

TRANSMITTING AND GENERATING TUBES

f=1000 MHz

SIH

N

TIT

N~=360 kW f = 10 MHz

360 kW and 1000 Mc — and an integrated line of intermediate types for all requirements

TRANSMITTING AND GENERATING TUBES

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE · MÜNCHEN

Contents

Introduction	4
Preface	6
General Data	6
Classes of operation, maximum ratings	
and typical operating data	8
Installation and connection	10
Cooling	10
Protection	12
Accessories	13
Explanation of Symbols	13
Technical Engineering Service	13

•

RS 1001	14
RS 1002 A	16
RS 1003	18
RS 1006 B	20
RS 1007	22
RS 1009	24
RS 1011	26
RS 1012	28
RS 1016	30
RS 1019	32
RS 1021	34
RS 1022 C	36
RS 1026	38
RS 1029	40
RS 1031	42
RS 1032 C	44
RS 1036	46
RS 1041	48
RS 1046	50
RS 1051	52
RS 1052 C	54
RS 1061	56
RS 1071 L	58
RS 1081	60
RS 1082 C	62
RS 1091	64
RS 2001	66
RS 2011	68
RS 2021	70

•

List of equivalent types of tubes Production line of Siemens transmitting tubes and special tubes

73

Introduction

Ever since the invention of electron tubes for the generation and amplification of r-f oscillations, the Siemens & Halske AG have been active in the development and production of high-power transmitting tubes. Such tubes were developed very early for broadcast-band and longwave transmitters as well as for shortwave operation.

Since the range of application of power tubes of this category has grown steadily with the advance of technology, a wide variety of potential applications today exist:

Radio broadcast transmitters (LW, BC and SW) Communications transmitters for civil and military applications VHF transmitters TV transmitters Ultrasonic transmitters Apparatuses for r-f therapy Industrial r-f generators for inductive and capacitive heating Pulse transmitters for radar and radio prospecting Nuclear plants (particle accelerators)

For these highly diversified applications we have created a broad spectrum of modern transmitting tube types that satisfy practically all the requirements placed on grid-controlled tubes with respect to power and frequency.

The drive towards higher and higher frequencies here made it necessary to establish new design concepts, the designs used hitherto not being suitable for use high up in the spectrum on account of their long structure and resultant lead inductances and capacitances.

In addition, the almost exclusive use of the grounded-grid configuration at very high frequencies demanded the adoption of coaxial grid lead-through units.

Through the development of a completely novel tube structure it was found possible to create a tube type that can also be used at frequencies of about 1000 mc.

As a result, all our external anode tubes were designed according to these new principles. In this novel structure the self-supporting design of both grid and cathode as a meshed grid and a meshed cathode is of particular interest. This solution largely avoids all lead capacitances and inductances in the tube, while at the same time securing optimum utilization of the applied heating power.

The cathode of all modern tubes of Siemens make are thoriated tungsten models; vacon is used for the glass-to-metal seals.

The use of meshed grids and cathodes further makes for compact structures of high mechanical stability. Other advantages are narrow electrode spacing and hence extremely high mutual conductances with no danger of electrode shorts. This in turn introduces the advantage that less prestages are required in transmitters equipped with such tubes.

The self-supporting grid and cathode structure chosen for our tubes also positively excludes the possibility of undesired focusing of the electron beam, with the accompanying danger of burnt spots appearing on the anode such as may occur with conventional electrode structures.

Another advantage is that the tubular form of the electrode favors the use of our tubes in coaxial circuits.

The cathode and screen grid connections of our tubes for tv bands III and UHF TV bands are for this purpose given a coaxial design, thus satisfying a major requirement of r-f technology.

Our tubes RS 1022 C, RS 1032 C and RS 1052 C for UHF TV bands are additionally provided with ceramic insulating bodies instead of ones of glass. Owing to the low dielectric losses in the ceramic it is possible to allow higher voltages and plate dissipations. Through closer production tolerances it is further possible to agree to closer electrical tolerances.

Meshed grid Meshed cathode

Radiation cooling

r-f plants

Whereas the tubes described are provided with radiation cooling for a plate dissipation of up to 1.2 kw, practically all our modern external anode tubes are available in three versions:

Air cooling Water cooling Evaporative cooling

Equipment makers are thus able to choose a tube with the most suitable type of cooling for any given application.

in industrial Particularly on account of the changing load, tubes in industrial r-f plants very frequently operate under far less favorable conditions than in transmitters.

> The steadily increasing application of radio frequencies in industrial equipment has given rise to a demand for special r-f generator tubes with the following features:

Rugged mechanical design Insensitivity to load fluctuations Capability of operating with relatively low plate voltages Long life

Switching stability under heavy usage

Low operating costs

Developed for this application, our transmitting tubes RS 1006 B, RS 1016, RS 1026, RS 1036, RS 1046, RS 1061, RS 1081 and RS 1091, used as oscillators, provide coverage of a power range from 0.4 to 33 kw. For high-power and extra-high-power generators (up to 250 kw) our transmitting tubes RS 1031, RS 2021, RS 2001 and RS 1041 are available.

In the r-f section of particle accelerator plants for nuclear research our transmitting triodes RS 1001, RS 1011, RS 1031 and RS 1041 have proved their value.

Owing to their considerable emission reserve and the suitability of their structure for very high frequencies, our high-power transmitting tubes can also readily be used for other applications of pulse technology such as radar and radio prospecting.

High-voltage rectifier tubes and thyratrons are available for the power supply of transmitters and r-f generators, and also for many industrial applications.

Preface

The classes of operation, maximum ratings and typical operating data, characteristics and data on tube cooling given for each tube represent a summary of the complete data sheets covering the type of tube concerned.

These sheets can be furnished on application. The typical operating data together with the characteristics apply to average tubes. Although factory tolerances may cause negligible deviations from the data given, this will not impair normal operation in any way.

General Data

Heating

General

In addition to the heating data, the type of heater and cathode material is stated for each tube in view of the fact that, as will be shown in the following, the type of cathode imposes different requirements with respect to the heater voltage fluctuations, that should be permitted under consideration of attaining optimum service life.

In general, the heater voltage is the determining factor for adjusting the heating, while the heater current may admissibly deviate from the stated value within the given tolerance. Thoriated tungsten cathodes have filament-type heating, while oxide cathodes have heatertype heating.

Thoriated tungsten filaments The stated filament voltage is the maximum value that a new tube requires before it can deliver its rated power. The maximum admissible deviation from rated value due to power supply voltage fluctuations must not exceed ± 5 %, whereas for our line of industrial tubes (e.g. RS 1061) and radiation-cooled tubes + 5/-10 % are admissible. As power supply voltage fluctuations of + 10/-20 % are liable to be encountered, voltage regulation will usually be essential. The continuous deviation from rated value that may occur due, for instance, to inaccurate adjustment of the filament voltage, must not exceed + 1/- 3%.

The filament voltage should be adjusted with the aid of a moving-iron instrument of the 0.5 accuracy class that is connected directly to the filament terminals. In dimensioning filament transformers for tubes with a thoriated tungsten cathode, an allowance should be made for an increase in filament current of anything up to 20 % of its original value during operation.

No r-f voltage must be allowed to appear between the two filament leads of tubes. If necessary, a capacitive short-circuit must be established.

Oxide cathodes With these cathodes overheating produces a rapid drop in emission, while underheating results in restricting the emission to a small number of preferred parts of the coating, thus damaging the cathode. There is also a danger of cathode contamination. The maximum admissible deviation from rated value due to power supply voltage fluctuations should not exceed \pm 10 % for oxide cathodes, while the continuous deviation should not exceed \pm 1/-3%.

Undesired heating due to r-f voltages between heater and cathode must be prevented by appropriate circuitry.

Placing in service

Application of heating

Application of heating may generally take place with full filament voltage. This is conditional upon the use of a filament transformer with the usual tolerance. The maximum initial current for modern transmitting tubes should not exceed 6 times the normal filament current. The maximum current to be expected can be calculated from the cold-state resistance of the filament and the interdependence of heater voltage and heater current. Information about the attained maximum current can be gained more easily by observing the initial current by means of an oscilloscope. The grid bias may generally be applied simultaneously with the filament voltage, unless instructions to the contrary may be found in the data sheets.

Application of plate d-c voltage

The plate voltage may be applied to tubes with external plates and thoriated tungsten cathodes only after the cathode has reached its operating temperature. This factor may be checked by means of the heater current. The time required for the cathode to reach its operating temperature, different for each type of tube and also dependent on the internal resistance of the heater current source, amounts to about 2 to 3 seconds. The switching sequence described here must be observed even in the event of mains outages and operating faults. It is advisable to pre-heat tubes that are used for the first time or after a longer period of storage. Preheating for 15 minutes is normally sufficient.

When dealing with transmitting tubes having external plates, care must be taken to assure that the plate d-c voltage used to harden the tube and trim the tuned circuits be applied to the tube with at least one intermediate step. On the other hand, when a transmitter already tuned is switched on normally, the plate voltage may be applied without an intermediate step, if it is assured that the voltage peak when switching on will not exceed the permissible maximum plate voltage as specified in the data sheets. For this reason it is advisable to check the switching-on process by means of an oscilloscope.

In the case of industrial r-f generators a step-by-step application of the plate voltage is not required since the specified voltages are generally lower.

Positive electrode voltages may be applied to tubes equipped with oxyde cathodes only after a pre-heating period of 1 minute.

Required protective measures in the grid and plate circuits are enumerated in the Section entitled "Protective Measures".

Application of screengrid voltage may only be applied to the tube after the plate voltage. A voltage relay must be used in the plate circuit to make sure that the screen-grid voltage is turned off at the same instant as the plate voltage. It is advisable to use an over-voltage protector between the screen grid and the cathode to protect the control grid and the cathode against the effects of tube flashovers.

Service Frequent on/off switching of the filament in the case of tubes with a thoriated tungsten cathode will shorten service life. It is therefore advisable to leave the filament switched on during service intermission of up to 2 hours.

Typical characteristics

The stated emission current I_e represents the current delivered by the cathode when all the other electrodes are interconnected and fed with voltage. The value of this voltage is stated together with the value of the emission current. To prevent the tube from being overloaded, the I_e value must be measured by special methods and only by the manufacturer. The stated value usually also represents the maximum value that can be drawn from the cathode during operation of the tube. Values for pulse operation will be furnished on request.

The amplification factor μ represents the ratio of a plate voltage variation (a screen grid voltage variation in the case of tetrodes) to the control grid voltage variation assuming constant plate current.

The transconductance Gm represents the ratio of a plate current variation to the control grid voltage variation with the voltage of all other electrodes regulated. As the curves of the tubes are not linear, which means that μ and Gm are not constants, the voltages chosen for the measurement of these two quantities and also the value of the plate current are stated.

The values stated for μ and Gm are average. Deviations may therefore be encountered from tube to tube due to fabrication tolerances. The admissible tolerance is so dimensioned as to insure interchangeability between tubes of the same type. The same also applies with respect to capacitance values. These are measured with the tube in its cold state and so dimensioned that the capacitances of electrodes not used in the measurement are not reflected in the measuring result.

Classes of operation, maximum ratings and typical operating data

General

The various classes of operation impose different requirements on the tubes with respect to, say, emission and dielectric strength. Separate limits are for this reason stated for each class of operation. In the interest of tube service life and operating reliability, these limits must in no circumstances, e.g. detuning of tuned circuits, load or voltage fluctuations, be exceeded. Each individual limit represents a maximum value that must still be observed even if all the other limits are not reached. If a tube is to be used for a class of operation not here listed, it is recommendable to consult the manufacturer in order to prevent endangerment of the tube by exceeding limit values, and hence the loss of the right to send in a claim on the basis of the tube guarantee.

Maximum ratings

The cutoff frequency is determined by the tube technology. Operation beyond cutoff may result in destruction of the electrodes and the glass or ceramic insulating body. In determining the cutoff frequency for a tube type, consideration is given to factors such as lead inductances, electrode capacitances, electron transit time, capacitive heating of glass or ceramic parts, and the development of r-f voltages. R-f voltage may be reduced by reducing the anode d-c voltages. The data sheets therefore state the d-c plate voltage limits appropriate for various maximum ratings of the operating frequency (e.g. RS: 2001 $f_{max} = 10$ Mc at $U_a = 15$ kv; $f_{max} = 30$ Mc at $U_a = 12$ kv).

The maximum ratings of the plate and grid d-c voltages U_a and U_g may depend on operating frequency, electrode spacing in correspondence with the class of operation, and the dielectric strength of the insulating materials. They must not be exceeded even when the cathode is not heated. This condition must be especially observed if the screen grid is connected via a resistor.

The maximum rating of the plate voltage in the case of operation with a-c or unsmoothed voltage is the a-f peak value U_{asp} .

The maximum rating of the d-c current I_k ist the value that may be drawn from the cathode for the class of operation used. It is composed of the plate d-c current and all the grid d-c currents combined.

The same applies analogously for the stated cathode peak current I_{kso} .

The maximum rating of the plate dissipation Q_a is determined by the admissible thermal load capacity of the plate. Excessive plate temperature may rapidly lead to destruction of the tube due to effects such as escape of gas, increase in cathode temperature, thermal grid emission, degradation of insulation, overheating of glass bulb of radiation-cooled tube, formation of vapor bubbles in the case of water-cooled tubes, or appearance of the Leidenfrost phenomenon in the case of tubes with evaporative cooling. In the case of tubes with supplementary cooling, the stated limit must still not be exceeded even if more coolant is used than that indicated in the cooling diagram. If the maximum quantity of coolant is not available, the reduced maximum rating indicated in the diagram must be adhered to in all circumstances.

For appropriate protective measures against thermal overloading of the plate, see under "Protection".

The maximum ratings of the grid and screen grid dissipation Q_{g1} and Q_{g2} are determined, as with the plate, by the thermal load capacity. To make allowance for the undesirable heating of the grid by r-f current, which will not always be readily noticeable to the user, the limit may often have different values according to class of operation and frequency. Due attention should be given to this fact by the user.

The electrode d-c voltage listed under maximum ratings and typical operation refer, unless otherwise indicated by an index, to the cathode. A-c voltages are always given as peak values (e.g. U_{qs}).

Typical operating data

The operating data listed for the various classes of operation represent settings recommended for the favorable utilization of the tube. The power output $N_{a\sim}$ is calculated for optimum adjustment and represents the power available at the tube output. No allowance is made for circuit losses. For a self-excited circuit the driving power stated as N_{st} is already subtracted; $N_{a\sim}$ therefore here again denotes the available power without allowing for circuit losses. The actual power fed to the load is then lower by the losses in the output circuit and input circuit. If the tubes are operated in grounded-grid circuit, where a portion of the driving power to be used passes directly into the output circuit, the power available at the output of the tube will analogously be composed of the tube power plus this transferred power. The magnitude of the transferred power is stated together with the power output and driving power.

The plate input power N_a is the product of U_a and I_a only if smoothed plate voltage is used; for operation with nonsmoothed voltage an allowance is made in the operating data for the form factor (see Table 1).

The values I_a and I_g represent the arithmetic average value of the rectified currents as indicated by a moving coil instrument.

The driving power N_{st} represents half the product of the r-f grid voltage and grid fundamental current determined from the curve. The approximate driving power may be calculated with the aid of the formula $N_{st} = 0.9 \cdot V_{as} \cdot I_a^*$.

The plate dissipation Q_a is calculated from the difference between the plate power input N_a and the tube power output. For radiation-cooled tubes the plate dissipation $N_{a\sim}$ can be measured with a pyrometer. The plate temperature for the desired case of operation is here compared with the tube under a d-c load. This measurement is particularly recommended in designing new equipment. The dissipation of tubes with supplementary cooling can be calculated from the temperature increase of the coolant.

The screen grid dissipation Q_{g2} is the product of the screen grid voltage and the screen grid current. If the screen grid voltage is not smoothed, the form factor must be taken into account.

The control grid dissipation Q_{g1} , representing the difference between the driving power and the power given up to the grid bias source, may be calculated to an approximation using the formula: $Q_{g1} = I_{g1} (0.9 \ U_{gs1} - U_{g1})$.

The efficiency η represents the ratio of the tube power output to the anode power input expressed as a percentage. In the case of a grounded grid, the transferred power is not

for number of phase
$$m \ge 2$$
:

$$U_{-} = \frac{m}{2\pi} \cdot U_{sp} \int \sin \varphi \, d\varphi$$

$$\frac{\pi}{2} - \frac{\pi}{m}$$

$$\boxed{\frac{U_{-}}{U_{sp}} = \frac{m}{\pi} \cdot \sin \frac{\pi}{m}}$$

$$\frac{\frac{\pi}{2} - \frac{\pi}{m}}{\frac{\pi}{2} - \frac{\pi}{m}}$$

$$\sin 15^{\circ} = \frac{1}{4} \sqrt[3]{2} (\sqrt[3]{3} - 1)$$

$$\sin 22.5^{\circ} = \sqrt[3]{\frac{1}{2} - \frac{1}{4}} \sqrt[3]{2}$$

$$\sin 30^{\circ} = \frac{1}{2}$$

$$\frac{\pi}{2} - \frac{\pi}{m}$$

$$\sin 45^{\circ} = \frac{1}{2} \sqrt[3]{2}$$

$$\frac{N_{m}}{N_{sp}} = \frac{1}{2} + \frac{m}{4\pi} \cdot \sin \frac{2\pi}{m}$$

^{*} This approximation formula applies with exactitude only for a certain angle of current flow which, providing the shape of the grid current pulse in a certain case of operation lies between that of a sinewave pulse and a squared sine pulse, will be in the range of $59^\circ \leq -g^\circ \leq 71.5^\circ$

Table 1

Anzahl der Phasen	<u>U_</u> 	$\frac{U_{\rm eff\ tr}}{U_{\rm sp}}$	U _{eff tr}	N _m U _{eff tr} I_	N _m U_ I_	N _m N _{sp}
1	$\frac{1}{\pi} = 0.318$	$\frac{1}{\sqrt{2}} = 0.707$	$\frac{\pi}{\sqrt{2}} = 2.22$	$\frac{\pi}{2\sqrt{2}} = 1.11$	$\frac{\pi^2}{4} = 2.442$	<u>1</u> 4
2	$\frac{2}{\pi} = 0.636$	<i>II</i>	$\frac{\pi}{2\sqrt{2}} = 1.11$	$\frac{\pi}{2\sqrt{2}} = 1.11$	$\frac{\pi^2}{8} = 1.2325$	1 2
3	$\frac{3\sqrt[3]{3}}{2\pi} = 0.826$	"	$\frac{\pi \sqrt{2}}{3 \sqrt{3}} = 0.855$	$\frac{3\sqrt{3}+4\pi}{6\sqrt{2}} = 1.209$	$\frac{3\pi\sqrt{3}+4\pi^2}{54} = 1.035$	$\frac{1}{2} + \frac{3\sqrt{3}}{8\pi} = 0.707$
4	$\frac{2\sqrt{2}}{\pi} = 0.9$	"	$\frac{\pi}{4} = 0.786$	$\frac{1}{2} + \frac{\pi}{4} = 1.285$	$\frac{2\pi + \pi^2}{16} = 1.01$	$\frac{1}{2} + \frac{1}{\pi} = 0.8183$
6	$\frac{3}{\pi} = 0.955$	"	$\frac{\pi}{3\sqrt{2}} = 0.741$	$\frac{3\sqrt{3}+2\pi}{6\sqrt{2}} = 1.353$	$\frac{3\pi\sqrt{3}+2\pi^2}{36} = 1.005$	$\frac{1}{2} + \frac{3\sqrt{3}}{4\pi} = 0.914$

taken into account in calculating efficiency. For self-excited operation the term η_{osc} denotes that the tube power output is already reduced by the driving power that it has to furnish.

The plate load resistance R_a is the required load resistance of the circuit calculated from the appropriate operating data, and thus represents the ratio of the r-f plate voltage to the plate fundamental current.

The depth of modulation m, which is a measure of the modulation power for sinewave modulation, represents the ratio of the amplitude of the modulating a-f voltage to the voltage amplitude of the unmodulated carrier, expressed as a percentage. It will preferably be measured with the aid of a cathode-ray oscilloscope. For operation with plate voltage modulation, the value N_{mod} represents the power to be delivered by the modulator at m = 100 %. The following applies:

$$N_{\rm mod} = \frac{m^2}{2} N_a$$

The tubes can naturally also be used with other operating data than that stated in the data sheet. Such data should be determined by interpolation or, better, by calculation with the aid of the attached curves. These values are also available upon request.

Installation and connection

The data sheets contain suitable instructions for the mounting and connection of each tube. In general the following rules apply:

- 1. For small radiation-cooled transmitting tubes ($Q_a \approx 100$ watts) mounting is optional.
- 2. Large radiation-cooled and external-anode tubes are mounted with their axis vertical and their anode at the top or bottom.

Cooling

Maximum temperature of tube exterior The tube is heated during operation by the filament due to the grid and plate dissipation. The maximum temperatures stated in the data sheet for exterior parts of the tube must not be exceeded. These temperatures may be measured with the aid of a calibrated thermoelement, thermocolors¹, or fusible crystals².

Manufactured by:

1 e.g. "Badische Anilin- & Sodafabriken", Ludwigshafen/Rhein

² e.g. "E. Merck AG", Darmstadt

Prior to measurement, the thermocolors are applied at the points of interest. The color spot must not be larger than a pinhead. The temperature of the exterior parts of the tube is determined from the discoloration of the color spots. The spots must afterwards be removed with a suitable solvent. It is not advisable to scrape spots off the glass parts of the tube because any scratches that may here be made are liable to lead to the destruction of the tube.

Fusible crystals, if used, should likewise be attached to the parts of interest of the tube exterior. A few crystals are sufficient. After having been used for evaluating the measurements, the melted or unmelted crystals on the exterior parts of the tube must be removed. In many cases a rag will be sufficient; otherwise a suitable solvent must be used.

All other details will be found in the instructions for use issued by the respective manufacturer.

- Radiation The removal of heat due to plate dissipation by means of radiation alone is possible only for tubes with a maximum dissipation of up to approx. 1-2 kw, and is conditional upon open design and free air circulation. For operation at relatively high frequencies, for high dissipation, and for enclosed design, it will frequently be necessary to provide supplementary cooling for the anode seal, the tube base, and possibly also the glass bulb.
- Forced Tubes with forced air cooling have a metallic external anode, the outer surface of which is enlarged by cooling fins. Cooling air is fed to the radiator by a blower. The cooling air should be filtered to prevent contamination of the radiator. Cooling data stated in this booklet apply for maximum admissible plate dissipation. For operation with lower plate dissipation required quantity of cooling air can be found in the respective air cooling characteristics of the complete tube data sheets.

No further cooling is normally required once the tube has been switched off, the quantity of air transported due to the inertia of the blower as it runs down being sufficient.

Air flow and temperature should be checked during operation. Safety measures should be provided to insure that plate voltage and heater voltage are automatically removed if the air flow becomes insufficient.

For tubes with a relatively high power output, and for operation at relatively high frequencies, it may be necessary to provide supplementary cooling in order to protect the grid and screen grid connecting rings and cathode pins from overheating.

Water cooling Water-cooled tubes must be used together with their cooling jacket. The water must be fed insulated. Make sure that the direction of flow is correct so that the jacket will remain full when the water pump is switched off or breaks down. It is generally recommendable to use distilled water in order to minimize the formation of mineral deposits on the anode.

With industrial generator tubes, for which frequently no distilled water is used, deposits are liable to form on the plate. In such cases, customers are requested to consult us. In general it will be sufficient to soak the plate for about 30 min in a 5–10 % muriatic acid bath. After soaking, the plate should be rinsed with clear water. Cooling data stated in this booklet apply for maximum permissible plate dissipation. For operation with lower plate dissipation the required quantity of cooling water can be found in the respective water cooling characteristics of the complete tube data sheets. The maximum admissible static cooling water pressure is 5 kg/cm² (approx. 71 psi)

Further cooling after the tube has been switched off is not necessary. An automatic safety feature must prevent the tube from being used if the water supply is too low, and remove the plate voltage and heating if the flow of cooling water becomes inadequate during operation. For tubes with a relatively high power output, and for the use of relatively high frequencies, supplementary cooling may be necessary for the grid and plate terminals.

Evaporative cooling utilizes the fact that 539 kcal is required for converting 1 liter of water of 100 deg. C into vapor of 100 deg. C. This thermal energy is drawn from the plate, which is thereby effectively cooled.

The complete tube data sheet contains particulars on total dissipation, the quantity of water evaporated per time unit, and the volume of vapor generated with the coolant flowing into the cooling jacket at different temperatures (water supply temperature). Distilled water should be used as a coolant. When the cooling system is placed in service for the first time, the entire water supply should be changed at frequent intervals until the system and piping are clear of inevitable contaminants.

To insure the proper working of the system, the use of accessories specially developed for evaporative cooling is strongly recommended.

Detailed information on accessories and operation is compiled in a separate folder containing a description of the evaporative cooling system, instruction for installation and maintenance, diagrams, and a list of accessories.

This folder will be supplied to customers on request.

As a supplement to the evaporative cooling system, tubes with a high power output and operating at relatively high frequencies may require an additional cooling system for their grid and cathode terminals.

Protective Measures

The operation of transmitting tubes calls for certain protective measures upon which the acceptance of claims under the tube guarantee will be conditional.

These consist of automatic safety and cut-out devices that protect the tube against the effects of faults.

Aside from the excess-current protection, a high-speed plate voltage cutoff facility is also required to protect the tube from the effects of possible flashovers. This high-speed cutoff facility provides for the immediate disconnection of voltage from the electrodes. There is a simple test-wire method for determining whether the high-speed cutoff used meets the requirements essential to adequate protection of the tube. This involves short-circuiting the applied plate voltage immediately at the inlets to the tube by means of a copper wire having a definite diameter (see Table 2). If the copper wire does not burn through during this test, the high-speed cutoff fulfills its requirements. Even if the short circuit remains in effect until the plate voltage is cut in again, the new cutoff must also take place in such a way that the copper wire does not burn through.

Transmitting tube	Testwire mm	Transmitting tube	Testwire mm	Transmitting tube	Testwire mm
RS 1001	0.16	RS 1031	0.16	RS 1081	0.16
RS 1011	0.13	RS 1032 C	0.13	RS 2001	0.25
RS 1012	0.13	RS 1041	0.25	RS 2011	0.2
RS 1021	0.13	RS 1051	0.2	RS 2021	0.25
RS 1022 C	0.13	RS 1052 C	0.13		
		RS 1061	0.16		
		RS 1071	0.13		

Diameters of test wires for testing the effectiveness of the protective measures:

Table 2

In order to fulfill the above requirements, equipment with nongrid-controlled rectifiers and with smoothed plate voltages requires the use of a device such as a thyratron, an ignitron, or a heavy-duty spark gap (see tube protector Rö Kt 2) connected in parallel to the tube and functioning as a short-circuiting device, so that a rapid voltage cutoff and, if necessary, a rapid discharge of the smoothing capacitor is assured over this parallel path. Aside from this measure, power supplies with smoothed plate voltages must additionally be equipped with an appropriately sized protective resistor (between 5 and 25 ohms) in the plate circuit, which absorbs the greater part of the capacitor's charge in case of a tube flashover and thus permits the test-wire requirements to be met. If the plate voltage is modulated by means of a modulation transformer, a separate protective resistor for the plate is generally not required.

Plate voltage may not be reapplied until after a steadying period of at least 100 msecs.

Protective measures must also be provided in the grid circuit, in order to prevent continuance of an arc discharge after a flashover in a tube with individual grid voltage power supply. It is appropriate to do this by cutting in a high-ohmic resistor of about 50,000 ohms by means of an plate excess-current realy. Additional protection may be achieved if this same resistor can also be cut in via an excesscurrent relay in the grid circuit. The dropping resistor may only be disconnected after a steadying period of 100 msecs.

In order to avoid undue grid loads in industrial r-f generators with variable external restistance, use of non-linear circuit elements (e.g. glow lamps) is recommended in the grid circuit.

An air-cooled plate can be protected against excessive thermal stress by means of tube fuses that were developed to cut off plate current and heating in the tube, if needed, in conjunction with a pull-switch.

Particulars concerning the type of tube protection required are to be found in the data sheeets covering the various tubes.

Accessories

To insure the proper operation of transmitting tubes, the use of specially designed accessories is strongly recommended. A list of accessories of the various tube types is to be found in the data sheets.

Explanation of Symbols

q	Angle of Grid Current Flow	Q _{a1} Q _a	Grid Dissipation
Ĭ_	DC Current	Q _{q2} ^g	Screen Dissipation
Ia	DC Plate Current	Gm	Transconductance
Ie	Emission Current	U	DC Voltage
I_{q1}, I_{q}	DC Grid Current	Ua	DC Plate Voltage
I _{g2}	DC Screen Current	Uagi	DC Plate to Grid Voltage
I_k°	DC Cathode Current	Uasp	Peak Plate Voltage
Iksp	Peak Cathode Current	U _{eff tr}	RMS Transformer Voltage
m	Modulation Factor	U_{a}, U_{a1}	DC Grid Voltage
Na	Plate Input	U _{als}	Peak RF Grid Voltage
Na~	Power Output	U_{a2}	DC Screen Voltage
Nm	Average Power	U_{a2a1}^{g2}	DC Screen to Grid Voltage
N _{SD}	Peak Power	Ukal	DC Cathode to Grid Voltage
Nst	Driving Power	Usp	Peak Voltage
Q.	Plate Dissipation	n	Amplification Factor

Technical Engineering Service

Our Technical Engineering Service will be pleased to give advice on any specific problem connected with the use of the tubes described.

Triode with coaxial grid terminal, usable as RF Amplifier, Oscillator, and Modulator, especially suitable for 10 kW-VHF-FM Transmitters

RS 1001 L Weight appr. 11.5 kg Weight appr. 5.2 kg Weight appr. 7.2 kg

RS 1001 W

615

RS 1001 V

General Data

FILAMENT

Grid Dissipation

Filament Voltage Filament Current approx.	5 volts 150 amps Thoria	ed tungsten fila	ment
Emission Current	22 amps at DC Plate Voltage =	DC Grid Voltage	e = 400 volts
Amplification Factor	65 at DC Plate Voltage = DC Plate Current	DC Grid Voltage = 1 amp	e = 1000 to 6000 volts;
Transconductance	40,000 μmhos at DC Plate Voltage DC Plate Current	= 3000 volts; = 1 amp	
INTERELECTRODE CA	PACITANCES		
Grid-Filament Plate-Filament Grid-Plate	75 μμF 0.6 μμF 36 μμF		
DC Plate Voltage ($f \leq 100$ DC Plate Voltage (with plate	Mc) ate modulated	8	max. kilovolts
operation $f \leq 30$ Mc)		6	max. kilovolts
DC Cathode Current		7	max, amps
Peak Cathode Current		22	max. amps
Plate Dissipation		10	max kilowatts

400

max. watts

Maximum Ratings

RF Amplifier Communications Class B Transmitter VHF-Transmitter 1 100 Frequencies up to 30 Mc 20 Plate Power Output 11 kilowatts DC Plate Voltage kilovolts 6 6 -90 -90 DC Grid Voltage volts Peak RF Grid Voltage 380 260 volts DC Plate Current 2.3 4.7 amps DC Grid Current 0.4 amp 1 Plate Dissipation 8 3.5 kilowatts 595 ² **Driving Power** 340 watts

¹ Grounded-grid operation

² Including transferred power (grounded grid)

Other kinds of operation: Plate Modulation

Prestage Modulation Class B Telephony

$f \leq 30 \text{ Mc}$ Carrier Power Output = 10 kilowatts at DC Plate Voltage = 6 kilovolts $f \leq 30 \text{ Mc}$

Carrier Power Output = 5 kilowatts at DC Plate Voltage = 6 kilovolts

Characteristics

Cooling

RS 1001 L

Required air flow on anode at max. plate dissipation . . . 8 m³/min \approx 282.5 cubic feet per min

Static Pressure Drop . . . 100 mm of water ≈ 3.95 inches of water Outlet Air Temperature max. 90 deg. C = 194 deg. F

RS 1001 W

Required water flow on anode for inlet water temperature of 20 deg. C = 68 deg. F at max. plate dissipation . . . 15 liters per min \approx 3.96 gallons (US liq.) per min

RS 1001 V

Particulars on request

Cathode Connectors (2 per tube)Rö Kat 01Coaxial Grid ConnectorRö Git 01Air Socket (RS 1001 L)Rö Anst 01Water Jacket (RS 1001 W)Rö Kü 01Jacket for evaporative cooling RS 1001 VRö Kü V01Tube Fuse (RS 1001 L)Rö Sich 1Supplementary accessories on enquiry

Accessories

Radiation-cooled 1100 Watt Tetrode, especially for VHF Transmitters, as RF Amplifier, Oscillator and Modulator suitable in Pre- and PA-Stages.

Weight appr. 0.25 kilogramms

RS 1002 A

General Data

FILAMENT

Grid Dissipation

Filament Voltage 5 volts Thoriated tungsten filament Filament Current approx. 14.1 amps Grid-Screen Amplification Factor 5.1 at DC Plate Voltage = 2.5 kilovolts; = 500 volts; DC Screen Voltage DC Plate Current = 100 ma; Transconductance 4000 µmhos at DC Plate Voltage = 2.5 kilovolts; DC Screen Voltage = 500 volts; = 100 ma DC Plate Current INTERELECTRODE CAPACITANCES Input 12.7 μμF 4.9 μμF Output Grid-Plate 0.12 µµF 110 Frequencies up to Mc DC Plate Voltage 4000 max. volts 600 max, volts DC Screen Voltage DC Grid Voltage -500 max. volts DC Cathode Current 0.48 max. amp Peak Cathode Current 2.6 max. amps 400 Plate Dissipation max. watts Screen Dissipation 35 max. watts

10

max. watts

Maximum Ratings

Class C 75 Frequencies up to Power Output 1100 Carrier Power Output _ 4000 DC Plate Voltage 500 DC Screen Voltage DC Grid Voltage -220 Peak RF Grid Voltage 305 DC Plate Current 350 DC Screen Current 25 DC Grid Current 6 Plate Dissipation 300 Screen Dissipation 12.5 Driving Power 1.8 Modulation Factor -Peak AF Screen Voltage _ Modulating Power _

RF Power Amplifier

110

800

4000

500

-170

240

270

16

9.5

280

8

2

_

_

Other kinds of operation:

Single-Sideband Operation (Single Tone)

AF Power Amplifier and Modulator (2 tubes in push-pull)

Frequency ≦ 110 Mc; Power Output = 650 watts at DC Plate Voltage = 4000 volts

Plate and Screen

Mc

watts

watts

volts

volts

volts

volts

ma

ma

ma

watts

watts

watts

volts

watts

0/0

Modulation

75

630

3000

500

-220

305

275

36

6

195

18

1.6

100

400

413

_

Power Output = 1750 watts at DC Plate Voltage = 4000 volts

Characteristics

Cooling

Temperature of Bulb Temperature of Plate Seal Temperature of Base Seals max. 350 deg. C = 662 deg. F max. 220 deg. C = 428 deg. F max. 180 deg. C = 356 deg. F

The plate terminal must be provided with a heat-dissipating connector. Provision must be made for cooling the plate seal and the base by a low velocity air stream.

Accessories

Ceramic SocketRiHeat-Dissipating Plate ConnectorRiGlass Air Flow ChimneyRi

Rö Fsg 2 Rö Kfl 02 Rö Zub 02

RS 1003

Radiation-cooled 105 Watt Pentode for Communication and Electromedical Applications, usable as RF-Amplifier, Oscillator and Modulator in Pre- and PA-Stages

Heating indirectly,

at DC Plate Current = 100 ma

DC Plate Current = 100 ma

oxide-coated cathode

DC Plate Voltage = DC Screen Voltage = 400 volts;

at DC Plate Voltage = DC Screen Voltage = 400 volts;

Amplification Factor

Transconductance

Weight 0.09 kg

General Data

Maximum Ratings

INTERELECTRODE CAPACITANCES Input 21 µµF Output 11 μμΕ Grid-Plate 0.13 µµF Grid-Screen μμF 7 DC Plate Voltage (f \leq 30 Mc) 1000 max. volts DC Plate Voltage (f \leq 100 Mc) 800 max.volts DC Screen Voltage 600 max. volts DC Plate Voltage (f \leq 30 Mc) 800 max. volts ¹ DC Screen Voltage 300 max. volts 1 DC Cathode Current 260 max. ma Peak Cathode Current 1.5 max. amps 60 max. watts Plate Dissipation Screen Dissipation 10 max. watts 0.5 max. watt Grid Dissipation

20

18,000 µmhos

1 With plate- and screen modulation

RF-Power Amplifier Class C		Plate and Screen Modulation	
100	100	30	Mc
105	26	-	watts
-	-	70	watts
800	300	800	volts
380	300	300	volts
-35	-25	-90	volts
50	40	110	volts
200	163	130	ma
25	30	25	ma
14	14	14	ma
55	23	34	watts
9.5	9.0	7.5	watts
0.7	0.55	1.5	watts
	—	100	º/o
-	-	230	volts
_	-	55	watts
	RF-Power Ar Class C 100 105 - 800 380 -35 50 200 25 14 55 9.5 0.7 - - -	RF-Power Amplifier Class C 100 100 105 26 - - 800 300 380 300 -35 -25 50 40 200 163 25 30 14 14 55 23 9.5 9.0 0.7 0.55 - - - - - -	RF-Power Amplifier Plate and Scr Class C Modulation 100 100 30 105 26 - - - 70 800 300 800 380 300 300 -35 -25 -90 50 40 110 200 163 130 25 30 25 14 14 14 55 23 34 9.5 9.0 7.5 0.7 0.55 1.5 - - 100 - - 230 - - 55

Other kinds of operation:

Prestage Modulation Class B Telephony

Frequency	≦ 30 Mc;
Power Output	= 23 watts;
at DC Plate Voltage	= 1000 volts

Characteristics

Accessories

Ceramic Socket

Rel stv 9a

Radiation-cooled 390 Watt Triode for Communication and Electromedical Applications, usable as RF Amplifier, Oscillator and Modulator at frequencies up to 200 Mc.

Weight approx. 0.125 kg

RS 1006 B

General Data

Maximum Ratings

FILAMENT

Filament Voltage Filament Current approx Emission Current	6.3 volts 5.8 amp Thor 1.8 amps at DC Plate Voltage	iated tungsten filament = DC Screen Voltage = 250 volts
Amplification Factor	25 at DC Plate Voltage DC Plate Current	= 2500 volts; = 60 ma
Transconductance	2800 μmhos at DC Plate Voltage DC Plate Current	= 2500 Volts; = 60 ma
INTERELECTRODE CA	PACITANCES	
Grid-Filament Plate-Filament Grid-Plate	4.9 μμF 0.1 μμF 5.0 μμF	
DC Plate Voltage (f ≤ 150 Mc) DC Cathode Current Peak Cathode Current Plate Dissipation Grid Dissipation	 3000 max. volts 300 max. ma 1.8 max. amps 150 max. watts 35 max. watts 	

	RF-Powe	r Amplifier	
	Class C		
Frequencies up to	150	Mc	
Power Output	390	watts	
DC Plate Voltage	2500	volts	
DC Grid Voltage	-200	volts	
Peak RF Grid Voltage	390	volts	
DC Plate Current	205	ma	
DC Grid Current	40	ma	
Plate Dissipation	122	watts	
Driving Power	14	watts	
Oscillator for Industrial	Application	S	
Frequencies up to	50	Mc	
Power Output	170	watts	
DC Plate Voltage	2500	volts 1	
AC Grid Voltage	85	volts 1 2	
DC Plate Current	90	ma	
DC Grid Current	20	ma	
Grid Resistor	1700	ohms	
Plate Dissipation	85	watts	

1 RMS value

 $^{\rm 2}$ Phase-shift between $U_{\rm d}$ and $U_{\rm g}$ 180 deg.

Characteristics

Cooling

Temperature of Plate seal Temperature of Base max. 220 deg. C = 428 deg. F max. 180 deg. C = 356 deg. F

The plate terminal must be provided with a heat-dissipating connector. At operating frequencies above 50 Mc provision must be made for cooling the plate seal and the base by a low velocity air stream.

Accessories

Ceramic Socket Heat Dissipating Plate Connector Tube Fastening Straps¹ Rö Fsg 2 Rö Kfl 06 Rö Zub 06

for mobile equipment

Radiation-cooled 375-Watt Tetrode for Communications and Electromedical Applications, usable as RF and AF Amplifier at frequencies up to 200 Mc.

123.5

RS 1007

6155

Weight approx. 0.125 kg

General Data	FILAMENT Filament Voltage Filament Current	approx.	5 volts 6.5 am	ps	Thoriat	ed tungsten filament	
	Emission Current		1.6 am at DC F = DC 0	ps Plate Vo Grid Vo	oltage Itage	= DC Screen Voltage = 250 volts	
	Grid-Screen Amplification	n Factor	6.2 at DC F DC Scr DC Plat	Plate Vo een Vo te Curr	oltage Itage ent	= 3000 volts; = 400 volts; = 40 ma	
	Transconductance		at DC F DC Scr DC Pla	mhos Plate Vo reen Vo te Curr	oltage Iltage ent	= 3000 volts; = 400 volts; = 40 ma	
	INTERELECTRODE CA Input Output Grid-Plate	PACIT	ΑΝCΕ 10.8 μι 3.1 μι 0.05 μι	S μF μF μF			
Maximum Ratings	DC Plate Voltage ($f \leq 120$ DC Plate Voltage ($f \leq 200$ DC Screen Voltage DC Cathode Current Peak Cathode Current Plate Dissipation Screen Dissipation Grid Dissipation	Mc) Mc)	3000 2200 400 290 1.6 125 20 5	max. v max. v max. v max. m max. a max. a max. w max. w max. w	olts olts olts a mps atts atts atts vatts		

		RF Power A Class <mark>C</mark>	Amplifier	Plate and Screen Modulation		
	Frequencies up to	120	120	120	Mc	
	Power Output	375	110	-	watts	
	Carrier Power Output	-	—	300	watts	
	DC Plate Voltage	3000	1500	2500	volts	
	DC Screen Voltage	350	350	350	volts	
	DC Grid Voltage	-150	-150	-210	volts	
	Peak RF Grid Voltage	300	225	380	volts	
	DC Plate Current	167	110	152	ma	
	DC Screen Current	30	16	30	ma	
	DC Grid Current	6.5	8	4.5	ma	
	Plate Dissipation	125	55	80	watts	
	Screen Dissipation	10.5	5.6	10.5	watts	
	Driving Power	2	1.7	1.7	watts	
	Modulation Factor	-	-	100	º/o	
	Peak AF Screen Voltage	-	-	300	volts	
	Modulating Power	-	-	190	watts	

Other kinds of operation: Prestage Modulation

Class B Telephony

AF Amplifier and Modulator (Class B, 2 tubes in push-pull) $\begin{array}{l} \mbox{Frequency} \leq 120 \mbox{ Mc} \\ \mbox{Carrier Power Output} \\ = 58 \mbox{ watts at DC Plate Voltage} = 3000 \mbox{ volts} \\ \mbox{Power Output} = 550 \mbox{ watts at} \\ \mbox{DC Plate Voltage} = 2500 \mbox{ volts} \end{array}$

Characteristics

Cooling

Temperature of Bulb Temperature of Plate Seal Temperature of Base max. 350 deg. C = 662 deg. F max. 220 deg. C = 428 deg. F max. 180 deg. C = 356 deg. F

The plate terminal must be provided with a heat-dissipating connector. At operating frequencies above 50 Mc provision must be made for cooling the plate seal and the base by a low velocity air stream.

Accessories

Ceramic Socket Heat Dissipating Plate Connector Tube Fasting Straps ¹

¹ for mobile equipment

Rö Fsg 2 Rö Kfl 06 Rö Zub 06

RS 1009 5894

Radiation-cooled 90 Watt Double Tetrode for VHF, UHF and TV Transmitters usable as RF Amplifier, Oscillator, Pulse Modulator and Frequency Multiplier, at frequencies up to 500 Mc Joint screen grid for both sections. Internally neutralised.

Weight approx. 0.06 kg

General Data

HEATING

6.3 resp. 12.6 volts Heater voltage Heater Current approx. 1.8 resp. 0.9 amp

Heating indirectly, oxide-coated cathode

per section Grid-Screen Amplification Factor Transconductance

8.2 4500 µmhos at DC Plate Current = 30 ma

INTERELECTRODE CAPACITANCES

		in push-pull operation	
10.5	μμF	Input	6.7 μμF
3.2	μμF	Output	2.1 μμF
< 0.08	μμF		
	10.5 3.2 < 0.08	10.5 μμF 3.2 μμF < 0.08 μμF	in push-pull 10.5 μμF Input 3.2 μμF Output < 0.08 μμF

Maximum Ratings

DC Plate Voltag	e (f ≤ 500 Mc)	750	max. volts
DC Plate Voltag	$(f \le 250 \text{ Mc})$	600	max. volts
DC Screen Volt	age	300	max. volts
DC Cathode Cu	rrent	2×120	max. ma
Peak Cathode	Current	2×700	max. ma
Plate Dissipatio	n	2×20	max. watts
Screen Dissipa	tion	7	max. watts
Grid Dissipatio	n	2×1	max. watts

RF Power Amplifier, Class C both sections in push-pull

Frequencies up to Power Output DC Plate Voltage	200 90 600	500 60 500	Mc watts volts
DC Screen voltage DC Grid Voltage	-80	-	volts
Peak RF Grid Voltage	2×100	_	volts
DC Plate Current	2×100	2×100	ma
DC Screen Current	16	2×20	ma
DC Grid Current	2×2.5	2×3	ma
Plate Dissipation	2×15	2×20	watts
Grid Resistor	-	20.000	ohms
Other kinds of operation			
Plate and Screen Modulation	F	requency	≦ 60 Mc
(Both sections in push-pull)	C	Carrier Power Output	= 71 watts $=$ 600 volts
Frequency Tripler	F	requency	= 50/150 Mc
(Both sections in push-pull)	F	ower Output	= 20 watts
	ć	at DC Plate Voltage	= 500 volts
Pulse Modulator			
Pulse Frequency 1250 cycles	[DC Plate Voltage	= 7000 volts
	F	Peak Plate Current	= 5 amps
AF Power Amplifier and Modulat	or F	Power Output	= 86 watts
(Both sections in push-pull)	ć	at DC Plate Voltage	= 600 volts

Characteristics

Cooling

4

max. 200 deg. C = 392 deg. F max. 180 deg. C = 356 deg. F Temperature of Plate Seals Temperature of Base When tube is used above 150 Mc a low velocity air flow on the bulb and on the plate seals will be necessary.

Accessories

Ceramic Socket

Anode Clips Rö Kfl 09 Rö Fsg 3

RS 1011

RS 1011 L Weight approx. 11 kg Weight approx. 4.5 kg

RS 1011 W

General Data	FILAMENT		
	Filament Voltage Filament Current appro	10 volts) x. 75 amps) Thoriated	tungsten filament
	Emission Current	30 amps at DC Plate Voltage = D	DC Grid Voltage = 350 volts
	Amplification Factor	62 at DC Plate Voltage DC Plate Current	= 1000 to 4000 volts; = 1 amp
	Transconductance	60,000 μmhos at DC Plate Voltage DC Plate Current	= 4000 volts; = 1 amp
	INTERELECTRODE CA	APACITANCES	
	Grid-Filament Plate-Filament Grid-Plate	80 μμF 0,7 μμF 30 μμF	
Maximum Ratings	DC Plate Voltage DC Plate Voltage DC Cathode Current Peak Cathode Current Plate Dissipation Grid Dissipation Grid Dissipation	$(f \le 100 \text{ Mc})$ $(f \le 220 \text{ Mc})$ $(f \le 100 \text{ Mc})$ $(f \le 220 \text{ Mc})$	5000max, volts4000max. volts8max. amps30max. amps10max. kilowatts350max. watts250max. watts

	TV Transmitter	RF Power An	nplifier
	PA Stage Modulation ¹ (Synchron level)	Class B ¹	
Frequencies up to	220	100	Мс
Bandwidth 2 $\varDelta f$ with		-	
circuit detuning of 45 deg.	6		Mc
Power Output	12	20	kilowatts ²
DC Plate Voltage	4000	4500	volts
DC Grid Voltage	-70	-70	volts
Peak RF Grid Voltage	250	330	volts
DC Plate Current	4.8	6.5	amps
DC Grid Current	1.1	1.3	amps
Plate Dissipation	7	9.5	kilowatts
Driving Power	1070	2100	watts

¹ Grounded-grid operation

² Transferred power (grounded grid) included

Other kinds of operation:

Prestage Modulation Class B Telephony

Frequency	\leq 100 Mc;
Carrier Power Output	= 5000 watts
at DC Plate Voltage	= 4500 volts

Characteristics

RS 1011 L

Required water flow on anode for inlet water temperature of 20 deg. C = 68 deg. F at max. plate dissipation . . . 15 liters/min \approx 494 cubic feet per minute Static Pressure Drop. . . . 130 mm of water \approx 5.1 inches of water Temperature of air at outlet . . . 70 deg. C = 158 deg. F

RS 1011 W

Required water flow anode for inlet water temperature of 20 deg. C = 68 deg. F at max, plate dissipation . . . 15 liters/min \approx 3.96 gallons (U.S. liq.) per minute

RS 1011 V

Particulars on request

Coaxial Cathode Connector	Rö Kat 11
Coaxial Grid Connector	Rö Git 01
Air Socket (RS 1011 L)	Rö Anst 01
Water Jacket (RS 1011 W)	Rö Kü 11
Tube Fuse (RS 1011 L)	Rö Sich 1

Supplementary accessories on enquiry

Accessories

Cooling

Tetrode for 5500 Watt VHF- and 2000 Watt TV-Transmitters at frequencies up to 220 Mc. With coaxial sealing of all electrodes including the filament terminals.

RS 1012 L RS 1012 V Weight approx. 2.5 kg Weight approx. 1.7 kg

0			1		
10-	or	-a		a	
\sim		U I		u	ιu

General Data	FILAMENT	
	Filament Voltage Filament Current appro	5 volts vx. 62 amps Thoriated tungsten filament
	Emission Current	10 amps at DC Plate Voltage = DC Screen Voltage = DC Grid Voltage = 400 volts
	Grid-Screen Amplification Fac	tor 5.3 at DC Plate Voltage = 2000 to 6000 volts; DC Screen Voltage = 600 to 800 volts; DC Plate Current = 1 amp
	Transconductance	22,000 μmphos at DC Plate Voltage = 3000 volts; DC Screen Voltage = 600 volts; DC Plate Current = 1 amp
	INTERELECTRODE CAPA	CITANCES
	Filament-Grid36 μμFFilament-Screen3 μμFGrid-Screen42 μμF	Filament-Plate 0.06 * Grid-Plate 0.23 * Screen-Plate 14
Maximum Ratings	DC Plate Voltage ($f \leq 100$ Mc) DC Plate Voltage ($f \leq 220$ Mc) DC Screen Voltage DC Cathode Current Peak Cathode Current Plate Dissipation (RS 1012 L) Plate Dissipation Grid Dissipation *) measured with 30 \times 30 mm groun	6000max. volts4000max. volts800max. volts2.5max. amps10max. amps3000max. watts4000max. watts100max. watts30max. watts30max. watts

	TV-Video-Tra	insmitter
	(Synchron Level)	
	Grounded G	rid and Screen
Frequencies up to	220	Mc
Bandwidth 2 🛆 t	10	Mc ¹
Power Output	5.49+0.51	kilowatts ²
DC Plate to Grid Voltage	4000	volts
DC Screen to Grid Voltage	750	volts
DC Cathode to Grid Voltage	150	volts
Peak Cathode to Grid Voltage	260	volts
DC Plate Current	2.28	amps
DC Screen Current	160	ma
DC Grid Current	75	ma
Plate Dissipation	3.300	watts
Driving Power	17+550	watts ²

Cathode modulated

¹ Bandwidth with circuit detuning of 45 deg.

² Transferred Power (Grounded Grid)

Characteristics

Other kinds of operation: Plate and Screen Modulation

RF PC	wer An	nplifier
Class	В	
Grou	nded-ca	athode

Frequencies up to	100	220	Mc
Power Output	5500	3300	watts
DC Plate Voltage	6000	4000	volts
DC Screen Voltage	600	600	volts
DC Grid Voltage	-150	-110	volts
Peak RF Grid Voltage	230	220	volts
DC Plate Current	1.4	1.4	amps
DC Screen Current	125	125	ma
DC Grid Current	60	60	ma
Plate Dissipation	2900	2300	watts
Driving Power	40	60	watts

Frequency Carrier Power Output

220 Mc \leq = 1500 watts at DC Plate Voltage -2500 volts

Cooling

RS 1012 L

Required air flow on anode at max. plate dissipation . . . 4 $\rm m^{3}/\rm min$ ≈ 141 cubic feet per minute Static Pressure Drop ... 115 mm of water ≈: 4.53 inches of water Temperature of air at outlet . . . max. 65 deg. C \approx 149 deg. F RS 1012 V

Particulars on request

Accessories

Coaxial Cathode Connectors	Rö Kat 12
Coaxial Grid Connector	Rö Git 12a
Coaxial Screen Grid Connector	Rö Git 12b
Air Socket (RS 1012 L)	Rö Anst 21
Jacket for evaporative cooling (RS 1012 V)	Rö Kü V 12
Tube Fuse (RS 1012 L)	Rö Sich 2

Supplementary accessories on enquiry

Radiation-cooled 1690 Watt Triode for Communications and Industrial RF Applications, usable as RF Amplifier and Oscillator at Frequencies up to 100 Mc.

180

12

Weight approx. 0.4 kg

General Data

Maximum Ratings

FILAMENT

Filament Voltage 10 volts Thoriated tungsten filament approx. 9.9 amps Filament Current 5 amps at DC-Plate Voltage = DC Grid Voltage = 500 volts **Emission Current** Amplication Factor 28 at DC Plate Voltage = 3500 volts DC Plate Current = 125 ma Transconductance 4500 µmhos at DC Plate Voltage = 3500 volts DC Plate Current = 125 ma INTERELECTRODE CAPACITANCES 8 μμF Input 0.17 μμF Output 7.0 μμF Plate-Grid DC Plate Voltage ($f \leq 100 \text{ Mc}$) 4000 max. volts olts 1 olts

DC Plate Voltage with self rectification	4500	max. volts 1
DC Plate Voltage with plate modulation	3000	max. volts
DC Cathode Current	650	max. ma
Peak Cathode Current	5	max. amps
Plate Dissipation	500	max. watts
Grid Dissipation	50	max. watts

¹ RMS value

-		10			
1111	2102		no	rat	10D
			De	I d L	1011
· / F					

RF Power Amplifier Class C

				recti	fication
Frequencies up to Power Output DC Plate Voltage DC Grid Voltage Peak RF Grid Voltage DC Plate Current DC Grid Current Plate Dissipation Driving Power * RMS value	100 1690 4000 -350 580 535 115 450 60	Mc watts volts volts ma ma watts watts	Frequencies up to Power Output Transformer Voltage DC Plate Current DC Grid Current Grid Resistor Plate Dissipation Efficiency	30 1000 4500 280 55 3400 350 71.5	Mc watts volts 1 ma ohms watts 0/0
Other kinds of operation: Plate Modulation			Frequency Carrier Power Outpu at DC Plate Voltage	t	≤ 100 Mc = 1050 watts = 3000 volts
AF Power Amplifier and Modulator (2 tubes in push-pull)			Power Output at DC Plate Voltage	= 2290 watts = 4000 volts	
Oscillator for industrial applications (With Plate Voltage from single-phase full wave rectifier)			Frequency Power Output at DC Plate Voltage	≦ 30 Mc = 1500 watts = 3600 volts	
Oscillator for industr (With Plate Voltage f half-wave rectifier)	plications nree phase	Frequency \leq 30 McPower Output= 1630 wat DC Plate Voltage= 4000 v			

Oscillator for industrial

applications with self-

Characteristics

Cooling

Temperature of Bulb Temperature of Plate Seal Temperature of Base $\begin{array}{l} \mbox{max. 250 deg. C} = 482 \mbox{ deg. F} \\ \mbox{max. 220 deg. C} = 428 \mbox{ deg. F} \\ \mbox{max. 180 deg. C} = 356 \mbox{ deg. F} \end{array}$

The plate terminal must be provided with a heat dissipating connector. At operating frequencies above 50 Mc provision must be made for cooling the plate seal und the base by a low velocity air stream.

Accessories

Ceramic SocketRö Fsg 4Heat Dissipating Plate ConnectorRö Kíl 02

RS 1019 6252

Radiation-cooled 48 Watt Double Tetrode for VHF and TV Transmitters usable as RF Amplifier, Frequency Multiplier up to 600 Mc and as AF Amplifier. Internally neutralised. Joint screen grid for both sections.

Weight approx. 0.06 kg

General Data

HEATING

Heater voltage Heater Current

6.3 resp. 12.6 volts | Heating indirectly, 1.3 resp. 0.65 amps

oxide-coated cathode

per Section

Grid Screen Amplification Factor 8 Transconductance

2500 µmhos at DC Plate Current = 20 ma

INTERELECTRODE CAPACITANCES

per Section		in push-pull operation with internal neutralisation			
Input	7 μμ F	Input	4.4 μμ <mark></mark> Ε		
Output	2.6 uuF	Output	1.6 μμ F		

Maximum Ratings

DC Plate Voltage	600	max. volts
DC Screen Voltage		max. volts
DC Cathode Current	2 × 55	max. ma
Peak Cathode Current	2×330	max. ma
Plate Dissipation	2×10	max. watts
Screen Dissipation	3	max. watts

		N		Ower Ampin	101, 0	iu.	55 0	1	
		B	loth	sections in	push	pu	III C	peration	
Frequencies up to			200				600	Mc	
Power output		-	48				20	watts	
DC Plate Voltage		(600				400	volts	
DC Screen Voltage			250				250	volts	
DC Grid Voltage		-	-60			2	-50	volts	
DC Plate Current	2	×	50		2	X	50	ma	
DC Screen Current			8				5	ma	
DC Grid Current	2	Х	0.7		2	\times	0.7	ma	
Plate Dissipation	2	×	6		2	×	10	watts	
Driving Power			1.5					watts	
Other kinds of operation:									

Plate and Screen Modulation (Both sections in push-pull operation)

Frequency Multiplier (Both sections in push-pull operation)

AF-Power Amplifier and Modulator

Frequency Carrier Power Output at DC Plate Voltage Frequency Power Output at DC Plate Voltage Power Output (Both sections in push-pull operation) at DC Plate Voltage

PE Bower Amplifior Class C

≦ 200 Mc; = 31 watts = 500 volts = 67/200 Mc;= 10 watts = 300 volts = 23.5 watts = 500 volts

Characteristics

Anode Clips

Coolina

Temperature of seals max. 180 deg. C = 356 deg. F Natural cooling of the tube will be sufficient at DC Plate Voltages = 600 volts up to frequencies of 150 Mc DC Plate Voltages = 500 volts up to frequencies of 200 Mc DC Plate Voltages = 300 volts up to frequencies of 430 Mc When the tube is used above these limits or at high ambient temperatures, an air flow directed on the bulb and the anode seals will be necessary. The air flow should approx. be 15 l/min \approx 3.96 gallons (US liq.) per minute. Rö Fsg 3 Ceramic Socket

Rö Kfl 09

Accessories

Triode with coaxial grid mounting for VHF and TV-Transmitters up to 220 Mc, particulary suitable for PA Stages in TV Transmitters of 1000 watts and for Prestages in RS 1011 equipped TV Transmitters of 10 kilowatts power output.

RS 1021 L Weight approx. 2 kg

General Data	FILAMENT			
	Filament Voltage Filament Currentapprox	5 volts . 52 amps	Tho	priated tungsten filament
	Emission Current	10 amps at Do	C Plat	e Voltage = DC Grid Voltage = 300 volts
	Amplification Factor	60 at DC Plate DC Plate Curr	e Volt rent	age = 1000 to 3000 volts; = 1 amp
	Transconductance	30,000 µmhos DC Plate Volt DC Plate Curr	at age ent	= 3000 volts = 1 amp
	INTERELECTRODE	CAPACIT	ANC	ES
	Grid-Filament Plate-Filament Grid-Plate	32 μμF 0.2 μμF 16 μμF		
Maximum Ratings	DC Plate Voltage DC Plate Voltage DC Plate Voltage	$(f \le 30 \text{ Mc})$ (f = 100 Mc) (f = 220 Mc)	5000 3500 2500	max. volts max. volts max. volts
	Peak Cathode Current Plate Dissipation (RS 10)	21 [)	2.5 8 3000	max. amps max. amps max. watts

60

max. watts

Grid Dissipation
TV Transmitter PA Stage Modulation ¹ (Synchron level)

Frequencies up to	220	100	MC
Bandwidth 2 $\varDelta f$	6	-	Mc
Power Output	1650	3300	watts ²
DC Plate Voltage	2200	3500	volts
DC Grid Voltage	-40	-60	volts
Peak RF Grid Voltage	180	230	volts
DC Plate Current	1.15	1.35	amps
DC Grid Current	300	320	ma
Plate Dissipation	1000	1600	watts
Driving Power	200	300	watts ²

¹ Grounded-Grid Operation

² Transferred Power (grounded grid) included

Other kinds of operation:

Pate Modulation

Prestage modulation (Class B Telephony)

Frequency	\leq	30	Мс
Carrier Power Output	-	1500	watts
at DC Plate Voltage	-	3000	volts
Frequency	\leq	30	Мс
Carrier Power Output		1500	watts
at DC Plate Voltage	=	5000	volts

Characteristics

Cooling

Accessories

Required air flow on anode at max. plate dissipation \cdots 3.5 m³/min \approx 123.5 cubic feet per min

Static Pressure Drop . . . 55 mm of water \approx 2.6 inches of water. Temperature of air at outlet . . . max. 70 deg. C = 158 deg. F

Cathode Connectors (2 per tube)	Rö Kat 21
Coaxial Grid Connector	Rö Git 21
Air Socket (RS 1021 L)	Rö Anst 21
Tube Fuse (RS 1021 L)	Rö Sich 2

Supplementary accessories on enquiry

Tetrode for frequencies up to 900 Mc. Featuring a metal and ceramic envelope with coaxial sealing of all electrodes including filament terminals.

Weight approx. 1.4 kg

RS 1022 C

General Data

Maximum Ratings

FILAMENT

Filament Power = 220 watts Filament Voltage 6 volts at control of Filament Power approx. 38 amps Filament Current Thoriated tungsten filament **Emission Current** 7.5 amps at DC Plate Voltage = DC Screen Voltage =DC Grid Voltage = 100 volts Grid-Screen 4 at DC Plate Voltage = 2000 volts; Amplification Factor DC Screen Voltage = 300 to 500 volts; DC Plate Current = 1 amp 17,000 μ mhos at DC Plate Voltage = 2000 volts; Transconductance DC Screen Voltage = 450 volts; DC Plate Current = 1 amp INTERELECTRODE CAPACITANCES Filament-Grid 26 μµF Filament-Screen 3.2 μμΕ Filament-Plate 0.05 µµF * 29 μμϜ Grid-Screen Grid-Plate 0.15 μµF * Screen-Plate 19 μμϜ *) measured with 30 imes 30 mm grounded flat metal shield attached to the screen-grid terminal Frequencies up to 790 max. Mc DC Plate to Grid Voltage 3800 max. volts DC Screen to Grid Voltage 700 max. volts DC Cathode to Grid Voltage 300 max. volts 1.5 max. amps DC Cathode Current Peak Cathode Current 7.5 max. amps Plate Dissipation 3200 max. watts Screen Dissipation 60 max. watts Grid Dissipation 15 max. watts

	Cathoo	demodulated	Frequency	/ Modulation
	TVVide	eo-Transmitter	TV Audio-	Fransmitter
	Groun	ded Grid	Grounded	Grid
	and Sc	creen	and Scree	en
Frequencies up to	600		600	Mc
Bandwidth $2\Delta f$ with circuit				
detuning of 45 deg.	10 1		-	Mc
Power Output	-		2400 ²	watts
Power Output sync. level	2500 ²	4	-	watts
pedestal level	1500 ²	5	-	watts
DC Cathode to Grid Voltage	3300		3500	volts
DC Screen to Grid Voltage	600		600	volts
DC Plated to Grid Voltage	160 6		160	volts
Peak Cathode to				
Grid Voltage	2006		200	volts
DC Plate Current	1.3 5		1.5	amps
DC Screen Current	30 5		80	ma
DC Grid Current	30 5		80	ma
Plate Input	4100 5		5000	watts
Driving Power	350 6		300	watts 7
Plate Dissipation	2700 5		2600	watts
Screen Dissipation	16 5		50	watts
Grid Dissipation	2 5		4	watts
Efficiency	-		48	0/0

¹ Bandwidth with secondary circuit

2 Power Output at 90 % circuit efficiency

3 Power Output at 85 % circuit efficiency 4

With TV-Modulation only ⁵ Pedestal level with mixed-in synchronizing level

6 Sync. level

7 Required power output of driver stage

Characteristics

Cooling

Required air flow on anode at max. plate dissipation . . . 3.6 m³/min \approx 126 cubic feet per min Static Pressure Drop . . . 70 mm of water \approx 275 inches of water Temperature of air at inlet , . . 25 deg. C = 77 deg. F Temperature of air at outlet . . . 85 deg. C = 185 deg. F

Accessories

Air Socket

Rö Anst 21

Radiation-cooled 840-Watt Triode for Communications and Electromedical Applications, usable as RF Amplifier, Oscillator, Modulator at frequencies up to 150 Mc.

RS 1026

5867

Weight approx. 0.17 kg

General Data

FILAMENT

5.0 volts Filament Voltage Filament Current

approx. 14 amps

5000 µmhos

25

Thoriated tungsten filament DC Platte Voltage = 3000 volts

at DC Plate Current = 90 ma DC Plate Voltage = 3000 volts

Amplification Factor	
Transconductance	

INTERELECTRODE CAPACITANCES

Grid-Filament	6.3 μμF
Plate-Filament	0.16 µµF
Grid-Plate	5.0 μμΕ

Maximum Ratings

DC Plate Voltage	3000	max. volts
DC Cathode Current	500	max, ma
Peak Cathode Current	3.0	max. amps
Plate Dissipation	350	max. watts
Grid Dissipation	40	max. watts
Grid Dissipation	100	max. kilooh

atts atts loohms

	RF Power Amplifier		Oscillator for		
	Class C		industrial	industrial applications ²	
Frequencies up to	100	100	40.68	Mc	
Power Output	840	585	665	watts 1	
AC Transformer Voltage	-	-	2800	volts	
DC Plate Voltage	3000	2000	2500 ²	volts	
DC Grid Voltage	-250	-150	_	volts	
Peak RF Grid Voltage	430	320	—	volts	
Grid Resistor	-	-	3330	ohms	
DC Plate Current	363	400	340	ma	
DC Grid Current	69	80	60	ma	
Plate Input	1090	800	935	watts	
Driving Power	27	23	20	watts 1	
Plate Dissipation	250	215	250	watts	
Efficiency	77	73	71	°/0	
1 0:					

Circuit losse are not included
 With Plate Voltage from single-phase full-wave rectifier

Other kind of operation

Oscillator for industrial application

(self rectification)

lg

۵

- 0,2 L

1000

Frequency = 40.68 Mc; Power Output = 415 watts at DC Plate Voltage = 3000 volts

Characteristics

2000

Ua -

-125

150

Cooling

Temperature of Plate Seal Temperature of Base

max. 220 deg. C = 428 deg. F max. 180 deg. C = 356 deg. F

At operating frequencies above 30 Mc provision must be made for cooling the base and plate seal by a low velocity air stream.

Accessories

Socket Heat Dissipating Plate Connector Glass Air Flow Chimney Rö Fsg 2 Rö Kfl 02 Rö Zub 02 25

200

4000

Radiation-cooled 14,5 Watt Double Tetrode for mobile VHF Transmitters at frequencies up to 200 Mc. Internally neutralised.

2×5 max. watts

2×0.2 max. watts

max. watts

2

Plate Dissipation

Grid Dissipation

Screen Dissipation

RS 1029

Characteristics

RF Power Amplifier, Class C both sections in push-pull operation

Frequencies up to	200	200	Мс
Power Output	14.5	11	watts
DC Plate Voltage	300	250	volts
DC Screen Voltage	175	-	volts
DC Grid Voltage	-40	-	volts
Peak RF Grid to			
Grid Voltage	110	110	volts
DC Plate Current	2×37.5	2×33.5	ma
DC Screen Current	2.3	1.8	ma
DC Grid Current	2×0.9	2.2	ma
Plate Dissipation	2×4	2×2.9	watts
Plate Input	2×11.25	2×8.4	watts
Grid Resistor	-	18,000 1	ohms
Efficiency	65	65	0/0
¹ Common resistor for both	sections		

Plate and Screen Modulation (both sections in push-pull)

AF Power Amplifier and Modulator

Frequency Tripler (bot sections in push-pull) Frequency Carrier Power Output at DC Plate Voltage Frequency Power Output at DC Plate Voltage

Power Output at DC Plate Voltage

 $= 67/200 \, \text{Mc};$ = 7.8 watts

 \leq 200 Mc;

= 8.1 watts

= 200 volts

= 300 volts

= 17.5 watts = 300 volts

max. 225 deg. C = 437 deg. F

max. 120 deg. C = 248 deg. F

Cooling

Temperature of Base

Radiation and Convection Cooling.

The use of a tight screening casing is not allowed. Rel stv 99c Socket

Accessories

90 Kilowatt Triode with coaxial grid terminal usable as RF Amplifier, Oscillator and Modulator at frequencies up to 70 Mc.

RS 1031

RS 1031 W

General Data

Maximum Ratings

FILAMENT

FILAMENT						
Filament Voltage 10 v Filament Current approx.	/olt 130	s) amps	Thoriated	tungsten fi	lament	
Emmission Current	50	amps at D	C Plate Vo	itage = DC	Grid Volt	age == 600 volts
Amplication Factor	58 DC	at DC Plate Plate Curr	e Voltage ent = 1 an	1000 up to np	6000 volts,	
Transconductance	56, DC	000 µmhos Plate Curr	at DC Pla ent = 1 ar	te Voltage np	= 3000 vo	Its;
INTERELECTRODE C	AI	PACITA	NCES			
Grid-Filament Plate-Filament Grid-Plate	11(1,2 42) արԲ արF արF				
		RF Power Class C	Amplifier		Piate Modulatic	on
Frequencies up to		10	30	70	30	Мс
DC Plate Voltage		15	12	6 _800	10 	max. kilovolts
DC Cathode Current		12	12	12	8	max. amps
Peak Cathode Current		45	45	45	50	max. amps
Plate Dissipation (RS 1031	L)	25	25	25	25	max. kilowatts
Plate Dissipation (RS 1031	W)	25	25	25	25	max. kilowatts
Plate Dissipation (RS 1031	V)	50	50	50	50	max. kilowatts
Grid Dissipation		600	600	500	600	max. watts

	RF Power Class C	Amplifier	Plate Modul	ation	
Frequencies up to	10	30	30	Mc	
Power Output	90	70	-	kilowatts	
Carrier Power Output	-	—	42	kilowatts	
DC Plate Voltage	15	12	10	kilovolts	
DC Grid Voltage,	-600	-550	-175 (fixed)	volts	
Grid Resistor	_	_	150	ohms	
Peak RF Grid Voltage	950	900	780	volts	
DC Plate Current	7.35	7.2	5.6	amps	
DC Grid Current	1.4	1.4	1.85	amps	
Plate Dissipation	20	16.5	14	kilowatts	
Grid Dissipation	420	410	510	watts	
Driving Power	1250	1180	1350	watts	
Other kinds of operation	1:				
TV-Video-Transmitter at 70 Mc		Power Output sync.		= 30 kilowatts	
Grounded Grid Operation		at DC Plate Voltage		= 5.5 kilovolts	
AF Power Amplifier and Modulator		Power Output		= 116 kilowatts	
(Ciuss D, Z iubes ilis pus	at DC Plat	le voltage	- 12 KIIOVOILS		

Characteristics

Cooling

RS 1031 L

Required air flow on anode at max. plate dissipation . . . 25 m³/min \approx 883 cubic feet per min Static Pressure Drop . . . 240 mm of water \approx 9.45 inches of water

RS 1031 W

Temperature of air at outlet for inlet air temperature of 25 deg. C = 77 deg. F... max. 75 deg. C = 167 deg. F Required water flow on anode for inlet water temperature of 20 deg. C = 68 deg. F at max. plate dissipation ... 35 l/min \approx 9.25 gallons (US liq.) per min.

RS 1031 V

Particulars on request

Cathode Connectors (2 per tube)	Rö Kat O1
Air Socket (RS 1031 L)	Rö Anst 31
Water Jacket (RS 1031 W)	Rö Kü 31
Jacket for evaporative cooling	
(RS 1031 V)	Rö Kü V 221
Tube Fuse (RS 1031 L)	Rö Sich 3

Supplementary accessories on enquiry

Accessories

Tetrode for frequencies up to 1000 Mc. With metal and ceramic envelope and coaxial sealing of all electrodes including filament terminals.

Weight approx. 4.7 kg

General Data

FILAMENT Filament Voltage

Filament Current

Emission Current

Filament Power = 530 watts 4.1 volts at control of filament Power approx. 140 amps Thoriated tungsten filament 20 amps at DC Plate Voltage = DC Grid Voltage = DC Screen Voltage = 200 volts Grid Screen Amplification factor 6 at DC Plate Voltage = 2000 volts; DC Screen Voltage = 300 to 500 volts; DC Plate Current = 1 amp 38,000 µmhos at DC Plate Voltage = 2000 volts; Transconductance DC Screen Voltage = 450 volts; DC Plate Current = 1 amp INTERELECTRODE CAPACITANCES

SIEMENS

RS1032C

Measured Filament-Grid 53 µµF Filament-Screen 5,8 µµF Filament-Plate 0,09 µµF *) Grid-Screen 65 µµF 0,22 µµF *) Grid-Plate 21 µµF Screen-Plate

*) measured with 30 imes 30 mm grounded flat metal shield attached to the screen-grid terminal

Maximum Ratings

Frequencies up to DC Plate to Grid Voltage DC Screen to Grid Voltage DC Cathode to Grid Voltage DC Cathode Current 790 max. Mc max. kilovolts 5.2 800 max. volts 300 max. volts 3.6 max, amps 1 Peak Cathode Current Plate Dissipation 20 max. amps 10 max. kilowatts Screen Dissipation 120 max. watts Grid Dissipation 30 max, watts

¹ Pedestal level with mixed-in synchronizing level

		Prestage modulated TV Video-Vransmitter Grounded Grid and Screen		Frequency Modulation TV Audio -Transmitter Grounded Grid and Screen	
Frequencies up to		790	600	790	Mc
Bandwidth 2 Δf with					
circuit detuning of 45	deg.	10 1	10 1	-	Мс
Power Output	0	-	-	578	kilowatts
Power Output sync.		1037	11 2 3	-	kilowatts
Power Output pedest	al level	647	6.6 2 4	-	kilowatts
DC Plate to Grid Volta	ige	5	5	4.5	kilovolts
DC Screen to Grid Vo	Itage	700	700	640	volts
DC Cathode to Grid V	/oltage	140	140	140	volts
Peak Cathode to Gri	d Voltage	230 5	210 5	180	volts
DC Plate Current	0	3 4	3 4	2.4	amps
DC Screen Current	approx.	130 4	100 4	60	ma
DC Grid Current	approx.	160 4	120 4	60	ma
Plate Input	and the second	14.5 4	14.5 4	10.5	kilowatts
Driving Power	approx.	800 5 6	700 5 6	400 6)	watts
Plate Dissipation		8 4	7.6 4	5	kilowatts
Screen Dissipation	approx.	100 4	80 4	40	watts
Grid Dissipation	approx.	6 4	3 4	4	watts
Efficiency		-	-	47.5	⁰ /0

¹ Bandwidth with secondary circuit

2 Power Output at 90 % circuit efficiency

With TV Modulation only

4 Pedestal level with mixed-in synchronizing level

5 Sync. level

6 Required power output of driver stage

7

Power Output at 85 $^{\circ}$ / $_{\circ}$ circuit efficiency For future 20/4 kw TV Transmitters

Characteristics

Cooling

Required air flow on anode . . . 11 m³/min \approx 390 cubic feet per min Static Pressure Drop . . . 115 mm of water \approx 4.52 inches of water Temperature of air at outlet for inlet air temperature of 25 deg. C = 77 deg. F . . . 80 deg. C = 176 deg. F

Radiation-cooled 1550 Watt Triode for industrial RF Applications at frequencies up to 50 Mc.

Weight approx. 0.450 kg

RS 1036

General Data

FILAMENT

Filament Voltage5 vcFilament CurrentappAmplification Factor21Transconductance3300

5 volts approx. 32.5 amps 21 3300 µmhos

Thoriated tungsten filament

at DC Plate Voltage = 4 kilovolts; DC Plate Current = 120 ma

INTERELECTRODE CAPACITANCES

Input	7.5 µµF
Output	0.2 μμF
Grid-Plate	5.1 µµF

		With plate voltage from three-phase half-wave rectifier without filter	With plate voltage from mains transformer (self rectification)	
Maximum Ratings	Frequencies up to	50	50	max. Mc
	DC Plate Voltage	7000	5000	max. volts
	DC Grid Voltage	-1250	-	max. volts
	Peak Grid Voltage	-	1350	max. volts
	DC Plate Current	560	320	max. ma
	DC Grid Current	210	110	max. ma
	DC Grid Current (unloaded)	280	150	max. ma
	Plate Dissipation (CCS)	500	500	max. watts
	Plate Dissipation (1 sec on/4 sec off)	1000	1000	max. watts
	Grid Resistor	15	15	kiloohms

Oscillator for industrial applications

I	11	
50	50	Mc
1640	1020	watts
3400	4500	volts
6000	-	volts
15	18	0/0
4.2	2.7	kiloohms
350	280	ma
90	70	ma
120	80	ma
180	125	ma
2100	1400	watts
460	380	watts
78	73	º/o
	I 50 1640 3400 6000 15 4.2 350 90 120 180 2100 460 78	I II 50 50 1640 1020 3400 4500 6000 - 15 18 4.2 2.7 350 280 90 70 120 80 180 125 2100 1400 460 380 78 73

I With plate voltage from three-phase half-wave rectifier without filter II With plate voltage from mains transformer (self rectification)

Characteristics

Cooling

Temperature of bulb Temperature of seals max. 350 deg. C = 662 deg. F max. 220 deg. C = 428 deg. F

At high operating frequencies and/or nonmatched load a low velocity air stream along the bulb is necessary.

Accessories

Socket Rö Heat-Dissipating Plate Connector Rö

Rö Fsg 1 Rö Kfl 02 360 Kilowatt Triode with coaxial grid terminal usable as RF Amplifier, Oscillator and Modulator at frequencies up to 30 Mc.

RS 1041

RS 1041 W Weight approx. 32.5 kg

RS 1041 V Weight approx. 50 kg

General Data	FILAMENT Filament Voltage Filament Current approv	18 volts K. 280 amps Thoriated tungsten filament			ten filament			
	Emission Current	190 am = DC 0	190 amps at DC Plate Voltage = DC Grid Voltage = 750 volts					
	Amplification Factor	55 at D DC Pla	55 at DC Plate Voltage = 4 up to 10 kilovolts; DC Plate Current = 5 amps					
	Transconductance	130,000 μmhos at DC Plate Voltage = 4 kilovolts; DC Plate Current = 5 amps;						
	INTERELECTRODE CAPACITANCES							
	Grid-Filament Plate-Filament Grid-Plate	240 μμF 7.5 μμF 120 μμF						
	RF Pow Class C		RF Power Amplifier Plate Class C Modulation		ation			
Maximum Ratings	Frequencies up to DC Plate Voltage DC Grid Voltage DC Cathode Current Peak Cathode Current Plate Dissipation (RS 1041 W) Plate Dissipation (RS 1041 V)	10 15 -1200 40 170 120 180	30 12 -1200 40 170 120 180	30 11 -1000 30 190 120 180	Mc max. kilovolts max. volts max. amps max. amps max. kilowatts max. kilowatts			
	Gild Dissipation	4	4	4	max. Knowdits			

Class C Frequencies up to 10 30 285 Power Output 360 DC Plate Voltage 15 12 DC Grid Voltage -520 -480 Peak RF Grid Voltage 1090 1050 DC Plate Current 29.3 29.3 DC Grid Current 54 5.9 Plate Dissipation 80 68 Grid Dissipation 2.7 2.9 Driving Power 5.5 5.7 Plate Modulation Frequencies up to 30 Mc kilowatts Carrier Power Output 165 DC Plate Voltage 11 kilovolts -170 volts DC Grid Voltage (fixed) Grid Resistor 40 ohms 1000 Peak RF Grid Voltage volts DC Plate Current 19 amps DC Grid Current 7.4 amps Plate Dissipation 44 kilowatts 3.6 kilowatts Grid Dissipation **Driving Power** 7.1 kilowatts

RF Power Amplifier

Other kinds of operation :

Prestage Modulation Class B Telephony Frequency

AF Power Amplifier and Modulator (Class B; 2 tubes in push-pull) at DC Plate Voltage Power Output at DC Plate Voltage

Carrier Power Output

Mc

kilowatts

kilovolts

volts

volts

amps

amps

kilowatts

kilowatts

kilowatts

= 75 kilowatts = 12 kilovolts

≤ 30 Mc

= 450 kilowatts

= 12 kilovolts

Characteristics

Cooling

RS 1041 W

Required water flow on anode for inlet water temperature of 20 deg. C = 68 deg. F at max. plate dissipation 150 l/min \approx 29.6 gallons (US Lip.) per min

RS1041 V

Particulars on request

Accessories

Cathode Connectors (2 per tube)Rö Kat 41Water Jacket (RS 1041 W)Rö Kü 41Jacket for Evaporative Cooling (RS 1041 V)Rö Kü V 41Supplementary accessories on enquiry

Radiation-cooled 2840-Watt Triode for industrial RF Applications at frequencies up to 50 Mc.

RS 1046

7092

Weight approx. 0.6 kg

General Data	FILAMENT						
	Filament Voltage Filament Current approx	Filament Voltage 6.3 volts Filament Current approx. 32.5 amps		Thoriated tungsten filament			
	Amplification Factor Transconductance	22 5100 μmhos	at DC Plate Voltage = 4 kilovolts; DC Plate Current = 190 ma				
	INTERELECTRODE CAPACITANCES						
	Input Output Grid-Plate	9.1 μμF 0.25 μμF 6.2 μμF					
		I	П	011			
Maximum Ratings	Frequencies up to DC Plate Voltage AC Transformer Voltage DC Grid Voltage DC Plate Current DC Grid Current Plate Dissipation Grid Resistor	50 7000 -1250 750 300 800 10	50 6300 - -1250 670 270 800 10	50 5600 400 160 800 10	max. Mc max. volts max. volts max. volts max. ma max. ma max. watts max. kiloohms		
	I. Oscillator for industri half-wave rectifier	al application	, with plate	voltage from	three-phase		

II. Oscillator for industrial application, with plate voltage from single-phase full-wave rectifier

III. Oscillator for industrial application, with plate voltage from mains transformer (self rectification)

Oscillator for industrial applications

		11	III	
Frequencies up to	50	50	50	Mc
Power Output	2840	2650	1560	watts
AC-Transformer Voltage	5100	6000	5200	volts
DC Plate Voltage	6000	5400	-	volts
Feedback Factor	13.1	13.3	17	º/o
Grid Resistor	3000	3000	1800	ohms
DC Plate Current	600	530	360	ma
DC Plate Current (unloaded)	120	100	90	ma
DC Grid Current	150	140	100	ma
DC Grid Current (unloaded)	260	240	140	ma
Plate Input	3600	3520	2080	watts
Plate Dissipation	760	770	520	watts
Efficiency	79	75	75	0/0

I. With Plate Voltage from three-phase half-wave rectifier without filter II. With Plate Voltage from single-phase full-wave rectifier without filter III. With Plate Voltage from mains transformer (self rectification)

Characteristics

Cooling

r.

Temperature of Seals Temperature of Bulb

max. 220 deg. C = 428 deg. F max. 350 deg. C = 662 deg. F

If the tube is installed in a narrow casing, sufficient cooling must be provided. Normally a small blower is sufficient.

Accessories

SocketRö Fsg 1Heat Dissipating Plate ConnectorRö Kfl 02

15 Kilowatt-Triode with coaxial grid terminal usable as RF Amplifier and Modulator at frequencies up to 30 Mc.

Weight approx. 6 kg

General Data

FILAMENT

Filament Voltage5.3 volts
approx.Thoriated tungsten filamentFilament Currentapprox.135 ampsThoriated tungsten filamentEmission Current30 amps at DC Plate Voltage = DC Grid Voltage = 600 voltsAmplification Factor45 at DC Plate Voltage = 1 to 6 kilovolts;
DC Plate Current = 1 ampTransconductance35,000 µmhos at DC Plate Voltage = 3 kilovolts;
DC Plate Current = 1 amp

INTERELECTRODE CAPACITANCES

Grid-Filament Plate-Filament Grid-Plate 65 μμF 0.6 μμF 33 μμF

Maximum Ratings

DC Plate Voltage ($f \leq 30$ Mc) ϵ max. kilovoltsDC Plate Voltage at Plate Modulation6max. kilovoltsDC Cathode Current6max. ampsPeak Cathode Current25max. ampsPlate Dissipation6max. kilowattsGrid Dissipation250max. watts

Frequencies up to Power Output DC Plate Voltage DC Grid Voltage Peak RF Grid Voltage DC Plate Current DC Grid Current Plate Dissipation Driving Power

Frequencies up to Carrier Power Output DC Plate Voltage DC Grid Voltage Peak RF Grid Voltage DC Plate Current DC Grid Current Plate Dissipation Driving Power

RF Power Amplifier Class B

30	Mc
15	kilowatts
6	kilovolts
-150	volts
370	volts
3.5	amps
0.8	amp
6	kilowatts
300	watts
	30 15 6 -150 370 3.5 0.8 6 300

Plate Voltage Modulation

30	Мс
10	kilowatts
6	kilovolts
-260	volts
480	volts
2.3	amps
0.75	amp
4	kilowatts
340	watts

Characteristics

Cooling

RS 1051 L

Required air flow on anode at max. plate dissipation . . . 3.3 m³/min \approx 117 cubic feet per min Static pressure drop 170 mm of water \approx 6.7 inches of water Temperature of air at outlet for inlet air temperature of

25 deg. C = 77 deg. F . . . 120 deg. C = 248 deg. F

Same type of tube for water cooling.

Required water flow on anode for inlet water temperature of 20 deg. C = deg. F at max. plate dissipation . . . 8 l/min \approx 2.1 gallons (U.S. Liq.) per min

Cathode Connectors (2 per tube)	Rö Kat 01
Coaxial Grid Connector	Rö Git 01

Accessories

Tetrode for frequencies up to 1000 Mc. Featuring a metal and ceramic envelope with coaxial sealing of all electrodes including filament terminals.

Weight approx. 1.4 kg

General Data

Maximum Ratings

FILAMENT

Filament Voltage Filament Current approx Emission Current	3.2 vo . 80 am 7.5 ar = DC	plts at control of Filament Power at control of Filament Power Thoriated tungsten filament mps at DC Plate Voltage= Grid Voltage = 120 volts;
Grid-Screen Amplification Factor	4 at D DC So DC P	DC Plate Voltage = 2 kilovolts; creen Voltage = 300 to 500 volts; late Current = 1 amp
Transconductance	17,000 DC Sc DC PI	0 μmhos at DC Plate Voltage = 2 kilovolts; creen Voltage = 450 volts; ate Current = 1 amp
INTERELECTRODE CAR	ACI	TANCES
$\begin{array}{llllllllllllllllllllllllllllllllllll$) nded fl	Grid-Screen 30 μμF Grid-Plate 0.17 μμF*) Screen-Plate 19 μμF at metal shield attached to the screen-grid terminal
Frequency up to DC Plate to Grid Voltage DC Screen to Grid Voltage DC Cathode to Grid Voltage DC Cathode Current Peak Cathode Current Plate Dissipation Screen Dissipation Grid Dissipation	790 3.8 700 300 1.5 7.5 3.5 70 15	max. Mc max. kilovolts max. volts max. volts max. amps max. amps max. kilowatts max. watts max. watts

		Cathode modulated TV-Video-Transmitter		Frequency Modulation TV-Audio-Transmitter		
		Grounde	ed Grid	Grounded Grid		
		and Scr	een	and S	creen	
Frequencies up to		600	790	600	790	Mc
Bandwidth 2 $\varDelta f$ with a	circuit					
detuning of 45 deg.		101	101		2. <u></u> 2	Mc
Power Output				2.4 2	2.2 ³	kilowatts
Power output, syn. le	vel	2.5 2 4	2.2 3 4	-		kilowatts
Power Output, pedest	al level	1.5 2 5	1.32 3 5	-	-	kilowatts
DC Plate to Grid Volta	ge	3.3	3.3	3.5	3.5	kilovolts
DC Screen to Grid Vol	tage	600	600	600	600	volts
DC Cathode to Grid Vo	oltage	160 5	160 5	160	160	volts
Peak Cathode to Grid	Voltage	200	220	200	220	volts
DC Plate Current		1.35	1.35	1.5	1.5	amps
DC Screen Current	approx.	30 5	30 5	80	100	ma
DC Grid Current	approx	30 5	50 5	60	80	ma
Plate Input		4.1 5	4.1 5	5	5	kilowatts
Driving Power	approx.	350 6 7	400 6 7	3007	400 7	watts
Plate Dissipation		2.7 5	2.95	2.6	2.8	kilowatts
Screen Dissipation	approx.	165	205	50	60	watts
Grid Dissipation	approx.	2 5	4 5	4	6	watts
Efficiency		-	-	48	44	0/0

¹ Bandwidth with secondary circuit

² Power Output at 90 % circuit efficiency

³ Power Output at 85 % circuit efficiency

4 With TV-modulation only

⁵ Pedestal level with mixed-in synchronizing level

6 Synchron level

⁷ Required power output of driver stage

Characteristics

Cooling

Required air flow on anode at max. plate dissipation . . . 3.5 m³/min \approx 123.5 cubic feet per min

Static Pressure Drop. . . . 70 mm of water $\approx~2.75~\text{inches of water}$

Temperature of air at inlet 25 deg. C = 77 deg. FTemperature of air at outlet 75 deg. C = 167 deg. F 15 Kilowatt Triode with coaxial grid terminal for industrial RF Generators for frequencies up to 30 Mc.

RS 1061

RS 1061 L RS 1061 W RS 1061 V Weight approx. 4.5 kg Weight approx. 2 kg Weight approx. 4.1 kg

General Data

FILAMENT

Plate-Grid

Filament Voltage Filament Current approx.	10 volts 52 amps	Thoriated tungsten filament
Emission Current	15 amps at DC = DC Grid Vol	Plate Voltage tage = 750 volts
Amplification Factor	50 at DC Plate = 2 to 6 kilovo	Voltage Its, DC Plate Current = 1 amp
Transconductance	14,000 μ mhos a = 3 kilovolts; D	t DC Plate Voltage C Plate Current = 1 amp
INTERELECTRODE	CAPACITA	NCES
Grid-Filament Plate-Filament	37 μμF 1 μμF	

Maximum Ratings

aximum Ratings	DC Plate Voltage	$(f \le 30 \text{ Mc})$	= 12	max. kilovolts
	DC Plate Voltage	(mean value of	= 10	max. kilovolts
	three phase half-way	ve rectifier without filter)		
	DC Cathode Current		= 3.5	max. amps
	Peak Cathode Currer	nt	= 15	max. amps
	Plate Dissipation	(RS 1061 L and RS 1061 W)	= 8	max. kilowatts
	Plate Dissipation	(RS 1061 V)	= 12	max. kilowatts
	Grid Dissipation		= 300	max. watts

17 μμΕ

Oscillator for industrial application with plate voltage from three-phase half-wave rectifier without filter

Frequencies up to	30	30	Mc
Power Output	15	7	kilowatts
DC Plate Voltage	9	6	kilovolts 1
Peak RF Grid Voltage	1070	790	volts 2
Feedback Factor	10.5	11.7	0/0
DC Plate Current	2.1	1.5	amps
DC Grid Current	0.6	0.5	amp
Grid Resistor	660	600	ohms
Plate Dissipation	4	2	kilowatts
Grid Dissipation	245	155	watts
Driving Power	490	285	watts

¹ average value

² During peak of AF Plate Voltage

Characteristics

Cooling

RS 1061 L

Required air flow on anode at max, plate dissipation ... 8 m³/min = 282.5 cubic feet per min Static Pressure Drop ... 85 mm of water ≈ 3.35 inches of water Temperature of air at outlet ... max. 80 deg. C = 176 deg. F **RS 1061 W** Required water flow on anode for inlet water temperature of 20 deg. C = 68 deg. F at max. plate dissipation ... 10 l/min ≈ 2.7 gallons (Us. liq.) per min

RS 1061 V

Particulars on request

Accessories

Cathode Connectors (2 per tube)Rö Kat 61Air Socket (RS 1061 L)Rö Anst 61Water Jacket (RS 1061 W)Rö Kü 61Jacket for evaporative cooling (RS 1061 V)Rö Kü V 61Tube Fuse (RS 1061 L)Rö Sich 1

Supplementary accessories on enquiry

Weight approx. 8 kg

RS 1071 L

General Data

Maximum Ratings

FILAMENT

Filament Voltage FilamentCurrent approx	5 volts K.80 amps T	hori	ated tungsten filament
Emission Current	12 amps at DC	Pla	te Voltage = DC Grid Voltage = 300 volts
Amplification Factor	60 at DC Plate DC Plate Curre	Volt nt =	tage = 1 to 4 kilovolts; = 1 amp
Transconductance	38,000 µmhos a DC Plate Curre	at Do nt =	C Plate Voltage = 4 kilovolts; = 1 amp
INTERELECTRODE	CAPACITANC	ES	
Grid-Filament Plate-Filament Grid-Plate	67 μμF 0.4 μμF 24 μμF		
DC Plate Voltage DC Plate Voltage DC Cathode Current Peak Cathode Current Plate Dissipation	$(f \le 100 \text{ Mc})$ $(f \le 220 \text{ Mc})$	5 2.8 4 12 5	max, kilovolts max, kilovolts max, amps max, amps max, kilowatts

Grid Dissipation $(f \leq 100 \text{ Mc})$ 175 max. wattsGrid Dissipation $(f \leq 220 \text{ Mc})$ 125 max. watts

	TV Transmitte	er	
	PA Stage Modulation 1		
	(Synchron level)		
Frequencies up to	220	Mc	
Bandwidth 2 \varDelta f with			
circuit detuning of 45 deg.	6	Mc	
Power Output	3.5	kilowatts ²	
DC Place Voltage	2.8	kilovolts	
DC Grid Voltage	-50	volts	
Peak RF Grid Voltage	200	volts	
DC Plate Current	1.95	amps	
DC Grid Current	0.55	amp	
Plate Dissipation	2	kilowatts	
Driving Power	360	watts ²	

Grounded Grid Operation
 ² Transferred Power (grounded grid) included

Characteristics

Cooling

RS 1071 L

Required air flow on anode at max. plate dissipation 5 m³/min pprox 176.5 cubic feet per min Static Pressure Drop ... 65 mm of water pprox 2.56 inches of water Temperature of air at outlet . . . max. 78 deg. C = 172.4 deg. F

Accessories

Coaxial Cathode Connector	Rö Kat 11
Coaxial Grid Connector	Rö Git 01
Air Socket (RS 1071 L)	Rö Anst 71
Tube Fuse (RS 1071 L)	Rö Sich 1

Supplementary accessories on enquiry

45 Kilowatt Triode with coaxial grid terminal especially for application in industrial RF Generators at frequencies up to 30 Mc.

RS 1081 LRS 1081 WRS 1081 VWeight approx. 15 kgWeight approx. 5.3 kgWeight approx. 13 kg

General Data

FILAMENT Filament Voltage 8 volts Filament Current approx. 115 amps Thoriated tungsten filament Emission Current 30 amps at DC Plate Voltage = DC Grid Voltage = 450 volts Amplification Factor 45 at DC Plate Voltage = 1 to 6 kilovolts; DC Plate Current = 1 amp Transconductance 35,000 μmhos at DC Plate Voltage = 3 kilovolts DC Plate Current = 1 amp

INTERELECTRODE CAPACITANCES

Grid-Filament	
Plate-Filament	
Grid-Plate	

80 μμF 1 μμF 33 μμF

RF Power Amplifier Plate **Maximum Ratings** Class C Modulation Frequencies up to 10 30 30 Mc DC Plate Voltage 15 12 10 max. kilovolts DC Grid Voltage -1000 -1000 -1000 max. volts DC Cathode Current 8 8 8 max. amps Peak Cathode Current 30 30 30 max. amps Plate Dissipation (RS 1081 L) 20 20 20 max. kilowatts Plate Dissipation (RS 1081 W) 20 20 20 max. kilowatts Plate Dissipation (RS 1081 V) 45 45 45 max. kilowatts Grid Dissipation 500 500 500 max. watts

RF POV	wer Ampli	ler	Plate	
Class	С		Modulation	
30	30	30	30	Mc
45	35	26	-	kilowatts
-	-	-	22	kilowatts
12	10	8	10	kilovolts
-450	-415	-380	-195	volts
	-	-	300	ohms
780	740	700	775	volts
4.6	4.4	4.2	2.75	amps
0.95	0.95	0.95	1	amps
55.2	44	33.6	27.5	kilowatts
685	650	610	725	watts
10.2	9	7.6	5.5	kilowatts
260	255	250	230	watts
81.5	79.5	77.5	80	0/0
1395	1210	1000	2230	ohms
	-	-	100	0/0
_	6 <u>444</u>	-	13.75	kilowatts
	RF Pov Class 30 45 - -450 - 780 4.6 0.95 55.2 685 10.2 260 81.5 1395 - -	RF Power Amplif Class C 30 30 45 35 - - 12 10 -450 -415 - - 780 740 4.6 4.4 0.95 0.95 55.2 44 685 650 10.2 9 260 255 81.5 79.5 1395 1210 - - - -	RF Power Amplifier Class C 30 30 45 35 26 - - - 12 10 8 -450 -415 -380 - - - 780 740 700 4.6 4.4 4.2 0.95 0.95 0.95 55.2 44 33.6 685 650 610 10.2 9 7.6 260 255 250 81.5 79.5 77.5 1395 1210 1000	RF Power Amplifier Plate Class C Modulation 30 30 30 45 35 26 - - - - 22 12 10 8 10 -450 -415 -380 -195 - - - 300 780 740 700 775 4.6 4.4 4.2 2.75 0.95 0.95 0.95 1 55.2 44 33.6 27.5 685 650 610 725 10.2 9 7.6 5.5 260 255 250 230 81.5 79.5 77.5 80 1395 1210 1000 2230 - - - 100 - - - 100

Other kinds of operation:

AF Power Amplifier and Modulator (Class B, 2 tubes in push-pull) Oscillator for industrial applications,

(With plate voltage from three-phase half-wave rectifier)

= 60 kilowatts Power Output at DC Plate Voltage = 10 kilovolts ≤ 30 Mc Frequency

Power Output = 33 kilowatts

at DC Plate Voltage = 10 kilovolts

Characteristics

Cooling

RS 1081 L

Required air flow on anode

at max. plate dissipation ... 24 m³/min Static Pressure Drop . . . 75 mm of water Temperature of air outlet . . . max. 70 deg. C = 158 deg. F

RS 1081 W

Required water flow on anode for inlet water temperature of 20 deg. C=68 deg. F at max. plate dissipation ... 30 I/min Outlet temperature \cdots 65 deg. C = 149 deg. F

RS 1081 V Particulars on request

Cathode Connectors (2 per tube)	Rö Kat 01
Air Socket (RS 1081 L)	Rö Anst 81
Water Jacket (RS 1081 W)	Rö Kü 81
Jacket for evaporative cooling (RS 1081 V)	Rö Kü V 221
Tube Fuse (RS 1081 L)	Rö Sich 1
Supplementary accessories on enquiry	

pprox 847 cubic feet per min pprox 2.95 inches of water

 \approx 8 gallons (US liq.) per min

61

Accessories

Tetrode for frequencies up to 250 Mc.

Featuring a metal and ceramic envelope with coaxial sealing of all electrodes including filament terminals. Particularly designed for single sideband commercial communications transmitters.

RS 1082 C

RS 1082 CL RS 1082 CW RS 1082 CV Weight approx. 13.5 kg Weight approx. 7 kg Weight approx. 14.5 kg

General Data	FILAMENT Filament Voltage Filament Current approx.	10 volts 200 amps	Thoriated tungsten	filament	
	Emission Current	70 amps at I DC Grid Volt	DC Plate Voltage = 1 tage = 500 volts	DC Screen Voltage =	
	Grid-Screen Amplification	Factor 6 at D DC Screen V DC Plate Cur	OC Plate Voltage 300 /oltage = 800 up to rrent = 2.5 amps	0 volts, 1200 volts,	
	Transconductance 60,000 µmhos 3000 volts, D DC Plate Curr		s at DC Plate Voltage = DC Screen Voltage = 1200 volts, rrent = 2 up to 3 amps		
	INTERELECTRODE CAPACITANCES				
	Grid-Filament 110 µµ	F	Grid-Plate	1.3 μμF *)	
	Grid-Screen 150 µµ	F	Plate-Filament	0.2 μμF *)	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Maximum Ratings	DC Plate Voltage	10	max. kilovolts		
	DC Screen Voltage	1400	max. volts		
	DC Grid Voltage	-250	max. volts		
	Peak Cathode Current	70	max. amps		
	Plate Dissipation (RS 1082)	CL) 25	max. kilowatts		
	Plate Dissipation (RS 1082)	CW) 30	max. kilowatts		
	Plate Dissipation (RS 1082)	CV) 45	max. kilowatts		
	Grid Dissipation	300	max. watts		
	Screen Dissipation	600	max. watts		

RF-Linear Power Amplifier, SSB Modulation, Frequency = 30 Mc, Grid Current = 0

Modulation:	without	one tone	two tone	
Power Output	0	30	15	kilowatts
DC Plate Voltage	8	8	8	kilovolts
DC Screen Voltage	1200	1200	1200	volts
DC Grid Voltage	-190	-190	-190	volts
Peak RF Grid Voltage	0	190	190	volts
DC Plate Current	2	5.9	3.8	amps
Plate Input	16	47.2	29.6	kilowatts
Plate Dissipation	16	17.2	14.6	kilowatts
Efficiency	0	63.5	50.5	º/o
3rd Order Intermodulation	products			
eferred to signal level			41	dB
oth Order Intermodulation	products			
reffered to signal level			54	dB
0				

Characteristics

Cooling

RS 1082 CL

Required air flow on anode ... 25 m³/min = 882 cubic feet per min. Static Pressure Drop ... 77 mm of water \approx 3.03 inches of water Temperature of air at outlet for inlet air temperature of 25 deg. C = 77 deg. F ... 80 deg. C = 176 deg. F

RS 1082 CW

Required water flow on anode for inlet water temperature of 20 deg. C = 68 deg. F at max. plate dissipation . . . 45 l/min \approx 12 gallons (US liq) per min Water outlet temperature 30 deg. C = 86 deg. F

RS 1082 CV

Particulars on request

Accessories

Cathode Connectors	
Inner Part	Rö Kat 82 a
External Part	Rö Kat 82 b
Grid Connector	Rö Git 82 a
Screen Connector	Rö Git 82 b
Air Socket (RS 1082 CL)	Rö Anst 82
Water Jacket (RS 1082 CW)	Rö Kü 81
Jacket for evaporative cooling (RS 1082 CV)	Rö Kü V 221
Supplementary accessories on enquiry	

Radiation-cooled 5.5 Kilowatt Triode for Industrial Applications, usable as RF Amplifier and Oscillator at frequencies up to 50 Mc.

Weight approx. 1.3 kg

RS 1091

General Data	FILAMENT Filament Voltage Filament Current approx.	6.3 volts 50 amps Thoriate	ed tungster	n filament	
	Emission Current	10 amps at DC Plate Voltage = DC Grid Voltage = 450 v	olts		
	Amplification Factor	24 at DC Plate Voltage = 1 to 3 kilovolts; DC Plate Current = 300 ma			
	Transconductance	11,000 μmhos at DC Plate Voltage = 3 kilo DC Plate Current = 300 m	ovolts; na		
Capacitances	Grid-Filament Plate Filament Grid-Plate	29 μμF 0.88 μμF 13.5 μμF			
Maximum Ratings		With plate voltage from three phase half-wave rectifier without filter	With plate from mair (self recti	e voltage ns transformer ification)	
	Frequencies up to	50	50	max. Mc	
	Peak AF Plate Voltage	7.25	7.8	max. kilovolts	
	Transformer Voltage	5.15	5.5	max. kilovolts	
	DC Plate Voltage	61	_	max. kilovolts	
	DC Grid Voltage	-650	-650	max. volts	
	DC Cathode Current	1.3	0.8	max. amps	
	Peak Cathode Current	10	10	max. amps	
	Plate Dissipation	1.2	1.2	max. kilowatts	
	Grid Dissipation	150	150	max. watts	
	1 mean value				

Oscillator for Industrial Applications

	With plate voltage	With pla	ate voltage	
	from three phase	from ma	ains transfo	rmer
	half-wave rectifier	(self re-	ctification)	
Frequencies up to	30	30	30	Mc
Power Output	4.3	2.5	1.85	kilowatts
DC Plate Voltage	6	-		kilovolts ²
Peak AF Plate Voltage	-	7.02	5.65	kilovolts 1
Transformer Voltage	5.3	5	4	kilovolts
Peak RF Grid Voltage	740	715	665	volts ³
Feedback Factor	11	10.9	12.9	º/o
DC Plate Current	900	595	575	ma
DC Grid Current	120	115	120	ma
Grid Resistor	2	1.1	0.9	kiloohms
Peak Cathode Current	-	8.6	8.6	amps ³
Plate Input	5.6	3.3	2.55	kilowatts
Driving Power	120	60	60	watts
Plate Dissipation	950	740	640	watts
Grid Dissipation	25	24	26	watts
Efficiency	78	75.5	72.5	0/0
Plate Load Resistance	1.6	2.15	1.75	kiloohms

¹ AF-peak value

² Mean value

³ during peak of AF plate voltage

Other kinds of operation:

RF Power Amplifier Class C

Frequency Power Output at DC Plate Voltage ≦ 30 Mc = 5.5 kilowatts = 6 kilovolts

Characteristics

Cooling

Temperature of Base Temperature of Bulb

Temperature of Plate Seal max. 220 deg. C = 428 deg. F max. 180 deg. C = 356 deg. F max. 350 deg. C = 662 deg. F

At higher frequencies and high dissipation an evenly distributed air stream is necessary.

Socket	Rö Fsg 1
Heat Dissipating Plate Connector	Rö Kfl 91
Glass Air-Flow Chimney	Rö Zub 91

Accessories

RS 2001

RS 2001	W			RS 2001	K		
Weight	approx.	17	kg	Weight	approx.	34	kg

General Data

General Data	FILAMENT						
	Filament Voltage Filament Current	approx	18 volts (. 164 amp	os The	oriated t	ungst	en filament
	Emission Current		125 amp = DC G	os at DC Plate rid Voltage =	Voltage = 750 vol	lts	
	Amplification Factor		50 at DO	C Plate Voltag e Current = 5	e = 4 to amps	10 ki	lovolts;
	Transconductance		115,000 DC Plat	μ mhos at DC e Current = 5	Plate Vo amps	ltage	= 4 kilovolts;
	INTERELECTROD	ECAP	ACITAN	NCES			
	Grid-Filament Plate-Filament Grid-Plate		170 μμF 4 μμF 68 μμF				
Maximum Ratings			RF Powe	er Amplifier	Plate Modu	lation	
	Frequencies up to DC Plate Voltage DC Grid Voltage DC Cathode Current		10 15 1000 30	30 12 -1000 30	30 11,5 –1000 20	max max max max	. Mc . kilovolts . volts . amps
	Peak Cathode Current		100	100	125	max	amps

60

110

2

60

110

2

60

110

2

max. kilowatts

max. kilowatts

max. kilowatts

Plate Dissipation (RS 2001 W)

Plate Dissipation (RS 2001 K)

Grid Dissipation

	RF Power Ar Class C	mplifier	Plate Modulation	
Frequencies up to	10	30	30	Mc
Power Output	200	165	-	kilowatts
Carrier Power Output	-	-	100	kilowatts
DC Plate Voltage	14	12	11	kilovolts
DC Grid Voltage	-650	-600	-200 (fixed)	volts
Grid Resistor	_	—	70	ohms
Peak RF Grid Voltage	1150	1100	960	volts
DC Plate Current	17.6	17.1	11.4	amps
DC Grid Current	3.8	4	4.7	amps
Plate Input	247	205	125	kilowatts
Driving Power	4	4	4.3	kilowatts
Plate Dissipation	47	40	25	kilowatts
Grid Dissipation	1.55	1.6	1.8	kilowatts
Efficiency	81	80.5	80	0/0
Plate Load Resistance	442	387	600	ohms
Modulation Factor	-	-	100	0/0
Modulating Power	-	-	62.5	kilowatts

Other kinds of operation:

AF Power Amplifier and Modulator (Class B, 2 tubes in push-pull)

Power Output = 230 kilowatts at DC Plate Voltage = 11 kilovolts

Characteristics

Cooling

RS 2001 W

Required water flow on anode for inlet water temperature of 20 deg. C = 68 deg. F at max. plate dissipation . . . 60 l min \approx 15.9 gallons (US Liq.) per min

RS 2001 K

Particulars on request

Accessories

Rö Kat 201 Cathode Connectors (2 per tube) Water Jacket (RS 2001 W) Rö Kü 201 Jacket for evaporative Rö Kü V 201 cooling (RS 2001 K)

RS 2011

RS 2011 L Weight approx. 5 kg

RS 2011 W

RS 2011 V Weight approx. 2.5 kg Weight approx. 4 kg

General Data

FILAMENT

Filament Voltage Filament Current

Emission Current

Amplification Factor

Transconductance

DC Plate Current = 1 amp

INTERELECTRODE CAPACITANCES

Grid-Filament Plate-Filament Grid-Plate

Grid Dissipation

48 µµF 1,5 µµF 21 µµF

10 volts

20 amps at DC Plate Voltage = DC Grid Voltage = 400 volts

DC Plate Current = 1 amp

15 at DC Plate Voltage = 1 to 6 kilovolts;

20,000 μ mhos at DC Plate Voltage = 3 kilovolts

approx. 70 amps

Maximum	Rating	S
---------	--------	---

	RF-Po	wer Amplifier	Pla
	Class	С	Mo
Frequencies up to	30	70	30
DC Plate Voltage	11	8	7
DC Grid Voltage	-1200	-1200	-1
DC Cathode Current	5	5	5
Peak Cathode Current	20	20	20
Plate Dissipation (RS 2011 L)	8	8	8
Plate Dissipation (RS 2011 W)	8	8	8
Plate Dissipation (RS 2011 V)	12	12	12
Grid Dissipation	100	100	10

Plate	
Modul	ation
30	max. Mc
7	max. kilovolts
-1200	max. volts
5	max. amps
20	max. amps
8	max. kilowatts
8	max. kilowatts
12	max. kilowatts
100	max. watts

Thoriated tungsten filament

	RF Power A Class C	mplifier	Plate Modulati	on		
requencies up to	30	70	30		Mc	
Power Output	22	16.5	-		kilowatts	
Carrier Power Output	-	_	6		kilowatts	
DC Plate Voltage	10	8	6		kilovolts	
DC Grid Voltage	-960	-800	-400 (fixe	ed)	volts	
Grid Resistor	-	-	3		kiloohms	
Peak RF Grid Voltage	1260	1090	1260		volts	
DC Plate Current	2.8	2.6	1.25		amps	
DC Grid Current	275	280	210		ma	
Plate Input	28	21	7.5		kilowatts	
Driving Power	335	300	260		watts	
Plate Dissipation	6.0	4.5	1.5		kilowatts	
Grid Dissipation	70	75	40		watts	
Efficiency	78.5	78.5	80		º/o	
Plate Load Resistance	1840	1570	2700		ohms	
Modulation Factor		-	100		0/0	
Modulating Power	-	-	3.75		kilowatts	
Other kinds of operation	:					
AF Power Amplifier and	Modulator	Power Ou	tput	=	39 kilowatts	
(Class B; 2 tubes in push-	oull)	at DC Plat	te Voltage	=	10 kilovolts	
Driver Stage for AF Powe	er Amplitier	5 6 5 · · · ·				
and Modulator (Cathode	Follower)	DC Plate \	loitage	=	4.9 KIIOVOITS	
(2 tubes in push-pull)		DC Catho	de Current	=	2 × 1.85 amps	

Characteristics

F

RS 2011 L

Required air flow an anode at max. plate dissipation . . . 8 m³/min \approx 282.5 cubic feet per minStatic Pressure Drop . . . 87 mm of water \approx 3.42 inches of waterTemperature of air at outlet . . . max. 80 deg. C = 176 deg. F

RS 2011 W

Required water flow on anode for inlet water temperature of 20 deg. C = 68 deg. F at max. plate dissipation . . . 10 l/min \approx 2.66 gallons (Us liq.) per min Temperature of water at outlet = 32 deg. C = 89.6 deg. F RS 2011 V Particulars on request Rö Kat 61 Cathode Connectors (2 per tube) Rö Anst 61 Air Socket (RS 2011 L) Rö Kü 61 Water Jacket (RS 2011 W) Jacket for evaporative cooling (RS 2011 V) Rö Kü V 61 Rö Sich 1 Tube Fuse (RS 2011 L) Supplementary accessories on enquiry

Accessories

Cooling

120 Kilowatt Triode with coaxial grid terminal usable as RF Amplifier, Oscillator and Modulator at frequencies up to 70 Mc.

RS 2021

RS 2021 L Weight approx. 39 kg

RS 2021 W Weight approx. 6.2 kg Weight approx. 17 kg

170

RS 2021 V

Thoriated tungsten filament

General Data

FILAMENT Filament Voltage Filament Current Emission Current

Amplification Factor

Transconductance

= DC Grid Voltage = 700 volts 58 at DC Plate Voltage = 1 to 6 kilovolts; DC Plate Current = 1 amp 60,000 µmhos at DC Plate Voltage = 3 kilovolts; DC Plate Current = 1 amp

75 amps at DC Plate Voltage

INTERELECTRODE CAPACITANCES

Grid-Filament Plate-Filament Grid-Plate

120 µµF 1.4 μμF 50 μμF

12.6 volts

approx. 160 amps

Maximun

		RF Power	Amplifier	Plate	
n Ratings		Class C		Modulation	
	Frequencies up to	10	30	30	max. Mc
	DC Plate Voltage	15	12	11	max. kilovolts
	DC Grid Voltage	-1000	-1000	-1000	max. volts
	DC Cathode Current	18	18	12	max. amps
	Peak Cathode Current	65	65	75	max. amps
	Plate Dissipation (RS 2021 L)	35	35	35	max. kilowatts
	Plate Dissipation (RS 2021 W)	45	45	45	max. kilowatts
	Plate Dissipation (RS 2021 V)	60	60	60	max. kilowatts
	Grid Dissipation	1.3	1.3	1.3	max, kilowatts
Typical Operation

RF Power Amplifier		Plate	
Class C		Modulation	
10	30	30	Mc
120	90	-	kilowatts
-	-	66	kilowatts
15	12	11	kilovolts
-600	-550	-200 (fixed)	volts
_	_	100	ohms
1000	940	900	volts
9.75	9.25	8	amps
2.2	2.2	3.1	amps
146	111	88	kilowatts
2.1	1.9	2.6	kilowatts
26	21	22	kilowatts
780	690	1020	watts
82	81	75	0/0
850	710	920	ohms
-	-	100	0/0
-	-	44	kilowatts
	RF Power A Class C 10 120 - 15 -600 - 1000 9.75 2.2 146 2.1 26 780 82 850 - -	RF Power Amplifier Class C 10 30 120 90 - - 15 12 -600 -550 - - 1000 940 9.75 9.25 2.2 2.2 146 111 2.1 1.9 26 21 780 690 82 81 850 710 - - - -	RF Power Amplifier Plate Class C Modulation 10 30 30 120 90 - - - 66 15 12 11 -600 -550 -200 (fixed) - - 100 1000 940 900 9.75 9.25 8 2.2 2.2 3.1 146 111 88 2.1 1.9 2.6 26 21 22 780 690 1020 82 81 75 850 710 920 - - 100 - - 100

Other kinds of operation:

AF Power Amplifier and Modulator (Class B, 2 tubes in push-pull) Power Output = 78 kilowatts at DC Plate Voltage = 10 kilovolts

Characteristics

Cooling

RS 2021 L

RS 2021 V

Required air flow on anode at max. plate dissipation ... 40 m/³min ≈ 1415 cubic feet per min Static Pressure Drop ... 85 mm of water ≈ 3.3 inches of water Temperature of air at outlet ... max. 75 deg. C = 167 deg. F RS 2021 W Required water flow on anode for inlet water temperature

of 20 deg. C at max. plate dissipation . . . 52 l/min

pprox 14 gallons (US Liq.) per min

Particulars on request

Cathode Connectors (2 per tube)	Rö Kat 221
Coaxial Grid Connector	Rö Git 01
Air Socket (RS 2021 L)	Rö Anst 221
Water Jacket (RS 2021 W)	Rö Kü 221
Jacket for evaporative cooling	
(RS 2021 V)	Rö Kü V 221
Tube Fuse (RS 2021 L)	Rö Sich 1
Supplementary accessories on enquiry	

Accessories

List of equivalent types of tubes

Туре	Equivalent Siemenstype	Туре	Equivalent Siemenstype	Туре	Equivalent Siemenstype
AG 866 A AG 867 B AG 872 A AG 5006 AG 8008 ASG 5017 ASG 5121 ASG 6011 AX 105 AX 9900 AX 9901 AX 9901 AX 9901 AX 9901 AX 9903 AX 9910 B 142 BT 5 C 144 C 180 C 1108 C 1108 C 1112 C 1134 CE 309 CT 1/2500 CV 797 CV 1350 CV 1425 CV 1425 CV 1425 CV 124 CV 2131 CV 1425 CV 124 CV 2131 CV 1425 CV 1279 CV 2797 CV 2798 CV 2797 CV 2707 CV 2707	(Gle 10000/025/1) (Gle 20000/2,5/10) (Gle 15000/1,5/6) (Gle 15000/1,5/6) (Ste 2500/05/2) Ste 1300/01/05 Ste 6011 Ste 2500/05/2) (RS 1006 B) RS 1026 RS 1007 (RS 1016) Ste 1000/2,5/15 RS 1009 RS 1019 RS 1019 RS 1019 RS 1019 RS 1019 RS 1019 RS 1019 RS 1019 RS 1019 RS 1019 Ste 2500/05/2 Ste 1300/01/05 RS 1046 RS 1016 Gle 10000/25/1 (RS 1002 A) RS 1017 (RS 1006 B) RS 1017 (RS 1007 (RS 1007 (RS 1007 (RS 1007 RS 1007 (RS 1007 RS 1007 (RS 1007 RS 1007 (RS 1007 RS 1007 (RS 1007 (RS 1007 RS 1007 (RS 1007 (RS 1007 (RS 1007 (RS 1007 (SS 1007) (SS 1007 (SS 1007 (SS 1007) (SS 1007 (SS 1007) (SS 1007 (SS 1007) (SS 1007) (SS 1007 (SS 1007) (SS 1007)	$\begin{array}{c} P & 2-4013 \\ PL & 17 \\ PL & 21 \\ PL & 57 \\ PL & 105 \\ PL & 106 \\ PL & 5557 \\ PL & 5559 \\ PL & 6011 \\ \hline \\ Q & 400-1 \\ Q & 3/300 \\ Q & 3/5/750 \\ Q & 3/300 \\ Q & 3/300 \\ Q & 3/5/750 \\ Q & 3/300 \\ Q & 03/12 \\ Q & 02 & 03/12 \\ Q & 03$	(RS 1009) Ste 2500/0,5/2 Ste 1300/01/05 Ste 1000/2,5/15 Ste 2500/6/40 Ste 2500/0/2 Ste 1000/2,5/15 Ste 6011 (RS 1007) (RS 1002 A) RS 1007 (RS 1002 A) RS 1007 (RS 1002 A) RS 1009 RS 1029 RS 1009 (RS 1009) RS 1007 (RS 1000/3/12 Ste 2500/65/2 Ste 1300/01/05 Ste 1300/1/05 Ste 1300/3/15 Ste 2500/6/40 (RS 1006 B) RS 1026 RS 1026 RS 1016 RS 1026 RS 1016 RS 1027 (RS 1007 RS 1026 RS 1026 RS 1026 RS 1026 RS 1026 RS 1026 RS 1027 RS 1026 RS 1026 RS 1026 RS 1026 RS 1026 RS 1026 RS 1026 RS 1026 RS 1026 RS 1027 RS 1027 RS 1027 RS 1026 RS 1026 RS 1026 RS 1026 RS 1026 RS 1027 RS 1027 RS 1026 RS 1027 RS 1027	$\begin{array}{c} TY \ 4-500\\ TY \ 5-500\\ TY \ 6-800\\ VH \ 550\\ VT \ 146\\ WE \ 17\\ WL \ 2D21\\ WL \ 17\\ WL \ 2D21\\ WL \ 105\\ WL \ 557\\ WL \ 5559\\ WT \ 210-0011\\ WT \ 210-0015\\ WT \ 210-0015\\ WT \ 210-0074\\ WT \ 210-0074\\ WT \ 210-0074\\ WT \ 272\\ WT \ 606\\ WTT \ 111\\ WTT \ 118\\ XG \ 1-2500\\ XG \ 5-500\\ XG \ 5-50\\ XG \ 2-500\\ XG \ 5-50\\ XG \ 2-500\\ XG \ 5-50\\ XG \ 2-500\\ XG \ 5-50\\ XG \ 2-50\\ XG \ 2-50\ XG \ 2-50\\ XG \ 2-50\ XG \ 2-50\ XG \ 2-50\ XG \ 2-50\ XG \ 2-$	RS 1016 RS 1036 RS 1046 Gle 10000/025/1 Gle 10000/025/1 Ste 2500/05/2 Ste 1300/01 /05 Ste 2500/05/2 Ste 1000/2,5/15 Ste 2500/05/2 Ste 1000/2,5/15 Ste 2500/05/2 Ste 1000/2,5/15 Ste 2500/05/2 Ste 1300/01/05 Ste 2500/05/2 Ste 1300/01/05 Ste 2500/6/40 RS 1026 Ste 1000/2,5/15 Ste 2500/6/40 RS 1026 Ste 1300/01/05 Ste 1000/2,5/15 Ste 2500/6/40 RS 1026 Ste 1300/01/05 Ste 1000/2,5/15 RS 1007 RS 1002 RS 1002 RS 1002 RS 1002 RS 1002 Ste 1300/01/05 Ste 1300/01/05 Ste 1300/2,5/15 Ste 2500/6/40 RS 1002 RS 1002 RS 1002 Ste 1300/01/05 Ste 1300/2,5/15 Ste 2500/5/2 Ste 1300/01/05 Ste 1300/2,5/15 Ste 2500/5/2 Ste 1300/01/05 RS 1002 RS 1002 RS 1002 RS 1002 RS 1002 RS 1002 RS 1002 RS 1009 RS 1009
E 125 A E 250 A FG 17 FG 57 FG 105 G 7,5/0,6 d G 10/4 d GL 2D21 GL 527 GL 5257 GL 5557 GL 5557 GL 5557 GL 5557 MT 105 NL 4-125 A MT 17 MT 105 NL 710 NL 715 NL 720 NL 5557 NL 5559 NU 829	(Gle 20000/2,5/10) RS 1007 (RS 1002 A) Ste 2500/05/2 Ste 1000/2,5/15 Ste 2500/6/40 (Gle 10000/025/1) (Gle 15000/1,5/6) Ste 1300/01/05 Ste 1000/2,5/15 (RS 1009) Ste 2500/05/2 Ste 1000/2,5/15 Ste 2500/6/40 Ste 6011 Ste 2500/05/2 Ste 6011 Ste 2500/05/2 Ste 6011 Ste 2500/05/2 Ste 6011 Ste 2500/05/2 Ste 6011 Ste 2500/05/2 Ste 1000/2,5/15 RS 1009	T 130-1 T 300-1 T 350-1 T 350-1 T 350-1 T 350-1 T 350-1 T 350-1 T 300-1 T 300-	(RS 1006 B) (RS 1016) (RS 1026) (RS 1006 B) RS 1006 B) RS 1026 RS 1016 RS 1016 RS 1036 RS 1011 L RS 1031 L RS 1001/2,5/15 Ste 2500/6/40 (Ste 2500/6/40 (Ste 2500/0/15/45) RS 1007 RS 1019 Ste 1300/01/05 (RS 1006 B) RS 1006 B RS 1026	866 A 872 A 967 1257 4260 4261 4649 5557 5559 5866 5867 5868 5894 6011 6155 6156 6252 6360 6528 6524 6693 6850 7092 8008 38217	(Ge 10000/025/1) (Ge 15000/1/4) Ste 2500/05/2 Ste 1000/2,5/15 Ste 2500/05/2 Ge 15000/1,5/6 Ste 2500/05/2 Ste 1000/2,5/15 (RS 1006 B) RS 1026 RS 1007 (RS 1002 A) RS 1017 RS 1007 (RS 1002 A) RS 1019 Gie 20000/2,5/10 (RS 1019) Gie 20000/2,5/10 (RS 1019) RS 1026 (RS 1019) RS 1027 Gie 20000/2,5/10 (RS 1019) RS 1026 (RS 1019) RS 1026 (RS 1019) RS 1026 (RS 1019) RS 1046 Gie 13000/1,5/6 Ste 2500/05/2

The types in brackets are practically equivalent and can in most cases be used without misgivings. In some cases minor circuit modifications may be necessary.

Production line of Siemens transmitting tubes and special tubes¹⁾

Transmitting and generating tubes	RS 1001 L RS 1001 V RS 1001 W RS 1002 A RS 1003 RS 1006 B RS 1007 RS 1009 RS 1011 L RS 1011 W RS 1012 L RS 1012 V	RS 1016 RS 1019 RS 1021 L RS 1022 C RS 1026 RS 1029 RS 1031 L RS 1031 V RS 1031 W RS 1032 C RS 1036 RS 1041 V	RS 1041 W RS 1046 RS 1051 L RS 1052 C RS 1061 L RS 1061 V RS 1061 W RS 1071 L RS 1081 L RS 1081 V RS 1081 W RS 1082 CL	RS 1082 CV RS 1082 CW RS 1091 RS 2001 K RS 2001 W RS 2011 L RS 2011 V RS 2011 W RS 2021 L RS 2021 V RS 2021 V RS 2021 W C 3 e spez		
	Explanation of suffi L Air coolir V resp. K Evaporat W Water co C Air-coole	ix letters: ng ive cooling poling ed model in Metal-Ce	eramic Technique	CV Evaporat in Metal CW Water or in Metal	tive cooling -Ceramic Techn poling -Ceramic Techn	ique ique
Tubes for telecommunication systems	Aa Ba Bas Be Bh Bi	CCa Cd Cf C3b C3c	C3d C3e C3f C3g C3m C3o	Da D3a Ec Ed E2b E2c	E2d E2e F2a Z2b Z2c Z2e	
Special amplifier tubes	E 80 CC E 80 CF E 80 L E 81 CC E 81 L E 82 CC	E 83 CC E 84 L E 86 C E 88 C E 88 CC E 90 CC	E 91 A A E 130 L E 180 F E 188 CC E 235 L E 236 L	E 280 F E 282 F E 283 CC E 288 CC E 810 F E 1010 ²⁾ F 2a 11	5654 (6 A K 5751 5814 A 6463 7586 7587 7895	5W)
Microwave tubes	Disc-Seal Triodes Reflex Klystrons Travelling Wave Tubes Backward Wave Oscillator		2 C 39 A RK 6 RW 2 ²⁾ YH 1010 RWO 40	2 C 39 BA RK 7 ²⁾ RW 3 YH 1020	RH 6 C RK 25 RW 4 ²⁾	RH 7 C RW 6
High-voltage rectifier tubes and thyratrons	Gle 10000 / 025 / 1 Gle 13000 / 1,5 / 6 Gle 15000 / 1,5 / 6 Gle 15000 / 3 / 12 Gle 20000 / 2,5 / 10		Ste 1300 / 01 / 05 Ste 1000 / 02 / 03 Ste 1000 / 2,5 / 15 Ste 2000 / 6 / 80 Ste 6011		Ste 2500 / 05 / 2 Ste 2500 / 6 / 40 Ste 15000 / 15 / 45	
Voltage regulator tubes	85 A 2		108 C 1		150 C 2	
Geiger-Müller counter tubes	HZa– <mark>15</mark> / 40		HZb-15 / 40		HZ-20 / 10	00

Types printed in lightface letters are intended only as replacements
In the preparatory stage

