier separation 7 db

3

YL 1042

M	aximum Ratings (abso	lute values)				
	Frequency	F	<=	1250	Mc	(1)
	Plate voltage	Eb	max	1000	Vdc	
	Screen grid voltage	E _{c2}	max	330	Vdc	
	Negative grid No. 1 voltage	-Ec1	max	75	Vdc	
	Cathode current	Ik	max	150	mAdc	
	Plate dissipation	Pp	max	115	W	
	Screen grid input power	P _{ig2}	max	2	W	
	Grid No. 1 current	Ig1	max	16	mAdc	
	Grid No. 1 resistor	Rg1	max	30000	ohms	
	Surface temperature	T_{surf}	max	250	°C	
Ту	pical Operation Class C	telegraph y c	operation (2)			
	Frequency	F	=	1000	Mc	

Heater voltage	E_{f}	=	6.0	Vdc	
Power output	Po	=	50	W	(3)
Plate voltage	Eb	=	900	Vdc	
Screen grid voltage	E _{c2}	=	300	Vdc	
Negative grid No. 1 voltage	-Ec1	=	20	Vdc	
Plate current	Ib	=	140	mAdc	
Grid No. 1 current	Ig1	=	5	mAdc	
Plate dissipation	Pp	~	70	W	(4)
Drive power	Pd	=	4	W	

(1) Maximum ratings for operation at higher frequencies on request

(2) Key-down conditions per tube without amplitude modulation. Amplitude modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 % of the carrier conditions.

(3) Circuit efficiency approximately 90 %

(4) See cooling, page 6

Maximum Ratings (absolute values)

Frequency	F	≦	1250	Mc (1)
Plate voltage	Eb	max	800	Vdc
Screen grid voltage	E _{c2}	max	300	Vdc
Negative grid No. 1 voltage	- ^E c1	max	75	Vdc
Cathode current	I_k	max	125	Vdc
Plate dissipation	Pp	max	75	W
Screen grid input power	P _{ig2}	max	2	W
Grid No. 1 current	Ig1	max	16	mAdc
Grid No. 1 resistor	Rg1	max	30000	ohms
Surface temperature	Tsurf	max	250	oC

(1) Maximum ratings for operation with higher frequencies upon request

5

Operating Instructions

Mounting

It is advisable to mount the tube so that the contact areas are supported by sufficiently resilient contact collars in the coaxial circuitry. The tube may be mounted in any position.

Cooling

Maximum permissible temperature at the outer surfaces of the tube is 250° C. For removing the heat, the tube must be air-cooled. With maximum plate dissipation and with use of an air duct of the specified dimensions, the rate of air flow for cooling the radiator at an incoming temperature of 25° C is shown on the diagram below. With respect to the life time of the tube it is recommended, however, to increase the rate of air flow so that the plate temperature is far below the maximum permissible temperature of 250° C. If necessary, the rest of the surface must also be cooled by a small air flow. The cooling air should be filtered to prevent clogging of the radiator. As the constructive design of the cooling facilities has to be adapted to the particular equipment layout used, no supply of these as an accessory to the tube is provided for.

SIEMENS

a

•

YL 1042

Characteristics $I_{\rm b} = f(E_{\rm c})$

YL 1042

•

Characteristics $I_{b} = f(E_{b}), E_{c1} = Parameter$

SIEMENS AKTIENGESELLSCHAFT

Printed in Germany

Sachnummer Q00051-X1062

Design and Application

Air-cooled tetrode in metal-ceramic technique for frequencies up to 1250 Mc especially suited for use as Class C power amplifier as well as for use in mixer and PA stages in TV transmitters.

Due to its stability under severe shock and vibration the tube is ideal for use in mobile equipment.

The maximum plate dissipation of the tube is 700 W.

Table of Dimensions (in mm)

	min	nom	max
А			61.0
В	48.3	49.3	50.3
С	21.8	22.7	23.6
D	18.7	19.2	19.7
E	14.0	14.6	15.2
F	3.7		
G	3.8		
Η	9.6	10.1	10.6
K	4.5	5.0	5.5
L	51.6	52.3	53.0
Μ	44.3		
N	40.4		3
Р	32.8		
Q	25.1		
R			17.0

Weight: approx 235 gm Mounting position: any

The dotted area must be kept free. Contacts or other parts of the resonator should not project into this area. The diameters of the dotted zones above the radiator, control grid and screen grid contact surfaces correspond to diameters of these parts.

1

1

S 1062 C 7650	General Data			SIEMENS	
Heating					
Heater voltage	E_{f}	=	6.3	_V (1)	
Heater current	I_{f}	×	7.5	А	
Preheating time	t _k	> =	2	min	
Matrix oxide cathode Capacitances	rallel supply				
Grid No.1 to cathode, hea	t.Cg1/kf	=	27.5	μμf	
Grid No.2 to cathode, hea	t.Cg2/kf	< =	0.8	μμf	
Plate to cathode, heater	C _{p/kf}	<	0.010	μμf	
Grid No.1 to grid No.2	C _{g1g2}	Ξ	40	μμf	
Plate to grid No.1	Cg1p	< =	0.135	μμf	
Plate to grid No.2	C _{g2p}	=	5.4	μμf	
Characteristics					
Plate voltage	Eb	=	2500	Vdc	
Grid No.2 voltage	E _{c2}	=	400	Vdc	
Plate current	Ib	=	240	mAdc	
Transconductance	Sm	-	22000	µmho s	
Amplification factor of grid No.2 with respect to grid No.1	μg2g1	=	12		

 In the interests of long life, the heater voltage should be reduced depending on the operating frequency and drive level. Regarding the optimum heater voltage the manufacturer should be consulted.

2

Maximum Ratings	(absolu	te values)		
Frequency	F	< =	1250	Mc
Plate voltage	E_{b}	max	2500	Vdc
Grid No. 2 voltag	ge E _c 2	max	1200	Vdc
Grid No.1 voltag	ge Ec1	max	-250	Vdc
Plate current	Ib	max	500	mAdc
Grid No.1 curre	ent Ec1	max	100	mAdc
Plate dissipatio	on P _p	max	700	W
Grid No.2 dissi	pation Pg2	max	25	W (3)
Surfacetempera	ature T _{surf}	max	250	°C

Operating Characteristics

1					
F	-	920	790	470	Mc
Po	Ξ	530(1)	600 (1)	730 (2)	W
Eb	Ξ	2500	2500	2500	Vdc
E _{c2}	Ξ	400	400	400	Vdc
E _{c1}	~	-60	-45	-35	Vdc
Ib	Ξ	500	500	500	mAdc
I _c 2	=	6	7	8	mAdc
I _{c1}	-	10	11	12	mAdc
Pd	Ξ	55	35	30	W
	F P_{0} E_{b} E_{c2} E_{c1} I_{b} I_{c2} I_{c1} P_{d}	$F = P_0 = P_0$	$F = 920$ $P_{0} = 530(1)$ $E_{b} = 2500$ $E_{c2} = 400$ $E_{c1} \approx -60$ $I_{b} = 500$ $I_{c2} = 6$ $I_{c1} = 10$ $P_{d} = 55$	$F = 920 790$ $P_{0} = 530(1) 600(1)$ $E_{b} = 2500 2500$ $E_{c2} = 400 400$ $E_{c1} \approx -60 -45$ $I_{b} = 500 500$ $I_{c2} = 6 7$ $I_{c1} = 10 11$ $P_{d} = 55 35$	F=920790470 P_0 =530(1)600(1)730(2) E_b =250025002500 E_{c2} =400400400 E_{c1} \approx -60-45-35Ib=500500500Ic2=678Ic1=101112Pd=553530

(1) Power output at 75 % circuit efficiency including transferred power

- (2) Power output at 80 % circuit efficiency including transferred power
- (3) When determining the dissipation power, secondary emission should be taken into consideration.

TV Transposer Common Vision and Sound

Ma	aximum Ratings (ab	solute values)			
	Frequency	F	< -	1250	Mc
	Plate voltage	Eb	max	2500	Vdc
	Grid No.2 voltage	E _{c2}	max	1200	Vdc
	Grid No.1 voltage	E _{c1}	max	-250	Vdc
	Plate current	Ib	max	500	mAdc
	Grid No.1 current	E _{c1}	max	100	mAdc
	Plate dissipation	Pp	max	700	W
	Grid No.2 dissipation	P _{g2}	max	25	W (1)
	Surface temperature	Tsurf	max	250	°C
Op	perating Characteristics				
Op	perating Characteristics	F	=	650	Mc
Op	Frequency Synchron power output (IM3 > 51 db)	F P _{o syn}	=	650 50	Mc W(2,3,4,5)
OF	Derating Characteristics Frequency Synchron power output (IM ₃ > 51 db) Synchron drive power (IM ₃ > 57 db)	F P _{o syn} P _{d syn}	=	650 50 2	Mc W(2,3,4,5) W(3)
OF	<pre>perating Characteristics Frequency Synchron power output (IM3 > 51 db) Synchron drive power (IM3 > 57 db) Plate voltage</pre>	F P _{o syn} P _{d syn} E _b		650 50 2 2500	Mc W(2,3,4,5) W(3) Vdc
OF	Frequency Synchron power output (IM ₃ > 51 db) Synchron drive power (IM ₃ > 57 db) Plate voltage Grid No.2 voltage	F P _{o syn} P _{d syn} E _b E _{c2}	-	650 50 2 2500 400	Mc W(2,3,4,5) W(3) Vdc Vdc
Op	<pre>berating Characteristics Frequency Synchron power output (IM3 > 51 db) Synchron drive power (IM3> 57 db) Plate voltage Grid No.2 voltage Grid No.1 voltage</pre>	F P _{o syn} P _{d syn} E _b E _{c2} E _{c1}		650 50 2 2500 400 -22.5	Mc W(2,3,4,5) W(3) Vdc Vdc Vdc
Or	<pre>berating Characteristics Frequency Synchron power output (IM3 > 51 db) Synchron drive power (IM3> 57 db) Plate voltage Grid No.2 voltage Grid No.1 voltage Zero signal plate current</pre>	F P _{o syn} P _{d syn} E _b E _{c2} E _{c1} I _{bo}		650 50 2 2500 400 -22.5 270	Mc W(2,3,4,5) W(3) Vdc Vdc Vdc Vdc Vdc MAdc
OF	<pre>berating Characteristics Frequency Synchron power output (IM3 > 51 db) Synchron drive power (IM3> 57 db) Plate voltage Grid No.2 voltage Grid No.1 voltage Zero signal plate current Plate current</pre>	F Posyn Pdsyn Eb Ec2 Ec1 Ibo Ib		650 50 2 2500 400 -22.5 270 300	Mc W(2,3,4,5) W(3) Vdc Vdc Vdc Vdc MAdc mAdc

(1) When determining the dissipation power, secondary emission should be taken into consideration

- (2) Power output at 90 % circuit efficiency
- (3) IM_3 third order intermodulation ratio measured according to the ARD specification 5/6
- (4) With 1 db bandwidth of 10 Mc and overcoupling
- (5) Visual to aural carrier separation 7 db

Cooling

15

-

.*

For removing the heat, the tube must be air-cooled. The amount of air at an inlet temperature of 25 $^{\rm O}$ C required to cool the radiator as a function of the plate is shown in the graph below.

With regard to the life time of the tube it is recommended to keep the plate temperature below the maximum limit of 250 $^{\circ}C$ as far as possible by increasing the amount of air.

The diagram applies to the usual method of supplying the cooling air i.e. axially from the electrode contact side. Supply of air from the plate side is also permissible, although a somewhat larger quantity of air is then required. An air cooling characteristic for the latter case can be supplied on demand.

It is also of purpose to use the inlet or exhaust air to cool the grid and cathode contact surfaces. The given air cooling characteristic is only valid for the pressure drop at the anode radiator, and pressure losses in the supply pipes or cavities must be additionally accounted for when selecting the blower.

The cooling air has to be filtered to prevent clogging of the radiator.

5

1

Mounting

The cylindrical surfaces of the electrode connections and radiator permit the tube to be inserted into a gauge with the following dimensions:

Dimensions in mm

The eccentricity of the bore holes D_1 to D_5 is less than 0.02 mm compared with C.

SIEMENS AKTIENGESELLSCHAFT

Printed in Germany

RöK 2249 E/1.11.66

6

•

SIEMENS AKTIENGESELLSCHAFT