

RÖHREN UND GLEICHRICHTER

3AND 2

1. TEIL

RÖHREN UND GLEICHRICHTER

TECHNISCHE DATEN

Mappe Nr. 1239

Standort bei

Herrn F. Langford-Smith

in Fo. Engl. Electr. Valve Co. Ltd., T. Publ.
Chelmsford

Nachträge werden an obige Anschrift geleitet. Bei Änderung dieser
Anschrift Nachricht erbeten an:

SIEMENS & HALSKE AKTIENGESELLSCHAFT

WERNERWERK FÜR BAUELEMENTE

Röhrenfabrik, München 8, St.-Martin-Straße 76

GENERAL

Allgemeines

RINGBUCH RÖHREN UND GLEICH**RI**CHTER

Inhaltsverzeichnis

Inhalt Bd.2,1.Teil 1.7.62

Allgemeines	
-------------	--

Inhaltsverzeichnis		1. 7.62	1/2
Symbole Spez Rö, Wv-Rö	RöK 3009	1. 8.61	1/2,3
Erläuterungen Spez Rö			
Wv-Rö	RöK 3010	1. 8.61	1/2, 3/4, 5/6, 7/8, 9/10
Äquivalente Röhrentypen	RöK 3007	1. 4.62	1/2
Weitverkehrsröhren			
CCa	RöK 3267	1. 4.62	1/2, 3/4, 5/6, K1/2, K3/4,
C3g	RöK 3222	1. 1.60	K5/6, K7/8, K9/10 1/2, 3/4, 5/K1, K2/3, K4/5,
	11011 0 1 1 1		K6/7, K8/9
C3m	RöK 3224	1. 4.60	1/2, 3/4, 5/6, K1/2, K3/4,
			K5/6, K7/8, K9/10, K11/12,
			K13/14
C 30	RöK 3225	1. 4.60	1/2, 3/4, 5/6, K1/2, K3/4,
			K5/6, K7/8, K9/10, K11/12,
D3a	RöK 3233	1. 4.62	K13/14 1/2,3/4,5/K1,K2/3,K4/5,
D3a	KOK 3233	1. 4.02	1/2, 3/4, 3/K1, K2/3, K4/5, K6/7
F2a	RöK 3231	1.10.59	1/2, 3/4, 5/6, K1/2, K3/4,
			K5/6, K7/8, K9/10, K11/12,
			K13/14, K15/16, K17
Wv-Rö älterer Bauart	RöK 3006	1.10.60	1/2,3/4
Höchstfrequenzröhren (dm-u	nd cm-Röhren)		
RH6C	RöK 3254	1. 2.62	1/2,3/4,K1/2,K3/4
RH7C	RöK 3255	1. 2.62	1/2, 3/4, K1/2, K3/4
RK 25	RöK 3501	1. 2.62	1/2,3/K1,K2/3
RW 3	RöK 3502	1. 2.62	1/2, 3/4, 5/6, K1/2, K3
RW 6	RöK 3504	1. 2.62	1/2, 3/4, 5/6, K1/2, K3/4
RWO 40	RöK 3503	1. 2.62	1/2,3/4,K1
2 C 39A	RöK 3251	1. 3.62	1/2, 3/4, K1/2, K3/4
2 C 39BA	RöK 3253	1. 3.62	1/2,3/4,K1/2,K3/4
Spezial-Verstärkerröhren			
Spez Rö Übersicht	RöK 3008	1. 4.62	1
E 80 CC/6085	RöK 3288	1. 3.60	1/2, 3/4, 5/K1, K2
E 80 CF/7643	RöK 3280	1. 4.61	1/2, 3/4, 5/6, K1/2, K3/4, K5
E 80 L/6227	RöK 3275	1. 6.60	1/2,3/4,5/K1,K2/3,K4/5, K6/7
E 81 CC/6201	RöK 3270	1. 8.60	1/2, 3/4, 5/K1, K2/3
E 82 CC/6189	RöK 3271	1. 7.60	1/2, 3/4, K1/2, K3
E 83 CC/6681	RöK 3278	1. 4.62	1/2, 3/4, 5/6, 7/8, 9/K1,

RINGBUCH RÖHREN UND GLEICHRICHTER

SIEMENS ROHREN

Inhaltsverzeichnis

E 84 L/7320	RoK 3285	1. 4.62	1/2, 3/4, 5/6, 7/8, K1/2, K3/4, K5/6, K7/8, K9/10, K11/12, K13
E 86 C	RöK 3277	1. 4.62	1/2, 3/4, 5/K1, K2
E 88 C	RöK 3293	1. 12. 61	1/2, 3/K1, K2/3
E 88 CC/6922	RöK 3260	1. 4.62	1/2, 3/4, 5/6, K1/2, K3/4,
E 88 CC/ 0922	KOK 3200	1. 4.02	K5/6, K7/8, K9/10
E 90 CC/5920	RöK 3279	1. 8.60	1/2, 3/4, K1/2
E 91 AA/5726	RöK 3272	1. 8.60	1/2, 3/K1, K2
E 130 L/7534	RöK 3282	1. 8.60	1/2, 3/4, K1/2, K3/4
E 180 F/6688	RöK 3281	1. 8.61	1/2, 3/4, K1/2
E 188 CC/7308	RöK 3290	1. 4.62	1/2, 3/4, 5/6, K1/2, K3/4,
,			K5/6, K7
E 235 L/7751	RöK 3266	15. 8.60	1/2,3/4,K1/2,K3/4,K5/6, K7/8
E 236 L	RöK 3283	15. 8.60	1/2, 3/4, 5/K1, K2/3, K4/5,
			K6/7, K8/9, K10/11, K12/13,
			K14/15, K16/17, K18/19,
			K20/21
E 280 F/7722	RöK 3276	1. 2.62	1/2, 3/4, 5/K1, K2/3, K4/5,
			K6/7
E 282 F	RöK 3289	1. 2.62	1/2, 3/4, K1/2, K3/4, K5/6
E 283 CC	RöK 3274	1. 9.60	1/2, 3/4, 5/6, 7/8, 9/K1,
			K2/3, K4
E 288 CC	RöK 3292	1.11.61	1/2, 3/K1, K2/3
E 810 F	RoK 3291	1. 8.61	1/2,3/K1,K2
F 2a 11	RöK 3232	1.10.59	1/2, 3/4, 5/6, K1/2, K3/4,
			K5/6, K7/8, K9/10, K11/12,
			K13/14, K15/16, K17
565 4 /6 AK5W	RöK 3265	1. 4.60	1/2, 3/4, K1/2, K3/4, K5
5751	RöK 3286	1. 1.60	1/2, 3/4, K1/2, K3
5814A	RöK 3287	1. 1.60	1/2, 3/4, K1/2, K3/4
6463	RöK 3273	1. 8.60	1/2, 3/4, K1/2, K3/4
7586	Rok 8001	1. 2.62	1/2, 3/4, K1/2, K3
7895	RöK 8003	1. 4.62	1/2, 3/4, K1/2, K3
Geiger-Müller-Zählrohre			
HZa 15/40	RöK 7072	1. 4.59	1/2,3/K1
HZb 15/40	RöK 7073	1. 4.59	1/2,3/K1
Stabilisatorröhren			
Symbole			1
D 111 1	Dutt 4=42	4 2 50	1/2 2/4

SIEMENS & HALSKE AKTIENGESELLSCHAFT

RöK 4512

RöK 4501

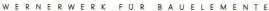
RöK 4502

RöK 4503

1/2,3/4

1/2,K1

1/2, K1


1/2, K1

1. 3.59

1. 4.61

1. 4.61

1. 4.61

Erläuterungen

85 A 2/OG3

108 C 1/OB 2

150 C 2/OA2

SYMBOLVERZEICHNIS FÜR SPEZIALVERSTÄRKERROHREN UND WEITVERKEHRSRÖHREN

Symbole Spez. - Rö Wv-Rö

Symbole der Elektroden

a	Anode
d	Diodenanode
f	Heizfaden
f_{O}	Heizfaden-Mittelanzapfung
g	Gitter
i. V.	innere Verbindung; Sockelanschluß, der unter keinen Umständen beschaltet werden darf
k	Kathode
m	äußere Abschirmung
S	innere Abschirmung

Mehrere Gitter des selben Systems werden nach der Reihenfolge ihres Abstandes von der Kathode numeriert.

Bei Verbundröhren mit gleichen Systemen werden die Elektroden durch römische Ziffern unterschieden; bei Verbundröhren mit unterschiedlichen Systemen werden die Elektroden durch Buchstaben gekennzeichnet.

D	Diode
T.	Triode
Q	Tetrode
P	Pentode
H	Hexode oder Heptode

Symbole der Spannungen

Ua

Elektrodenspannungen werden auf die Kathode bezogen, bei direkt geheizten Röhren auf das negative Heizfadenende. Die Speisespannungen Uh und Wechselspannungen U~werden auf die gemeinsame Minusleitung bezogen. Wenn nicht anders angegeben, sind mit den Wechselspannungen stets deren Effektivwerte gemeint. Spitzenwerte werden mit Usp bezeichnet.

Anodenspannung

Ua~	Anodenwechselspannung
Uao	Anodenkaltspannung bzw. Anodenspannung bei gesperrter
	Röhre
Ub	Speisespannung (Betriebsspannung)
Ubr	Brummspannung
Ud	Diodenspannung
-Ud	Diodenspannung in Sperrphase
Uf	Heizspannung
Ufk	Spannung zwischen Heizfaden und Kathode
Ufk-	Spannung zwischen Heizfaden und Kathode (Kathode negativ)
Ufk+	Spannung zwischen Heizfaden und Kathode (Kathode positiv)
Ug	Gitterspannung
Ugo	Gitterkaltspannung
Ug~	Gitterwechselspannung
Ugo Uge	Gitterstromeinsatzpunkt ($-U_{g1}$ bei $+I_{g1} = 0,3 \mu A$)

SYMBOLVERZEICHNIS FÜR SPEZIALVERSTÄRKERRÖHREN UND WEITVERKEHRSRÖHREN

Symbole der Spannungen (Fortsetzung)

Uis Isolations-Meßspannung

U_{kl} Klingspannung

Uosz Oszillatorwechselspannung

UR Spannung zur automatischen Regelung

U_{sp} Spitzenwert einer Spannung

Uss Spitze-Spitze-Wert einer Spannung

 $\textbf{U}_{\textbf{st\"{o}r}} \hspace{1.5cm} \textbf{St\"{o}rsignal-Spannung bei Brumm-oder Kreuzmodulation}$

U_{tr} Transformator-Spannung

Symbole der Ströme

Wenn nicht anders angegeben, sind mit den Wechselströmen stets deren Effektivwerte gemeint. Spitzenwerte werden mit \mathbf{I}_{SD} bezeichnet.

I- Gleichstrom eines Gleichrichters

I_a Anodengleichstrom

 I_{a} Anodenwechselstrom

Id Diodenstrom

I Gitterstrom

Summe mehrerer Ströme

IL Kathodenstrom

I_{SD} Spitzenwert eines Stromes

Symbole der Leistungen

Na der Anode zugeführte Gleichstromleistung

Na~ Ausgangsleistung Ne~ Eingangsleistung

 Q_a Anoden-Verlustleistung, $Q_a = N_a - N_a \sim$

Q_g Gitter-Verlustleistung

Symbole der Kapazitäten

Ca Ausgangskapazität
Ca Eingangskapazität

Ce' Eingangskapazität im Betriebszustand

C_k Kathodenkondensator

Clade Kapazität des Ladekondensators

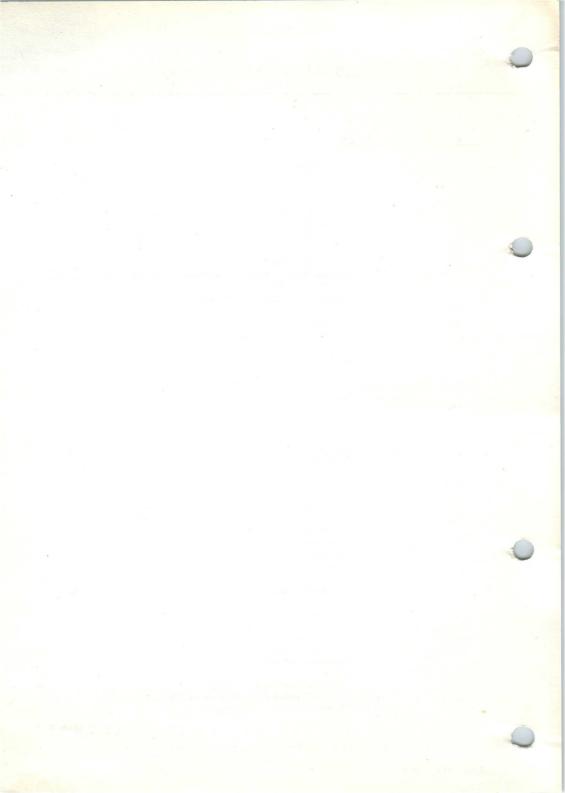
Cmn Kapazität zwischen den Elektroden m und n

C_{mn/p} Kapazität der Elektroden m und n gegen die Elektrode p

SYMBOLVERZEICHNIS FÜR SPEZIALVERSTÄRKERRÖHREN UND WEITVERKEHRSRÖHREN

Symbole Spez. - Rö Wv - Rö

Symbole der Widerstände


Ra	Außenwiderstand im Anodenkreis
Raa	Außenwiderstand zwischen den Anoden eines Gegentaktver- stärkers
Räq	Äquivalenter Gitter-Rauschwiderstand
Rd	Außenwiderstand im Anodenkreis einer Diode
Rel .	Elektronischer Eingangswiderstand
Rfk	Widerstand zwischen Heizfaden und Kathode
Rg	Gitterwiderstand
R _g R _i	Innenwiderstand
Ric	Innenwiderstand bei anliegender Oszillatorspannung im Mischbetrieb
R _{iL}	innerer Leistungswiderstand
Ris	Isolationswiderstand
Rk	Kathodenwiderstand
RL	Lastwiderstand
Rs	Schutzwiderstand (in der Anodenleitung)
R ~	Wechselstromwiderstand

Verschiedene Symbole

akn	Klirrdämpfung der nten Harmonischen
В	Bandbreite
D	Durchgriff= $\frac{1}{\mu}$
F	Rauschzahl
f	Frequenz
K	Kreuzmodulationsfaktor
k	Klirrfaktor
kn	Klirrkoeffizient der nten Harmonischen
k _m	Modulations-Klirrfaktor
M	Bandbreitemaß $S/2 \pi (C_{e1} + C_a + 5 pF)$
Mb	Brummodulationsfaktor
S	Steilheit
Sc	Konversions- oder Mischsteilheit
S _C S/C	Verhältnis von Steilheit zur Summe von Eingangs-und Ausgangskapazität
t	Zeit
tin	Integrationszeit
thülse	Temperatur der Röhrenhülse
tkolb	Temperatur des Röhrenkolbens
toberfl	Temperatur der Röhrenoberfläche
v	Spannungsverstärkung
λ	Wellenlänge
μ	Leerlaufverstärkungsfaktor
₽ 8 2 8 1	Leerlaufverstärkungsfaktor des Schirmgitters
φs	Phasenwinkel der Steilheit

IEMENS & HALSKE AKTIENGESELLSCHAFT

WERNERWERK FOR BAUELEMENTE

ERLÄUTERUNGEN ZU DEN TECHNISCHEN DATEN Erläuterung UND ZUM BETRIEB DER SPEZIALVERSTÄRKER-RÖHREN UND WEITVERKEHRSRÖHREN

Spez. Rö Wy Rö

Die Qualitätsmerkmale

Lange Lebensdauer Zuverlässigkeit Enge Toleranzen Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode Heizfaden-Schaltfestigkeit

Technische Daten und Betriebshinweise

1. Einsatz der Röhren

- 1.1 Einbau
- 1.2 Fassung
- 1.3 Sockelstifte und Anschlußkappen
- 1.4 Umgebung
- 1.5 Fremdfelder

2. Elektrische Werte

- 2.1 Heizspannung
- 2.2 Bezugspunkt der Elektrodenspannungen
- 2.3 Kapazitäten
- 2.4 Kenndaten
- 2.5 Kennlinien
- 2.6 Betriebsdaten
- 2.7 Grenzdaten
 - 2.7.1 Mittlere Grenzwerte
 - 2.7.2 Absolute Grenzwerte
- 2.8 Erläuterung der einzelnen Grenzwerte
 - 2.8.1 Anoden- und Schirmgitterspannung
 - 2, 8, 2 Schirmgitterverlustleistung
 - 2.8.3 Gitterableitwiderstand
 - 2.8.4 Widerstand im Bremsgitter
 - 2.8.5 Die Strecke Heizfaden-Kathode
 - 2.8.6 Kolbentemperatur
 - 2.8.7 Impulsbetrieb, Kathodenstrom
- 2. 9 Klingen, Mikrofonie
- 2.10 Brumm
- 2.11 Rauschen
- 2.12 Gleichstromgegenkopplung

Die Qualitätsmerkmale

Lange Lebensdauer

Für Langlebensdauerröhren beträgt die garantierte Lebensdauer 10.000 Stunden, gemittelt über 100 Röhren. Voraussetzung hierfür ist, daß die Grenzdaten eingehalten werden und insbesondere die Heizspannung nicht mehr als 5 % um den Sollwert schwankt. Die Lebensdauererwartungliegt im allgemeinen weit über 10.000 Stunden. Das Lebensdauerende einer Röhre ist erreicht, wenn einer der unter 'Ende der Lebensdauer! angegebenen Aussonderungswerte (i. allgem. Anodenstrom, Steilheit, Gitterfehlstrom) bei den vorgeschriebenen Einstellbedingungen unter- bzw. überschritten wird.

Zuverlässigkeit

Die Zuverlässigkeit wird definiert als die Wahrscheinlichkeit, mit der eine Röhre im Gerät während einer vorgegebenen Zeitspanne einwandfrei arbeitet. Es wird dabei vorausgesetzt, daß die Röhre in der vorgeschriebenen Weise eingesetzt ist. Zuverlässigkeit R und Ausfallwahrscheinlichkeit p stehen zueinander in der Beziehung: R = 1-p. Dabei ist die Ausfall- oder Fehlerwahrscheinlichkeit p die auf 1000 Stunden bezogene Wahrscheinlichkeit, mit der Röhren eines n Stück (n>>1) umfassenden Kollektivs im Mittel ausfallen.

Beispiel: $p = 1x10^{-3}$ bzw. $p = 1^{\circ}/oo$ bedeutet, daß in 1000 Stunden von 1000 Röhren ein Stück im Mittel ausfällt.

Sobeträgt z.B. für Spezialverstärkerröhren die Ausfallwahrscheinlichkeit p=1,5x10⁻³, entsprechend einem Röhrenausfall pro 1000 Stunden von 1,5 0/oo. Dieser Wert gilt für den verschleißfreien Bereich der Lebensdauer, einem Zeitraum, der etwa der garantierten Betriebsdauer (im allgemeinen 10.000 Std) entspricht. Der obige Wert von 1.5x10⁻³ bezieht sich auf den Betrieb mit Nenndaten, bei Abweichungen von dieser Betriebsweise ist mit veränderten Werten zu rechnen.

Enge Toleranzen

Spezialröhren besitzen enge Fertigungstoleranzen und geringe Exemplarstreuungen, sie zeichnen sich ferner durch gute Konstanz der elektrischen Werte während der Lebensdauer aus.

In den Datenblättern sind die Streuwerte für die wichtigsten Kenndaten aufgeführt.

Stoß- und Erschütterungsfestigkeit

Bei Spezialröhren mit diesem Qualitätsmerkmal werden besondere konstruktive Maßnahmen getroffen, so daß sie harten Anforderungen in der industriellen Elektronik und in mobilen Anlagen gewachsen sind. Die Röhren können Erschütterungen bis zu 2,5 g bei 50 Hz längere Zeit sowie Stoßbeschleunigungen bis zu 500 g kurzzeitig aushalten.

ERLÄUTERUNGEN ZU DEN TECHNISCHEN DATEN Erläuterung UND ZUM BETRIEB DER SPEZIALVERSTÄRKER-ROHREN UND WEITVERKEHRSROHREN

Spez. Rö Wy Rö

Zwischenschichtfreie Spezialkathoden

Durch Spezialkathoden wird eine Zwischenschichtbildung, welche die Funktion der Röhre beeinträchtigt und vor allem beim Betrieb mit langen anodenstromlosen Perioden bei eingeschalteter Heizung auftreten kann, weitgehend vermieden.

Heizfaden-Schaltfestigkeit

In Geräten, die häufig ein- und ausgeschaltet werden, ist der Heizfaden einer erhöhten Beanspruchung ausgesetzt und erfordert daher eine besondere Schaltfestigkeit.

Spezialröhren mit diesem Qualitätsmerkmal vertragen unter verschärften Prüfbedingungen mindestens 2000 maliges Ein- und Ausschalten der Heizspannung.

Technische Daten und Betriebshinweise

Die Datenblätter enthalten die für die Geräteentwicklung erforderlichen technischen Daten und Kennlinien. Im folgenden werden die Angaben näher erläutert und Hinweise für den Betrieb der Röhren gegeben.

Sollte eine besondere Betriebsart beabsichtigt oder ein Wert benötigt werden, der aus den vorliegenden Unterlagen nicht ersichtlich ist, empfiehlt sich eine Anfrage bei unserem Technischen Kundendienst. Genaue Angaben über die beabsichtigten Betriebsdaten und über die bestehenden Forderungen ermöglichen eine präzise Bearbeitung der Anfrage.

1. Einsatz der Röhren

1.1 Einbau

Die Röhren dürfen in beliebiger Lage verwendet werden, sofern nicht anders angegeben. Vorzuziehen ist die senkrechte Lage mit den Sockelstiften nach unten.

Es dürfen nur einwandfreie, den Normen entsprechende Fassungen verwendet werden. Bei Röhren mit vergoldeten Sockelstiften sind Fassungen mit vergoldeten Kontaktfedern vorteilhaft, weil sie die geringsten Übergangswiderstände ergeben. Da die Sockelstifte der Noval- und Miniatur-Röhren direkt in das Glas eingeschmolzen sind, ist bei diesen Röhren auf eine einwandfreie Qualität der Fassung besonders zu achten. Die Röhre soll sich ohne starken Druck in die Fassung einsetzen lassen. Wenn notwendig, müssen die Röhren gegen Herausspringen aus der Fassung gesichert werden.

Die Zuleitungen zu den Fassungskontakten sollen flexibel sein. Starre Verbindung der Kontakte untereinander, mit dem Mittelröhrchen oder mit dem Chassis ist nicht statthaft. Falls sehr kurze Verbindungen - z.B. bei hohen Frequenzen - er-

Erläuterung erläuterungen zu den technischen daten UND ZUM BETRIEB DER SPEZIALVERSTÄRKER-RÖHREN UND WEITVERKEHRSRÖHREN

forderlich sind, ist die Verwendung von Folienbändchen zu empfehlen. Die Elastizität der Bändchen darf durch unsachgemäßes Anlöten nicht beeinträchtigt werden. Die Beweglichkeit der Federn in den Kammern der Fassung muß nach dem Verdrahten erhalten bleiben. Während des Verdrahtens soll ein Fassungslehrdorn in der Fassung stecken, um das Verschieben der Kontaktfedern aus ihrer Mittellage in den Kammern beim Anlöten der Schaltelemente zu verhindern.

Beim Einsetzten der Röhre in eine unsachgemäß verdrahtete oder nicht normgerechte Fassung entstehen durch Verbiegen der Sockelstifte Spannungen im Röhrenboden, die - unter Umständen erst nach längerer Betriebszeit - zum Glasbruch führen können.

In Geräten, die häufig starken Erschütterungen ausgesetzt sind und in Schaltungen, an die hohe Anforderungen bezüglich Kling- und Mikrophoniesicherheit gestellt werden, ist die Verwendung federnder Fassungen zu empfehlen.

1.3 Sockelstifte und Röhrenkappen

Zum Richten verbogener Sockelstifte ist stets eine geeignete Stiftricht-Vorrichtung zu verwenden. Ein Ausrichten der Stifte mit einer Zange oder dergleichen ist nicht statthaft, da hierdurch der Röhrenboden ebenfalls beschädigt werden kann.

Anden Sockelstiften und Anschlußkappen der Röhre selbst darf nicht gelötet wer-

Sockelstifte, die mit 'i.V.' (innere Verbindung) bezeichnet sind, dürfen in der Fassung nicht beschaltet und nicht als Stützpunkt für Schaltmittel benutzt werden, ebenso freie Sockelstifte, weil dadurch unter Umständen Störungen auftreten können.

1.4 Umgebung

Üblicherweise gelten die Grenzwerte für normalen Luftdruck (unter 4000 m Höhe) und eine relative Feuchtigkeit bis zu 80 %, sofern nicht ausdrücklich anders angegeben. Bei veränderten Umgebungsverhältnissen sollte der Hersteller befragt werden.

1.5 Fremdfelder

Elektrostatische und elektromagnetische Felder könnendie Funktion einer Röhre beeinträchtigen. Sie sollen durch geeigneten Geräteaufbau ferngehalten bzw. ihr Einfluß durch wirksame Abschirmung ausgeschaltet werden.

2. Elektrische Werte

2.1 Heizspannung

Die Heizspannung hat einen wesentlichen Einfluß auf die Lebensdauer der Röhre. Bei der Dimensionierung des Gerätes soll daher die Heizspannung bzw. der

ERLÄUTERUNGEN ZU DEN TECHNISCHEN DATEN Erläuterung UND ZUM BETRIEB DER SPEZIALVERSTÄRKER-ROHREN UND WEITVERKEHRSROHREN

Spez. Rö Wv Rö

Heizstrom bei Serienspeisung möglichst genau auf den Nennwert eingestellt werden. Schwankungen von max. ± 5 % der Nennheizspannung - bzw. ± 2 % des Nennheizstromes bei Serienspeisung - infolge von Netzspannungsschwankungen dürfen mit Rücksicht auf die Garantiebestimmungen nicht überschritten werden. Im übrigen sind Heizspannungsschwankungen bis ± 10 % zwar zulässig, führen jedoch im allgemeinen zu einer Verkürzung der Lebensdauer, insbesondere bei Überheizung.

Bei Serienheizung muß dafür gesorgt werden, daß die Heizspannung jeder einzelnen Röhre im Augenblick des Einschaltens den 1,5-fachen Nennwert nicht übersteigt. Bei Parallelheizung sind normalerweise keine besonderen Vorsichtsmaßnahmen erforderlich.

Im Interesse einer möglichst hohen Lebensdauererwartung ist eine längere, sich über einen merklichen Teil der gesamten Lebensdauer erstreckende Überheizung zu vermeiden. Muß während desBetriebes mit häufigen Spannungsüber höhungen gerechnet werden, ist es meist günstiger, die Heizspannung etwas niedriger (max. 3 %) als die Nennspannung zu wählen. Auch hier sollte darauf geachtet werden, daß die oben angegebene Heizspannungstoleranz von ± 5 %, bezogen auf die Nennspannung, nicht überschritten wird.

2.2 Bezugspunkt der Elektrodenspannungen

Alle Elektrodenspannungen (z.B. Ua, Ug2, Ug1) werden auf die Kathode bezogen, bei direkt geheizten Röhren auf das negative Ende des Heizfadens. Speisespannungen (z.B. Uba, Ubg2, Ubg1), die über Schaltelemente den Elektroden zugeführt werden, beziehen sich auf die gemeinsame Minusleitung.

Alle Elektroden einschließlich des Heizfadens müssen unbedingt eine Gleichstromverbindung miteinander haben. Dies kann über die Spannungsquellen oder über Schaltelemente gewährleistet sein. Die Widerstände in den Elektrodenzuleitungen sollen nicht höher sein als für die Funktion der Schaltung notwendig. Dieses gilt vor allem für Gitterableitwiderstände sowie für Widerstände zwischen Heizfaden und Kathode.

2.3 Kapazitäten

Sofern nicht anders vermerkt, gelten die Kapazitätswerte für die kalte, nichtgeheizte Röhre ohne Abschirmhülse. Es sind jeweils die Kapazitäten zwischen den betreffenden Elektroden mit ihren Zuleitungen innerhalb der Röhre angegeben. Die äußeren Zuleitungen einschließlich der Sockelstifte sind bei der Messung abgeschirmt. Bei einigen Typen ist darüber hinaus die Betriebskapazität Ce' (Eingangskapazität der Röhre im empfohlenen Arbeitspunkt) angegeben.

2.4 Kenndaten

Kenndaten charakterisieren die elektrischen Eigenschaften einer Röhre. Es werden Mittelwerte und Toleranzen für die fabrikneue Röhre in einem empfohlenen Arbeitspunkt angegeben, die durch die zugehörigen Einstellwerte (Elek-

Erläuterung erläuterungen zu den technischen daten UND ZUM BETRIEB DER SPEZIALVERSTÄRKER-RÖHREN UND WEITVERKEHRSRÖHREN

trodenspannungen bzw. Speisespannungen und Widerstände in den Elektrodenzuleitungen) gekennzeichnet sind.

2.5 Kennlinien

Die Kennlinien geben dem Geräteentwickler über die angeführten Kenndaten hinaus zusätzliche Informationen über die Eigenschaften der Röhre unter verschiedenen Betriebsbedingungen. Sie werden an einer Anzahl fabrikneuer Röhren gemittelt und geben keinen Aufschluß über die Streuwerte.

2.6 Betriebsdaten

Betriebsdaten sind Empfehlungen für die Verwendung der Röhre in typischen Anwendungsfällen und bewährten Schaltungen.

Bei Abweichungen von der empfohlenen Betriebsweise ist darauf zu achten, daß die Grenzdaten nicht überschritten werden.

2.7 Grenzdaten

2.7.1 Mittlere Grenzwerte

Sofern nicht anders vermerkt, handelt es sich bei den unter 'Grenzdaten' angegebenen Werten um mittlere Grenzwerte, d.h.: Bei einer Mittelröhre, die in einem Gerät verwendet wird, bei dem sämtliche Schaltelemente Nennwert haben und das mit Nennspannung betrieben wird, dürfen die angegebenen Elektrodenspannungen, -ströme und -verlustleistungen nicht überschritten werden. Unter diesen Voraussetzungen dürfen beliebige Röhren dieses Typs verwendet und die Toleranzen für Schaltelemente so gewählt werden, daß die Elektrodenverlustleistungen um nicht mehr als 10 % überschritten werden. Das Gerät darf dann an die vorgesehene Netzspannung angeschlossen werden, sofern diese nicht um mehr als 10 % schwankt. (Für die zulässige Heizspannungsschwankung gelten die Hinweise im Abschnitt 2.1 "Heizspannung!.)

Mit Rücksicht auf eine möglichst lange Lebensdauer der Röhren sollen die Spannungen, Ströme und Verlustleistungen nicht höher als jeweils erforderlich gewählt werden.

2.7.2 Absolute Grenzwerte

Absolute Grenzwerte dürfen unter keinen Umständen überschritten werden, Netzspannungsschwankungen, Toleranzen der einzelnen Röhren und der Schaltelemente und die Wirkung verschiedener Einstellungen im Gerät müssen berücksichtigt und die Schaltung so ausgelegt werden, daß die absoluten Grenzwerte auch beim Zusammentreffen ungünstiger Bedingungen nicht überschritten werden. Schon das Überschreiten eines einzelnen Grenzwertes kann die Röhre ernsthaft schädigen und schließt die Garantie des Herstellers aus.

ERLÄUTERUNGEN ZU DEN TECHNISCHEN DATEN Erläuterung UND ZUM BETRIEB DER SPEZIALVERSTÄRKER-RÖHREN UND WEITVERKEHRSRÖHREN

Spez. Rö Wv Rö

2.8 Erläuterung der einzelnen Grenzwerte

2.8.1 Anoden- und Schirmgitterspannung

Für die Anoden- bzw. Schirmgitterspannung werden je zwei Grenzwerte angegeben, und zwar: Ua bzw. Ug2 (Elektrodengleichspannung im Betrieb) und Uao bzw. Ug20 (Elektrodenkaltspannung).

Bei kalter Röhre und beim Einschalten dürfen Ua bzw. Ug2 den Wert Uao bzw. U_{g 20}erreichen. Im Betrieb können die durch Überlagerung von Wechselspannungen entstehenden Spitzenwerte ebenfalls bis Uao bzw. Ug2o ansteigen, wenn sich gleichzeitig der Strom der betreffenden Elektroden dem Wert Null nähert. Die Grenzwerte der Gleichspannungen U_a und U_{g2} können im Betrieb unter der gleichen Voraussetzung (I→0) um 20 % überschritten werden.

2.8.2 Schirmgitterverlustleistung

Die maximale Schirmgitterleistung $Q_{g\,2}$ darf auch bei Aussteuerung im Mittel nicht überschritten werden, ausgenommen bei einer kurzzeitigen Übersteuerung im Rahmen einer Sprach- oder Musikübertragung.

2.8.3 Gitterableitwiderstand

Grundsätzlich soll der Gitterableitwiderstand nicht höher als für die Funktion der Schaltung erforderlich gewählt werden. Wenn nicht anders vermerkt, gilt der angegebene Grenzwert $R_{\sigma 1}$ für automatische Gittervorspannung. Der Betrieb mit fester Gittervorspannung ohne Kathodenwiderstand oder die Verwendung eines kleineren als in den Kenndaten empfohlenen Kathodenwiderstandes ist nur in Ausnahmefällen zulässig. Dabei muß der Grenzwert für den Gitterableitwiderstand im gleichen Verhältnis reduziert werden, wie sich der Gleichstrom-Gegenkopplungsfaktork verringert (siehe Abschnitt 2.12 'Stabilisierung des Arbeitspunktes durch Gleichstrom-Gegenkopplung!). Bei stärkerer Gleichstrom-Gegenkopplung darf der Grenzwert für den Gitterableitwiderstand entsprechend dem vergrößerten Faktor k höher gewählt werden.

Röhren, bei denen unter 'Kenndaten' eine erhöhte Gleichstromgegenkopplung mit positiver Gitterbetriebsspannung und vergrößertem Kathodenwiderstand für die Einstellung des Arbeitspunktes angegeben ist, dürfen im allgemeinen ohne Kathodenwiderstand nicht betrieben werden.

2.8.4 Widerstand im Bremsgitter

Wenn kein Grenzwert angegeben ist, darf der Widerstand zwischen Bremsgitter und Kathode maximal 5 kΩ betragen.

2.8.5 Die Strecke Heizfaden-Kathode

Die in den Grenzdaten angegebene maximal zulässige Spannung zwischen Heizfaden und Kathode (Ufk) kann eine Gleichspannung oder der Effektivwerteiner Wechselspannung oder die Summe beider sein. Ist eine Spitzenspannung (Ufk sp) angegeben, so bedeutet sie die Summe der Gleichspannung und des Spitzenwertes der Wechselspannungskomponente. Hierbei ist zu beachten, daß die Gleichspan-

Erläuterung erläuterungen zu den technischen daten UND ZUM BETRIEB DER SPEZIALVERSTÄRKER-RÖHREN UND WEITVERKEHRSRÖHREN

nung den Grenzwert Ufk nicht überschreitet. Es ist weiter zu berücksichtigen, daß die Grenzwerte der Faden-Kathodenspannung je nach Polarität verschieden sein können. Der Betrieb mit positiver Kathode ist vorzuziehen. Die Spannungswerte werden auf dasjenige Ende des Heizfadens bezogen, das gegenüber der Kathode auf höherem Potential liegt. Der Isolationswiderstand und die Kapazität zwischen Heizfaden und Kathode können sich im Betrieb verändern. Deshalb soll diese Strecke nach Möglichkeit nicht in empfindlichen Schaltkreisen liegen. Der zwischen Faden und Kathode wirksame äußere Widerstand (Rfk) soll möglichst klein gehalten werden und nicht mehr als 20 k Ω betragen, wenn ein höherer Wert nicht ausdrücklich zugelassen ist.

2.8.6 Kolbentemperatur

Die Temperatur des Röhrenkolbens soll so niedrig wie möglich gehalten werden. Eine unzulässige Erwärmung führt zu einer Verkürzung der Lebensdauer. Die in den Datenblättern angegebene maximal zulässige Kolbentemperatur darf unter keinen Umständen überschritten werden. Sie ist auf die heißeste Stelle des Röhrenkolbens bezogen. Um die Wärmeableitung nicht zu behindern, sollen in unmittelbarer Nähe der Röhre keine heißen Teile des Gerätes angeordnet werden. Eventuell ist für eine zusätzliche Luftzirkulation zu sorgen. Bei ungünstigen Kühlungsbedingungen muß unter Umständen die Verlustleistung der Röhre herabgesetzt werden. Sofern Abschirmhülsen verwendet werden, sollen diese innen und außen schwarz mattiert sein. Vorteilhaft ist eine Abschirmhülse mit einer Einlage aus gewelltem Drahtgeflecht, die in direktem Kontakt mit dem Glaskolben und der Abschirmhülse steht.

2.8.7 Impulsbetrieb, Kathodenstrom

Falls im Datenblatt keine entsprechenden Angaben enthalten sind, darf jeder Röhrentyp für Impulsbetrieb verwendet werden, vorausgesetzt, daß bei einer Integrationszeit von $t_{in} \stackrel{\leq}{=} 40$ ms der mittlere Kathodenstrom I_k den angegebenen Wert Ik max und der Kathodenspitzenstrom Ik sp das Dreifache vom Ik max nicht übersteigen. Andernfalls ist eine Anfrage beim Hersteller mit genauen Angaben über den beabsichtigten Betrieb notwendig.

2.9 Klingen, Mikrophonie

Durch mechanische Erschütterungen und akustische Einwirkungen können Systemteile der Röhre in Schwingungen versetzt werden. Hierdurch entstehen am Ausgang der Röhre Störspannungen, die sich als 'Klingen' und Mikrophonieeffekte bemerkbar machen. Erschütterungen können sowohl durch äußere Einflüsse, wie z.B. Vibrationen und Stöße am Aufstellungsort, als auch im Gerät selbst durch mechanische Schaltvorgänge, Ventilatoren, Lautsprecher und dergleichen verursacht werden.

Mechanische Eigenresonanzen im Gerät können die Störungen wesentlich verstärken. Häufig genügen schon kleine Änderungen im Aufbau des Gerätes, um eine Besserung zu erzielen. Bei ungünstigen Verhältnissen und besonderen Anforderungen empfiehlt es sich, die Röhre in geeigneter Weise federnd einzu bauen.

ERLÄUTERUNGEN ZU DEN TECHNISCHEN DATEN Erläuterung UND ZUM BETRIEB DER SPEZIALVERSTÄRKER-RÖHREN UND WEITVERKEHRSRÖHREN

Spez. Rö Wy Rö

Zur Orientierung über die Klingeigenschaften werden in den Datenblättern Klingspannungen unter bestimmten Prüfbedingungen angegeben.

Für den in der Praxis häufig vorkommenden Fall, daß die Eingangsröhre eines NF-Verstärkers der Schallwirkung eines Lautsprechers ausgesetzt ist, wird bei einzelnen Röhrentypen die maximal zulässige Verstärkung zwischen dem Eingang der kritischen Röhre und dem Lautsprecher angegeben, bei der noch keine akustische Rückkopplung (Heulen) auftreten kann. (z.B.: 50 mW am Lautsprecher dürfen erst bei Spannungen über 1 mV am Gitter der betreffenden Röhre erreicht werden). Dabei wird vorausgesetzt, daß die Lautsprecherschwingungn nur über die Luft und nicht über das Chassis auf die Röhre übertragen werden.

2.10 Brumm

Bei Wechselstromheizung können durch die Kapazitäten zwischen dem Heizfaden und den Röhrenelektroden, durch Fehlströme zwischen Heizfaden und Kathode sowie durch das Magnetfeld des Heizers Brummstörungen auftreten.

Folgende Maßnahmen sind geeignet, um diese Störungen weitgehend zu vermeiden:

Wechselspannung zwischen Heizfaden und Kathode bzw. Steuergitter niedrig halten. Bei Parallelheizung den Mittelpunkt des Heizfadens symmetrieren, bei Serienheizung die kritische Röhre an das 'kalte' Ende der Heizkette legen.

Die Impedanzen in der Steuergitter- und Kathodenzuleitung möglichst klein wählen, z.B. Kathodenwiderstand mit einer großen Kapazität überbrücken.

Die Zuleitungen einschließlich der Sockelstifte und gegebenenfalls die Röhre selbst sorgfältig abschirmen.

Die Faden-Kathoden-Strecke nicht in empfindliche Schaltkreise legen.

Ferner soll die Röhre nicht im Bereich der Streufelder der Netztransformatoren und Siebdrosseln liegen.

Die vor allem bei NF-Verstärkerröhren im Datenblatt angegebene Eigenbrummspannung bezieht sich auf das Steuergitter der Röhre in einer NF-Schaltung mit angegebenen Werten bei Parallelheizung mit 50 Hz-Wechselstrom, wobei die Röhre und alle Zuleitungen einschließlich der Sockelstife wirksam abgeschirmt sind.

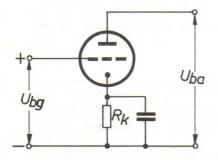
2.11 Rauschen

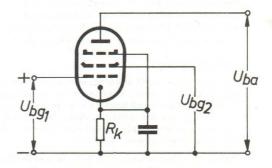
Üblicherweise wird das Röhrenrauschen durch den äquivalenten Rauschwiderstand Rag gekennzeichnet. Hierunter ist derjenige Widerstand zu verstehen, der in die Gitterzuleitung der Röhre geschaltet, das gleiche Rauschen am Ausgang der Röhre erzeugt wie die Röhre selbst. Um die auf das Gitter bezogene Gesamtrauschspannung zu ermitteln, können bei dieser Ausdrucksweise die Rauschwiderstände im Gitterkreis addiert werden.

 $Außer \, dem \, \ddot{a} quivalenten \, Rauschwiderstand \, R_{\ddot{a} q} \, wird \, oft \, zur \, Beurteilung \, des \, Rausch$ verhaltens der Röhre die sogenannte Rauschzahl F verwendet. Sie gibt das Verhältnis des Rauschabstandes am Eingang zum Rauschabstand am Ausgang einer Röhrenstufe an.

2.12 Stabilisierung des Arbeitspunktes durch Gleichstromgegenkopplung

Die Lage des Arbeitspunktes einer Röhre ist gegenüber Spannungsschwankungen um so unempfindlicher, je größer der Gleichstrom-Gegenkopplungsfaktor k gemacht wird. Deshalb sollte überall dort, wo es auf konstante Betriebsbedingungen ankommt, insbesondere wenn die Röhren nahe am Grenzwert der Verlustleistung betrieben werden, von einer Gleichstromgegenkopplung Gebrauch gemacht werden. Es lassen sich dadurch auch die Einflüsse der durch Röhrenstreuung und Alterung bedingten Änderungen der elektrischen Werte auf die Schaltung stark verringern. Insbesondere bei Röhren hoher Steilheit ist eine solche Gegenkopplung empfehlenswert. Der Faktor k, um den sich die Stromänderungen, verglichen mit dem Fall fehlender Gegenkopplung, verringern, läßt sich auf Grund folgender Beziehungen berechnen:


$$\begin{split} &\text{Triode} & \quad k_T = 1 + S \cdot R_k + S \cdot D \cdot (R_a + R_k) \\ &\text{Pentode} & \quad k_P = 1 + S \cdot R_k \cdot (1 + \frac{I_g 2}{I_a}) + S \cdot \frac{1}{\mu g 2 g 1} \cdot \frac{I_g 2}{I_a} \cdot (R_{g 2} + R_k) \end{split}$$


Für eine gute Stabilisierung des Arbeitspunktes kommt es also darauf an, R_k, R_a und/oder $R_{\rm g2}$ möglichst groß zu machen. Bei großem R_k ist meist eine zusätzliche positive Spannung für das Gitter 1 erforderlich, um der Röhre die richtige Vorspannung zu geben. Diese Spannung muß gut stabilisiert sein.

In den Datenblättern der Röhren mit hoher Steilheit wird für die Einstellung des Arbeitspunktes im allgemeinen eine Gleichstromgegenkopplung mit vergrößertem Kathodenwiderstand und positiver Gitterbetriebsspannung (Ubg1) angegeben. Die resultierende negative Gittervorspannung der Röhren berechnet sich wie folgt:

$$\frac{\text{Triode}}{\text{-Ug} = I_k \cdot R_k - U_{bg}}$$

$$-\text{Ug1} = I_k \cdot R_k - U_{bg1}$$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE Die nachstehenden Röhrentypen stimmen in ihren Daten mit den Siemens-Spezialröhren so weitgehend überein, daß ein Austausch möglich ist.

		Тур	äquivalenter Siemens-Typ		äquivalenter Siemens-Typ	Тур	äquivalenter Siemens-Typ
	A	2900	E 81 CC	CV 4003	E 82 CC	ECC 802	E 82 CC
	AG	5209	85 A 2	CV 4004	E 83 CC	ECC 802 S	E 82 CC
	AG	5210	108 C 1	CV 4007	E 91 AA	ECC 803	E 83 CC
	AG	5211	150 C 2	CV 4010	5654	ECC 803 S	E 83 CC
	B 1	52	E 81 CC	CV 4016	5814 A	ECC 960	E 90 CC
	B 3	09	E 81 CC	CV 4024	E 81 CC	ECF 80	E 80 CF
	B 3	29	E 82 CC	CV 4025	E 91 AA	EF 95	5654
	В 3	39	E 83 CC	CV 4032	5814 A	EF 861	E 180 F
	CK	5654	5654	CV 5214	E 90 CC	EF 905	5654
	CK	5726	E 91 AA	CV 5231	E 88 CC	EL 36	E 236 L
	CK	4751	5751	CV 5232	C3m	EL 84	E 84 L
	CK	5814	5814 A	DD 6	E 91 AA	E 95 F	5654
	CK	5814 A	5814 A	DD 6 S	E 91 AA	GD 85 M/S	85 A 2
	CK	5814 AW	5814 A	DP 61	5654	GD 108 M/S	5 108 C 1
	CK	6201	E 81 CC	D 2 M 9	E 91 AA	GL 572 G	E 91 AA
	CV	140	E 91 AA	D 77	E 91 AA	HD 51	150 C 2
	CV	283	E 91 AA	D 152	E 91 AA	HD 52	108 C 1
-	-CV	449	85 A 2	EAA 91	E 91 AA	KL 73551	F2a 11
	CV	455	E 81 CC	EAA 901	E 91 AA	M 8079	E 91 AA
	CV	491	E 82 CC	EAA 901 S	E 91 AA	M 8100	5654
	CV	492	E 83 CC	EB 91	E 91 AA	M 8136	E 82 CC
	CV	850	5654	EC 86	E 86 C	M 8137	E 83 CC
	CV	1832	150 C 2	EC 806 S	E 86 C	M 8162	E 81 CC
	_CV	1833	108 C 1	ECC 81	E 81 CC	N 709	E 84 L
	CV	2492	E 88 CC	ECC 82	E 82 CC -	OA 2	150 C 2
	CV	2493	E 88 CC	ECC 83	E 83 CC -	OB 2	108 C 1
	CV	2516	2 C 39 A	ECC 186	E 82 CC -	OG 3	85 A 2
	CV	2975	E 84 L	ECC 801	E 81 CC	PM 05	5654
	CV	3998	E 180 F	ECC 801 S	E 81 CC	QA 2404	E 91 AA

equir. noted J. B.

LISTE ÄQUIVALENTER RÖHRENTYPEN

Тур	äquivalenter Siemens-Typ	Тур	äquivalenter Siemens-Typ	Тур	äquivalenter Siemens-Typ
QU 2406	E 81 CC	6 AL 5 W	E 91 AA	6201	E 81 CC
QB 309	E 81 CC	6 AK 5	5654	6227	E 80 L
QB 329	E 82 CC	6 AK 5 W	5654	6463	6463
QS 83/3	85 A 2	6 AK 5 W	A 5654	6679	E 81 CC
—QS 1207	150 C 2	6 BL 8	E 80 CF	6680	E 82 CC
—QS 1208	108 C 1	6 BQ 5	E 84 L	6681	E 83 CC
—QS 1209	85 A 2 🗸	6 DJ 8	E 88 CC	6688	E 180 F
-QS 1212	85 A 2 V	6 D 2	E 91 AA	6922	E 88 CC
—QS 1213	85 A 2 🗸	6 L 13	E 83 CC	6922 WA	E 188 CC
S 856	150 C 2	6 P 15	E 84 L	7289	2 C 39 BA
S 860	108 C 1	12 AT 7	E 81 CC	7308	E 188 CC
SR 2	85 A 2	12 A T 7 W A	E 81 CC	7316	E 82 CC
SR 3	108 C 1	12 AU 7	E 82 CC	7320	E 84 L
Str 85/10	85 A 2	12 AU 7 A	E 82 CC	7534	E 130 L
Str 108/30	108 C 1	12 AU 7 W.	A E 82 CC	7643	E 80 CF
Str 150/30	150 C 2	12 AX 7	E 83 CC	7721	D3a
Stv 85/10	85 A 2	5726	E 91 AA	7722	E 280 F
Stv 108/30	108 C 1	5751 WA	5751	7751	E 235 L
Stv 150/30	150 C 2	5814	5814 A	7788	E 810 F
TS 49	C3m	5814 WA	5814 A	8223	E 288 CC
TS 51	5654	5920	E 90 CC		
Z 1494	6 AK 5 W	6057	E 83 CC		
Z 1764	5751	6058	E 91 AA		
2 C 39 B	2 C 39 BA	6060	E 81 CC		
3 CX 100 A	5 2 C 39 BA	6067	E 82 CC		
3 X 100 A5	2 C 39 A	6085	E 80 CC		
5 A/170 K	E 180 F	6096	5654		
5 A/185 K	E 280 F	6097	E 91 AA		
6 AL 5	E 91 AA	6189	E 82 CC		

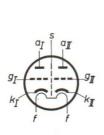
NATURAL COOLED

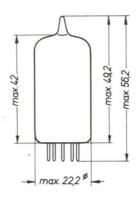
Da Juste

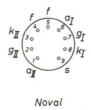
2 = Rutode

D =

Weitverkehrsröhren




Art und Verwendung


Steile, rauscharme Universal-Doppeltriode mit getrennten Kathoden für den Nachrichtenweitverkehr. Besonders geeignet für Cascodeschaltungen in NF- ZF- und HF- Verstärkern sowie für Oszillatoren, Frequenzvervielfacher, Mischstufen, Kathodenverstärker, bistabile Kippstufen und Multivibratoren hoher Impulsfrequenz und steiler Anstiegsflanke.

Qua tätsmerkmale

Lange Lebensdauer (> 10000 Std.) Zuverläs sigkeit Enge Boieranzen Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: Noval Gewicht: ca. 11g Kolben: DIN 41539, Form A, Nenngröße 40 Einbau: beliebig

Heizung

$$U_{f} = 6,3$$
 V^{1}
 $I_{f} = 300 \pm 15$ mA

Heizart: indirekt durch Wechsel oder Gleichstrom, Parallelspeisung

Kapazitäten		(ohne äußere Al	bschirmung)	
	-	System I	System II	
$C_{ m g/kfs}$ $C_{ m g/kf}$ $C_{ m a/kfs}$ $C_{ m a/kf}$ $C_{ m ag}$ $C_{ m as}$ $C_{ m kf}$	= = = = = = = = = = = = = = = = = = = =	3,1 ± 0,6 3,1 ± 0,6 1,75 ± 0,2 0,5 ± 0,1 1,4 ± 0,2 1,3 ± 0,2 2,6	3,1 ± 0,6 3,1 ± 0,6 1,65 ± 0,2 0,4 ± 0,1 1,4 ± 0,2 1,3 ± 0,2 2,7	pF pF pF pF pF pF
${^{\mathrm{C}}_{\mathrm{k}/\mathrm{gfs}}}\atop{^{\mathrm{C}}_{\mathrm{a}/\mathrm{gfs}}}\atop{^{\mathrm{C}}_{\mathrm{ak}}}$	= =	$6,0 \pm 0,9$ $3,0 \pm 0,3$ $0,18 \pm 0,04$	6,0 ± 0,9 2,9 ± 0,3 0,18 ± 0,04	pF pF pF
C _{aa} C _{gg} CaIgII CaIIgI CgIkII CgIIkI	< < < < < < < < < < < < < < < < < < <	4.5 5 5 5 5	5 5 5	mpF 2) mpF mpF mpF mpF

- Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.
- 2) Mittelwert 25 mpF

Kenndaten

		min.	nom.	max.	nom.	
U _{ba} ^{+U} bg R _k	=		100		90	V
R_k	=		680		120	Ω
Ι _a S μ	= = =	14,2 10,5	15,0 12,5 33	15,8 15,0	12 11,5	mA mA/V
Ri	=		2,6			kΩ Ω
R _{äq} R _{el} (100 MHz)	=		3			kΩ
Rauschzahl F Ug~(+I _g =0,3 μA) -I _g	=		4,6 0,75			V
-I _g	=			0,1		μA

Grenzdaten

Uao	max.	400	V
$U_a^{a0}(Q_a \le 0.8 \text{ W})$	max.	250	V
Ua	max.	220	V
Q_a	max.	1,5	W
Q_a	max.	1,8	W 2)
-U~	max.	100	V
-Ugsp	max.	200	V 3)
Q_{g}	max.	30	mW
Qg Rg I _k	max.	1,0	$M\Omega$ 4)
$I_{\mathbf{k}}$	max.	20	mA
Iksp	max.	100	$_{\rm mA}$ 3)
U _{fk+}	max.	150	V
U _{fk+} U _{fk-}	max.	100	V
tkolb	max.	170	°C

- Gemessen bei 200 MHz in Cascodeschaltung mit Rauschanpassung
- 2) Wenn $Q_{aI} + Q_{aII} = 2 W$

Schaltbild siehe Seite 6

- 3) Impulsdauer max. 10 % einer Periode, nicht länger als 200 μs .
- 4) Bei automatischer Gittervorspannung. Feste Vorspannung nur bei Anodenströmen ≤ 5 mA zulässig.

Besondere Angaben

Brumm

Ubr

<

50

μV

Meßeinstellung: U $_a$ = 90 V, R $_k$ = 80 Ω , C $_k$ = 1000 μF , R $_g$ = 0,5 $M\Omega$, völlig geschirmte Röhrenfassung

Mittensymmetrierung des Heizfadens

Isolationswiderstände

 R_{is} (g/alle übrigen Elektroden bei U_{is} = 100 V) > 100 $M\Omega$ R_{is} (a/alle übrigen Elektroden bei U_{is} = 300 V) > 100 $M\Omega$ R_{is} (fk- bei U_{is} = 100 V) > 10 $M\Omega$

 R_{is} (fk+ bei U_{is} = 100 V) > 20 $M\Omega$

gemessen bei $U_f = 6,3 \text{ V}$

Ende der Lebensdauer

Ia	< =	13,5	mA
S	=	8,5	mA/V
-I _g	≥	1,0	μΑ

Meßeinstellung: siehe Kenndaten mit $R_k = 680 \Omega$

V kΩ

V mA μA W %

Betriebsdaten als Leistungsverstärker

Eintakt	A-Betrieb

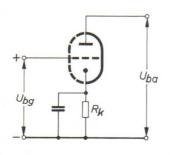
Ua	=		220		V
Ra	=		20		kΩ
U _a R _a -Ug	=		6,3		V
Ug~	=	0		4,1	V
I _a +I _g N _a ~	=	6,5	-	9,2	mA
+I _g	=	-	-	0,3	μA
Na~	=	_	0,05	0,5	W
k	=	-	_	7	%

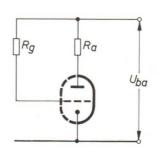
Gegentakt B-Betrieb

Ua	=		200	
Raa	=		22	
R _{aa} -U _g	=		5,8	
Ug~	=	0	0,8	3,8
I _a +I _g N _{a~} k	=	2x5	-	2x9
$+I_g$	=	-	-	0,3
Na~	=	-	0,05	1,2
k	=	_	-	3

Ua	=		200		V
Raa	=		10		$k\Omega$
R _{aa} -U _g	=		5,8		V
Ug~	=	0	0,8	3,8 1)	V
Ia	=	2x5	-	2x13,5	mA
I _a +I _g	=	-	_	0,3	μA
Na~	=	-	0,05	1 , 5	W
k	=	-	-	4	%

¹⁾ Sprach- oder Musikaussteuerung

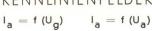


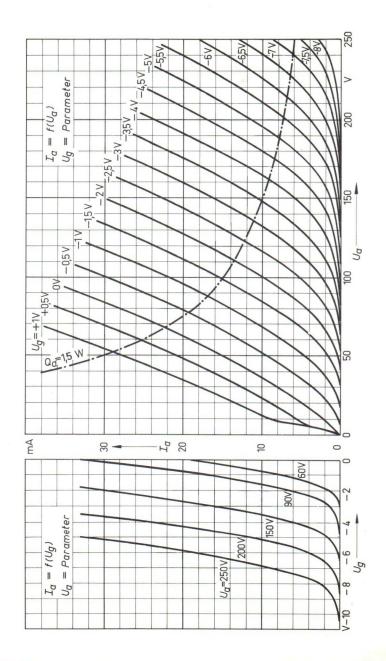

Betriebsdaten für additive Mischstufen

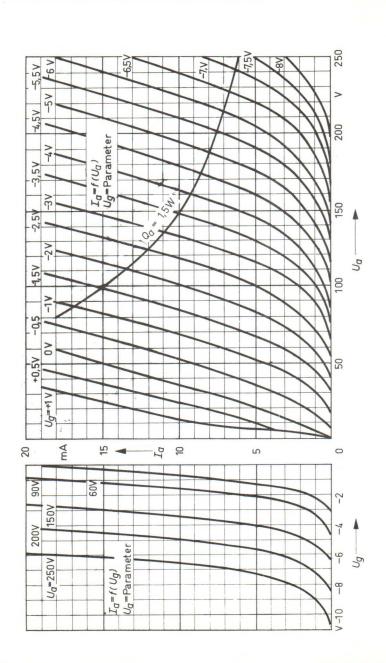
Uba	=	60	90	150	V
Ra	=	0	1	4	kΩ
Rg	=	1	1	1	$M\Omega$
R _g U _{osz}	=	2	2,5	3	V
I_a	=	4,7	7,7	11,0	mA
S _c	=	2,9	3,5	4,1	mA / V
Ric	=	8,3	7,0	6,1	kΩ

Kenndaten für Zählschaltungen

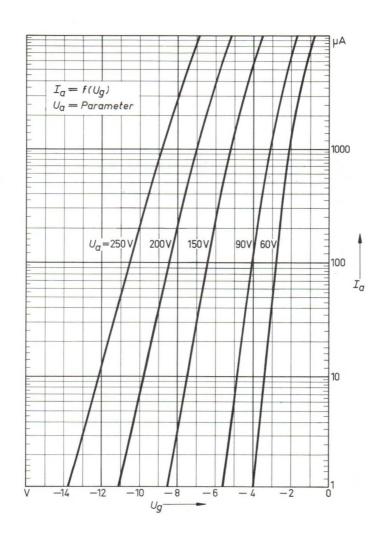
U_{ha}	=		150		60	V
U _{ba} Ra	=		2,5		2,5	$k\Omega$
Rg	=		300		300	$k\Omega$
	=	28	33	38 1)	> 9	mA
I _a -Ug (I _a =0,1 mA) -Ug (I _a ≤5.0 μA)	=	5,0	6,5	8,5	-	V
$-U_g$ ($I_a \le 5, 0 \mu A$)	=		15		_	V
$ U_{gI}-U_{gII} $ (I _a =0,1 m	ıA)≦		2,0		-	V

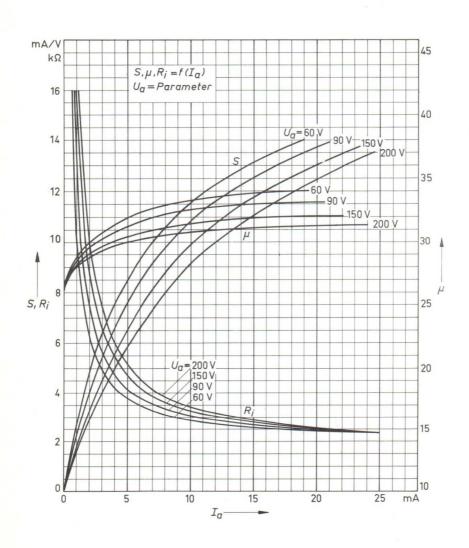





Meßschaltung für Kenndaten

Meßschaltung für Zählschaltungen

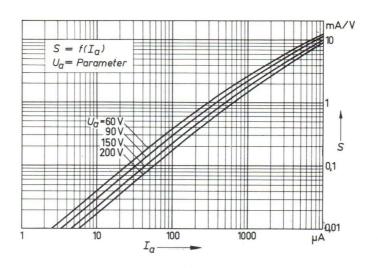

1) Meßdauer = 1 sec.

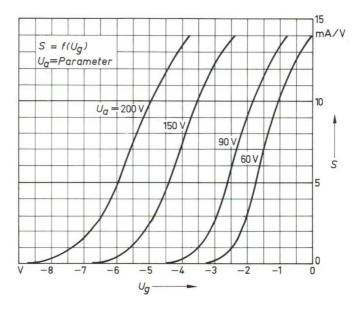


KENNLINIENFELD

SIEMENS RÖHREN

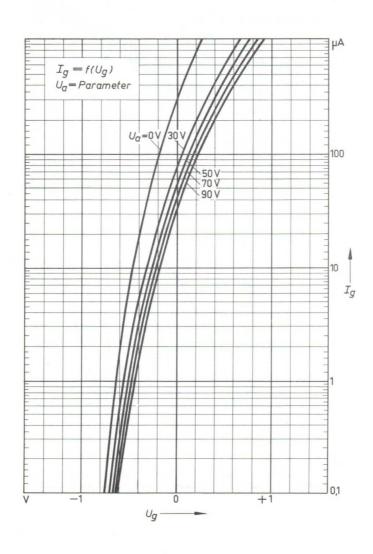
 $S, \mu, R_i = f(I_a)$

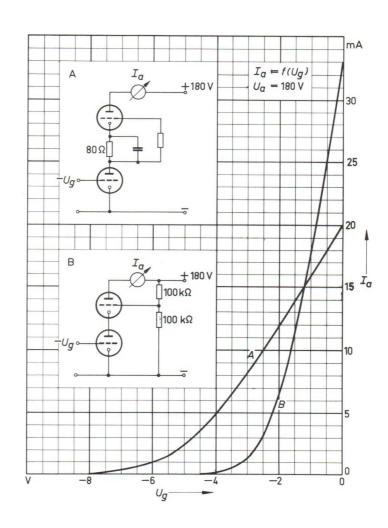


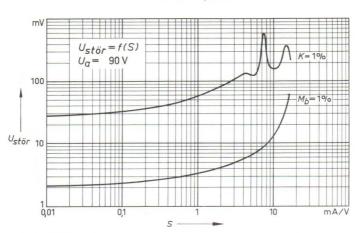


STEILHEITSKENNLINIEN

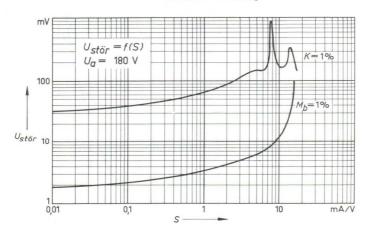
$$S = f(I_a)$$
 $S =$




$\label{eq:gitterstromkennline} \textbf{GITTERSTROMKENNLINIEN} \\ \textbf{I}_g = \textbf{f} \ (\textbf{U}_g)$

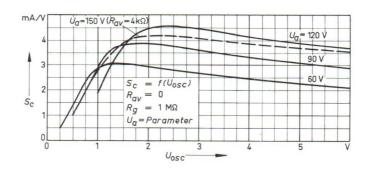


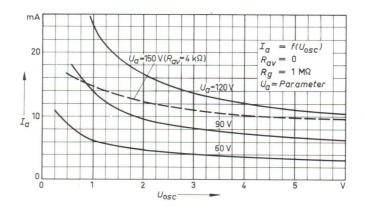
BRUMM- UND KREUZMODULATIONSKENNLINIEN

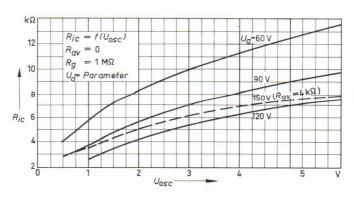


 $U_{st\"{o}r} = f(S)$

für ein System

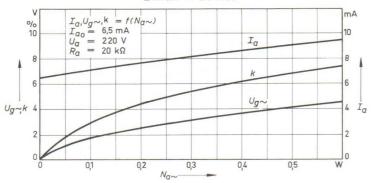

in Cascode-Schaltung



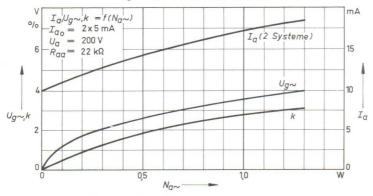


MISCHKENNLINIEN

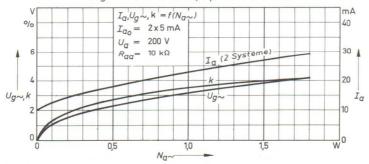
 $S_{c'} I_{a'} R_{ic} = f (U_{osc})$



AUSSTEUERKENNLINIEN


SIEMENS RÖHREN

 I_a , $U_a \sim$, $k = f(N_a \sim)$

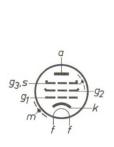


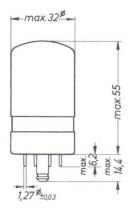
Gegentakt B-Betrieb, Dauerton

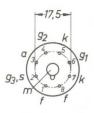
Gegentakt B-Betrieb, Sprache und Musik

SIEMENS & HALSKE AKTIENGESELLSCHAFT

WERNERWERK FUR BAUELEMENTE




Art und Verwendung


Steile, rauscharme Pentode für den Nachrichtenweitverkehr. Besonders geeignet für HF-, ZF- und Breitbandverstärker.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit Enge Toleranzen Zwischenschichtfreie Spezialkathode

Kontinentaler Schlüsselsockel

Maße in mm

Sockel: Kontinentaler Schlüsselsockel

Gewicht: ca 30 g

Fassungen: Preßstoff 9 Rel lp 12 Keramik Rel sty 149

Einbau: beliebig

Heizung

$$U_{f} = 6,3 V 1$$
 $I_{f} = 370 \pm 20 mA$

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

Triodenschaltung (g2 an a, g3 an k)

Ce	=	7	pF
C _e C _a C _{ag1}	=	6	pF
Cagi	=	2, 7	pF

- Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5% (absolute Grenzen) um den Sollwert schwankt.
- 2) Mittelwert 10 mpF
- 3) Mittelwert 30 mpF

Kenndaten

U_a = 220 V U_{g3} = 0 V	
$U_{\alpha 2}^{\beta \beta} = 150 V$	
U_{g2} = 150 V R_k = 115 Ω	
I _a = 10 13 16 m _a	A
I_a = 10 13 16 mL I_{g2} = 2,6 3,3 4,0 mL S = 12 14 16,3 mL	A
$S^{S^2} = 12 14 16,3 m_A$	A/V
$\mu_{\alpha} 2\alpha 1 = 41$	
$\mu_{g} 2g1 = 41$ $R_{i} = 300$ ks	2
$R_{iL} = 1,7$ ks	2
$R_{aq} = 650 \Omega$	
$R_e^{-1}(f=100 \text{ MHz}) = 2 \text{ ks}$	2 1)
$-U_{g1}(I_{a}=0, 1 \text{ mA}) = 4,5$	
$-U_{g1} (I_a=0, 1 \text{ mA}) = 4,5 V$ $-U_{g1} (+I_{g1}=0, 3\mu\text{A}) \leq 0,8 V$	

Triodenschaltung (g2 an a, g3 an k)

Ua	=	200	V
Rk	=	180	Ω
Ia	=	17	mA
I _a S	=	17	mA/V
μ	=	40	
Ri	=	2,3	kΩ
Räq	=	200	Ω

1) Beide Kathodenanschlüsse parallel geschaltet

Grenzdaten

Uao	max.	550	V
Ua	max.	220	V
Qa	max.	3,5	W
	max.	550	V
Ug3o Ug3	max.	220	V
Qg3	max.	0,7	W
Ug2o	max.	550	V
Ug2	max.	220	V
Q _{g2}	max.	0,7	W
U _{g2} Q _{g2} -U _{g1}	max.	50	V
Qg1	max.	50	mW
Rg1	max.	0,5	$M\Omega$
Ik	max.	30	mA
Ufk	max.	120	V
Rfk	max.	20	$k\Omega$
thülse	max.	120	OC

Betriebsdaten als Leistungsverstärker

Eintakt A-Betrieb

Ua	=		220		V
Ug3 Ug2 Ra Rk	=		0		V
Ug2	=		150		V
Ra	=		15		kΩ
Rk	=		115		Ω
Ug1~	=	0		0,85	V
Ia	=	13		13	mA
I _{g2}	=	3,3		4,7	mA
I _{g2} N _a ~ k	=	-		1,2	W
k	=	-		10	%

Besondere Angaben

Negativer Gitterstrom

-I_{α1} ≦

μΑ

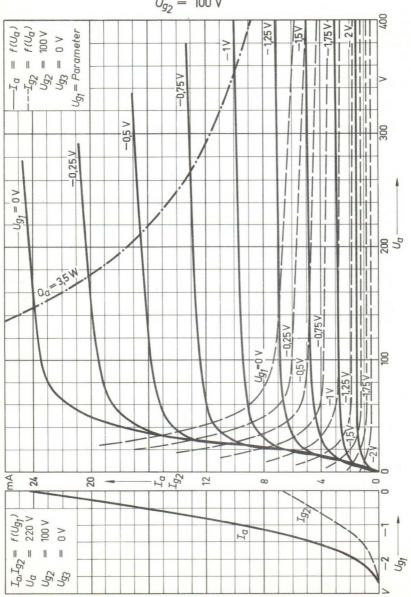
Meßeinstellung: siehe Kenndaten Seite 2

Isolationswiderstände

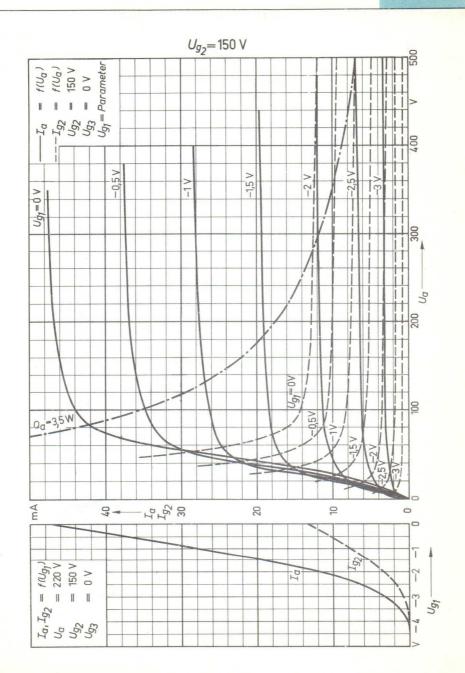
 $\begin{array}{ll} R_{is} \; (a/alle \; \text{übrigen Elektroden} & \text{bei } U_{is}\text{=}300 \; \text{V}) \stackrel{\geq}{=} 1000 \; \text{M} \; \Omega \\ R_{is} \; (\text{g}_{1}/alle \; \text{übrigen Elektroden} & \text{bei } U_{is}\text{=}100 \; \text{V}) \stackrel{\geq}{=} 1000 \; \text{M} \; \Omega \\ R_{is} \; (\text{f/k} & \text{bei } U_{is}\text{=}100 \; \text{V}) \stackrel{\geq}{=} 100 \; \text{M} \; \Omega \end{array}$

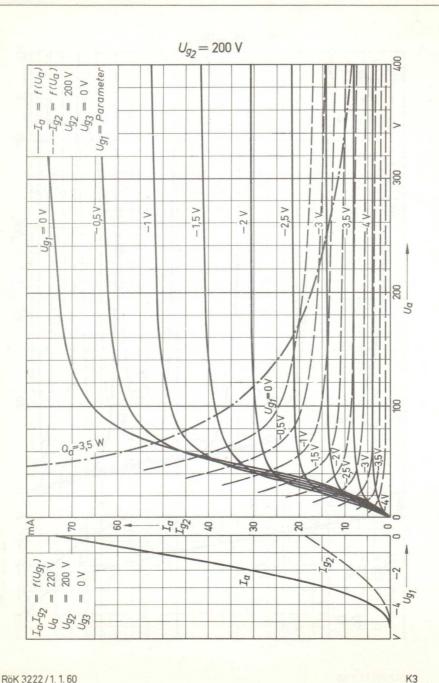
0,5

Ende der Lebensdauer

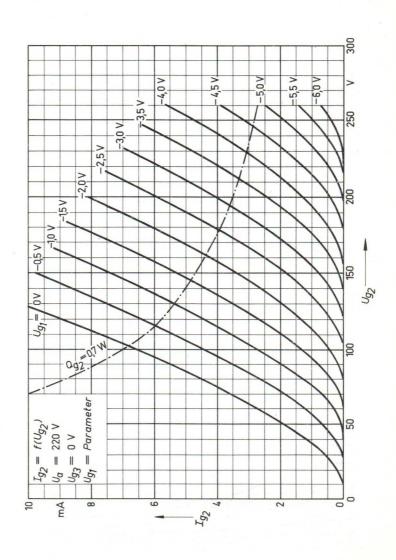

 I_a \leq 8,3 mA $_{S}$ \leq 9,8 mA/V $_{I_{g1}}$ \geq 1,0 $_{\mu A}$

Meßeinstellung: siehe Kenndaten Seite 2

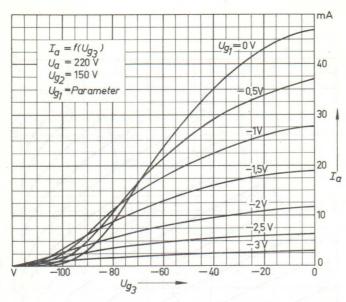

KENNLINIENFELDER $I_a, I_{g_2} = f(U_{g_1})$ $I_a, I_{g_2} = f(U_a)$

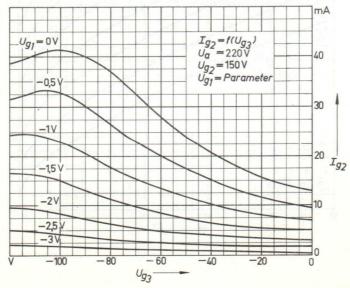


 $I_{a}, I_{g_2} = f(U_{g_1})$ $I_{a}, I_{g_2} = f(U_{a})$

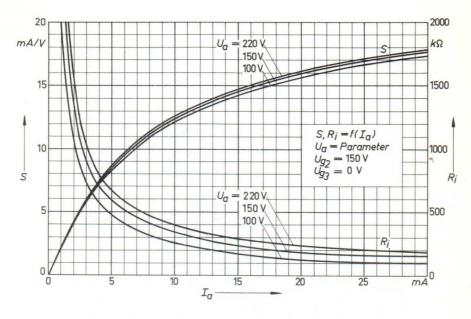


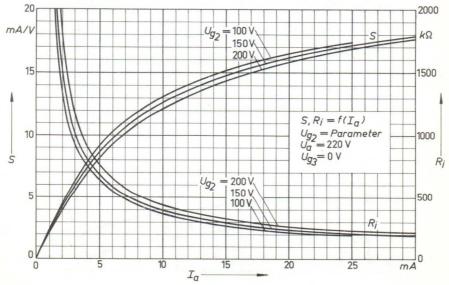
$$I_{a}, I_{g_{2}} = f(U_{g_{1}})$$
 $I_{a}, I_{g_{2}} = f(U_{a})$

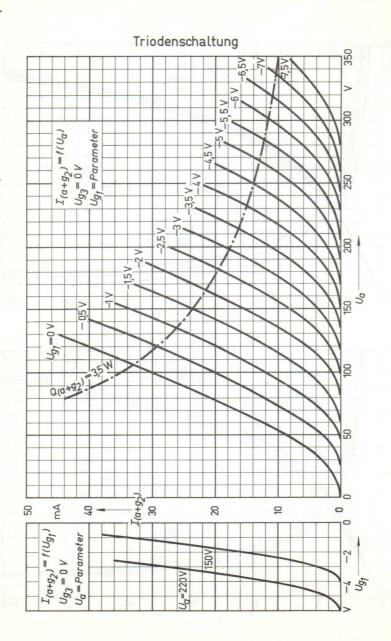


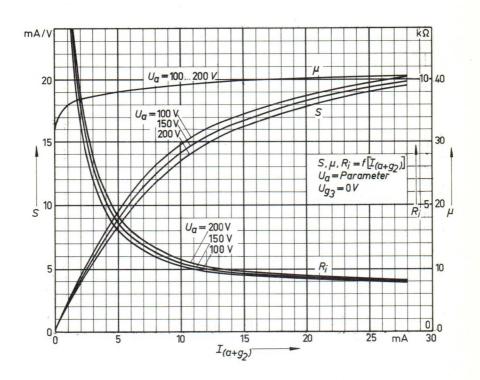


$$I_a = f(U_{g_3})$$


$$I_a = f(U_{g_3})$$
 $I_{g_2} = f(U_{g_3})$



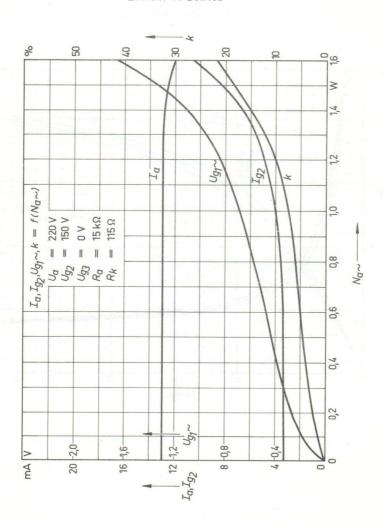




$$I_{(a+g_2)} = f(U_{g_1}) \qquad I_{(a+g_2)} = f(U_a)$$

S, μ , $R_{i} = f (l (a+g_2))$

Triodenschaltung

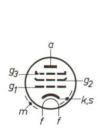


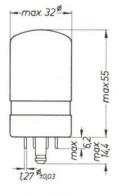
AUSSTEUERKENNLINIEN

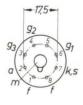
 I_a , I_{g_2} , U_{g_1} \sim , $k = f (N_a \sim)$

Eintakt A-Betrieb

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE




Art und Verwendung


Universal - Pentode hoher Konstanz und Lebensdauer für den Nachrichtenweitverkehr. Besonders geeignet für NF-, ZF- und HF- Verstärker in Vor- und Endstufen, Oszillatoren, Mischstufen und Regelverstärker.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit Enge Toleranzen Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel : Kontinentaler Schlüsselsockel

Fassungen: Preßstoff 9 Rel lp 12

Keramik Rel stv 149

Gewicht: ca. 30 g Einbau: beliebig

Heizung

$$U_{\rm f} = 20 \qquad V^{1}$$
 $I_{\rm f} = 125 \pm 5 \qquad {\rm mA}$

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallel- oder Serienspeisung

Kapazitäten

Triodenschaltung (g2 und g3 an a)

Ce	=	5	pF
Ca	=	7,5	pF
C _e C _a C _{ag1}	=	4	pF pF pF

- 1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung bei Parallelspeisung nicht mehr als ± 5 % (absolute Grenzen) und der Heizstrom bei Serienspeisung nicht mehr als ± 1,5 % (absolute Grenzen) um den Sollwert schwanken.
- Mittelwert 40 mpF

Kenndaten

		min.	nom.	max.		
U_a	=		220		60	V
$U_{\alpha 3}$	=		0		0	V
$U_{\alpha 2}$	=		150		60	V
U _{g3} U _{g2} R _k	=		250		300	Ω
Ia	=	13,5	16	19	5	mA
I _a I _{g2} S	=	2,0	3,0	4,0	1	mA
S	=	5,5	6,5	7,8	4,7	mA/V
µg2g1	=		19			
μg2g1 R _i	=	200	250	-	150	$k\Omega$
R _{iL}	=		1,2		2	$\mathbf{k}\Omega$
Rag	\leq		1,2		0,65	$k\Omega$
$-U_g^{1}$ (+ I_g =0,3	μA) ≦		1,3			V
$-U_{g}^{1}$ (+ I_{g} =0,3 - U_{g} (I_{a} =0,1r	$nA) \leq$		14			V

Triodenschaltung	1 -	und	_	22	2)	
1 1 1 Ode His Chartung	(~)	ullu	~ 2	all	ai	

Ua	= ,	220	V
U _a R _k	=	500	Ω
Ia	=	18,5	mA
s S	=	7,2	mA/V
μ	=	18	
Ri	=	2,5	$k\Omega$
R _i R _{äq}	=	650	Ω

C3m

GRENZDATEN BESONDERE ANGABEN

Grenzdaten

TT	200	550	V
Uao	max.		
Ua	max.	300	V
Qa	max.	4,0	W
Uggo	max.	550	V
$U_{\alpha 3}^{\beta 3}$	max.	300	V
Ug3 o Ug3 Qg3	max.	1,0	W
Ug2o	max.	550	V
U _{g2}	max.	300	V
Q _{g2}	max.	1,0	W
Qg2 -U~1	max.	100	V
Q _{g1}	max.	50	mW
Q_{g1} R_{g1} (Qa>1,5W)	max.	0,5	$M\Omega$
$R_{g1}^{g1} (Q_a \le 1, 5W)$	max.	3,0	$M\Omega$
Ik	max.	30	mA
Ufk	max.	120	V
Rfk	max.	20	$\mathbf{k}\Omega$
thulse	max.	120	oC

Besondere Angaben

Negativer Gitterstrom

 $-I_{g1} \leq 0,5$ µA Meßeinstellung: siehe Kenndaten mit U_a = 220 V

Besondere Angaben

Isolationswiderstände

R _{is} (a/alle übrigen Elektroden bei U _{is} =300V)	}	1000	$M\Omega$
R _{is} (g/alle übrigen Elektroden bei U _{is} =100V)	=	1000	$M\Omega$
R _{is} (fk bei U _{is} =100V)	2	100	$M\Omega$
gemessen bei $U_f = 20 \text{ V}$			

Mikrophonie

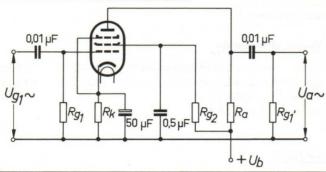
Die Röhre darf ohne besondere Maßnahmen gegen Mikrophonie in Schaltungen verwendet werden, die für eine Eingangsspannung $U_{g1} \sim > 10$ mV eine Leistung der Endröhre von 50 mW ergeben.

Brumm

 $U_{br} \leq 10$ μA

Meßeinstellung: U_b = 200 V, R_a = 200 k Ω , R_{g2} = 1,2 M Ω ,

 R_{g1} = 0,5 M Ω , R_k = 1,5 k Ω , C_k = 1000 μF völlig geschirmte Röhrenfassung und geerdete Mittelzapfung des Heiztransformators.


Ende der Lebensdauer

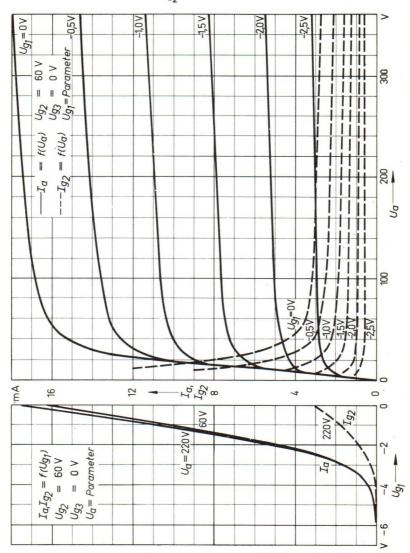
I_a	≤	11,5	mA
S	≦	4,5	mA/V
-Ig1	≧	1,0	μΑ

Meßeinstellung: siehe Kenndaten mit $U_a = 220 \text{ V}$

Betriebsdaten als NF-Vorverstärker

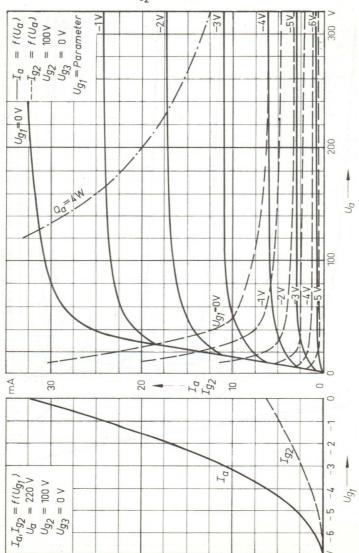
$R_a = 20$	00 kΩ,	$R_{g1} = 1 M$	Ω , R_{g1}	= 0,5 $M\Omega$	
Ub	100	200	250	300	V
	1	1,2	1,2	1,2	$M\Omega$
R _{g2} R _k	3	1,5	1,2	1	$k\Omega$
Ia	0,35	0,7	0,9	1,1	mA
Ig2	0,08	0,15	0,18	0,22	mA
V	130	215	250	270	
$U_a \sim (k=0, 5\%)$	3	3,5	4	6	V
$U_{a} \sim (k=1\%)$	5	6	8	12	V
$U_a \sim (k=2\%)$	8	12	17	22	V

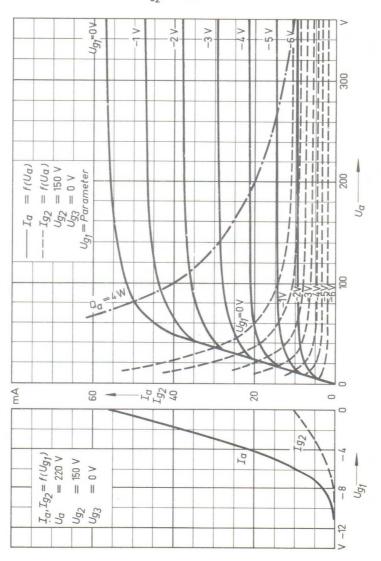
Betriebsdaten als Leistungsverstärker

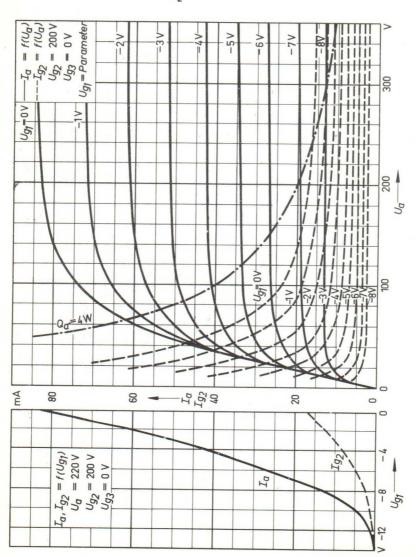

Eintakt A-Betrieb

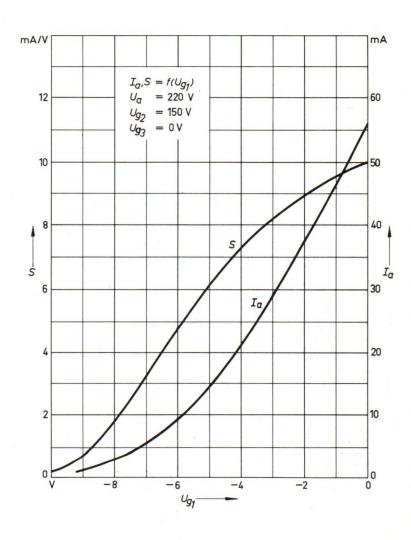
Ua	=		220		V
Ua3	=		0		V
U _{g2}	=		150		V
Ra	=		10		$k\Omega$
U_a U_{g3} U_{g2} R_a R_k	V E		250		Ω
Ug1~	=	0		3,8	V
Ia	=	16		17,4	mA
I _{a2}	=	3,2		5	mA
^I g2 Na∼ k	=	-		1,5	W
k	=	-		10	%

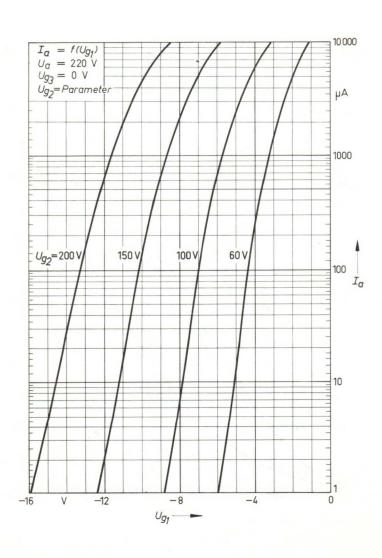
$$I_{a}, I_{g_{2}} = f(U_{g_{1}})$$
 $I_{a}, I_{g_{2}} = f(U_{a})$



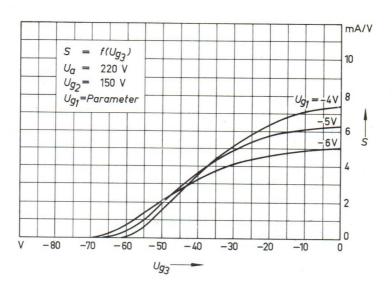

KENNLINIENFELDER $I_{a}, I_{g_{2}} = f(U_{g_{1}}) \qquad I_{a}, I_{g_{2}} = f(U_{a})$

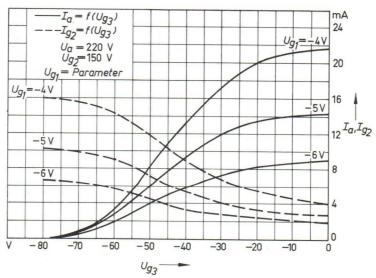

$$U_{g_2} = 150 \text{ V}$$


$$I_a, I_{g_2} = f(U_{g_1})$$
 $I_a, I_{g_2} = f(U_a)$

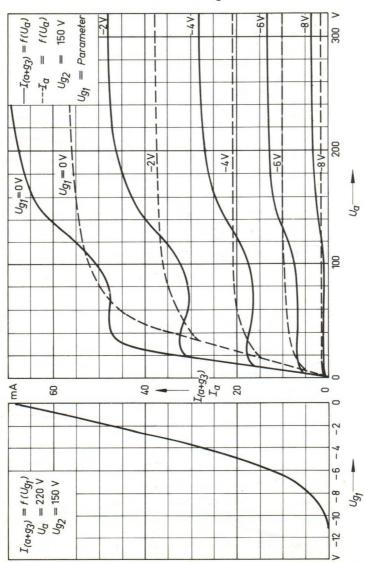


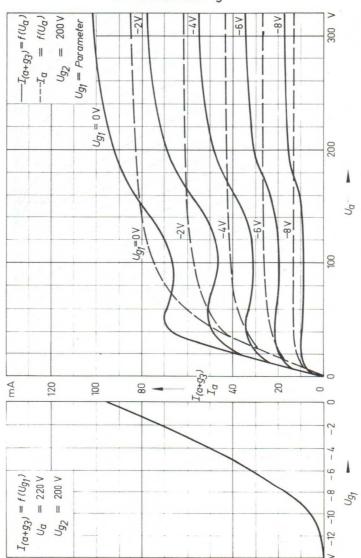
KENNLINIEN $I_a, s = f(U_{g_1})$




KENNLINIENFELD $I_{a} = f(U_{g_{1}})$

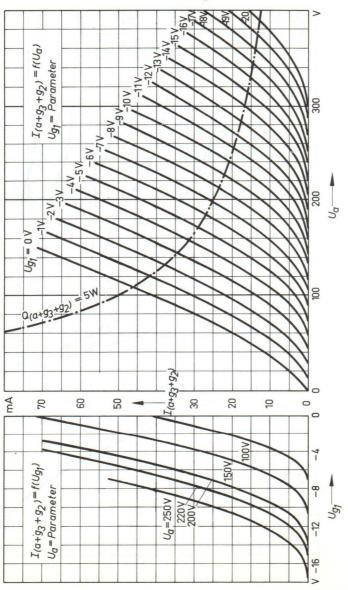
$$S = f(U_{g_3})$$
 $I_{a'}I_{g_2} = f(U_{g_3})$



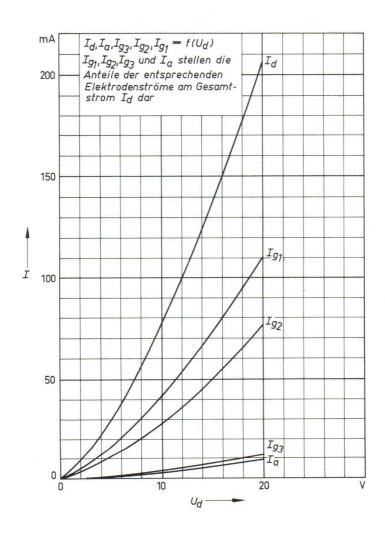

$$I_{(a+g_3)} = f(U_{g_1})$$
 $I_{(a+g_3)} = f(U_a)$

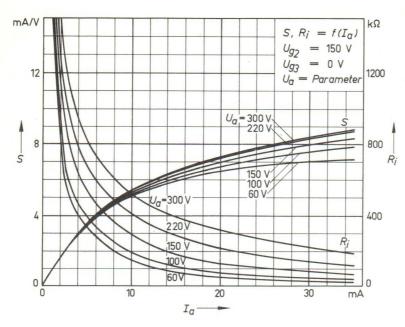
Tetrodenschaltung

$$I_{(a+g_3)} = f(U_{g_1})$$
 $I_{(a+g_3)} = f(U_a)$

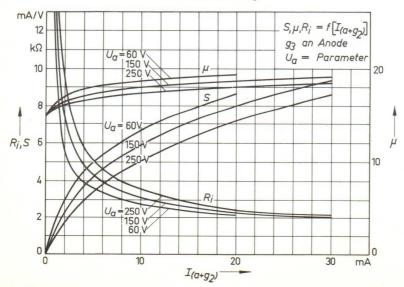

Tetrodenschaltung

$$I_{(a+g_3+g_2)} = f(U_{g_1})$$
 $I_{(a+g_3+g_2)} = f(U_a)$

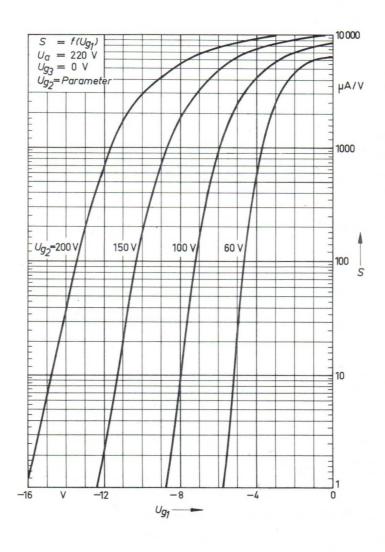

Triodenschaltung


KENNLINIEN $I_{d'}I_{a'}I_{g_{3'}}I_{g_{2'}}I_{g_{1}} = f(U_{d})$

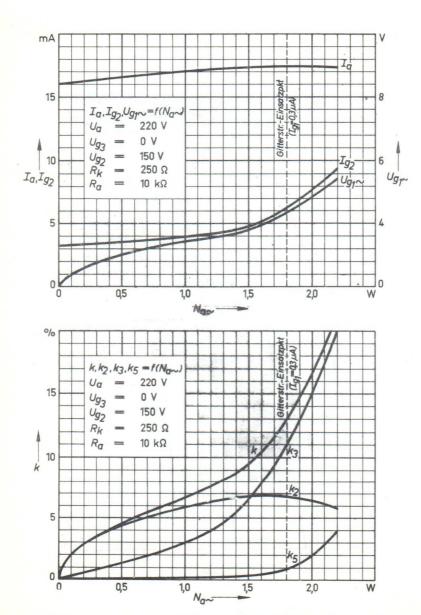
Diodenschaltung



$$S, R_i = f(I_a)$$
 $S, \mu, R_i = f(I_{(a+g_2)})$

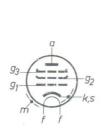


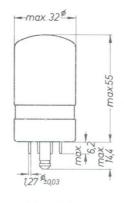
Triodenschaltung

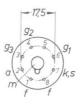

ROHREN

LEISTUNGSKENNLINIEN $I_{a'}I_{g_{2'}}U_{g_{1\sim}}, k = f(N_{a\sim})$ $K, K_{2'}K_{3'}K_{5} = f(N_{a\sim})$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE




Art und Verwendung


Universal - Pentode hoher Konstanz und Lebensdauer für den Nachrichtenweitverkehr. Besonders geeignet für NF-, ZF- und HF- Verstärker in Vor- und Endstufen, Oszillatoren, Mischstufen und Regelverstärker.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit Enge Toleranzen Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: Kontinentaler Schlüsselsockel Gewicht: ca. 30 g

Fassungen: Presstoff 9 Rel lp 12

Keramik Rel stv 149

Einbau: beliebig

Heizung

$$U_{f} = 6,3 V^{1}$$
 $I_{f} = 400 \pm 20 mA$

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallel- oder Serienspeisung

Kapazitäten

Triodenschaltung (g2 und g3 an a)

$$C_{e}$$
 = 5 pF
 C_{a} = 7,5 pF
 C_{ag1} = 4 pF

- 1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung bei Parallelspeisung nicht mehr als ± 5 % (absolute Grenzen) und der Heizstrom bei Serienspeisung nicht mehr als ± 1,5 % (absolute Grenzen) um den Sollwert schwanken.
- 2) Mittelwert 40 mpF

Kenndaten

		min.	nom.	max.		
U_a	, =		220		60	V
$U_{\alpha 3}$	=		0		0	V
U _{g3} U _{g2}	=		150		60	V
Rk	=		250		300	Ω
I _a I _{g2} S	=	13,5	16	19	5	mA
I _{a2}	=	2,0	3,0	4,0	1	mA
SEL	=	5,5	6,5	7,8	4,7	mA/V
µg2g1	=		19			
Ri	=	200	250	_	150	$\mathbf{k}\Omega$
RiL	=		1,2		2	$\mathbf{k}\Omega$
Rag	≦		1,2		0,65	$\mathbf{k}\Omega$
$-U_g^1 (+I_g=0,3)$	μA) ≦		1,3			V
$-U_{g}^{q}$ (+I _g =0,3 -U _g (I _a =0,1n	nA) ≦		14			V

-	Triodenschaltung	(g2 und g3 an a)	
1	U _a =	220	V
]	U _a = R _k =	500	Ω
]	=	18,5	mA
5	I _a = = S = =	7, 2	mA/V
	μ =	18	
]	R _i =	2,5	kΩ
]	R _i =	650	Ω

C30

GRENZDATEN BESONDERE ANGABEN

Grenzdaten

Uao	max.	550	V
Ua	max.	300	V
Qa	max.	4,0	W
Ug3o	max.	550	V
U _{a3}	max.	300	V
Ug3 Qg3	max.	1,0	W
Ug2o	max.	550	V
U _{g2}	max.	300	V
Q _{g2}	max.	1,0	W
Qg2 -Ug1	max.	100	V
	max.	50	mW
Q_{g1} $R_{g1} (Q_a > 1, 5W)$	max.	0,5	$M\Omega$
R_{g1}^{s} (Q _a >1,5W) R_{g1} (Q _a ≤1,5W)	max.	3,0	$M\Omega$
Ik	max.	30	mA
Ufk	max.	120	V
Rfk	max.	20	$k\Omega$
thülse	max.	120	oC

Besondere Angaben

Negativer Gitterstrom

 $-I_{g1}$ \leq 0,5 μA

Meßeinstellung: siehe Kenndaten mit $U_a = 220 \text{ V}$

Besondere Angaben

Isolationswiderstände

R _{is} (a/alle übrigen Elektroden bei U _{is} =300V)	}	1000	$M\Omega$
R _{is} (g/alle übrigen Elektroden bei U _{is} =100V)	2	1000	$M\Omega$
R _{is} (fk bei U _{is} =100V)	\geq	100	$M\Omega$
gemessen bei U _f = 6.3 V			

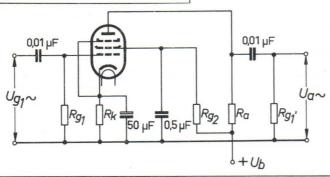
Mikrophonie

Die Röhre darf ohne besondere Maßnahmen gegen Mikrophonie in Schaltungen verwendet werden, die für eine Eingangsspannung $U_{g1} \sim > 10$ mV eine Leistung der Endröhre von 50 mW ergeben.

Brumm

 $U_{\mathbf{br}}$ \leq 10 μA

Meßeinstellung: Ub = 200 V, Ra = 200 k Ω , Rg2 = 1,2 M Ω , Rg1 = 0,5 M Ω , Rk = 1,5 k Ω , Ck = 1000 μ F völlig geschirmte Röhrenfassung und geerdete Mittelzapfung des Heiztransformators.


Ende der Lebensdauer

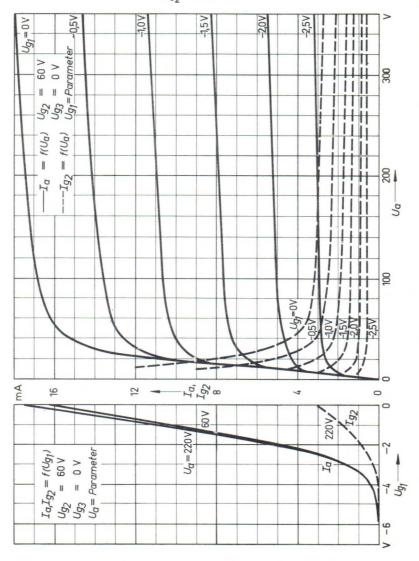
Ia	_ ≤	11,5	mA
I _a S	≦	4,5	mA/V
-Ig1	≧	1,0	μΑ

Meßeinstellung: siehe Kenndaten mit $U_a = 220 \text{ V}$

Betriebsdaten als NF-Vorverstärker

$R_a = 20$	00 kΩ,	$R_{g1} = 1 M$	Ω , R_{g1}	= 0,5 $M\Omega$	
Uъ	100	200	250	300	V
	1	1,2	1,2	1,2	MΩ
R_{g2} R_k	3	1,5	1,2	1	kΩ
Ia	0,35	0,7	0,9	1,1	mA
Ig2	0,08	0,15	0,18	0,22	mA
V	130	215	250	270	
$U_a \sim (k=0, 5\%)$	3	3,5	4	6	V
$U_a \sim (k=1\%)$	5	6	8	12	V
$U_a \sim (k=2\%)$	8	12	17	22	V

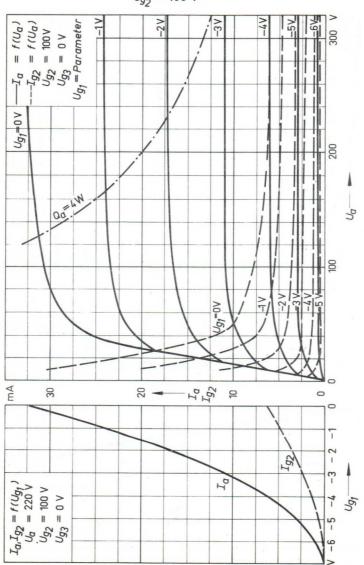
Betriebsdaten als Leistungsverstärker

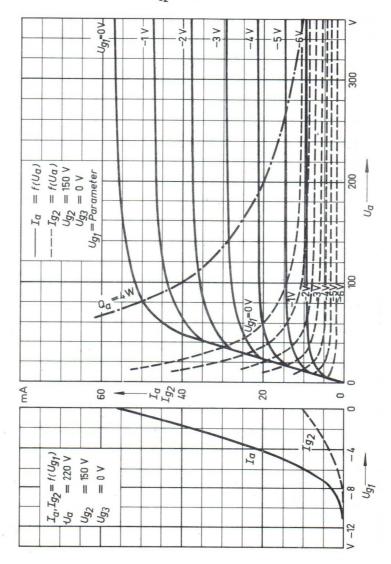

Eintakt A-Betrieb

U	=		220		V
Uas	=		0		v
Ugg	=		150		V
Ra	=		10		$k\Omega$
U _a U _g 3 U _g 2 Ra R _k	=		250		Ω
Ug1~	=	0		3,8	V
Ia	=	16		17,4	mA
	=	3,2		5	mA
Na~	=	_		1,5	W
I _{g2} N _a ∼ k	=	-		10	%

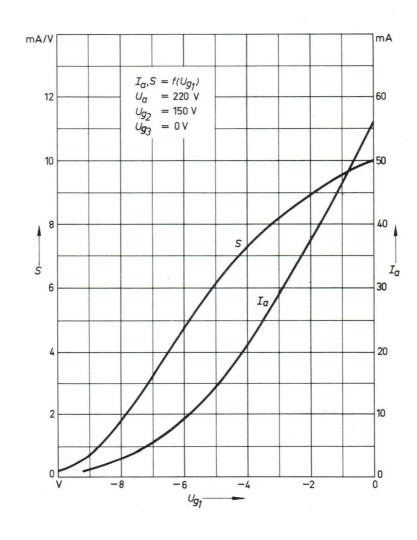
$$I_{a}, I_{g_{2}} = f(U_{g_{1}})$$
 $I_{a}, I_{g_{2}} = f(U_{a})$

$$a, I_{g_2} = f(U_a)$$

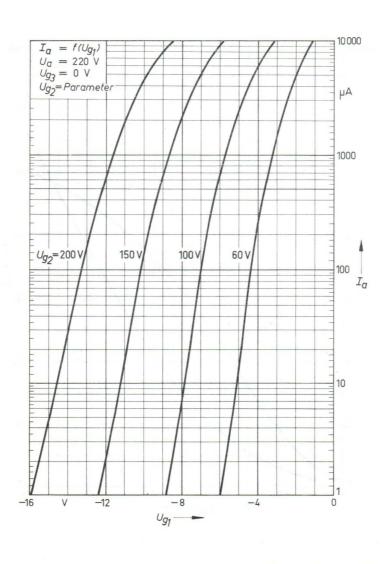



KENNLINIENFELDER $I_{a}, I_{g_{2}} = f(U_{g_{1}}) \qquad I_{a}, I_{g_{2}} = f(U_{a})$

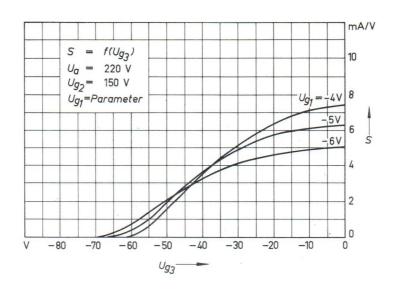
KENNLINIENFELDER $I_a, I_{g_2} = f(U_{g_1})$ $I_a, I_{g_2} = f(U_a)$

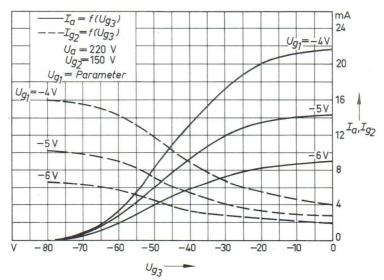


 $U_{g_2} = 200 \text{ V}$

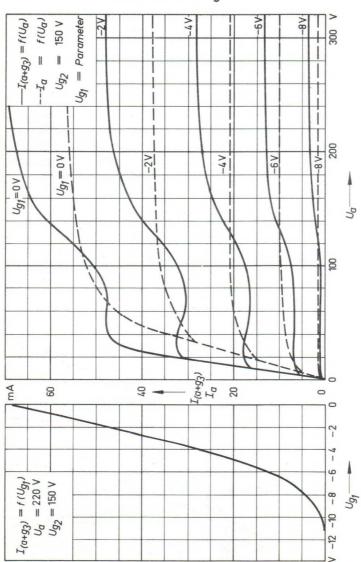


KENNLINIEN $I_a, S = f(U_{g_1})$


KENNLINIENFELD $I_{a} = f(U_{g_{1}})$

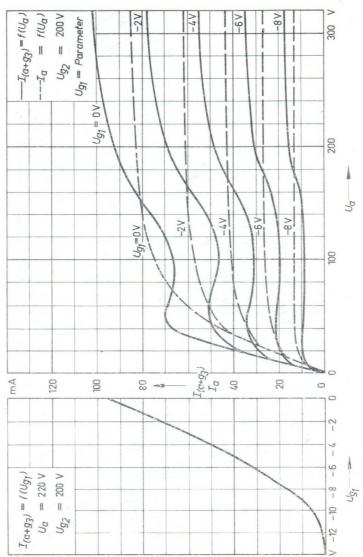


 ${\rm S}\,=\,{\rm f}\,({\rm U}_{g_{\bar{3}}})\qquad {\rm I}_{a'}\,{\rm I}_{g_2}=\,{\rm f}\,({\rm U}_{g_{\bar{3}}})$

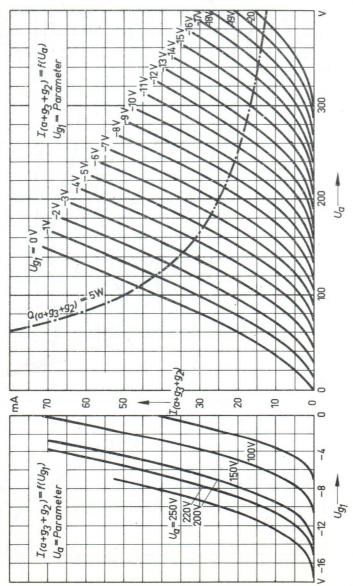


RöK3225/1.4.60

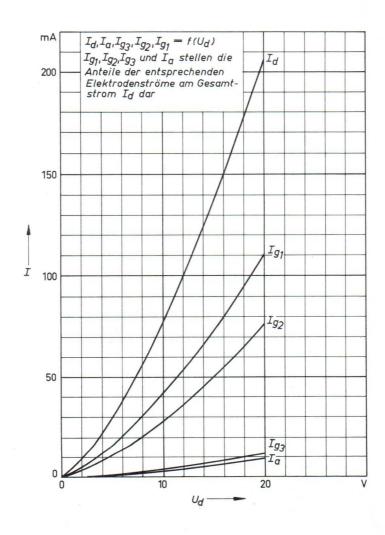
$$I_{(a+g_3)} = f(U_{g_1})$$
 $I_{(a+g_3)} = f(U_a)$

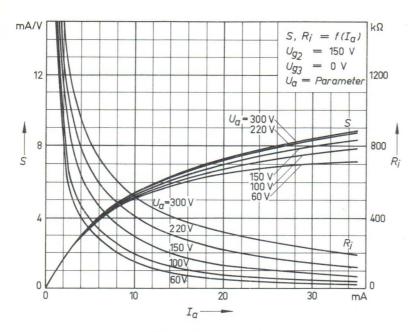

Tetrodenschaltung

$$I_{(a+g_3)} = f(U_{g_1})$$
 $I_{(a+g_3)} = f(U_a)$

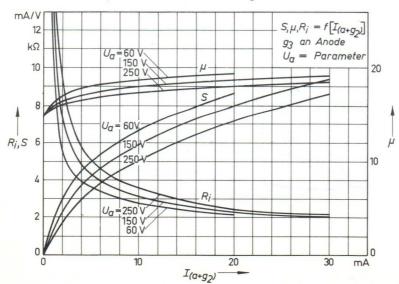

Tetrodenschaltung

$$I_{(a+g_3+g_2)} = f(U_{g_1})$$
 $I_{(a+g_3+g_2)} = f(U_a)$

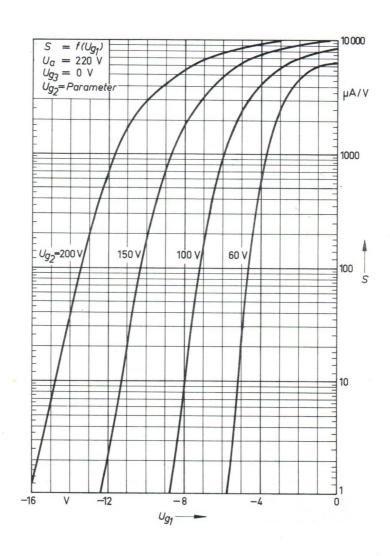

Triodenschaltung


$\begin{aligned} & \text{KENNLINIEN} \\ & \text{I}_{\text{d}}, \text{I}_{\text{a}}, \text{I}_{\text{g}_{\text{3}}}, \text{I}_{\text{g}_{\text{2}}}, \text{I}_{\text{g}_{\text{1}}} &= \text{f} \left(\text{U}_{\text{d}} \right) \end{aligned}$

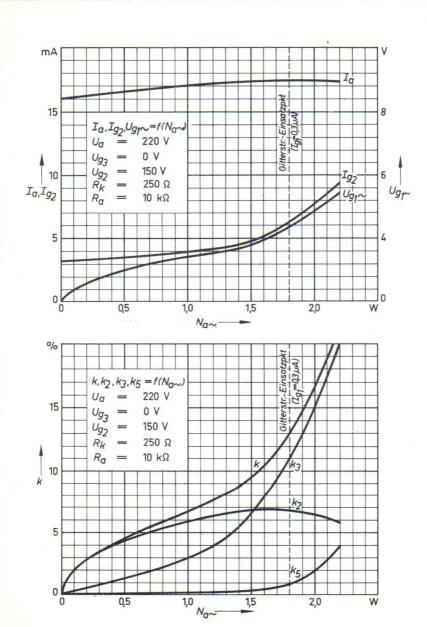
Diodenschaltung



 $\label{eq:special_special} \text{S, R}_{\text{i}} \, = \, \text{f (I}_{\text{a}}) \qquad \text{S, } \mu \text{, R}_{\text{i}} \, = \, \text{f (I}_{\text{(a + g_2)}})$



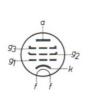
Triodenschaltung

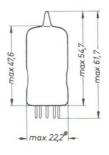


 $S = f(U_{g_1})$

LEISTUNGSKENNLINIEN $I_a, I_{g_2}, U_{g_{1\sim}}, k = f(N_{a\sim})$ $K, K_2, K_3, K_5 = f(N_{a\sim})$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FUR BAUELEMENTE




Art und Verwendung

Rauscharme Pentode hoher Steilheit mit S/C = 2,9 mA/VpF für den Nachrichtenweitverkehr. Besonders geeignet zur Verstärkung sehr breiter Frequenzbänder in ZF- und Koaxialkabelverstärkern sowie zur Verwendung als Frequenzvervielfacher, in Impuls- und Kettenverstärkern und rauscharmen Eingangsstufen.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Zuverlässigkeit Enge Toleranzen Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: Noval Gewicht: ca. 10 g Kolben: DIN 41539, Form A, Nenngröße 45 Einbau: beliebig

Fassung: Rel stv 99 c

Heizung

$$U_{f} = 6.3$$
 V 1)
 $I_{f} = 315 \pm 16$ mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitaten

		ohne Abso	chirmung	mit Absch	irmung 2)	
C _e C _e '(I _k =28mA	=)=	10 ±	1,0	10,1 ± 17,1	1,0	pF pF
Ca Cag1 Cak Ca/kg2 Ca/kg2g3 Caf Cg1k Cg1/kg2 Cg1/kg2g3	, = < = < = = = = = = = = = = = = = = =	2,1 ± 35 50 0,32 ± 2,0 ± 100 6,8 ± 9,5 ± 10 ±	0,04 0,3 0,7 1,0	3,3 ± 30	0,4	pF mpF mpF pF pF mpF pF
Triodenschal	tung	(g2 an	a, g3 an k)			
Ce Ca Cag1 Triodenschal	= = = tung	7, 3 3, 1 2, 7 (g2 uno	d g3 an a)			pF pF pF
C _e C _a C _{ag1}	= = =	6,7 1 3,3	- 8			pF pF pF

- Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.
- 2) Innendurchmesser des Abschirmzylinders 22,2 mm.

Kenndaten

		min.	nom.	max.	
U _{ba}	=		190		V
Ua3	=		0		V
U _{bg2}	=		160		V
Ug3 Ubg2 +Ubg1	=		10		V
Rk	=		400		Ω
I _a I _{g2} S	=	21	22	23	mA
I _{g2}	=	5,4	6	6,6	mA
S	=	30	35	40	mA/V
µg2g1	\approx		80		
μ _g 2g1 R _i	=		120		$\mathbf{k}\Omega$
Räg	=		150		Ω
R_{a1} (100 MHz)	=		1		$k\Omega$ 1)
S/C S/2πC _{ges}	=		2,9		mA/VpF
S/2TC GRS	=		230		MHz 2)
F	=		7		dB 3)
-I _g	<=			0,3	μΑ

Triodensch	altung	(g2 an a, g3 an k)	
U_{ba}	=	160	V
U _{a3}	=	0	V
+Dbg1	=	10	V
Ug3 +Ubg1 Rk	=	470	Ω
I _a S	=	24	mA
S	=	41	mA/V
μ	≈	77	
Ri	=	1,9	$k\Omega$
Raq	=	65	Ω

Bei Verwendung eines Kathodenkondensators > 10 μF muß der Gitterwiderstand mindestens 1 k\Omega betragen.

- 1) Beide Kathodenanschlüsse parallel geschaltet
- 2) $C_{ges} = C_{e'} + C_a + 5 pF Schaltkapazität$
- 3) Gemessen bei 100 MHz mit Rauschanpassung

GRENZDATEN BESONDERE ANGABEN

Grenzdaten

1)
7
2

Besondere Angaben

Phasenwinkel der Steilheit

 $\varphi_{\mathbf{S}}$ (100 MHz) = 22 Grad

beide Kathodenanschlüsse parallelgeschaltet

Isolationswiderstände

 $\rm R_{is}$ (a/alle übrigen Elektroden bei $\rm U_{is}$ = 300 V) > 500 $\rm ~M\Omega$ $\rm R_{is}$ (g/alle übrigen Elektroden bei $\rm U_{is}$ = 50 V) > 200 $\rm ~M\Omega$ $\rm R_{is}$ (f/k bei $\rm U_{is}$ = 100 V) > 20 $\rm ~M\Omega$

gemessen bei $U_f = 6,3 \text{ V}$

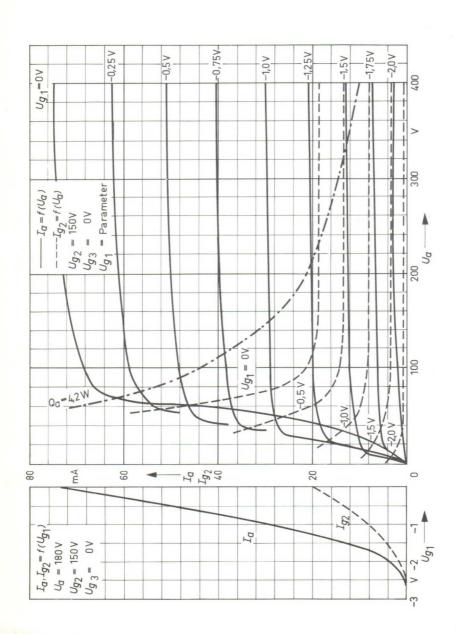
Ende der Lebensdauer

т.	<	20	Α
¹ a	=	20	mA
s S	<u>≤</u>	24,5	mA/V
-I _{g1}	<u>></u>	1,0	μΑ
gı			

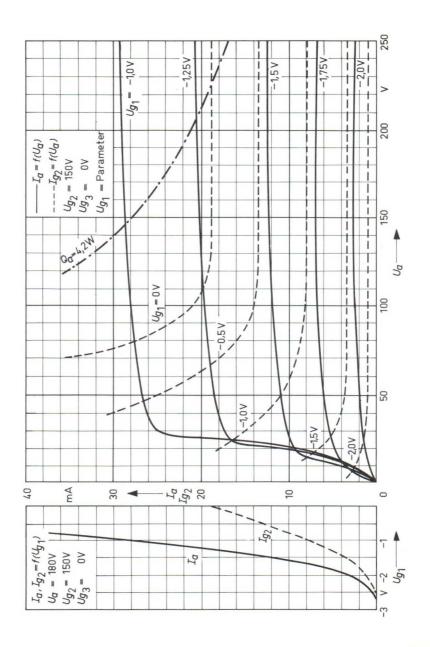
Meßeinstellung: siehe Kenndaten mit R $_k$ = 400 Ω

1) Bei automatischer Gittervorspannung

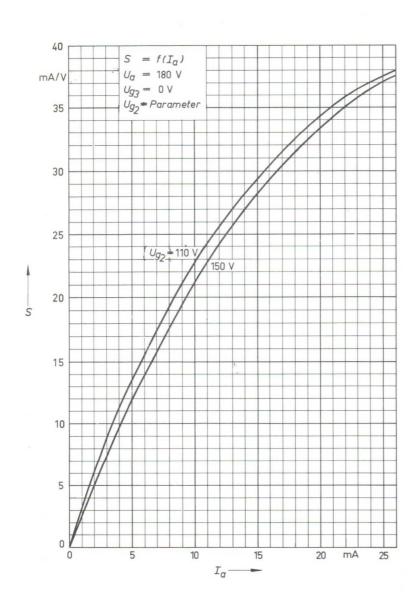
Klirrdämpfung


Uba Ug3 Ubg2 +Ubg1 Rk Ra f	= = = = = = = = = = = = = = = = = = = =		190 0 160 10 400		V V V Ω kΩ	
f	=		300		kHz	
I _a Na~	=	,	22		mA	
Na~	=	1		120	mW	
q	=	- 27		-6	dB	1)
n	=	0		21	dB	2)
ak2	=	48		23	dB	3)
npak2 ak3	=	84		40	dB	3)

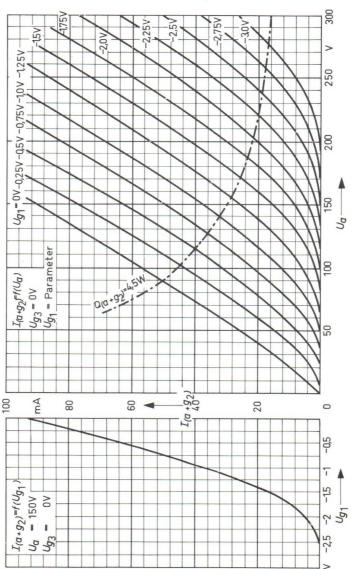
- 1) $q = 20 \log \frac{I_{a1}}{I_{a0}} = Stromaussteuerungsgrad in dB$ $I_{a1} = Effektivwert der ersten Harmonischen$ $I_{a0} = Anodengleichstrom im Arbeitspunkt ohne Aussteuerung$
- 2) $n_p = 10 \log \frac{N_a \sim}{N_o} = \text{Leistungspegel}$ $N_a \sim I_{a1} \sim R_a = \text{Ausgangsleistung bedingt durch die}$ $N_0 = 1 \text{ mW}$ Grundwelle
- 3) $a_{km} = -20 \log k_m = Klirrdämpfung der m-ten Harmonischen (m = 2, m = 3)$ $k_m = \frac{I_{am} \sim}{I_{a1} \sim} = Stromklirrkoeffizient der m-ten Harmonischen <math>I_{am} = Effektivwert der m-ten Harmonischen$



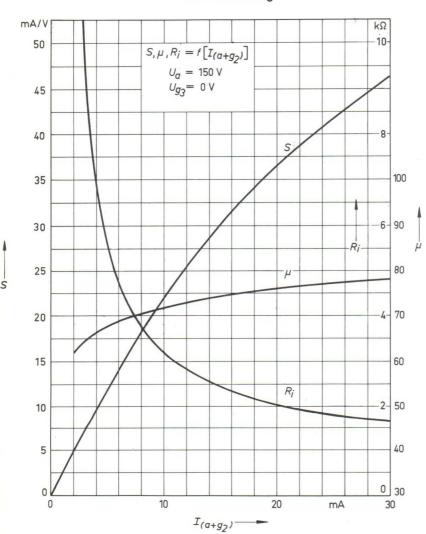
$$\mathsf{I}_{\mathsf{a}}, \mathsf{I}_{\mathsf{g2}} = \mathsf{f}(\mathsf{U}_{\mathsf{g1}}) \qquad \mathsf{I}_{\mathsf{a}}, \mathsf{I}_{\mathsf{g2}} = \mathsf{f}(\mathsf{U}_{\mathsf{a}})$$

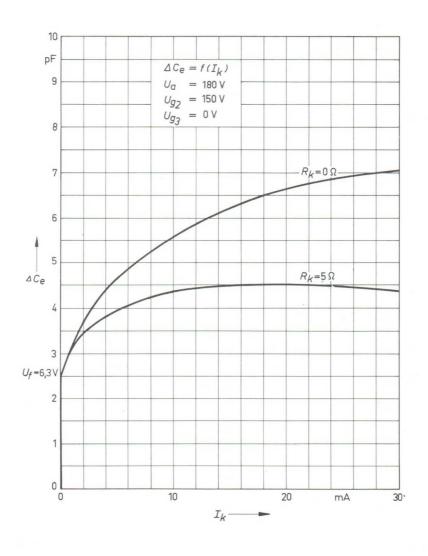


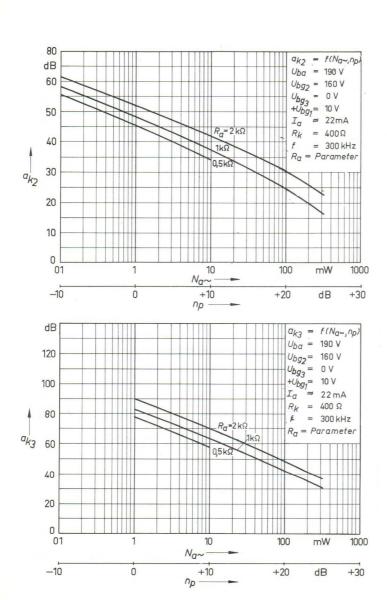
$$I_{a'}I_{g2} = f(U_{g1})$$
 $I_{a'}I_{g2} = f(U_a)$



$$I_{(a+g2)} = f(U_{g1})$$
 $I_{(a+g2)} = f(U_a)$

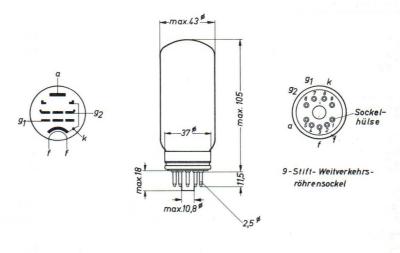

Triodenschaltung





Triodenschaltung

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE



Art und Verwendung

Steile Leistungstetrode für den Nachrichtenweitverkehr. Besonders geeignet als Endröhre in Eintakt-, Gegentakt- und Breitband-Leistungs-Verstärkern, sowie für Impulsschaltungen und Regelverstärker.

Qualitätsmerkmale

Große Zuverlässigkeit (p \approx 1,5 $^{\rm O}/{\rm oo}$ je 1000 Stunden) Enge Toleranzen

Maße in mm

Sockel: 9-Stift-Weitverkehrsröhrensockel Fassung: Preßstoff Rel lp 29 b

Keramik 9 Rel stv 9 a

Gewicht: ca. 70g Einbau: beliebig

1

Heizung

 U_f = 6,3 V^{-1}) I_f \approx 2,0±0,15 A

Heizart: indirekt durch Wechsel- oder Gleichstrom.

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

 C_{e} = 18,5 \pm 1,5 pF C_{a} = 13,0 \pm 1,0 pF C_{ag1} < 0,8 pF

Triodenschaltung

 $C_{e} = 12 \pm 1,0 pF$ $C_{a} = 17 \pm 1,5 pF$ $C_{ag1} < 7$

Kenndaten

Ua 250 = 250 V U_{g2} 55 Rk Ω 84 100 118 mA Ia 11,5 14,5 17,5 mA Ig2 -14,5 18 21,5 mA/V µg2g1 17,5 Ri 23 kΩ 250 Ω $-U_{g1}(+I_{g1}=0,3_{\mu A})$ 1,3 V $I_{a}(-U_{g} = 25 \text{ V})$ 1 mA

1) Die Überschreitung der zulässigen Heizspannungsschwankung von ± 5% (absolute Grenzen) beeinträchtigt das Betriebsverhalten und die Lebensdauer der Röhre.

KENNDATEN, GRENZDATEN BESONDERE ANGABEN

Kenndaten

Triodenschaltung

Ua	=	250	V
Rk	=	55	Ω
Ia	=	115	mA
S	=	21	mA
μ	≈	17	H
Ri	=	0,8	kΩ
RiL	=	. 1	kΩ

Grenzdaten

Uao	max.	1000
Ua	max.	600
Qa	max.	30
$Q_{(a+g2)}$	max.	30
Ug2 o	max.	600
U _{g2}	max.	425
Q _{a2}	max.	5
$R_{g1}(bei Q_a \le 30W)$ $R_{g1}(bei Q_a \le 20W)$	max.	0,3
Rg1(bei Oa=20W)	max.	0,5
Ik	max.	140
Ufk	max.	120
Rfk	max.	20
tkolb	max.	220

V V W 1) V V W MΩ MΩ mA V kΩ

oC

Besondere Angaben

Ende der Lebensdauer

Ia	< =	65
S	≦	12
-Ig1	≧	2

mA mA/V μΑ

Meßeinstellung: siehe Kenndaten Seite 2

1) In Triodenschaltung

Betriebsdaten als Leistungsverstärker

Eintakt A-Betrieb

Ua		250		V
Ug2	=	250		V
Ra	=	2, 2		kΩ
Ug2 Ra Rk	=	60		Ω
Ug1~	=	0	4,6	V
I	=	97	95	mA
I _a I _{g2} N _a ~	=	14	20	mA
Na~	=	_	10	W
k	11:50=	 ■ 8.5 % 	10	%
Kennlinien:		к 6		

Eintakt A-Betrieb, Triodenschaltung

Ua	=	330		V
U _a R _a	=	1,5		kΩ
Rk	, l =	140		Ω
Ug1~	=	0	9	v v
Ia	1 a. =	90	94	mA
Ia Na~	=	_	5,5	W
k	=	-	10	%
Kennlinien:		K 7		

Betriebsdaten als Leistungsverstärker

Gegentakt AB - Betrieb mit Kathodenwiderstand

Ua	=	2	50		330	4	25	V
	=	2	50		330		25	V
$\frac{U_{g2}}{R_{aa}}$	=		5		5		6	
R _{g2}	=		-		2x1	2	x3	$k\Omega^{1}$
R_k	=	2x	140	2	x160	2x	250	Ω
Ug1~	=	0	7,3	0	10,5	0	16	v
Ia	=	2x57	2x64	2x68	2x80	2x60	2x77	mA
	=	2x8	2x16	2x10	2x16,5	2x9	2x15	mA
¹ g2 Na∼	=	-	20	-	32	_	40	W
k	=	-	4	-	4	-	5	%
Kennlinien:		K 8		К 9		F	10	

Gegentakt B - Betrieb mit fester Gittervorspannung

U_a	=	25	0	33	0	42	25	V
U _{g2}	= 1	25	0	33	0	42	25	V
-Ug1	=	1	1	1	5	2	22	V
U _{g2} -U _{g1} R _{aa}	=		4		5		6	$k\Omega$
Rg2	=		-	2x	1	2×	23	$k\Omega^{1}$
Ug1~	=	_	7,4		10,2	0	15	
Ia	=	2x30	2x70	2x38	2x80	2x25	2x80	mA
I _a I _{g2} N _a ~	=	2x4,5	2x16	2x5,5	2x16,5	2x4	2x15,5	mA
Na~	=	-	20	-	32	-	40	W
k	,= _{>1}	-	2,5	_	3		2,5	%
Kennl	inien:	K	11	K	12	K	13	

1) Verblockung der Vorwiderstände führt zur Überlastung des Schirmgitters und ist deshalb unzulässig.

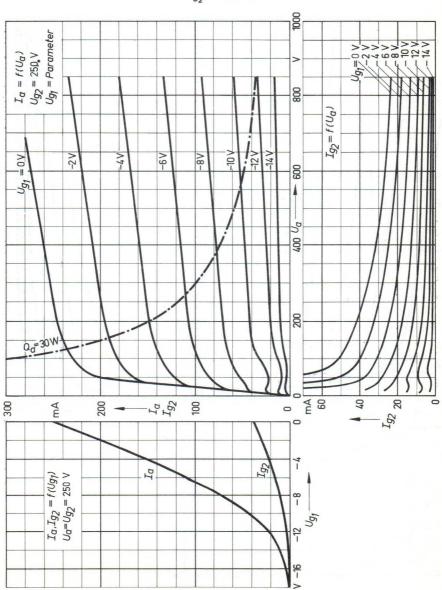
Betriebsdaten als Leistungsverstärker

Gegentakt B - Betrieb, Sprach- oder Musikaussteuerung

Ua	= -		425	V
U _a 2	=		425	V
Ug2 -Ug1	=		22	V
Raa	=		5	$k\Omega$
R _{g2}	=	2x	1,5	$k\Omega$
Ug1~	/ = /	0	15	V
Ia	=	2x28	2x95	mA
Ig2	=	2x4,5	2x20	mA
T	≤	-	0,3	μΑ
Na~	=	-	50	W 1)
k	=	-	4	%
Kennlinien:			K 14	

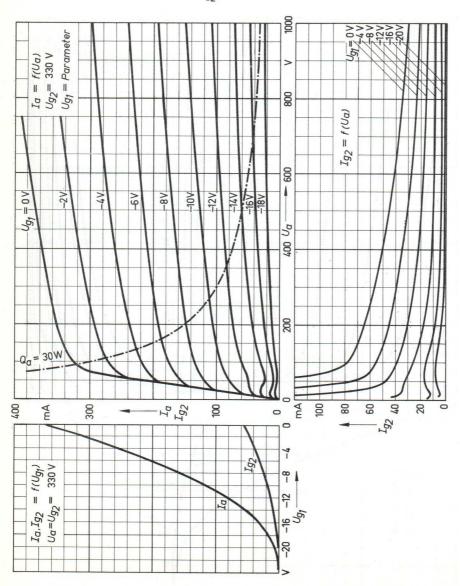
Gegentakt AB - Betrieb, Triodenschaltung

II	4 6	2	50	3	30	4	25	V
U _a R _{aa}	₫		3		3		5	kΩ
Rk	=	2x	200	2x	200	2x	300	Ω
Ug1~	=	0	7,5	0	10,3	0	15,2	V
Ia	=	2x50	2x54	2x70	2x76	2x65	2x73	mA
Na~	= A-44	-	6		12	-S	20	W
k	= ,	-	1	-	1,5	-	2,5	%
Kennl	inien:	K	15	K	16	F	C 17	

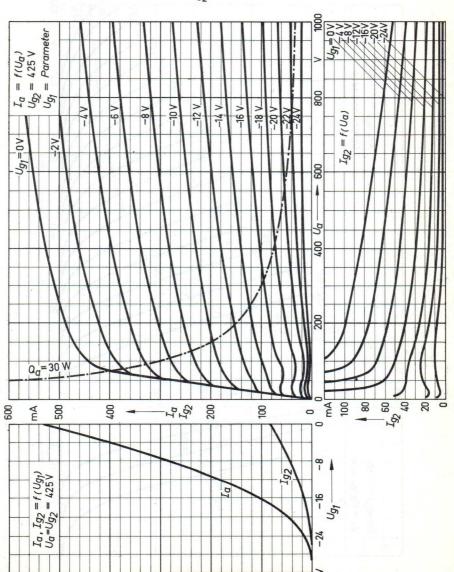

1) Bei Sinus - Dauerton darf höchstens bis N_a = 30 W ausgesteuert werden, da sonst die zulässige maximale Schirmgitterverlustleistung überschritten wird.

$$I_{a'}I_{g_2} = f(U_{g_1})$$
 $I_a = f(U_a)$ $I_{g_2} = f(U_a)$

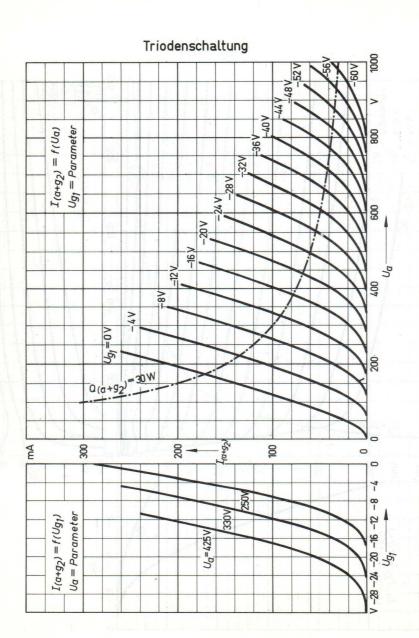
$$I_a = f(U_a)$$


$$I_{g_2} = f(U_a)$$

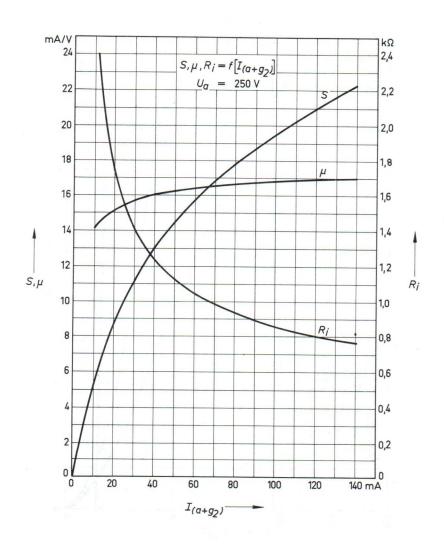
$$\mathbf{I_{a'}\,I_{g_2}} = \mathbf{f}\;(\mathbf{U_{g_1}}) \qquad \mathbf{I_{a}} = \mathbf{f}\;(\mathbf{U_{a}}) \qquad \mathbf{I_{g_2}} = \mathbf{f}\;(\mathbf{U_{a}})$$

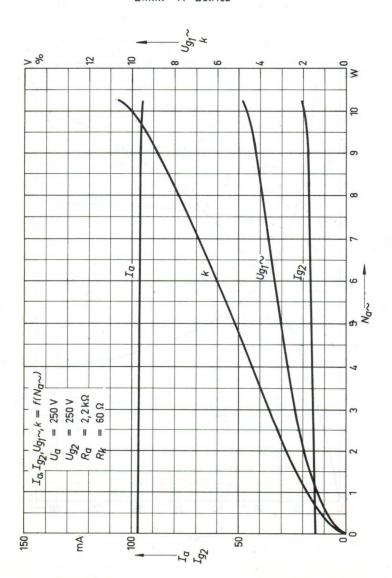


$$I_{a}, I_{g_2} = f(U_{g_1})$$
 $I_{a} = f(U_{a})$ $I_{g_2} = f(U_{a})$


$$I_a = f(U_a)$$

$$g_2 = f(U_a)$$


$$I_{(a+g_2)} = f(U_{g_1})$$
 $I_{(a+g_2)} = f(U_a)$

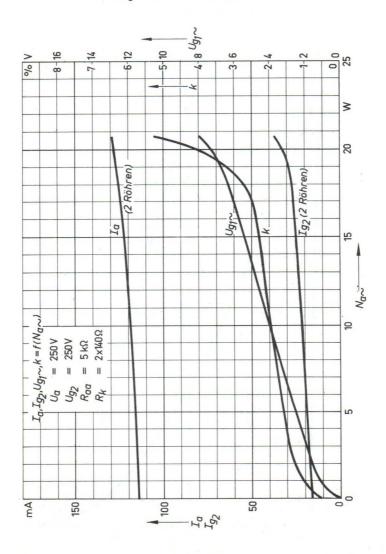

$\begin{aligned} & \text{KENNLINIEN} \\ & \text{S,} \, \mu, \, R_{i} = f \, \left(I_{\left(a + g_{2} \right)} \right) \end{aligned}$

Triodenschaltung

 I_a , I_{g_2} , U_{g_1} \sim , k=f (N_a \sim)


Eintkt A-Betrieb

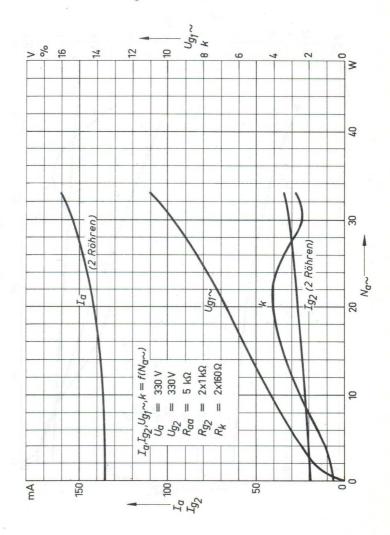
$$\text{I}_{\left(a+g_{2}\right)},\text{ U}_{g_{1}}{\sim}\text{, k}=\text{f (N}_{a}{\sim}\text{)}$$


Triodenschaltung

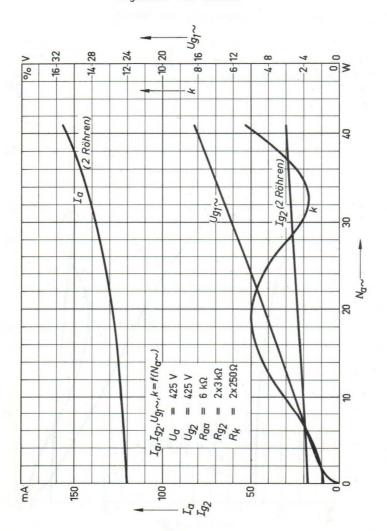
Eintakt A - Betrieb

 $I_{a'}I_{g_{2'}}U_{g_{1}}^{\sim}$, $k=f(N_{a}^{\sim})$

Gegentakt AB - Betrieb



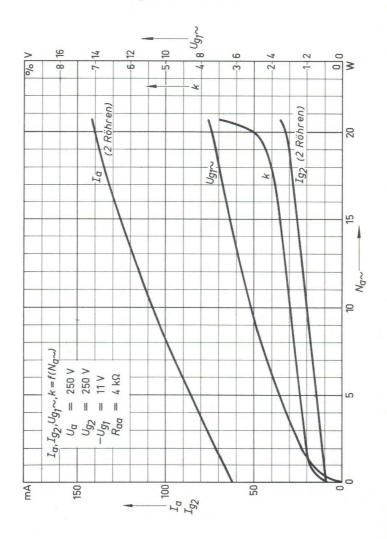
AUSSTEUERKENNLINIEN


 $I_a, I_{g_2}, U_{g_1} \sim k = f(N_a \sim)$

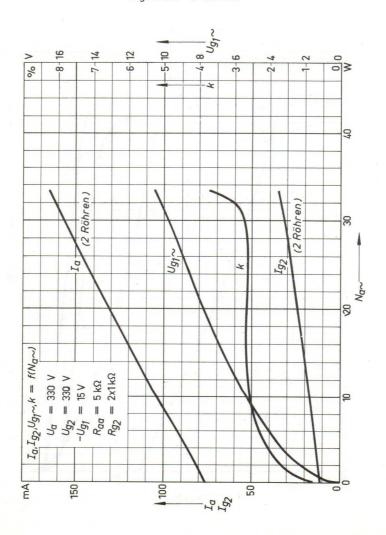
Gegentakt AB - Betrieb

 $I_{a'}$ $I_{g_{2'}}$ $U_{g_1} \sim$, $k = f (N_a \sim)$

Gegentakt AB-Betrieb



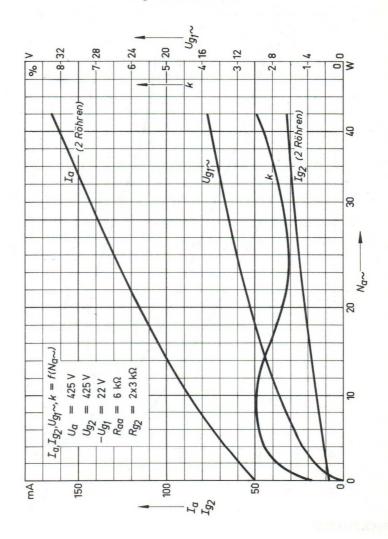
AUSSTEUERKENNLINIEN


 $I_{a},\ I_{g_{2}},\ U_{g_{1}}^{}\sim$, $k=f\ (N_{a}^{}\sim)$

Gegentakt B-Betrieb

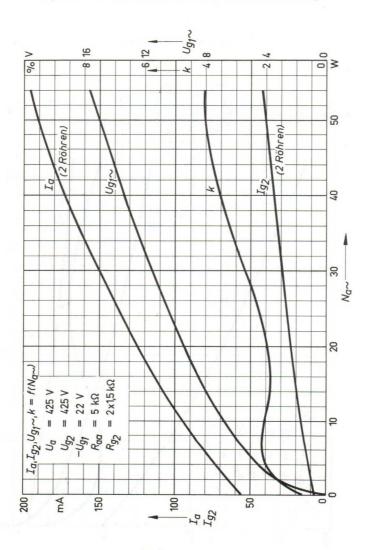
 $I_{a'}$ $I_{g_{2'}}$ $U_{g_1}^{\sim}$, k=f (N_a^{\sim})

Gegentakt B-Betrieb



F2a

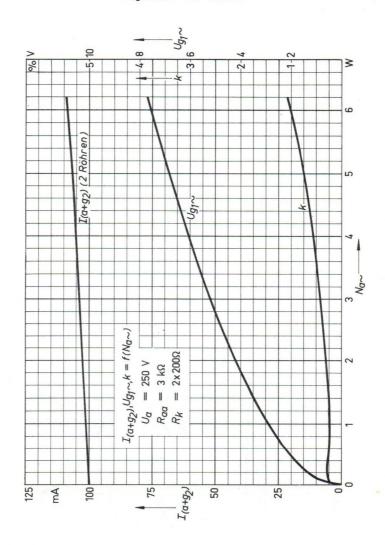
AUSSTEUERKENNLINIEN


 $I_{a'}$ $I_{g_{2'}}$ $U_{g_1} \sim$, k = f $(N_a \sim)$

Gegentakt B-Betrieb

 $I_{a'}$ $I_{g_{2'}}$ $U_{g_1}^{\sim}$, k=f (N_a^{\sim})

Gegentakt B-Betrieb, Sprach-oder Musikaussteuerung

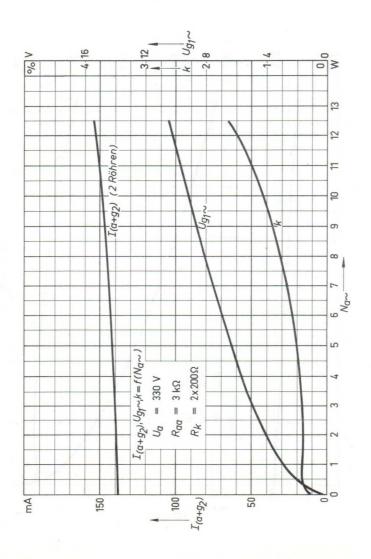


AUSSTEUERKENNLINIEN

 $I_{(a+g_2)}, U_{g_1}^{} \sim , k = f(N_a^{} \sim)$

Triodenschaltung

Gegentakt AB-Betrieb

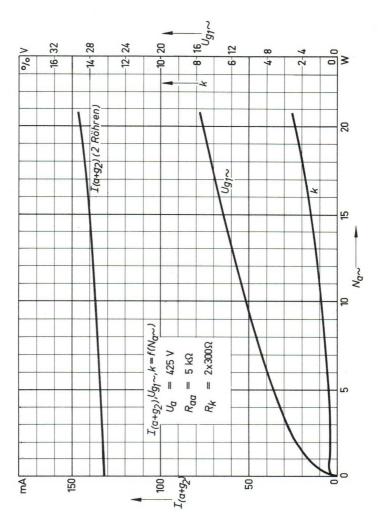


RöK 3231/1.10.59 K15

$$I_{(a+g_2)},\; U_{g_1}^{}\!\!\sim\!,\; k=f\;(N_a^{}\!\!\sim\!)$$

Triodenschaltung

Gegentakt AB - Betrieb



AUSSTEUERKENNLINIEN

$$\text{I}_{\left(a+g_{2}\right)}\text{, }\text{ }\text{U}_{g_{1}}\text{\sim, }\text{$k=$f ($N_{a}$$$$\sim$)}$$

Triodenschaltung

Gegentakt AB-Betrieb

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE

K17

AUSSTEUTE E HURTESUA

(a - a) 1 - 2 - 1 (a - a) 1

Triodenschaltung

Gergalette All Bereit

SIEMENS & HALBKE ARTIENGESELLSCHAFT

WEITVERKEHRSRÖHREN

älterer Bauart zur Nachbestückung

Wv-Rö älterer Bauart

Тур			Aa	Ba	Bas	Be	Bh	Bi	Cd	Ce
Bauart			Tri	Tri	Tri	Tri	Tri	Tri	Tri	Tri
Sockel			1	1	2	2	2	4	1	2
-	Uf	v	3,8	3,5	3,5	3,8	3,8	4,0*	3,8	3,8
Heizung	I_{f}	Α	0,5*	0,5*	0,5*	0,5*	0,16*	1,1	0,5*	0,5*
	Art		dir	dir	dir	dir	dir	ind	dir	dir
	Ua	v	220	220	220	130	130	220	130	220
	U_{g2}	V	-	-	-	-	-	-	-	-
Kenn-	-Ugl	V	2	6	6	4,5	4	-	8	12
bzw	R_k	Ω	-	_	-	-	-	300	-	-
Betriebs-	Ia	mA	3	3	3	8	8	10	25	20
daten	I_{g2}	mA	-	-	-	-	-		-	-
	S	$\frac{mA}{V}$	1	0,6	0,6	2,4	2,4	2,5	3	1,7
	Ri	$k\Omega$	30	25	25	5	5	11	2	4,1
	D	9,	3,3	6,6	6,6	8,3	8,3	3,65	16,6	14,6
	Ua	v	250	250	250	150	150	250	150	250
Grenz-	Q_a	W	2	2	2	3	3	4	4	5
daten	U _{g2}	V	-	-	-	-	-	-	-	_
aaton	Q_{g2}	W	-	-	-	-	-	-	-	-
	I _k	mA	10	10	10	20	20	20	40	30
Kapazi-	C _e	pF	4,5	3,7	4,5	7	7,5	7	5	8
täten	C_a	pF	2,2	2,2	3,5	- 7	5,5	8	3	7
	Cagl	pF	3,8	3,3	3,3	5	6,0	1,7	6	6,5

^{*} Einstellwert

WEITVERKEHRSRÖHREN

SIEMENS RÖHREN

älterer Bauart zur Nachbestückung

Тур			Cf	СЗЪ	С3с	C3d	C3e	C3f	Da	Ec
Bauart			Tri	Pent	Pent	Pent	Pent	Pent	Tri	Tri
Sockel			1	8	8	8	10	10	1	4
	U _f	V	3,8	4,0*	4,0*	18*	18*	18*	5,8	18*
Heizung	I_f	A	0,25*	1,1	1,1	0,24	0,24	0,24	1,1*	0,7
	Art		dir	ind	ind	ind	ind	ind	dir	ind
	Ua	v	130	220	220	220	220	220	220	250
	U_{g2}	V	-	150	100	200	200	100	-	-
Kenn-	-Ugl	V	8	-"	2/20	-	-	2/20	30	-
bzw.	Rk	Ω	-	175 .	-	140	140	-	-	250
Betriebs-	Ia	mA	25	8	10	14	14	10	50	90
daten	I _{g2}	mA	-	3,5	4	3,5	3,5	4	-	-
	S	MA V	3	3,5	2,6	4,1	4,1	2,6	25	10,5
	R_i	$k\Omega$	2	1200	600	550	550	600	1,45	0,68
	D	%	16,6	-	-	-	-	-	27,5	14,5
	Ua	v	150	250	250	300	300	250	250	300
	Qa	\mathbf{w}	4	2	2,5	4	4	2,5	13	25
Grenz-	U _{g2}	v	-	250	150	300	300	150	-	-
daten	Q_{g2}	W	_	0,7	0,7	1,5	1,5	0,7	-	-
	I _k	mA	40	30	20	45	45	20	100	140
	C _e	pF	5,5	11	9	8	10	10	7	13,5
Kapazi-	C_a	pF	3,5	12,5	13,5	15	11,5	13	9	13
täten	Cagl	pF	8	< 0 01	<0.01	0 005	<0.04	<0,04	9	7

^{*} Einstellwert

WEITVERKEHRSRÖHREN

Wv-Rö älterer Bauart

älterer Bauart zur Nachbestückung

Тур			Ed	E2b	E2c	E2d	E2e	Z2b	Z2c	Z2e
Bauart			Tri	Tetr	Tetr	Tetr	Tetr	Gl	eichrich	ter
Sockel			3	7	6	5	9	11	11	12
	Uf	v	4,0 *	18*	18*	4,0*	18*	4,0*	4,0*	18*
Heizung	$I_{\mathbf{f}}$	A	1,0	0,36	0,36	1,5	0,36	1,6	4,0	0,24
	Art		dir	ind	ind	ind	ind	ind	ind	ind
Kenn- bzw. Betriebs- daten	Ua	V	250	220	220	250	220	2x450	2x400	2x200
	U _{g2}	V	-	200	200	250	200			
	-Ugl	V	-	_	-	-	-			
	R_k	Ω	750	70	70	155	70			
	Ia	mA	65	42	42	36	42	100	300	40
	I_{g2}	mA	-	3,5	3,5	5	3,5			
	S	$\frac{mA}{V}$	6	10,5	10,5	8	10,5			
	R_i	$k\Omega$	0,65	40	40	60	40			
	D	%	2,5	-	-	-	-			
	Ua	v	300	300	300	300	300	1300	1200	700
Grenz-	Qa	W	20	10	10	10	10			
daten	U _{g2}	V	-	250	250	300	250			
daten	Q_{g2}	W	-	1,5	1,5	1,5	1,5			
	Ik	mA	80	75	75	70	75			
	C _e	pF	9	12	15	12	13,5			
Kapazi- täten	C_a	pF	5	4	12	6	10,5			
	Cagl	pF	17	<0,15	<0,25	<0,4	<0,3			

^{*} Einstellwert

SOCKELSCHALTUNGEN

SIEMENS RÖHREN

der Weitverkehrsröhren älterer Bauart Sockel von unten gesehen

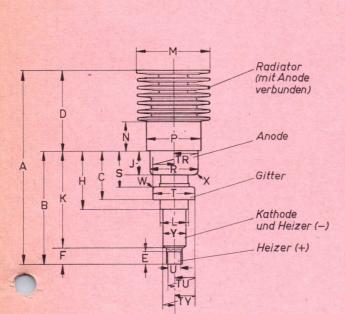
1 2 3 4 Aa, Ba, Cd, Cf, Da Bas, Be, Bh, Ce Ed Fassung: Rel lp 17a Fassung: Rellp 15 a Fassung: Rel lp 17a Fassung: Rel lp 15a 5 6 7 8 E2d E2c E₂b C3b, C3c, C3d Fassung: Rel lp 15a Fassung: Rel lp 15 a Fassung: Rel lp 15 a Fassung: Rel lp 15 a 9 10 11 12 C3e,C3f Z2b, Z2c Z2e Fassung: Rel lp 29 d Fassung: Rel lp 29d Fassung: Rel Lp 15a Fassung: Rel lp 29d

DECIMETRE LENTIMETRE TUBES

dm =

und cm =

Röhren


SCHEIBENTRIODE FÜR ZENTIMETER-WELLEN

Art und Verwendung

Vorläufige Daten

Luftgekühlte Scheibentriode in Metall-Keramik-Ausführung für Oszillatoren, Frequenzvervielfacher und Verstärker bis etwa 7 GHz.

Unter der Typenbezeichnung RH7C ist die Röhre ohne Radiator lieferbar.

Maßtabelle Maße in mm

Maise in mm									
	min.	max.							
A	58,60	61,30							
В	34,80	36,50							
C	15,30	15,90							
D.	23,80	24,80							
E	3,90	4,30							
F	4,80	5,80							
H	18,00	19,20							
J	7,44	7,56							
K	29,60	31,10							
L	8,60	8,80							
M	22,60	23,40							
N	8,90	10,10							
P	16,90	19,80							
R	14,95	15,10							
S	10,70	11,00							
T	12,95	13,10							
U	4,00	4,20							
W		0,60							
X		0,60							
Y	7,20	7,35							
TR		0,1							
TU		0,3							
TY		0,1							

Gewicht: netto ca. 65 g brutto ca. 85 g Abmessung der Verpackung: 40 x 40 x 120 mm

HEIZUNG, KAPAZITÄTEN KENNDATEN, GRENZDATEN

1)

Heizung

Uf		6,0
U _f	*	6,0

Heizart: indirekt durch Wechsel- oder Gleichstrom,
Parallelspeisung

Kathode: Metall-Kapillar-Kathode (Vorratskathode)

Kapazitäten

Cake	=	2,6 ± 0,6	pF
C _{gk} C _{ag}	=	1,7 ± 0,2	pF
Cak	<= <	20	mpF
$C_{gk}(U_f = 6, 0 \text{ V}, I_k = 0)$	=	3,4 + 0,7	pF
$C_{ak}(U_f = 6, 0 \text{ V}, I_k = 0)$	\(\)	35	mpF

Kenndaten

		min	nom	max	
Ua	=		400		V
+Uha	-		20		V
U _a +U _{bg} R _k	=		390		Ω
Ia		55	60	65	mA
l _a S	=	13	16	20	mA mA/V
ín.	*		60		

Grenzdaten (absolute Werte)

Uao	max.	800	V
Uao Ua	max.	600	V
Qa -Ug +Ug Qg Ig Rg Ne~	max.	30	W
-Ug	max.	50	V
+U _g	max.	0	V
Qg	max.	0,15	W
I	max.	10	mA 2)
Rg	max.	50	kΩ
Ne~	max.	1	W 3)
Ik	max.	75	mA
Iksp	max.	250	mA
toberfl	max,	180	°C

- 1) Wird beim Betrieb als Oszillator oder Verstärker ein Kathodenstrom von ≤ 70 mA benötigt, so ist im Interesse einer längeren Lebensdauer die Heizspannung zu reduzieren. Ein Beispiel für erzielbare Leistungen bei reduzierter Heizspannung ergeben die Kennlinien/Seite K3 oben. Die Heizspannung soll weniger als ½ 2 % (absolute Grenzen) um den Einstellwert schwanken.
- 2) Der angegebene Wert darf auch kurzzeitig nicht überschritten werden (z. B. beim Abstimmen eines Oszillators)
- 3) In Gitterbasisschaltung

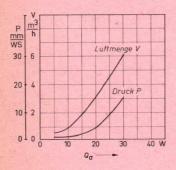
Betriebsdaten

Dauerstrich-O	szillator			
f	=	4	6	GHz 1)
Uf		6,0	6,0	V
Ua +Ubg	=	400	400	V
+Üba	= -	20	20	V
Rk	=	800	800	Ω 2)
		60	60	mA
Ta	*	8	8	mA
I _a I _g N _a ~	=	4	1,8	W
Verdoppler				
f	= =	3/	6	GHz
Uf	=	6,	0	V
U	=	40	0	V
+Uha	=	2		V
U _a +U _{bg} R _k	=		1	kΩ 2)
$N_e \sim$	= 11.00	50	0	mW
Ia	=	3	5	mA
I	≈		3	mA
I _a I _g N _a ~	=	44	0	mW
Verdreifacher				
f Uf Ua +Ubg Rk	=	2/	6	GHz
Uf	= 1	6,	0	V
Ua	=	40		V
+U _{bg}	=	2		V
Rk	=		2	kΩ 2)
Ne~	= 1	50	0	mW
Ia	=	2	0	mA
Ig	*		1	mA
I _a I _g N _a ~	=	13	0	mW

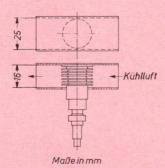
- Bei Frequenzen über 5 GHz müssen zur Vermeidung von Umfangswellen rotationssymmetrische Anodenkreise verwendet werden.
- 2) Es ist ein veränderbarer Kathodenwiderstand der genannten Größe vorzusehen, mit dem der angegebene Anodenstrom eingestellt wird.

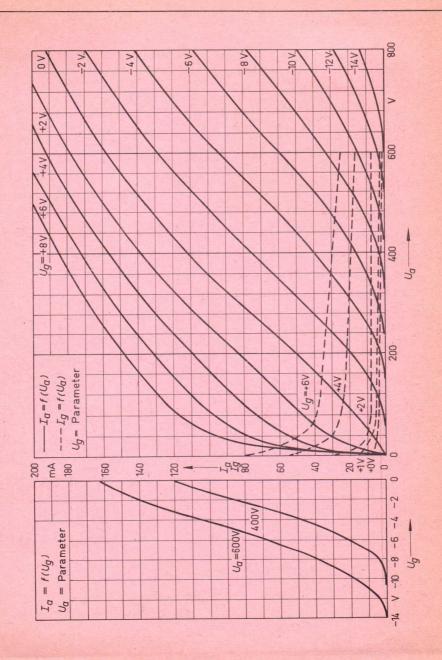
Betriebshinweise

Einbau


Die Röhre wird zweckmäßigerweise durch ausreichend nachgiebige, federnde Kontaktkränze in den konzentrischen Schwingungskreisen gehalten; die Lage der Röhre ist beliebig.

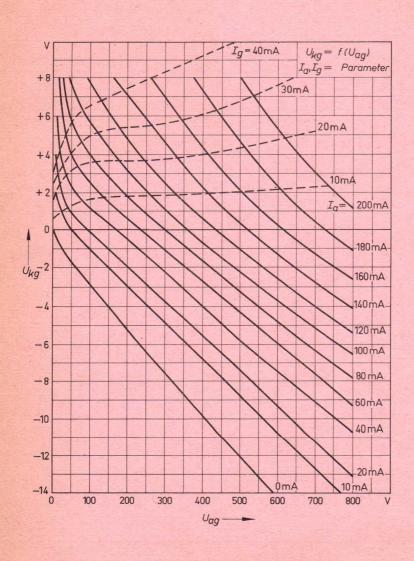
Kühlung

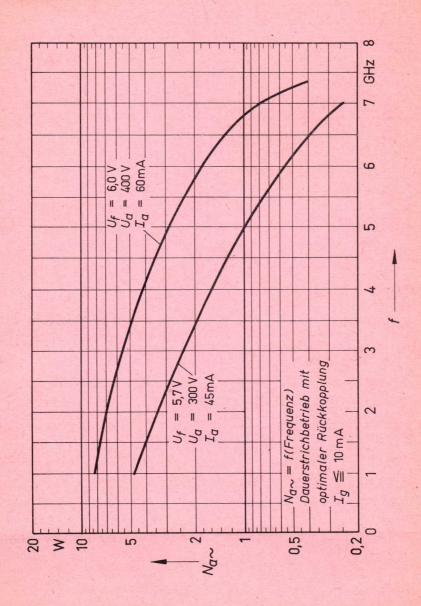

Die zugelassene Maximaltemperatur an den Außenflächen der Röhre beträgt 180 °C (absolute Grenze). Zur Abführung der Wärme ist ein ausreichender Luftstrom durch einen geeigneten Kühlkanal zur Kühlung des Radiators vorzusehen. Bei Verwendung eines Luftkanals der angegebenen Abmessungen ist die erforderliche Mindestluftmenge und der zugehörige Druck aus untenstehendem Diagramm zu entnehmen.


Da die konstruktive Gestaltung der Belüftungseinrichtung vom jeweiligen Geräteaufbau abhängt, ist eine Lieferung als Zubehör zur Röhre nicht vorgesehen.

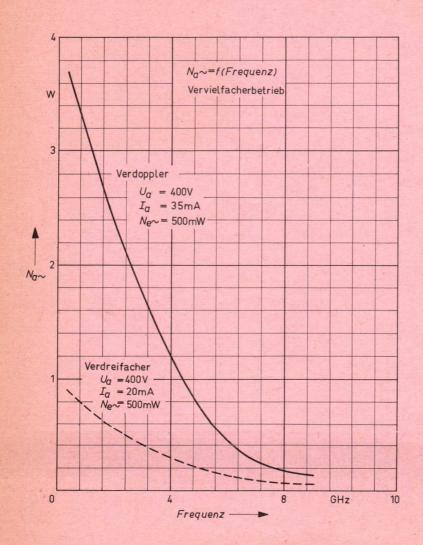
Kühlluftdiagramm

Kühlluft-Leitstück




KENNLINIENFELDER

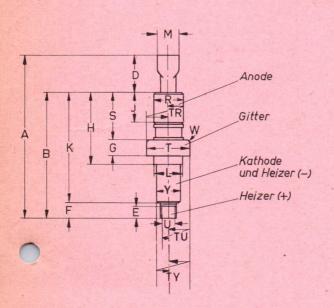
 $N_{a\sim} = f (Frequenz)$



KENNLINIENFELD

 $N_{a\sim} = f (Frequenz)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE


SCHEIBENTRIODE FÜR ZENTIMETER-WELLEN

Art und Verwendung

Vorläufige Daten

Scheibentriode mit Kontaktkühlung in Metall-Keramik-Ausführung für Oszillatoren und Verstärker bis etwa 7 GHz und Frequenzvervielfacher bis etwa 9 GHz.

Unter der Typenbezeichnung RH6C ist die Röhre mit Radiator leiferbar.

Maßtabelle Maße in mm

	min.	max.
A		48,40
В	37,90	39,40
D		9,00
E	3,90	4,30
F	4,80	5,80
G	4,60	4,80
Н	21,00	22, 20 1)-
J		8,80 1)-
K	32,70	34,00
L	8,60	8,80
M		7,00
R	8,80	8,90
S	13,65	14,05
T	12,95	13,10
U	4,00	4,20
W		0,60
Y	7,20	7,30
TR		0,15
TU		0,3
TY		0,1

1) auf dieser Länge ist Klemmkontakt erlaubt.

Gewicht: netto ca. 11 g brutto 30 g Abmessung der Verpackung: 40 x 40 x 120 mm

HEIZUNG, KAPAZITÄTEN KENNDATEN, GRENZDATEN

Heizung

TT		4.0	37	11
U _f		6,0	V	1)
1f	*	0,8	A	

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kathode: Metall-Kapillar-Kathode (Vorratskathode)

Kapazitäten

Kenndaten

		min	nom	max	
Ua	=		400		V
Ua +Ubg	= 1		20		V
Rk	= /		390		Ω
I _a	=	55	60	65	mA
S	=.	13	16	20	mA/V
ц	≈		60		

Grenzdaten (absolute Werte)

Uao	max.	800	v
Ua	max.	600	V
Qa	max.	25	W 2)
Qa -Ug +Ug	max.	50	V
+Ug	max.	0	V
Qg	- max.	0,15	W
Ig	max.	10	mA 3)
Ig Rg Ne~	max.	50	kΩ
Ne~	max.	1	W 4)
Ik	max.	72	mA
Iksp	max.	250	mA
toberfl	max.	180	°C

- 1) Wird beim Betrieb als Oszillator oder Verstärker ein Kathodenstrom von ≤ 70 mA benötigt, so ist im Interesse einer längeren Lebensdauer die Heizspannung zu reduzieren. Ein Beispiel für erzielbare Leistungen bei reduzierter Heizspannung ergeben die Kennlinien Seite K3 oben. Die Heizspannung soll weniger als ± 2 % (absolute Grenzen) um den Einstellwert schwanken.
- 2) Weitere Angaben: siehe "Kühlung" Seite 4.
- 3) Der angegebene Wert darf auch kurzzeitig nicht überschritten werden (z. B. beim Abstimmen eines Oszillators).
- 4) In Gitterbasisschaltung.

Betriebsdaten

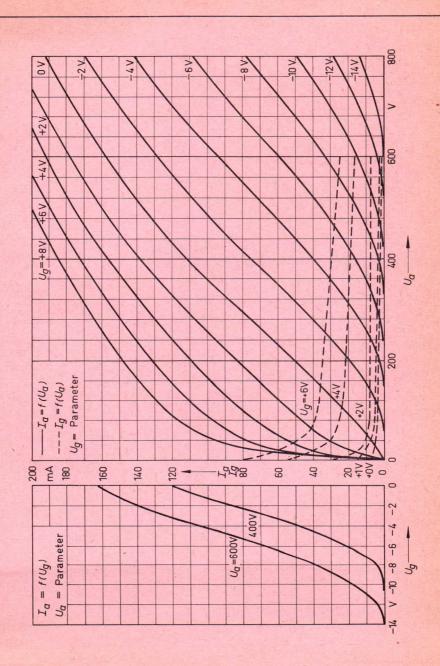
Dauerstrich-Oszillator

f	=	4	6	GHz	1)
Uf	-=	6,0	6,0	V	
Ua	=	400	400	V	
+Ubg	=	20	20	V	
Rk	=	800	800	Ω	2)
I _a I _g N _a ~		60	60	mA	
Ig	*	7	7	mA	
Na~	=	4	1,8	W	
Verdoppler					
The first program of the first					
f	=	3/6	4,5/9	GHz	
U _f U _a	=	6,0	6,0	V	
Ua	=	400	400	V	
+Ubg	=	20	20	V	
+U _{bg}	=	1	1	kΩ	2)
Ne~	= ,	500	500	mW	
Ia	=	35	35	mA	
Ig	*	3	3	mA	
Ig Na~	= .	440	150	mW	
Verdreifacher					
f		2/6	3/9	GHz	
Uf	= -1	6,0	6,0	V	
Ua +Ubg		400	400	V	
+Übg	S= 1 8 2 2 2 2 2 1	20	20	V	
Rk	=	2	2	kΩ	2)
Ne~	= 7.7	500	500	mW	
Ia	= 1	20	20	mA	
Ig	≈ .	1	1	mA	
I _a I _g N _a ~	#	130	40	mW	

- 1) Bei Frequenzen über 5 GHz müssen zur Vermeidung von Umfangswellen rotationssymmetrische Anodenkreise verwendet werden.
- 2) Es ist ein veränderbarer Kathodenwiderstand der genannten Größe vorzusehen, mit dem der angegebene Anodenstrom eingestellt wird.

Betriebshinweise

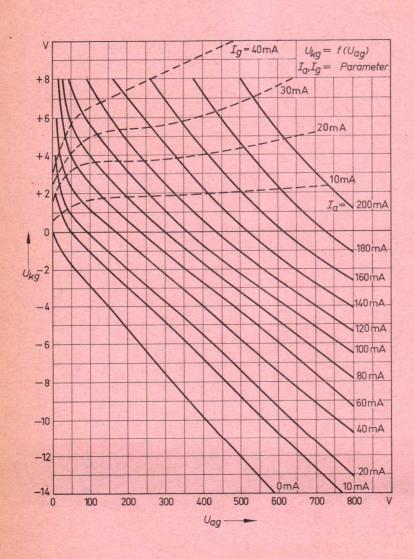
Einbau

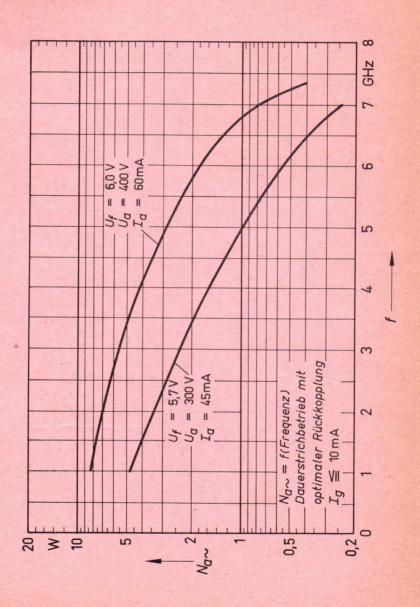

Die Röhre wird zweckmäßigerweise durch ausreichend nachgiebige, federnde Kontaktkränze in den konzentrischen Schwingungskreisen gehalten, die Lage der Röhre ist beliebig.

Kühlung

Die zulässige Anodenverlustleistung darf je nach Wärmeableitung bis zu 25 W (absolute Grenze) betragen. Die Wärme muß durch Kontaktkühlung von der Anodenkontaktfläche abgenommen werden. Auch eine Wärmeableitung vom Kathodenanschluß kann erforderlich sein. Maßgebend ist in jedem Anwendungsfall, daß die maximal zulässige Temperatur von 180 °C (absolute Grenze) an keiner Stelle der Röhrenoberfläche überschritten wird.

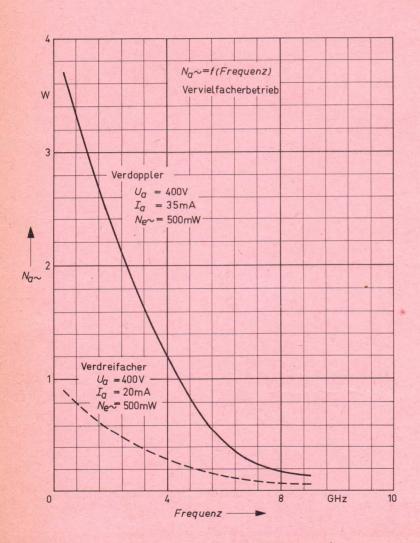
Zur Wärmeableitung kann ein der Art des Schwingungskreises angepaßter Radiator an den Anodenanschluß aufgeklemmt werden.


Hierbei ist auf einen guten Wärmekontakt an der Klemmstelle zu achten. Im Interesse einer langen Lebensdauer ist eine möglichst gute Kühlung der Röhre zu empfehlen.


KENNLINIENFELDER

SIEMENS RÖHREN

 $U_{kg} = f(U_{ag})$


 $N_{a\sim} = f$ (Frequenz)

KENNLINIENFELD

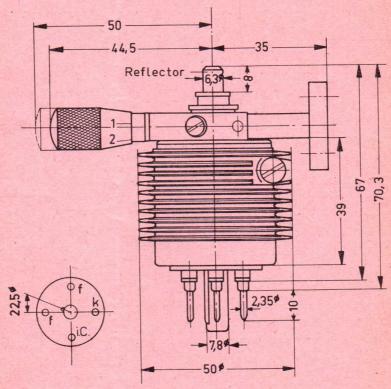
Nac = f (Frequenz)

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE

R. H. COLE ELECTRONICS LTD.

22 CAXTON STREET

Telephone: SULlivan 7060


Telex: 23864

Design and Application

Preliminary Data

Mechanically tunable reflex klystron specially designed for telecommunication systems as oscillator of high frequency stability and as frequency modulator with high-linearity modulation characteristic.

An outstanding feature of the RK 6 is that no additional linearization steps are necessary.

Dimensions in mm

Base:
Weight:
Dimensions of package:
Waveguide:
Flange:

Octal approx. 375 gm net, approx. 1550 gm gross 210 x 210 x 210 mm F 70, DIN 43702, 34.85 x 5 mm N 70, DIN 47303

Heating, Capacitance Typical Operation

Heating

Heater voltage = $6.3 \pm 2\%$ V (1) Heater current \approx 1 A

indirect by AC, parallel supply MK-dispenser cathode

Capacitance

Reflector to resonator = 4.2 µµf

Typical Operation

Mode of waveguide = 2, f = 5.85 kMc

Resonator voltage Reflector voltage	= = = = = = = = = = = = = = = = = = = =	400 -90	Vdc Vdc (2)
Resonator current	= 1	60	mAdc
Power output	= 1.	175	mW
Modulation sensitivity		3 /	Mc/V(3)
Modulation distortion	<	1	% (3)(4)
Electronic bandwidth		60	Mc (5)
Temperature coefficient	*	100	kc/°C

- (1) If the maximum variation of the heater voltage exceeds the absolute limits of $\frac{1}{2}$ 2%, the operating performance of the tube will be impaired and its life shortened.
- (2) Adjusted to maximum power output
- (3) For connection of a load with a reflection coefficient < 2 %.
- (4) Relative variation of modulation sensitivity at frequency modulation with † 5 Mc frequency variation.
- (5) Frequency range between half-power points due to varying the reflector voltage.

Maximum Ratings

(absolute values)

Resonator voltage	max	425	Vdc
Resonator dissipation	max	30	W
Reflector voltage	min	-10	Vdc
Reflector voltage	max	-500	Vdc
Cathode current	max	70	mAdc
Bulb temperature	max	150	°C

Operating Instructions

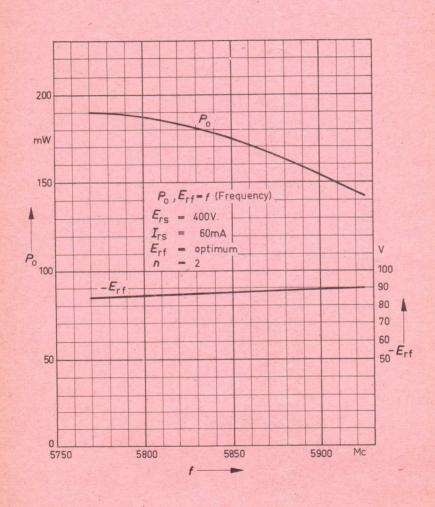
The RK 6 is continuously tunable in the range from 5.775 to 5.925 kMc. The resonator is connected to the metal bulb of the tube. The heater should be connected to cathode potential.

Mounting

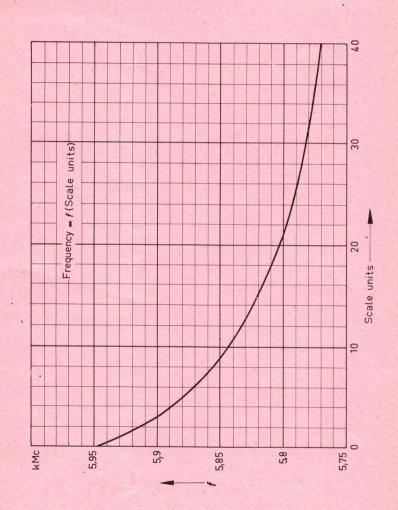
The klystron mounts on the waveguide flange and can be operated in any position. The voltage leads must be flexible.

Cooling

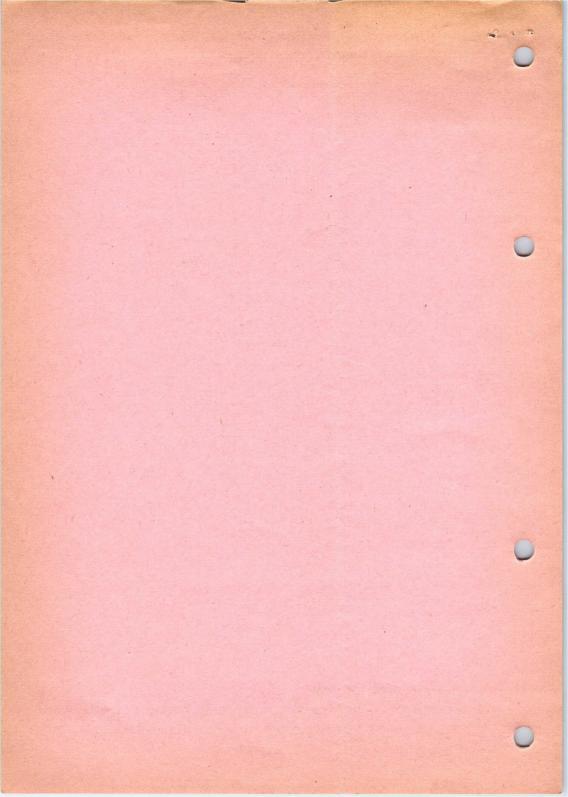
At ambient temperatures up to a maximum of 50°C the RK 6 may be operated without special cooling, provided that a natural air circulation around the tube is ensured. Otherwise, moderate air cooling will be required. It is important that the admissible maximum temperature of 450°C (absolute limit) is not exceeded at any point on the tube surface.


Starting

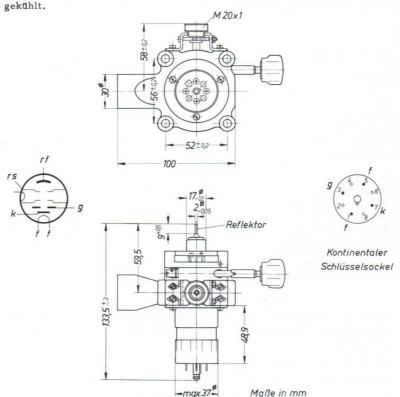
When starting the klystron, the voltages should be applied either in the following sequence or all at the same time.


- 1. Heater voltage
- 2. Reflector voltage
- 3. Resonator voltage

Disconnection should be effected in the reverse sequence or all at the same time.



SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE



REFLEX KLYSTRON

f = 3,6 . . . 4,5 GHz

Art und Verwendung

Reflex-Klystron mit Hohlraumresonator, insbesondere für Richtfunksysteme. Geeignet als Oszillator hoher Frequenzkonstanz und als Frequenzmodulator großer Linearität im Bereich von 3,6 bis 4,5 GHz. Der Resonator ist luftgekühlt.

Sockel : kontinentaler Schlüsselsockel

Fassungen : Preßstoff 9 Rel lp 12, Keramik Rel stv 149a Gewicht : netto ca. 750 g brutto ca. 1850 g

Abmessung der Verpackung: 210 x 210 x 210 mm

Koaxialanschluß : HF-Steckverbindung 3,5/9,5; $Z = 60 \Omega$

nach DIN 47281

HEIZUNG, KAPAZITÄT BETRIEBSDATEN

Heizung

Heizspannung $U_f = 6,3 \quad V \quad 1$) Heizstrom $I_f = 1,0 \quad A$

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung Kathode: Metall-Kapillar-Kathode

Kapazitat

110 100 2100					
Kapazität Reflektor/Resonator	C _{rf/rs}	=	3,8 + 0,5	pF	
Betriebsdaten					
Frequenz	f	=	4,2	GHz	
Schwingbereich	n	=	3		
Resonatorspannung	Urs	=	310	V	
Reflektorspannung	-Urf	=	100160	V	2)
Gitterspannung	Ug	=	0	V	
Resonatorstrom	I_{rs}	=	38	mA	
Ausgangsleistung	Na~	=	180	mW	
Modulationssteilheit	Sm	=	1,8	MHz/	V 3)
Modulationssteilheit					
mit Linearisierung	Sm	=	2,7	MHz/	V
Modulationsverzerrung	$\Delta S_{\rm m}/S_{\rm m}$	<	5	%	3, 4)
Modulationsverzerrung					
mit Linearisierung	$\Delta S_{\rm m}/S_{\rm m}$	<	1	%	4)
Elektronische Bandbreite	Δf	=	60	MHz	5)

- Ein Überschreiten der zulässigen Heizspannungsschwankung von ± 2 % (absolute Grenzen) beeinträchtigt das Betriebsverhalten und die Lebensdauer der Röhre.
- 2) Einstellen auf maximale Ausgangsleistung.
- 3) Bei Anschluß einer Last mit einem Reflexionsfaktor < 2 %
- 4) Relative Steilheitsänderung bei Frequenzmodulation mit ± 5 MHz Hub
- 5) Frequenzänderung zwischen den Punkten halber Ausgangsleistung durch Änderung der Reflektorspannung.

GRENZDATEN, BETRIEBSHINWEISE

Grenzdaten

(absolute Werte)

Resonatorspannung	Urs	max.	400	V
Resonatorverlustleistung	Qrs	max.	18	W
Reflektorspannung negativ	-Urf	max.	900	V
Reflektorspannung positiv	+Urf	max.	0	V
Gitterspannung negativ	-Ug	max.	100	V
Gitterspannung positiv	+Ug	max.	0	V
Kathodenstrom	$I_{\mathbf{k}}$	max.	50	mA
Faden-Kathoden-Spannung	Ufk	max.	50	V
Kolbentemperatur	tkolb	max.	100	°C

Betriebshinweise

Das Reflex-Klystron RK 25 wird im Normalfall auf eine mittlere Frequenz von 4,2 GHz eingestellt (Nullstellung der Abstimmskala) und ist durch den fest mit der Röhre verbundenen Antrieb kontinuierlich im Bereich von 3,6 bis 4,5 GHz durchstimmbar.

Die Leistungsentnahme erfolgt über einen Koaxialanschluß 3,5/9,5 (60 Ω) nach DIN 47281.

Einbau

Das Reflex-Klystron kann in beliebiger Lage betrieben werden. Zur Befestigung sind 4 Bohrungen (7 mm \emptyset) im Kühlgehäuse vorgesehen.

Inbetriebnahme

Die Inbetriebnahme des Reflex-Klystrons muß in nachstehender Reihenfolge oder gleichzeitig erfolgen.

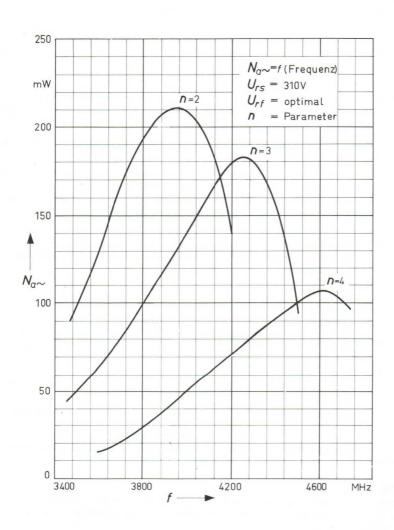
- 1. Kühlung
- 2. Heizspannung
- 3. Reflektorspannung
- 4. Resonatorspannung

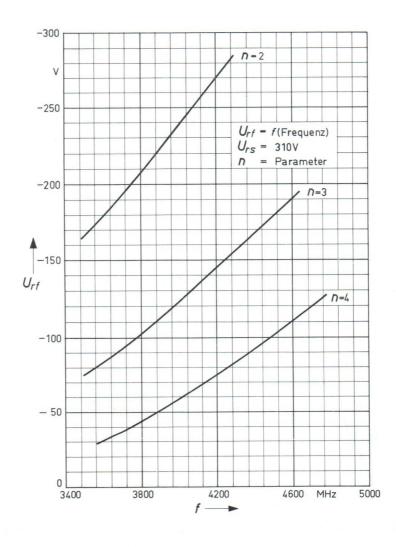
Das Abschalten muß in umgekehrter Reihenfolge oder gleichzeitig erfolgen.

Einlaufzeit und Frequenzkonstanz

Das Reflex-Klystron ist temperaturkompensiert. Stationäre Temperaturverhältnisse werden etwa 15 Minuten nach der Inbetriebnahme erreicht.

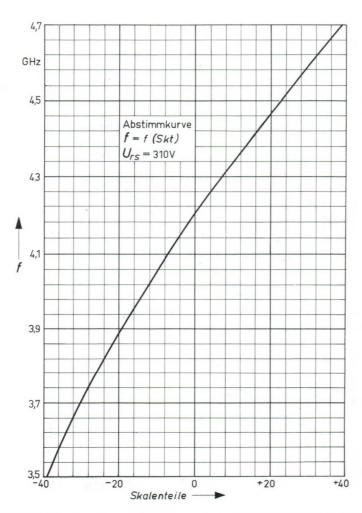
Der Frequenzgang als Funktion der Temperatur des Hohlraumresonators beträgt im Bereich von 30 bis 50 °C \leq 40 kHz/°C 50 bis 80 °C \leq 80 kHz/°C


Wegen der Abhängigkeit der erzeugten Frequenz von den Betriebsspannungen empfiehlt es sich, stabilisierte Spannungsquellen zu verwenden.


Kühlung

Das Reflex-Klystron muß zur Erzielung einer hohen Frequenzkonstanz mit einem Luftstrom von etwa 100 $1/\min$ bei einer Eintrittstemperatur von ca. 25 $^{\circ}$ C gekühlt werden.

KENNLINIEN $N_{a} \sim = f \text{ (Frequenz)}$



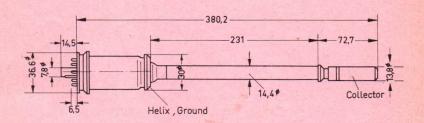
RöK3501/1.2.62 K2

KENNLINIEN

Frequenz = f(Skalenteilen)

SIEMENS & HALSKE AKTIENGESELLSCHAFT
WERNERWERK FOR BAUELEMENTE

f = 1.7...2.3 kMc


Design and Application

Preliminary Data

Power travelling wave tube specially designed for broadband radio relay systems with an average power output of 20 watts and an average gain of 35 db. The magnet system including the tube and the connections is provided with RF shielding.

The RW 2 is a periodic, permanent-magnet focused travelling wave tube and is replaceable within the magnet system MRW 2 which is distinguished by its particularly small leakage field. It is arranged to operate with depressed collector.

At full power air cooling is necessary. The RF power is coupled in and out by way of coaxial connections.

Dimensions in mm

any (see cooling)

Base:
Tube mount:
Weight of tube:
Weight of magnet system:
Dimensions of magnet system:
Rf connection:

Mounting position:

special type, included in magnet system delivered with magnet system approx. 200 gm net approx. 14 kg 100 \times 100 \times 400 mm optional: UG 21 D/U 3.5/9.5 (60 Ω) 7/16 (50 Ω) 6/16 (60 Ω)

Heating

Heater voltage	=	6.3	v (1)
Heater current	*	0.9	A
Cathode heating time	>	2	min
indirect by AC, parallel	supply		

Characteristics

MK-dispenser cathode

Frequency range	=	1.7 to 2.3	kMc
Saturation power	*	30	W
Average Gain (Po = 20 W)	≈ .	35	db
Reflection factor	<	30	9, (2)
Magnetic field strength	€	500	Gauss (4)

Typical Operation

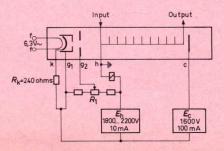
Operating frequency	=	2	kMc,
Power output	=	20	W (4)
Gain	*	35	db
Collector voltage	=	1600	Vdc (5)
Helix voltage	*	2000	Vdc
Grid No. 2 voltage	~	600	Vdc
Grid No.1 voltage	=	-20	Vdc (5,6)
Helix current	~	3	mA
Grid No. 2 current	≦	0.1	mA (5)
Cathode current	_	85	mA

- (1) If the maximum variation of the heater voltage exceeds the absolute limits of $\stackrel{+}{}$ 2 %, the operating performance of the tube will be impaired and its life shortened.
- (2) At input and output of cold tube in the frequency range from 1.7 to 2.3 kMc.
- (3) Peak value of alternating magnetic field.
- (4) The tube is designed so that it can be operated with reduced cathode currents in applications requiring a lower power output.
- (5) Adjusting value
- (6) It is recommended to adjust the grid No. 1 voltage by means of the cathode resistor.

Maximum Ratings	
Collector voltage	
Collector voltage	

(absolute values)

Collector voltage	min	1500	Vdc
Collector voltage	max	1800	Vdc
Collector dissipation	max	150	W
Helix voltage	max	2300	Vdc ,
Helix current	max	7	mAdc (
Grid No. 2 voltage	max	900	Vdc
Grid No. 2 dissipation	max	0.2	W
Negative grid No. 1 voltage	max	30	Vdc
Cathode current	max	100	mAdc
Collector temperature	max	250	°C


Operating Instructions

The travelling wave tube RW 2 is operated in conjunction with its associated magnet system MRW 2. The advantages of the periodic permanent-magnetic focusing of the RW 2 are the particularly small dimensions of the magnet system and an extremely small leakage field. The magnetic field is therefore largely insensitive to metal parts located in its vicinity. The sensitivity of the tube to temperature changes is low.

The magnet system should only be mounted by way of the fixing holes provided for this purpose. All voltages applied to the tube are referred to the cathode. The helix voltage (E_h) must be adjustable between 1800 and 2200 V, the grid No.2 voltage (E_{g2}) between 500 and 800 V. The grid No.2 voltage is tapped from a voltage divider R_1 whose total series resistance must not exceed 2.5 Meg. The grid No.1 voltage (E_{g1}) can be generated by the cathode current across resistor R_b .

The helix lead must be provided with a protective relay which causes the helix and grid No.2 voltages to be switched off if the maximum rating for the helix current is exceeded.

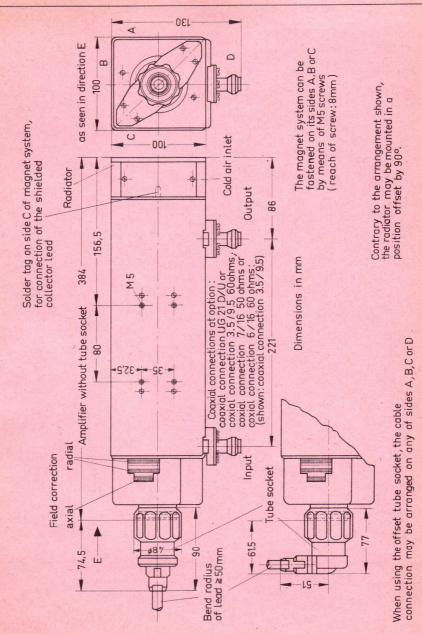
(1) The helix current may rise momentarily to 10 mAdc due to power supply surges and during starting.

Cooling

At the typical operation values listed on Sheet 2, an air flow of approximately 100 l/min is required to cool the collector. At reduced operating values the tube may be operated up to a maximum collector dissipation of 70 W without additional cooling, provided that the tube is in a horizontal position and natural circulation of the air vertically through the radiator is ensured. Otherwise, the manufacturer should be consulted.

Starting

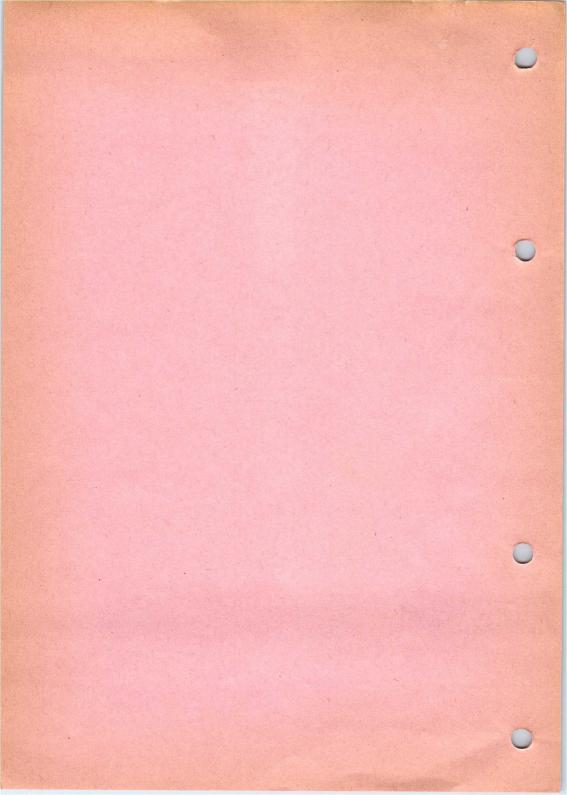
For safe handling of the equipment, the magnet system must be properly grounded. For starting the tube, the preliminaries should be performed in the following order:


1. Connect up leads: Heater f,f: brown
Cathode k: yellow
Grid No.1 g1: green
Grid No.2 g2: blue
Helix, ground h: red

Connect shielded collector lead to solder tag on side C of the magnet system (cf. Sheet 5).

- 2. Screw off sleeve
- 3. Insert tube in magnet system, plug in tube socket, and screw on sleeve until stop is reached (avoid tilting the socket).
- 4. Apply heater voltage and preheat tube for at least 2 min.
- 5. Switch on air cooling.
- 6. Apply collector voltage.
- 7. Switch on voltage supply simultaneously for helix and grid No.2. Make sure that full voltages are applied immediately and not increased gradually to full value.
- 8. Adjust cathode current by varying grid No. 2 voltage.
- Adjust helix current to minimum with the aid of radial field correction (pair
 of set rings on cathode side of magnet system) and axial field correction
 (separate ring adjustable along the tube axis).
- Apply RF input signal and readjust helix voltage to largest possible gain at specified power output.
- 11. Repeat field correction according to Point 9.

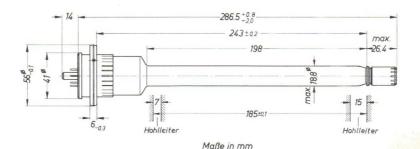
Switching off


The operating voltages can be disconnected either simultaneously or in the reverse order to that in which they were applied.

E E S C H AF S M NS & L S K K T E G E S E L H E A N

WERNERWERK FUR BAUELEMENTE

RöK3506/1.7.63



LEISTUNGS-WANDERFELDRÖHRE

f = 3,3 . . . 4,3 GHz

Art und Verwendung

Leistungs-Wanderfeldröhre vorzugsweise für Breitband-Richtfunksysteme mit einer Ausgangsleistung von 5 W und einer mittleren Verstärkung von 39 dB. Die Röhre wird durch ein permanentmagnetisches Gleichfeld fokussiert und ist in dem Magnetsystem austauschbar. Der Auffänger wird luftgekühlt. Ein- und Auskopplung der HF-Leistung erfolgt über Hohlleiter.

Sockel

Gewicht der Röhre

Gewicht der Magnetsystems

Abmessungen des Magnetsystems

Abmessungen der Röhrenverpackung

Abmessungen der Magnetsystemverpackung :

Typenbezeichnung des Magnetsystems

Hohlleiter Flansch

Einbau

: kontinentaler Schlüsselsockel

: netto ca. 200 g, brutto ca. 2,5 kg

: 21 kg

: ca. 350 x 200 x 250 mm

445 x 190 x 175 mm

510 x 390 x 490 mm

: Rel 148 V 3

: R 40, DIN 47303, 58, 2 x 29, 1 mm

: NR 40, DIN 47303

: beliebig

Heizung

Heizspannung	$\mathtt{u_f}$	=	6,3	V 1)
Heizstrom	$I_{\mathbf{f}}$	=	1,15	A
Vorheizzeit	t	<u>></u>	2	min

Heizart: indirekt durch Gleichspannung, Parallelspeisung

Kenndaten

Frequenzbereich	f ,	=	3,34,3	GHz	
Sättigungsleistung	Nsat	=	8	W	
Mittlere Verstärkung	$G(N_{a\sim} = 5 W)$	=	39	dB	
Kleinsignalverstärkung	G	=	40	dB	
Reflexionsfaktor	r	=	7	%	2)
Feldstärke	$B_{\mathbf{z}}$	≈	500	G 3	3)

- Ein Überschreiten der zulässigen Heizspannungsschwankung von ± 5 %
 (absolute Grenzen) beeinträchtigt das Betriebsverhalten und die Lebensdauer der Röhre.
 - Der Minuspol der Heizspannung ist mit der Kathode zu verbinden.
- 2) Am Röhrenein- und -ausgang im Betrieb bei optimaler Einstellung der HF-Anpassungselemente auf Bandmitte bei einer Bandbreite von ± 10 MHz im Frequenzbereich von 3,3 bis 4,3 GHz.
- 3) Magnetische Induktion in axialer Richtung.

Betriebsdaten

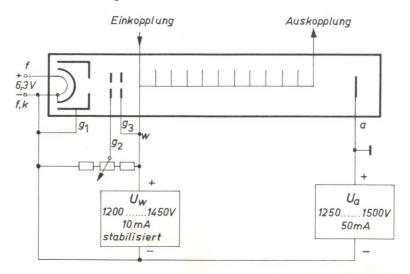
f	=	4	GHz
Na~	=	5	W
G	=	39	dB
Ua	=	1450	V
Uw }	≈	1350	V
	=	630	V
Ug1	=	0	V
$I_{\mathbf{w}}$	=	1,5	mA
Ig3	=	1	mA
	<	0,1	mA
Ik	=	40	mA
F	<	33	dB
kp	=	7	0/dB 1)
	Ua Uw Ug3 Ug2 Ug1 Iw Ig3 Ig2 Ik F	Na~ = G = Uua = Uw	$N_{a} \sim $

Grenzdaten

(absolute Werte)

Auffängerspannung	$U_{\mathbf{a}}$	max	1550	V
Auffängerverlustleistung	Q_a	max	70	W
Wendelspannung	$U_{\mathbf{w}}^{\mathbf{u}}$	max	1500	V
Wendelstrom	$I_{\mathbf{w}}$	max	3	mA
Gitter 3 Spannung	Ug3	max	1500	V
Gitter 3 Verlustleistung	Qg3	max	3,5	W
Gitter 2 Spannung	U _{g2}	max	900	V
Gitter 2 Verlustleistung		max	0,2	W
Gitter 1 Spannung negativ	Q _{g2} -U _{g1}	max	500	V
Gitter 1 Spannung positiv	+Ug1	max	0	V
Kathodenstrom	$I_{\mathbf{k}}$	max	50	mA
Auffängertemperatur	Ta	max	180	°C 2)

- AM-PM Umwandlungskoeffizient ist die Änderung der Phasendrehung bei Änderung der Eingangsleistung um 1 dB.
- 2) Die Temperatur an der Anglasung darf max. 150 °C nicht überschreiten.


Allgemeine Betriebshinweise

Die Wanderfeldröhre RW 3 kann nur in Verbindung mit dem zugehörigen Magnetsystem betrieben werden. Der Fokussierungsmagnet, die Eingangs- und Ausgangshohlleiter, die Fokussierungs- und Anpassungselemente sowie die Kühlluftzuführung bilden eine Baueinheit.

Die Anpassung des HF- Ein- bzw. Ausganges erfolgt mit je 2 Bedienungsschrauben an der Strirnseite des Magnetsystems. Dort befindet sich auch der Einstellhebel zur magnetischen Justierung des Elektronenstrahls. Die Röhre wird beim Einsetzen durch einen Druckverschluß gehalten und am Auffänger galvanisch mit dem Magnetsystem verbunden. Dadurch wird auch gleichzeitig eine Zentrierung im Magnetfeld erreicht.

Alle Spannungen an der Röhre sind auf die Kathode bezogen. Die Spannungsversorgung für Wendel und Gitter 3 (U_w) soll stabilisiert und zwischen 1200 und 1450 V regelbar sein. Die Auffängerspannung (U_a) erfordert keine Stabilisierung. Die Gitter 2 Spannung (U_{g2}) wird an einem Spannungsteiler abgegriffen, dessen Querwiderstand 1,5 M Ω nicht überschreiten darf.

Die RW 3 ist so zu betreiben, daß die Auffängerspannung (U_a) den Wert der Wendelspannung und Gitter 3 Spannung (U_w) nicht unterschreitet. Bei Überschreitung der Grenzdaten für Wendelstrom (I_w) und Gitter 3 Strom (I_g3) muß die Spannungsversorgung für Wendel- und Gitterspannung (U_w) automatisch durch ein Überstromrelais abgeschaltet werden.

Bezeichnung der Gitter:

g1 = Fokussierungselektrode (Wehnelt)

g2 = Beschleunigungselektrode

g3 = Beschleunigungselektrode

Kühlung

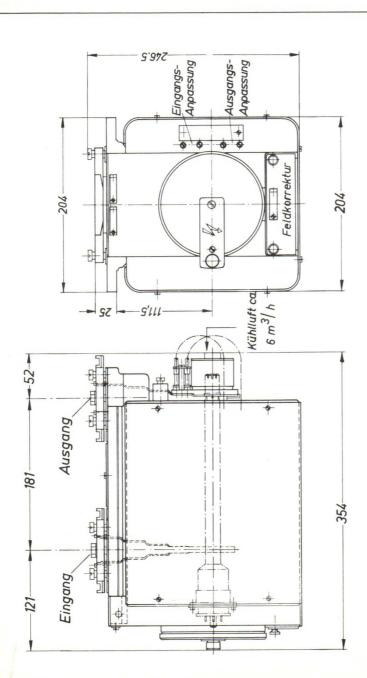
Die Röhre ist im Betrieb mit einer Luftmenge von 100 1/min zu kühlen.

Inbetriebnahme

 $\mathbb Z$ ur gefahrlosen Bedienung des Gerätes muß das Magnetsystem einwandfrei geerdet werden.

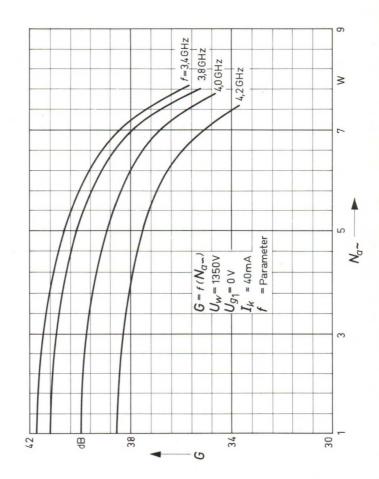
Bei Inbetriebnahme der Röhre ist nachstehende Reihenfolge der Einstellvorgänge einzuhalten.

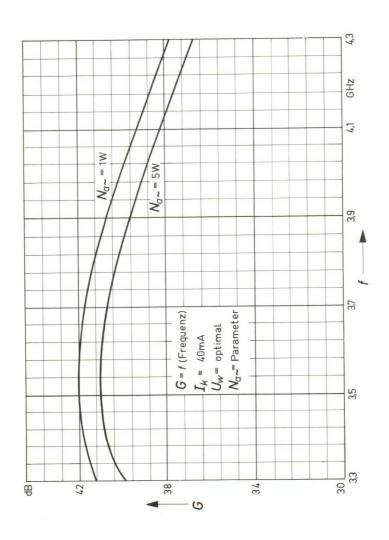
- 1. Deckel abschrauben, Sockel und Druckverschluß abheben.
- 2. Röhre im Magnetsystem einsetzen.
- Röhre mit Druckverschluß verriegeln und Röhrenfassung aufstecken, Deckel aufschrauben.
- 4. Heizspannung (Uf) einschalten und Röhre mindestens 2 min. vorheizen.
- 5. Auffängerspannung (Ua) einschalten.
- 6. Spannungsversorgung für Wendel und Gitter $3(U_{\rm W})$ einschalten. Dabei ist zu beachten, daß die Spannungen sofort in voller Höhe aufgeschaltet und nicht langsam hochgeregelt werden.
- 7. Die Wendel- und Gitter 3 Spannung ($\mathbf{U}_{\mathbf{W}}$) auf den angegebenen Richtwert von 1350 V einstellen.
- 8. Bei etwa 0,1 mW Eingangsleistung die Gitter 2 Spannung $(U_{g\,2})$ so einstellen, daß bei möglichst kleinem Wendel- (I_w) und Gitter 3 Strom $(I_{g\,3})$ ein Kathodenstrom von etwa 38...40 mA fließt.
- 9. Mit Hilfe der magnetischen Justierung sind der Wendel- (I_w) und Gitter 3 Strom $(I_{\sigma 3})$ auf ein Minimum einzuregeln.
- Eingang und Ausgang des Verstärkers mit den Bedienungsschrauben an der Stirnseite des Gerätes auf minimalen Reflexionsfaktor anpassen.
- 11. Ausgangsleistung durch Erhöhen der Eingangsleistung auf den angegebenen Betriebswert einregeln. Dabei Wendelspannung $(U_{\mathbf{W}})$ auf optimalen Wert (größtmögliche Verstärkung bei gegebener Ausgangsleistung) nachstellen.
- 12. Mit der magnetischen Justierung den Wendel-($I_{\rm w}$) und Gitter 3 Strom ($I_{\rm g3}$) auf Minimum nachstellen.


Abschalten

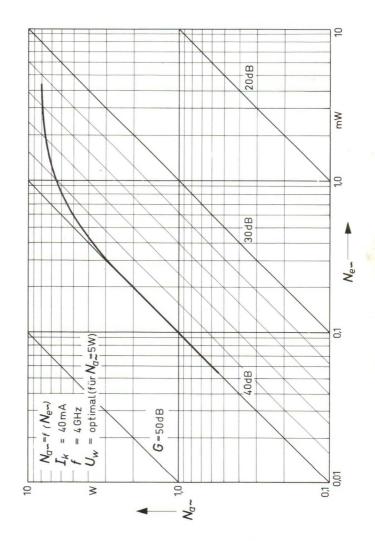
Die Betriebsspannungen können gleichzeitig oder in umgekehrter Reihenfolge abgeschaltet werden.

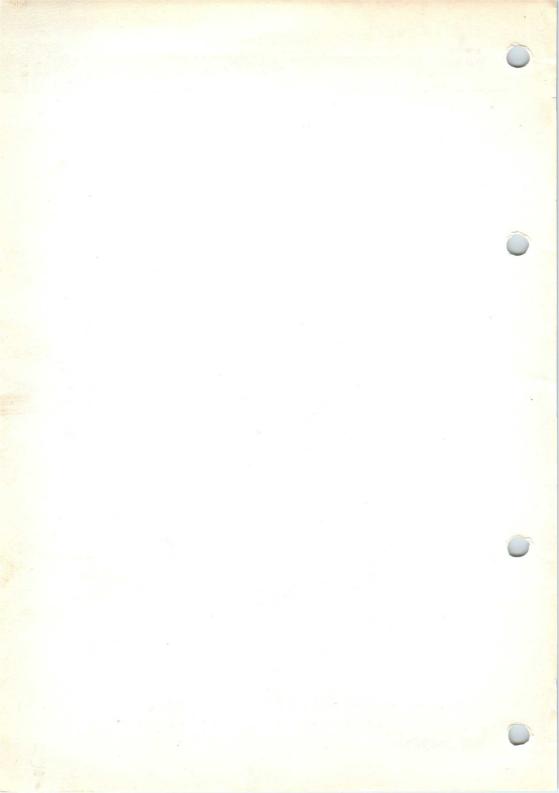
RöK 3502/1.2.62





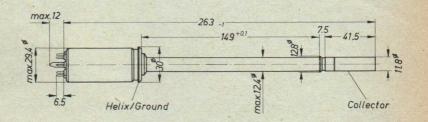
Maße in mm


 $G = f(N_{a\sim})$



$$N_{a\sim} = f(N_{e\sim})$$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE


f = 3.3... 4.3 kMc

Design and Application

Tentative Data

Power travelling wave tube specially designed for broadband radio relay systems with an average power output of 10 watts and an average gain of 35 db. The RW 4 is a periodic permanent magnet focused travelling wave tube and is replaceable within the magnet system. It is arranged to operate with depressed collector.

The rf power is coupled in and out by way of waveguides.

Dimensions in mm

Base:
Weight of tube:
Weight of magnet system:
Dimensions of magnet system:
Waveguide:
Flange:
Mounting position:

European type base approx. 100 gm net approx. 7.5 kg approx. 100 x 112 x 304 mm F40, DIN 47302,58.17 x 7 mm NF 40, DIN 47303 any

Heating

Heater voltage	=	6.3 + 2 %	V (1)
Heater current	*	1	A
Cathode heating time	≧	2	min

indirect by AC, parallel supply MK dispenser cathode

Characteristics

(2)
(3)

- (1) If the maximum variation of the heater voltage exceeds the absolute limits of $\frac{1}{2}$ %, the operating performance of the tube will be impaired and its life shortened.
- (2) At input and output of cold tube with optimum adjustment of rf matching elements to midband and a bandwith of ± 10 Mc in the frequency range from 3.3 to 4.3 kMc.
- (3) Peak value of alternating magnetic field.

Typical Operation

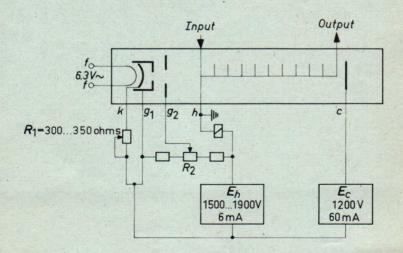
Operating frequency		4	kMc
Power output	= 1 V. m.	10	W
Gain	≈ = = =	35	db .
Collector voltage	='	1200	Vdc (1)
Helix voltage	≈ .	1750	Vdc
Grid No. 2 voltage	≈	550	Vdc
Grid No. 1 voltage	=	- 20	Vdc
Helix current	*	2	mAdc
Grid No. 2 current	<	0.1	mAdc
Cathode current	=	60	mAdc
Noise figure	<	25	db
AM/PM conversion	*	4.5	°/db (2)

Maximum Ratings (absolute values)

Collector voltage	min	1100	Vdc
Collector voltage	max	1400	Vdc
Collector dissipation	max	85	W
Helix voltage	max	1900	Vdc
Helix current	max	5	mAdc
Helix dissipation	max	8	W
Grid No. 2 voltage	max	800	Vdc
Grid No. 2 dissipation	max	0.2	W
Negative grid No. 1 voltage	max	30	Vdc
Positive grid No. 1 voltage	max	0	Vdc
Cathode current	max	65	mAdc
Collector temperature	max	200	°C

⁽¹⁾ Setting values

⁽²⁾ AM/PM conversion is the variation of the phase shift relatet to a variation of the power input level by 1 db.



Operating Instructions

The travelling wave tube can be operated only in conjunction with its associated magnet system. The particular advantages of the periodic permanent magnetic focusing of the RW 4 are, besides the relatively small dimensions of the magnet system, low sensitivity to temperature changes and extremely small leakage field. The magnetic field is therefore largely insensitive to metal parts located in its vicinity provided these parts are at least 10 mm removed from the magnet system.

All voltages applied to the tube are referred to the cahtode. The helix voltage must be regulated between 1500 to 1900 Vdc. The collector voltage does not require stabilization. The grid No. 1 voltage is automatically generated by the cathode current across resistor R1. The grid No. 2 voltage is picked off from voltage divider R2, whose total series resistance must not exceed 2.5 Meg.

The helix lead must be provided with a protective relay which causes the helix and grid No. 2 voltage to be switched off if the maximum rating for the helix current is exceeded.

Designations of the grids:

g1 = focusing electrode (Wehnelt)

g2 = acceleration electrode

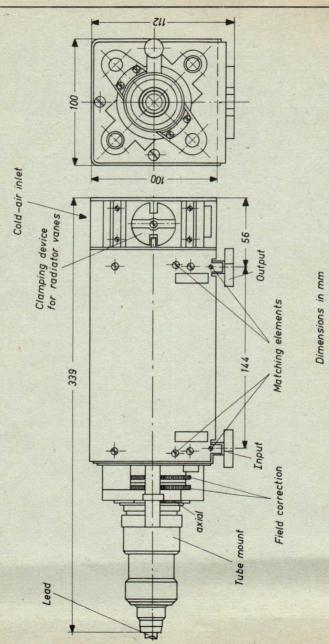
To dissipate the heat developed, the radiator must be cooled by a low air flow.

If the air flow stops, the supply voltages must automatically cut out.

Starting

For safe handling of the equipment, the magnet system must be properly grounded. For starting the tube the preliminaries should be performed in the following order:

1. Connect up leads: Filament f, f: brown Cathode k: yellow


Grid No. 1 g1: green Grid No. 2 g2: blue

Collector c: black

- 2. Screw off sleeve and unlock clamping device for radiator vanes.
- 3. Insert tube in magnet system.
- Plug in tube socket and screw on sleeve until stop is reached.
 Lock clamping device for radiator vanes:
- 5. Apply heater voltage and preheat tube for at least 2 min.
- 6. Switch on forced-air cooling.
- 7. Apply collector voltage.
- 8. Switch on voltage supply for helix and grid No. 2. Make sure that full voltages are applied immediately and not increased gradually to full value.
- Adjust cathode current by varying grid No. 2 voltage. Adjust helix voltage to optimum gain.
- 10. Adjust helix current to minimum with the aid of radial field correction (setscrews at cathode side of magnet system) and axial field correction (cylindrical threaded ring adjustable along axis of tube).

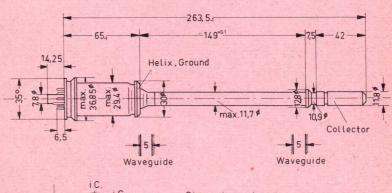
Switching off

The operating voltages can be disconnected either simultaneously or in the reverse order to that in which they were applied.

SIEMENS & HALSKE AKTIENGESELLSCHAFT

WERNERWERK FUR BAUELEMENTE

f = 5.8 to 7.3 k Mc


Design and Application

Preliminary Data

Power travelling wave tube specially designed for broadband radio relay systems with an average power output of 10 watts and an average gain of 39 db.

The RW 6 is a periodic, permanent magnet focused travelling wave tube and is replaceable within the magnet system. It is arranged to operate with depressed collector.

The rf power is coupled in and out by way of wave guides.

g1 c. i.C.

Dimensions in mm

Base:
Tube mount:
Weight of tube:
Weight of magnet system:
Dimensions of magnet system:
Dimensions of tube packing:
Waveguide:

Flange: Mounting position: special type, included in magnet system delivered with magnet system approx. 100 gm net approx. 7.5 kg
100 x 112 x 338 mm
175 x 190 x 445 mm
F 70, DIN 47302, 34.85 x 5 mm
(similar to WR 137)
NF 70, DIN 47303
see "Cooling"

0

Heating

Heater voltage	=	6.3 + 2 %	V (1)
Heater current	*	0.9	. A
Cathode heating time	> =	2	min

indirect by AC, parallel supply MK-dispenser cathode

Characteristics

Frequency range	= / \	5.8 to 7.3	kMc
Saturation power		. 18	W
Average gain (Po=10 W)	≈ .	39	db
Small-signal gain (Po = 1 W)	*	40.5	db
Reflection factor	<	15	% (2)
Reflection factor	*	5	% (3)
Magnetic field strength	*	800	Gauss(4)

- (1) If the maximum variation of the heater voltage exceeds the absolute limits of ± 2 %, the operating performance of the tube will be impaired and its life shortened.
- (2) At input and output of cold tube with optimum adjustment of rf matching elements to midband and a bandwidth of \(^+\) 100 Mc in the frequency range from 5.8 to 7.3 kMc.
- (3) At input and output of cold tube with optimum adjustment of rf matching elements to midband and a bandwidth of + 10 Mc in the frequency range from 5.8 to 7.3 kMc.
- (4) Peak value of alternating magnetic field.

Typical Operation

Operating frequency	=	6.2	6.6	7.0	kMc
Power output	=	10	10	10	W (5)
Gain	=	39.5	38.5	37	db
Collector voltage	=	.1300	1300	1300	Vdc (6)
Helix voltage	≈	2480	2460	2440	Vdc
Grid No. 2 voltage	*	550	550	550	Vdc
Grid No.1 voltage	=	-20	-20	-20	Vdc (6,7)
Helix current	*	2	2	2	mAdc
Grid No. 2 current	* < =	0.1	0.1	0.1	mAdc
Cathode current	=	45	45	45	mAdc (6,8)
Noise figure	<	25	25	25	db
AM/PM conversion	×	4.5			0/dB (9)
Phase shift	~	1.7			0/V (10)

All voltages are referred to the cathode

Maximum Ratings (absolute values)

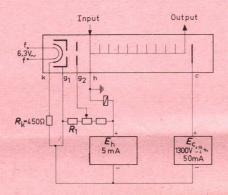
Collector voltage	min	1250	Vdc
Collector voltage	max	1500	Vdc
Collector dissipation	max	65	W
Helix voltage	max	2800	Vdc
Helix voltage	min	2100	Vdc
Helix current	max	3.5	mAdc (11)
Helix dissipation	max	9	W
Grid No. 2 voltage	max	650	Vdc
Grid No. 2 voltage	min	450	Vdc
Grid No. 2 dissipation	max	0.2	W
Negative grid No.1 voltage	max	25	Vdc
Positive grid No. 1 voltage	max	0	Vdc
Cathode current	max	50	mAdc
Collector temperature	max	250	°C

- (5) For smaller outputs, the cathode current may be decreased to 25 mAdc by varying the grid No.2 voltage. It is necessary to consult the manufacturer in such instances.
- (6) Adjusting values
- (7) It is recommended to adjust the grid No.1 voltage by means of the cathode resistor.
- (8) Changing the cathode current by 1 mAdc in the range from 42 47 mAdc has the effect of changing the gain by about 1 db.
- (9) AM-PM conversion is the phase shift of the rf-output signal when changing the input by 1 db.
- (10) Phase shift of rf-output signal when changing the helix voltage by 1 volt.
- (11) The helix current may rise momentarily to 5 mAdc due to power supply surges and during starting.

Operating Instructions

The travelling wave tube RW 6 may be operated only in conjunction with the associated magnet system MRW 6. The particular advantages of the periodic permanent-magnetic focusing of the RW 6 are the relatively small dimensions of the magnet system and the extremely small leakage field. Thus the magnetic field is largely neutral. The sensitivity to temperature changes is low. With operation in radio link systems, isolators should be coupled to the tube input and output to avoid distortions due to multiple reflexions.

All tube voltages are referred to the cathode.


Grid No. 1 voltage is automatically generated by the cathode current at resistor R_k . Grid No. 2 voltage should be variable within a range of 450-650 volts. It can be tapped at a voltage divider R_1 , the shunt resistance of which may not exceed 2.5 Meg.

The helix voltage should be variable between 2100 and 2800 volts. Consult the operating data and the curve on sheet K 5 for the filtering and stabilization necessary to meet the requirements of the respective system.

No stabilization is required for the collector voltage. The power dissipation involved must, however, be adhered to.

A protective relay must be inserted into the helix input circuit to disconnect the helix and grid No. 2 voltage when the maximum value for the helix current is exceeded.

When using an independant voltage source for grid No. 2, the immediate disconnection of grid No. 2 voltage in the case of an outage of the helix voltage must be ensured by an interlocking device. When the collector voltage is outed, the helix voltage and grid No. 2 voltage must be disconnected either by the overload relay in the helix input circuit or by a voltage interlocking system.

Designations of the grids: g₁ = focusing electrode (Wehnelt) g₂ = acceleration electrode

Cooling

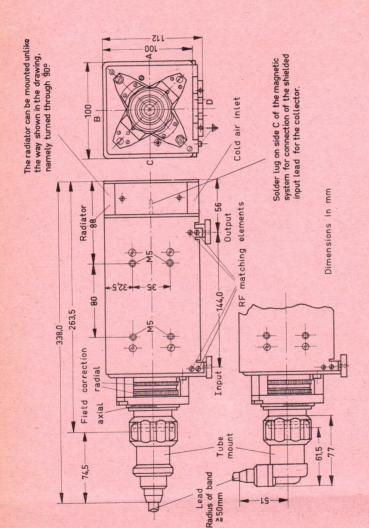
With ambient temperatures up to 40°C the RW 6 may be operated without special cooling if the tube is mounted in horizontal position and if a natural vertical air circulation is provided by the radiator.

With other mounting positions or with an excessive ambient temperature additional cooling by a low air flow (about 10 l/min) is required. In such a case it is important that the maximum admissible collector temperature of 250°C (absolute limit) is not exceeded.

Starting

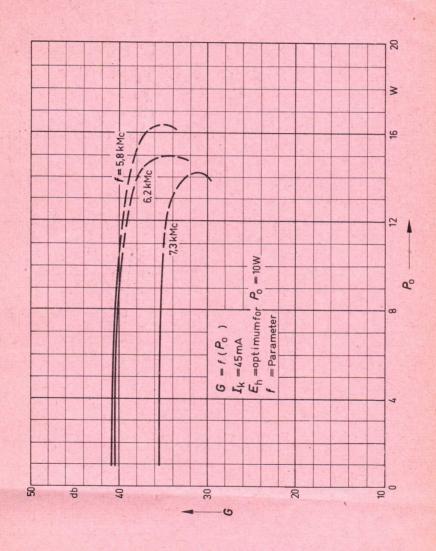
For operation without danger, the magnet system must be properly grounded. For starting the tube, the preliminaries should be performed in the following order:

1. Connect up leads:

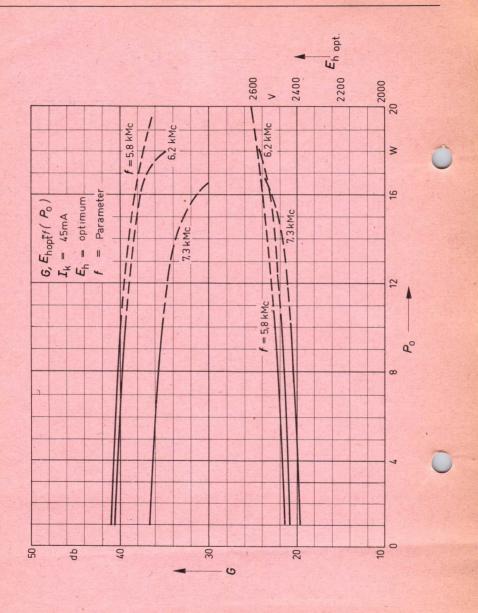

Filament f,f : brown
Cathode k : yellow
Grid No.1 g₁ : green
Grid No.2 g₂ : blue
Helix, Ground h : red

Collector c: shielded lead must be soldered to the therminal on radiator of magnet system (see page 6)

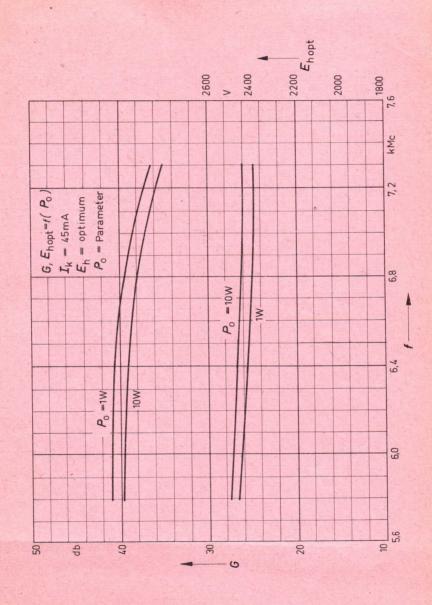
- 2. Screw off sleeve.
- 3. Insert tube in magnet system.
- Plug tube mount into tube and screw on sleeve until stop is reached.
 Check that threads are not binding.
- 5. Apply heater voltage and preheat tube for at least 2 min.
- 6. Apply collector voltage.
- 7. Switch on voltage supply for helix and grid No.2. If separate power supplies are used, both must be switched on simultaneously. Make sure that full voltages are applied immediately and not increased gradually to full value.
- 8. Adjust cathode current by varying grid No. 2 voltage.
- Adjust helix current to a minimum with the aid of radial field corrector (ring adjuster pair at cathode side of magnet system) and axial field corrector (cylindrical threaded ring adjustable along axis of tube).
- 10. Switch on rf-input signal and adjust to optimum gain with the helix voltage for the output required.
- 11. Correct field again as outlined under item 9.
- 12. Adjustment to minimum reflection factor is possible with the aid of the rf-matching elements at inlet and outlet.

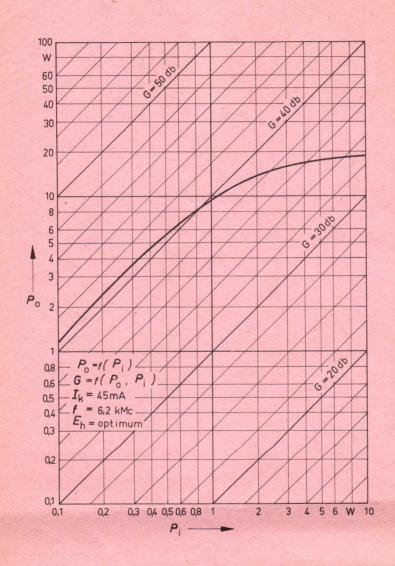

Switching off

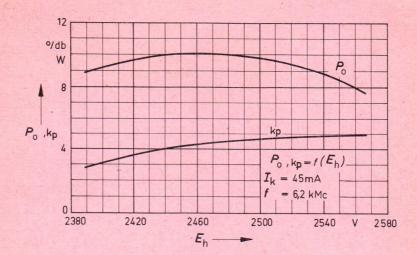
The voltages must be removed either in the reverse order to that in which they were applied, or simultaneously.

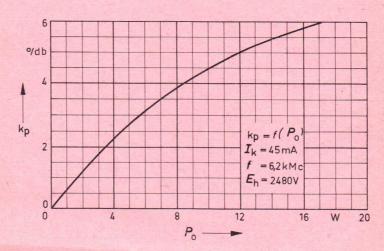


The magnetic system can be mounted on sides A, B or C with M5 screws (screwing depth 8mm) and it is If the angled tube socket is used, the cable lead can come from sides A,B,C or D. magnetically neutral.

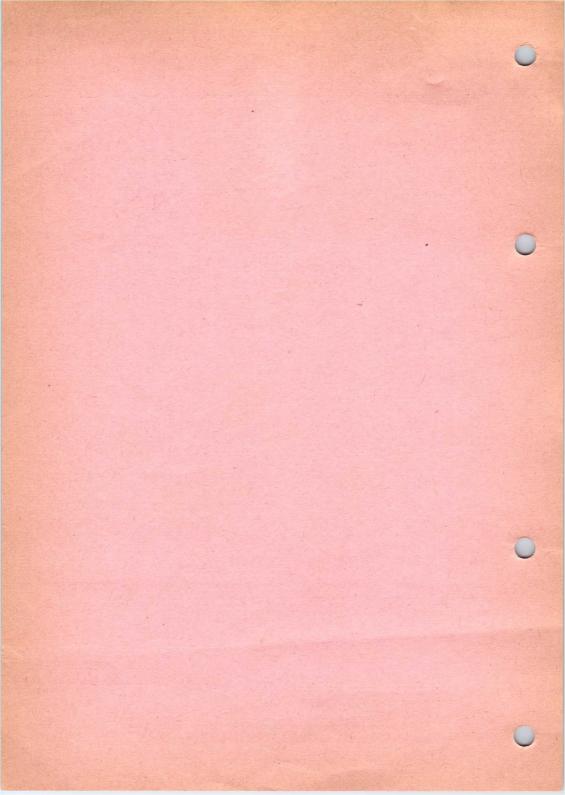








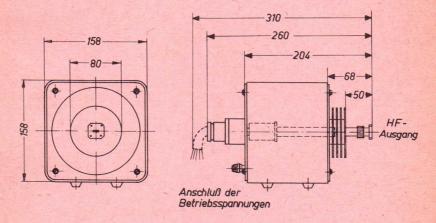
Characteristics $P_{o} = f(P_{i})$ $Gain = f(P_{o}, P_{i})$



SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FUR BAUELEMENTE

Printed in Germany

f = 26,5 . . . 42 GHz


Art und Verwendung

Vorläufige Daten

Rückwärtswellenoszillator mit einem elektronischen Durchstimmbereich von 26,5...42 GHz bei einer mittleren Ausgangsleistung von 40 mW und einer minimalen Ausgangsleistung von 10 mW.

Der Oszillator ist besonders geeignet für Messungen im Millimeter-Wellen-Gebiet, für Hohlkabel-Übertragungssysteme, Kurzstrecken-Millimeter-Radaranlagen und für die Mikrowellen-Spektroskopie.

Röhre und Magnetgestell bilden eine Einheit.

Maße in mm

Hohlleiter : R320 DIN 47302 B1.1

Flansch : UG-S99/U Gewicht : 7,7 kg

Abmessung der Verpackung : 190 x 190 x 390 mm

HEIZUNG, KAPAZITÄTEN BETRIEBSDATEN, GRENZDATEN

Heizspannung	$U_{\mathbf{f}}$	=	6,3	V 1)
Heizstrom	If	≈	1,0	A
Vorheizzeit	t	2	2	min

Heizart: indirekt durch Wechselstrom, Parallelspeisung Kathode: Metall-Kapillar-Kathode (Vorratskathode)

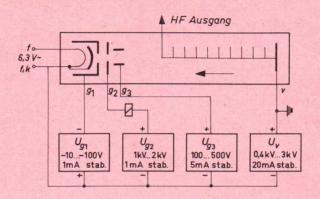
Kapazitäten

Betriebsdaten

Frequenzbereich Mittlere Ausgangsleistung Minimale Ausgangsleistung	f Na~ Na~	= = =	26,542 40 10	GHz mW mW	
Verzögerungsleitungs-Spannung Gitter 3-Spannung Gitter 2-Spannung Gitter 1-Spannung Verzögerungsleitungs-Strom Gitter 3-Strom	U _v U _{g3} U _{g2} -U _{g1} I _v I _{g3}		5002300 200 1200 40 12	V V V V mA	2)
Gitter 2-Strom	Ig2	=	0,3	mA	

Grenzdaten

(absolute Werte)


Verzögerungsleitungs-Spannung	$U_{\mathbf{v}}$	max	3000	V
Verzögerungsleitungs-Verlustleistung	Qv	max	45	W
Gitter 3-Spannung	Ug3	max	500	V
Gitter 3-Verlustleistung	Qg3	max	2	W
Gitter 2-Spannung	Ug2	max	2000	V
Gitter 2-Verlustleistung	Qg2	max	1	W
Gitter 1-Spannung negativ	Qg2 -Ug1	max	10400	V
Kathodenstrom	Ik	max	20	mA

- Ein Überschreiten der zulässigen Heizspannungsschwankung von ± 2 %
 (absolute Grenzen) beeinträchtigt das Betriebsverhalten und die Lebensdauer der Röhre.
- 2) Auffänger und Verzögerungsleitung sind galvanisch verbunden.

Allgemeine Betriebshinweise

Die Röhre und der zur Strahlführung erforderliche Permanentmagnet bilden eine Einheit. Die Energieauskopplung erfolgt über einen fest mit der Einheit verbundenen HF-Hohlleiter R 320 DIN 47302 Bl. 1 und dem dazugehörigen Flansch UG-599/U.

Bezeichnungen der Gitter: g1 = Fokussierelektrode (Wehnelt)

g2 = Beschleunigungselektrode

g3 = Fokussierelektrode

Zur Erzielung einer guten Frequenzkonstanz sollen die Betriebsspannungen stabilisiert sein. Die Verzögerungsleitungs-Spannung ($\rm U_{v}$) dient zur Einstellung der jeweiligen Betriebsfrequenz und muß daher von 400...3000 V regelbar sein. (Siehe Frequenzverlauf in Abhängigkeit von der Verzögerungsleitungs-Spannung, Blatt K1). Die übrigen Elektrodenspannungen sollen innerhalb der angegebenen Grenzen einstellbar sein.

Heizfaden und Kathode liegen auf einem Potential von 3000 V gegen Masse. Der Heiztransformator ist daher für diese Potentialdifferenz auszulegen. Zum Schutz der Röhre soll ein Schutzrelais in die Gitter 2-Zuleitung geschaltet werden, das beim Überschreiten der zulässigen Gitter 2-Verlustleistung (Q_{g2}) die Gitter 3- und Gitter 2-Spannungen (U_{g2}, U_{g3}) abschaltet, oder die Stromversorgungen für Gitter 3 und Gitter 2 sollen so gesichert sein, daß sie automatisch und schnell abgeschaltet werden, wenn irgendeine andere Betriebsspannung ausfällt oder abgeschaltet wird.

Modulation

Der Rückwärtswellenoszillator RWO 40 kann sowohl frequenzmoduliert als auch mit Impulsen oder Rechteckwellen amplitudenmoduliert werden.

Bei Frequenzmodulation wird der Verzögerungsleitungs-Spannung (U_v) die gewünschte Modulations-Spannung überlagert. Der Frequenzhub ist mittels Amplitudenregelung einstellbar. Zum Tasten der Röhre wird eine Rechteckspannung von 250 Vss zwischen Gitter 1 und Kathode gelegt, wobei darauf zu achten ist, daß die zulässigen Grenzwerte der Gitter 1-Spannung $(U_{g\,1})$ (-10...-400 V) nicht überschritten werden dürfen.

Zum Modulieren der Röhre mit Rechteckimpulsen legt man zweckmäßig die für Dauerstrichbetrieb erforderliche Vorspannung an Gitter 1 und moduliert die Röhre durch Überlagern von ausreichend großen Impulsen (250 Vss). An den übrigen Elektroden liegen dabei die normalen Betriebsspannungen.

Kühlung

Zur Abführung der Wärme muß der Radiator mit einem Luftstrom von ca. 150 l/min gekühlt werden.

Das Kühlluftsystem muß so gesichert sein, daß die Versorgungs-Spannungen abgeschaltet werden, wenn die Kühlung ausfällt.

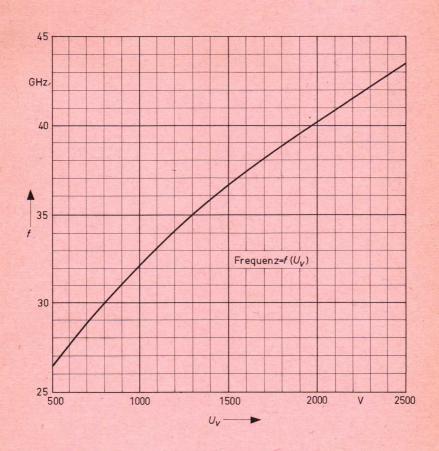
Inbetriebnahme

Bei Inbetriebnahme der Röhre ist folgende Einschaltreihenfolge unbedingt einzuhalten:

1. Zuleitungen anschließen: f = braun

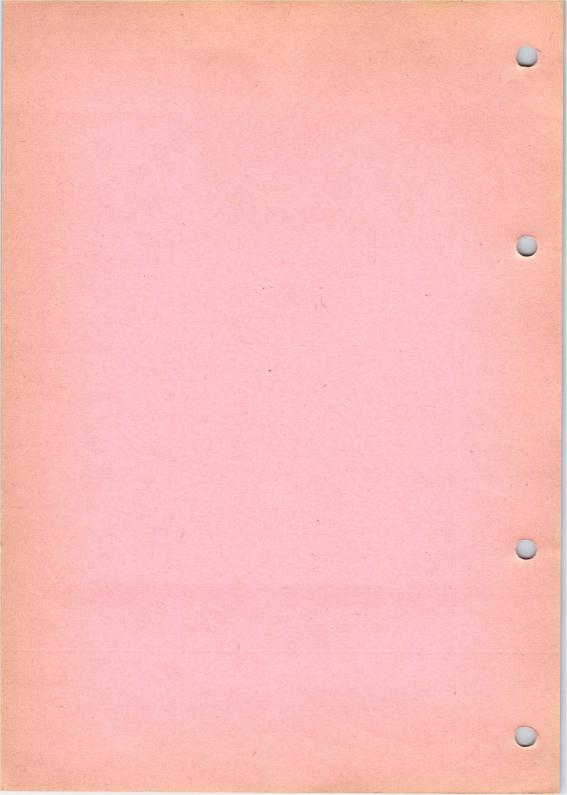
 $f_k = gelb$

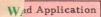
g1 = grün


g2 = blau

g3 = weiß
a_v = schwarz

- 2. Luftkühlung einschalten
- 3. Anheizen (2 Min.)
- 4. Verzögerungsleitungs-Spannung (Uv) anlegen
- 5. Die Gitterspannungen auf die angegebenen Betriebswerte einregeln
- Erst die Gitter 1-Spannung (Ug1), dann Gitter 2- und Gitter 3-Spannung (Ug2, Ug3) gleichzeitig anlegen.
- 7. Mit Gitter 3-Spannung (U_{g3}) Ausgangsleistung auf Maximum einstellen.

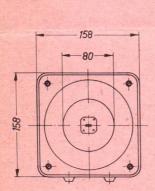

Das Abschalten muß in umgekehrter Reihenfolge durchgeführt werden.

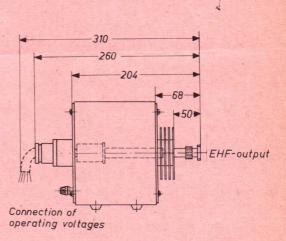


HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE

RöK3503/1.2.62 K1

f = 26.5 to 42 kMc




Preliminary Data

ard-wave oscillator with an electronic tuning range of 26.5 to 42 kMc at erage power output of 40 mW and a minimum power output of 10 mW.

oscillator is particularly suitable for measurements in the EHF range, for guide transmission systems, short-range EHF radar systems, and microe spectroscopy.

Tube and magnet system form a single unit.

Dimensions in mm

Waveguide: Flange: Weight:

Dimensions of packing:

R320 DIN 47302 sh. 1 UG-S99/U 7.7 kg 190 x 190 x 390 mm

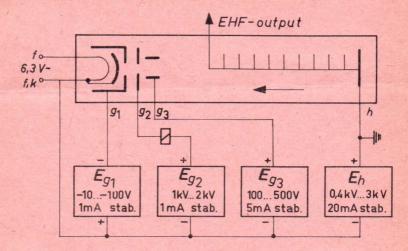
With the ompliments

0

ALMORE ELECTRONICS LIMITED

II-15 Betterton Street
Drury Lane, London, W.C.2
TEMPLE BAR 0201-5

HEATING, CAPACITANCES TYPICAL OPERATION, MAXIMUM RATINGS


Heating			
Heater voltage	-	6.3	V (1)
Heater current Cathode heating time	,≈ >=	1.0	A
indirect by AC, parallel supply MK-dispenser cathode			
Capacitances			
Capacitance Ca1/k a2 a3	=	7	µµf
Capacitance Cg1/k, g2, g3 Capacitance Cg2/k, g1, g3	- 6 2 3	6	μμf
Capacitance Cg3/k,g1,g2	=	5	μμf
Typical Operation			
Frequency range	= 1	26.5 to 42	kMc
Average power output	=	40	mW
Minimum power output	=	10	mW
Delay line voltage	=	500 to 2300	Vdc (2)
Grid No. 3 voltage	= 1	200	Vdc
Grid No. 2 voltage	=	1200	Vdc
Grid No. 1 voltage	= 10	-40	Vdc
Delay line current	~	12	mAdc .
Grid No. 3 current	=	3	mAdc
Grid No. 2 current	=	0.3	mAdc
Maximum Ratings (absolute va	lues)		
Delay line voltage	max	3000	Vdc
Delay line dissipation	max	45	W
Grid No. 3 voltage	. max	500	Vdc
Grid No. 3 dissipation	max	2	W
Grid No. 2 voltage	max	2000	Vdc
Grid No. 2 dissipation	max	1	W
Negative grid No. 1 voltage	max	10 to 400	Vdc
Cathode current	max	20	mAdc

- (1) If the maximum variation of the heater voltage exceeds the absolute limits of $\frac{1}{2}$ 2%, the operating performance of the tube will be impaired and its life shortened.
- (2) Collector and delay line are electrically interconnected.

Operating Instructions

The tube and the permanent magnet required for guiding the beam form a single unit. The energy is coupled out through an rf waveguide R 320 DIN 47302 sh. 1 that is rigidly linked with the unit, and its associated flange UG-599/U.

Designations of the grids: g1 = focusing electrode (Wehnelt)

g2 = acceleration electrode

g3 = focusing electrode

In the interest of good frequency stability, only regulated operating voltages should be used. The delay line voltage serves for setting the chosen operating frequency and must therefore be adjustable between 400 and 3000 Vdc. (See frequency range as function of collector and delay line voltage, K1). The other voltages should be adjustable within the limits indicated.

Heater and cathode are connected to a potential of 3000 Vdc to chassis. The heater transformer must therefore be proportioned for this potential difference.

For protection of the tube, a protective relay should be inserted in the grid No. 2 lead so that the grid No. 3 and grid No. 2 voltages are disconnected if the permissible grid No. 2 dissipation is exceeded, or the power supplies for grids No. 3 and No. 2 should be protected in such a manner that they will be rapidly disconnected if any other operating voltage should fail or be disconnected.

Modulation

Backward-wave oscillator RWO 40 may be operated with frequency modulation as well as with amplitude modulation by means of pulses or square waves. In the case of frequency modulation, the chosen modulation voltage is superimposed on the delay line voltage. The frequency swing can be adjusted by way of amplitude control. For keying the tube, a square-wave voltage of 250 volts peak -to-peak is applied between grid No. 1 and cathode, care having to be taken to ensure that the permissible limits of the grid No. 1 voltage (-10 to -400 volts) are not exceeded.

For modulation with square-wave pulses, it is practical to apply the bias required for continuous-dash operation to grid No. 1 and to modulate the tube by superimposing pulses of sufficient magnitude (250 volts peak-to-peak). In this case, normal operating voltages are applied to the other electrodes.

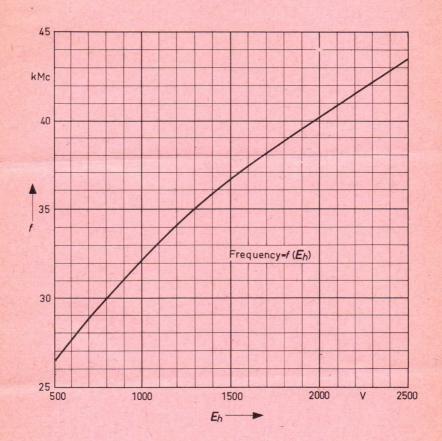
Cooling

For removing the heat, the radiator must be cooled with an air flow of about 150 1/min.

The cooling-air system must be protected in such a manner that the supply voltages are disconnected when the cooling system is faulted.

Starting

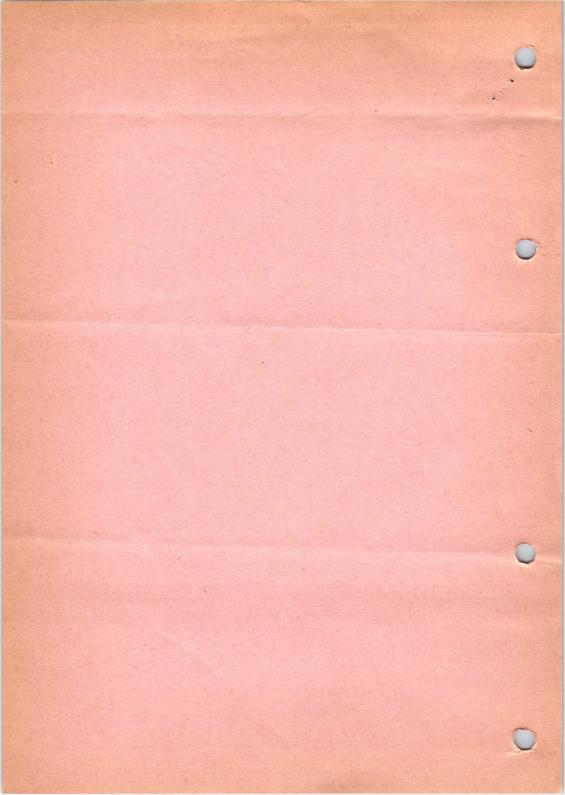
The following sequence of steps must be rigidly observed when starting the tube:


1. Connect up leads:

f = brown
fk = yellow
g1 = green
g2 = blue
g3 = white
h = black

- 2. Switch on air cooling
- 3. Heating (2 min)
- 4. Apply delay line voltage
- 5. Adjust the grid voltages to the specified operating values
- Apply voltages first to grid No. 1, then to grids No. 2 and No. 3 simultaneously
- 7. Adjust power output to its maximum value by way of the grid No. 3 voltage.

The reverse sequence of steps must be observed when taking the tube out of service.



SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE

Printed in Germany

RöK3503E/1.2.62

K1

HOCHLEISTUNGS-WANDERFELDRÖHRE

YH 1040

 $f = 5,9 \dots 6,4 \text{ GHz}$

Art und Verwendung

Unverbindliche Informationsdaten

Wassergekühlte Hochleistungs-Wanderfeldröhre für den Frequenzbereich 5,9... 6,4 GHz mit einer Dauerstrich-Ausgangsleistung von 2 kW und einer Verstärkung von 30 dB. Die Röhre ist periodisch permanentmagnetisch fokussiert und im Magnetsystem austauschbar.

Ein- und Auskopplung der HF-Leistung erfolgt über Hohlleiter.

Länge der Röhre Abmessungen des Magnetsystems Gewicht des Magnetsystems Gewicht der Röhre Hohlleiter Flansch : ca. 1050 mm

: ca. 920 x 250 x 330 mm

: ca. 60 kg : ca. 6,6 kg

: R 70; 34x15 mm (WR 137)DIN 47302

: DR 70 DIN 47303 oder UG 344/U

Heizung

Heizspannung	$U_{\mathbf{f}}$	=	5,58,5	V
Heizstrom	I_f	~	2,5	A
Vorheizzeit	t	<u>></u>	5	min

Heizart: indirekt durch Wechselspannung Kathode: Metall-Kapillar-Kathode (Vorratskathode)

Kenndaten

Dauerstrichbetrieb

Frequenzbereich	f	=	5,96,4	GHz
Sättigungsleistung	N sat	≈	3	kW
Ausgangsleistung	Na~	~	2	kW
Verstärkung	$G(N_{a}=2kW)$	~	30	dB
Reflexionsfaktor	r	<	20	% 1)

Betriebsdaten

Dauerstrichbetrieb

Betriebsfrequenz	f	=	6.3	GHz
Ausgangsleistung	Na~	=	2	kW
Verstärkung	G	*	30	dB
Auffängerspannung	Uc	=	- 517	kV 2)
Verzögerungsleitungs-				
spannung	Uv	*	15	kV
Gitter-2-Spannung	Ug2	≈	3	kV
Gitter-1-Spannung	Ug1	≈	-150	V 3)
Kathodenstrom	Ik	*	1	A

- 1) Am Röhrenein- und -ausgang der kalten Röhre in einem Frequenzbereich von 5,9...6,4 GHz
- 2) Siehe "Allgemeine Betriebshinweise", Seite 3
- 3) Einstellung der Gitter-1-Spannung durch Kathodenwiderstand wird empfohlen

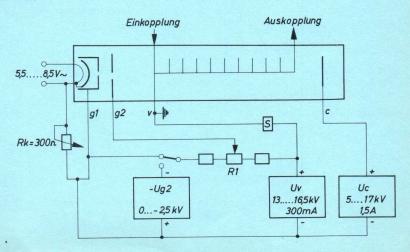
Allgemeine Betriebshinweise

Die Wanderfeldröhre YH 1040 kann nur in Verbindung mit dem zugehörigen Magnetsystem MYH1040 betrieben werden.

Die periodisch permanentmagnetische Fokussierung bedingt ein geringes Streufeld; die Temperaturempfindlichkeit des Magnetsystems ist gering. Zum Auswechseln der Röhre kann der Permanentmagnet aufgeklappt werden.

Alle Spannungen an der Röhre sind auf die Kathode bezogen.

Die Auffängerspannung (U_C) soll im Bereich von 5-17 kV unterbrechungsfrei in Stufen von \leq 500 V einstellbar sein. (Die Röhre ist zunächst für eine Auffängerspannung von 17 kV ausgelegt. Es ist beabsichtigt, durch veränderte Auffängerkonstruktion den Elektronenstrom abzubremsen und die Röhre mit einer niedrigen Auffängerspannung zu betreiben.)


Die Verzögerungsleitungsspannnng ($U_{\rm v}$) soll in einem Bereich von 13-16,5 kV mit einer Einstellgenauigkeit von + 100 V regelbar sein.

Für die Gitter-2-Spannung (Ug2) ist ein Regelbereich von -2,5...4 kV erforderlich Sie soll an einem Spannungsteiler R4 abgegriffen werden.

Die Gitter 1-Spannung ($U_{g\,1}$) kann durch den Kathodenstrom (I_k) an dem Widerstand R_k erzeugt werden.

Heizfaden und Kathode liegen auf einem Potential von 17 kV gegen Masse. Der Heiztransformator ist daher für diese Potentialdifferenz auszulegen.

In die Zuführung zur Verzögerungsleitung ist eine Schutzvorrichtung (S) zu schalten, die beim Überschreiten des zulässigen Grenzwertes für den Verzögerungsleitungsstrom die Betriebsspannungen innerhalb 300 µs kurzschließt und abschaltet.

Ionengetterpumpe

Für die Ionengetterpumpe ist das Netzgerät für die 1 1/s Vacionpumpe zu verwenden (Fa. Varian). Die Betriebsspannungen dürfen erst eingeschaltet werden, wenn ein Druck von $\leq 10^{-7}$ Torr erreicht ist.

Die Spannungen müssen automatisch abgeschaltet werden, wenn ein Druck von 10-6 Torr überschritten wird.

Bei Betriebspausen und Lagerung der Röhre muß die Ionengetterpumpe weiterbetrieben werden.

Kühlung

Zur Abführung der Wärme werden der Auffänger und die Verzögerungsleitung mit destilliertem Wasser gekühlt.
Die Kühlkreise sind wie folgt zu dimensionieren:

Auffänger

: Wassermenge 25 1/min

Druck ca. 3 atu

Eintrittstemperatur 20°C (max. 30°C)

Verzögerungs-

leitung

: Wassermenge 2 1/min

Druck ca. 3 atů

Es sind geeignete Maßnahmen zur Vermeidung von Kondenswasserbildung zu treffen.

Bedingt durch die Spannungsdifferenz zwischen Auffänger und Verzögerungsleitung muß für eine entsprechende Isolation der Wasserzuleitungen gesorgt werden.

Das Kühlluftsystem muß so gesichert sein, daß die Versorgungsspannungen gleichzeitig abgeschaltet werden, wenn die Kühlung ausfällt.

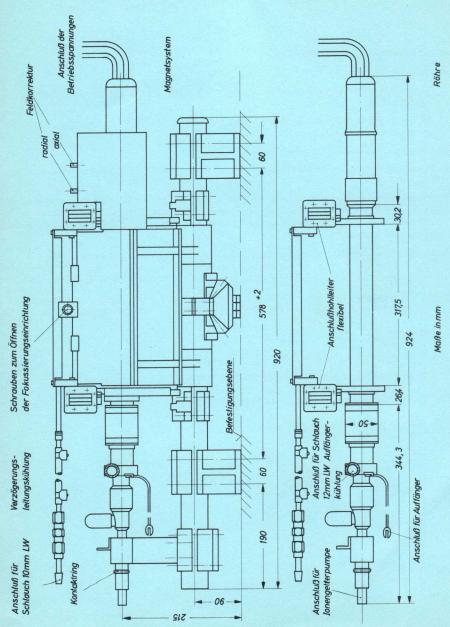
Inbetriebnahme

Zur gefahrlosen Bedienung des Gerätes muß das Magnetsystem einwandfrei geerdet werden. Bei Inbetriebnahme der Röhre ist nachstehende Reihenfolge der Einstellvorgänge unbedingt einzuhalten:

1. Zuleitungen anschließen:

Heizfaden f : braun
Heizfaden, Kathode f, k : gelb
Gitter 1 g1 : grün
Gitter 2 g2 : blau
Verzögerungsleistung)
Masse

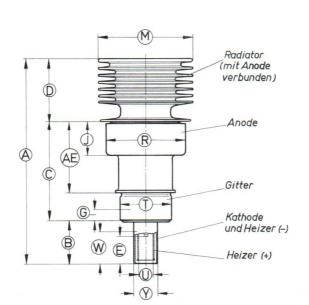
Abgeschirmte Zuleitung für Auffänger an Lötöse des Magnetsystems anschließen.


- 2. Ionengetterpumpe einschalten
- 3. Kühlung einschalten
- 4. Nach Erreichen eines Vakuums von 10-7 Torr Röhre mindestens 5 Minuten vorheizen
- Justierung des Magnetsystems anhand der mit jeder Röhre gelieferten Einstellvorschrift vornehmen.
- 6. Auffängerspannung (Uc) einschalten
- 7. Spannungsteiler R1 so einstellen, daß bei einer Verzögerungsleitungsspannung (U_v) von 15 kV die Gitter-2-Spannung ($U_{g,2}$) 1200 V beträgt.
- 8. Verzögerungsleitungsspannung mit 15 kV einschalten. Dabei ist zu beachten, daß solange die Röhre für einen Betrieb mit nicht abgebremsten Elektronenstrom ausgelegt ist die Auffängerspannung immer größer als die Verzögerungsleitungsspannung sein soll.
- 9. Mittels Spannungsteiler die Gitter-2-Spannung (Ug2) von 1200 auf ca. 3000 V hochregeln und Röhre auf optimale Betriebswerte einstellen. Bis zum Erreichen der vollen Betriebsspannungen darf der Druck 10-6 Torr nicht überschreiten.
- HF-Eingangssignal einschalten und durch Erhöhung der Eingangsleistung die Ausgangsleistung auf den angegebenen Betriebswert einstellen.

Abschalten

- 1. Gitter-2-Spannung abschalten
- 2. Abschalten der übrigen Elektrodenspannungen.

Die Ionengetterpumpe darf nicht ausgeschaltet werden.



Art und Verwendung

Luftgekühlte Leistungs-Scheibentriode in Metall-Glas-Technik für Oszillatoren, Modulatoren, Leistungsmischer, Verstärker und Frequenzvervielfacher bis etwa 3 GHz.

Maßtabelle

Maße in mm

	min.	max.
A		69,85
В	13, 11	13,86
С	32,75	33,75
D	18,70	20,98
E	8,67	
G	3,56	
J	11,66	12,16
M	31,36	32, 14
R	25,94	26,39
T	16,57	16,96
U	5,42	5,66
W	10,16	
Y	7,93	8,33
AE		25,40

Die Exzentrizität der konzentrischen Anschlußteile beträgt maximal 0,5 mm

Gewicht: netto ca. 75 g Abmessungen der Verpackung: brutto ca. 110 g 55 x 55 x 145 mm

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_{f} = 6,3 V 1$$
 $I_{f} = 0,95...1,1 A$
Vorheizzeit $= 1 min 2$

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

		min.	max.	
Cak	=	5,6	7,6	pF
Cgk Cag Cak	=	1,86	2, 16	pF
Cak	=		35	mpF
$C_{\sigma k}$ (U _f = 6, 3 V, I _k = 0)	=		8,8	pF
$C_{gk} (U_f = 6, 3 \text{ V}, I_k = 0)$ $C_{ak} (U_f = 6, 3 \text{ V}, I_k = 0)$	=		45	mpF

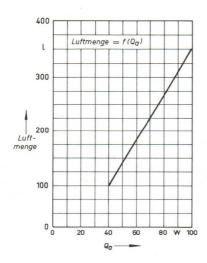
Kenndaten

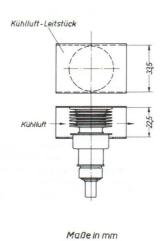
		min.	nom.	max.	
Ua	=		600		V
Rk	=		30		Ω
I_a	=	60	75	95	mA
S	=	20	25	30	mA/V
μ	≈		100		

- 1) Im Interesse einer hohen Lebensdauer ist die Heizspannung dem benötigten Kathodenstrom anzupassen. Außerdem muß die im Laufzeitgebiet auftretende Rückheizung der Kathode nach dem Anschwingen durch eine Reduzierung der Heizspannung ausgeglichen werden. Richtwerte sind der Kurve K3 zu entnehmen. Die Heizspannungsschwankungen sollen ± 5 % nicht überschreiten.
- 2) Zum Vorheizen ist bei Impulsbetrieb im allgemeinen eine Spannung von 6,3 V erforderlich. Bei Dauerstrichbetrieb ist mit dem in der Kurve K3 (f < 0,5 GHz) angegebenen Wert vorzuheizen. Bei Netzausfällen bis maximal 5 sec, ebenso bei Dauerstrichbetrieb mit $U_a \leq 300 \text{ V}$ und $I_k \leq 30 \text{ mA}$ kann die Vorheizzeit entfallen

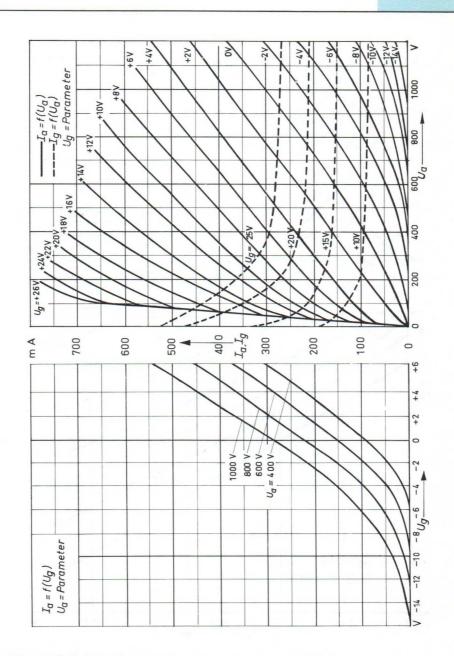
	Grenzdaten (absolute)	Werte für f ≦	2,5 GHz)				
	Ua (unmoduliert) Ua (100 % moduliert) Qa -Ug -Ug sp +Ug sp Ig Qg Ik tkolb	max. max. max. max. max. max. max. max.		1000 600 100 150 400 30 50 2 125 175		V V W V V V mA W mA	
_	Betriebsdaten						
	Dauerstrich-Oszillator						
	f U _f U _a	= = =	2,5 4,5 600		2,5 4,5 800	GHz V V	
	I _a I _g N _a ~	= ≈ =	100 10 12		100 8 18	mA mA W	
	Frequenzverdoppler						
	f Uf Ua -Ug Ne	= = = = = = = = = = = = = = = = = = = =		1/2 5,6 400 15 1,5		GHz V V V	
	^I a Na∼	=		55 4,1		mA W	

Die Röhren erfüllen die Lebensdauerprüfungen nach MIL-E-1/546C. Die Lebensdauer der Röhre ist von der Belastung, insbesondere von der Röhrentemperatur und der Anodenspannung abhängig. Es empfiehlt sich daher, die jeweils geforderte Leistung der Röhre mit möglichst niedriger Anodenspannung zu erreichen und die Röhrentemperatur durch ausreichende Kühlung möglichst niedrig zu halten.

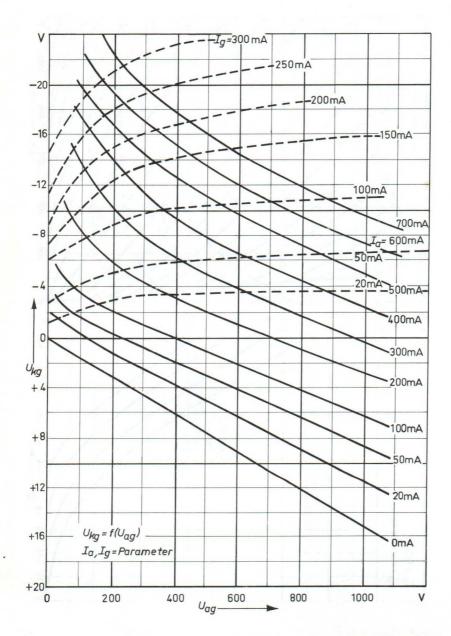

Allgemeine Hinweise

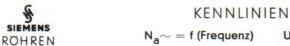

Einbau

Die Röhre wird zweckmäßigerweise durch ausreichend nachgiebige, federnde Kontaktkränze in den konzentrischen Schwingkreisen gehalten. Die Lage der Röhre ist beliebig.

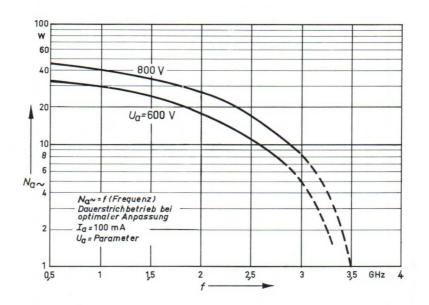

Kühlung

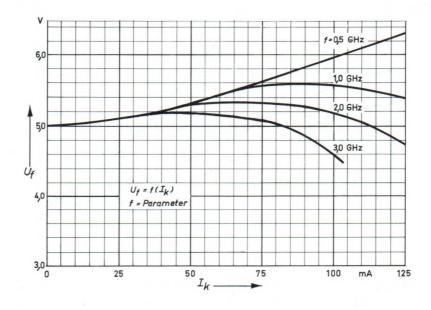
Die zugelassene Maximaltemperatur an den Außenflächen der Röhre beträgt 175 °C. Zur Abführung der Wärme muß die Röhre mit Luft gekühlt werden. Bei maximaler Anodenverlustleistung und Verwendung eines Luftkanals der angegebenen Abmessungen wird zur Kühlung des Radiators bei einer Eintrittstemperatur von 25 °C ein Luftstrom von etwa 350 1/min benötigt. Gegebenenfalls ist es erforderlich auch die übrigen Flächen mit einem schwachen Luftstrom zu kühlen. Da die konstruktive Gestaltung der Belüftung dem jeweiligen Geräteaufbau angepaßt werden muß, ist eine Lieferung als Zubehör zur Röhre nicht vorgesehen. Für das Leitstück zur Kühlung des Radiators werden die in der Abbildung angegebenen Abmessungen empfohlen.

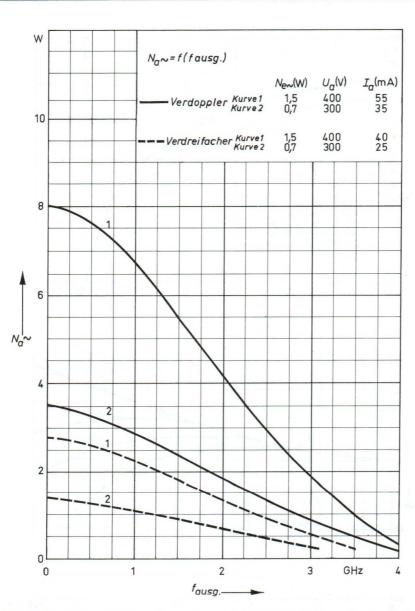




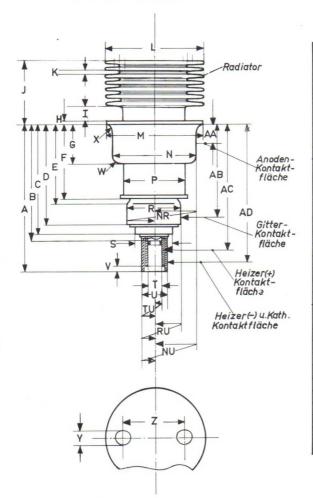
KENNLINIENFELD


 $U_{kg} = f(U_{ag})$





$N_a \sim = f$ (Frequenz) $U_f = f(I_k)$



'S I E M E N S & H A L S K E A K T I E N G E S E L L S C H A F T WERNERWERK FOR BAUELEMENTE

Art und Verwendung

Luftgekühlte Leistungs-Scheibentriode in Metall-Keramik-Technik für Oszillatoren, Modulatoren, Leistungsmischer, Verstärker und Frequenzvervielfacher bis etwa 3,5 GHz.

Gewicht: netto ca. 70 g Abmessungen der Verpackung:

Maßtabelle Maße in mm

	min.	nom.	max.	
A	46,10		47,63	
В			38,96	
C			37,46	
D	32,74		33,95	
E			28,83	
F			23,75	1
G	11,73		12,12	
Н		0,79		3
Ι	3,17		4,7]
J	19,31		20,98	
K	0,41		1,17	
L	31,34		32,11	1
M	29,90		30,35	
N	26,01		26,39	
P			20,12]
R	16,59		16,97	1
S			11,94	
T	5,41		5,66	1
U	7,95		8,33]
V	0,66		2,18]
W		2,39		1
X			0,89	1
Y		3,18		1
Z		19,05		Ţ
AA	0,89		9,17	
AB	30,10		32,13	1
AC	38,96		43,89	
AD	37,46		46,10	1
NR			0,5	1
NÜ			0,5	1
RU			0,5	1
TU			0,3	1

- 1) Löcher f. Ausziehvorr.
- 2) Für Anschl. der Kontaktf.
- 3) Mittenabweichung

brutto ca. 105 g 55 x 55 x 145 mm

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

Uf	=	6,0	V 1)
If	=	0,91,05	A
Vorheizzeit	<u>≥</u>	1	min 2)

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

		min.	nom.	max.	
Cgk	=	5,6	6,3	7,0	pF
C _{gk} C _{ag}	=	1,95	2,05	2, 15	pF
$C_{\mathbf{ak}}$	=			35	mpF
C_{gk} ($U_f = 6,0 \text{ V}, I_k = 0$)	=		7,5		pF
$C_{gk} (U_f = 6, 0 \text{ V}, I_k = 0)$ $C_{ak} (U_f = 6, 0 \text{ V}, I_k = 0)$	=			45	mpF

Kenndaten

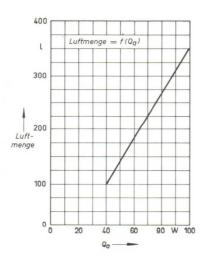
		min.	nom.	max.	
U_a	=		600		V
Rk	=		30		Ω
т.	=	60	75	95	mA
¹a S	=	20	25	30	mA/V
ш	≈		100		

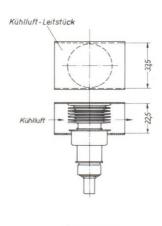
- 1) Im Interesse einer hohen Lebensdauer ist die Heizspannung dem benötigten Kathodenstrom anzupassen Außerdem muß die im Laufzeitgebiet auftretende Rückheizung der Kathode nach dem Anschwingen durch eine Reduzierung der Heizspannung ausgeglichen werden. Richtwerte sind der Kurve K3 zu entnehmen. Die Heizspannungsschwankungen sollen ± 5 % nicht überschreiten.
- 2) Zum Vorheizen ist bei Impulsbetrieb im allgemeinen eine Spannung von 6,0 V erforderlich, Bei Dauerstrichbetrieb ist mit dem in der Kurve K3 (f < 0,5 GHz) angegebenen Wert vorzuheizen. Bei Netzausfällen bis maximal 5 sec, ebenso bei Dauerstrichbetrieb mit $U_a \leq 300 \text{ V}$ und $I_k \leq 30 \text{ mA}$ kann die Vorheizzeit entfallen.

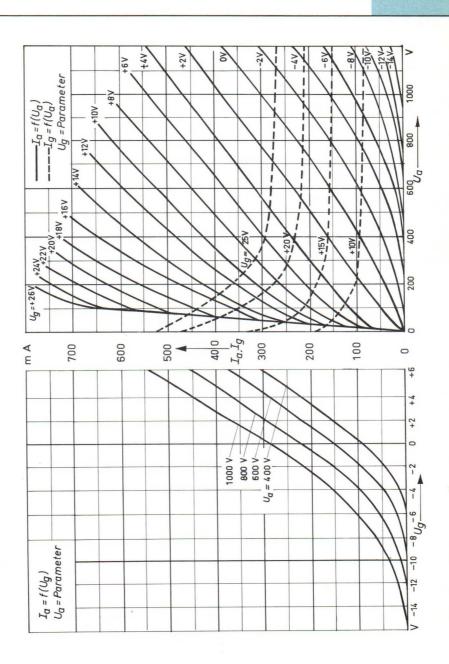
Grenzdaten (absolute	Werte für f	€ 3,0 GHz)		
Ua (unmoduliert)	max.	10	00	v
Ua (100 % moduliert)	max.	6	00	V
Qa	max.	1	00	W
-Ug -Ugsp	max.	1	50	V
-Ug sp	max.	4	00	V
+Ugsp	max.		30	V
I g Q g I k	max.		50	mA
\mathcal{Q}_{g}	max.		2	W
Ik	max.	1	25	mA
tkolb	max.	2	50	°C
Dauerstrich-Oszillator	_	2,5	2,5	GHz
Uf	=	4,5	4.5	V
Ua	=	600	800	V
$I_{\mathbf{a}}$	=	100	100	mA
Ig	=	10	8	mA
I _g N _a ∼	=	16	24	W
Frequenzverdoppler				
f	=	1	/2	GHz
Uf	=		, 6	V
Ua	=		00	V
-U _a	=		15	V
Nen	=	1	, 5	W
Ia	=		55	mA
N ₂ N	=	5	. 2	W

Die Röhren erfüllen die Lebensdauerprüfungen nach MIL-E-1/1107. Die Lebensdauer der Röhre ist von der Belastung, insbesondere von der Röhrentemperatur und der Anodenspannung abhängig. Es empfiehlt sich daher, die jeweils geforderte Leistung der Röhre mit möglichst niedriger Anodenspannung einzustellen und die Röhrentemperatur durch ausreichende Kühlung möglichst niedrig zu halten.

Allgemeine Hinweise

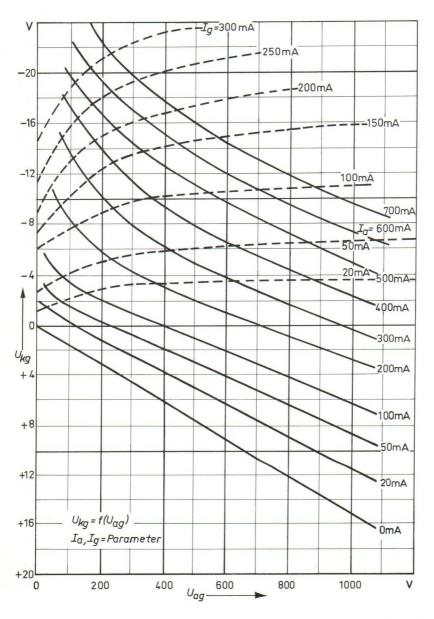

Durch die Anwendung der Metall-Keramik-Technik bei der 2C 39 BA ergeben sich gegenüber der 2C 39 A größere mechanische Festigkeit, kleinere mechanische Toleranzen, bessere Wärmeleitfähigkeit, geringere Frequenzstreuung und höhere Leistung. Man verwendet diese Röhre vorteilhaft überall dort, wo die Leistung der 2C 39 A nicht mehr ausreicht und höhere Temperaturen auftreten.

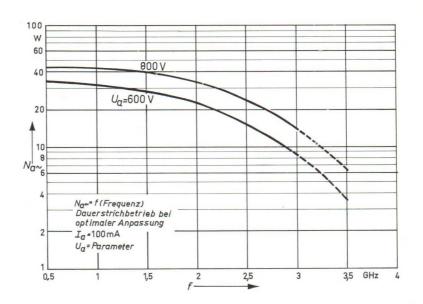

Einbau

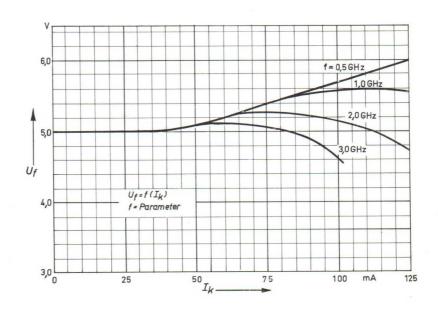

Die Röhre wird zweckmäßigerweise durch ausreichend nachgiebige, federnde Kontaktkränze in den konzentrischen Schwingkreisen gehalten. Die Lage der Röhre ist beliebig.

Kühlung

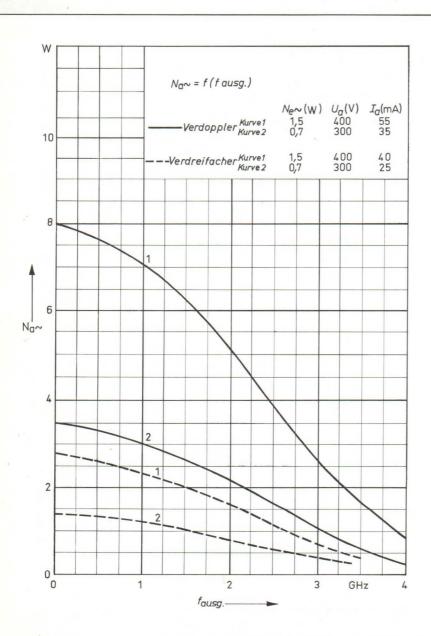
Die zugelassene Maximaltemperatur an den Außenflächen der Röhre beträgt 250 °C. Zur Abführung der Wärme muß die Röhre mit Luft gekühlt werden. Bei maximaler Anodenverlustleistung und Verwendung eines Luftkanals der angegebenen Abmessungen wird zur Kühlung des Radiators bei einer Eintrittstemperatur von 25 °C ein Luftstrom von etwa 350 1/min benötigt. Gegebenenfalls ist es erforderlich auch die übrigen Flächen mit einem schwachen Luftstrom zu kühlen. Da die konstruktive Gestaltung der Belüftung dem jeweiligen Geräteaufbau angepaßt werden muß, ist eine Lieferung als Zubehör zur Röhre nicht vorgesehen. Für das Leitstück zur Kühlung des Radiators werden in der Abbildung angegebenen Abmessungen empfohlen.



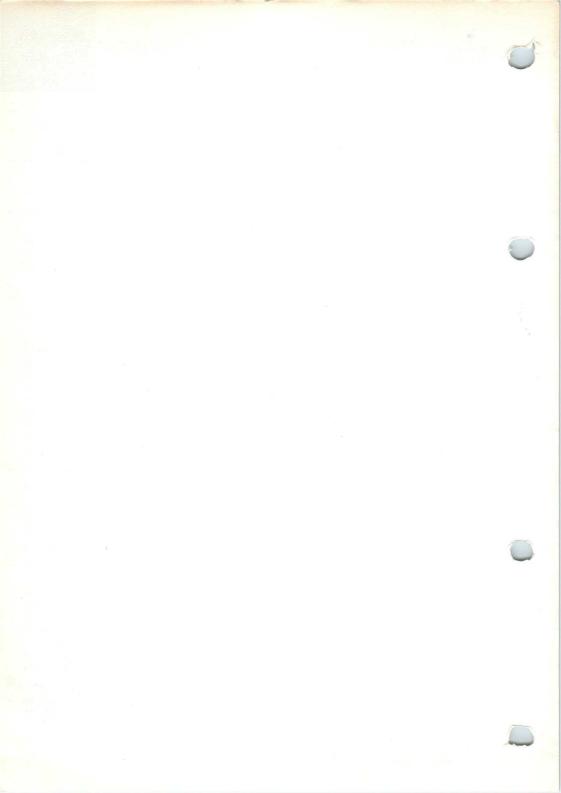

KENNLINIENFELD


SIEMENS RÖHREN

 $U_{kg} = f(U_{ag})$


 $N_a \sim = f \text{ (Frequenz)} \qquad U_f = f \text{ (I}_k)$

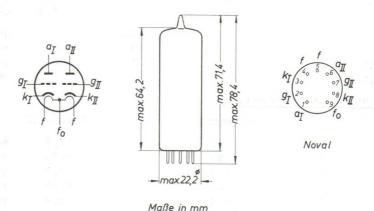
KENNLINIEN $N_a \sim = f (f_{ausg.})$



SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE

Spezialverstärkerröhren

Typ	Heizur	ng		Kenno	laten		Gr	enzda	ten
	U _f (V)	I _f (A)	U _a (V)	Ug2 Ia (V) (mA	S) (mA/V)	μ	Ua (V)	Qa (W)	I _k (mA
Doppeldio	le								
E 91 AA	6,3	0,3					ā		10
Trioden -									0.151
E 86 C	6,3	0,165	185	12	14	68	250	2,4	20
E 88 C	6,3	0,155	160	12,5		65	200	2,4	15
EC 1010	6,3	0,135	110	12,5	,	65	125	1,5	15
7586	6,3	0,140	75	10,5		33	110	1	20
7895	6,3	0,135	110	7	9,4	64	125	1	15
Doppeltric									
E 80 CC	6,3/12,6	0.6/0.3	250	6	2,7	27	300	2	12
E 81 CC		0,3/0,15	250	10	5,5	60	330	2,8	18
E 82CC		0,3/0,15	250	10,5		17	330	3	22
E83CC		0,3/0,15	250	1, 2		100	330	1,2	9
E 88 CC	6,3	0,3	100	15	12,5	33	220	1,5	20
E90CC	6,3	0,4	100	8,5		27	300	2	15
E 188CC	6,3	0,335	100	15	12,5	33	250	1,65	22
E 283 CC	6,3	0,33	250	1,2	5 1,6	100	330	1,2	9
E 288 CC	6,3	0,50	100	30	18	25	250	3	40
5751	6,3/12,6	0,35/0,175	250	1	1,2	70	330	0,8	6
5814 A	6,3/12,6	0,35/0,175	250	10,5	2,2	17	330	3	22
6463	6,3/12,6	0,6/0,3	250	14,5	5,2	20	300	4	28
Tetrode -									.):
7587	6,3	0,15	125	50 10	10,6		250	2,2	20
Pentoden	-			-					
E 180 F	6,3	0,3	190	160 13	16,5		210	3	25
E 280 F	6,3	0,315	190	160 20	26		220	4	30
5654	6,3	0,175	120	120 7,5	5		200	1,65	20
Leistungs	pentoden -								
E 80 L	6,3	0,75	200	200 30	9		300	8	50
E 84 L	6,3	0,76	250	250 48	11,3		450	13,5	75
E 130 L	6,3	1,7	275	180 100	27,5		900	27,5	300
E 235 L	6,3	1,2	100	100 100	14		400	12	220
E 236 L	6,3	1,2	100	100 100	14		400		220
E 282 F	6,3	0,315	125	125 35	26		200	4,2	50
E810 F	6,3	0,340	135	165 35	50		250	5	50
F2a11	6,3	2,0	250	250 100	18		600	30	140
Triode-Pe	entode								
E80CF	6,3	0,33	100	14	5	18	275	1,75	
			170	170 10	6,2		275	2,15	18



Art und Verwendung

Doppeltriode mit getrennten Kathoden. Besonders geeignet für NF- und Regelverstärker.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit ($p \approx 1,5^{\circ}/oo$ je 1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit

Sockel: 9 Stift- Noval

Gewicht: ca. 16 g

Kolben: DIN 41539, Form A, Nenngröße 62

Einbau: beliebig

Heizung

$$U_f = 6,3$$
 bzw 12,6 V 1)
 $I_f = 600 \pm 30$ bzw 300 ± 15 mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallel- oder Serienspeisung

Kapazitäten

mit äußerer Abschirmung 22,2 mm Ø

		System I		System II	
Ce	=	2,6 ± 0,7		2,6 ± 0,7	pF
Ca	=	$3,5 \pm 0,7$		$3,0 \pm 0,7$	pF
Cag	=	$3,0 \pm 0,6$		$3,0 \pm 0,6$	pF
Cgf	<	0,23		0,23	pF
Ckf	= =	4,8		4,8	pF
Caa	=		1,3 ± 0,4		pF
Cgg	<		13		mpF
CalgII	<		0,1		pF
Callgl	<		65		mpF

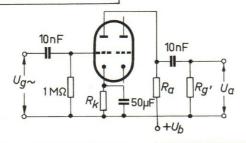
ohne äußere Abschirmung

		System I		System II	
Ce	= -	2,4		2,4	pF
Ca	=	0,45		0,55	pF
Cag	=	3,1		3,0	pF
Caf	<	0,23		0,23	pF
C gf C kf) ₁ = -	4,8		4,8	pF
Caa	= ,		1,45		pF
Cgg	<		13		mpF
CalgII	<		0,1		pF
CallgI	<		65		mpF

1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung bei Parallelspeisung nicht mehr als ±5% (absolute Grenzen) und der Heizstrom bei Serienspeisung nicht mehr als ± 1,5% (absolute Grenzen) um den Sollwert schwanken.

Kenndaten

Ua	=		250		V
R _k	=		920		Ω
Ia	=	5,4	6,0	6,6	mA
I _a I _{aI} - I _{aII} S	≦		3,0		mA 1)
S	=	2, 2	2,7	3,2	mA/V
μ	=		27		
Ri	=	7	10		$k\Omega$
$-U_g(+I_g = 0,3\mu A)$	\leq		1,3		
$I_a (-U_g = 17 V)$	≦		15		μA 2)


(absolute Werte) Grenzdaten

Uao	max.	600	V	
Ua	max.	300	V	2)
Qa	max.	2,0	W	3)
-Ug	max.	200	V	
Ig	max.	0,3	mA	
Igsp	max.	30	mA	
Qg	max.	100	mW	
Igsp Qg Rg	max.	1,0	$M\Omega$	
I_k	max.	12	mA	
Iksp	max.	30	mA	4)
Iksp	max.	150	mA	5)
Ufk	max.	120	V	
Rfk	max.	100	kΩ	
tkolb	max.	170	°C	

- 1) Symmetrie der Systeme bei R_k = 0 Ω , $-U_{gI}$ =- U_{gII} =5,5V
- 2) $U_{ba}=250V$, $R_a=1M\Omega$,
- 3) Eine Abschirmung darf nur bei Q_{aI}+Q_{aII}≤2,5W verwendet wer-
- 4) $I_{gsp} \le 2mA$, $V_T \le 0$, 2, $t_{av} \le 2ms$ 5) $I_{gsp} \le 30mA$, $V_T \le 0$,005, $t_{av} \le 2ms$

Betriebsdaten als NF-Verstärker

	Ub	Ia	Ua~ / Ug~	Ua~1)	k 2)
	V	mA		V	%
	Ra = 4	7 kΩ, R _g =	1 MΩ, Rg! =	150 kΩ, I	$R_k = 1, 2 k\Omega$
	200	1,86	18,5	20	3,3
	250	2,45	18,5	30	3,8
	300	3,15	18,5	40	4,0
4	350	3,80	18,5	50	4,1
44	400	4,40	18,5	60	4,2
-	$R_a = 10$	0 kΩ, R _g =	1 MΩ, R _g , =	330 kΩ,	$R_k = 2, 2 k\Omega$
	200	1,00	20	22	3,1
	250	1,30	20	32	3,4
	300	1,65	20	42	3,5
	350	1,95	20	52	3,6
-	400	2,30	20	63	3,7
	$R_a = 2$	20 kΩ, R _g =	1 MΩ, Rg ¹	= $680 \text{ k}\Omega$,	$R_k = 3,9 k\Omega$
	200	0,52	21	19	2,3
-	250	0,67	21	29	2,6
	300	0,83	21	38	3,0
	350	0,99	21	47	3,1
	400	1,15	21	58	3,2

- 1) Bei Aussteuerung bis zum Gitterstromeinsatz (+I $_g$ = 0,3 $\mu A)$ 2) Der Klirrfaktor ist der Ausgangsspannung etwa proportional

E 80 CC 6085

Besondere Angaben

Negativer Gitterstrom

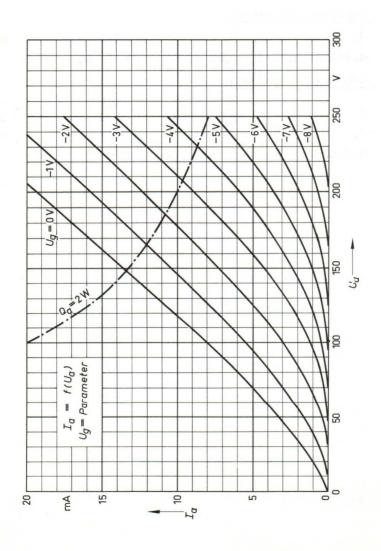
-I_g

0,5

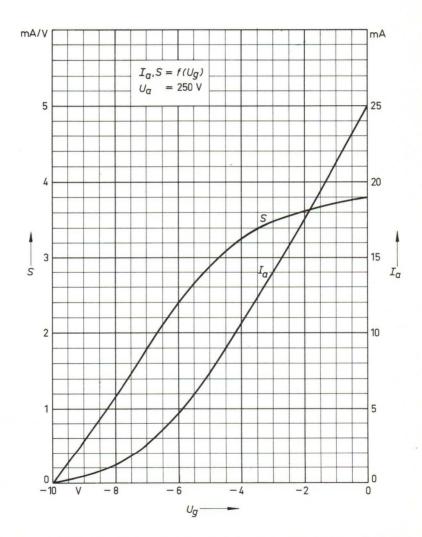
μΑ

Meßeinstellung: U_a = 250 V, R_g = 100 k Ω , R_k = 920 Ω

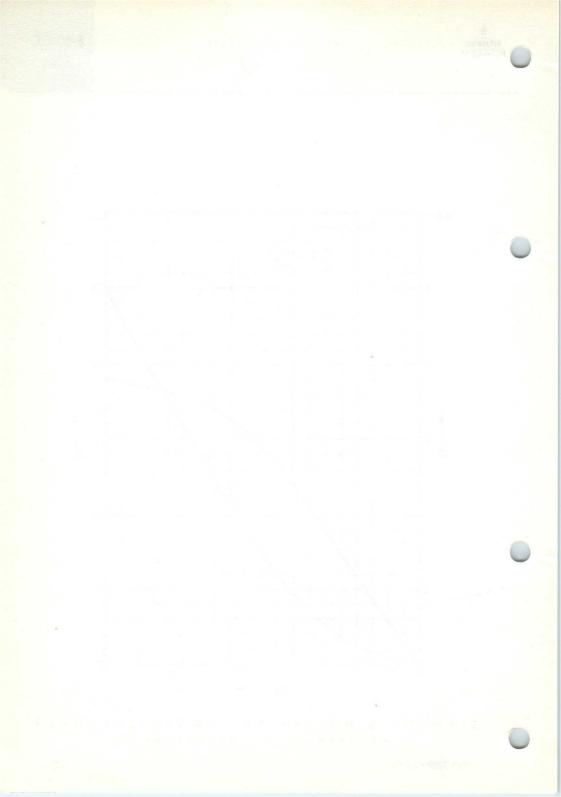
Ende der Lebensdauer


I_a S -I_g VI VII VI

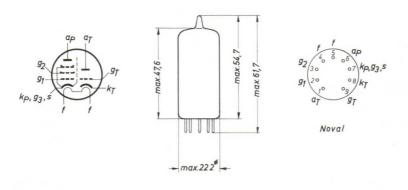
4, 3 1, 8


mA mA/V μΑ

Meßeinstellung : U_a = 250 V, R_k = 920 Ω



SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FUR BAUELEMENTE


Art und Verwendung

Triode- Pentode mit getrennten Kathoden. Triode besonders geeignet für Oszillatoren bis 300 MHz, Multivibrator- und Sperrschwingerschaltungen. Pentode besonders geeignet für Mischstufen, HF- und NF- Verstärker.

Die Röhre ist für intermittierenden Betrieb verwendbar. Spezialausführung der ECF 80.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit (p \approx 1,5 °/oo je 1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit Heizfaden-Schaltfestigkeit

Maße in mm

Sockel: Noval

Kolben: DIN 41539, Form A, Nenngröße 45

Gewicht: ca. 17 g Einbau: beliebig

Heizung

$$U_f = 6,3$$

 $I_f \approx 330$ mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

T	r	i	0	d	e
---	---	---	---	---	---

Ce	=	2,5 ± 0,3	pF
Ca	=	$1,5\pm0,3$	pF
Cag	=	$1,5 \pm 0,3$	pF
Cgf	<	220	mpF

Pentode

Ce	=	5,6 ± 0,4	pF
C_a	=	$3,4\pm0,4$	pF
Cag1	<	25	mpF
Cg1f	<	160	mpF

Triode - Pentode

C _{aTaP} <	70	mpF
CaTelP <	160	mpF
C _{aTg1P} < C _{aPgT} <	20	mpF

1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.

Kenndaten

Triode		min.	nom.	max.	
U _{ba}	=		100		V
$R_{\mathbf{k}}$	=		120		Ω
I_a	=	10	14	18	mA
S	=	4	5	6	mA/V
μ	≈		18		
-I _g	< =			0,5	μA
Pentode		min.	nom.	max.	
U _{ba}	=		170		V
U_{bg2}	=		170		V
$R_{\mathbf{k}}$	=		155		Ω
I_a	=	7,5	10	12,5	mA
I_{g2}	=	1,55	2,8	4,05	mA
S	=	5,2	6,2	7,2	mA/V
µg2g1	≈		40		
R_i	=	0,26	0,4		$M\Omega$
-Ig1	\leq			0,5	μA

Grenzdaten	(absolute Wes	rte)	
Triode			
Uao	max.	550	V
Ua	max.	275	V
O _a	max.	1,75	W
-Ug	max.	100	V
+Ugsp	max.	30	V 1)
Qg	max.	0,1	W
Rg	max.	0,5	$\mathrm{M}\Omega$
Ik	max.	18	mA
Iksp	max.	100	mA 1)
Ufk	max.	100	V
Pentode			
Uao	max.	550	V
Ua	max.	275	V
Qa	max.	2,15	W
Ug2o	max.	550	V
$U_{\alpha 2}$ (I _k >10 m.		200	V
$U_{g2} (I_k > 10 \text{ m})$ $U_{g2} (I_k < 10 \text{ m})$ $Q_{g2} (Q_a > 1, 2)$	A) max.	225	V
$Q_{\alpha 2}^{g2}(Q_{a}>1, 2)$	W) max.	0,7	W
$Q_{g2}^{g2} (Q_{a<1}, 2)$	W) max.	0,8	W
-Ūg1	max.	100	V
Qg1	max.	0,1	W
R _a 1	max.	0,5	$M\Omega^{2}$
Γσ1	max.	1,0	$_{ m M\Omega}$ 3)
¹k	max.	18	mA
Ufk	max.	100	V
tkolb	max.	170	°C

- 1) Impulsdauer max. 4 % einer Periode, nicht länger als 0,8 ms.
- 2) Mit fester Gittervorspannung.
- 3) Mit automatischer Gittervorspannung.

Besondere Angaben

Heizfaden-Schaltfestigkeit

Die Röhre verträgt mindestens 2000maliges Ein- und Ausschalten (1 Minute ein-, 1 Minute ausgeschaltet).

Meßeinstellung:

$$U_f = 7,6 \text{ V}, U_{fk} = 125 \text{ V}$$

Ende der Lebensdauer

Triode

I _a S	<u>≤</u>	8,4	mA
S	≦	3,5	mA/V
-Ig	<u>></u>	1,0	μΑ

Pentode

Ia	<u><</u>	6,0	mA
Ta S	\leq	4,3	mA/V
-Ig1	<u></u>	1,0	μΑ

Meßeinstellung:

siehe Kenndaten

Hinweis

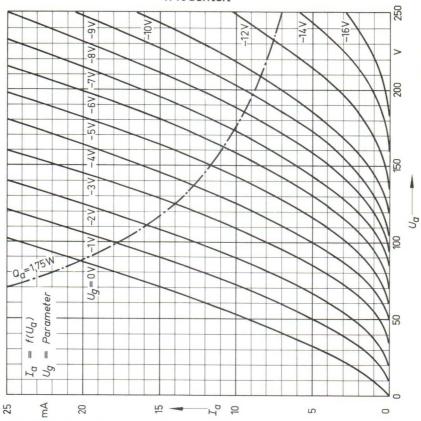
Bei Betrieb als NF- Verstärker darf der Pentodenteil der E 80 CF ohne spezielle Maßnahmen gegen Mikrophonie in Schaltungen verwendet werden, die für eine Eingangsspannung $\stackrel{>}{=}$ 50 mV eine Ausgangsleistung von 50 mW ergeben.

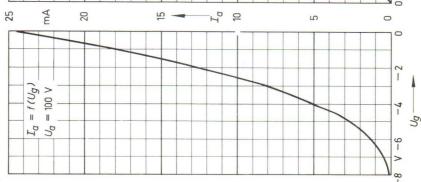
Es wird empfohlen, die E 80 CF als Oszillator in einer Colpitts-Schaltung und nicht in einer Hartley-Schaltung zu verwenden.

Betriebsdaten

Pentode als HF- Verstärker

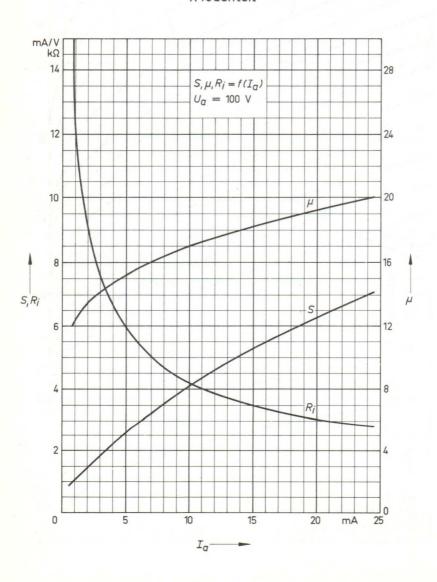
U_{ba}	=	170	V
U _{bg2}	=	170	V
$R_{\mathbf{k}}$	=	155	Ω
I_a	≈	10	mA
I _{g2} S	≈	2,8	mA
S	=	6,2	mA/V
µg2g1	≈	40	
R _i	=	0,4	$M\Omega$
$R_{el}(f = 50 \text{ MHz})$	=	10	$k\Omega$
Räq	=	1,5	$k\Omega$

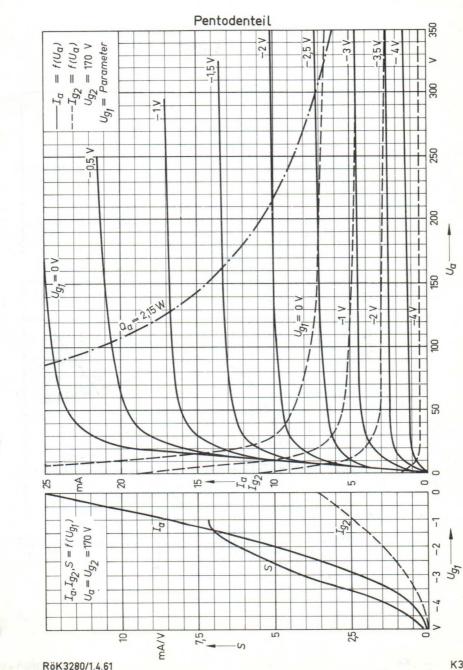

Pentode als Mischröhre


U _{ba}	=	170	V
U_{bg2}	=	170	V
R _{g1}	=	100	$k\Omega$
R_k	=	330	Ω
Ia	=	8,0	mA
I_{g2}	=	2,5	mA
I _{g2} I _{g1}	=	12	μΑ
Uosz	=	3,5	V
Sc	=	2,4	mA/V
Ric	≈	0,5	$M\Omega$

$$I_a = f(U_g)$$
 $I_a = f(U_a)$

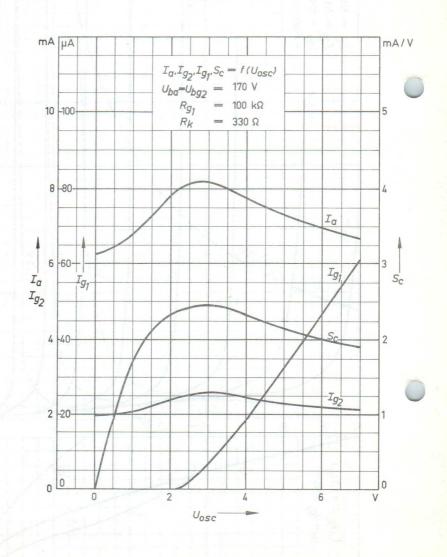
$$I_a = f(U_a)$$



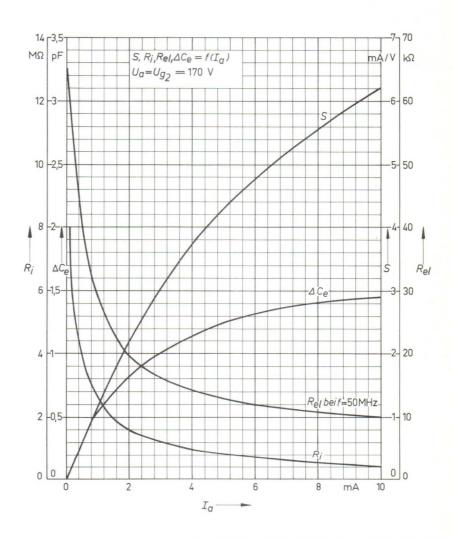


 $\mathsf{S},\,\mathsf{u},\,\mathsf{R}_{\mathsf{i}}\,=\,\mathsf{f}\,\,(\mathsf{I}_{\mathsf{a}})$

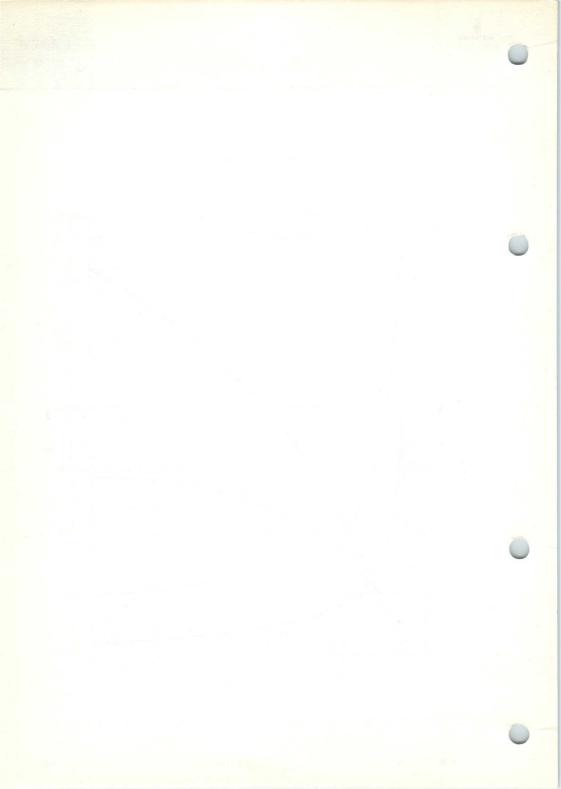
Triodenteil



MISCHKENNLINIEN $I_{a'}I_{g_{2'}}I_{g_{1'}}S_{c} = f(U_{osc})$



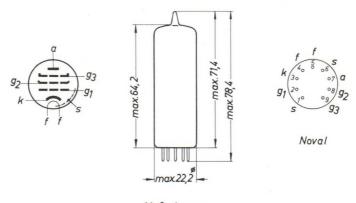
Pentodenteil



K5

Pentodenteil

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE



Art und Verwendung

Endpentode, besonders geeignet für NF-Verstärker in Einund Gegentaktschaltungen.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit (p \approx 1,5 °/oo je 1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit

Maße in mm

Sockel: Noval

Kolben: DIN 41539, Form A, Nenngröße 62

Gewicht: ca. 14g

Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_{f} = 6,3 V^{1}$$
 $I_{f} = 750 \pm 40 mA$

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallel- oder Serienspeisung

Kapazitäten

Kenndaten

		min.	nom.	max.	
Ua	=		200		V
	=		0		V
U _{g3} U _{g2}	=		200		V
Rk	=		130		Ω
Ia	.=	26,5	30	33,5	mA
I _g 2	=	2,7	4,1	5,5	mA
I _a I _{g2} S	=	7,4	9,0	10,6	mA/V
	=		21,5		
μ _g 2g1 R _i	=		90		$k\Omega$
$-U_{\sigma 1}$ (I _a =0, 2mA)	=			14	V
$-U_{g1}$ (I _a =0, 2mA) - U_{g1} (+I _{g1} =0, 3 μ A)	=			1,3	V

1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung bei Parallelspeisung nicht mehr als ± 5 % (absolute Grenzen) und der Heizstrom bei Serienspeisung nicht mehr als ± 1,5 % (absolute Grenzen) um den Sollwert schwanken.

GRENZDATEN BESONDERE ANGABEN

Grenzdaten	(absolute We	erte)	
Uao Ua Qa	max. max.	600 300 8,0	V V W
$-\overset{\circ}{\mathrm{U}}_{\mathrm{g}3}$ $\overset{\circ}{\mathrm{U}}_{\mathrm{g}2o}$ $\overset{\circ}{\mathrm{U}}_{\mathrm{g}2}$ $\overset{\circ}{\mathrm{Q}}_{\mathrm{g}2}$	max. max. max. max.	100 600 300 2,6	V V V W
Qg2 -Ug1 Qg1 Rg1	max. max. max.	100 0,1 1,0	Ψ MΩ 1)
I _k U _{fk} R _{fk} ^t kolb	max. max. max. max.	50 120 20 225	mA V kΩ °C
Besondere Ang	aben		

]

Negativer Gitterstrom

-Ig1 0,5 μA

Meßeinstellung: siehe Kenndaten

Isolationswiderstände

 R_{is} (a/alle übrigen Elektroden bei U_{is} = 300 V) $\stackrel{>}{=}$ R_{is} (g/alle übrigen Elektroden bei U_{is} = 300 V) $\stackrel{>}{=}$ 50 $M\Omega$ 50 Ω M R_{is} (fk + bei U_{is} = 120 V) 7 $M\Omega$

gemessen bei Uf = 6,3 V

Brumm

Uhr \leq 0,25 mV

 U_a = 200 V, U_{g3} = 0 V, U_{g2} = 200 V, R_a = 1 k Ω , R_k = 130 Ω , C_k = 1000 μ F, völlig geschirmte Meßeinstellung:

Röhrenfassung, Mittensymmetrierung des Heiz-

fadens.

1) Mit automatischer Gittervorspannung.

BESONDERE ANGABEN BETRIEBSDATEN

Besondere Angaben

Ende der Lebensdauer

Ia	≦	21	mA
I _{g2} S	≦	2,0	mA
S	≦	6,0	mA/V
-Ig1	≧	1,0	μA

Meßeinstellung: siehe Kenndaten

$$R_{is}$$
 (a/alle übrigen Elektroden bei U_{is} = 300 V) $\stackrel{\leq}{=}$ 10 $M\Omega$ R_{is} (g/alle übrigen Elektroden bei U_{is} = 300 V) $\stackrel{\leq}{=}$ 10 $M\Omega$ R_{is} (fk + bei U_{is} = 120 V) $\stackrel{\leq}{=}$ 6 $M\Omega$

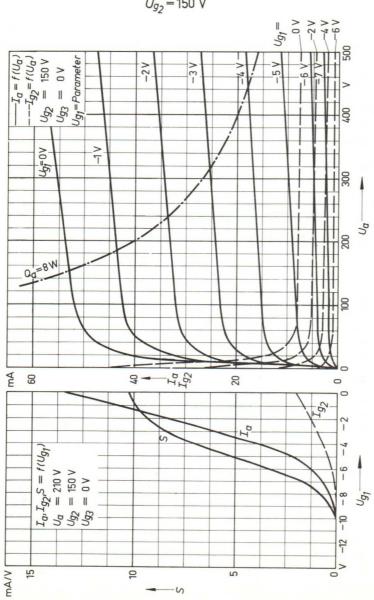
gemessen bei $U_f = 6,3 \text{ V}$

Betriebsdaten als Leistungsverstärker

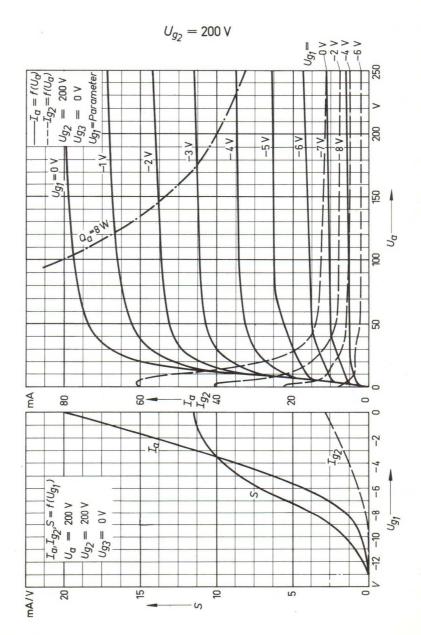
Eintakt A-Betrieb

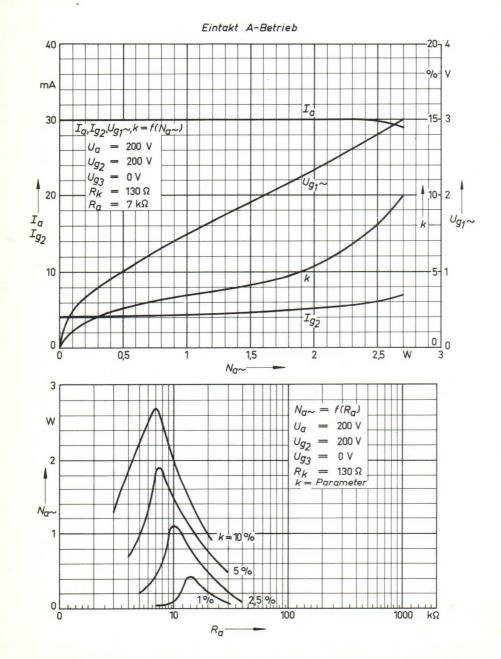
Ua	=	200	250	V
Ug3	=	0	0	V
U _{bg2}	=	_	257	V
U _{g2}	, =	200	-	V
Ra	=	7	10	$k\Omega$
R _{g2}	=	-	1	$k\Omega$
$R_{\mathbf{k}}$	=	130	270	Ω
Ug1~	=	3,0	3,0	V
Ia	=	30	24	mA
I _{g2}	=	4,1	3,3	mA
$N_a^{I_{g2}}$	=	2,7	2,8	W
k	=	10	10	%

Betriebsdaten als Leistungsverstärker

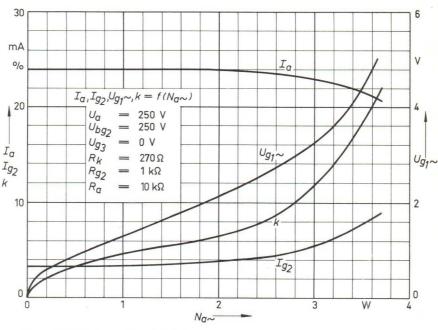

Gegentakt AB-Betrieb

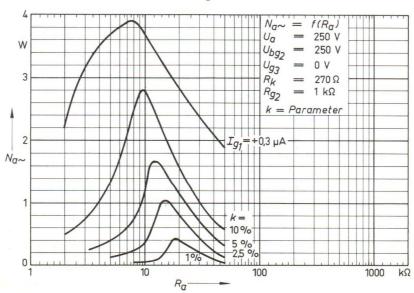
Ua	=		200		V
U ₀₃	=		0		V
U _{g3} U _{g2}	=		200		V
Raa	=		9		$k\Omega$
Rk	=		130		Ω
$\rm U_{g1} \sim$	=	0	0,31	5,2	V
I_a I_{g2} $N_a \sim$	=	2x20,6	2x20,6	2x24,6	mA
Ig2	=	2x2,8	2x2,8	2x4,9	mA
Na~	=	-	0,05	5,7	W
k	=	-	-	3,0	%
Ua	=		250		V
Ug3	=		0		V
Ug2	=		250		V
Raa	=		9		$k\Omega$
Rk	=		150		Ω
Ug1~	=	0	0,32	7,8	V
	=	2x23,5	2x23,5	2x29,5	mA
$I_{\alpha 2}$	=	2x3,2	2x3,2	2x6,6	mA
$^{\mathrm{I}_{\mathbf{a}}}_{^{\mathrm{I}_{\mathbf{g}}2}}$	=	_	0,05	9,0	W
k	=	-	_	4,5	%

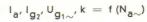

KENNLINIENFELDER $I_{a'}I_{g_2'}S = f(U_{g_1})$ $I_{a'}I_{g_2} = f(U_a)$

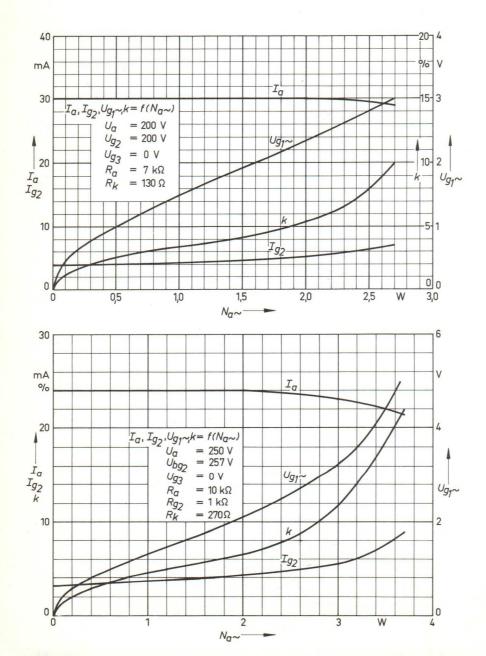

 $I_{a}, I_{g_{2}}, S = f(U_{g_{1}})$ $I_{a}, I_{g_{2}} = f(U_{a})$

AUSSTEUERKENNLINIEN

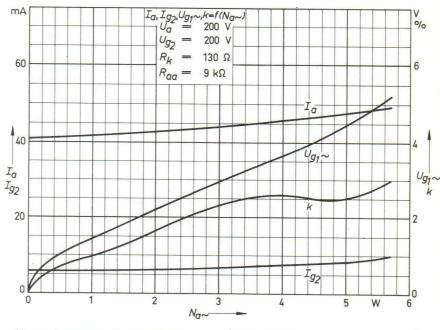


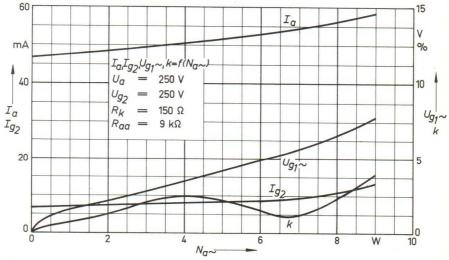

$$I_{a'}I_{g_2'}U_{g_1\sim}$$
, $k=f(N_{a\sim})$ $N_{a\sim}=f(R_a)$




 $I_{a}, I_{g_2}, U_{g_{1\sim}}, k = f(N_{a\sim})$ $N_{a\sim} = f(R_a)$

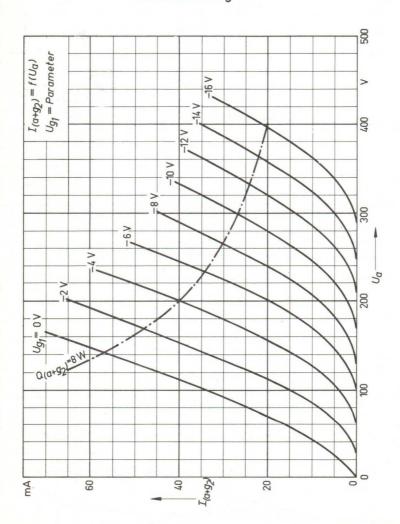
Eintakt A-Betrieb





AUSSTEUERKENNLINIEN

 $I_{a'}I_{g_{2'}}U_{g_{1\sim}}, k = f(N_{a\sim})$


Gegentakt AB-Betrieb

Triodenschaltung

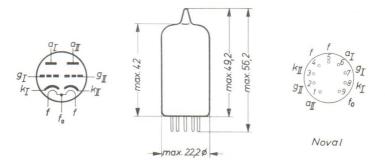
SIEMENS & HALSKE AKTIENGESELLSCHAFT

WERNERWERK FUR BAUELEMENTE

Art und Verwendung

Doppeltriode mit getrennten Kathoden, besonders geeignet für HF- und NF- Verstärker, Mischstufen bis 300 MHz, Oszillatoren und Impulsstufen sowie für Betriebsarten mit langen anodenstromlosen Perioden.

Spezialausführung der ECC 81.


Die Daten der Röhre entsprechen der Vorschrift MIL-E-1/3 C des Typs 12 A T 7 WA.

Qualitätsmerkmale

Lange Lebensdauer (>10000 Std.) Große Zuverlässigkeit (p \approx 1,5 $^{\rm O}$ /oo je 1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode Heizfaden - Schaltfestigkeit

Äquivalente Typen

Die E 81 CC stimmt in ihren Daten mit den nachstehenden Röhrentypen so weitgehend überein, daß ein Austausch möglich ist: 12 AT 7 WA/CV 4024,/ECC 8015, 12 AT 7/CV 455, ECC 81

Maße in mm

Sockel: Miniatur Gewicht: ca. 6 g Kolben: DIN 41537, Form A, Nenngröße 28 Einbau: beliebig

Heizung

 $U_f = 6,3$ bzw. 12,6 V 1) $I_f = 300 \pm 15$ bzw. 150 mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

ohne äußere Abschirmung

		System I	System II	
Ce	=	2,5 + 0,5	2,5 + 0,5	pF
$C_{e'}(I_a = 10 \text{ mA})$	=	3,9	3,9	pF
Ca	=	$0,45 \pm 0,25$	$0,38 \pm 0,22$	pF
Cag	=	$1,6 \pm 0,3$	$1,6 \pm 0,3$	pF
Ca/gf	=	1,9	1,8	pF
Cak	=	0,2	0,24	pF
C _k /gf	=	5	5	pF
Ckf	=	2,8 + 0,7	2,8 ± 0,7	pF
Caa	=	0,24	± 0,09	pF

mit äußerer Abschirmung 22,2 mm Ø

		System I	System II	
Ce	=	2,5	2,5	pF
Ca	=	1,2	1,3	pF
Cag	= 1	1,6	1,6	pF
Ca/gf	=	2,7	2,7	pF
Cak	=	0,18	0,2	pF
C _{k/gf}	=	5	5	pF
Ckf	=	2,8	2,8	pF

 Die Lebensdauergarantie setzt voraus, daß die Heizspannung bei Parallelspeisung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.

V

W

 $^{\mu A}$ mW $^{M\Omega}$ 3) $^{M\Omega}$ 4) mA V $^{k\Omega}$ $^{\circ}$

KENNDATEN GRENZDATEN

Kenndaten

		min.	nom.	max.		
Ua	=		250		100	V
U _a R _k	=		200		270	Ω
I _a	=	7,0	10	14	3,3	mA
I _a I _{aI} -I _{aII} . S	=			3,2		mA 1)
S	=	4,5	5,5	6,5	4	mA/V
μ	=	50	60	70	57	
R;	=		10,9		14,3	kΩ
$-U_{g}(I_{a}=10 \mu A)$	\approx		12		5	V
$-U_{g}^{g}(I_{a}=100 \mu A)$	=			20		V 2)

Grenzdaten

(absolute Werte)

3

- 1) Symmetrie der Systeme
- 2) $R_a = 100 \text{ k}\Omega$
- 3) Mit fester Gittervorspannung
- 4) Mit automatischer Gittervorspannung

Besondere Angaben

Negativer Gitterstrom

-I
$$_g$$
 $\stackrel{\leq}{=}$ 0,5 $$\mu A$$ Meßeinstellung: U $_a$ = 250 V, R $_k$ = 200 $\Omega,$ R $_g$ = 0,5 M Ω

Isolationswiderstände

$$R_{is}$$
 (a/alle übrigen Elektroden bei U_{is} = 300 V)> $\,$ 100 $\,$ $\,$ M $\!\Omega$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ R $_{is}$ (g/alle übrigen Elektroden bei U_{is} = 100 V)> $\,$ 100 $\,$ M $\!\Omega$ R $_{is}$ (fk bei U_{is} = 100 V) $\,$ $\,$ 10 $\,$ M $\!\Omega$

gemessen bei Uf = 12,6 V

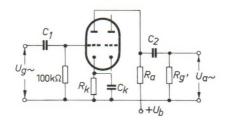
Klingspannung

$$U_{\text{kling}} \leq 100 \text{ mV}$$

Meßeinstellung: $U_{ba} = 250 \text{ V}$, $R_a = 2 \text{ k}\Omega$, $R_k = 200 \Omega$, Schüttelfrequenz = 25 Hz, Beschleunigung = 2,5 g, beide Systeme parallelgeschaltet, Frequenzbereich des Spannungsmessers 20...5000 Hz, gemessen am Ausgang der Röhre.

Gitteremission

-I g
$$\stackrel{\leq}{=}$$
 1,5 $_{\mu A}$ Meßeinstellung: U f = 15 V, U a = 250 V, -U g = 20 V, R g = 0,5 M Ω


Ende der Lebensdauer

Ia	≦	6,0	mA
I _a S	≦	3,8	mA/V
-Ig	≧	1,0	μΑ

Meßeinstellung: siehe Kenndaten mit Ua = 250 V

Betriebsdaten als NF- Verstärker

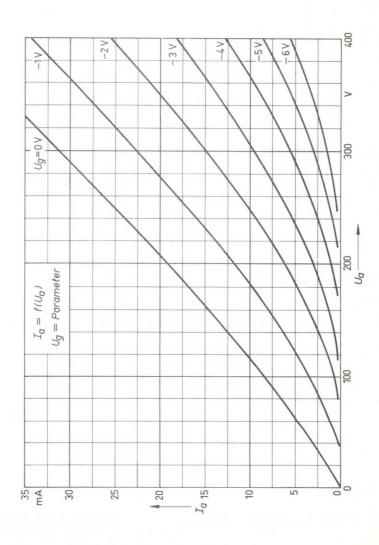
Die Kondensatoren C_1 , C_2 und C_k sind für den jeweils gewünschten Frequenzgang auszulegen.

Für Aussteuerung aus niederohmigen Spannungsquellen ($R_i \approx 200 \Omega$)

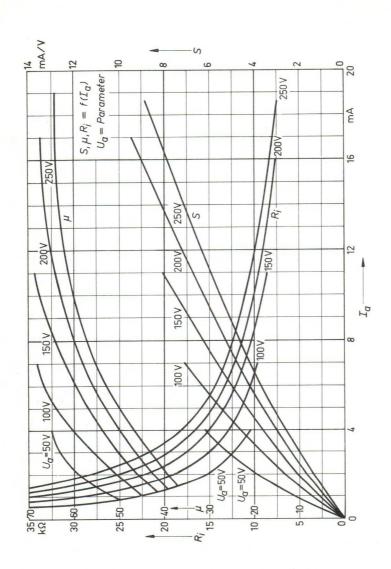
Ra	Rg'	Uı	o = 90		$U_b = 180 \text{ V}$			U _b = 200 V		
kΩ	ΜΩ	R _k kΩ	U _{a~} 1) V	$\frac{U_a \sim^{2}}{U_g \sim}$	R _k kΩ	Ua~1) V	$\frac{U_a^2}{U_g^2}$	R _k kΩ	U _a ~1) V	$\frac{U_a \sim^2}{U_g \sim}$
100 100	0,10 0,24	1,6 1,8	5,3 7,8	26 29	1,1 1,4	12 17	31 33	1,0	22 30	32 33
240 240	0,24 0,51	3,8 4,2	7,2 9,4	28 30	2,8	16 20	32 33	2,3	28 35	34 33
510 510	0,51	8,0 9,6	8,3	28 29	5,6 6,7	18 23	31 32	4,9 6,0	31 38	33 33


Für Aussteuerung aus hochohmigen Spannungsquellen (R $_i \approx$ 100 k Ω)

Ra	Rg'	U _b = 90 V			U _b = 180 V			U _b = 300 V		
kΩ	ΜΩ	R _k kΩ	U _{a~} 1) V	U _a ~ ²) U _g ~	R _k kΩ	Ua~1) V	U _a ~ ²) U _g ~	R _k kΩ	U _a ~1) V	_{Ua} ~²) U _g ~
100 100	0,10 0,24	2,0 2,4	9,9	25 27	1,2 1,4	17 28	31 33	0,9	35 47	33 33
240 240	0,24 0,51	4,7 5,3	12 15	27 28	2,9	25 31	32 33	2, 3	42 52	34 34
510 510	0,51	9,3 11,0	13 16	27 28	6,0 7,1	27 33	31 32	5,0 6,4	45 55	33 34


- 1) bei einem Klirrfaktor von ≈ 5 %
- 2) gemessen bei $U_a \sim = 2 \text{ V}$

 $I_a = f(U_g)$


 $I_a = f(U_a)$

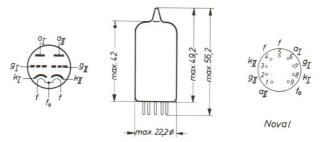
KENNLINIENFELD

 $S, \mu, R_i = f(I_a)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT

Art und Verwendung

Doppeltriode mit getrennten Kathoden. Besonders geeignet für Verstärker, Oszillatoren, Multivibratoren und Sperrschwinger. Spezialausführung der ECC 82.


Die Daten der Röhre entsprechen der Vorschrift MIL-E-I/246B des Typs 6189/12 AU 7 WA.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit (p \approx 1,5 °/oo je 1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode Heizfaden-Schaltfestigkeit

Äquivalente Typen

Die E 82 CC s*immt in ihren Daten mit den nachstehenden Röhrentypen so weitgehend überein, daß ein Austausch möglich ist: 12 AU 7 WA, CV 4003, ECC 802 S, ECC 802, 12 AU 7, CV 491, ECC 82

Maße in mm

Sockel: Noval Kolben: DIN 41539, Form A, Nenngröße 40

Gewicht: ca. 9 g Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_f = 6,3$$
 bzw 12,6 V 1)
 $I_f = 300 \pm 15$ bzw 150 mA

Heizung: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

(ohne äußere Abschirmung)

		System 1	SystemII	
Ce	=	1,6 ± 0,35	1,6 ± 0,35	pF
Ca	=	$0,5 \pm 0,2$	$0,4 \pm 0,2$	pF
Cag	=	1,5 ± 0,3	1,5 ± 0,3	pF

Kenndaten

		min.	nom.	max.		
U _a R _k	=		250		100	V
$R_{\mathbf{k}}$	=		800		0	Ω
Ia	=	8,7	10,5	12,3	11,8	mA
I _a I _{aI} - I _{aII} S	\leq		1,6		-	mA^{2}
S	=	1,8	2, 2	2,6	3,1	mA/V
μ	=	15,7	17,0	18,3	19,5	
Ri	=		7,7		6,25	$k\Omega$
$-U_g(I_a=20\mu A)$	() ≦		30			V
$-U_g(I_a=10\mu A)$.) =		22			V
$-U_g(I_a = 5\mu A)$	() ≥		18			V

- 1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als \pm 5% (absolute Grenzen) um den Sollwert schwankt.
- 2) Symmetrie der Systeme

GRENZDATEN BESONDERE ANGABEN

Grenzdaten	(absolute Werte)		
Uao	max.	600	V
Ua	max.	330	V
	max.	3,0	W
Q _a -U _a	max.	55	V
+Ug	max.	0	V
Ig Rg Rg	max.	5,0	mA
Ro	max.	0,5	$M\Omega^{1}$
Rø	max.	1,0	$M\Omega^{2}$
Ik	max.	22	mA
Ufk	max.	100	V
tkolb	max.	165	°C

Besondere Angaben

Negativer Gitterstrom

-Ig $\stackrel{\leq}{=}$ 0,5 μA

Meßeinstellung: siehe Kenndaten mit Ua = 250 V

Gitteremission

-I_g ≦ 1,5 μA

Meßeinstellung : U_f=15,0 V, U_a=250 V, -U_g=30 V, R_g=0,5 M Ω

Isolationswiderstände

 $R_{is}(g/alle \ "brigen \ Elektroden \ bei \ U_{is} = 100 \ V) \stackrel{\geq}{=} 500 \qquad M\Omega$ $R_{is}(a/alle \ "brigen \ Elektroden \ bei \ U_{is} = 300 \ V) \stackrel{\geq}{=} 500 \qquad M\Omega$

- 1) Mit fester Gittervorspannung
- 2) Mit automatischer Gittervorspannung

Besondere Angaben

Heizfaden Schaltfestigkeit

Die Röhre verträgt mindestens 2000 maliges Ein- und Ausschalten (1 Minute ein-, 1 Minute ausgeschaltet).

Meßeinstellung: $U_f = 7,5 \text{ V}$ zwischen Sockelstift 4/5 und 9, $U_a = U_g = 0 \text{ V}$, $U_{fk-} = 135 \text{ V}$

Klingspannung

Ukling

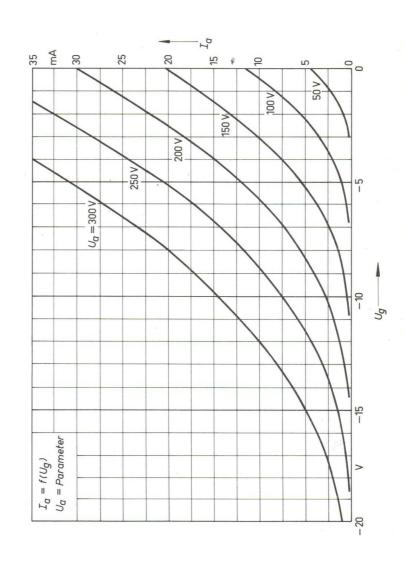
 \leq

100

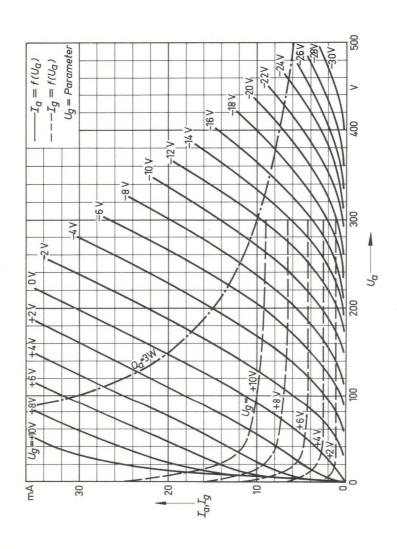
mV

Meßeinstellung: U_{ba} = 250 V, $-U_g$ = 8,5 V, R_a = $2k\Omega$, Schüttel-

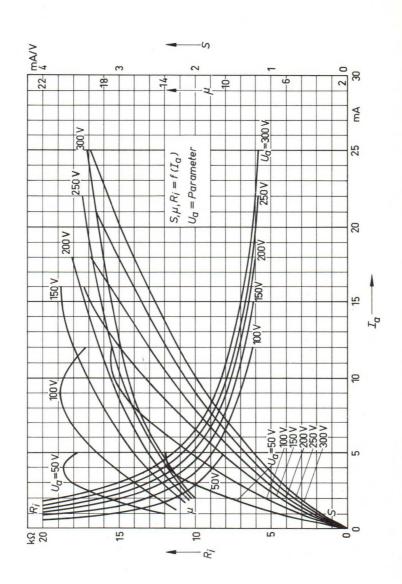
frequenz = 40 Hz, Beschleunigung = 10 g, beide Systeme parallelgeschaltet, Frequenzbereich des Spannungsmessers 20....5000 Hz,

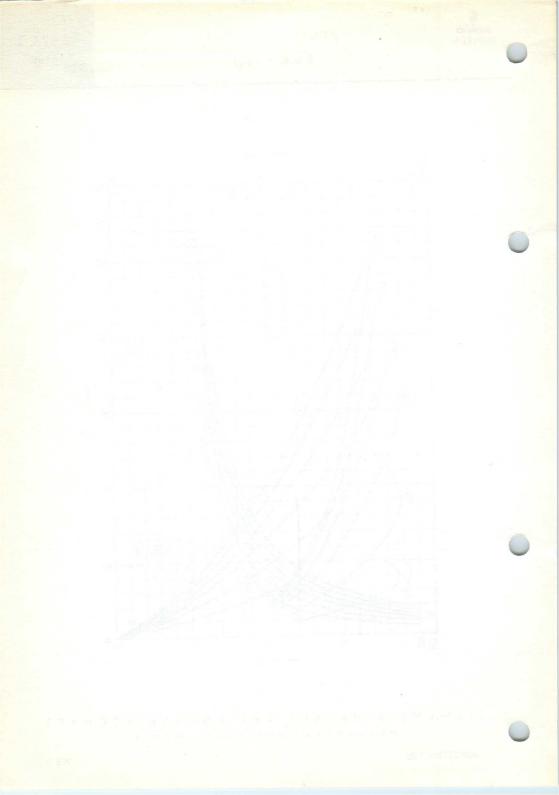

gemessen am Ausgang der Röhre.

Ende der Lebensdauer


Ia	≦	7,0	mA
ra S	\(\)	1,5	mA/V
-Ig	≧	1,0	μA
6			

Meßeinstellung: $U_a = 250 \text{ V}$, $R_k = 800 \Omega$

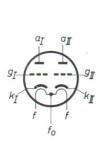

 $I_a = f(U_g)$

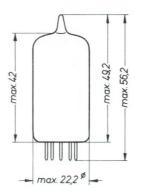


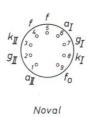
 $S, \mu, R_i = f(I_a)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT

WERNERWERK FUR BAUELEMENTE


Art und Verwendung


Mikrophoniearme Doppeltriode mit getrennten Kathoden. Besonders geeignet für NF-Spannungsverstärker, Phasenumkehrstufen und Meßverstärker.


Spezialausführung der ECC 83.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Zuverlässigkeit (p \approx 1,5 °/oo je 1000 Std.) Enge Toleranzen Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: Noval

Kolben: DIN 41539, Form A, Nenngröße 40

Gewicht: ca. 11 g

Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_f$$
 = 6,3 bzw. 12,6 V 1)
 I_f = 300 ± 15 bzw. 150 mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

		System I		System II	
Ce	=	1,6		1,6	pF
С _е Са	=	0,46		0,34	pF
Cag	=	1,7		1,7	pF
Cgf	<	0,15		0,15	pF
Caa	<		0,6		pF
Cgg	<		10		mpF
CalgII	<		60		mpF
Caligi	<		60		mpF

Kenndaten

		min.	nom.	max.		
Ua	=		250		100	V
Rk	=		1,6		2,0	$\mathbf{k}\Omega$
I _a S	=	1,1	1,25	1,4	0,5	mA
S	=	1,3	1,6	1,95	1,25	mA/V
μ	=		100		100	
Ri	=		62,5		80	$k\Omega$
$-U_g(I_a=20\mu A)$.) =			4,0		V
$-U_{\sigma}(+I_{\sigma}=0,3)$	$\mu A) =$			1,0		V
$-U_{g}^{s}(+I_{g}=0,3)$	<u><</u>			0,2		μΑ

1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.

Grenzdaten	(absolute Werte)	
Uao	max.	600	V
Ua	max.	330	V
Q_a	max.	1,2	W
-Ug	max.	55	V
+Ug	max.	0,5	V
R_{g}	max.	1,2	$M\Omega^{1}$
R _g R _g I _k	max.	2,2	$M\Omega^{2}$
Rg	max.	25	$M\Omega$ 3)
$I_{\mathbf{k}}$	max.	9	mA
Ufk	max.	200	V
Rfk	max.	20	$k\Omega^{4}$
tkolb	max.	170	°C

Besondere Angaben

Isolationswiderstände

 R_{is} (a/alle übrigen Elektroden bei U_{is} = 300 V)> 300 M Ω R_{is} (g/alle übrigen Elektroden bei U_{is} = 100 V)> 300 M Ω R_{is} (f/kI, kII bei U_{is} = 100 V) > 20 M Ω gemessen bei U_f = 6,3 V

- 1) Mit fester Gittervorspannung
- 2) Mit automatischer Gittervorspannung
- 3) Vorspannung durch Rg
- 4) Bei Verwendung als Phasenumkehrröhre unmittelbar vor der Endstufe ist R_{fk} max. 135 $k\Omega$

Klingspannung

Ukling

<

10

mV

Meßeinstellung:

 U_{ba} = 250 V, $-U_g$ = 2 V, R_a = 5 k Ω , Schüttelfrequenz = 25 Hz, Beschleunigung = 2,5 g, beide Systeme parallel geschaltet, Frequenzbereich des Spannungsmessers 20 bis 5000 Hz, gemessen am Ausgang der Röhre.

Mikrophonie

Die Röhre darf ohne besondere Maßnahmen gegen Mikrophonie in Schaltungen verwendet werden, die für eine Eingangsspannung > 0,5 mV eine Leistung der Endröhre von 50 mW ergeben.

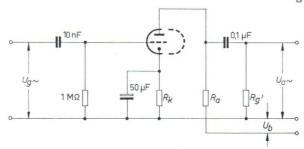
Ende der Lebensdauer

Ia -Ig

0,8 1,05

0.5

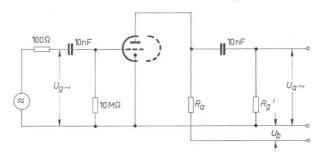
mA mA/V μA


Meßeinstellung: siehe Kenndaten mit Ua = 250 V

Betriebsdaten

NF-Verstärker, je System

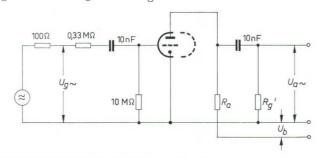
 $\rm R_g$ = 1 MΩ, Aussteuerung bis Gitterstromeinsatz(I_g=+0,3 $\mu \rm A$)


U _b	R _a kΩ	Rg' kΩ	$R_{\mathbf{k}}$	U _a ∼ V _{eff}	Ua~/Ug~	k 1)	I _a mA
200	47	150	1500	18	34,0	8,5	0,86
250	47	150	1200	23	37,5	7,0	1,18
300	47	150	1000	26	40,0	5,0	1,55
350	47	150	820	33	42,5	4,4	1,98
400	47	150	680	37	44,0	3,6	2,45
200	100	330	1800	20	50,0	4,8	0,65
250	100	330	1500	26	54,5	3,9	0,86
300	100	330	1200	30	57,0	2,7	1,11
350	100	330	1000	36	61,0	2,2	1,40
4 00	100	330	820	38	63,0	1,7	1,72
200 250 300 350 400	220 220 220 220 220 220	680 680 680 680 680	3300 2700 2200 1500 1200	24 28 36 37 38	56,0 66,5 72,0 75,5 76,5	4,6 3,4 2,6 1,6	0,36 0,48 0,63 0,85 1,02

¹⁾ Der Klirrfaktor ist der Ausgangsspannung $U_a \sim$ etwa proportional.

NF-Verstärker, je System

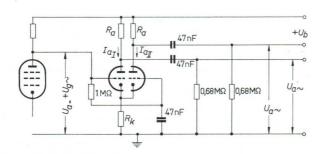
 R_g = 10 M Ω , U_g durch R_g , R_k = 0 Aussteuerung bis Gitterstromeinsatz (I_g =+0,3 μ A)


U _b	R _a kΩ	Rg' kΩ	U _a V _{eff}	Ua~/Ug~	k 1)	I _a mA
200 250 300 350 400	47 47 47 47 47	150 150 150 150	18 23 26 33 37	37 39 41 44 45	5,6 4,2 2,9 2,7 2,5	1,02 1,45 2,02 2,50 3,10
200 250 300 350 400	100 100 100 100 100	330 330 330 330 330	20 26 30 36 38	50 51 54 56 58	3,9 2,6 2,0 1,8 1,6	0,70 1,00 1,29 1,62 1,95
200 250 300 350 400	220 220 220 220 220 220	680 680 680 680 680	24 28 36 37 38	58 62 66 67 68	4,6 2,7 2,2 1,7 1,4	0,39 0,56 0,74 0,88 1,09

¹⁾ Der Klirrfaktor ist der Ausgangsspannung $\mathbf{U_{a}} \sim$ etwa proportional.

NF-Verstärker, je System

 R_g = 10 M Ω , U_g durch R_g , R_k = 0



Ub	Ra	Rg'	${\tt U_a \sim / U_g \sim}$	Ia		k	
V	kΩ	$k\Omega$		mA		%	
						Ua~ =	
					2 V _{eff}	4 V _{eff}	6 V _{eff}
100	47	150	25	0,35	1,7	2,1	6,0
150	47	150	33	0,84	2,5	4,6	5,2
200	47	150	34	1,40	2,4	4,7	5,6
250	47	150	36	1,95	2,3	4,6	5,6
300	47	150	38	2,52	2,2	4,5	5,5
350	47	150	40	3, 19	2,2	4,2	5,5
400	47	150	41	3,80	2,1	4,2	5,4
100	100	330	34	0,24	1,6	2,3	2,5
150	100	330	43	0,56	1,9	3,0	4,7
200	100	330	46	0,88	1,9	3,8	5,1
250	100	330	48	1,23	1,8	3,8	5,1
300	100	330	50	1,58	1,8	3,6	5,0
350	100	330	51	1,92	1,8	3,6	4,9
400	100	330	52	2,29	1,7	3,5	4,8
100	220	680	42	0,14	1,6	2,5	3,2
150	220	680	51	0,32	1,7	3,0	4,4
200	220	680	54	0,49	1,7	3,0	4,4
250	220	680	57	0,67		2,9	4,4
300	220	680	58	0,85		2,9	4,4
350	220	680	59	1,05	1,6	2,8	4,3
400	220	680	60	1,23	1,6	2,7	4,2

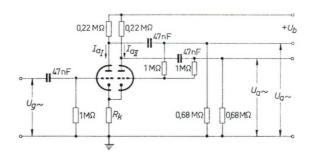
Phasenumkehrröhre:

Aussteuerung bis Gitterstromeinsatz (I_g =+0, $3\mu A$)

U _b	U _a = V ca.	I _{aI} + I _{aII} mA	R _k kΩ	$R_{aI} = R_{aII}$ $k\Omega$	U _a ∼ V _{eff}	U _a ~/U _g ~	_k 1) %
250	65	1,0	68	100	20	25	1,8
250	65	1,0	68	100	7	25	0,6
350	90	1,2	82	150	35	27	1,8
350	90	1,2	82	150	10	27	0,5

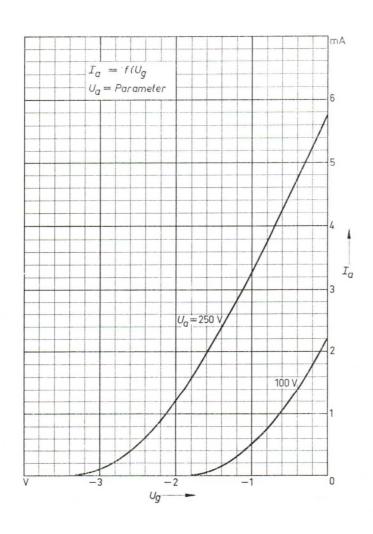
 $U_a = muB$ so eingestellt werden, daß

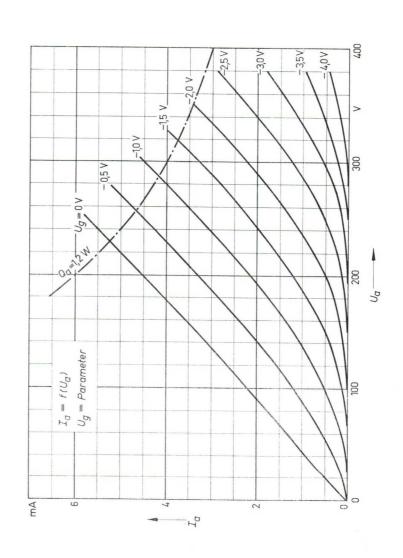
 $I_{aI} + I_{aII} = 1,0 \text{ mA}$ bei $U_b = 250 \text{ V}$ und


 $I_{aI} + I_{aII} = 1,2$ mA bei $U_b = 350$ V ist.

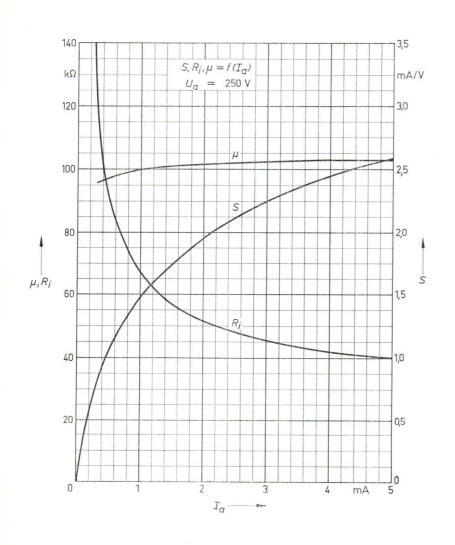
1) Der Klirrfaktor ist der Ausgangsspannung $U_a \sim$ etwa proportional.

Phasenumkehrröhre:

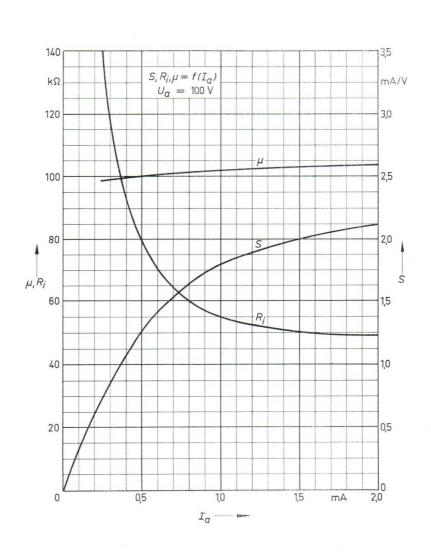

Aussteuerung bis Gitterstromeinsatz (I $_{\rm g}$ = + 0,3 $\mu{\rm A}$)


U _b	I _{aI} + I _{aII} mA	R _k kΩ	U _a ∼ V _{eff}	U _a ~/U _g ~	k %
250	1,08	1,2	35	58	5,5
250	1,08	1,2	7	58	1,1
350	1,70	0,82	45	62	3,5
350	1,70	0,82	9	62	0,7

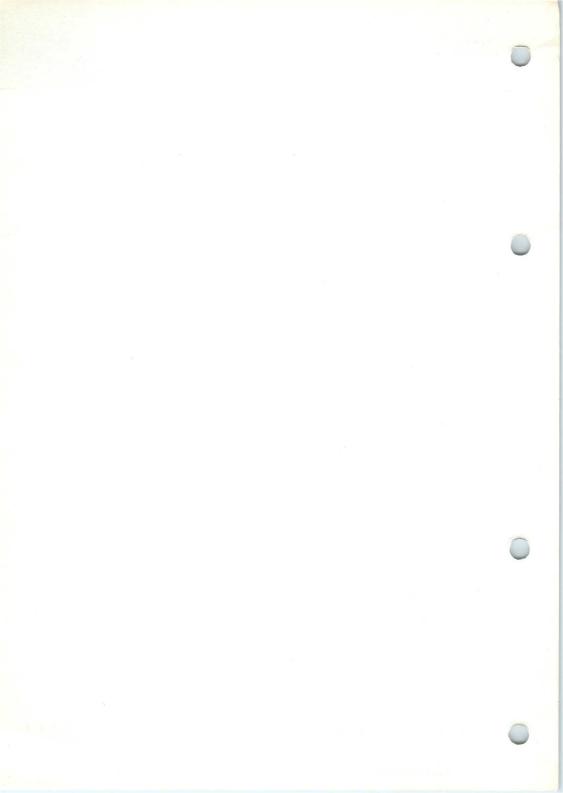
1) Der Klirrfaktor ist der Ausgangsspannung $U_a \sim \text{etwa}$ proportional.



 $I_a = f(U_a)$



 $S, \mu, R_i = f(I_a)$



 $S, \mu, R_i = f(I_a)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT

WERNERWERK FÜR BAUELEMENTE

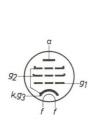
Art und Verwendung

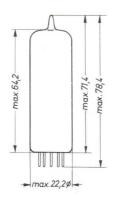
Steile Leistungspentode, besonders geeignet für NF- und Breitbandverstärker in Ein- und Gegentaktschaltung, Kathodenverstärker sowie als Längsröhre in elektronisch geregelten Netzgeräten.

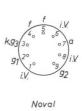
Spezialausführung der EL 84

Qualitätsmerkmale

Lange Lebensdauer (>10.000 Std.)


Zuverlässigkeit (p ≈ 1,5 °/oo je 1000 Std.)


Enge Toleranzen


Stoß- und Erschütterungsfestigkeit

Zwischenschichtfreie Spezialkathode

Heizfaden-Schaltfestigkeit

Sockel: Noval Gewicht: ca. 14g Kolben: DIN 41539, Form A, Nenngröße 62 Einbau: beliebig

HEIZUNG, KAPAZITÄTEN, KENNDATEN

Heizung

$$U_{f} = 6,3 V 1$$
 $I_{f} = 760 \pm 40 mA$

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

Kenndaten I

		min.	nom.	max.	
Ua	=		250		V
U _{g2}	=		250		V
Rk	=		135		Ω
I_a	=	42	48	54	mA
I _a I _{g2}	=	4,0	5,5	7,0	mA
SEL	=	9,2	11,3	13,4	mA/V
Ha2a1	=		19		
μ _g 2g1 R _i	=		40		$k\Omega$
Ril	=		200		Ω
R_{iL} - $U_{g1}(+I_{g1}=0,3\mu A)$	≦			1,3	V
-Ig1	≦			0,5	μA

Triodenschaltung

Ua	=	250	V
U _a R _k	=	270	Ω
Ia	=	34	mA
s S	=	10,2	mA/V
μ	=	18,5	
Ri	= .	1,8	$k\Omega$

Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5% (absolute Grenzen) um den Sollwert schwankt.

Kenndaten II

Ua	=	250	250	V
U _ 2	=	250	210	V
U _a U _{g2} R _k	=	210	160	Ω
Ia	=	36	36	mA
I _a I _{g2} S	=	4,1	3,9	mA
SE	=	10,0	10,4	mA/V
Ha2a1	=	19	19	
μ _g 2g1 R _i	=	40	40	$k\Omega$

Grenzdaten (absolute Werte)

Uao	max.	600	V
Ua	max.	450	V
Qa	max.	13,5	W
U _{g2o}	max.	600	V
Ug2	max.	450	V
Q _{g2}	max.	2, 2	$_{\mathrm{W}}$ 1)
Q_{g2}^{g2}	max.	4,4	W 2)
-Üg1	max.	100	V
Qg1 ·	max.	0,5	W
Rg1	max.	0,5	$M\Omega^{3}$
R _{g1}	max.	1,0	$M\Omega$ 4)
Ik	max.	75	mA
Ufk	max.	100	V
R_{fk}	max.	20	$k\Omega$
tkolb	max.	225	°C

- 1) Ohne Aussteuerung
- 2) Mit Sprach- oder Musikaussteuerung. Bei Daueraussteuerung mit Sinusspannung dürfen 75% der für Vollaussteuerung erforderlichen Eingangsspannung nicht überschritten werden.
- 3) Mit fester Gittervorspannung
- 4) Mit automatischer Gittervorspannung

Besondere Angaben

Isolationswiderstände

 $R_{\rm is}$ (a/alle übrigen Elektroden bei $U_{\rm is}$ = 300 V) > 100 $~{\rm M}\,\Omega$ $R_{\rm is}$ (g/alle übrigen Elektroden bei $U_{\rm is}$ = 300 V) > 100 $~{\rm M}\,\Omega$ $R_{\rm is}$ (f/k $~{\rm bei}~U_{\rm is}$ = 100 V) > 8 $~{\rm M}\,\Omega$

gemessen bei $U_f = 6,3 \text{ V}$

Heizfaden - Schaltfestigkeit

Die Röhre verträgt mindestens 2000maliges Ein- und Ausschalten (1 Minute ein-, 1 Minute ausgeschaltet) Meßeinstellung: $U_f = 7,0 \text{ V}, U_f/k = 135 \text{ V}, U_a = U_{g2} = U_{g1} = 0 \text{ V}.$

Ende der Lebensdauer

T	≤	32	mA
I _a S	₹	7,5	mA/V
-Ig1	<u></u>	1,0	μΑ

Meßeinstellung: siehe Kenndaten Seite 2

Eintakt	A-B	etrieb					
U_a	=			250			V
U _{a2}	=			250			V
U _{g2} -U _{g1}	≈			7,3			V
Ra	=			4,5			$k\Omega$
$R_{\mathbf{k}}$	=			135			Ω
Ug1~	=	0	0,3	3,5	4,4	4,81)	V
Ia	=	48	_	-	50,6	50,5	mA
I _a 2	=	5,5	-	-	10,0	11,0	mA
I _{g2} N _a ~	=	0	0,05	4,5	5,7	6,0	W^{2}
k	=	-	-	7,5	10	_	% 2)
k ₂	=	-	_	5,7	5	-	₀ 2)
k ₃	=	-	-	4,5	8	-	% 2)
Kennlir	nien:	K 7 obe	n				
Ua	=			250			V
Ugz	=			250			V
U _{g2} -U _{g1}	~			7,3			V
Ra	=			5,2			kΩ
$R_{\mathbf{k}}$	=			135			Ω
$U_{g1} \sim$	=	0	0,3	3,4	4,3	4,71)	V
Ia	=	48	-	-	49,5	49,2	mA
IgZ	=	5,5	-	-	10,8	11,6	mA
$_{N_a^2}^{I_{g2}}$	=	0	0,05	4,5	5,7	6,0	W 2)
k	=	-	-	6,8	10	_	% 2) % 2) % 2)
k ₂	=	-	-	3	2	-	% 2)
k ₃	=	-	-	5,8	9,5	-	% 2)

Kennlinien: K 7 unten

1) Bei Aussteuerung bis $+I_{g1} = 0,3\mu A$ 2) Gemessen mit fester Gittervorspannung

Eintakt	A-Betrieb

U_a	=		2	250		V
$U_{\alpha 2}$	=		2	250		V
U _{g2} -U _{g1}	≈		8	3,4		V
Ra	=		7	7,0		kΩ
Rk	=		2	210		Ω
Ug1~	=	0	0,3	3,5	5,51)	V
I_a	=	36	-	36,8	36	mA
	=	4,1	-	8,5	14,6	mA
^I g2 Na∼	=	0	0,05	4,2	5,6	W^{2}
k	=	-	-	10	-	% 2)
k ₂	=	-	-	1,7	_	% 2)
k ₃	=	-	-	8,7	-	% 2)

Kennlinien: K 8 oben

Ua	=			250		V
	=			210		V
U _{g2} -U _{g1}	=			6,4		V
R	=			7		$k\Omega$
R _a R _k	=			160		Ω
$U_{g1} \sim$	=	0	0,3	3,4	3,83)	V
I_a	=	36	_	36,6	36,5	mA
I _{g2}	=	3,9	-	7,3	8,0	mA
N _a ∼	=	0	0,05	4,3	4,7	W 2)
	=	-	-	10	-	% 2)
k ₂	=	-	-	1,8	-	% 2)
k ₃	=	-	-	9,3	-	% 2)

Kennlinien: K 8 unten

¹⁾ Bei Aussteuerung bis $+I_{g1}$ = 0,3 μA , Sprache oder Musik 2) Gemessen mit fester Gittervorspannung

³⁾ Bei Aussteuerung bis $+I_{g1} = 0,3 \mu A$

Gegentakt AB - Betrieb

Ua	=		250	30	0	V
U _{a2}	=		250	30	0	V
U _{g2} R _{aa}	=		8		8	$k\Omega$
R_k	=		130	13	0	Ω 1)
Ug1~	=	0	8	0	10 2)	V
Ia	=	2x31	2x37, 5	2x36	2x46	mA
-	=	2x3,5	2x7,5	2x4	2x11	mA
N_a^{1}	=	0	11	0	17	W
k	=	-	3	-	4	%

Kennlinien: K 9 oben

K 9 unten

Gegentakt B- Betrieb

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ua	=	2	250	3	00	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	2	250	3	00	V
$U_{g1} \sim = 0$ 8 0 10 2) V $I_a = 2x10$ 2x37,5 2x7,5 2x46 mA $I_{g2} = 2x1,1$ 2x7,5 2x0,8 2x11 mA $N_a \sim = 0$ 11 0 17 W		=		8		8	$k\Omega$
$U_{g1} \sim = 0$ 8 0 10 2) V $I_a = 2x10$ 2x37,5 2x7,5 2x46 mA $I_{g2} = 2x1,1$ 2x7,5 2x0,8 2x11 mA $N_a \sim = 0$ 11 0 17 W	-U _{g1}	=	11	,6	14	, 7	V
$I_{g2} = 2x1, 1$ 2x7, 5 2x0, 8 2x11 mA $N_a \sim$ = 0 11 0 17 W		=	0	8	0	10 2)	V
$I_{g2} = 2x1, 1$ $2x7, 5$ $2x0, 8$ $2x11$ mA $N_a \sim = 0$ 11 0 17 W	I_a	=	2x10	2x37,5	2x7,5	2x46	mA
	-	=	2x1, 1	2x7,5	2x0,8	2x11	mA
k = - 3 - 4 %	Na~	=	0	11	0	17	
	k	=	-	3	-	4	%

Kennlinien: K 10 oben

K 10 unten

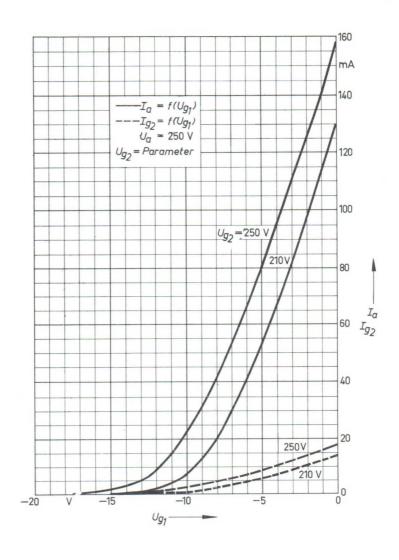
- 1) Gemeinsamer Kathodenwiderstand
- 2) Sprach- oder Musikaussteuerung

Eintakt A-Betrieb, Triodenschaltung

Ua	=		250		V
Ra	=		3,5		$k\Omega$
U _a R _a R _k	=		270		Ω
Ug1~	=	0	1,0	6,7	V
	=	34	-	36	mA
I _a N _a ∼ k	=	0	0,05	1,95	W
k	=	-	-	9,0	%

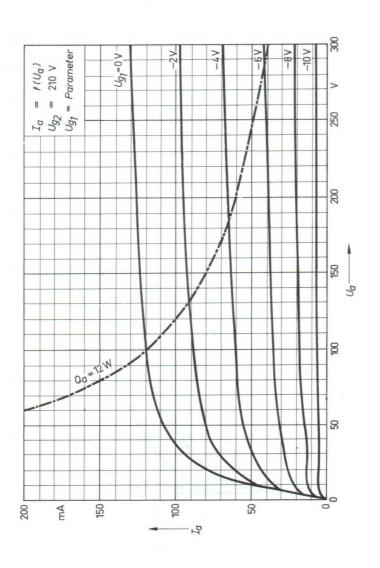
Kennlinien: K 11

Gegentakt AB - Betrieb, Triodenschaltung

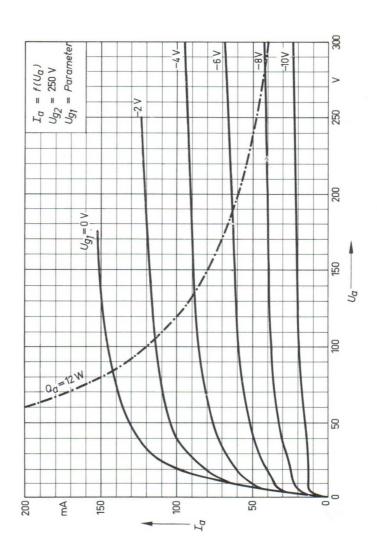

Ua	=		250		V
Raa	=		10		$k\Omega$
U _a R _{aa} R _k	=		270		Ω 1)
Ug1~	=	0	0,95	8,3	V
	=	2x20	-	2x21,7	mA
I _a Na∼	=	0	0,05	3,4	W
k	=	-	-	2,5	%

Kennlinien: K 12

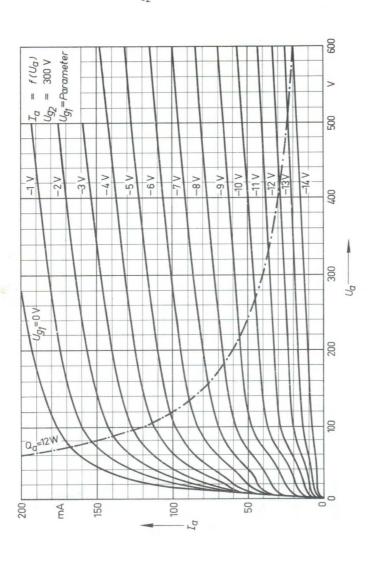
Ua	=		300		V	
Raa	=		10		$k\Omega$	
R _{aa} R _k	=		270		Ω	1)
Ug1~	=	0	0,9	10	V	
Ia	=	2x24	_	2x26	mA	
I _a N _a ~	=	0	0,05	5,2	W	
k	=	_	-	2.5	%	


Kennlinien: K13

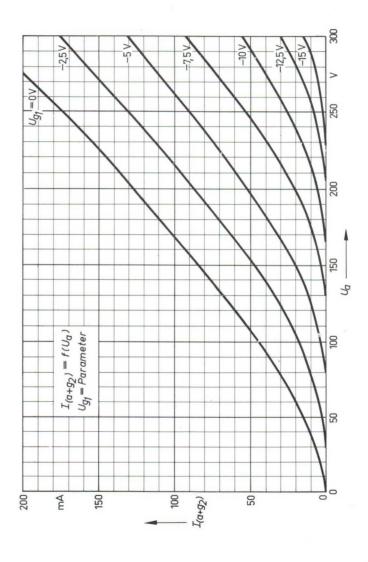
1) Gemeinsamer Kathodenwiderstand



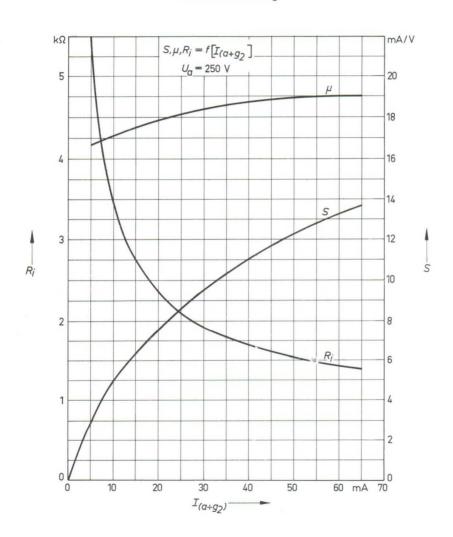
 $U_{g_2} = 210 \text{ V}$



 $U_{g_2} = 250 \text{ V}$

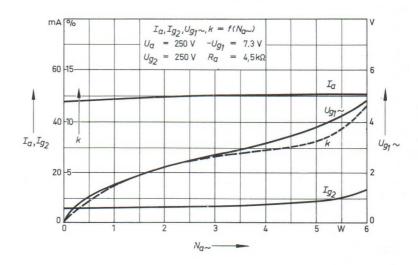


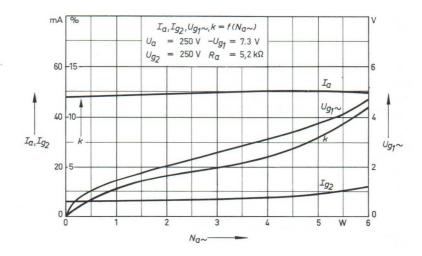
 $U_{g_2} = 300 \text{ V}$



$$\rm I_{(a+g2)}=f\,(U_a)$$

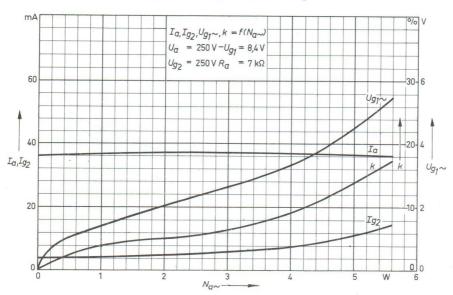
Triodenschaltung

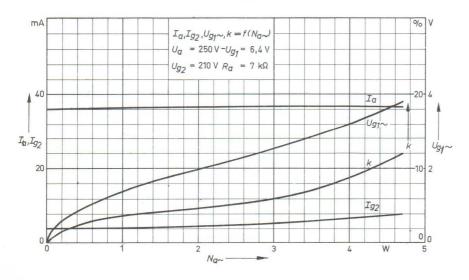

Triodenschaltung



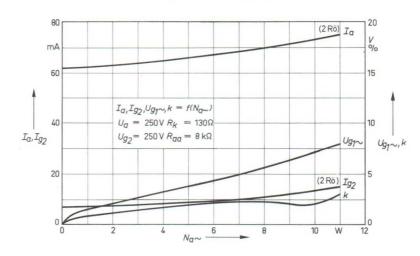
AUSSTEUERKENNLINIEN $I_{a'}$, I_{g2} , U_{g1} , k = f (N_a)

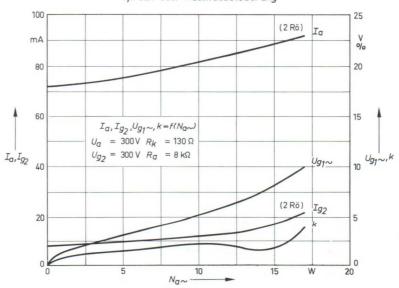
Eintakt A-Betrieb


Eintakt A-Betrieb

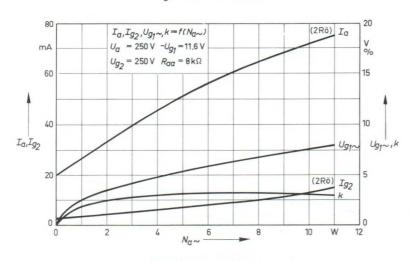

AUSSTEUERKENNLINIEN I_a , I_{g2} , U_{g1} , $k = f(N_a$)

Eintakt A-Betrieb Sprach-oder Musikaussteuerung

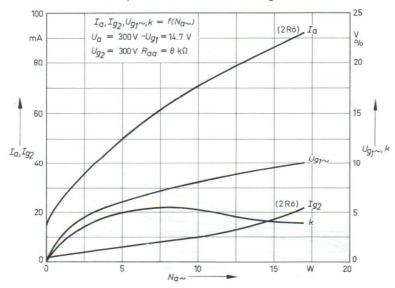

Eintakt A-Betrieb



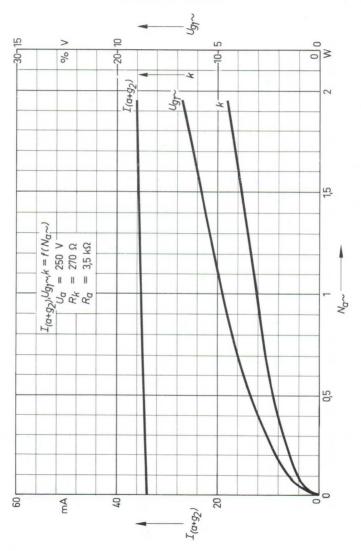
Gegentakt AB-Betrieb


Gegentakt AB – Betrieb Sprach-oder Musikaussteuerung

AUSSTEUERKENNLINIEN $I_{a'}$, I_{g2} , U_{g1} , k = f (N_a)



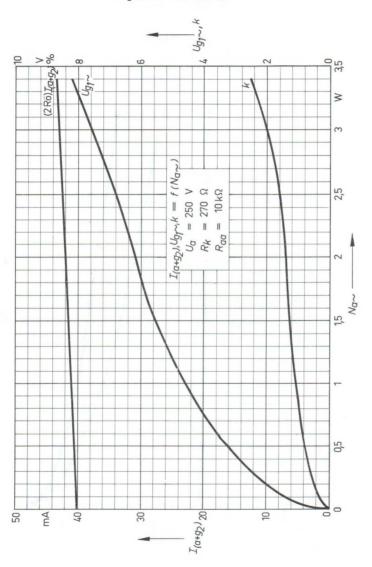
Gegentakt B-Betrieb


Gegentakt B-Betrieb

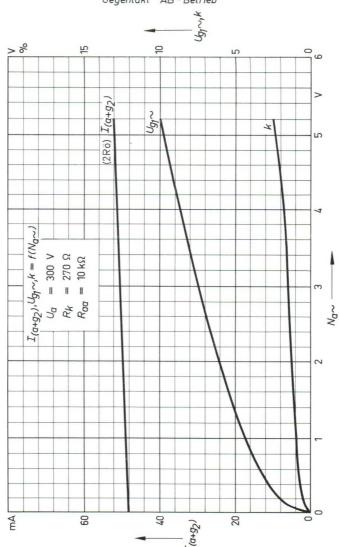
Sprach-oder Musikaussteuerung

Triodenschaltung

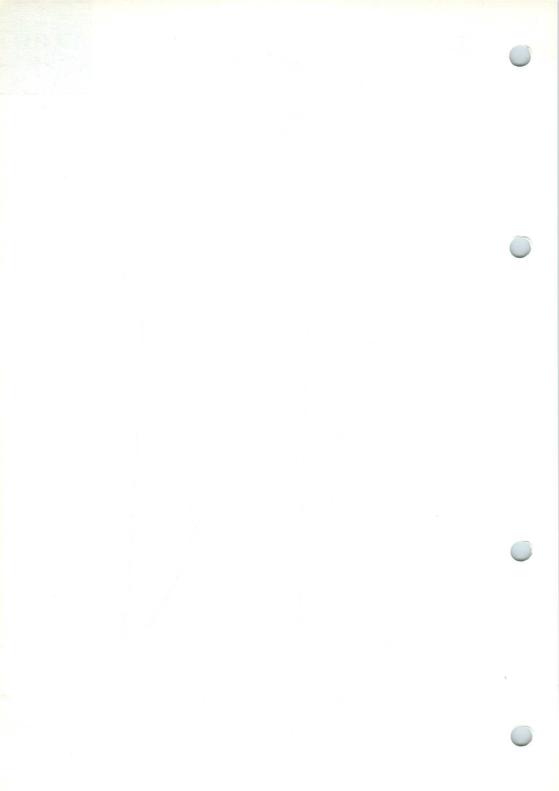
Eintakt A -Betrieb



AUSSTEUERKENNLINIEN $I_{(a+g2)}, U_{g1}^{-}, k = f(N_a^{-})$


Triodenschaltung

Gegentakt AB-Betrieb



Triodenschaltung

Gegentakt AB-Betrieb

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE

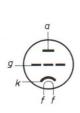
Art und Verwendung

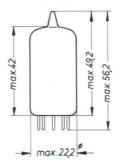
Steile, rauscharme Triode mit mehrfach herausgeführten Elektroden für Verstärker und Oszillatoren in Gitterbasisschaltung bis 800 MHz.

Die Röhre ist besonders geeignet für UHF-Eingangsstufen, Antennenverstärker und Meßgeräte.

Spezialausführung der PC 86.

Qualitätsmerkmale


Lange Lebensdauer (> 10 000 Std.)


Zuverlässigkeit (p ≈ 1,5 °/oo je 1000 Std.)

Enge Toleranzen

Stoß- und Erschütterungsfestigkeit

Zwischenschichtfreie Spezialkathode

Noval

Maße in mm

Sockel: Noval

Kolben: DIN 41539, Form A, Nenngröße 40

Gewicht: ca. 9 g

Einbau: beliebig

Heizung

$$U_{f} = 6,3$$
 V 1)
 $I_{f} = 165 \pm 10$ mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

ohne äußere Abschirmung

Cg/kf	=	$3,9 \pm 0,6$	pF
C _{g/kf} C _{ag}	=	$2,0 \pm 0,3$	pF
Ca/kf	=	$0,3 \pm 0,05$	pF
Ck/gf	=	$6,6 \pm 1,1$	pF
a/gf	=	$2, 1 \pm 0, 35$	pF
Cak	=	$0,2 \pm 0,04$	pF
C_{gk}	=	$3,6 \pm 0,6$	pF
Cgf	<	0,3	pF 2\
Cgk Cgf ΔCgk	=	2	pF 2)
0			

mit äußerer Abschirmung (m) 22,2 mm Ø

C _{gm} /kf	=	4,2 ± 0,6	pF
C _{gm/kf} C _{a/gm} C _{a/kf}	=	$3, 1 \pm 0, 3$	pF
C_a/kf	=	$0,25 \pm 0,05$	pF

- Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.
- 2) Differenz der Gitter-Kathoden-Kapazität der Röhre im Betrieb (I_a = 12 mA) und im gesperrten Zustand.

Kenndaten

			min.	nom.	max.		
U	J _{ba}	=		185			V
J	Ja ·Ubg	=				175	V
+	Uha	=		8			V
F	k	=		800		125	Ω^{1}
I,	a.	=	11,4	12	12,6	12	mA
S		=	11,5	14	17	14	mA/V
μ		=		68			
	aq	=		250			Ω
F	Re (100 MHz)	=		2			$\mathbf{k}\Omega$
	$U_g (I_a=0, 1 mA$) =			5		V
-	$\cdot I_{\mathbf{g}}$	<u>{</u>			0,5		μA

Grenzdaten	(absolute We	rte)	
Uao	max.	440	V
Ua	max.	250	V
Qa	max.	2,4	W
-Ug	max.	50	V
Q	max,	20	mW
Q _g R _g	max.	1,2	$M\Omega$
$I_{\mathbf{k}}$	max.	20	mA
Ufk	max.	100	V
Rfk	max.	20	$k\Omega$
tkolb	max.	165	°C
f	max.	800	MHz^{2}

- 1) Betrieb mit hohem Kathodenwiderstand wird empfohlen.
- 2) Bei Verstärkerbetrieb.

Besondere Angaben

Isolationswiderstände

 $\begin{array}{llll} R_{\mbox{is}} \; (a/alle \; \mbox{tibrigen Elektroden bei } U_{\mbox{is}} = 300 \; \mbox{V}) > & 100 & M\Omega \\ R_{\mbox{is}} \; (g/alle \; \mbox{tibrigen Elektroden bei } U_{\mbox{is}} = 100 \; \mbox{V}) > & 100 & M\Omega \\ R_{\mbox{is}} \; (fk \; \mbox{bei } U_{\mbox{is}} = 100 \; \mbox{V}) & > & 10 & M\Omega \end{array}$

gemessen bei Uf = 6,3 V

Phasenwinkel der Steilheit

 $-\varphi_s$ (100 MHz) =

7

Grad

Ende der Lebensdauer

 $I_{\mathbf{a}}$ $\stackrel{\leq}{=}$ 10,5 mA S $\stackrel{\leq}{=}$ 9,5 mA/V $-I_{\mathbf{g}1}$ $\stackrel{\geq}{=}$ 1,0 μ A

Meßeinstellung: siehe Kenndaten mit Uba = 185 V

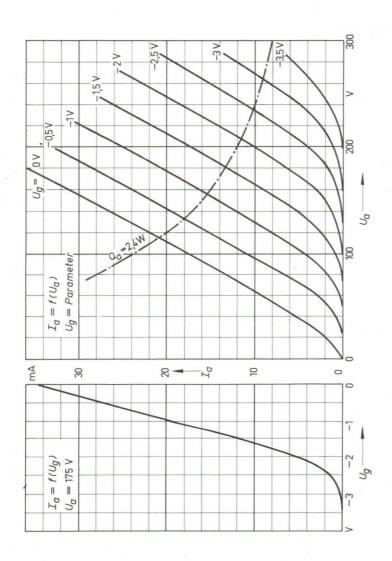
Betriebsdaten

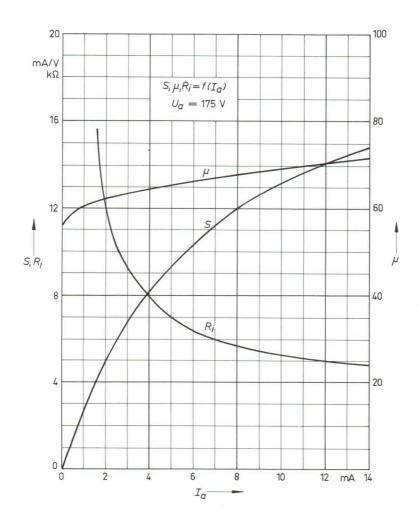
Gitterbasisverstärker

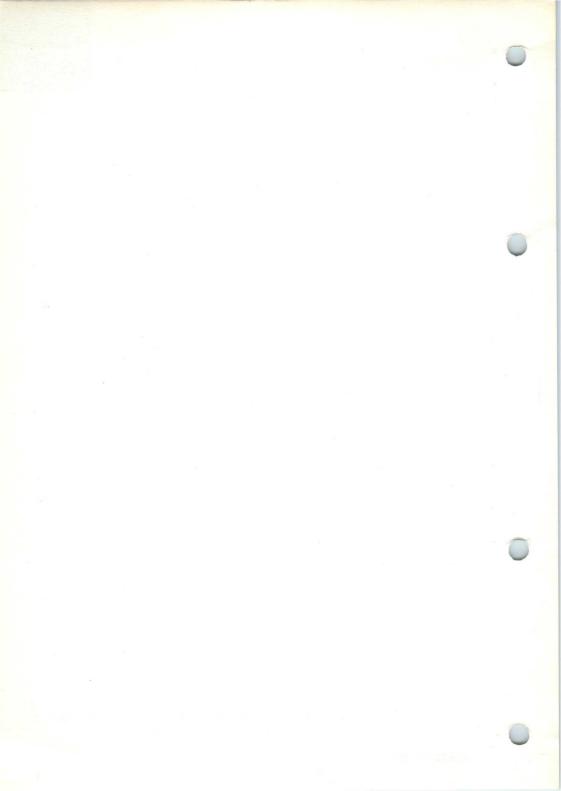
U _{ba}	=	185		V
$U_{\mathbf{a}}$	=		175	V
^{+U} bg	=	8		V
$R_{\mathbf{k}}$	=	800	125	Ω 1)
I_a	=	12	12	mA
S	=	14	14	mA/V

Selbstschwingende Mischstufe

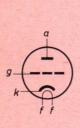
Uba	=	220	V
$R_{\mathbf{a}\mathbf{v}}$	=	5,6	$k\Omega$
R_g	=	47	$k\Omega$
I_a	≈	12	mA
Ig	≈	50	μΑ

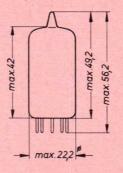

1) Betrieb 1 it hohem Kathodenwiderstand wird empfohlen.


KENNLINIENFELDER


$$I_a = f(U_g)$$
 $I_a = f(U_a)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE


Art und Verwendung


Vorläufige Daten

Steile, rauscharme UHF-Triode mit 5fach herausgeführtem Gitter für Verstärker und Oszillatoren bis 1000 MHz in Gitterbasisschaltung. Spezialausführung der EC 88.

Qualitätsmerkmale

Lange Lebensdauer
Zuverlässigkeit
Enge Toleranzen
Stoß- und Erschütterungsfestigkeit
Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: Noval

Kolben: DIN 41539, Form A, Nenngröße 40

Fassung: Rel stv 99

Gewicht: ca. 9,5 g

Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_{\mathbf{f}} = 6,3 \pm 5 \%$$
 V
 $I_{\mathbf{f}} \approx 155$ mA

Heizart: indirekt durch Wechsel- oder Gleichstrom,
Parallelspeisung

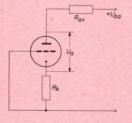
Kapazitäten

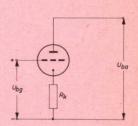
ohne äußere Abschirmung

mit äußerer Abschirmung (m) 22,2 mm Ø

$$C_{gm/kf}$$
 = 3,8 pF
 $C_{a/gm}$ = 1,7 pF
 $C_{a/kf}$ \approx 55 mpF

Kenndaten I


Ua	=	160	125	V	2)
Rk	=	100	60	Ω	
I _a	=	12,5	12	mA	
S	=	13,5	14	mA	/V
μ	~	65	67		
Ri	=	4,8	4,8	kΩ	
Raq	=	240	230	Ω	
F (600 MHz)	=	8	7,7	dB	3)
F (800 MHz)	=	9,3	9	dB	3)

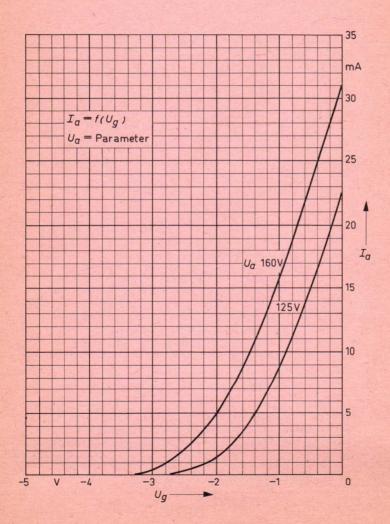

- 1) Wegen der höheren Gleichstromgegenkopplung sind die Betriebseinstellungen unter Kenndaten II vorzuziehen.
- 2) Im Interesse einer langen Lebensdauer und einer erhöhten Eingangsempfindlichkeit wird der Betrieb mit niedriger Anodenspannung empfohlen.
- 3) Gemessen bei Leistungsanpassung

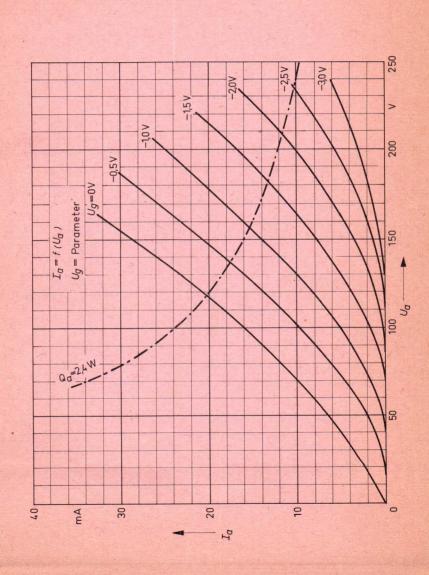
Kenndaten II

Uba	=	220	220	170	135	V
+Uba	=	-8.	-	9	9	V
+Ubg Rav	=	4,7	8	-		kΩ
Rk	=	100	60	820	820	Ω
Ua	*	160	125	160	125	V 1)
I _a S	=	12,5	12	12,5	12	mA
S	=	13,5	14	13,5	14	mA/V
μ	≈	65	67	65	67	
Ri	=	4,8	4,8	4,8	4,8	kΩ

Grenzdaten

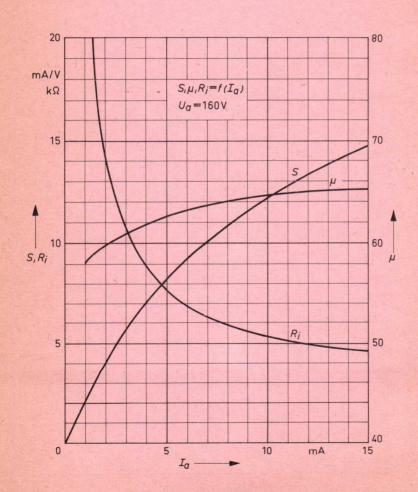
(absolute Werte)


Uao	max.	400	V
Ua	max.	200	V
Q _a -Ug Rg Ik Ufk	max.	2,4	W
-Ug	max.	50	V
Rg	max.	1,0	MΩ 2)
Ik	max.	15	mA
Ufk	max.	100	V
Rfk	max.	20	kΩ


- 1) Die Anodenspannung (Ua) ergibt sich beim Betrieb mit den angegebenen Einstellwerten. Im Interesse einer langen Lebensdauer und einer erhöhten Eingangsempfindlichkeit wird der Betrieb mit niedriger Anodenspannung empfohlen.
- 2) Bei automatischer Gittervorspannung

KENNLINIENFELD

 $I_a = f(U_g)$



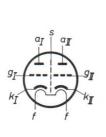
KENNLINIENFELD

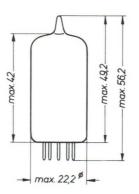
SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE

Art und Verwendung

Steile, rauscharme Doppeltriode mit getrennten Kathoden. Besonders geeignet für Cascodeschaltungen in NF-, ZF- und HF-Verstärkern sowie für Oszillatoren, Frequenzvervielfacher, Mischstufen, Kathodenverstärker, bistabile Kippstufen und Multivibratoren hoher Impulsfrequenz und steiler Anstiegsflanke. Universell verwendbar in Antennenverstärkern.

Qualitätsmerkmale


Lange Lebensdauer (> 10000 Std.)


Zuverlässigkeit (p ≈ 1,5 °/oo je 1000 Std.)

Enge Toleranzen

Stoß- und Erschütterungsfestigkeit

Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: Noval Gewicht: ca. 11g Kolben: DIN 41539, Form A, Nenngröße 40 Einbau: beliebig

HEIZUNG, KAPAZITÄTEN

Heizung

$$U_{\rm f} = 6,3$$
 V 1)
 $I_{\rm f} = 300 \pm 15$ mA

Heizart: indirekt durch Wechsel oder Gleichstrom, Parallelspeisung

K	apazitäten		(ohne äußere Absc	chirmung)	
		•	System I	System II	
	Cg/kfs Cg/kf Ca/kfs Ca/kf Cag Cas Ckf	= = = = = = = = = = = = = = = = = = = =	$3,1 \pm 0,6$ $3,1 \pm 0,6$ $1,75 \pm 0,2$ $0,5 \pm 0,1$ $1,4 \pm 0,2$ $1,3 \pm 0,2$ $2,6$	3,1 ± 0,6 3,1 ± 0,6 1,65 ± 0,2 0,4 ± 0,1 1,4 ± 0,2 1,3 ± 0,2 2,7	pF pF pF pF pF
	C _k /gfs C _a /gfs C _{ak}	= = =	6,0 ± 0,9 3,0 ± 0,3 0,18 ± 0,04	6,0 ± 0,9 2,9 ± 0,3 0,18 ± 0,04	pF pF pF
	C _{aa} Cgg CaIgII CaIIgI CgIkII CgIIkI	< < < < < < < < < < < < < < < < < < <	45 5 5 5 5 5		mpF 2) mpF mpF mpF mpF

- Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.
- 2) Mittelwert 25 mpF

Kenndaten

		min.	nom.	max.	nom.	
Uha	4		100		90	V
+U _b	=		9		0	V
U _{ba} +U _{bg} R _k	=		680		120	Ω
I _a S	=	14,2	15,0	15,8	12	mA
S	=	10,5	12,5	15,0	11,5	mA/V
μ	=		33			
Ri	=		2,6			$k \Omega$
Räc	=		300			Ω
R _{äc} R _{el} (100 MHz)	=		* 3			kΩ
Rauschzahl F	=		4,6			dB 1)
$U_{g\sim}(+I_{\sigma}=0,3 \mu A)$	=		0,75			V
$U_{g\sim}(+I_{g}=0,3 \mu A)$	< =			0,1		μA

Grenzdaten

Uao	max.	400	V
$U_a(Q_a \leq 0.8 \text{ W})$	max.	250	V
Ua	max.	220	V
Qa	max.	1,5	W
Qa	max.	1,8	W^{2}
-Ug	max.	100	V
-Ugsp	max.	200	V 3)
Q_g	max.	30	mW
Rg	max.	1,0	$M\Omega^{4}$
I_k	" max.	20	mA
Iksp	max.	100	$_{\rm mA}$ 3)
U _{fk+}	max.	150	V
Ufk-	max.	100	V
t111-	max.	170	°C

- 1) Gemessen bei 200 MHz in Cascodeschaltung mit Rauschanpassung
- 2) Wenn $Q_{aI} + Q_{aII} = 2 W$

Schaltbild siehe Seite 6

- 3) Impulsdauer max. 10 % einer Periode, nicht länger als 200 μs.
- 4) Bei automatischer Gittervorspannung. Feste Vorspannung nur bei Anodenströmen ≤ 5 mA zulässig.

Besondere Angaben

Brumm

Ubr

<

50

 μV

Meßeinstellung: U_a = 90 V, R_k = 80 Ω , C_k = 1000 μF , R_g = 0,5 $M\Omega$,

völlig geschirmte Röhrenfassung Mittensymmetrierung des Heizfadens

Isolationswiderstände

 R_{is} (g/alle übrigen Elektroden bei U_{is} = 100 V) > 100 M Ω

 R_{is} (a/alle übrigen Elektroden bei U_{is} = 300 V) > 100 $M\Omega$

 R_{is} (fk- bei U_{is} = 100 V) > 10 $M\Omega$ R_{is} (fk+ bei U_{is} = 100 V) > 20 $M\Omega$

gemessen bei Uf = 6,3 V

Ende der Lebensdauer

Liliac a	CI ECECIIDAGGE	
т	<	42 E
la	=	13,5
S	<	8,5
-Ig	≥	1,0

mA mA/V μA

Meßeinstellung: siehe Kenndaten mit $R_k = 680 \Omega$

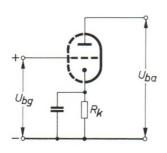
Betriebsdaten als Leistungsverstärker

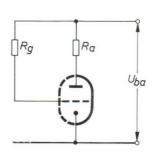
Eintakt A-Betrieb

U R - U	a = J _g =	0	220 20 6,3	4,1	V kΩ V
I	=	6,5	_	9,2	mA
+1	~ =	_	_	0,3	μA
N,	g =	-	0,05	0,5	w
k	=	_	-	7	%
G.	egentakt B-Betri	eb	200		v
R	= =		22		kΩ
R _z	ia – J _g =		5,8		V
	g –				
U	g~ =	0	0,8	3,8	V
I.	=	2 x 5	-	2x9	mA
+I	g =	-	_	0,3	μA
IN	a~ =	-	0,05	1,2	W
k	=	-	-	3	%
U _a R _a -U	a = = = = = = = = = = = = = = = = = = =		200 10 5,8		V kΩ V
Ug	~ =	0	0,8	3,8 1)	V
I	=	2 x 5	_	2x13,5	mA
+I,	g =	-	-	0,3	μ A
Na	=	-	0,05	1,5	W

¹⁾ Sprach- oder Musikaussteuerung

%

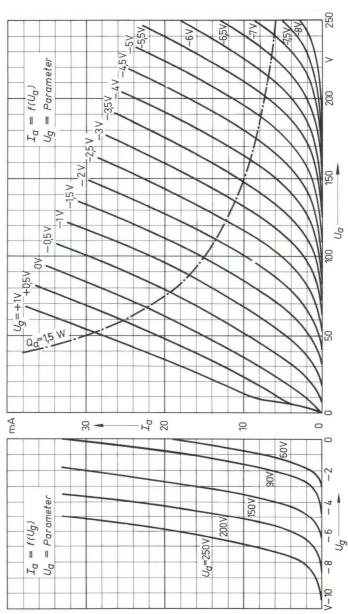


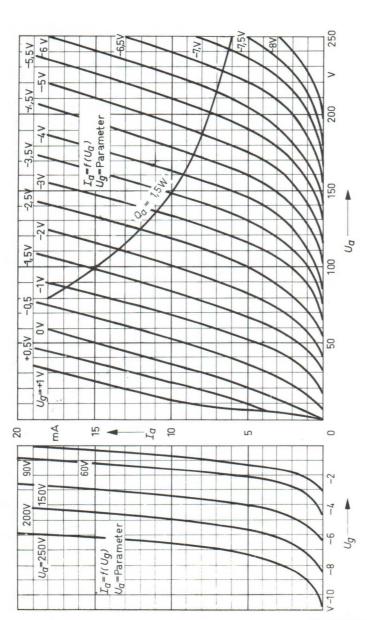

Betriebsdaten für additive Mischstufen

U_{ba}	=	60	90	150	V
Ra	= -	0	1	4	$k\Omega$
Rø	=	1	1	1	$M\Omega$
R _g U _{osz}	=	2	2,5	3	V
Ia	=	4,7	7,7	11,0	mA
S _c	=	2,9	3,5	4,1	mA / V
Ric	=	8,3	7,0	6,1	$k\Omega$

Kenndaten für Zählschaltungen

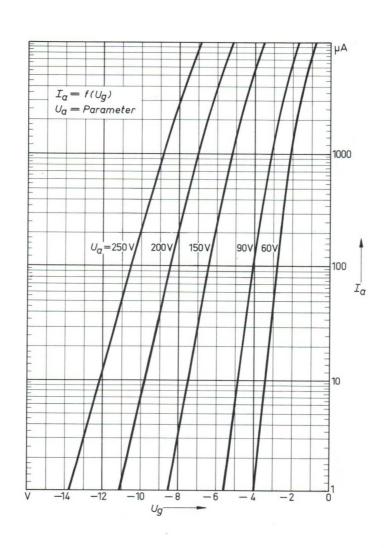
Uba	=		150		60	V
Ra	=		2,5		2,5	$k\Omega$
Rg	=		300		300	kΩ
		20	2.2	38 1)	> 0	A
Ia	=	28	33	38 1)	> 9	mA
I _a -Ug (I _a =0,1 mA)	=	5,0	6,5	8,5	-	V
$-U_g$ ($I_a \leq 5, 0 \mu A$)	=		15		-	V
UgI-UgII (Ia=0,1 n	nA)≦		2,0		-	V

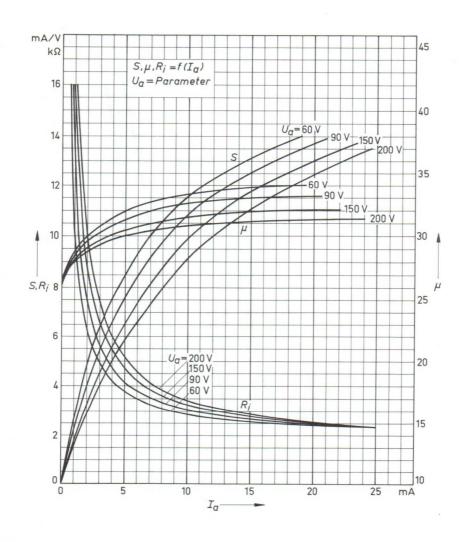




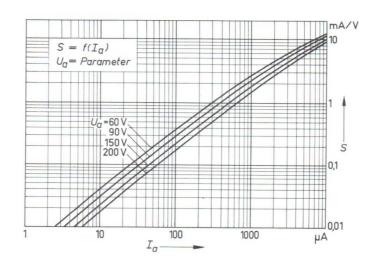
Meßschaltung für Kenndaten

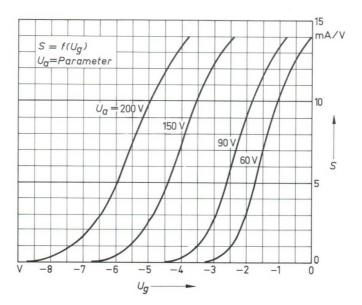
Meßschaltung für Zählschaltungen


1) Meßdauer = 1 sec.

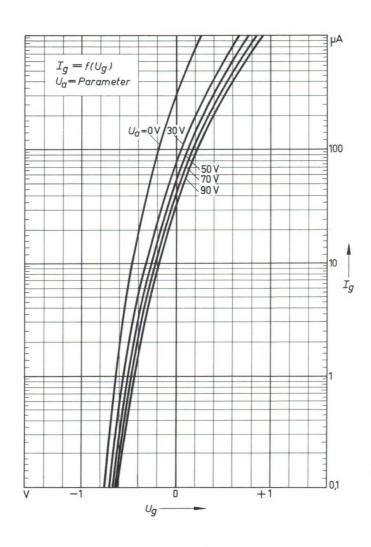


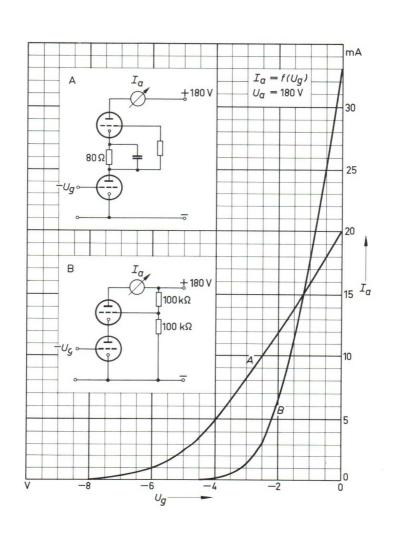
$\begin{aligned} \mathsf{KENNLINIENFELD} \\ \mathsf{I_a} &= \mathsf{f}\left(\mathsf{U_g}\right) \end{aligned}$



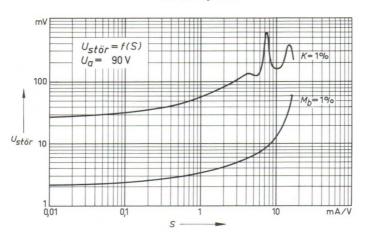


STEILHEITSKENNLINIEN

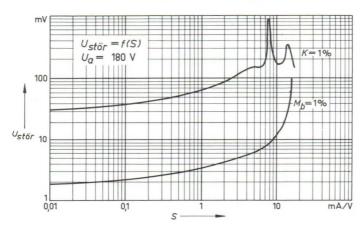



$\label{eq:gitterstromkennline} \textbf{GITTERSTROMKENNLINIEN} \\ \textbf{I}_g = \textbf{f} \ (\textbf{U}_g)$

${\sf CASCODEKENNLINIEN} \\ {\sf I_a} = {\sf f} \; ({\sf U_g})$

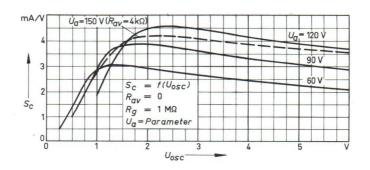


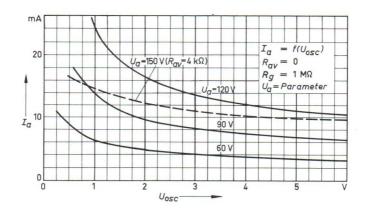
BRUMM- UND KREUZMODULATIONSKENNLINIEN

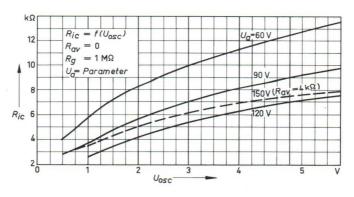


 $U_{st\"{o}r} = f(S)$

für ein System

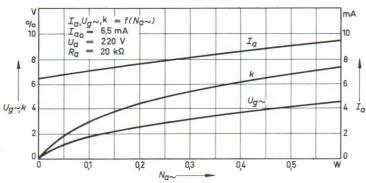



in Cascode-Schaltung

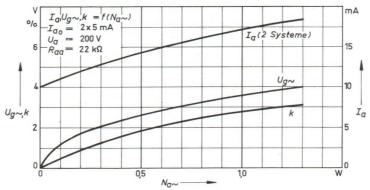


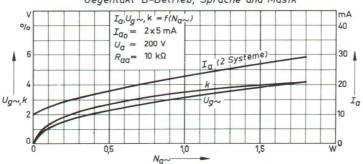
MISCHKENNLINIEN

 S_{c} , I_{a} , $R_{ic} = f(U_{osc})$



AUSSTEUERKENNLINIEN

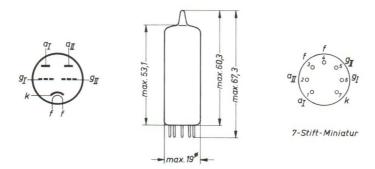

SIEMENS RÖHREN



Gegentakt B-Betrieb, Dauerton

Gegentakt B-Betrieb, Sprache und Musik

SIEMENS & HALSKE AKTIENGESELLSCHAFT



Art und Verwendung

Doppeltriode mit gemeinsamer Kathode, besonders geeignet für bistabile Kippstufen und Multivibratoren in Rechen- und Zählgeräten.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit (p \approx 1,5 $^{\rm O}/{\rm oo}$ je 1000 Std.) Enge Toleranzen Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: Miniatur

Kolben: DIN 41537, Form A, Nenngröße 50

Gewicht: ca. 15 g

Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_{f} = 6,3$$
 V
 $I_{f} = 400 \pm 20$ mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallel- oder Serienspeisung

Kapazitäten

		System I	System II	
C _e C _a C _{ag} C _{gf}	= = = <	3,4 ± 0,5 0,35 ± 0,1 2,5 ± 0,5 0,15	3,4 ± 0,5 0,4 ± 0,1 2,5 ± 0,5 0,3	pF pF pF pF
Caa Cgg CaIgII CaIIgI	< < <	0, 0,	,4 22 35 15	pF pF pF pF

Kenndaten

		min.	nom.	max.	
U _{ba} R _k	=		100		V
Rk	=		250		Ω
I _a s	=	6,5	8,5	10,5	mA
S	=	4,5	6,0	7,5	mA/V
μ	=		27		
$-U_g (+I_g=0,$	$3\mu A) =$		0,2	1,3	V

1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung bei Parallelspeisung nicht mehr als ± 5 % (absolute Grenzen) und der Heizstrom bei Serienspeisung nicht mehr als ± 1,5 % (absolute Grenzen) um den Sollwert schwanken.

GRENZDATEN BETRIEBSDATEN

Grenzdaten	(absolute W	erte)	
U_{ao}	max.	600	V
Ua	max.	300	V
Q_a	max.	2,0	W
-Ug	max.	100	V
-Ugsp	max.	200	_V 1)
+U~	max.	0	V
Ig Igsp Rg Rg Ik	max.	250	μА
Igsp	max.	1,0	mA 1)
Rø	max.	0,5	$M\Omega^{2}$
Rg	max.	1,0	$M\Omega$ 3)
$I_{\mathbf{k}}$	max.	15	mA
Iksp	max.	75	mA 1)
Ufk	max.	100	V
tkolb	max.	170	°C

Betriebsdaten

Verwendung in Rechenmaschinen

		min.	nom.	max.	
Uha	=		150		V
Ra	=		20		$k\Omega$
U _{ba} R _a R _g	=		47		$k\Omega$
$I_a(U_R=0V)$ $I_a(-U_R=10V)$ $ U_{RI}-U_{RII} $	=	5,0	5,6	6,2	mA
$I_a(-U_R = 10V)$	=	-	-	0,1	mA
URI-URII	=	-	-	2,0	V 4)
		Ra	U_a \bigcap_{R_a}		

- 1) Integrationszeit tav = 10 ms.
- 2) Mit fester Gittervorspannung.
- 3) Mit automatischer Gittervorspannung.
- 4) $I_{aI} = I_{aII} = 0, 1 \text{ mA}.$

Besondere Angaben

Negativer Gitterstrom

-Ig1 ≦

0,2

μA

mA

mA

Meßeinstellung: siehe Kenndaten

Isolationswiderstände

 R_{is} (a/alle übrigen Elektroden bei U_{is} =300 V)> $\,$ 100 $\,$ $M\Omega$ R_{is} (g/alle übrigen Elektroden bei U_{is} =300 V)> $\,$ 100 $\,$ $M\Omega$ R_{is} (fk + bei U_{is} =100 V) $\,$ 7 $\,$ $M\Omega$

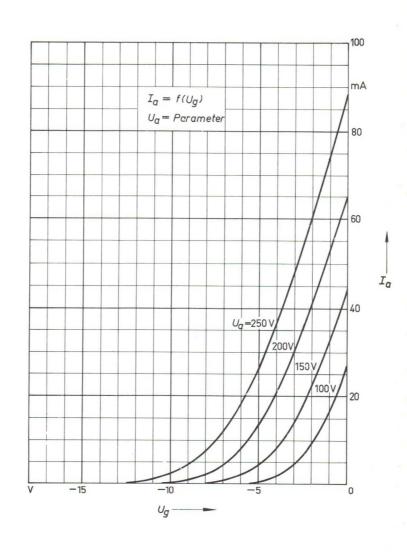
gemessen bei Uf = 6,3 V

Ende der Lebensdauer

S \leq 3,0 mA/V $_{\mu A}$

Meßeinstellung: siehe Kenndaten

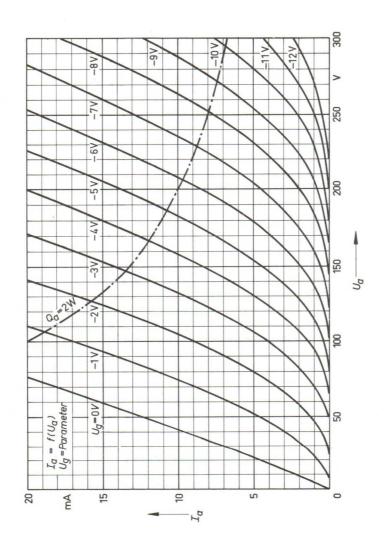
Meßeinstellung: siehe Betriebsdaten


 R_{is} (a/alle übrigen Elektroden bei U_{is} =300 V) < 20 $M\Omega$ R_{is} (g/alle übrigen Elektroden bei U_{is} =300 V) < 20 $M\Omega$ R_{is} (fk + bei U_{is} =100 V) < 3,5 $M\Omega$

gemessen bei Uf = 6,3 V

Hinweis

Die E 90 CC ist nicht für solche Anwendungen bestimmt, die in Bezug auf Mikrofonie oder Brumm kritisch sind.


 $I_a = f(U_g)$

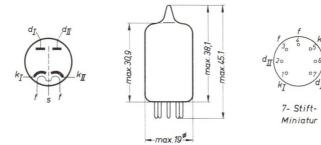
KENNLINIENFELD

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE

Art und Verwendung

Doppeldiode mit getrennten Kathoden, besonders geeignet für Demodulatoren, Regelspannungserzeuger, Klemmschaltungen und Gleichrichter kleiner Leistung.

Spezialausführung der EAA 91.


Die Daten der Röhre entsprechen der Vorschrift MIL-E-1/7 B des Typs 5726/6 AL 5 W.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit (p \approx 1,5 °/oo je 1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode Heizfaden - Schaltfestigkeit

Äquivalente Typen

Die E 91 AA stimmt in ihren Daten mit den nachstehenden Röhrentypen so weitgehend überein, daß ein Austausch möglich ist: 6 AL 5 W/CV 4007, EAA 901 S, 6 AL 5/CV 283, EAA 91.

Maße in mm

Sockel: Miniatur Gewicht: ca. 6 g Kolben: DIN 41537, Form A, Nenngröße 28 Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN, GRENZDATEN

Heizung

$$U_{f}$$
 = 6,3 V^{1}
 I_{f} = 300 ± 15 mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

(mit äußerer Abschirmung 19 mm Ø an Stift 6)

Kenndaten

		min.	nom.	max.	
$I_d (U_d = 10 \text{ V})$	=	40	60		mA 2)
4 . 4	=	2		20	μΑ
$\Delta I_d (U_d = 0 \text{ V}, R_d = 40 \text{ k}\Omega)$	=			5	μA 3)

Grenzdaten (absolute Werte)

-Udsp	max.	360	V
Ia	max.	10	mA
Iden	max.	60	mA
^I dsp ^U fksp	max.	360	V
tkolb	max.	165	°C

- Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ⁺ 5 % (absolute Grenzen) um den Sollwert schwankt.
- 2) Kurzzeitig messen, da Grenzwert überschritten.
- 3) Symmetrie der Systeme.

BETRIEBSDATEN BESONDERE ANGABEN

Betriebsdaten

Einweggleichrichter

Utr	=	117	V
Utr Rs CLade	=	300	Ω
CLade	= ,	8	μF
$^{\mathrm{I}}\mathrm{d}$	=	9	mA

Zweiweggleichrichter

Utr	=	2x165	V
Rs	=	300	Ω
R_{L}	=	11	$\mathbf{k}\Omega$
CLade	=	8	μF
I_d	≧	16	mA

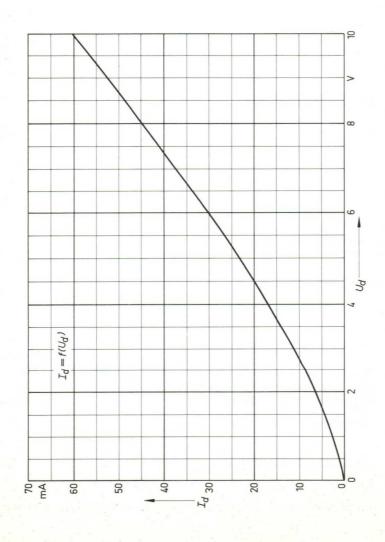
Besondere Angaben

Resonanzfrequenz

$$f_{res}$$
 \approx 700 MHz

Isolationswiderstände

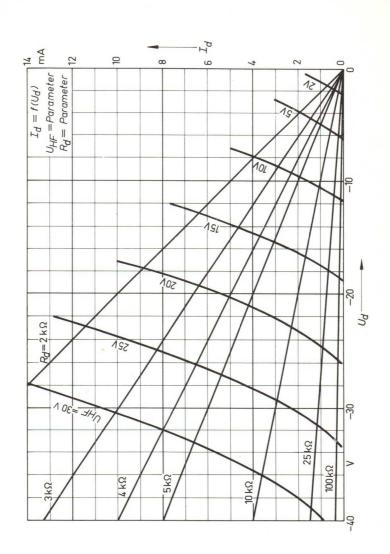
$$R_{is}$$
 (d/alle übrigen Elektroden bei U_{is} = 300 V) > $~100~M\Omega$ R_{is} (s/alle übrigen Elektroden bei U_{is} = 300 V) > $~100~M\Omega$ R_{is} (fk bei U_{is} = 100 V) > $~20~M\Omega$

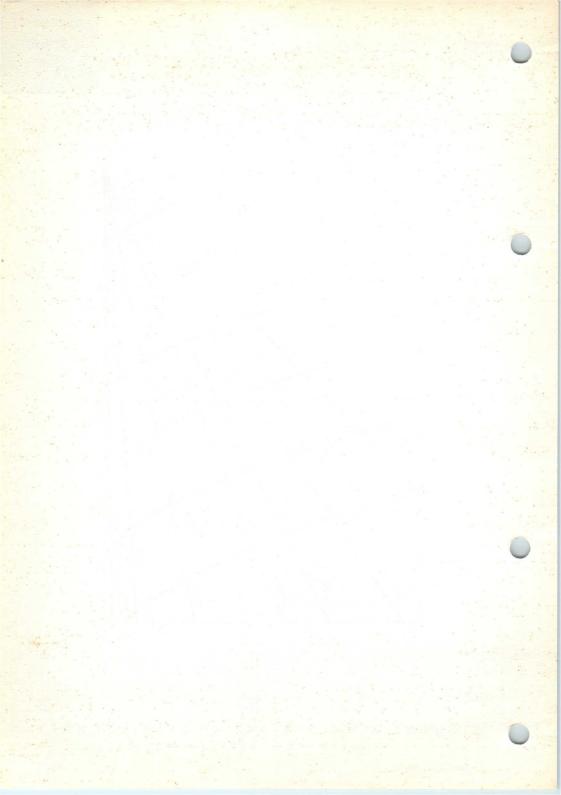

gemessen bei $U_f = 6,3 \text{ V}$

Ende der Lebensdauer

 $I_d \leq 14$ mA

Meßeinstellung: siehe Betriebsdaten als Zweiweggleichrichter

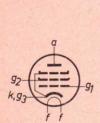


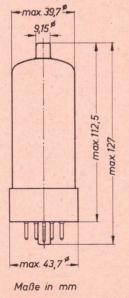

RICHTKENNLINIENFELD

E 91 AA 5726

 $I_d = f(U_d)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FUR BAUELEMENTE


Art und Verwendung


Vorläufige Daten

Steile Endpentode mit kleinem inneren Leistungswiderstand. Besonders geeignet für Gegentakt-, Breitband- und Kathodenverstärker sowie für eisenlose Endstufen und elektronisch geregelte Netzgeräte.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit (p ≈ 1,5 °/oo je1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit Heizfaden Schaltfestigkeit

Sockel: Oktal

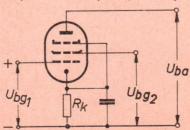
Gewicht: ca. 110 g Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_{f} = 6,3$$
 $I_{f} = 1,7 \pm 0,1$

V 1)


Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

$$C_{e} = 35$$
 pF
 $C_{a} = 17$ pF
 $C_{ag1} < 2$ pF

Kenndaten

		min.	nom.	max.	
Uha	=		275		V
Uha2	=		180		V
+Uba4	=		15,7		V
Uba Ubg2 +Ubg1 Rk	=		300		$\Omega^{(2)}$
	=	85	100	115	mA
I _a I _{g2} S	=		4	6	mA
5	=	22,5	27,5	32,5	mA/V

- 1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.
- Betrieb mit +Ubg1 und hohem Kathodenwiderstand wird empfohlen.

Kenndaten

Ua	=	- 250	V
	=	150	V
Ug2 -Ug1	~	15,5	V
Ia	=	100	mA
I _g 2	=	4	mA
Ig2	=	27,5	mA/V
Hg2g1	≈	6,5	
μg2g1 R _i	=	10	kΩ
-Ug1 (Ia=1,0 mA)	≦	30	V

Grenzdaten

(absolute Werte)

Uao	max.	2000	V
Ua	max.	900	V
Uasp	max.	8000	V 1)
Qa	max.	27,5	.W
Ugzo	max.	550	V
Ug2o Ug2 Qg2 -Ug1	max.	.250	V
QgZ	max.	5,0	W
-Üg1	max.	150	V
Qg1	max.	0,1	W
Rg1	max.	0,5	$M\Omega^{2}$
Rg1	max.	1,0	$M\Omega$ 3)
Ik	max.	300	mA
Iksp	max.	1,5	A 4)
Ufk+	max.	200	V
Ufk-	max.	100	V
Rfk	max.	20	kΩ
tkolb	max.	225	oC
PARTY NAMED IN			

- 1) Impulsdauer max. 18 % einer Periode, nicht länger als 18 μs.
- 2) Mit fester Gittervorspannung.
- 3) Mit automatischer Gittervorspannung.
- 4) Impulsdauer max. 10 % einer Periode, nicht länger als 4 ms.

BESONDERE ANGABEN BETRIEBSDATEN

Besondere Angaben

Heizfaden Schaltfestigkeit

Die Röhre verträgt mindestens 2000maliges Ein- und Ausschalten (1 Minute ein-, 1 Minute ausgeschaltet).

Meßeinstellung: Uf = 7,6 V, Ufk+ = 125 V

Isolationswiderstände

 R_{is} (a/alle übrigen Elektroden bei U_{is} = 400 V)> 100 M Ω R_{is} (g/alle übrigen Elektroden bei U_{is} = 400 V)> 100 M Ω gemessen bei U_f = 6,3 V

Ende der Lebensdauer

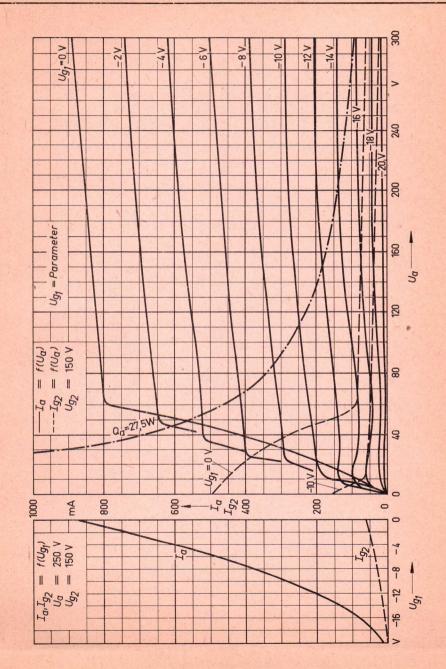
Ia	≦	60	mA
I _a S	≦	19	mA
Ig1	≧	1,0	μΑ

$$R_{is}$$
 (a/alle übrigen Elektroden bei U_{is} = 400 V) < 20 $M\Omega$ R_{is} (g/alle übrigen Elektroden bei U_{is} = 400 V) < 20 $M\Omega$

gemessen bei Uf = 6,3 V

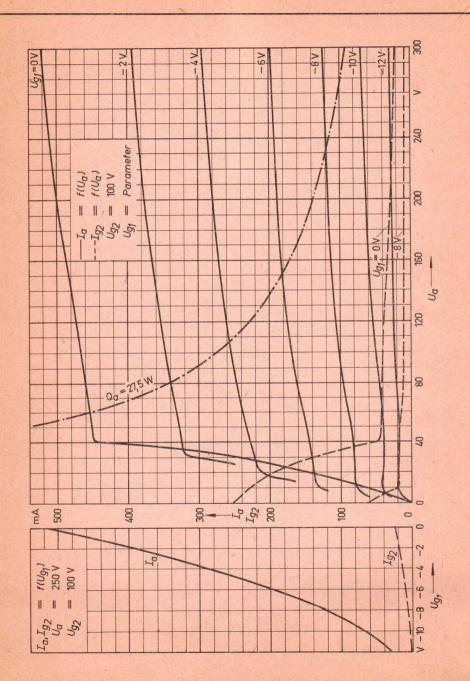
Betriebs- und Meßeinstellung:

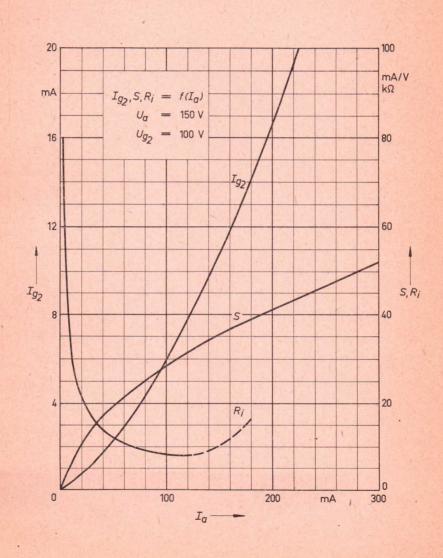
Die Röhre wird in der unter Kenndaten auf Seite 2 angegebenen Einstellung auf Lebensdauer geprüft.


Betriebsdaten

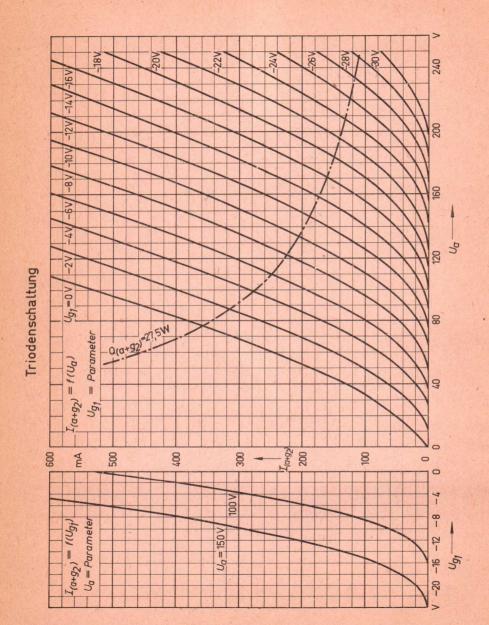
NF- Verstärker, Gegentakt AB-Betrieb

Ua	=		300		v
Ua Ug2 -Ug1	=		150		V
-Ü 01	~		17		V
Raa	=		1,6		kΩ
Ug1~	=	0	0,24	9	v.
Ia	=	2x80		2x182	mA
	=	2x2,5	以下中国共产生	2x22	mA
Na ~	=	0	0,05	60	W
k	=	- 1	4-1-1	5	%


$$l_a, l_{g_2} = f(U_{g_1})$$
 $l_a, l_{g_2} = f(U_a)$



KENNLINIENFELDER $I_{a}, I_{g_2} = f(U_{g_1}) \qquad I_{a}, I_{g_2} = f(U_{a})$

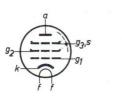


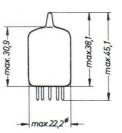
KENNLINIENFELDER

$$I_{(a+g_2)} = f(U_{g_1})$$
 $I_{(a+g_2)} = f(U_a)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT

WERNERWERK FOR BAUELEMENTE


RÖHREN


Art und Verwendung

Steile Pentode, besonders geeignet für Breitband-, HF- und ZF-Verstärker.

Qualitätsmerkmale

Lange Lebensdauer (10000 Std., gemittelt über 100 Röhren) Zuverlässigkeit (p≈ 1,5 °/oo je 1000 Stunden) Enge Toleranzen Stoß- und Erschütterungsfestigkeit

Maße in mm

Sockel: Noval

Kolben: DIN 41539, Form A, Nenngröße 28

Gewicht: ca. 8 g Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_f$$
 = 6,3 V 1)
 I_f \approx 300 $\frac{1}{2}$ 15 mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

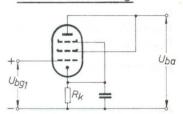
Kapazitäten

(mit äußerer Abschirmung 22,2 mm ∅)

Kenndaten

		min.	nom.	max.			
Uba	=		190		180	V	
Ug3	=		0		0	V	
Ubg2	=		160		150	V	
+Ubg1	=		9		0	V	
Rk	=		630		100	Ω	
Ia	=	12,2	13	13,8	11,5	mA	
	=	2,9	3,3	3,7	2,9	mA	
I _{g2} S	=	14,2	16,5	18,8	15,9	mA/\	T
µg2g1	=		50				
Ri	=		90			$k\Omega$	21
$R_{el}(f=100 \text{ MHz})$	=		2			kΩ	2)
Rag	=		460			Ω	
$-U_{g1}$ ($I_{g1}=+0,3\mu A$)	<				0,5	V	
$-U_{g1}$ (Ia =0,8 mA)	<u><</u>				4,5	V	
-Ug1 (Ig1=+0,3μA) -Ug1 (Ia =0,8 mA) -Ig1	=			0,5		μA	
Ra	=		1			$k\Omega$	
Ug1~	=		0,1			V	
k ₂	=		1,6			%	

- 1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.
- 2) Beide Kathodenanschlüsse parallelgeschaltet.


Kenndaten

Triodensch	altung (g2 mit	t a verbunden)	
Uha	=	160	V
U _{ba} +U _{bg} 1	=	9	V
R_k	=	620	Ω
Ia	=	16,5	mA
I _a S	=	18,5	mA/V
μ	=	50	
Ri	=	2,7	$k\Omega$
Räg	=	225	Ω

Pentodenschaltung

Triodenschaltung

Grenzdaten (absolute Werte)

Uao	max.	400	V
Ua	max.	210	V
Q_a	max.	3,0	W
Ug2o	max.	400	V
Ug2	max.	175	V
Ogz	max.	0,9	W
Og2 -Ug1	max.	50	V
-Ugasa	max.	100	V
+Ug1	max.	0	V 1)
Rg1	max.	250	$k\Omega$ 2)
R _{a1}	màx.	500	$k\Omega$
Rg1	max.	25	mA
U_{fk}	max.	60	V 3)
Rfk	max.	20	$k\Omega$ 3)
t _{kolb}	max.	155	oC

- 1) Mit fester Gittervorspannung
- 2) Mit automatischer Gittervorspannung
- 3) Es empfiehlt sich, R_{fk} <20 k Ω zu wählen, um den Einfluß von Isolationsänderungen zwischen Heizfaden und Kathode zu verringern.

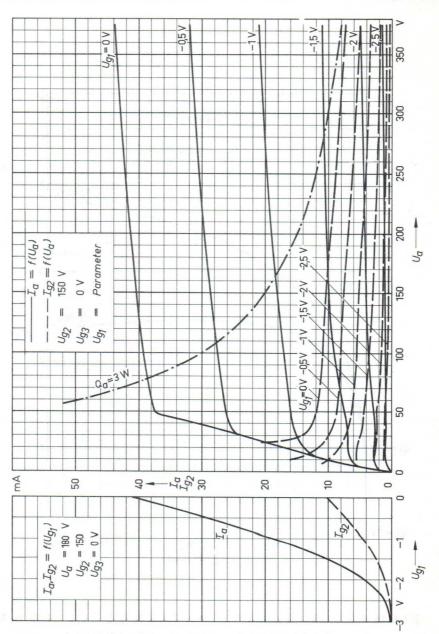
Besondere Angaben

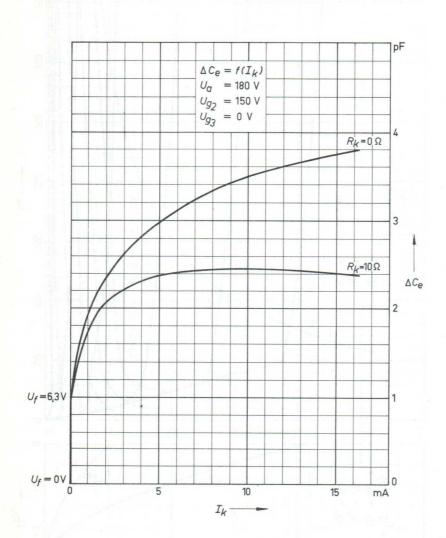
Phasenwinkel der Steilheit

$$\varphi$$
s (f = 50 MHz) = 9
beide Kathodenanschlüsse parallelgeschaltet

Grad

Isolationswiderstände

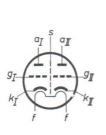

gemessen bei $U_f = 6,3 \text{ V}$

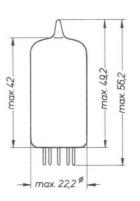

Ende der Lebensdauer

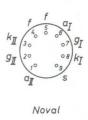
Ia	< =	11,5	mA
S	\left\	11,0	mA/V
-Ig1	=	1,0	μ A

Meßeinstellung: siehe Kenndaten mit $R_k = 630 \Omega$ Seite 2

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE




Art und Verwendung


Steile, rauscharme Doppeltriode mit getrennten Kathoden, insbesondere für mikrophoniearme NF-Schaltungen.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Zuverlässigkeit (p \approx 1,5 °/oo je 1000 Std.) Enge Toleranzen Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: .Noval

Kolben: DIN 41539, Form A, Nenngröße 40

Gewicht: ca. 11 g Einbau: beliebig Heizung

$$U_f = I_f =$$

6,3 335 ± 17 V 1) mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten	(ohne äußer	e Abschirmung)	
	System I	System II	
Cg/kfs Cg/kf Ca/kfs Ca/kf Cag Cas	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,1 ± 0,6 3,1 ± 0,6 1,65 ± 0,2 0,4 ± 0,1 1,4 ± 0,2 1,3 ± 0,2 2,7	pF pF pF pF pF pF
${^{\mathrm{C}}_{\mathrm{k/gfs}}}\atop{^{\mathrm{C}}_{\mathrm{a}/\mathrm{gfs}}}\atop{^{\mathrm{C}}_{\mathrm{ak}}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6,0 ± 0,9 2,9 ± 0,3 0,18 ± 0,04	pF pF pF
C _{aa} C _{gg} CaIgII CaIIgI CgIkII CgIIkI	< < < < < < < < < < < < < < < < < < <	45 5 5 5 5 5	mpF mpF mpF mpF mpF

 Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.

Kenndaten							
		min.	nom.	max.	nom.		
Uba	=		100		90	V	
+U _{bg}	=		9		0	V	
Rk	=		680		120	Ω	
I _a S	=	14,2	15,0	15,8	12	mA	
S	=	10,5	12,5	14,5	11,5	mA/	V
μ	=		33				
R_i	=		2,6			$k\Omega$	
Raq	=		250			Ω	
R _{el} (100 MHz)	=		3			$\mathbf{k}\Omega$	
Rauschzahl F	=		4,6			dB	1)
$U_{g} \sim (+I_{g} = 0, 3 \mu A)$	=		0,75			V	
$-U_{\alpha}(I_{\alpha} = 20 \mu\text{A})$	=			5,5		V	2)
$-\ddot{U}_{g}(I_{a} = 20 \mu A)$ $-I_{g}$	=			0,1		μΑ	,
Grenzdaten (abs	olute	Werte)					
Uao	max	x.		400		V	
Ua	max	κ.		250		V	
Q ₂	max			1,65		W	3)
- U	max			110		V	,
-Ugsp	max			200		V	4)
Qagsp	max			30		mW	,
Qg Rg	max			0,5		$M\Omega$	5)

 Gemessen bei 200 MHz in Cascodeschaltung mit Rauschanpassung.

1,0

110

100

150

165

22

•2) $R_a = 1 M\Omega$

Iksp

Ufk-

Ufk+

tkolb

- 3) $Q_a^a \text{ max. } 2,0 \text{ W, sofern } Q_{aI} + Q_{aII} \stackrel{\leq}{=} 2,2 \text{ W.}$
- 4) Impulsdauer max. 10 % einer Periode, nicht länger als 200 µsec.
- 5) Bei fester Gittervorspannung.
- 6) Bei automatischer Gittervorspannung.

max.

max.

max.

max.

max.

max.

6)

4)

 $M\Omega$

mA

mA

V

V

OC

Besondere Angaben

Klingspannung

Ukling

100

mV

Meßeinstellung: U_{ba} = 100 V, U_{bg} = +9 V, R_k = 680 Ω , R_a = 2 k Ω , C_k = 1000 μF , Schuttelfrequenz = 10...50 Hz, Beschleunigung = 2,5 g, gemessen am Ausgang der Röhre.

Ukling

<=

140

mV

Meßeinstellung: U_{ba} = 270 V, U_{bg} = 0 V, R_k = 180 Ω , R_a = 18 k Ω , C_k = 50 μ F, R_g = 1 M Ω , Schüttelfrequenz=50 Hz... 5 kHz, Beschleunigung = 0,5 g, gemessen am Ausgang der Röhre.

Brumm

Ubr

<=

50

μV

Meßeinstellung: U_a = 90 V, R_k = 80 Ω , C_k = 1000 μF , R_g = 0,5 $M\Omega$, völlig geschirmte Röhrenfassung Mittensymmetrierung des Heizfadens.

Isolationswiderstände

 R_{is} (g/alle übrigen Elektroden bei U_{is} = 100 V) $\,>\,\,$ 100 $\,$ $\,$ $M\Omega$ $\,$ R_{is} (a/alle übrigen Elektroden bei U_{is} = 300 V) $\,>\,\,$ 100 $\,$ $\,$ $M\Omega$ $\,$ R_{is} (fk+ bei U_{is} = 100 V) $\,$ $\,>\,\,$ 20 $\,$ $\,$ $M\Omega$ $\,$ R_{is} (fk- bei U_{is} = 100 V) $\,$ $\,>\,\,$ 10 $\,$ $M\Omega$ gemessen bei U_f = 6, 3 V

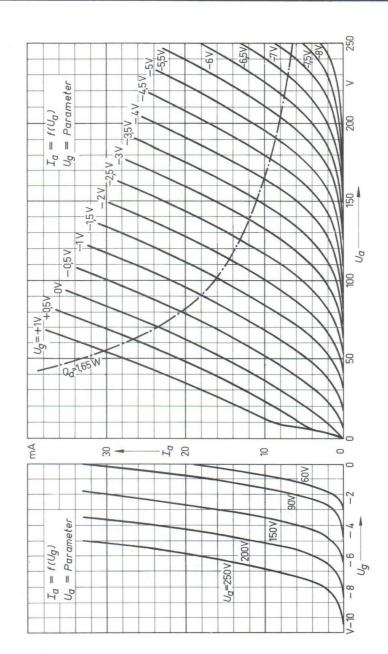
Ende der Lebensdauer

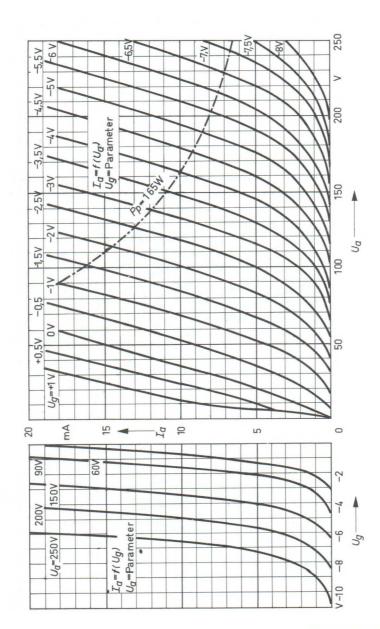
 I_a $\stackrel{\leq}{=}$ 13,5 mA S $\stackrel{\leq}{=}$ 8,5 mA/V $_{-}I_g$ $\stackrel{\geq}{=}$ 1,0 μ A

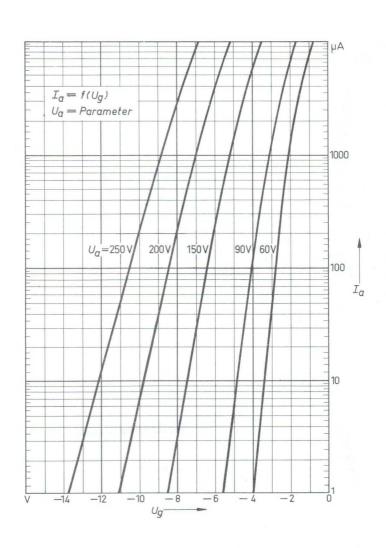
Meßeinstellung: siehe Kenndaten mit R_k = 680 Ω

Betriebsdaten als Leistungsverstärker

Eintakt A	A-Betrieb				
Ua	=		220		V
Ra	=		20		$k\Omega$
-Üg	=		6,3		V
$U_g \sim$	=	0	1,3	4,1	V
I	=	6,5	_	9,2	mA
+I _g	=	-	_	0,3	μΑ
Na~	=	-	0,05	0,5	w
k	=	-	-	7	%
Gegentak	t B-Betri	eb			
Ua	=		200		V
1,22	=		22		$k\Omega$
-Ug	=		5,8		V
Ug~	=	0	0,8	3,8	V
T_	=	2x5	-	2x9	mA
+I a	=	-	-	0,3	μΑ
Na~	=	-	0,05	1,2	w
k	=	-	-	3	%
Ua	=		200		V
Ras	=		10		$k\Omega$
-Ug	=		5,8		V
Ug~	=	0	0,8	3,8 1)	V
I _a +I _g	=	2x5	-	2x13,5	mA
+Ĩ,	=	-	-	0,3	μΑ
N _a ~	=	-	0,05	1,5	W
k	=	_	-	4	%

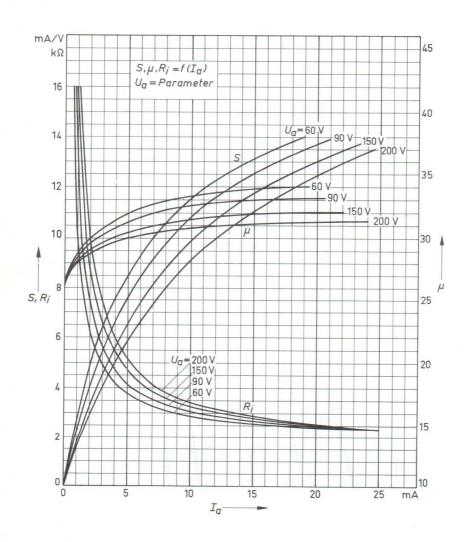

1) Sprach- oder Musikaussteuerung

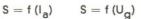

BETRIEBSDATEN

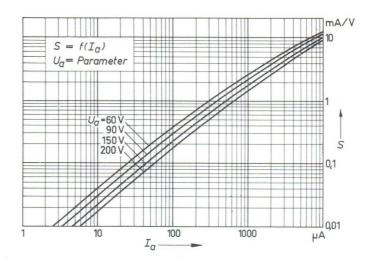


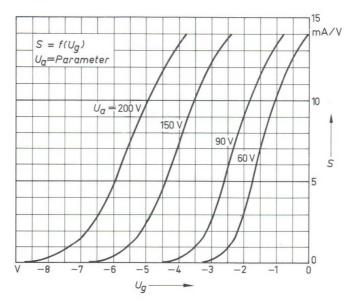
Betriebsdaten für additive Mischstufen

Uba	=	60	90	150	V
R_a	=	0	1	4	$\mathbf{k}\Omega$
R_{g}	=	1	1	1	$M\Omega$
Uosz	=	2	2,5	3	V
I _a	=	4,7	7,7	11,0	mA
s_c	=	2,9	3,5	4,1	mA/V
R _{ic}	=	8,3	7,0	6,1	$k\Omega$

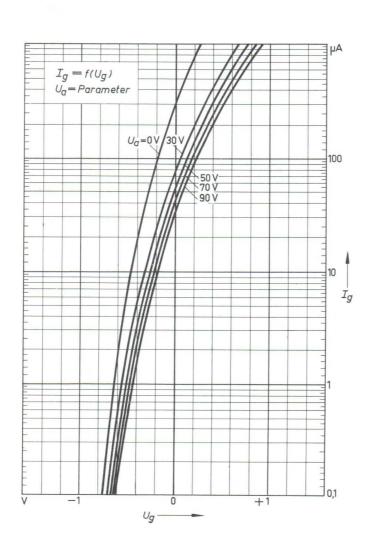


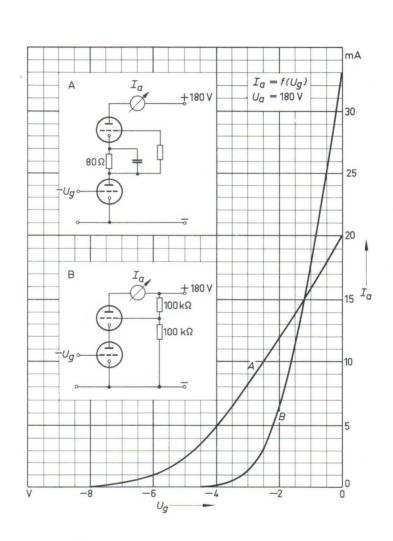



KENNLINIENFELD S, μ , $R_i = f(I_a)$

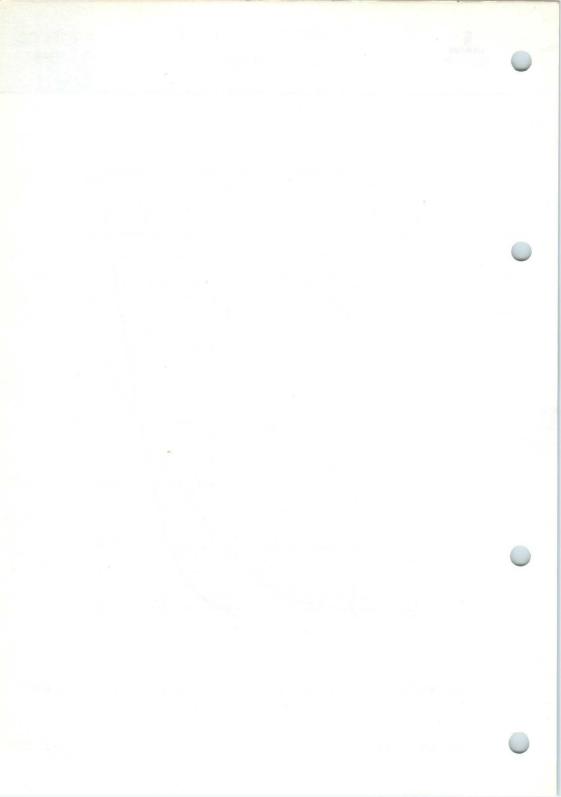

SIEMENS RÖHREN

$$S = f(l_a)$$

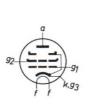


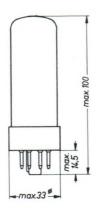


GITTERSTROMKENNLINIEN $I_g = f(U_g)$



SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FUR BAUELEMENTE




Art und Verwendung

Steile Pentode mit kleinem inneren Leistungswiderstand. Besonders geeignet als Längsröhre in elektronisch geregelten Netzgeräten, als Endröhre in Gegentaktleistungsverstärkern, als Schaltröhre sowie als Leistungsröhre in Breitband- und Kathodenverstärkern.

Qualitätsmerkmale

Lange Lebensdauer (>10 000 Std.) Große Zuverlässigkeit (p \approx 1,5 $^{\rm O}$ /oo je 1000 Stunden) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode

Oktal

Maße in mm

Sockel: Oktal

Gewicht: ca. 35 g Einbau: beliebig

HEIZUNG, KAPAZITÄTEN, KENNDATEN

Heizung

$$U_f = 6,3 V^{1}$$
 $I_f = 1,2 \pm 0,08 A$

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

$$C_{e}$$
 = 18 ± 1,5 pF
 C_{a} = 9 ± 1,0 pF
 C_{ag1} < 1,2 pF

Kenndaten

Ua	=		100		V
Ugz	=		100		V
Ug2 Rk	=		75		Ω
I _a Ig2 S	=	85	100	118	mA
I _{g2}	=	4,0	5,2	6,5	mA
	=	11,5	14	16,5	mA/V
μ g2g1	=		5,6		
Ri	=		. 5		$k\Omega$
R _{iL}	=		100		Ω
$I_a(-U_{g1} = 35V)$	<		0,1		mA

min, nom. max.

Triodenschaltung

Ua	=	100	V
U _a R _k	=	85	Ω
Ia	=	100	mA
I _a S	=	14	mA/V
μ	=	5,2	
R_i	=	0,35	$k\Omega$
RiL	=	360	Ω

1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als + 5% (absolute Grenzen) um den Sollwert schwankt.

GRENZDATEN BESONDERE ANGABEN

	Grenzdaten (a	bsolute Werte)		
77	Uao	max.	650	V
	$U_{\mathbf{a}}$	max.	400	V
	Q_a	max.	12	W
	Qa+g2	max.	16	W
	U _{g2o}	max.	650	V
	Ug2	max.	300	V
	Q_{g2}^{g2}	max.	5,5	W
	Rg1	max.	0,5	$M\Omega$
	Ik	max.	220	mA
	Iksp	max.	1,2	A
	tav	max.	10	ms
	Ufk+	max.	250	V
	Ufk-	max.	200	V
	Rfk	max.	20	kΩ
	tkolb	max.	220	°C
	KOID			
	Besondere Angal	ben		
	Negativer	Gitterstrom		
	-I _{g1}	<u> </u>	1,0	μΑ
	Meßeinste	daten		
	T==1=4:===			

Isolationswiderstände

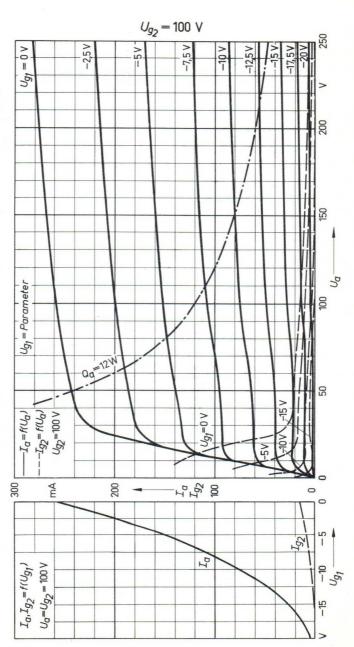
 $\rm R_{is}$ (a/alle übrigen Elektroden bei U $_{is}$ = 300 V) > 100 $\rm \,M\Omega$ $\rm R_{is}$ (g/alle übrigen Elektroden bei U $_{is}$ = 300 V) > 100 $\rm \,M\Omega$ $\rm R_{is}$ (fk bei U $_{is}$ = 100 V) > 5 $\rm \,M\Omega$

gemessen bei Uf = 6,3 V

Ende der Lebensdauer

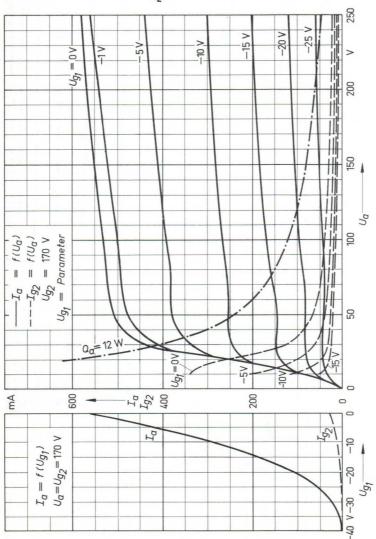
	A CONTRACTOR OF THE PROPERTY O		
I _a S	< = > =	65 9,5 2	mA mA/V μΑ

Meßeinstellung: siehe Kenndaten

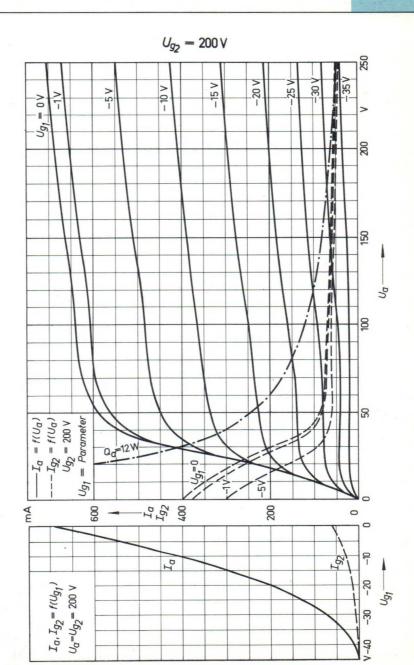


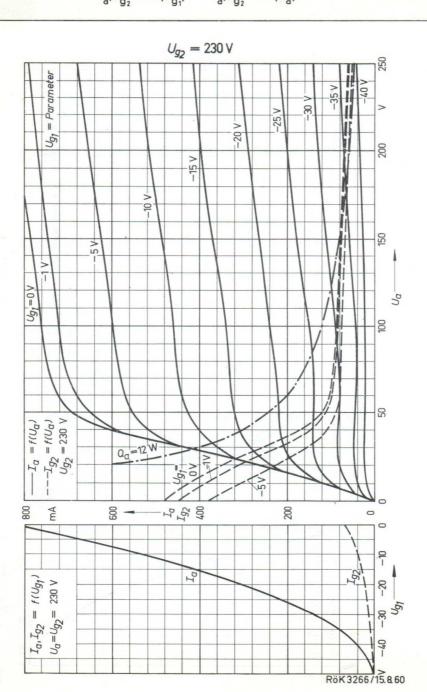
Betriebsdaten

Leistungsverstärker, Gegentakt B-Betrieb, Dauertonaussteuerung

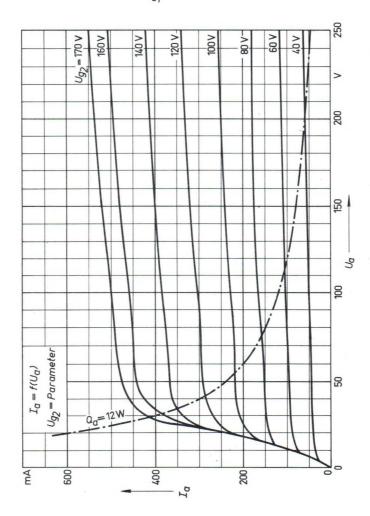

Ua	=		250		V
Ugz	=		170		V
Ug2 -Ug1	=		34		V
Raa	=		3		$k\Omega$
R _{aa} R _{g2}	=		2x0,5		$k\Omega$ 1)
Ug1	=	0		22	V
Ia	=	2x12		2x94	mA
I _{a2}	= "	2x 1		2x14	mA
Na~	=	0		30	W
N_a^2	= ,	-		6	%

1) Verblockung der Vorwiderstände führt zur Überlastung des Schirmgitters und ist deshalb unzulässig.





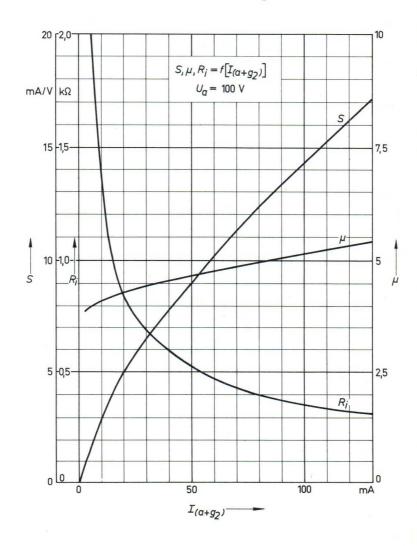
 $I_{a}, I_{g_{2}} = f(U_{g_{1}})$ $I_{a}, I_{g_{2}} = f(U_{a})$


$\begin{aligned} & \text{KENNLINIENFELDER} \\ & \textbf{I}_{a}, \textbf{I}_{g_2} = \textbf{f}(\textbf{U}_{g_1}) & \textbf{I}_{a}, \textbf{I}_{g_2} = \textbf{f}(\textbf{U}_{a}) \end{aligned}$

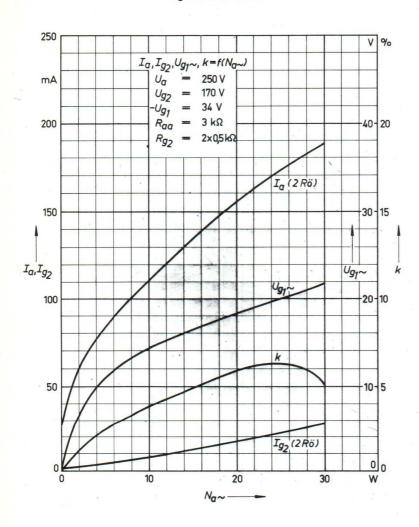
 $I_a = f(U_a)$

KENNLINIENFELDER

$$I_{(a+g_2)} = f(U_{g_1}) \qquad I_{(a+g_2)} = f(U_a)$$


Triodenschaltung

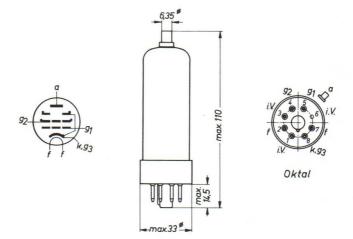
KENNLINIEN s, μ , $R_i = f(I_{(a+g_2)})$


Triodenschaltung

 ${\rm I_{a^\prime}~I_{g_2^\prime}~U_{g_1}^{}}{\sim}~, k=f~(N_a^{}{\sim})$

Gegentakt B-Betrieb

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE



Art und Verwendung

Steile Pentode mit kleinem inneren Leistungswiderstand. Besonders geeignet als Endröhre für Zeilenablenkstufen und Gegentakt-Leistungsverstärker, als Leistungsröhre für Breitband- und Kathodenverstärker, als Schaltröhre sowie als Längsröhre in elektronisch geregelten Netzgeräten.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit (p \approx 1,5 °/oo je 1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: Oktal

Gewicht: ca. 35 g Einbau: beliebig

HEIZUNG, KAPAZITÄTEN, KENNDATEN

Heizung

$$U_f$$
 = 6,3 V 1)
 I_f = 1,2 ± 0,08 A
Heizart: indirekt durch Wechsel- oder Gleichstrom,
Parallelspeisung

Kapazitäten

$$C_{e}$$
 = 19 $^{\pm}$ 1,5 pF
 C_{a} = 10 $^{\pm}$ 1,0 pF
 C_{ag1} < 1,1 pF

Kenndaten

		min	nom	max		
Ua	= "		100			V
U _{g2}	=		100			V
Ug2 R _k	=		75			Ω
Ia	=	85	100	118		mA
I _{g2} S	=	4,0	5,3	6,5		mA
S	=	11,5	14	16,5		mA/V
µg2g1	=		5,6			
Ri	= ,		5			$k\Omega$
R _{iL}	=		100			Ω
$I_a(U_{g1} = -35V)$	= ,		0,1			mA
$-U_{g1}(I_k = 60\mu A,$	Uasp	= 7kV,	$U_{g2} =$	190V,	Zg1	$\leq 1 k \Omega$)
for many			120			$_{\rm V}$ 2)

- 1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5% (absolute Grenzen) um den Sollwert schwankt.
- 2) Bei Benutzung als Endröhre für die horizontale Ablenkung bei einer Impulsdauer von max. 22% einer Periode, nicht länger als 18µs.

Kenndaten

Triodenschalt	ung
---------------	-----

U	=	100	V
U _a R _k	=	85	Ω
Ia	= .	100	mA
I _a S	=	14	mA/V
μ	=	5,2	
Ri	=	0,35	$k\Omega$
RiL	=	360	Ω

Grenzdaten (absolute Werte)

Uao	max.	650	V
Ua	max.	400	V
Uasp	max.	7	kV 1)
-Uasp	max.	1,5	kV 1)
Q_a	max.	12	W
Q _{a+g2}	max.	16	W
Ugzo	max.	650	V
Ug2o Ug2 Qg2 -Ug1sp	max.	300	V
Qg2	max.	5,5	w 2)
-Ug1sp	max.	1	kV 1)
R _{g1}	max.	0,5	$M\Omega^{3}$
$I_{\mathbf{k}}$	max.	220	mA
Iksp	max.	1,2	A
tav	max.	10	ms
Ufk	max.	250	V
Ufk+	max.	250	V
Ufk-	max.	200	V
Rfk	max.	20	$k\Omega$
tkolb	max.	220	°C

- 1) Bei Benutzung als Endröhre für die horizontale Ablenkung bei einer Impulsdauer von max. 22% einer Periode, nicht länger als 18 μ s.
- 2) Während der Anheizzeit der Zeilenschalterdiode ist Q_{g2} = max. 7 W.
- 3) Bei Benutzung als Endröhre für die horizontale Ablenkung unter Verwendung von Stabilisierungsschaltungen mit Reglung über das Steuergitter R_{g1} = max. 2, 2 M Ω .

Besondere Angaben

Negativer Gitterstrom

$$-I_{g1}$$
 \leq 1,0 μA

Meßeinstellung: siehe Kenndaten

Isolationswiderstände

$$R_{is}$$
 (a/alle übrigen Elektroden bei U_{is} = 300 V) > 100 M R_{is} (g/alle übrigen Elektroden bei U_{is} = 300 V) > 100 M R_{is} (fk bei U_{is} = 100 V) > 5 M

gemessen bei Uf = 6,3 V

Optimale Spitzenwerte des Anodenstromes bei Anwendung als Zeilenendröhre

Die Seiten K 6 bis K 18 enthalten Kurven von durchschnittlichen neuen Röhren. Bei Entwurf einer Ausgangsschaltung für die horizontale Ablenkung ist zu beachten, daß sich infolge Röhrentoleranzen und Veränderungen während der Lebensdauer die angegebenen Werte um 25 % verringern können.

In allen Schaltungen für horizontale Ablenkung ist Rg2 $\stackrel{>}{=}$ 1,5k Ω zu wählen. Bei Betrieb der Röhre unterhalb des Knies soll zur Vermeidung von Barkhausen-Schwingungen der Schirmgitterwiderstand nicht kleiner als 2,2 k Ω gewählt werden.

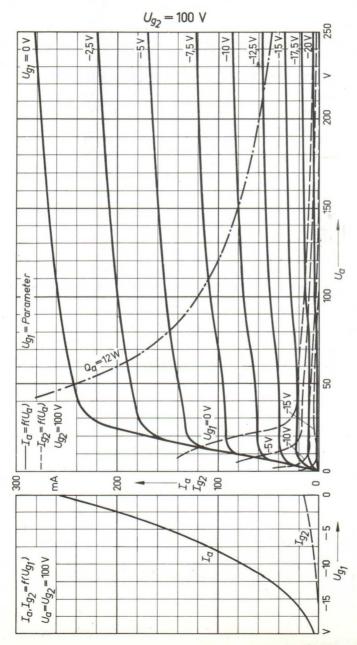
Ende der Lebensdauer

Ia	≦	65	mA
S		9,5	mA/V
-Ig1	\geq	2	μA
MeReinstellung	· siehe Kenndaten		1000000

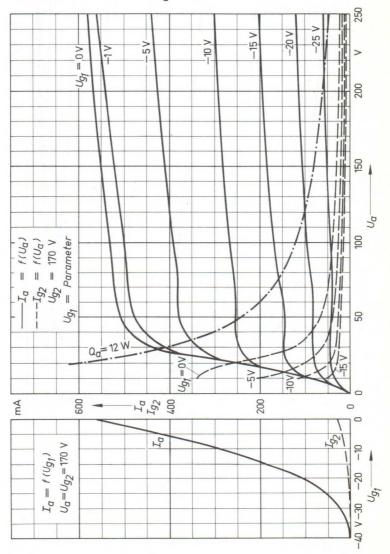
Betriebsdaten als Leistungsverstärker

Gegentakt B-Betrieb, Dauertonaussteuerung

Ua	=	250		V
Ugz	=	170		V
Ug2 -Ug1	=	34		V
Raa	=	3		kΩ
Rg2	=	2x0,5		$k\Omega$ 1)
Ug 1~	=	0	22	V
	=	2x12	2x94	mA
I_a I_{g2} $N_a \sim$	=	2x 1	2×14	mA
Na~	=	0	30	W
k	=	-	6	%

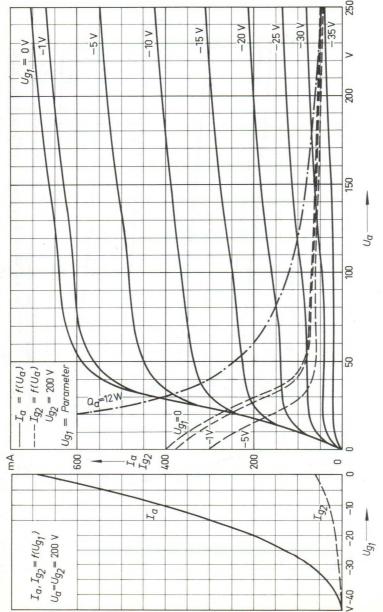

1) Verblockung der Vorwiderstände führt zur Überlastung des Schirmgitters und ist deshalb unzulässig.

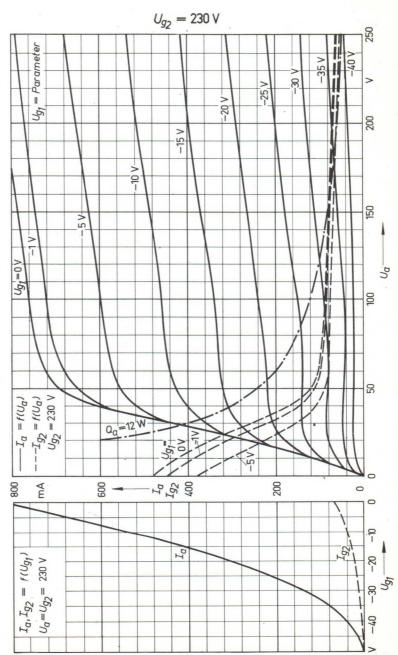
KENNLINIENFELDER


$$I_a, I_{g_2}, = f(U_{g_1})$$
 $I_a, I_{g_2} = f(U_a)$

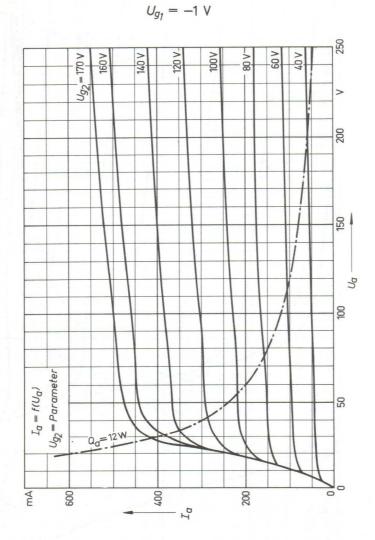
$$_{\mathsf{a}}, \mathsf{I}_{\mathsf{g}_2} = \mathsf{f}(\mathsf{U}_{\mathsf{a}})$$

$$I_a, I_{g_2}, = f(U_{g_1}); \qquad I_a, I_{g_2} = f(U_a)$$

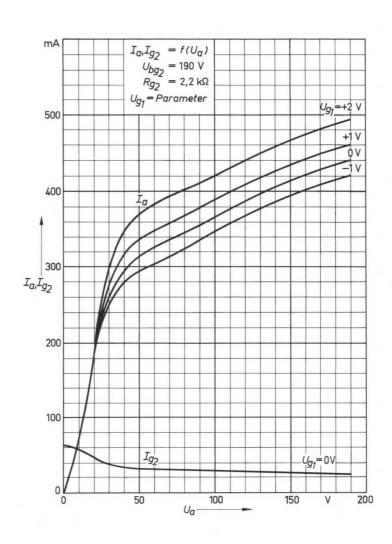

KENNLINIENFELDER

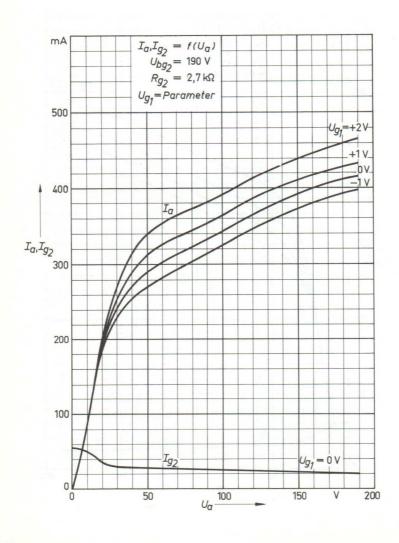

$$I_a, I_{g_2}, = f(U_{g_1}); \qquad I_a, I_{g_2} = f(U_a)$$

$$_{\mathsf{a}},\,\mathsf{I}_{\mathsf{g}_2}=\mathsf{f}\,(\mathsf{U}_{\mathsf{a}})$$

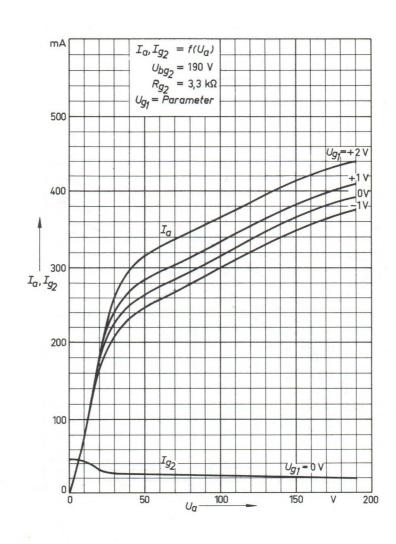


 $I_{a}, I_{g_{2}} = f(U_{g_{1}}); \qquad I_{a}, I_{g_{2}} = f(U_{a})$

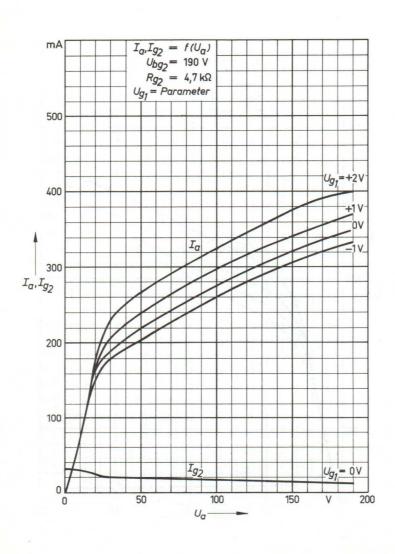

KENNLINIENFELD $I_a = f(U_a)$

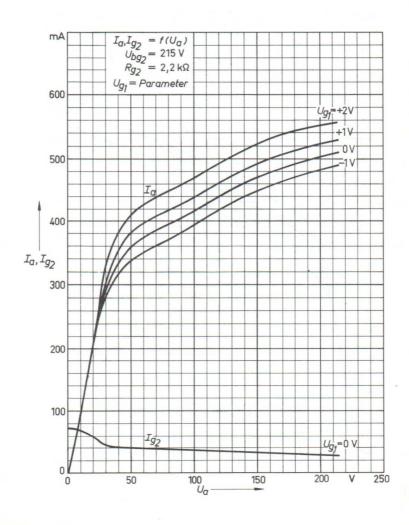


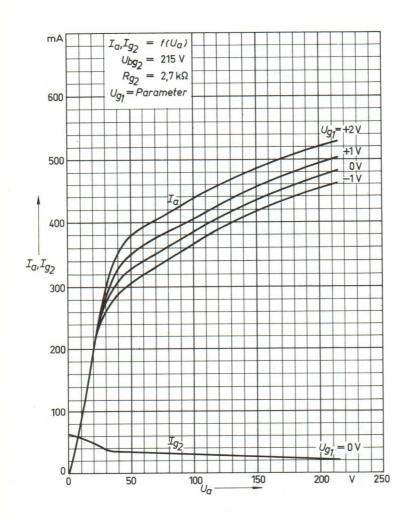
$$\mathbf{I_{a},\,I_{g_2}=f\,(U_a)}$$

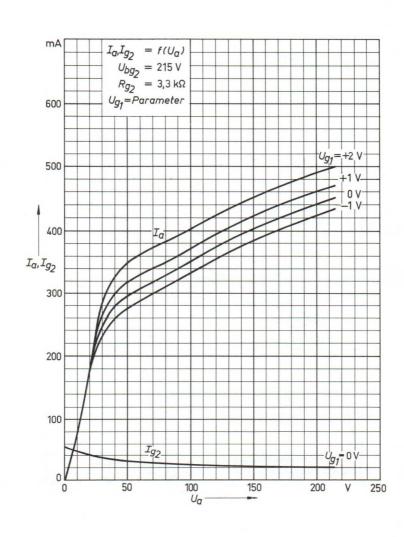


$$I_a, I_{g_2} = f(U_a)$$

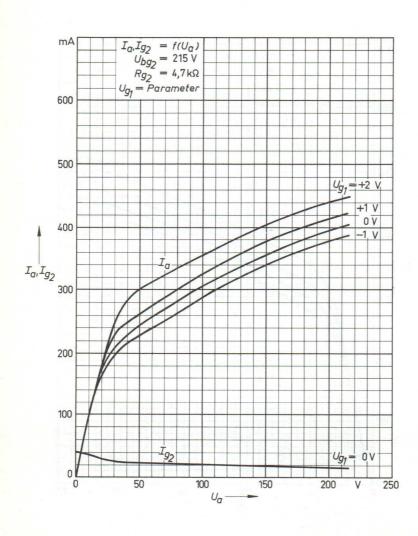


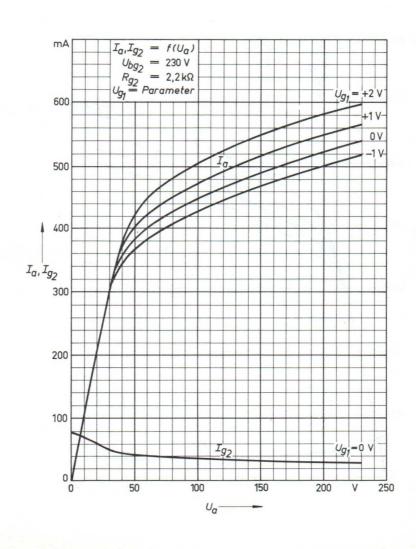


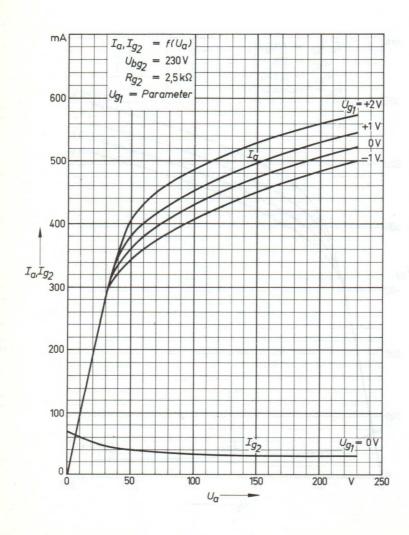


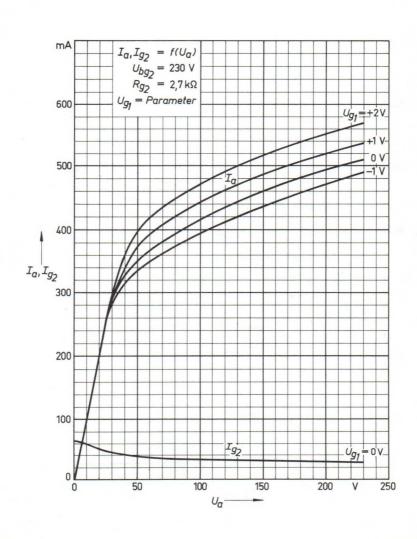


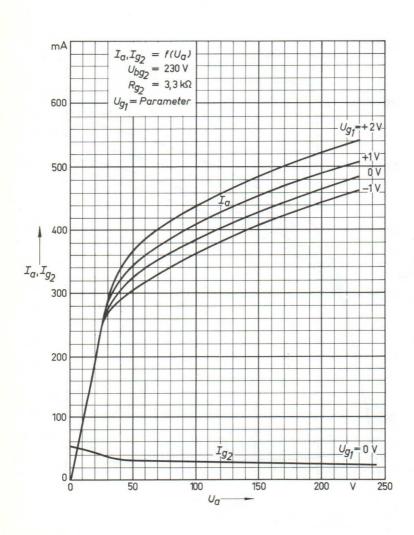
$$\mathsf{I}_\mathsf{a},\,\mathsf{I}_\mathsf{g_2}=\mathsf{f}\,\,(\mathsf{U}_\mathsf{a})$$



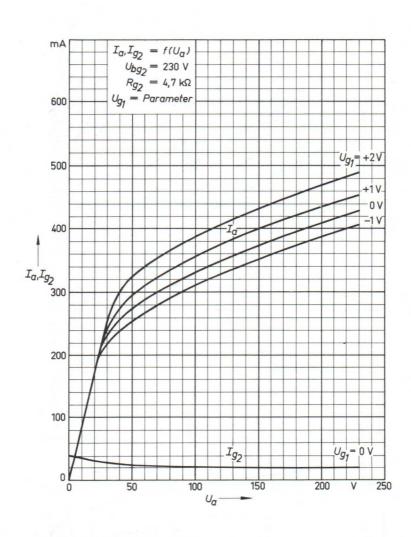

$$I_a$$
, $I_{g_2} = f(U_a)$




 $\mathrm{I}_{\mathrm{a}},\,\mathrm{I}_{\mathrm{g}_{\mathrm{2}}}=\mathrm{f}\,\left(\mathrm{U}_{\mathrm{a}}\right)$

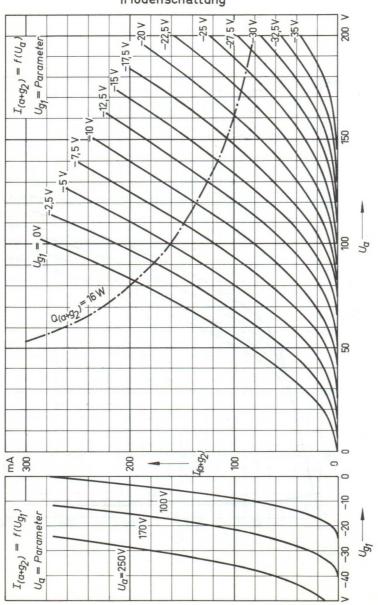


$$I_{a'}I_{g_2} = f(U_a)$$



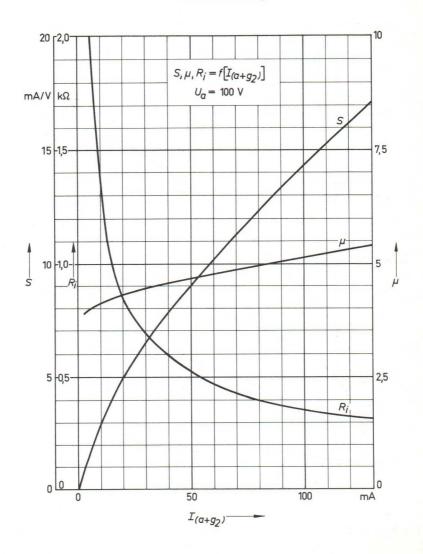
 $I_{a'}I_{g_2}=f(U_a)$

$$I_{a'}I_{g_2}=f(U_a)$$

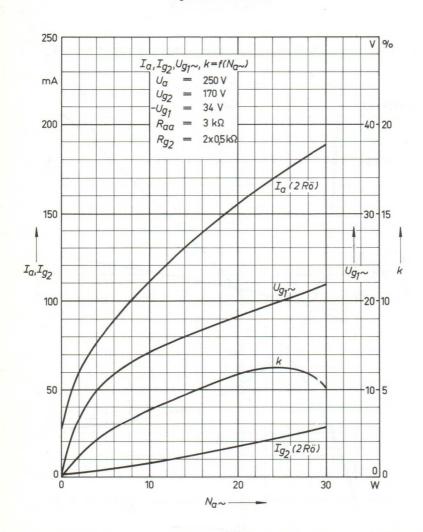


KENNLINIENFELDER

$$I_{(a+g_2)} = f(U_{g_1})$$
 $I_{(a+g_2)} = f(U_a)$


Triodenschaltung

$$\text{S,}\, \mu,\, R_{\, {\color{red} i}} = f \quad I_{\,\, (a \, + \, g_2)}$$


Triodenschaltung

 $I_{a'}$, $I_{g_{2'}}$, $U_{g_1} \sim k = f(N_a \sim)$

Gegentakt B-Betrieb

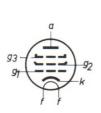
SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE

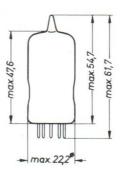
Art und Verwendung

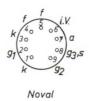
Steile, rauscharme Universal - Breitband - Pentode mit S/C = 2,2 mA/VpF. Besonders geeignet für NF-, ZF- und HF-Verstärker in Vor- und Endstufen sowie für Kathodenverstärker, Mischstufen, Oszillatoren und Frequenzvervielfacher bis 300 MHz.

Qualitätsmerkmale

Lange Lebensdauer (> 10000 Std.)


Zuverlässigkeit (p = 1,5 °/oo je 1000 Std.)


Enge Toleranzen


Stoß- und Erschütterungsfestigkeit

Zwischenschichtfreie Spezialkathode

Heizfaden-Schaltfestigkeit

Maße in mm

Sockel: Noval

Kolben: DIN 41539, Form A, Nenngröße 45

Fassung: Rel stv 99

Gewicht: ca. 10 g Einbau: beliebig

Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_{f} = 6,3 \pm 5 \%$$
 V
 $I_{f} = 315 \pm 16$ mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

ohne Abschirmung mit Abschirmung 1)

Kenndaten I		min	nom	max		
U _{ba}	=		190		180	V
$U_{\alpha 3}$	=		0		0	V
U _{g3} U _{bg2}	=		160		150	V
^{+U} bg1	=		9		0	V
Rk	=		400		70	Ω 2)
I_a	=	19	20	21	17	mA
Ig2 S	=	5,4	6	6,6	5,1	mA
S	=	22	26	30	24,5	mA/V
µg2g1	≈		60			
Ri	=		100			$k\Omega$
Raq	=		220			Ω
R _e (100 MHz)	=		1,4			$k\Omega$ 3)
S/C	=		2,2			mA/VpF
S/2πC _{ges}	=		180			MHz 4)
F	=		6,6			dB 5)
-Ig1	\leq			0,3		μΑ

- 1) Innendurchmesser des Abschirmzylinders = 22,2 mm
- 2) Betrieb mit hohem Kathodenwiderstand wird empfohlen
- 3) Beide Kathodenanschlüsse parallel geschaltet
- 4) $C_{ges} = C_{e^1} + C_a + 5 pF Schaltkapazität$
- 5) gemessen bei 100 MHz mit Rauschanpassung

Kenndaten II

Uba	=	190	190	190	190	V
Ug3	=	0	0	0	0	v
U _{bg2}	=	160	160	160	120	V
+Ubg1	=	9	9	9	9	V
$R_{\mathbf{k}}$	=	540	630	830	800	Ω
I_a	=	15	13	10	10	mA
$s^{I_{g2}}$	=	4,5	3,9	3	2,8	mA
S	=	23	22	19	20	mA/V
R _i	=	120	130	155	155	$\mathbf{k}\Omega$
μg2g1	~	58	58	56	56	
R_{el} (100 MHz)	=	1,5	1,6	1,7	1,6	$\mathbf{k}\Omega$
Rag	=	230	240	250	220	Ω
Cei	=	15	14,8	14,3	14,8	pF
S/C	=	1,9	1,85	1,6	1,7	mA/VpF
S/2πC _{ges}	=	162	156	138	142	MHz
Triodenschaltu	ing					
U _{ba}	=		1	60		V
Ug3	=			0		V
+Ubg1	=			9		V
Rk	=		4	30		Ω
I _a S	=			24		mA
S	=			33		mA/V
μ	\approx			60		
Ri	=		1	, 8		$\mathbf{k}\Omega$
Raq	=		1	00		Ω

Bei Verwendung eines Kathodenkondensators > $10\,\mu F$ muß der Gitterwiderstand mindestens 1 $k\Omega$ betragen.

GRENZDATEN BESONDERE ANGABEN

Grenzdaten	(absolute Werte)		
U_{ao}	max.	400	V
Ua	max.	220	V
Qa	max.	4,0	W
Ug2o	max.	400	V
Ug2	max.	180	V
Q _{g2}	max.	1,1	W
Q _{g2} -U _{g1}	max.	50	V
+Ug1	max.	2	V
Ig1	max.	5	mA
Ig1 Rg1 Ik	max.	0,5	$M\Omega$ 1)
IL	max.	30	mA
Ufk-	max.	60	V
U _{fk+}	max.	120	V
Rfk	max.	20	$\mathbf{k}\Omega$
tkolb	max.	180	°C

Besondere Angaben

Isolationswiderstände

 R_{is} (a/alle übrigen Elektroden bei U_{is} = 300 V) > 100 $M\Omega$ R_{is} (g/alle übrigen Elektroden bei U_{is} = 50 V) > 100 $M\Omega$ R_{is} (f/k bei U_{is} = 100 V) $\,$ > 20 $M\Omega$ gemessen bei U_f = 6,3 V

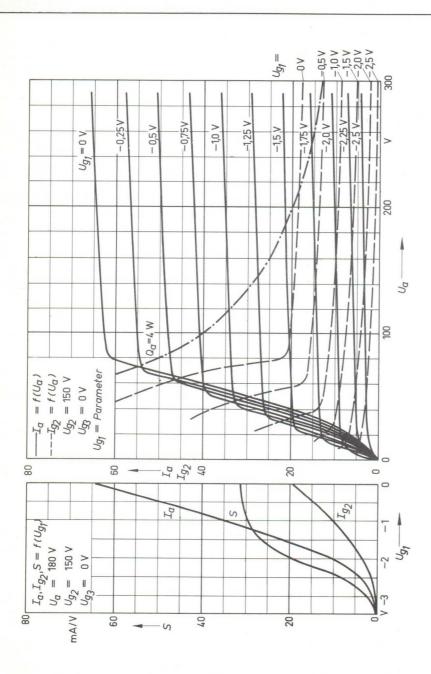
Phasenwinkel der Steilheit

 $\varphi_{\rm S}$ (100 MHz) = 20 Grad beide Kathodenanschlüsse parallel geschaltet

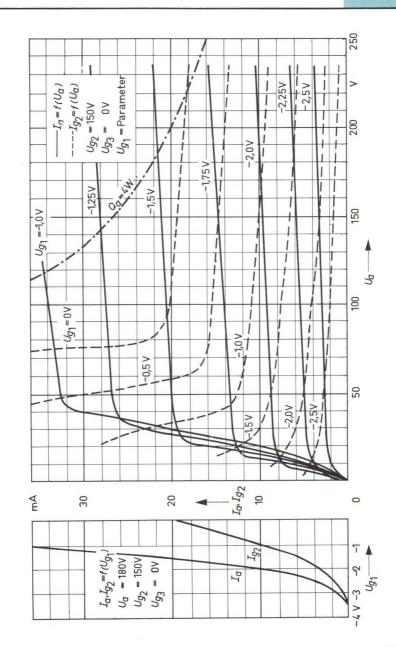
Heizfaden-Schaltfestigkeit

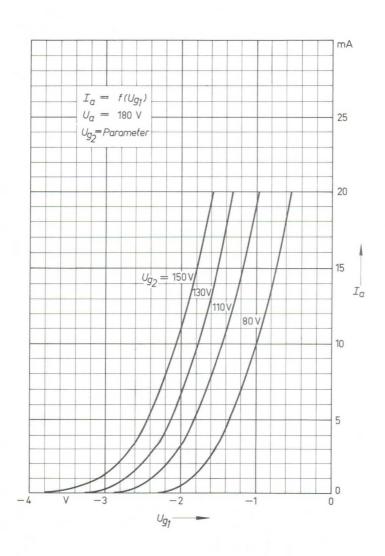
Die Röhre verträgt mindestens 2000-maliges Ein- und Ausschalten (1 Minute ein-, 1 Minute ausgeschaltet). Meßeinstellung: $U_f = 7,5 \text{ V}$; $U_{fk-} = 60 \text{ V}$; $U_a = U_{g2} = U_{g1} = 0 \text{ V}$

1) Bei automatischer Gittervorspannung

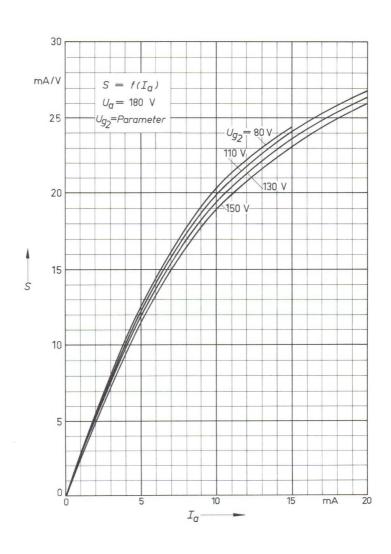

Klingspannung

 $\begin{array}{lll} U_{kling} & = & 100 & mV \\ \\ \text{Meßeinstellung: } U_f = 6,3 \text{ V; } U_{ba} = 190 \text{ V; } U_{bg2} = 160 \text{ V; } + U_{bg1} \\ & = 9 \text{ V; } R_k = 400 \text{ } \Omega; \text{ } C_k = 1000 \text{ } \mu\text{F; } R_a = 2 \text{ } k\Omega \\ & \text{Beschleunigung = 2,5 g, Schüttelfrequenz = 25 Hz,} \\ & \text{gemessen am Ausgang der Röhre.} \end{array}$

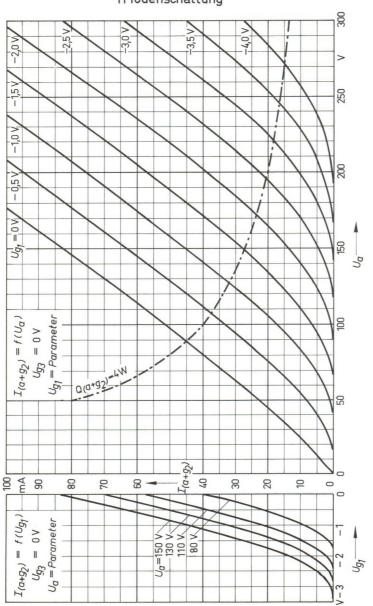

Ende der Lebensdauer


I _a S	< = <	17,0 17,5	mA mA/V
-Ig1	<u>≥</u>	1,0	μA

Meßeinstellung: siehe Kenndaten mit R $_k$ = 400 Ω

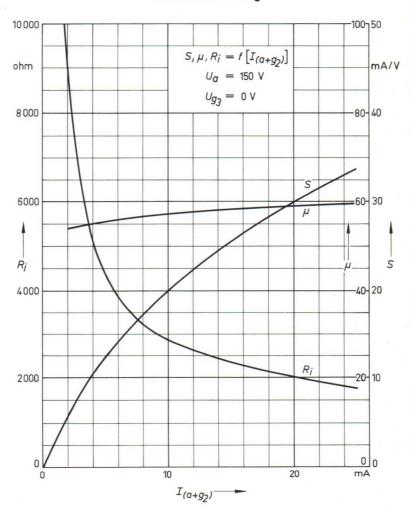


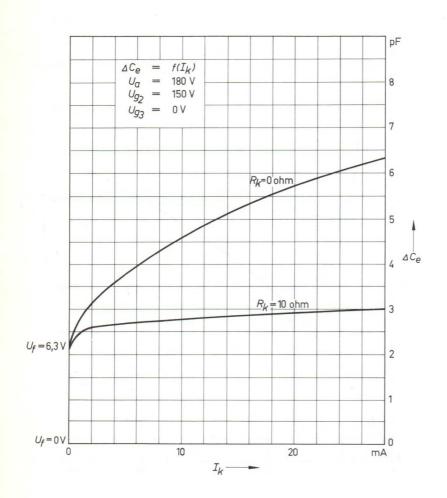
 $I_a, I_{g2} = f(U_{g1})$ $I_a, I_{g2} = f(U_a)$



KENNLINIENFELDER

 $I_{(a+g2)} = f(U_{g1})$ $I_{(a+g2)} = f(U_{a})$




Triodenschaltung

Triodenschaltung

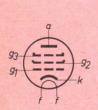
SIEMENS & HALSKE AKTIENGESELLSCHAFT
WERNERWERK FÜR BAUELEMENTE

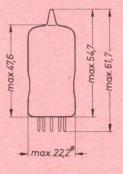
Art und Verwendung

Vorläufige Daten

Steile Breitbandpentode, besonders geeignet für verzerrungsarme Endstufen in Video- und Oszillographen-Verstärkern sowie für HF-Breitbandverstärker bis etwa 250 MHz.

Qualitätsmerkmale


Lange Lebensdauer (> 10000 Std.)


Zuverlässigkeit (p ≈ 1,5 °/oo je 1000 Std.)

Enge Toleranzen

Stoß- und Erschütterungsfestigkeit

Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: Noval

Kolben: DIN 41539, Form A, Nenngröße 45

Fassung: Rel stv 99

Gewicht: ca. 10 g Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_f$$
 = 6,3 V 1)
 I_f \approx 350 mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

(ohne außere Abschirmung)

C_e C_e ' ($I_k = 46 \text{ mA}$) C_a C_{ag1} C_{ak} C_{kf}	= = < < < = =	10 16 2,6 50 50 4,7	pF pF pF mpF mpF
Ckf Cgf Caf			

Kenndaten

		min	nom	max		
Uba	=		125		135	V
Ug3	=		0		0	V
Uha2	=		125		135	V
+Uba1	=		12		12	V
Ubg2 +Ubg1 Rk	= \		300		360	Ω
Ia	=	33	35	37	30	mA
Ia Ig2 S	=	9,9	11	12,1	9,5	mA
SE	=	22	26	30	25	mA/V
µg2g1	*		27		27	
Rag	=		200		200	Ω
Raq F	=-		7			dB 2)
-Ig1	≦			0,3		μΑ

Bei Verwendung eines Kathodenkondensators > 10 μF muß der Gitterwiderstand mindestens 1 $k\Omega$ betragen.

- 1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.
- 2) Gemessen bei 100 MHz mit Rauschanpassung

Tri	od	ens	cha	ltung	

Uba		125	V
Ug3		0	V
+Übg1		12	V
Rk		350	Ω
Ia		40	mA
I _a S		32	mA/V
μ	≈ **	25,5	
Ri		800	Ω
Raq		100	Ω
Grenzdaten	(absolute Werte)		
Uao	max.	400	V
Ua	max.	200	V
Qa	max.	4,2	W
Ug2o	max.	400	V
U _a 2	max.	150	V
Q _g 2	max.	1,4	W
Qg2 -Ug1	max.	50	V
Rg1	max.	0,5	MΩ 1)
_			
Ik	max.	50	. mA

100

20

180

max.

max.

max.

Ufk

Rfk

tkolb

V

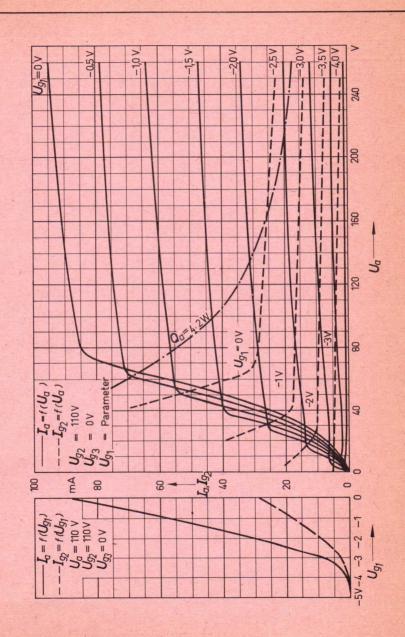
 $k\Omega$

oC

¹⁾ Bei automatischer Gittervorspannung

Besondere Angaben

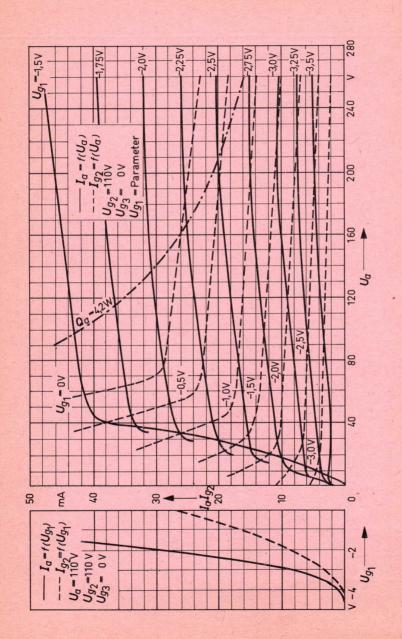
Isolationswiderstände

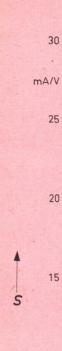

$$R_{is}$$
 (a/alle übrigen Elektroden bei $U_{is} = 300 \text{ V}$) > 100 $M\Omega$ R_{is} (g1/alle übrigen Elektroden bei $U_{is} = 50 \text{ V}$) > 100 $M\Omega$ R_{is} (f/k bei $U_{is} = 100 \text{ V}$) > 20 $M\Omega$

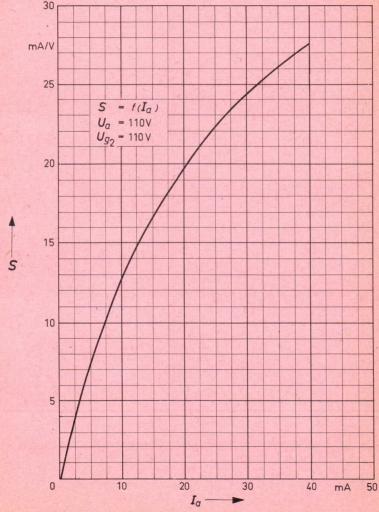
gemessen bei Uf = 6,3 V

Ende der Lebensdauer

Meßeinstellung: siehe Kenndaten mit Uba = 125 V

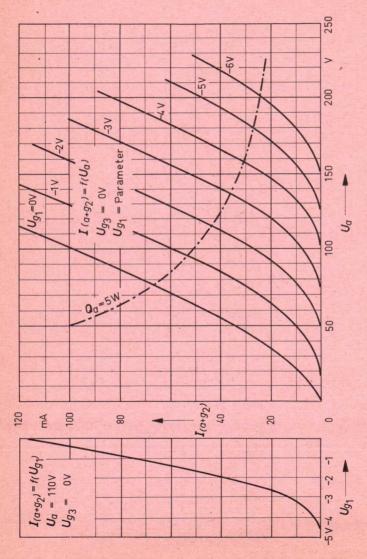


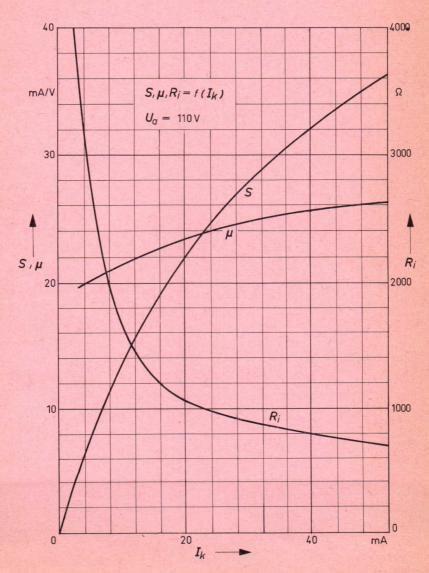



KENNLINIENFELDER

SIEMENS RÖHREN

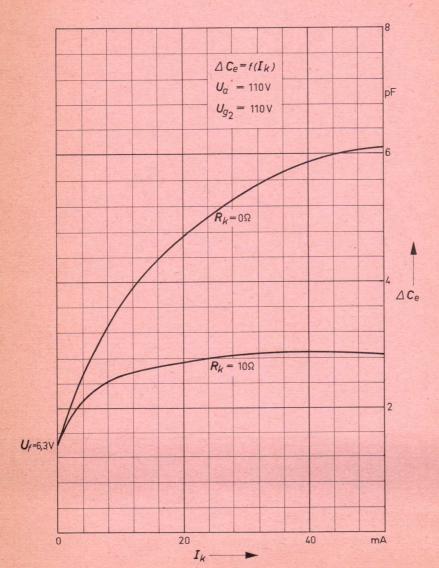
 $I_{a'}I_{g2} = f(U_{g1})$ $I_{a'}I_{g2} = f(U_{a})$




KENNLINIENFELDER .

$$I_{(a+g2)} = f(U_{g1})$$
 $I_{(a+g2)} = f(U_a)$

Triodenschaltung



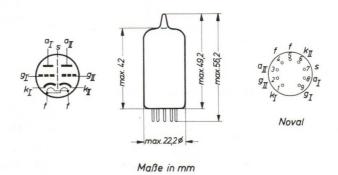
Triodenschaltung

KENNLINIEN $\Delta C_{e} = f(I_{k})$

SIEMENS ROHREN

SIEMENS & HALSKE AKTIENGESELLSCHAFT K6 WERNERWERK FOR BAUELEMENTE RÖK3289/1.2.62

BRUMM- UND MIKROFONIEARME NF-DOPPELTRIODE


Art und Verwendung

Brumm- und mikrophoniearme Doppeltriode mit getrennten Kathoden. Besonders geeignet für NF- Spannungsverstärker, Phasenumkehrstufen und Meßverstärker.

Spezialausführung der ECC 83, jedoch andere Sockelschaltung.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit (p \approx 1,5 °/oo je 1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode

Sockel: Noval Gewicht: ca. 11 g Kolben: DIN 41539, Form A, Nenngröße 40 Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_{f} = 6,3 \qquad V^{1}$$
 $I_{f} = 330 \pm 17 \qquad mA$

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

		System I		System II	
Ce	=	2,0		2,0	pF
C _e C _a C _{ag}	=	2,0		2,0	pF
Cag	=	1,2		1,2	pF
Cgf	<	10		20	mpF
Caa	<		100		mpF
Cgg	<		10		mpF
CalgII	<		60		mpF
Callgl	<		10		mpF

Kenndaten

		min.	nom.	max.		
U	=		250		100	V
U _a R _k	=		1,6		2,0	$k\Omega$
Ia	=	1,1	1,25	1,4	0,5	mA
I _a S	=	1,3	1,6	1,95	1,25	mA/V
μ	=		100		100	
Ri	=		62,5		80	$k\Omega$
$-U_{\sigma}(I_a=20\mu A)$	=		-	4,0		V
$-U_g (I_a = 20 \mu A)$ $-U_g (+I_g = 0, 3 \mu A)$	=		-	1,0		V

1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.

GRENZDATEN BESONDERE ANGABEN

Grenzdaten	(absolute W	erte)	
Uao	max.	600	V
U_a	max.	330	V
Qa	max.	1,2	W
-U _o	max.	55	V
+Ug	max.	0,5	V .
R_{g}	max.	1,2	$M\Omega^{1}$
Rg Rg Ik	max.	2, 2	$M\Omega^{2}$
Rg	max.	25	$M\Omega^{3}$
$I_{\mathbf{k}}$	max.	9	mA
Ufk	max.	200	V
R_{fk}	max.	20	$k\Omega^{4}$
tkolb	max.	170	°C

Besondere Angaben

Negativer Gitterstrom

 $-I_g$ $\stackrel{\leq}{=}$ 0,2 μA

Meßeinstellung: siehe Kenndaten mit $U_a = 250 \text{ V}$

Isolationswiderstände

- 1) Bei fester Gittervorspannung
- 2) Bei automatischer Gittervorspannung
- 3) Vorspannung durch Rg
- 4) Bei Verwendung als Phasenumkehrröhre unmittelbar vor der Endstufe ist R_{fk} max. 135 $k\Omega$

Besondere Angaben

Brummspannung

 $\begin{array}{cccc} U_{\mathbf{brI}} & \leq & 5 & \mu V \\ U_{\mathbf{brII}} & \leq & 15 & \mu V \end{array}$

Meßeinstellung: U_{ba} = 250 V, R_a = 100 k Ω , R_g = 1 M Ω , R_k = 3 k Ω , C_k = 1000 μ F, völlig geschirmte Röhrenfassung, Mittensymmetrierung des Heizfadens.

Mit Rücksicht auf geringste Brummspannung wird empfohlen das System I als Eingangssystem zu verwenden.

Klingspannung

 $U_{kling} \leq 10$ mV

Meßeinstellung: $U_{ba}=250~V$, $-U_g=2~V$, $R_a=5~k\Omega$, Schüttelfrequenz = 25 Hz, Beschleunigung = 2,5 g, beide Systeme parallel geschaltet, Frequenzbereich des Spannungsmessers 20 bis 5000 Hz, gemessen am Ausgang der Röhre.

Mikrophonie

Die Röhre darf ohne besondere Maßnahmen gegen Mikrophonie in Schaltungen verwendet werden, die für eine Eingangsspannung > 0,5 mV eine Leistung der Endröhre von 30 mW ergeben.

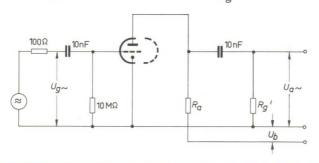
Ende der Lebensdauer

Meßeinstellung: siehe Kenndaten mit Ua = 250 V.

Betriebsdaten

NF-Verstärker, je System

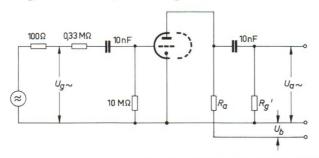
 R_g = 1 MΩ, Aussteuerung bis Gitterstromeinsatz(I_g =+0,3 μ A)


U _b	R _a kΩ	Rg' kΩ	R _k	U _a ∼ V _{eff}	Ua~/Ug~	k 1)	I _a mA
200 250 300 350	47 47 47 47	150 150 150 150	1500 1200 1000 820	18 23 26 33	34,0 37,5 40,0 42,5	8,5 7,0 5,0 4,4	0,86 1,18 1,55
400	47	150	680	37	44,0	3,6	2,45
200 250 300 350 4 00	100 100 100 100 100	330 330 330 330 330	1800 1500 1200 1000 820	20 26 30 36 38	50,0 54,5 57,0 61,0 63,0	4,8 3,9 2,7 2,2 1,7	0,65 0,86 1,11 1,40 1,72
200 250 300 350 400	220 220 220 220 220 220	680 680 680 680 680	3300 2700 2200 1500 1200	24 28 36 37 38	56,0 66,5 72,0 75,5 76,5	4,6 3,4 2,6 1,6 1,1	0,36 0,48 0,63 0,85 1,02

¹⁾ Der Klirrfaktor ist der Ausgangsspannung $U_a \sim$ etwa proportional.

NF-Verstärker, je System

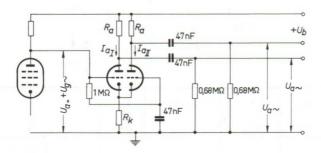
 R_g = 10 MΩ, U_g durch R_g , R_k = 0 $Aussteuerung~bis~Gitterstromeinsatz~(I_g=+0\,,\,3\mu A)$


U _b	R _a kΩ	Rg' kΩ	U _a	Ua~/Ug~	k 1)	I _a mA
200	47	150	18	37	5,6	1,02
250	47	150	23	39	4,2	1,45
300	47	150	26	41	2,9	2,02
350	47	150	33	44	2,7	2,50
400	47	150	37	45	2,5	3,10
200	100	330	20	50	3,9	0,70
250	100	330	26	51	2,6	1,00
300	100	330	30	54	2,0	1,29
350	100	330	36	56	1,8	1,62
400	100	330	38	58	1,6	1,95
200 250 300 350 400	220 220 220 220 220 220	680 680 680 680 680	24 28 36 37 38	58 62 66 67 68	4,6 2,7 2,2 1,7 1,4	0,39 0,56 0,74 0,88 1,09

¹⁾ Der Klirrfaktor ist der Ausgangsspannung $U_a \sim$ etwa proportional.

NF-Verstärker, je System

 R_g = 10 $M\Omega$, U_g durch R_g , R_k = 0



Ub	Ra	Rg'	Ua~/Ug~	Ia		k	
V	kΩ	kΩ	a, g	mA		%	
	1/22	N42		111/1			
			,			Ua~ =	
					2 V _{eff}	4 V _{eff}	6 V _{eff}
100	47	150	25	0,35	1,7	2,1	6,0
150	47	150	33	0,84	2,5	4,6	5,2
200	47	150	34	1,40	2,4	4,7	5,6
250	47	150	36	1,95	2,3	4,6	5,6
300	47	150	38	2,52	2,2	4,5	5,5
350	47	150	40	3, 19	2,2	4,2	5,5
400	47	150	41	3,80	2,1	4,2	5,4
100	100	330	34	0,24	1,6	2,3	2,5
150	100	330	43	0,56	1,9	3,0	4,7
200	100	330	46	0,88	1,9	3,8	5,1
250	100	330	48	1,23	1,8	3,8	5,1
300	100	330	50	1,58	1,8	3,6	5,0
350	100	330	51	1,92	1,8	3,6	4,9
400	100	330	52	2, 29	1,7	3,5	4,8
100	220	680	42	0,14	1,6	2,5	3,2
150	220	680	51	0,32		3,0	4,4
200	220	680	54	0,49		3,0	4,4
250	220	680	57	0,67		2,9	4,4
300	220	680	58	0,85		2,9	4,4
350	220	680	59	1,05		2,8	4,3
400	220	680	60	1,23	1,6	2,7	4,2

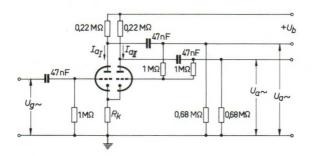
Phasenumkehrröhre:

Aussteuerung bis Gitterstromeinsatz (I_g =+0, $3\mu A$)

Der am Sockelstift 7 angeschlossene Schirm wird an Chassis gelegt.

Ub	Ua =	I _{aI} + I _{aII}	$R_{\mathbf{k}}$	$R_{aI} = R_{aII}$	Ua~	$U_a \sim /U_g \sim$	k1)
V	V ca.	mA	kΩ	kΩ	Veff	-	%
250	65	1,0	68	100	20	25	1,8
250	65	1,0	68	100	7	25	0,6
350	90	1,2	82	150	35	27	1,8
350	90	1,2	82	150	10	27	0,5

 U_a = muß so eingestellt werden, daß $I_{aI} + I_{aII}$ = 1,0 mA bei U_b = 250 V und


 $I_{aI} + I_{aII} = 1,2$ mA bei $U_{b} = 350$ V ist.

1) Der Klirrfaktor ist der Ausgangsspannung $U_a \sim$ etwa proportional.

Phasenumkehrröhre:

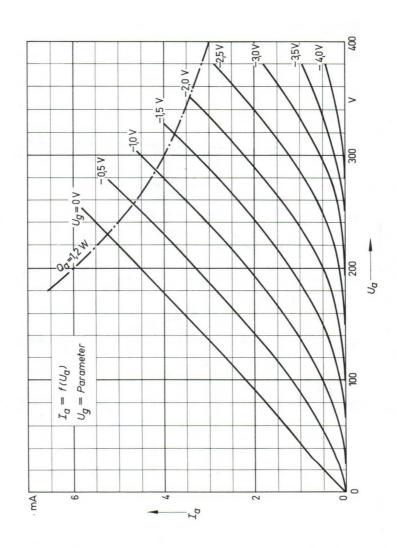
Aussteuerung bis Gitterstromeinsatz ($I_g = + 0, 3 \mu A$)

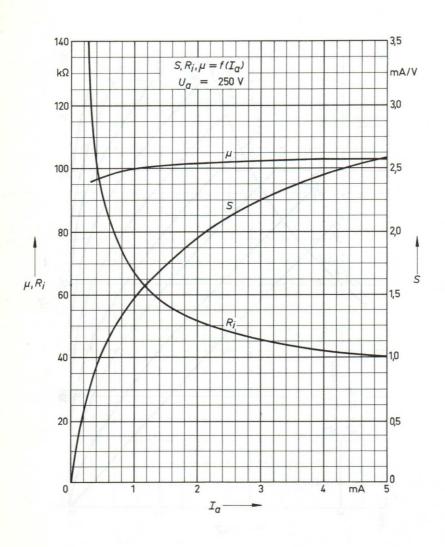
Der am Sockelstift 7 angeschlossene Schirm wird an Chassis gelegt.

U _b	I _{aI} + I _{aII} mA	R _k kΩ	U _a ∼ V _{eff}	U _a ~/U _g ~	k %
250	1,08	1,2	35	58	5,5
250	1,08	1,2	7	58	1,1
350	1,70	0,82	45	62	3,5
350	1,70	0,82	9	62	0,7

1) Der Klirrfaktor ist der Ausgangsspannung $U_a \sim$ etwa proportional.

KENNLINIEN

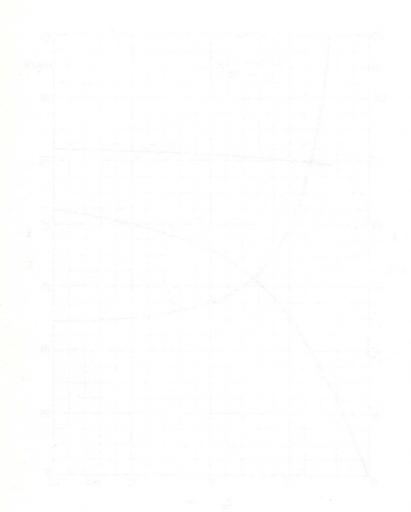

$$I_a = f(U_g)$$



KENNLINIENFELD

 $I_a = f(U_a)$

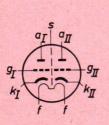
 $S, \mu, R_i = f(I_a)$

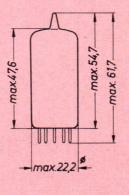


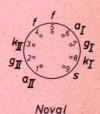
 $S, \mu, R_i = f(I_a)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE

RöK3274/1.9.60


Art und Verwendung


Vorläufige Daten


Steile, rauscharme Leistungs-Doppeltriode mit getrennten Kathoden insbesondere für Cascodeschaltungen in NF- und HF-Breitbandverstärkern sowie für Zählschaltungen hoher Zählfrequenz, Impulsstufen, Frequenzvervielfacher und Kathodenverstärker.

Qualitätsmerkmale

Lange Lebensdauer (> 10000 Std.) Große Zuverlässigkeit (p \approx 1,5 °/oo je 1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: Noval

Kolben: DIN 41539, Form A, Nenngröße 45

Gewicht: ca. 12 g

Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

MENS HREN

Heizung

$$U_f = 6,3$$
 V 1
 $I_f \approx 475$ mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten	(ohne äußere Abschirmu	ng)
E LEVEL SHOW TO		

		I. System	II. Syst	em
C _{g/kfs}	=	4,7	4,	7 pF
Ca/kis	=	1,9	1,	8 pF
Cag	. =	1,8	1,	8 pF
C _k /gfs	=	7,8	7,	8 pF
Ca/gfs	=	3,5	3,	4 pF
Cak	=	0,25	0,2	5 pF
Caa	<		50	mpF
Cgg	<		5	mpF

Kenndaten

		min.	nom.	max.		
Uha	-		100		60	V
+Uha	=		9		0	V
U _{ba} +U _{bg} R _k	= -		350		80	Ω
I _a	=	28	30	32	15	mA
S	=/=/	15	18	21,5	14	mA/V
μ.	~		25		25	
Ri	=		1,4		1,85	kΩ
Räq	*		200			Ω
F	=		5,7		5	dB 2)
-I _o	≦		0,2			μΑ

- 1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.
- 2) Gemessen bei 200 MHz in Cascodeschaltung bei Rauschanpassung

Grenzdaten	(absolute Werte)		
Uao	max.	450	v
Ua	max.	250	v
Qa	max.	3,0	W
-Ug	max.	50	V
-Ugsp	max.	150	V 1)
Rg	max.	1,0	MΩ 2)
Ufk	max.	150	V
Ik	max.	40	mA
I _{ksp}	max.	400	mA 1)
tkolb	max.	190	°C /

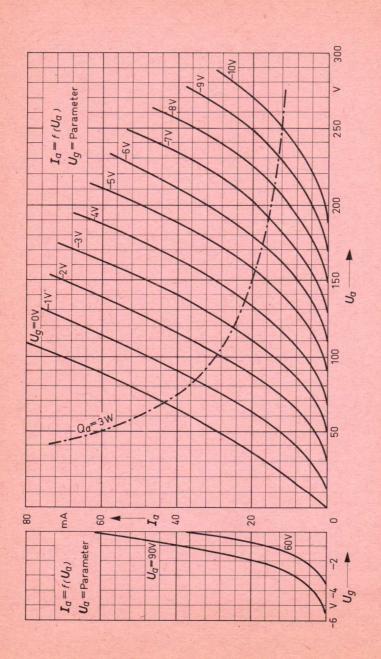
Besondere Angaben

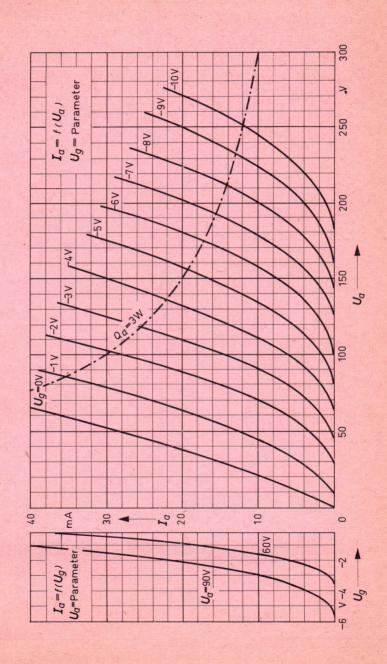
Isolationswiderstände

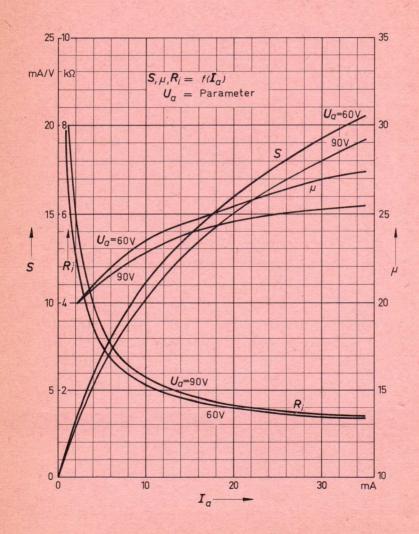
 R_{is} (a/alle übrigen Elektroden bei U_{is} = 300 V) > 100 M Ω R_{is} (g₁/alle übrigen Elektroden bei U_{is} = 50 V) > 100 M Ω R_{is} (f/k bei U_{is} = 100 V) > 20 M Ω gemessen bei U_f = 6,3 V

Ende der Lebensdauer

Ia	≤ =	26,5	mA
I _a S	≦	12,5	mA/V
-Ig	≥	1,0	μΑ

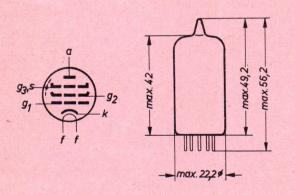

Meßeinstellung: siehe Kenndaten mit R_k = 350 Ω


- 1) Impulsdauer max. 1 % einer Periode, nicht länger als 10 µs.
- 2) Bei automatischer Gittervorspannung


KENNLINIENFELDER

 $I_a = f(U_g)$ $I_a = f(U_a)$

SIEMENS & HALSKE AKTIENGESELLSCHAF1
WERNERWERK FOR BAUELEMENTE


Art und Verwendung

Vorläufige Daten

Breitbandpentode hoher Steilheit mit S/C = 2,5 mA/VpF, besonders geeignet für Endstufen in Breitbandverstärkern.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Zuverlässigkeit (p ≈ 1,5 °/oo je 1000 Std.) Enge Toleranzen Stou- und Erschütterungsfestigkeit Zwischenschichtfrei Spezialkathode

Noval

Maße in mm

Sockel: Noval

Kolben: DIN 41539, Form A, Nenngröße 40

Gewicht: ca. 11 g

Einbau: beliebig

Heizung

$$U_{\rm f} = 6.3$$
 V 1)
 $I_{\rm f} = 340 \pm 17$ mA

Heizart: indirekt durch Wechsel- oder Gleichstrom,
Parallelspeisung

Kapazitäten

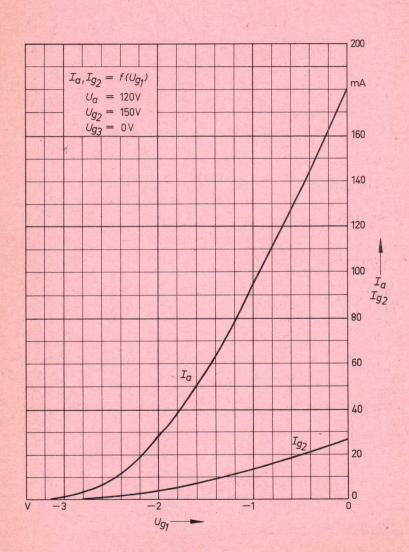
ohne äußere Abschirmung

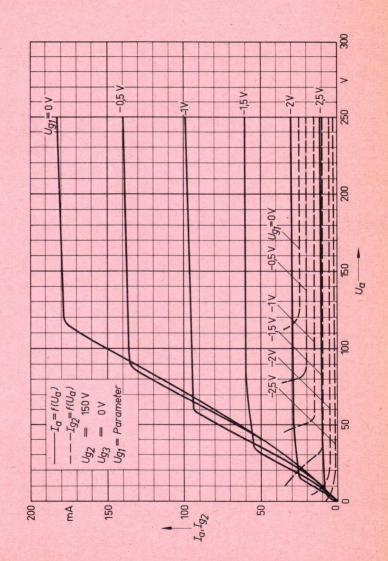
Ce	=	16,0	pF
Ce'(Ik=4	0mA)=	25,0	pF
Ca	= -	3,5	pF
Cag1	<	40	mpF
Cak	<	70	mpF
Caf	<	45	mpF
Cg1f	<	75	mpF

mit äußerer Abschirmung 2)

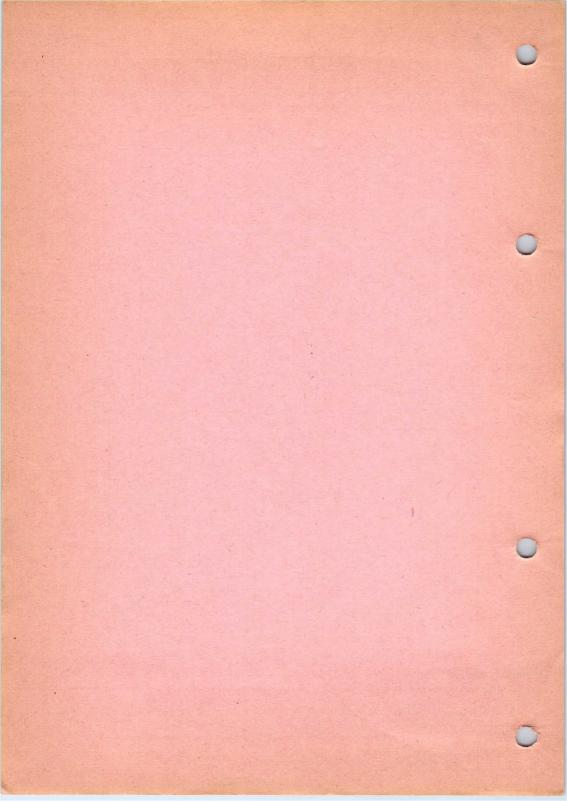
Ce		16,0	pF
Ce'(Ik=4	0mA)=	25,0	pF
Ca	=	4,1	pF
Cag1	<	35	mpF
Cak	<	50	mpF
Caf	<	45	mpF
Cg1f	<	75	mpF

- 1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.
- 2) Innendurchmesser des Abschirmzylinders 22,2 mm


Kenndaten

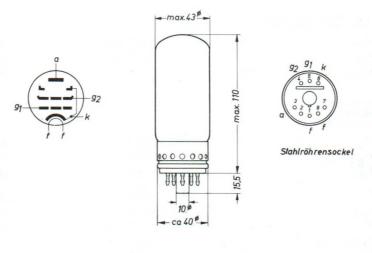

Uha	==	135	V
Uas	=	0	V
Uha2	=	165	V
+Uha1	=	12,5	V
Uba Ug3 Ubg2 +Ubg1 Rk	= =	360	Ω
	= 40	35	mA
Ig2	=	5	mA
I _a I _{g2} S	=	50	mA/V
	=	60	
μ _g 2g1 Rä q		100	Ω
Re (100 MH	z) ≈	600	Ω
S/2m·Cges	=	240	MHz 1)
S/2π·Cges	=	230	MHz 2)

Grenzdaten (absolute Werte)


Uao	max.	400	V
Ua	max.	250	V
Qa	max.	5,0	W
Qa Ug20 Ug2 Qg2 Ik -Ug1 -Ug1sp	max.	400	V
Ug2	max.	200	V
Qg2	max.	1,0	W 3)
Ik	max.	50	mA
-Ug1	max.	25	V
-Uglan	max.	50	V
Qg1	max.	10	mW
Qg1 Ufk	max.	100	V
tkolb	max.	200	°C

- 1) Ohne äußere Abschirmung, C_{ges} = C_e' + C_a + 5 pF
- 2) Mit äußerer Abschirmung
- 3) Dieser Wert darf auch bei Schaltvorgängen nicht überschritten werden.

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE



Art und Verwendung

Steile Leistungstetrode, besonders geeignet als Endröhre in Eintakt-, Gegentakt- und Breitband-Leistungs-Verstärkern, sowie für Impulsschaltungen und Regelverstärker.

Qualitätsmerkmale

Große Zuverlässigkeit (p \approx 1,5 $^{\rm o}$ /oo je 1000 Stunden) Enge Toleranzen

Maße in mm

Sockel: Stahlröhrensockel

Gewicht: ca. 70g Einbau: beliebig

HEIZUNG, KAPAZITÄTEN, KENNDATEN

Heizung

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

Ce	=	18,0 ± 1,5	pF
Ca	=	$12,0 \pm 1,0$	pF
Cagi	<	0,8	pF

Triodenschaltung

Ce	=	12 [±] 1,0 16 [±] 1,5	pF
Ca	=	16 ± 1,5	pF
C _e C _a C _{ag1}	<	8	pF

Kenndaten

Ua	=		250		V
U _{a2}	=		250		V
U _{g2} R _k	=		55		Ω
I _a I _{g2} S	=	84	100	118	mA
I _{g2}	=	11,5	14,5	17,5	mA
S	=	14,5	18	21,5	mA/V
µg2g1	=		17,5		
μg2g1 R _i	=		23		$k\Omega$
R_{iL}	=		250		Ω
$-U_{g1}(+I_{g1}=0,3\mu A)$	\leq		1,3		V
$-U_{g1}(+I_{g1}=0, 3\mu A)$ $I_{a}(-U_{g}=25 \text{ V})$	≦		1		mA

 Die Überschreitung der zulässigen Heizspannungsschwankung von ± 5% (absolute Grenzen) beeinträchtigt das Betriebsverhalten und die Lebensdauer der Röhre.

MA mA/V

 $k\Omega$

W

W MΩ MΩ mA

kΩ °C

mA

μΑ

mA/V

w 1) v

KENNDATEN, GRENZDATEN BESONDERE ANGABEN

Kenndaten

Triodenschaltung

=	250
=	55
=	115
=	21
≈	17
=	0,8
=	1
	= = = ≈

Grenzdaten

TT		1000
Uao	max.	1000
Ua	max.	600
Q_a	max.	30
$Q_{(a+g2)}$	max.	30
UgZo	max.	600
U _{g2}	max.	425
Q _{a2}	max.	5
R_{g1}^{g2} (bei $Q_a \le 30W$) R_{g1} (bei $Q_a \le 20W$)	max.	0,3
Rg1(bei Qa=20W)	max.	0,5
$I_{\mathbf{k}}$	max.	140
Ufk	max.	120
Rfk	max.	20
tkolb	max.	220

Besondere Angaben

Ende	der	Lebensdauer
т		<
¹ a		=
S		≤
Τ.		≥

-Ig1 ≧ 2 Meßeinstellung: siehe Kenndaten Seite 2

65

12

1) In Triodenschaltung

Betriebsdaten als Leistungsverstärker

Eintakt A-Betrieb

Kennlinien:

Ua	=	2	250	V
U _{g2}	=	2	.50	V
Ra	=	2	2, 2	$k\Omega$
U _{g2} R _a R _k	=		60	Ω
Ug1~	=	0	4,6	V
Ia	=	97	95	mA
I _a I _{g2} N _a ~ k	=	14	20	mA
Na~	=	-	10	W
k	=	-	10	%

K 6

Eintakt A-Betrieb, Triodenschaltung

Ua	=	3	30	V
Ra	=	1	, 5	$k\Omega$
$R_{\mathbf{k}}$	=	1	40	Ω
Ug1~	=	0	9	V
Ia	=	90	94	mA
I _a N _a ~	=	-	5,5	w
k	= ,	_	10	%
Kennlinien:		K		

Betriebsdaten als Leistungsverstärker

Gegentakt AB - Betrieb mit Kathodenwiderstand

Ua	=	2	50		330	4	25	V
T T	=	2	50		330	4	25	V
R _{aa}	=		5		5		6	kΩ
R_{g2}	=		-		2x1	2	x3	$k\Omega^{1}$
R_k	=	2x	140	2	x160	2x	250	Ω
Ug1~	=	0	7,3	0	10,5	0	16	V
Ia	=	2x57	2x64	2x68	2x80	2x60	2x77	mA
	=	2x8	2x16	2x10	2x16,5	2x9	2x15	mA
I _{g2} N _a ~	=	-	20	-	32	-	40	W
k	=	-	4	-	4	-	5	%
Kenn	linien:	K	8 2		K 9	F	10	

Gegentakt B - Betrieb mit fester Gittervorspannung

-								
Ua	=	25	0	33	0	42	25	V
U _{g2} -U _{g1}	=	25	0	33	0	42	25	V
-Ug1	=	1	1	1	5	2	22	V
Raa	=		4		5		6	kΩ
R _g 2	=		-	2x	1	2×	c 3	$k\Omega^{1}$
Ug1~	=	0	7,4	0	10,2	0	15	
Ia	= ,	2x30	2x70	2x38	2x80	2x25	2x80	mA
I _a I _{g2} N _a ~	=	2x4,5	2x16	2x5,5	2x16,5	2x4	2x15,5	mA
Na~	=	-	20	-	32	-	40	W
k	=	-	2,5	-	3	-	2,5	%
Kennl	inien:	K	11	K	12	K	13	

1) Verblockung der Vorwiderstände führt zur Überlastung des Schirmgitters und ist deshalb unzulässig.

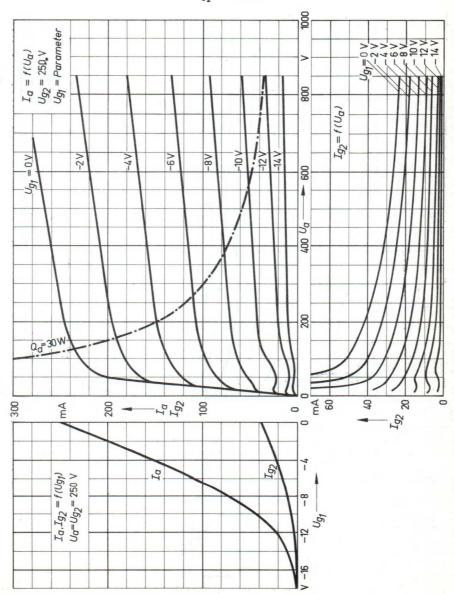
Betriebsdaten als Leistungsverstärker

Gegentakt B - Betrieb, Sprach- oder Musikaussteuerung

Ua	=		425	V
U _{a2}	=		425	V
Ug2 -Ug1	=		22	V
Raa	=		5	kΩ
R _{g2}	=	2x	1,5	$k\Omega$
Ug1~	=	0	15	V
I_a	=	2x28	2×95	mA
Ig2	=	2x4,5	2x20	mA
	≤	-	0,3	μΑ
Na~	=	-	50	W 1)
k	=	-	4	000
Kennlinien:			K 14	

Gegentakt AB - Betrieb, Triodenschaltung

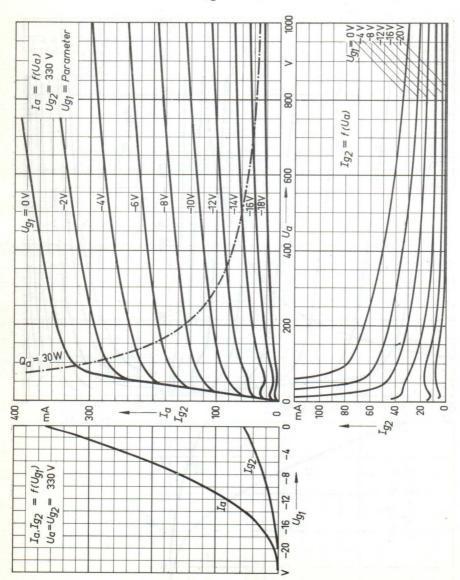
Ua	=	2	50	3	30	4	25	V
Raa	=		3		3		5	$k\Omega$
Rk	=	2x	200	2x	200	2×	300	Ω
Ug1~	, =	0	7,5	0	10,3	0	15,2	V
Ia	=	2x50	2x54	2x70	2x76	2x65	2x73	mA
Na~	=	-	6	-	12	_	20	W
k	=	_	1	_	1,5	-	2,5	%
Kenn	linien:	F	15	K	16	I	ζ 17	


1) Bei Sinus - Dauerton darf höchstens bis $N_a=30~W$ ausgesteuert werden, da sonst die zulässige maximale Schirmgitterverlustleistung überschritten wird.

$$I_{a}, I_{g_2} = f(U_{g_1})$$
 $I_{a} = f(U_{a})$ $I_{g_2} = f(U_{a})$

$$I_a = f(U_a)$$

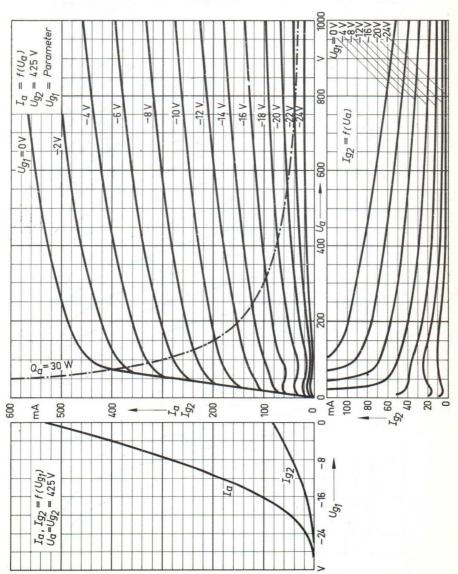
$$I_{g_2} = f(U_a)$$



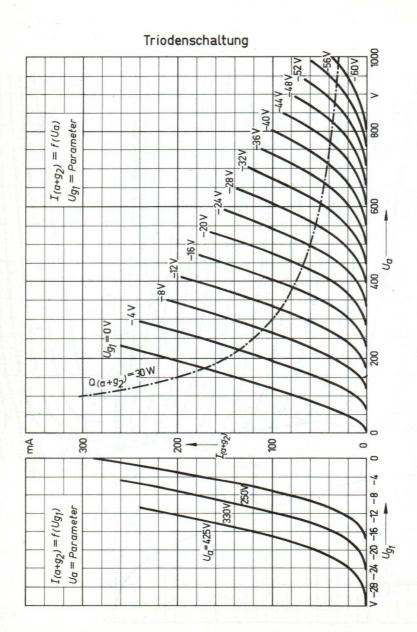
$$I_{a}, I_{g_{2}} = f(U_{g_{1}})$$
 $I_{a} = f(U_{a})$ $I_{g_{2}} = f(U_{a})$

$$I_a = f(U_a)$$

$$g_2 = f(U_a)$$

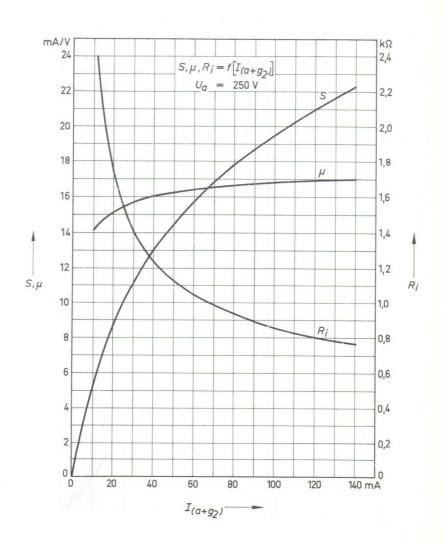


$$I_{a}, I_{g_2} = f(U_{g_1})$$
 $I_{a} = f(U_{a})$ $I_{g_2} = f(U_{a})$


$$I_a = f(U_a)$$

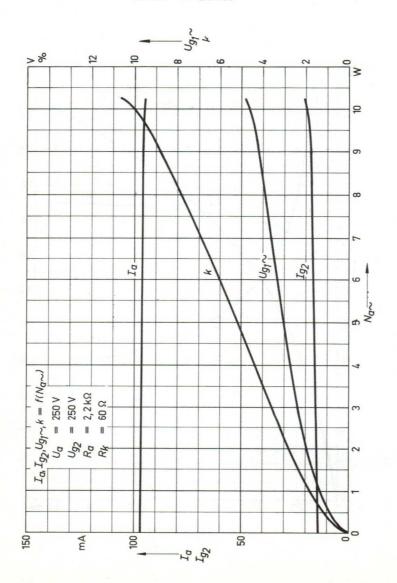
$$g_2 = f(U_a)$$

$$I_{(a+g_2)} = f(U_{g_1}) \qquad I_{(a+g_2)} = f(U_a)$$



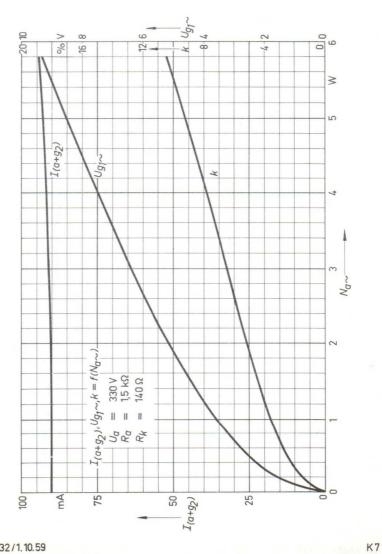
KENNLINIEN

 $S, \mu, R_1 = f(1(a+g_2))$

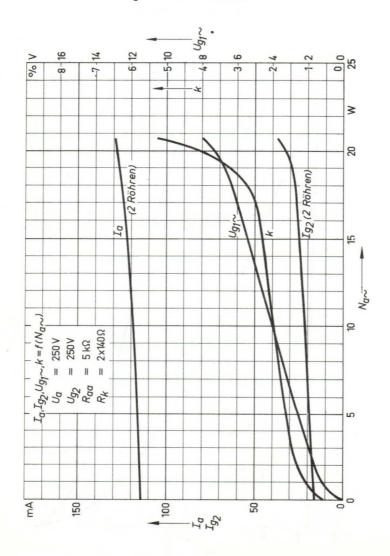

Triodenschaltung

RöK 3232/1.10.59

 $\text{I}_{\text{a}}, \text{ I}_{\text{g}_{\text{2}}'} \text{ U}_{\text{g}_{\text{1}}} \text{---}, \text{k} = \text{f (N}_{\text{a}} \text{---})$


Eintkt A-Betrieb

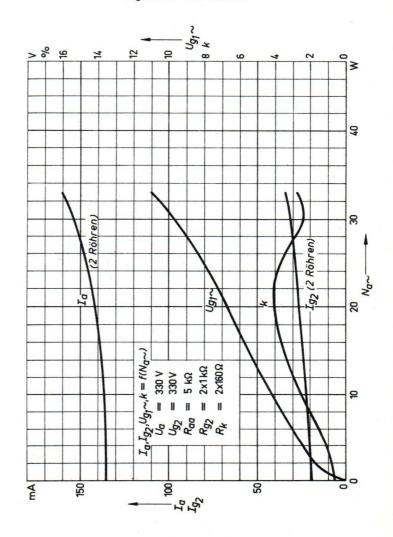
$$I_{\left(a+g_{2}\right)},\ U_{g_{1}}^{}\sim\text{, }k=f\left(N_{a}^{}\sim\right)$$


Triodenschaltung

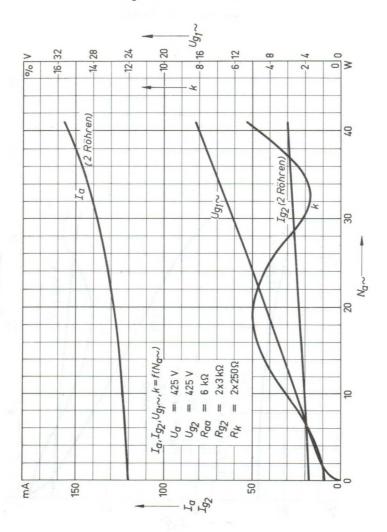
Eintakt A - Betrieb

 $I_{a'}$ $I_{g_2'}$ $U_{g_1}^{\sim}$, k=f (N_a^{\sim})

Gegentakt AB - Betrieb



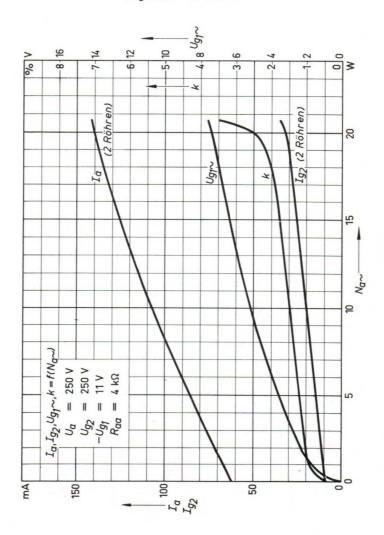
AUSSTEUERKENNLINIEN


 $I_{a}, I_{g_{2}}, U_{g_{1}} \sim , k = f (N_{a} \sim)$

Gegentakt AB - Betrieb

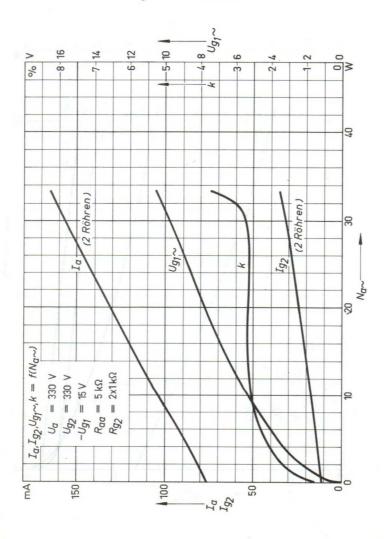
 $I_{a'} I_{g_{2'}} U_{g_{1}} \sim , k = f (N_{a} \sim)$

Gegentakt AB-Betrieb

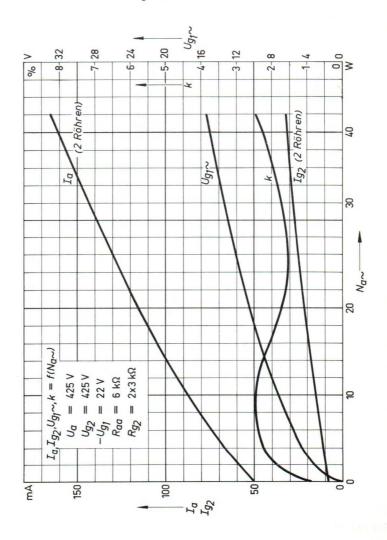


AUSSTEUERKENNLINIEN

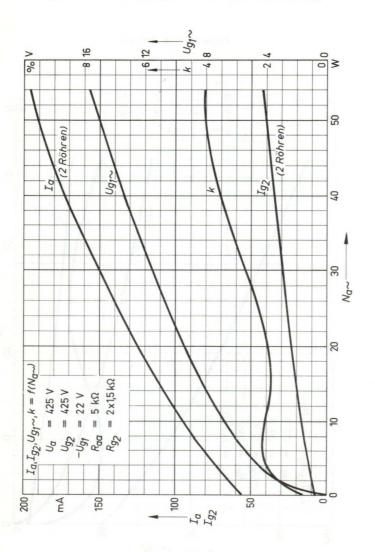
 I_{a} , I_{g_2} , U_{g_1} , k=f (N_a)


Gegentakt B-Betrieb

RöK 3232/1.10.59 K11

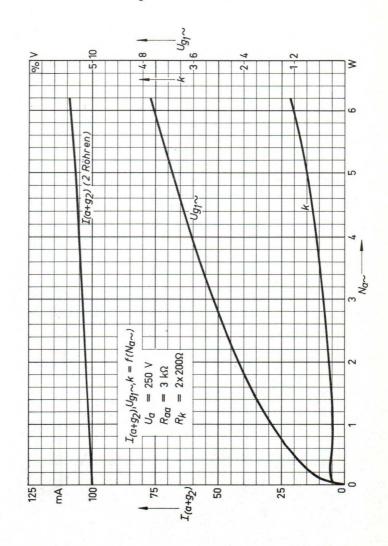

 $I_{a'}$ $I_{g_{2'}}$ $U_{g_1}^{\sim}$, k=f (N_a^{\sim})

Gegentakt B-Betrieb


 $I_{a^{\prime}}\ I_{g_{\underline{2}^{\prime}}}\ U_{g_{\underline{1}}^{\sim}}\ , k=f\ (N_{\underline{a}}\sim)$

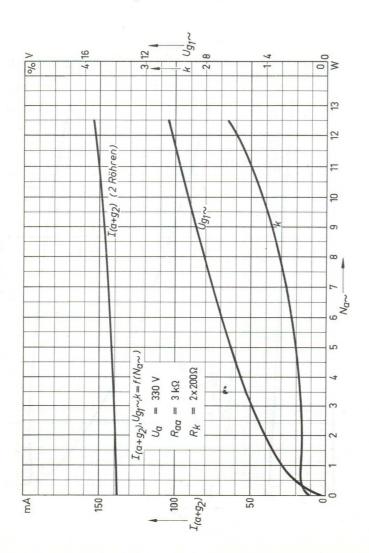
Gegentakt B-Betrieb

 $I_{a'} I_{g_{2'}} U_{g_{1}} \sim , k = f (N_{a} \sim)$


Gegentakt B-Betrieb, Sprach-oder Musikaussteuerung

$$(a+g_2)$$
, $U_{g_1} \sim$, $k = f(N_a \sim)$

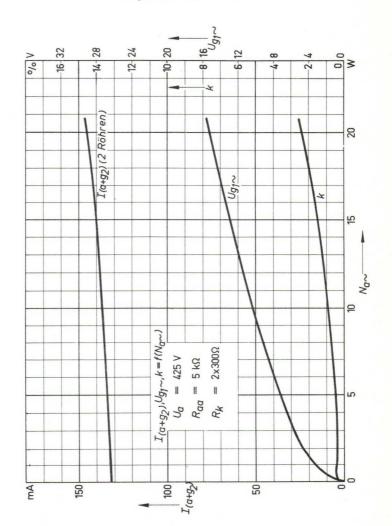
Triodenschaltung


Gegentakt AB-Betrieb

$$I_{(a+g_2)},\ U_{g_1}\!\sim\!,\ k=f\ (N_a\!\sim\!)$$

Triodenschaltung

Gegentakt AB - Betrieb



AUSSTEUERKENNLINIEN

 $I_{(a+g_2)}, U_{g_1}^{\sim}, k = f(N_a^{\sim})$

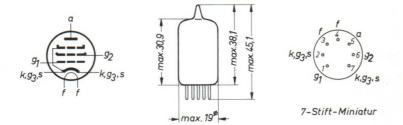
Triodenschaltung

Gegentakt AB-Betrieb

SIEMENS & HALSKE AKTIENGESELLSCHAFT

WERNERWERK FUR BAUELEMENTE

Art und Verwendung


Universal-Pentode, besonders geeignet für HF-, ZF- Breitbandverstärker sowie für Video- und NF- Verstärker, Oszillatoren, Mischstufen, Frequenzvervielfacher und Kathodenverstärker. Die Daten der Röhre entsprechen der Vorschrift MIL-E-I/4 C des Typs 5654 / 6 AK 5 W.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit (p \approx 1,5 °/oo je 1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode Heizfaden Schaltfestigkeit

Äquivalente Typen

Die 5654 stimmt in ihren Daten mit den nachstehenden Röhrentypen so weitgehend überein, daß ein Austausch möglich ist: 6 AK 5 WA, 6 AK 5, EF 95.

Maße in mm

Sockel: Miniatur Gewicht: ca. 6 g Kolben: DIN 41537, Form A, Nenngröße 28 Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_{f} = 6,3$$
 V^{1}
 $I_{f} = 175 \pm 9$ mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten (mit äußerer Abschirmung 19,05 mm ∅)

$$C_{e}$$
 = 4,0 ± 0,6 pF
 C_{e} (I_k=10mA) = 5,2 pF
 C_{a} = 2,85 ± 0,4 pF
 C_{ag1} < 20 mpF
 C_{g2g1} = 1,4

Kenndaten

		min.	nom.	max.		
Ua	=		120		120	V
Ugz	=		120		120	V
Ug2 -Ug1	=		2		-	V
Rk	= 1		-		200	Ω^{2}
I_a	=	5,0	7,5	11	7,5	mA
sg2	=	0,8	2,5	4,0	2,5	mA
S	=	3,8	5,0	6,2	5,0	mA/V
µg2g1	=		32,5		32,5	
Ri	=		340		340	$k\Omega$
Rag	~		2		2	$k\Omega$
Re (100 MHz)	=		8		8	$k\Omega$
$-U_{g1}$ ($I_a=0, 2mA$)	\leq		-		10	V 3)
$-U_{g1}$ (I _a = 10 μ A)	=		-		8,5	V

- 1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5 % (absolute Grenzen) um den Sollwert schwankt.
- 2) Betrieb mit Kathodenwiderstand wird empfohlen.
- 3) $R_a = 100 \text{ k}\Omega$

Ω mA mA/V

 $k\Omega$

KENNDATEN GRENZDATEN

Kenndaten

Grenzdaten

Triod	ens	chaltung	
-------	-----	----------	--

Ua	=	120
$R_{\mathbf{k}}$	=	200
$_{\mathbf{s}}^{\mathrm{I}_{\mathbf{a}}}$	=	10
S	=	6,7
μ	=	32
	=	4,8
R _i R a q	≈	500

(absolute Werte)

Uao	max.	600		V
	max.	200		V
	max.	1,65		W
Ug2o	max.	600		V
U _{g2}	max.	155		V
Qg2	max.	0,55		W
-Ŭ _{g1}	max.	50		V
+Ug1	max.	0		V
Ig1	max.	1		mA
R _{g1}	max.	0,1		$M\Omega$
Ik	max.	20		mA
Ufk±	max.	135		V
t _{kolb}	max.	165		°C
	Ug2 Qg2 -Ug1 +Ug1 Ig1 Rg1 I _k Ufk±	Ua max. Qa max. Ug2o max. Ug2 max. Qg2 max. -Ug1 max. +Ug1 max. Ig1 max. Rg1 max. Ik max. Ufk‡ max.	Ua max. 200 Qa max. 1,65 Ug2o max. 600 Ug2 max. 155 Qg2 max. 0,55 -Ug1 max. 50 +Ug1 max. 0 Ig1 max. 1 Rg1 max. 0,1 Ik max. 20 Ufk± max. 135	Ua max. 200 Qa max. 1,65 Ug2o max. 600 Ug2 max. 155 Qg2 max. 0,55 -Ug1 max. 50 +Ug1 max. 0 Ig1 max. 1 Rg1 max. 0,1 Ik max. 20 Ufkt max. 135

Besondere Angaben

Negativer Gitterstrom

μΑ

Meßeinstellung: siehe Kenndaten mit - U_{g1} = 2 V

Isolationswiderstände

$$R_{is}$$
 (a/alle übrigen Elektroden bei U_{is} =300V) $\stackrel{\geq}{=}$ 100 $M\Omega$ R_{is} (g/alle übrigen Elektroden bei U_{is} =100V) $\stackrel{\geq}{=}$ 100 $M\Omega$ R_{is} (fk bei U_{is} =100 V) $\stackrel{\geq}{=}$ 10 $M\Omega$

gemessen mit Uf = 6,3 V

Heizfaden-Schaltfestigkeit

Die Röhre verträgt mindestens 2000 maliges Ein- und Ausschalten (eine Minute ein-, eine Minute ausgeschaltet).

Meßeinstellung: $U_f = 7.5 \text{ V}$, $U_{fk+} = 135 \text{ V}$, $U_a = U_{g2} = U_{g1} = 0 \text{ V}$

Klingspannung

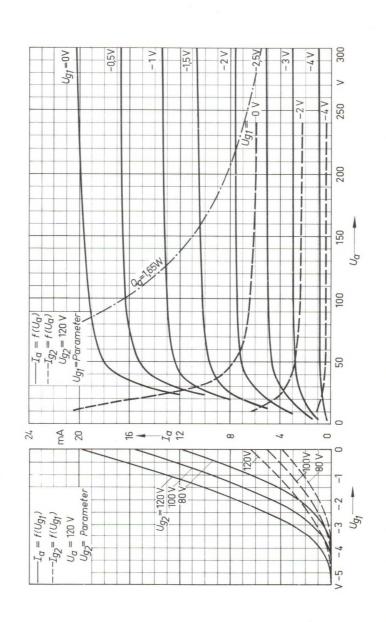
Ukling

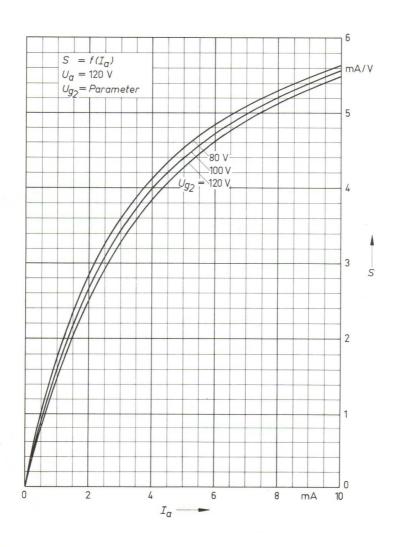
150

mV

Meßeinstellung: $U_f = 6,3 \text{ V}$, $U_a = U_{g2} = 120 \text{ V}$, $-U_{g1} = 2 \text{ V}$,

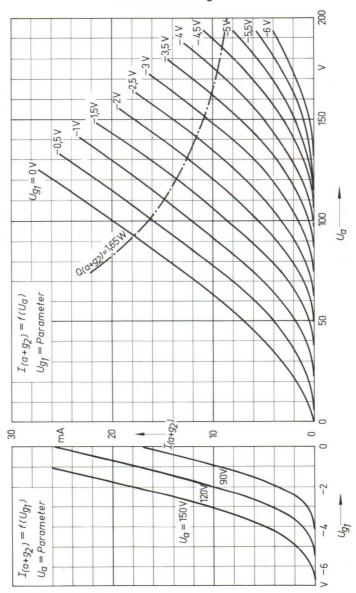
 $R_a = 10 \text{ k}\Omega$, Beschleunigung = 2,5 g, Schüttelfrequenz = 25 Hz, gemessen am Ausgang der

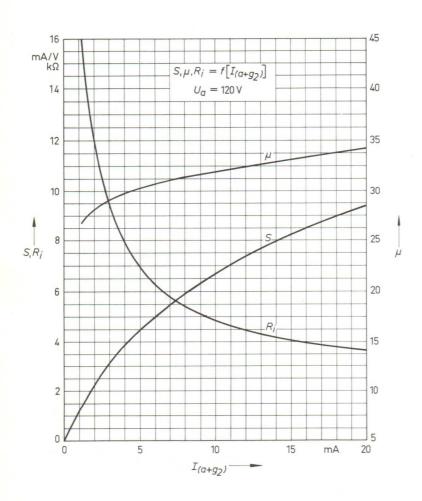

Röhre.

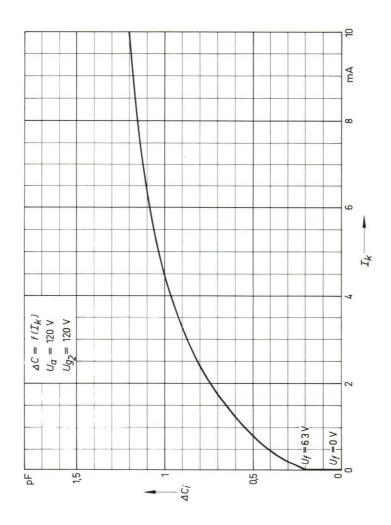

Ende der Lebensdauer

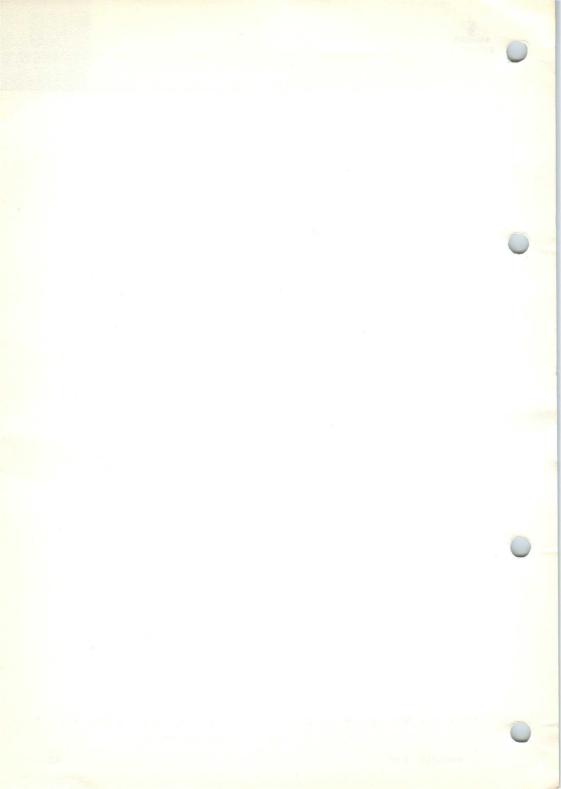
5,0 Ia mA 3,3 mA -Ig1 1.0 MA

Meßeinstellung: siehe Kenndaten mit R_k = 200 Ω



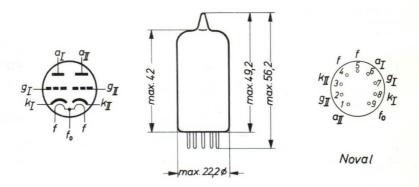

$$I_{(a+g_2)} = f(U_{g_1})$$
 $I_{(a+g_2)} = f(U_a)$


Triodenschaltung


Triodenschaltung

SIEMENS & HALSKE AKTIENGESELLSCHAFT

WERNERWERK FUR BAUELEMENTE



Art und Verwendung

Doppeltriode mit getrennten Kathoden. Besonders geeignet für Spannungsverstärker, Phasenumkehrstufen und Multivibratoren.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit (p≈1,5°/oo je 1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: Noval

Gewicht: ca. 11g

Kolben: DIN 41539, Form A, Nenngröße 40

Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_f$$
 = 6,3 bzw. 12,6 V 1)
 I_f = 350 $\frac{1}{2}$ 30 bzw. 175 $\frac{1}{2}$ 15 mA

indirekt durch Wechsel- oder Gleichstrom, Heizart: Parallelspeisung

Kapazitäten

(ohne äußere Abschirmung)

		System I	System II		
Ce	=	1,4 + 0,3		pF	
Ca	=	$0,46 \pm 0,23$	$0,36 \pm 0,17$	pF	
Cag	=	1,4 + 0,3	$1,4 \pm 0,3$	pF	

Kenndaten

- 1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als ± 5% (absolute Grenzen) um den Sollwert schwankt.
- 2) Symmetrie der Systeme

GRENZDATEN BESONDERE ANGABEN

Grenzdaten	(absolute Werte)		
Uao	max.	600	v
Ua	max.	330	V
Qa	max.	0,8	W
- U ~	max.	55	V
+Ug	max.	Q	v
Rg	max.	0,5	$M\Omega^{-1}$
Rg	max.	1,0	$M\Omega^{2}$
$U_{\mathbf{fk}}^{\mathbf{g}}$	max.	100	V
tkolb	max.	165	°C

Besondere Angaben

Negativer Gitterstrom

-I_g ≤ 0,4 μA

Meßeinstellung: siehe Kenndaten mit Ua = 250 V

Gitteremission

-I_g ≦ 0,6 μA

Meßeinstellung: $U_f=15V$, $U_a=250V$, $-U_g=8V$, $R_g=1M\Omega$

Isolationswiderstände

 $\begin{array}{lll} R_{is} \left(\text{fk-bei } U_f = 12,6 \text{V und } U_{is} = 100 \text{ V} \right) & \stackrel{\geq}{=} & 15 & M\Omega \\ R_{is} \left(\text{fk+bei } U_f = 12,6 \text{V und } U_{is} = 100 \text{ V} \right) & \stackrel{\geq}{=} & 15 & M\Omega \\ R_{is} (\text{g/alle } \text{übrigen } \text{Elektroden bei } U_{is} = 100 \text{ V}) & \stackrel{\geq}{=} & 500 & M\Omega \\ R_{is} (\text{a/alle } \text{übrigen } \text{Elektroden bei } U_{is} = 300 \text{ V}) & \stackrel{\geq}{=} & 500 & M\Omega \end{array}$

- 1) Mit fester Gittervorspannung
- 2) Mit automatischer Gittervorspannung

Besondere Angaben

Heizfaden - Schaltfestigkeit

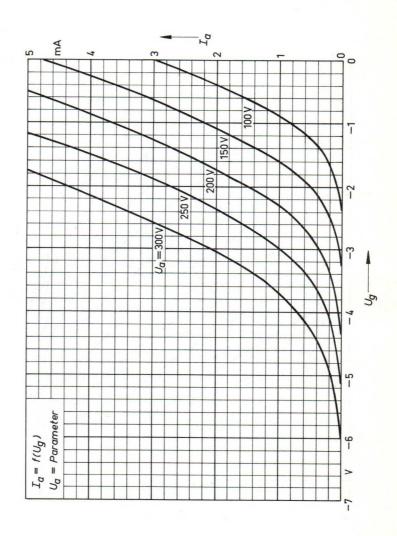
Die Röhre verträgt mindestens 2000 maliges Ein- und Ausschalten (1 Minute ein-, 1 Minute ausgeschaltet).

Meßeinstellung: $U_f = 7.5 \text{ V}$ zwischen Sockelstift 4/5 und 9, $U_a = U_g = 0 \text{ V}$, U_{fk} - = 135 V

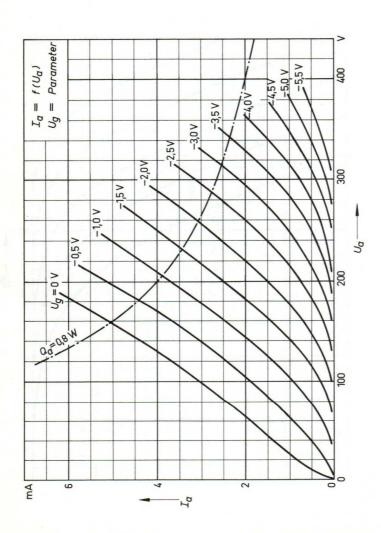
Klingspannung

U_{kling} ≦ 100 mV

Meßeinstellung: U_f = 12,6 V, U_a = 250 V, $-U_g$ = 3 V, R_a = 2 k Ω , Schüttelfrequenz = 25 Hz, Beschleunigung = 2,5g, beide Systeme parallel geschaltet, Frequenzbereich des Spannungsmessers 20 bis 5000 Hz, gemessen am Ausgang der Röhre.

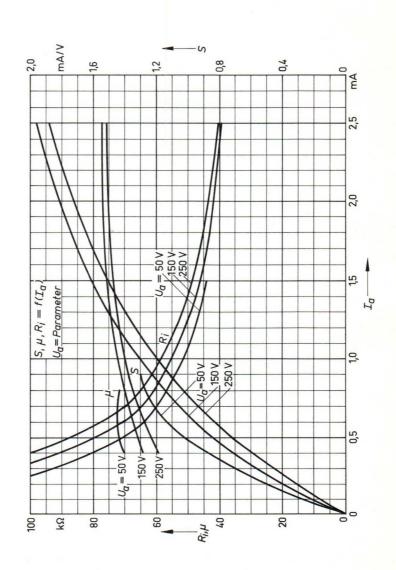

Ende der Lebensdauer

 I_a \leq 0,65 mA S \leq 0,8 mA/V -I_g \geq 1,0 μA

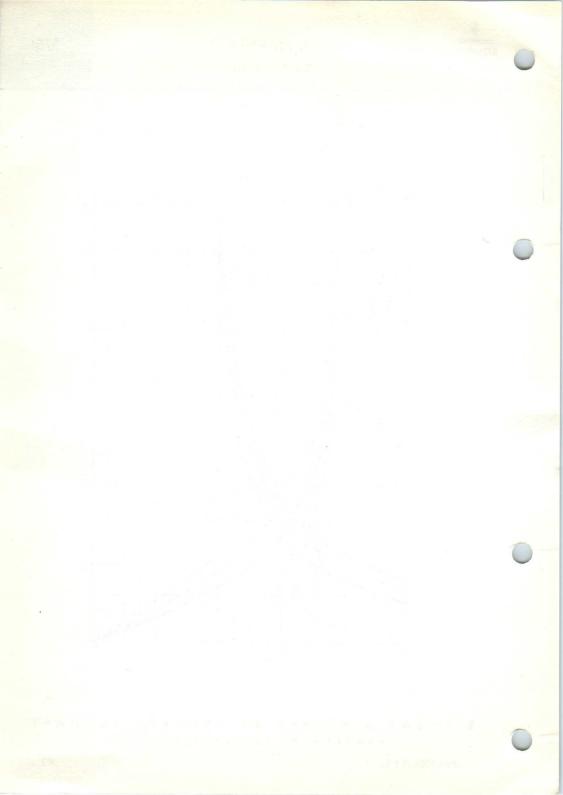

Meßeinstellung: $U_a = 250 \text{ V}$, $R_k = 3 \text{ k}\Omega$

KENNLINIENFELD

 $I_a = f(U_g)$



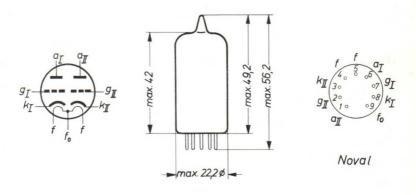
KENNLINIENFELD


 $S, \mu, R_i = f(I_a)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE

RöK 3286 / 1.1.60

K3



Art und Verwendung

Doppeltriode mit getrennten Kathoden. Besonders geeignet für Verstärker, Oszillatoren, Multivibratoren und Sperrschwinger.

Oualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit (p \approx 1,5°/oo je 1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: Noval

Gewicht: ca. 11g

Kolben: DIN 41539, Form A, Nenngröße 40

Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_{f} = 6,3$$
 bzw 12,6 V 1)
 $I_{f} = 350 \pm 30$ bzw 175 \pm 15 mA

Heizung: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

(ohne äußere Abschirmung)

Kenndaten

- 1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als \pm 5% (absolute Grenzen) um den Sollwert schwankt.
- 2) Symmetrie der Systeme

GRENZDATEN BESONDERE ANGABEN

Grenzdaten	(absolute Werte)		
U_{ao}	max.	600	V
Ua	max.	330	V
	max.	3,0	W
Q _a -U _a	max.	55	V
+Ug	max.	0	V
I_{σ}	max.	5,0	mA
I _g R _g	max.	0,5	$M\Omega^{1}$
Rg	max.	1,0	$M\Omega^{(2)}$
$I_{\mathbf{k}}$	max.	22	mA
Ufk	max.	100	V
tkolb	max.	165	°C

Besondere Angaben

Negativer Gitterstrom

-Ig ≦

0,5

μA

Meßeinstellung: siehe Kenndaten mit Ua = 250 V

Gitteremission

-Ig

 \leq

1,5

μΑ

Meßeinstellung : $U_f = 15,0 \text{ V}, U_a = 250 \text{ V}, -U_g = 30 \text{ V}, R_g = 0,5 \text{ M}\Omega$

Isolationswiderstände

$R_{is}(fk-bei\ U_f=12,6V\ und$	Uis	=	100	V)	≧ 1	5	МΩ
$R_{is}(fk+bei\ U_f=12,6\ V\ und$					≧ 1	15	$M\Omega$

- 1) Mit fester Gittervorspannung
- 2) Mit automatischer Gittervorspannung

Besondere Angaben

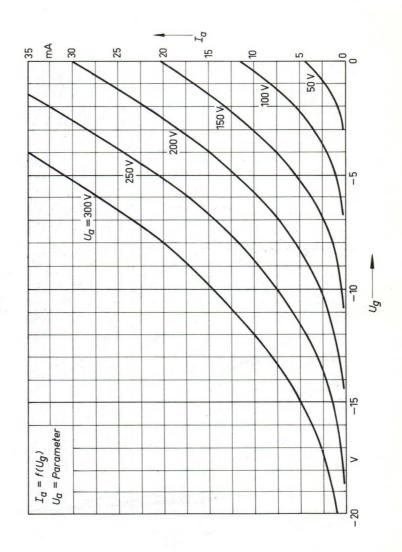
Heizfaden Schaltfestigkeit

Die Röhre verträgt mindestens 2000 maliges Ein- und Ausschalten (1 Minute ein-, 1 Minute ausgeschaltet).

Meßeinstellung: U_f = 7,0 V zwischen Sockelstift 4/5 und 9, U_a = U_g = 0 V, U_{fk-} = 135 V

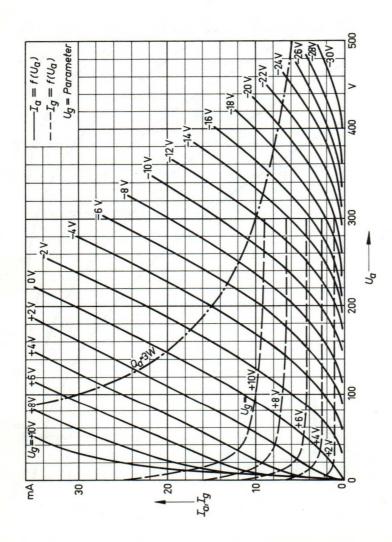
Klingspannung

U_{kling} ≦ 100 mV

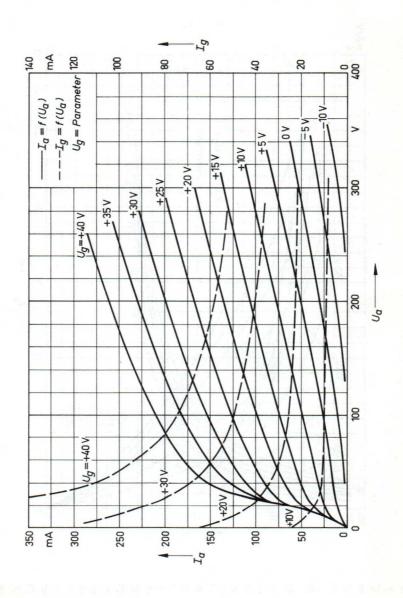

Meßeinstellung: $U_a = 250 \text{ V}$, $-U_g = 8,5 \text{ V}$, $R_a = 2k\Omega$, Schüttelfrequenz = 25 Hz, Beschleunigung = 2,5 g, beide Systeme parallelgeschaltet, Frequenzbereich des Spannungsmessers 20 bis 5000 Hz, gemessen am Ausgang der Röhre.

Ende der Lebensdauer

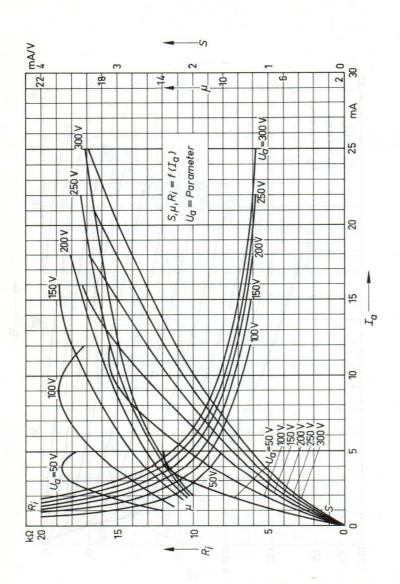
Meßeinstellung: $U_a = 250 \text{ V}$, $R_k = 800 \Omega$



KENNLINIENFELD $I_{a} = f(U_{q})$



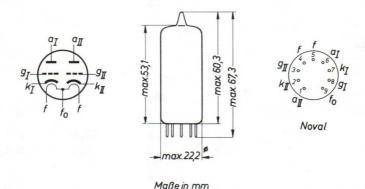
KENNLINIENFELD $I_{a}, I_{g} = f(U_{a})$


 $I_{a'}I_{g} = f(U_{a})$

KENNLINIENFELD

 $S, \mu, R_i = f(I_a)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE



Art und Verwendung

Doppeltriode mit getrennten Kathoden, besonders geeignet für Multivibratoren und Impulsstufen insbesondere in Rechen- und Zählgeräten.

Qualitätsmerkmale

Lange Lebensdauer (> 10 000 Std.) Große Zuverlässigkeit (p \approx 1,5 °/oo je 1000 Std.) Enge Toleranzen Hohe Stoß- und Erschütterungsfestigkeit Zwischenschichtfreie Spezialkathode

Sockel: Noval Gewicht: ca. 12 g
Kolben: DIN 41539, Form A, Nenngröße 50 Einbau: beliebig

HEIZUNG, KAPAZITATEN KENNDATEN

Heizung

$$U_f = 6,3$$
 bzw. 12,6 V¹)
 $I_f = 600 \pm 30$ bzw. 300 mA

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

(ohne außere Abschirmung)

		System I		System II	
C	=	$3,2 \pm 0,5$		$3,2 \pm 0,5$	pF
C _e C _a	=	$0,6 \pm 0,21$		$0,53 \pm 0,18$	pF
	=	$5,0 \pm 1,0$		5,0 ± 1,0	pF
C _{ag} C _{kf}	=	3,5		3,5	pF
Caa	<		0,9		pF
Cgg	<		25		mpF

Kenndaten

		min.	nom.	max.	
UL	=		250		V
Uba Rk	=		620		Ω
Ia	.grytaff.	12,0	14,5	17,0	mA
la S	=	3,9	5,2	6,5	mA/V
μ	=		20		
Ri	=		3,8		kΩ
$-\dot{\mathbf{U}}_{\mathbf{g}}\left(\mathbf{I}_{\mathbf{a}}=1\right)$	1,0 mA)=	11	Los isocios	15	$V^{(2)}$

- 1) Die Lebensdauergarantie setzt voraus, daß die Heizspannung nicht mehr als $\frac{1}{2}$ 5 % (absolute Grenzen) um den Sollwert schwankt.
- 2) $U_a = 200 \text{ V}$

KENNDATEN GRENZDATEN

K

Fig. 5.	Rg I
Kenndaten für Zählschaltungen	
min. nom.	-Ua-
$U_{o} = 100 V$	0-0a-0
$U_a = 100 V$ $R_g = 500 k\Omega$	Schaltung a
I _a = 24 29 mA	
nom. max.	4
$U_a = 200$ V	
$I_a = 1,0$ mA	6-UR-Ua-
	Schaltung b
$ U_{RI}-U_{RII} = 1,5$ V	

Grenzdaten

Uao	max.	600		V
Ua	max.	300		V
Uasp	max.	600		V
Q 0	max.	4,0		W^{1}
-Ug	max.	75		V
-Ugsp	max.	300		V^{2}
+Ug	max.	1,0		V
+Ugsp	max.	20		V 2)
Igsp Rg Rg	max.	2,0		mA
Igsp	max.	50		mA^{2}
Rø	max.	0,1		$M\Omega^{3}$
R_{σ}	max.	0,5		$M\Omega^{4}$
Ik	max.	28		mA
Iksp	max.	300		mA 2)
U _{fk+}	max.	180		V
Ufk-	max.	180		V 5)
tkolb	max.	180		°C

- 1) $Q_{aI} + Q_{aII}$ max. 7 W 2) Für max. 10 μ s, 1 % Einschaltdauer
- 3) Bei fester Gittervorspannung
- 4) Bei automatischer Gittervorspannung
- 5) Gleichspannungsanteil max. 90 V

Besondere Angaben

Negativer Gitterstrom

μA

Meßeinstellung: $U_a = 250 \text{ V}$, $R_k = 620 \Omega$, $R_g = 0,5 \text{ M}\Omega$

Isolationswiderstände

 R_{is} (a/alle übrigen Elektroden bei U_{is} = 300 V)> 250 $M\Omega$

 R_{is} (g/alle übrigen Elektroden bei U_{is} = 100 V)> 250 $M\Omega$

 R_{is} (fk bei $U_{is} = 100 \text{ V}$) > 10 $M\Omega$

gemessen bei U_f = 12,6 V

Ende der Lebensdauer

Ia

<u>{</u>

17

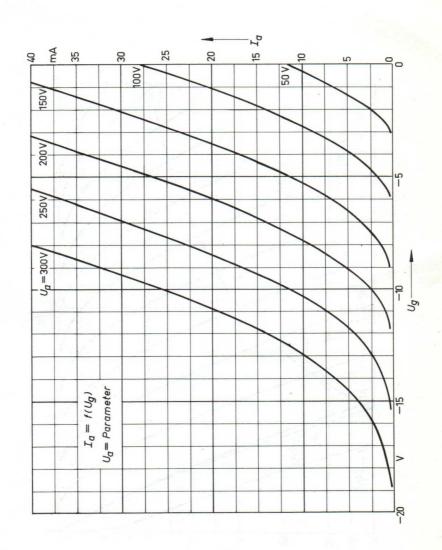
mA

S

=

2,4

mA/V

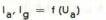

Ig

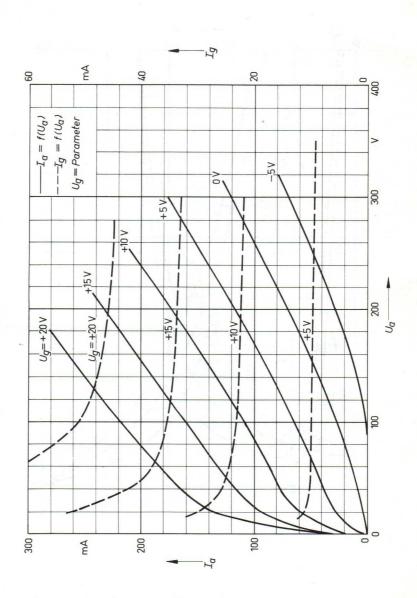
>=

1,5

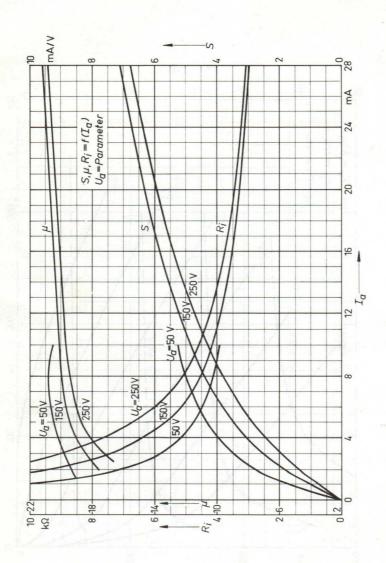
μΑ

Meßeinstellung: siehe Kenndaten für Zählschaltungen mit




 $I_a = f(U_a)$

KENNLINIENFELD



KENNLINIENFELD

SIEMENS ROHREN

 $S, \mu, R_i = f(I_a)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE

Art und Verwendung

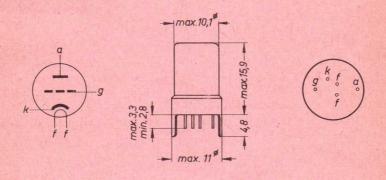
Vorläufige Daten

Steile, rauscharme Nuvistor-Triode mit mittlerer Leerlaufverstärkung für universelle Anwendung.

Qualitätsmerkmale

Lange Lebensdauer (> 10000 Std.)

Zuverlässigkeit (p ≈ 1,5 °/oo je 1000 Std.)


Enge Toleranzen

Stoß- und Erschütterungsfestigkeit

Zwischenschichtfreie Spezialkathode

Heizfaden-Schaltfestigkeit

Höhenfestigkeit (bis 30000 m)

Maße in mm

Sockel: Spezial (E5-65)

Kolben: Metall

Fassung: Rö Fsg 1001

Rö Fsg 1003 (für gedruckte Schaltungen)

Gewicht: ca. 2 g

Einbau: beliebig

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

$$U_f$$
 = 6,3 \pm 5 % V
 I_f \approx 140 \pm 8 mA

Heizart: indirekt durch Wechsel- oder Gleichstrom Parallelspeisung

Kapazitäten

		min	nom	max	
Ce	=	3,5	4,0	4,5	pF
Ca	=	1,1	1,4	1,6	pF
Cag	=	1,9	2,2	2,5	pF
Cag Cak	=	0,14	0,2	0,26	pF
Ckf	=	1,0	1,3	1,6	pF

Kenndaten

				min	nom	max	
Uba	=				75		v
Ua	=	26,5	40				V
	=	0,5	0,5		0		MΩ
R _g R _k	=	. 0	0		130		Ω
I _a	=	2,8	6,8	9	10,5	12	mA
S	=	7	11	10	11,5	13	mA/V
μ	=	31	35	26	33	38	
Ri	~	4,4	3, 2		2,9		kΩ
$-U_g (I_a = 10 \mu A)$	`≈				6,5		V
F (200 MHz)	=				4		dB 1)

1) Gemessen bei Rauschanpassung

Grenzdaten	(absolute Werte)
------------	------------------

Uba	max	330	V
Ua	max	110	V
Qa	max	1	W
-Ug	max	55	v
Ugsp	max	4	V
Ig	max	2	mA
Rg	max	0,5	MΩ 1)
Rg	max	11	MΩ 2)
Ik	max	20	mA
Ufk	max	100	v

- 1) Bei fester Gittervorspannung
- 2) Bei automatischer Gittervorspannung

Besondere Angaben

Isolationswiderstände

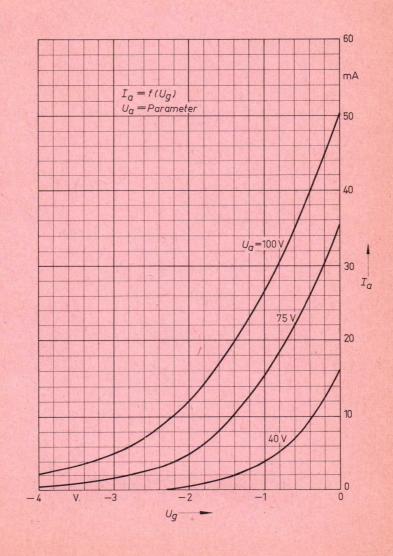
 R_{is} (a/alle übrigen Elektroden bei U_{is} = 300 V) > 500 $M\Omega$ R_{is} (g/alle übrigen Elektroden bei U_{is} = 100 V) > 500 $M\Omega$ R_{is} (fk bei U_{is} = 100 V) > 10 $M\Omega$

gemessen mit Uf = 6,3 V

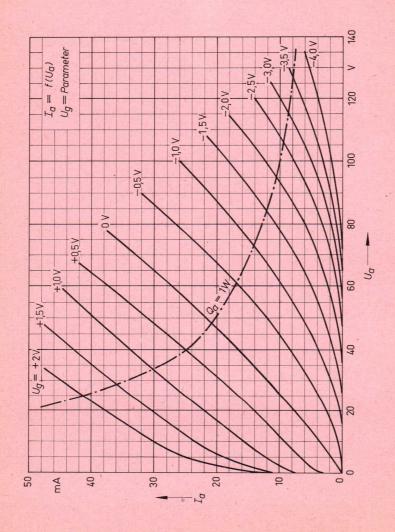
Heizfaden-Schaltfestigkeit

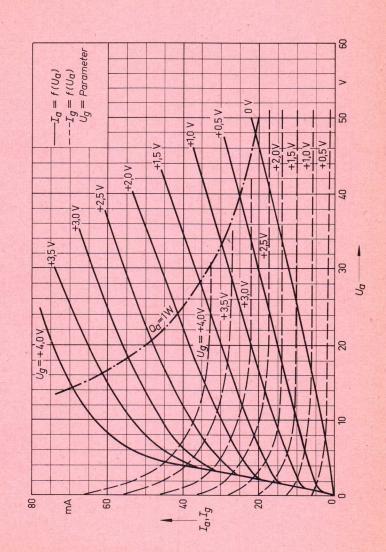
Der Nuvistor verträgt mindestens 2000 maliges Ein- und Ausschalten (eine Minute ein-, zwei Minuten ausgeschaltet).

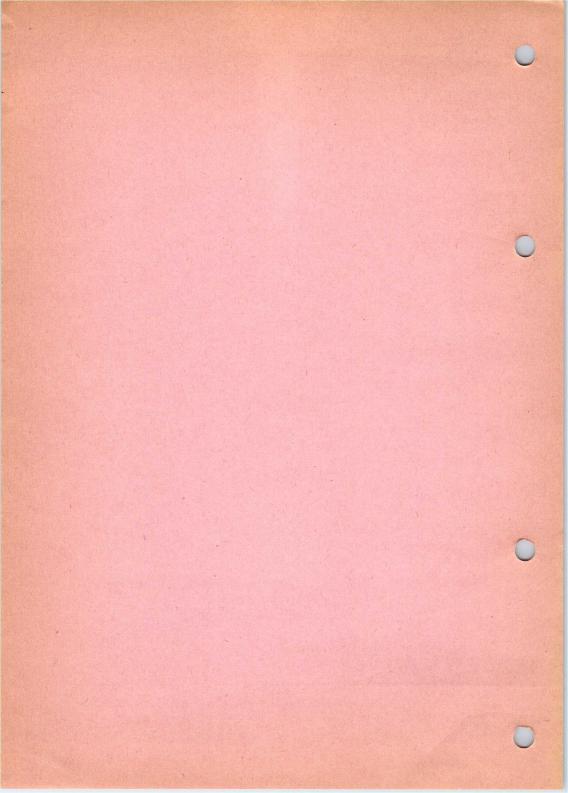
Meßeinstellung: $U_f = 7,5 \text{ V}$, U_{fk} - = 100 V, $U_a = U_g = 0 \text{ V}$


Klingspannung

Meßeinstellung: $U_{ba} = 75 \text{ V}$, $R_k = 130 \Omega$, $R_a = 2 \text{ k}\Omega$


Beschleunigung = 1g, gemessen am Ausgang


der Röhre



RöK 8001/1.2.62

SIEMENS & HALSKE AKTIENGESELLSCHAFT
WERNERWERK FUR BAUELEMENTE

Art und Verwendung

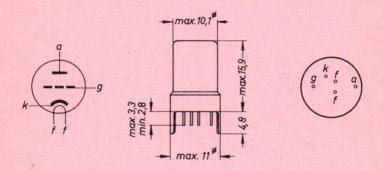
Vorläufige Daten

Nuvistor-Triode mit hoher Leerlaufverstärkung für universelle Anwendung.

Qualitätsmerkmale

Lange Lebensdauer (> 10000 Std.)

Zuverlässigkeit (p ≈ 1,5 °/oo je 1000 Std.)


Enge Toleranzen

Stoß- und Erschütterungsfestigkeit

Zwischenschichtfreie Spezialkathode

Heizfaden-Schaltfestigkeit

Höhenfestigkeit (bis 30000 m)

Maße in mm

Sockel: Spezial (E5-65)

Gewicht: ca. 2 g

Kolben: Metall Fassung: Rö Fsg 1001

Einbau: beliebig

Rö Fsg 1003 (für gedruckte Schaltungen)

HEIZUNG, KAPAZITÄTEN KENNDATEN

Heizung

Kapazitäten

$$U_{f}$$
 = 6,3 \(\frac{1}{2}\) 5 \(\frac{1}{2}\) T_f = 135 \(\frac{1}{2}\) 10 mA

Heizart: indirekt durch Wechsel- oder Gleichstrom Parallelspeisung

			min	nom	max	
	Ce	=	3,4	4,2	5,0	pF
	Ca	= 1	1,3	1,7	2,1	pF
	Cag	. =	0,8	0,9	1,0	pF
	Cak	=	0,16	0,22	0,28	pF
	Ckf	=	1,0	1,3	1,6	pF
K	enndaten		min	nom	max	
	Uba	=		110		V
	Rk	=		150		Ω
	Ia	=	5,5	7,0	8,8	mA
	S	=	7,9	9,4	10,9	mA/V
	μ	=	54	64	74	
	R _i	*		6,8		kΩ
	-U _g (I _a =10 μA)	*		-4		V
	R _{el} (200 MHz)	=		0,8		kΩ
	F (200 MHz)	= 22		4,7		dB 1)

¹⁾ Gemessen bei Rauschanpassung

Grenzdaten (absolute Werte)

U _{ba}	max.	330	V
Ua	max.	125	V
Qa	max.	1	w
-Ug	max.	55	V
Ugsp	max.	2	v
I _k	max.	15	mA
Ig	max.	2	mA
Rg	max.	0,5	MΩ 1)
Rg	max.	1	MΩ 2)
Ufk	max.	100	V
tkolb	max.	150	°C

- 1) Bei fester Gittervorspannung
- 2) Bei automatischer Gittervorspannung

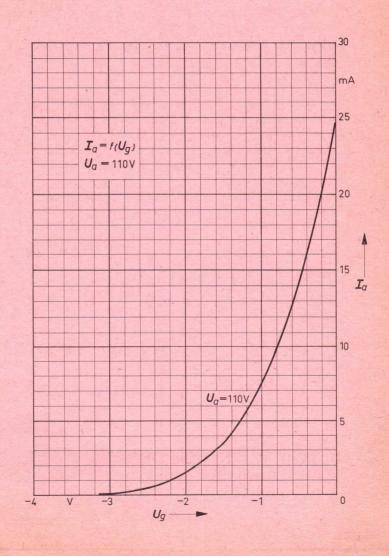
Besondere Angaben

Negativer Gitterstrom

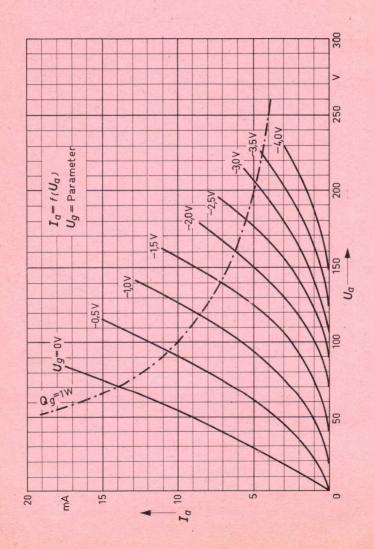
-I_g
$$\stackrel{=}{=}$$
 0,1 μA
Meßeinstellung: U_a = 150 V, -U_g = 1,7 V, R_g = 0,5 MΩ
Metallkolben geerdet

Isolationswiderstände

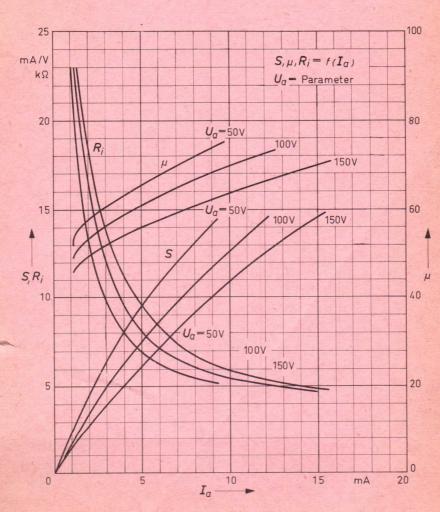
$$R_{is}$$
 (a/alle übrigen Elektroden bei U_{is} = 300 V) > 1000 $M\Omega$ R_{is} (g/alle übrigen Elektroden bei U_{is} = 100 V) > 1000 $M\Omega$ R_{is} (fk bei U_{is} = 100 V) > 20 $M\Omega$ gemessen mit U_f = 6,3 V

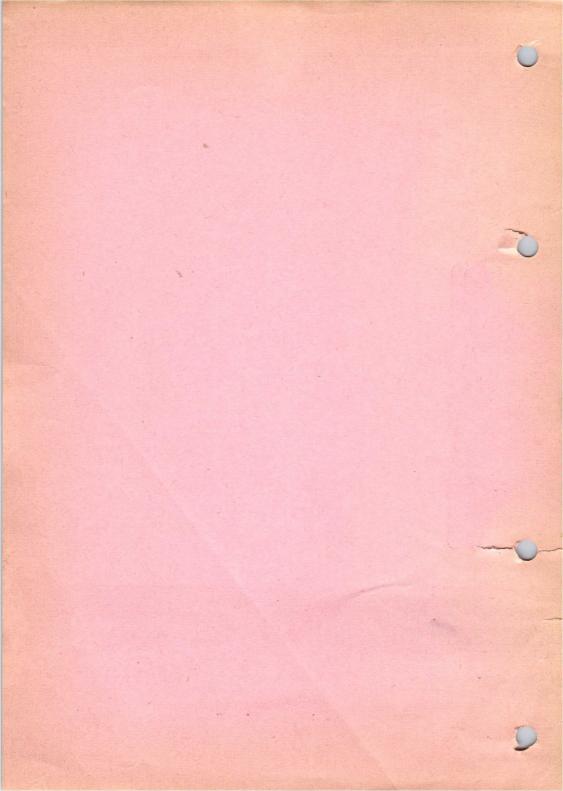

Heizfaden-Schaltfestigkeit

Der Nuvistor verträgt mindestens 2000maliges Ein- und Ausschalten (eine Minute ein-, zwei Minuten ausgeschaltet).


Meßeinstellung: $U_f = 7,5 \text{ V}$, U_{fk} - = 100 V, $U_a = U_g = 0 \text{ V}$

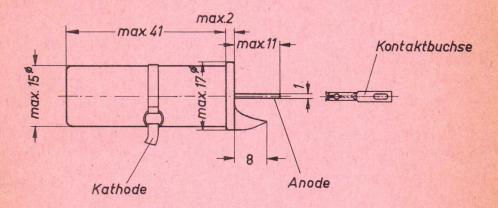
Klingspannung


Meßeinstellung: U_{ba} = 110 V, R_k = 150 Ω , C_k = 1000 μF , R_a = 2 $k\Omega$ Beschleunigung = 1 g, gemessen am Ausgang der Röhre



SIEMENS & HALSKE AKTIENGESELLSCHAFT

Geiger Müller Zählrohre


mit Löschzusatz

Vorläufige Daten

Verwendung

Geiger-Müller-Zählrohr mit Löschzusatz zur Messung von Gamma- und Neutronen - Strahlung. Für die Zählung thermischer Neutronen muss das Zählrohr mit einer Cadmiumfolie von etwa 0,5 mm Dicke umgeben werden.

Abmessungen

Maße in mm

Unmittelbar am Zählrohr darf nicht gelötet werden. Die Anschlüsse sind an der mitgelieferten Kontaktbuchse und an der Kathodenanschlußschelle auszuführen.

ALLGEMEINE DATEN KENNDATEN

Allgemeine Daten

Füllung: Neon, Argon und ein Halogen als Löschsubstanz

Kathode:

Material: Cr-Fe-Legierung
Massenbelegung: 250 mg/cm²

Aktives Volumen:

Durchmesser: 14,4 mm
Länge: 40 mm

Kapazität: ca. 2 pF

Gewicht: ca. 6 g

Kenndaten

Betriebsspannung:

Plateauanfang: 2)

Plateaulänge: 2)

rel. Plateausteilheit: 2)

Totzeit: 1)

Nulleffekt:

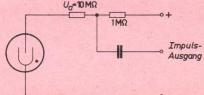
Ua beliebig innerhalb des Plateaus

max. 425 V

min. 225 V

0,01 %/V (max. 0,02 %/V)

60...110 µs


max. 10 Impulse/min

(abgeschirmt mit 50 mm Pb und 3 mm Al)

Lebensdauererwartung: > 5 x 10¹⁰ Impulse
Umgebungstemperatur: -55°C... +75°C

Zur Vermeidung von Kriechströmen ist das Zählrohr trocken und sauber zu halten. In der Schaltung ist auf kapazitätsarme Verdrahtung zu achten.

Meßschaltung

- 1) Bei $R_a = 10 M\Omega$
- 2) Gemessen bei 100 Impulsen, $R_a = 10 M\Omega$

für Geiger-Müller-Zählrohre mit Löschzusatz

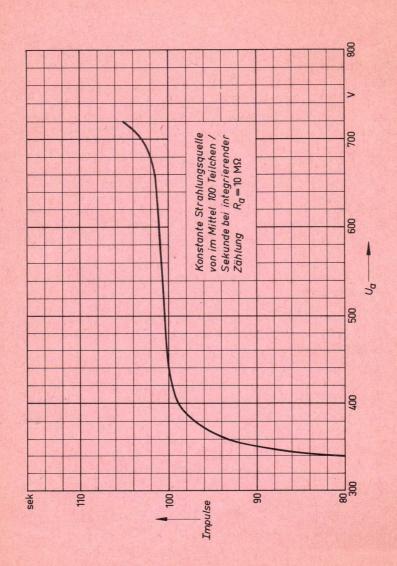
Die Zählrohrtypen ZHa 15/40 und HZb 15/40 können an zählenden und direkt zeigenden Meßgeräten betrieben werden. Die Betriebsspannung kann innerhalb des Plateaus zwischen 400 und 700 Volt beliebig gewählt werden. Empfohlen wird eine Betriebsspannung von ca. 450 Volt.

Der Arbeitswiderstand soll möglichst 1,0 M Ω betragen. Zur Begrenzung der Impulshöhe ist zwischen Arbeitswiderstand und Anodenanschluss ein Widerstand R $_{\rm a}$ von 10 M Ω zu schalten.

Diese 10 MΩ sind unmittelbar an der mitgelieferten Kontaktbuchse anzulöten. Die Kontaktierung am Kathodenzylinder hat nur an dem dafür vorgesehenen Kontaktband zu erfolgen. Direkte Lötung an Anodenanschluss und Kathodenzylinder können zur Zerstörung des Zählrohres führen. Schaltkapazitäten zum Anodenanschluss sind so gering wie möglich zu halten. Grössere Schaltkapazitäten haben nachteiligen Einfluss auf Länge und Steigung des Plateaus.

Beide Zählrohrtypen sind für die Messung von Gammastrahlung geeignet, wobei die grösste Empfindlichkeit bei radialer Einstrahlung in den zylindrischen Kolben erzielt wird.

Zur Messung von Alpha- und Betastrahlung ist nur der Rohrtyp HZb 15/40 geeignet, der an der Stirnseite des Rohres mit einem Glimmerfenster ausgestattet ist. Um die grösste Empfindlichkeit bei diesen Strahlungsarten zu erreichen, soll die Einstrahlung durch das Glimmerfenster erfolgen.


Starke Berührung des Glimmerfensters kann zur Zerstörung des Zählrohres führen. Deshalb ist das Glimmerfenster bei Nichtgebrauch des Rohres möglichst durch Aufsetzen des mitgelieferten Deckels zu schützen.

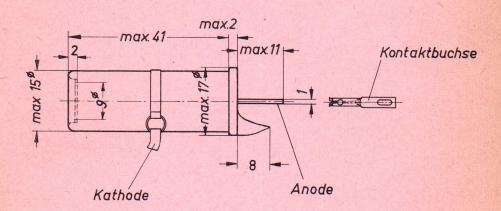
IMPULSZAHL

HZa 15/40

in Abhängigkeit von der Betriebsspannung

(Plateau)

SIEMENS & HALSKE AKTIENGESELLSCHAFT


mit Löschzusatz

Vorläufige Daten

Verwendung

Geiger-Müller-Zählrohr mit Löschzusatz zur Messung von Alpha-, Beta-, Gamma-, und Neutronenstrahlung. Für die Zählung thermischer Neutronen muss das Zählrohr mit Cadmiumfolie von etwa 0,5 mm Dicke umgeben werden.

Abmessungen

Maße in mm

Unmittelbar am Zählrohr darf nicht gelötet werden. Die Anschlüsse sind an der mitgelieferten Kontaktbuchse und an der Kathodenanschlußschelle auszuführen.

ALLGEMEINE DATEN KENNDATEN

Allgemeine Daten

Füllung: Neon, Argon und ein Halogen als Löschsubstanz

Kathode:

Material: Cr-Fe-Legierung
Massenbelegung: 250 mg/cm²

Aktives Volumen:

Durchmesser: 14,4 mm Länge: 40 mm

Fenster:

Material: Glimmer
Massenbelegung: 2-3 mg/cm²
Fensterdurchmesser: 9 mm

Kapazität: ca. 2 pF

Gewicht: ca. 6 g

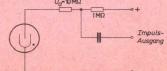
Kenndaten

Betriebsspannung: Ua beliebig innerhalb des Plateaus Plateauanfang: 2) max. 425 V

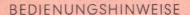
Plateaulänge: 2) min. 225 V

rel. Plateausteilheit: 2) 0,01 %/V (max. 0,02 %/V)

Totzeit: 1) 60...110 μs


Nulleffekt: max. 10 Impulse/min (abgeschirmt mit 50 mm Pb

und 3 mm Al)
Lebensdauererwartung: > 5 x 10¹⁰ Impulse


Lebensdauererwartung: > 5 x 10 10 Impulse Umgebungstemperatur: -55°C... +75°C

Zur Vermeidung von Kriechströmen ist das Zählrohr trocken und sauber zu halten. In der Schaltung ist auf kapazitätsarme Verdrahtung zu achten.

Meßschaltung

- 1) Bei $R_a = 10 M\Omega$
- 2) Gemessen bei 100 Impulsen, $R_a = 10 M\Omega$

für Geiger Müller Zahlrohre mit Löschzusatz

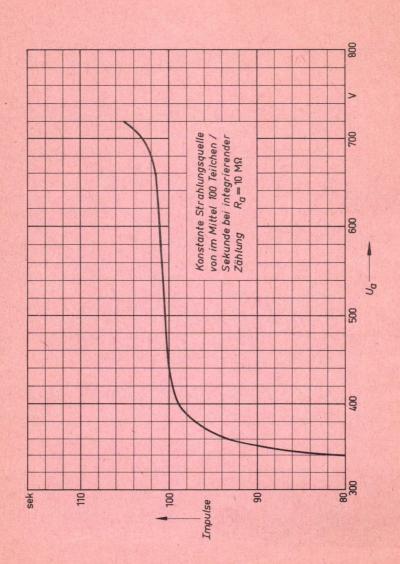
Die Zählrohrtypen ZHa 15/40 und HZb 15/40 können an zählenden und direkt zeigenden Meßgeräten betrieben werden. Die Betriebsspannung kann innerhalb des Plateaus zwischen 400 und 700 Voltbeliebig gewählt werden Empfohlen wird eine Betriebsspannung von ca. 450 Volt.

Der Arbeitswiderstand soll möglichst 1,0 M Ω betragen. Zur Begrenzung der Impulshöhe ist zwischen Arbeitswiderstand und Anodenanschluss ein Widerstand Ra von 10 M Ω zu schalten.

Diese 10 M Ω sind unmittelbar an der mitgelieferten Kontaktbuchse anzulöten. Die Kontaktierung am Kathodenzylinder hat nur an dem dafür vorgesehenen Kontaktband zu erfolgen. Direkte Lötung an Anodenanschluss und Kathodenzylinder können zur Zerstörung des Zählrohres führen. Schaltkapazitäten zum Anodenanschluss sind so gering wie möglich zu halten. Grössere Schaltkapazitäten haben nachteiligen Einfluss auf Lange und Steigung des Plateaus.

Beide Zählrohrtypen sind für die Messung von Gammastrahlung geeignet, wobei die grösste Empfindlichkeit bei radialer Einstrahlung in den zylindrischen Kolben erzielt wird. Zur Messung von Alpha- und Betastrahlung ist nur der Rohrtyp HZb 15/40 geeignet, der an der Stirnseite des Rohres mit einem Glimmerfenster ausgestattet ist. Um die grösste Empfindlichkeit bei diesen Strahlungsarten zu erreichen, soll die Einstrahlung durch das Glimmerfenster erfolgen.

Starke Berührung des Glimmerfensters kann zur Zerstörung d s Zählrohres führen. Deshalb ist das Glimmerfenster bei Nichtge brauch des Rohres möglichst durch Aufsetzen des mitgelieferten Deckels zu schützen



IMPULSZAHL

HZb 15/40

in Abhängigkeit von der Betriebsspannung

(Plateau)

SIEMENS & HALSKE AKTIENGESELLSCHAFT

RöK 7073 / 1.4.59

Stabilisatorröhren

STABILISATOREN

Bedeutung der verwendeten Kurzzeichen

Uz Zündspannung, meistens als maximaler Streuwert angegeben. Der maximale Streuwert schließt Exemplarstreuungen und Veränderungen während der Lebensdauer ein.

Ub Erforderliche Mindestspeisespannung, Ub min = Uz max

Uarc Mittlere stabilisierte Spannung (Brennspannung) bei mittlerem Strom durch die Stabilisatorröhre.

Uarc min

Minimaler bzw. maximaler Streuwert der Brennspannung bei mittlerem Strom durch die Stabilisatorröhre, incl. Exemplarstreuungen und Veränderungen während der Lebensdauer.

ΔU_{arc} Änderung der Brennspannung innerhalb des Strombereiches.

ΔU_{arc max} Maximale Änderung der Brennspannung im Strombereich (bei Röhren an der oberen Toleranzgrenze).
 Brennspannungsänderungen durch Alterung sind hierbei nicht eingeschlossen.

Ia Mittlerer Strom durch die Stabilisatorröhre.

Ia min
Ia max
Minimal erforderlicher bzw. maximal zulässiger
Strom durch die Stabilisatorröhre.

Iasp Einschaltspitzenstrom.

R \sim Mittlerer Wechselstromwiderstand bei mittlerem

Strom durch die Stabilisatorröhre.

Räq Äquivalenter Rauschwiderstand im Bereich

30...10 000 Hz.

U_r Rauschspannung im Bereich 30...10000 Hz.

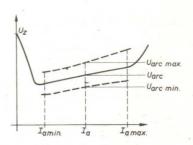
 ${
m TK}_{{
m Uarc}}$ Temperaturkoeffizient der Brennspannung

T_U Umgebungstemperatur

C_p Parallelkapazität

SIEMENS & HALSKE AKTIENGESELLSCHAFT

WERNERWERK FUR BAUELEMENTE


Grundsätzliches

Die Eigenschaft, daß sich die Brennspannung gasgefüllter Entladungsröhren bei schwankendem Entladungsstrom nur geringfügig ändert, wird zur Konstanthaltung einer Ausgangsspannung bei schwankender Eingangsspannung oder bei schwankender Belastung benutzt. Die Stabilisierung beruht auf dem kleinen Innenwiderstand der Glimmstrecke. Ein Vorwiderstand ist prinzipiell erforderlich, weil die Zündspannung der Glimmstrecke immer höher liegt als ihre Brennspannung. Nach der Zündung nimmt er die Differenz zwischen Zünd- und Brennspannung auf.

Es ist zu beachten, daß der Gleichgewichtszustand erst ca. 3 Minuten nach der Zündung eintritt.

Kennlinie einer Stabilisatorröhre

Um eine einwandfreie Stabilisierung zu gewährleisten, ist der durch Ia min und Ia max gegebene Regelbereich unbedingt einzuhalten. Ia max ist gleichzeitig ein Grenzwert im Hinblick auf die zulässige thermische Belastung der Stabilisatorröhre; ferner führt ein Überschreiten von Ia max schließlich zu einer Bogenentladung und damit zur Zerstörung der Röhre.

Prinzipschaltung

Um unter allen Betriebsbedingungen ein zuverlässiges Arbeiten zu gewährleisten, ist dafür Sorge zu tragen, daß die minimale zur Verfügung stehende Speisespannung Ub größer als die maximal erforderliche Zündspannung Uz ist. Der Vorwiderstand $R_{\rm V}$ muß den nachfolgend angegebenen Bedingungen genügen.

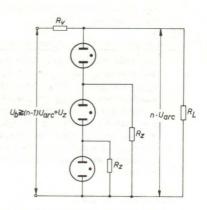
$$R_{\mathbf{v}} < \frac{U_{\text{b}} \min - U_{\text{arc}} \max}{I_{\text{a}} \min + I_{\text{L}} \max} \cdot \frac{1}{1 + p/100}$$

$$R_{\mathbf{v}} > \frac{U_{\text{b}} \max - U_{\text{arc}} \min}{I_{\text{a}} \max + I_{\text{L}} \min} \cdot \frac{1}{1 - p/100}$$

$$U_{\text{b}} \ge U_{\mathbf{z}}$$

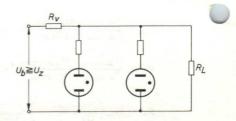
$$R_{\mathbf{v}} < R_{\mathbf{L}} \left(\frac{U_{\text{b}} \min}{U_{\mathbf{z}}} - 1 \right) \cdot \frac{1}{1 + p/100}$$

p = Toleranz des Widerstandes Rv in %.


Praktische Anwendungen

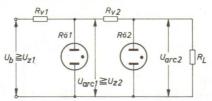
1. Einfache Stabilisierungsschaltung

Stabilisierung mit nur einer Glimmstrecke, z.B. für die Versorgung des Schirmgitters mit konstanter Spannung. Durch ein an den Stabilisator angeschlossenes Potentiometer läßt sich jeder Wert bis zur Höhe der stabilisierten Spannung abgreifen.


2. Serienschaltung von Stabilisatorröhren

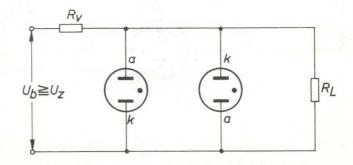
Benötigt man höhere stabilisierte Spannungen, so lassen sich mehrere Stabilisatorröhren in Serie schalten. In diesem Falle müssen die Zwischenstrecken über Widerstände von 0,5 bis 1 M Ω mit der Minusleitung verbunden werden um die Zündung zu erleichtern. Als Zündspannung bei Serienschaltung von n Stabilisatoren genügt dann $(n-1)\cdot U_{arc} + U_z$, wozu ein geringer Sicherheitsbetrag zugeschlagen werden soll.

3. Parallelschaltung von Stabilisatorröhren


Wegen der unvermeidbaren Streuungen der Kennlinien ist eine Parallelschaltung von Stabilisatorröhren nicht zu empfehlen, da in fast allen Fällen durch ungleiche Aufteilung des Querstromes eine Überlastung einer Stabilisatorröhre eintritt. Ist eine Parallelschaltung unbedingt erforderlich, so sollte vor jede Stabilisatorröhre ein Schutzwiderstand von etwa 100 Ω geschaltet und der Stabilisierungsbereich eingeschränkt werden. die Stabilisierung wird hierdurch jedoch schlechter, so daß die Benutzung eines größeren Typs bzw. die Anwendung einer elektronischen Stabilisierung mit Vakuumröhren vorzuziehen ist.

4. Doppelte Stabilisierung

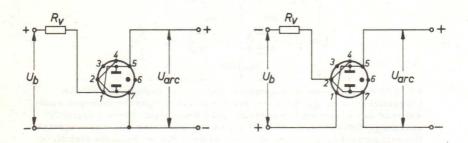
Um extrem konstante Spannungen zu erzielen, kann eine doppelte Stabilisierung (multiplikative Stabilisierung) vorgesehen werden, wobei entweder Stabilisatorröhren mit verschieden hoher Brennspannung verwendet oder für die vorstabilisierte Spannung zwei Röhren in Serie geschaltet werden; die vorstabilisierte Spannung muß größer als die Zündspannung der zweiten Stabilisatorröhre sein ($U_{arc\ R\"o1} \stackrel{>}{=} U_{z\ R\~o2}$).

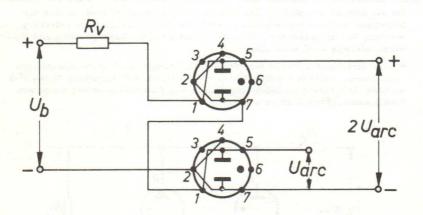


Für Rö2 benutze man vorzugsweise Präzisions-Stabilisatorröhren (Vergleichsspannungs-Röhren), bei denen Spannungsschwankungen auch während der gesamten Lebensdauer sehr klein sind. Diese Vergleichsspannungs-Röhren (z.B. 85 A 2) sollen vorzugsweise mit einem einzigen Querstromwert Ia betrieben werden, da dann die wirksamste Stabilisierung erzielt wird.

5. Polarität der Stabilisatorröhre und Stabilisierung von Wechselspannungen

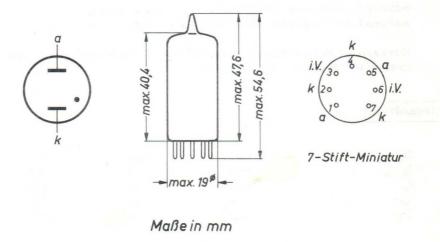
Da die Kathoden moderner Stabilisatorröhren aktiviert sind, sollen die Stabilisatorröhren mit positiver Anode und negativer Kathode betrieben werden; bei umgekehrter Polarität erhöht sich die Zündspannung und die Stabilisierung wird schlechter.


Einige Stabilisatorröhren sind für Stabilisierung von Wechselspannungen zugelassen, müssen hierbei jedoch in "Antiparallel"-schaltung verwendet werden. Die entsprechenden Angaben in den Datenblättern der einzelnen Stabilisatorröhren sind zu beachten.



6. Schutzschaltung

Bei den Stabilisatorröhren 85A2, 108C1 und 150C2 ist der Kathodenanschluß an die Sockelstifte 2, 4 und 7, der Anodenanschluß an die Stifte 1 und 5 geführt. Die Schaltung kann daher so ausgeführt werden, daß der Verbraucher beim Ziehen der Stabilisatorröhre von der Speisespannung abgetrennt wird (Schutzschaltung): siehe nachfolgende Beispiele:


SIEMENS & HALSKE AKTIENGESELLSCHAFT
WERNERWERK FOR BAUELEMENTE

PRÄZISIONS-SPANNUNGS-STABILISATORRÖHRE

Art und Verwendung

Stabilisatorröhre mit sehr hoher Konstanz der Brennspannung (Vergleichsspannungs-Röhre) zur Gleichspannungsstabilisierung mit positiver Anode und negativer Kathode sowie zur Wechselspannungsstabilisierung mit zwei Röhren in Antiparallelschaltung. Die größte Konstanz wird erzielt, wenn die Röhre nur mit einem einzigen Stromwert betrieben wird.

Sockel: Miniatur Gewicht: ca. 7 g Kolben: DIN 41537, Form A, Nenngröße 38 Einbau: beliebig

KENNDATEN, GRENZDATEN STREUDATEN

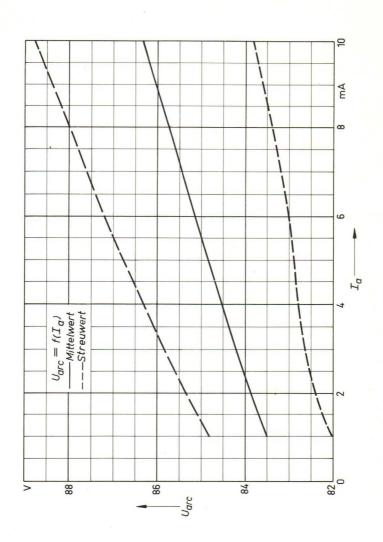
Kenndaten

U_{arc} ($I_a = 5, 5 mA$)	=	83	85	87	V
Uz max	=		125		V
Ia min	=		1		mA
I _{a max}	=		10		mA
AUarc max	=		4		V
R ∼	=		280		Ω
TKUarc	=		-2,7		$_{\mu V}^{mV/oC}$ 1)
Ur	~		60		μV 1)

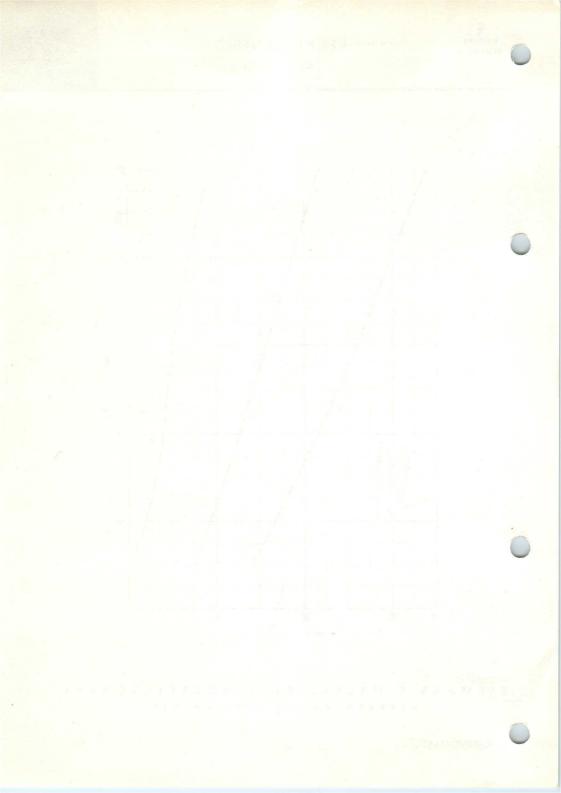
Schwankungen von U_{arc} bei I_a = 5,5 mA während der ersten 300 Stunden: max. 0,3 % während der folgenden 1000 Stunden: max. 0,2 %

Kurzzeitige Schwankungen während max. 100 Stunden nach den ersten 300 Stunden: max. 0,1 %

Grenzdaten

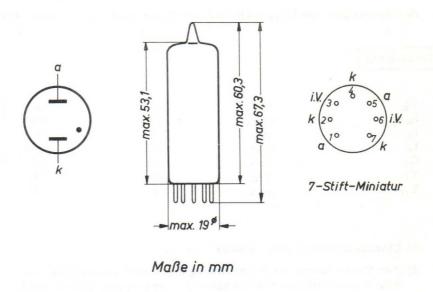

Ub	min.	125	V
Ia	min.	1	mA
Ia	max.	10	mA
TU	min.	-55	°C
TU	max.	+90	°C

1) Entsprechend $R_{aq} = 22 M\Omega$


KENNLINIENFELD

 $U_{arc} = f(I_a)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE


RöK 4501/1.4.61 K1

Art und Verwendung

Stabilisatorröhre zur Gleichspannungsstabilisierung mit positiver Anode und negativer Kathode sowie zur Wechselspannungsstabilisierung mit zwei Röhren in Antiparallelschaltung.

Sockel: Miniatur

DIN 41537, Form A, Nenngröße 50

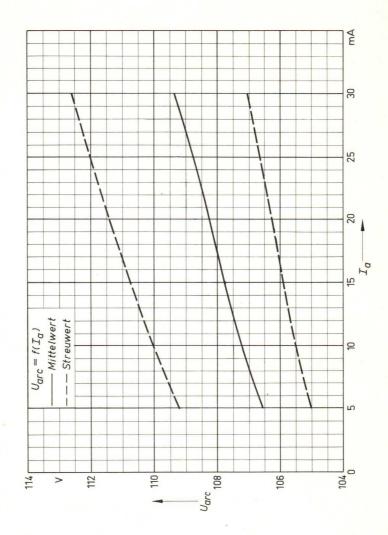
Gewicht: ca. 11 g Einbau: beliebig

KENNDATEN, GRENZDATEN STREUDATEN

Kenndaten

U_{arc} ($I_a = 17,5 \text{ mA}$)	1.0 = 1.0	106	108	111	V
			127		V
Ia min	= =		5		mA
Ia max	=		30		mA
ΔUarc max	=		3,5		V
R~	=		100		Ω

Schwankungen von Uarc während 500 Betriebsstunden: max. 4 V

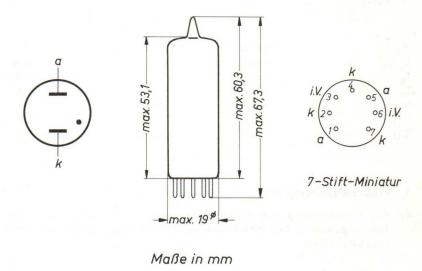

Grenzdaten

Ub	min.	133	V	
Iasp	max.	75	mA	1)
Ia	min.	5	mA	
Ia	max.	30	mA	
Cp	max.	0,1	μF	2)
TU	min.	-55	oC	
TU	max.	+90	oC.	
0				

- 1) Einschaltstrom, max. Dauer 10 sec.
- 2) Zur Vermeidung von Kippschwingungen soll ein parallel zur Röhre geschalteter Kondensator den angegebenen Wert nicht überschreiten.

KENNLINIENFELD

 $U_{arc} = t(I_a)$



SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE

Art und Verwendung

Stabilisatorröhre zur Gleichspannungsstabilisierung mit positiver Anode und negativer Kathode.

Sockel: Miniatur

Kolben: DIN 41537, Form A, Nenngröße 50

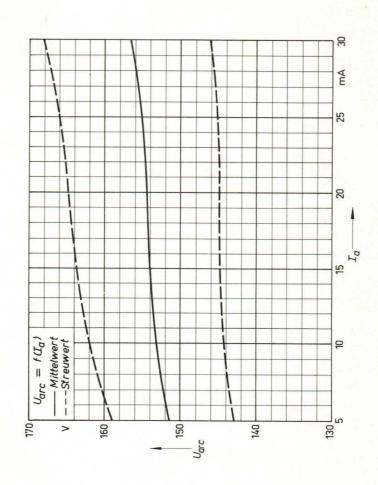
Gewicht: ca. 10 g

Einbau : beliebig

KENNDATEN, GRENZDATEN STREUDATEN

Kenndaten

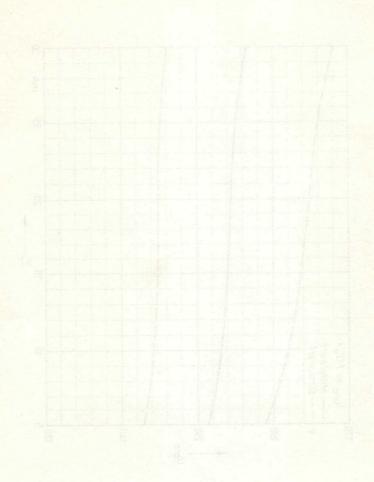
Uarc (Ia = 17,5 mA)	= 144	150	164	V
Uz max	=	180		V
Ia min	=	5		mA
Ia max	=	30		mA
AUarc max	=	6		V
R∼	=	100		Ω


Grenzdaten

Ub	min.	185	V	
Ia sp	max.	75	mA	1)
Ia	min.	5	mA	
Ia	max.	30	mA	
Cp	max.	0,1	μF	2)
TU	min.	-55	°C	
TU	max.	+90	°C	

- 1) Einschaltstrom, max. Dauer 10 sec.
- Zur Vermeidung von Kippschwingungen soll ein parallel zur Röhre geschalteter Kondensator den angegebenen Wert nicht überschreiten.

KENNLINIENFELD


 $U_{arc} = f(I_a)$

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FOR BAUELEMENTE

RöK 4502/1.4.61

OB WINDOWS

LIFMENS & HAOSKE AKTIENGESELLSCHAFT