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PREFACE

This book is a revision and extension of notes prepared by the authors
for courses given to the Communications Development Training Program
at Bell Telephone Laboratories. This study program is given to all new
members of the technical staff who have completed their university training
at the B.S. or M.S. level. Thus the book is primarily intended for use
at the senior or first-year graduate level.

The book should also be useful to graduate engineers working on electron-
tube development and manufacture and to engineers using electron tubes
as circuit elements. Detailed descriptions are included of practical electron
tubes as examples.

Throughout the text an effort has been made to present a coherent
picture of the use of electron-field interactions to obtain useful device
performance. The first 13 chapters relate primarily to vacuum tubes, and
the last four chapters are concerned with gas-discharge devices. The text
first considers the basic laws of electron motion in fields and electron emis-
sion. This is followed by a discussion of electron lenses and electron guns.
Next, grid-controlled vacuum tubes are examined, and their equivalent
circuits are derived. High-frequency limitations of grid-controlled tubes
are explored through the concept of induced currents. This is followed by
a detailed study of microwave tubes. A final chapter on vacuum tubes
considers the noise performance of these devices. The last four chapters of
the text consider first the Townsend discharge in a gas diode, followed by a
discussion of cold-cathode and hot-cathode gas tubes, and finally a descrip-
tion of gas lasers.

Although considerable mathematical detail is included, an effort has
been made to stress the physical principles of each device. Problems are
included at the ends of most of the chapters to illustrate further concepts
relative to the text material. References are cited for those who wish to
pursue particular subjects in more detail. A notation has been adopted
which is consistent with the symbols used in the literature, insofar as this is
possible in a coherent presentation. No attempt has been made to include
any historical comments concerning electron tubes. For the most part,
tubes are discussed in configurations that are in practical use today rather
than in those originally conceived.
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Chapter 1

ELECTRONS AND FIELDS

Electron-field interactions play an essential role in the operation of all
electron tubes. Fields determine the motion of the electrons in the inter-
electrode space of a tube, and the electron motion in the interelectrode space
determines the currents that flow in the external circuit connected between
the electrodes.! It is appropriate therefore that we begin this text with a
review of the laws that govern the motion of electrons in electric and
magnetic fields, as well as some properties of the fields themselves. The
discission of fields in the present chapter will be limited to static electrie
and magnetic fields. Time-varying fields will be considered in later chapters.

In describing fields and electron-field interactions, we must rely on certain
experimental laws of physics. Several such laws from which much of our
discussion of the present chapter will develop are:

1. A particle with charge ¢ is acted on by an eleetric field E with a force
proportional to gE, the force being in the direction of the field if ¢ is positive,
and in the opposite direction if ¢ is negative.

2. When a particle with charge ¢ moves with velocity u in a magnetic
field B, it experiences a force proportional to the vector product qu X B.
The force is in the direction of u X B if the charge is positive, and in the
opposite direction if the charge is negative.

3. The electric flux crossing a closed surface surrounding a quantity of
charge is proportional to the amount of charge enclosed by the surface and
is independent of the shape of the surface. This is known as Gauss’s Law.
A point charge therefore acts as a point source of electric flux, and with
each unit of charge there is associated a certain total amount of electric flux.

4. In a static magnetic field the line integral of the magnetic field in-
tensity H around any closed path surrounding a flow of current I is propor-

1See Chapter 6.
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tional to the flow of current through a surface enclosed by the path. This
relationship is known as Ampere’s Circuital Law. Lines of magnetic flux
close on themselves, and there are no point sources of magnetic flux.

The constants of proportionality used in expressing the foregoing experi-
mental laws, together with the units used to measure mass, length, time,
and charge, serve to determine the units in which the electric and magnetic
field quantities are measured. Several systems of units are in use at present,
each with its own particular advantages. However, the meter-kilogram-
second system is perhaps the most widely accepted in electron-tube work,
and we shall adhere to it throughout this text. Appendix I lists the mks
units in which electric and magnetic field quantities are measured, to-
gether with their dimensions. Appendix II lists values of a number of
physical constants, and Appendix ITI presents a summary of relationships
governing static electric and magnetic field quantities.

Relativistic effects will be neglected throughout this text; that is, elec-
tron velocities will be considered small compared with the velocity of light.

1.1 Electron Motion in an Electric Field

(a) Change of Kinetic Energy and the Concept of Electric Potential

A charge of q coulombs in an electric field E volts/meter is acted on by a
force gE newtons. The foree is in the direction of the field if ¢ is a positive
charge, and in the opposite direction for a negative charge. Thus, when an
electron moves in an electric field E, it experiences a force —e¢E newtons,
where —e is the charge on the electron, ¢ being equal to 1.602 X 10~
coulomb. The resulting motion of the electron is described in rectangular
coordinates by the three equations,

2.
mZTf = —¢k,, m—‘é% = —¢E,, mzi; = —ekE, (1.1-1)
where m is the mass of the electron, and E., E,, and E, are the components
of E in the coordinate directions. If the first of these equations is multiplied
by dz on both sides, we obtain

m[(—i-@%dt)]dz - mjfd[jf] - d[ zm[ZZ'] ] - —eEdr (1.1-2)

The right-hand part of this equation states that the portion of the electron’s
kinetic energy associated with its motion in the z direction is changed by an
amount —el.dr when the electron moves a distance dz in the z direction
under the influence of the field. Similar expressions hold for motion in the y
and z directions. It follows, therefore, that if the electron moves a distance
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dl under the influence of the electric field, its net change in kinetic energy is
equal to the vector product —¢E-dl. This quantity may be positive or
negative depending on the angle between E and dl.

If the electron travels from point 4 to point B under the influence of the
electric field, its total change in kinetic energy is given by

B
change in ke. = —eL E-dl (1.1-3)
where the integral is taken over the path followed by the electron from A to
B. This expression is of much importance in determining the behavior of
charged particles in electric fields. It holds for time varying fields as well as
for static fields.

If the field is constant with time and if the work done by the field on the
electron serves only to change the kinetic energy of the electron, the field is
said to be conservative. For such a field the integral in Equation (1.1-3) is
independent of the path taken from A to B, and we can write

—ef E-dl=0 (1.1-4)

closed
path

where the integral is taken around a closed path. In this case we can ascribe
to each point in space a scalar potential such that the difference in potential
between two points is equal to the line integral of E along any path between
them. A potential difference of 1 volt exists between points A and B if the
line integral of E along any path between them is equal to 1 volt. (Potential
difference is sometimes called electromotive force or emf.)

If dl is an increment of distance in the direction of an electric field E, the
change in potential dV over the distance dl can be expressed as | dV | = Edl,
and we can write that

E=-VV (1.1-5)
where V is the scalar potential. The minus sign implies that the field is di-
rected from regions of higher potential to ones of lower potential. Equation
(1.1-5) is valid in regions in which there is space charge as well as regions
that are free of charge. From the equation, it is evident that E has the di-
mensions of volts per meter.

If an electron starts from rest and is accelerated through a potential rise
of V voalts, it acquires an amount of kinetic energy given by

ymu? = —e [ E-dl = ¢V joules (1.1-6)

Substituting the experimentally measured values for e and m in this, we
find the velocity of the electron to be

u = 5.93 X 10°\V meters/sec (1.1-7)
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A unit of energy frequently used to measure energies gained or lost by an
electron is the electron volt. It is equal to 1.602 X 107 joule and is the
kinetie energy gained by an electron when it is accelerated through a poten-
tial rise of 1 volt. If the electron travels between points differing in poten-
tial by V volts, its change in kinetic energy is V electron volts.

(b) Electron Trajectories in an Electric Field

Figure 1.1-1(a) shows two electrodes, 4 and B, of arbitrary shape. Elec-
trode A is grounded, and electrode B is held at a positive potential with
respect to ground. The path that might be followed by an electron which

(b)

Fie 1.1-1 An electron trajectory between two conducting electrodes.

starts from rest at electrode 4 and is accelerated in the direction of electrode
B is shown by-a broken line. Figure 1.1-1(b) shows a curved portion of the
path passing through point P. The electric field E acting on the electron at
point P can be resolved into two components, one parallel to the trajectory
and one transverse to it. The transverse component, Er, is responsible for
bending the path of the electron and hence must lie in the plane-of curvature
of the trajectory. If u is the velocity of the electron at point P and r is the
radius of curvature of the trajectory at that point,
mau’

- = eEr (1.1-8)

Since the electron started from rest at electrode A, its kinetic energy at
point P is given by

jmut = eV (1.1-9)
where V is the potential at point P. Combining these two equations,
we obtain

o
<

~
It

by
5

(1.1-10)
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Now V and Er are directly proportional to the voltage applied to electrode
B. Since r is equal to twice the ratio of these quantities, it follows that r is
independent of the voltage applied to electrode B. Consequently, if the
electron starts from rest, its trajectory is the same for all positive voltages
applied to electrode B.

A second point, which may seem intuitively clear, follows from similar
reasoning. When the linear dimensions in Figure 1.1-1(a) are scaled by a
constant factor, the trajectory followed by the electron is scaled by the same
factor. Let us suppose that all linear dimensions are multiplied by the
factor k and that the voltage applied to electrode B remains unchanged.
In this case the potential V at corresponding points between the electrodes
will be unchanged. The direction of the electric field intensity also will be
unchanged, but its magnitude will be 1/k times as great. From Equation
(1.1-10), it follows that » becomes k times its previous value, so that » and
the trajectory scale with the other linear dimensions.

A third conclusion we can draw from Equation (1.1-10) is that the tra-
jectory is independent of the mass or charge of the particle, provided, of
course, that the charge is finite and negative and the mass is not zero.
Hence a negative ion would follow the same path as the electron, provided
both started from rest at the same point on electrode A.

1.2 Motion in Combined Electric and Magnetic Fields

When a particle with charge ¢ coulombs moves with velocity u meters
per second in a magnetic field B webers per square meter, it experiences a
force qu X B newtons. Thus, an electron moving in a magnetic field B ex-
periences a force —eu X B newtons, and the resulting acceleration of the
electron is — (¢/m)u X B meters per second?

The vector u X B has the components B,u, — B,u, in the z direction,
B,u, — B.u, in the y direction, and B,u,. — B.u, in the z direction, where
Uz, Uy, and u, are the components of u in the coordinate directions, and B,,
B,, and B, are the components of B in the coordinate directions. If both an
electric field and a magnetic field act on an electron, the differential equa-
tions describing the motion of the electron are

&’z de
= (E +BY o B”d_t) (L.2-1)
dxy dx
M- -Ln+BE-3E) (12:2)

and

&z _ e dz dy
v i E(_E' + B,,% - B,%) (1.2-3)
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where E,, E,, and E, are the components of the electric field in the co-
ordinate directions. In cylindrical coordinates these equations become

d’r de\? al d0 dz
1df do\ _ e dr

m(’“%) = “ml 5+ Brdt B‘%] (1:2-5)
d* el d0

We shall find a number of occasions to make use of these equations in later
chapters.

Because the force resulting from the magnetic field is perpendicular to the
motion of the electron, any component of force parallel to the trajectory
must result from the electric field. However, it is the force parallel to the
trajectory which changes the elec-
tron’s kinetic energy, and conse-
quently only an electric field can
change the kinetic energy of an
electron.

If the electric field is zero and if
the velocity of the electron is per-
F1a. 1.2-1. The motion of an elcctron in fl?:d:a(l::(lz::orfonf(})lsesmi?lgn:tlgirfﬁ:;
a magnetic field when the velocity of the

electron is perpendicular to the magnetic path as .illustrated in Figul:e 1.2-1.
field. The radius R of the path is deter-

mined by the relation

2
acceleration = % = %uB 1.2-7)
or
R="% (1.2-8)
The angular frequency of the circular motion of the electron is given by
u eB
w=p=_ (1.2-9)

As a simple example of motion in combined electric and magnetic fields,
let us consider the case illustrated in Figure 1.2-2. Here, an electric field £
lies parallel to the —y direction of a rectangular coordinate system, and a
magnetic field B lies parallel to the —z direction. We shall assume that an
electron starts from the origin at time ¢ = 0 with zero velocity. The elec-
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tron is initially acted on only by the electric field, but as it advances in the y
direction and gains velocity, it is acted on by the magnetic field with a force
proportional to the product of its velocity and the magnetic flux density.

Z

Fie. 1.2-2 The trajectory of an electron which starts from rest in crossed electric
and magnetic fields.

As a result, the trajectory is bent back toward the x axis. For this problem
Equations (1.2-1), (1.2-2), and (1.2-3) reduce to the two simple equations,

@z _ epdy
e m di
(1.2-10)
Ty _ep_ epi
ae  m m dl
It is easily shown that these equations have the solutions
d¢ FE
i F(l — ¢o8 wt)
(1.2-11)
&y _ E—sin ¢
¢~ B~ °
and
z = 2ot — sina)
(1.2-12)

E
Yy = w_B(l — €08 wi)

where w = eB/m. Equations (1.2-12) are the equations of a cycloid, the
electron trajectory being as illustrated in Figure (1.2-2). Each 27/w
seconds the electron returns to the 2 axis and then repeats the curved part
of the trajectory.
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Next let us consider the scaling of electron trajectories in a region in
which there is both an electric field and a magnetic field. It is convenient to
rewrite Equation (1.1-8) to express the radius of curvature of the tra-
jectory as

mu’
F = ———————
transverse force

(1.2-13)

where the transverse force in this case may result from both an electric field
and a magnetic field. The transverse force, of course, lies in the plane of
curvature of the trajectory. Clearly, if we change the electric field intensity
and the magnetic flux density in such a manner that the right-hand side of
this equation is unchanged for all points on the trajectory, the shape of the
trajectory will not be changed. Suppose the electric field intensity at all
points is increased by the factor a? and the magnetic flux density is increased
by the factor a. Then an electron which starts from rest at the beginning of
the trajectory and travels to point P on the trajectory will have a* times as
much energy at point P, and its velocity will be a times as great. The part
of the transverse force resulting from the electric field will also be a? times
as great; and since the part of the transverse force that results from the
magnetic field is proportional to the product of u and B, this also will be in-
creased by the factor a2. Hence both the numerator and denominator of the
right-hand side of Equation (1.2-13) will be increased by the factor a?, and
the radius = will be unchanged. Thus, if we increase the electric field in-
tensity at all points in space by the factor a? and the magnetic flux density
by the factor a, the trajectory of an electron which leaves a given point in
space with zero initial velocity will remain unchanged, but the electron will
travel a times as fast. (The reader will readily verify this to be the case for
the trajectories given by Equations (1.2-12).)

By similar reasoning it is easily shown that, if the linear dimensions of the
electrodes are increased by the factor b, and if all the voltages applied to the
electrodes are increased by the factor b?%, and if the magnetic flux density at
corresponding points between the electrodes is unchanged, the electron
trajectory will also scale with the other linear dimensions of the system. In
this case the electron velocity at corresponding points of the trajectory will
be increased by the factor b.

As a final point, we should note that the motion of an electron in an elec-
tric or magnetic field is governed entirely by the forces acting on it. The
only way we can change the kinetic energy of an electron is to cause the
electron to be acted on by an electric field. Changing the potential in the
region does not in itself change the kinetic energy of the electron.

1.3 Conservation of Energy and Charge

One of the most important laws governing the behavior of physical
processes is the principle of conservation of energy. It states that energy
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can never be created or destroyed. As applied to electron tubes, it tells us
that whenever an electron gains kinetic energy, we can in principle account
for the source of kinetic energy and show that the source lost an equal
amount of energy. Similarly, when an electron loses kinetic energy, we can
in principle find an amount of energy which has appeared elsewhere in the
system equal to the lost kinetic energy.

Another significant law we learn from experimental physics is the
principle of conservation of charge. This principle states that the total
charge of a system, both positive and negative, can be changed only by
adding charge to the system or removing charge from the system. In later
chapters we shall frequently have occasion to consider volume charge
densities or “space-charge densities” arising from a large number of elec-
trons in a region of space. If p(z,y,2) is the volume charge density, the total
charge in an element of volume Av is p(z,y,2) Av. The prineiple of conserva-
tion of charge tells us that, if this quantity is changing with time, charge is
flowing across the surface of the volume element, such that the total amount
of charge both inside and outside is constant. Expressed mathematically,
the principle states that

J-ndsS = -% / o(z,9,2)dv (1.3-1)

cloged volume
surface

where J(z,y,2) is the current density associated with the flow of charge, and
n is a unit vector normal to the surface element dS and pointing outward.
Dividing both sides by Av and taking the limit as Av — 0, the left-hand side
becomes the divergence of J, and we obtain

J= -2 -
vy=-3F (1.3-2)

This is known as the equation of continuity. We shall find a number of oc-
casions to make use of it in later chapters.

1.4 Static Electric Fields — Gauss’s Law, Poisson’s and Laplace’s
Equations

(a) Gauss’s Law

In mks units the electric flux density D is related to the electric field in-
tensity E by D = e,E, where ¢ is the relative dielectric constant of the
medium, and ¢, is the permittivity of free space. The relative dielectric
constant ¢ is a dimensionless constant, which in free space has the value 1.
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The constant ¢, is approximately equal to? 8.854 X 1072 and has the di-
mensions of farads per meter or coulombs per volt per meter. Since E has
the dimensions of volts per meter, the vector D has the dimensions of cou-
lombs per square meter. (The vector D is sometimes called the displace-
ment vector.)

If we surround a quantity of charge by a closed surface, a certain total
amount of electric flux crosses the surface because of the charge inside.
Gauss’s Law states that no matter what surface we choose to surround the
charge, the total flux crossing the surface is the same. Furthermore, the
amount of flux crossing the surface is proportional to the charge enclosed.
Hence with each unit of charge there is associated a certain total amount of flux.
In mks units the flux crossing the surface is numerically equal to the charge
in coulombs enclosed by the surface. Gauss’s Law therefore can be ex-
pressed as

/ D-ndS = / e, E-ndS = ¢ (1.4-1)
closed cloged
surface surface

where n is a unit vector normal to the surface element dS, and ¢ is the charge
enclosed by the surface. If there is a distribution of charge within the
region, the theorem can be written in the form

/D-ndS = / plz,y,2)dv (1.4-2)

closed volume
surface

where p(z,y,2) is the volume charge density, and the integral on the right is
taken over the volume enclosed by the surface. Equations (1.4-1) and
(1.4-2) are valid even if the surface over which the integrals are taken
passes through a conductor or other solid matter, or if it passes through a
region of space charge. (However, if the surface element dS lies in a con-
ductor, E = 0, and the flux crossing dS is zero.)

If the volume enclosed by the surface in Equation (1.4-2) is A», and if
both sides of the equation are divided by Av, and the limit is taken as Av — 0,
we obtain

V-D=p (1.4-3)

This provides another useful expression of Gauss’s Law.

’In mks units the magnetic permeability of free space u, is defined to be equal to
47 X 1077, and the constants u, and e, are related by u.e, = 1/c?, where c is the velocity
of light. Hence ¢, can be determined by experimental measurement of the velocity of
light. It is found that ¢ = 2.996 X 10® meters/sec, so that e, = 8.854 X 10-12, or
approximately 1/(36x X 109).



ELECTRONS AND FIELDS 11

If ¢ in Equation (1.4-1) is positive, the net electric flux crossing the sur-
face is directed outward, and if ¢ is negative, the net electric flux is directed
inward. If the charge enclosed by the surface consists of two equal but op-
posite charges, the net electric flux crossing the surface is zero.

Two results that follow directly from Gauss’s Law and symmetry argu-
ments are:

1. The electric field in free space at a distance » from a point charge ¢ is
given by

= Er%——ﬂvolts/meter (1.4-4)
2. The electric field in free space outside a cylindrical charge distribution

of uniform axial charge density is given by

T
2180rvolts/meter (1.4-5)
where 7 is the axial linear charge density in coulombs per meter, and r is the

radius at which E is determined.

E=

The concept of lines of electric flux, or field lines, is useful in presenting a
picture of an electric field distribution. In the case of two equal but oppo-
site point charges, the electric field lines terminate on the two charges and
extend from one charge to the other, the lines being directed from the
positive charge to the negative charge. The total number of lines is propor-
tional to the amount of charge at the ends of the field lines. The field lines
are parallel to the direction of the electric field, and the number of lines
crossing unit area normal to the direction of the field is proportional to the
average electric flux density over the unit of area.

Static electric fields are always associated with coulomb charges —
either point charges, surface charges, volume charges, or perhaps a combina-
tion of the three. In electron-tube work a density of electrons in the inter-
electrode space of a tube can often be considered to be a volume charge
density, or “space-charge density,” even though it is really a cloud of in-
dividual point charges.

If a point charge is brought close to a conductor, currents flow in the con-
ductor until a charge distribution is built up on its surface which exactly
cancels the electric field that would otherwise be present within the con-
ductor. The surface charge is said to be an induced charge. Thus, when
electrons are present in the interelectrode space of a vacuum tube, an
amount of positive charge equal to the total charge on the electrons is in-
duced on the electrodes or other nearby surfaces, and one can imagine
electric field lines extending from the induced surface charges to the elec~
trons in the interelectrode space.
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Charges on conductors are always surface charges. A net volume charge
density within a conductor would lead to electric fields within the condue-
tor with the result that currents would flow causing neutralization of the
charge. Similarly, a statie electric field at the surface of a conductor is al-
ways normal to the surface of the conductor, since otherwise it would have a
component parallel to the surface, and charge would flow along the surface.

By a further application of Gauss’s Law, it is easily shown that the
electric field intensity E in free space at the surface of the charged con-
ductor is given by

E==2 (1.4-6)
where ¢ is the surface charge density.

Equation (1.4-6) can be used to obtain an expression for the capacitance
of a parallel-plate capacitor. When the capacitor is charged, electric field
lines extend from the surface charge on one plate to the surface charge on
the other, the charge on the plate at higher potential being positive, and
that on the plate at lower potential being negative. If the spacing between
plates is small compared with their linear dimensions so that edge effects
are negligible, the potential difference from one plate to the other can be
expressed as V = Ed = od/e, = ¢gd/e.A, where d is the spacing between
the plates, 4 is the area of a single plate, ¢ is the surface charge density,
and ¢ is the total charge on a single plate. The capacitance of the device is
defined as the ratio of ¢ to V, or

C = Tq/ = (1.4-7)

In mks units, C is measured in farads. If the space between the plates were
filled with a material of relative dielectric constant ¢, it is easily shown that
E = g/ee,, and C = ee,A/d.

(b) Poisson’s and Laplace’s Equations

Equation (1.4-3) can be written in the form
VD=V (eE) =p (1.4-8)

Now E = —VV, and in free space ¢ = 1. It follows that in a region of free
space in which there is a distributed charge density p(2,y,2), the potential V
is described by the equation

VEV) ="V = 2 (1.4-9)

€o

This relationship is known as Poisson’s Equation.
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If there is no space charge in the region, p = 0, and the potential satisfies
Laplace’s Equation,
ViV =0 (1.4-10)

As an example of a problem that can be solved with the aid of Poisson’s
Equation, let us consider the potential within a long conduecting cylindrical
tube filled with a uniform charge density p,. (We can imagine that an elec-
tron beam of uniform charge density is directed down inside the tube and
that the beam just fills the tube.) Using cylindrical coordinates, Poisson’s
Equation for this problem becomes

1dfdV\ _ p,

; E‘(TW = Y (14—11)
since there is no variation of V in the 8 or z directions. The reader will
readily verify that V = — (p,/4e,)r> + ¢1 In r + ¢ is a solution of this

equation, where ¢; and c; are constants. Evidently ¢; = 0, since V is finite
at r = 0. If the inside radius of the conducting tube is R meters, and if the
tube is at zero potential, the potential at radius r is given by V = (p,/4e,)
(R? — 72) for r < R. Positive space charge raises the potential within the
cylinder, and negative space charge lowers it.

A problem that can be solved with the aid of Laplace’s Equation is that of
finding the potential in the region between two long concentric conducting
cylinders which are held at different potentials. Since V does not change in
the 8 or z directions, Laplace’s Equation for this problem becomes

%d%(’%) =0 , (1.4-12)
This equation has the solution V = ¢; In » + ¢, where ¢; and ¢; are con-
stants. If the inner cylinder is held at potential V, and the outer cylinder is
at zero potential, and if their radii are @ meters and b meters, respectively, it
is easily shown that V = (V, In r/b)/(In a/b). A solution of Laplace’s
Equation which satisfies a particular set of boundary conditions is always
unique, and the first and second derivatives of such a solution are con-
tinuous at all points between the bounding surfaces.

Potential distributions can also be obtained by integrating known electric
field distributions along the direction of the field. In this case use is made of
the relation E = —VV. Thus, if the axial charge density on the inner cyl-
inder in the above problem were specified, we could integrate Equation
(1.4-5) with respect to r to obtain the potential as a function of r. In a
similar manner, Equation (1.4-4) can be integrated with respect to r to ob-
tain the potential due to an isolated point charge. Thus

-9
V= e +c (1.4-13)
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where ¢, is a constant, and r is the distance from the charge ¢ to the point at
which V is determined. If V is assumed to be zero at large distances from
the point charge, then ¢, = 0.

(¢) Superposition

Because Laplace’s Equation is linear, the sum of the potentials arising
from two or more point charges also satisfies it. If a region of space contains
a number of point charges as well as surface charges and volume charges,
the potential at point P can be expressed as

- dg
Vo= T (1.4-14)
where dg is a point charge or element of surface charge or volume charge,
and r is the distance from the point charge or element of charge to point P.
A problem that can be solved with the aid of Equation (1.4-14) is that of
finding the potential at point P outside a conducting sphere with uniform
charge density . We shall assume that there are no other point charges,

72474
7
/
/
2
n

~uJ
-~

F16. 1.4-1 A construction which may be used in determining the potential at a
point d meters from the center of a uniformly charged conducting sphere.

volume charges, or solid bodies nearby. With the aid of Figure 1.4-1 we can
show that

2 AN L @ = 2Rdoosh  ed  dmed (L419)
where R is the radius of the sphere, o is the surface charge density, d is the
distance from point P to the center of the sphere, and ¢ is the total charge
on the sphere.

Finally, let us note that, since the electric field at a given point is related
to the potential gradient at the point by E = —VV and since the gradient
operator is linear, the total electric field is a vector sum of contributions
arising from each of the separate point charges, and elements of surface

/ ™ 27 R? sinf do R q
V=
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charge and volume charge in the region. Hence superposition applies to
fields as well as potentials.

1.5 Static Magnetic Fields — Ampere’s Circuital Law, Permanent
Magnets

Static magnetic fields always result from charge in motion — sometimes
an electron current in a conducting medium, or a beam of charged particles,
or, in the case of permanent magnets, a preferred orientation of the electron
spins or orbits in the solid matter of which the magnets are made. Asin the
case of an electric field, it is often convenient to picture a magnetic field in
terms of magnetic flux or magnetic field lines. The lines lie parallel
to the direction of the magnetic flux density B, and the number of lines
crossing unit area normal to the direction of the field is proportional to |B|.

When current flows in a long eylindrical conductor and the direction of
flow is parallel to the axis of the conductor, the magnetic field lines are
circles concentric with the conductor and lying in a plane perpendicular to

e
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Fig. 1.5-1 Magnetic field lines associated with current flow in a wire and a loop.
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the axis. The magnetic flux density is found to be greatest at the surface of
the conductor and falls off inversely with distance from the axis at larger
distances from the axis. Figure 1.5-1 illustrates the direction of the mag-
netic field in relation to the direction of current flow. If the conductor is
bent in the form of a loop, the magnetic field lines still surround the flow of
current, and each field line threads through the loop. In all cases the field
lines close on themselves, and there are no point sources of magnetic field.
Magnetic field lines never start or stop at a point or surface as do electric
field lines.

Since the magnetic field lines close on themselves, the total magnetic flux
crossing a closed surface must be zero. The magnetic flux crossing an ele-
ment of area dS can be expressed as B-ndS, where n is a unit vector normal
to the element of area. Hence

[ B-ndS = 0 (1.5-1)

closed
surface

If the volume enclosed by the surface is very small and can be represented
by Av and if we take the limit as Av — 0, we obtain

/ BndS _opg_o (1.5-2)

Av

closed
surface
Av—0
In the mks system the unit of magnetic flux is the weber, and magnetic
flux density B is measured in webers per square meter.
For some purposes it is convenient to define a vector H, known as the
magnetic field intensity vector, such that

B = uuH (1.5-3)

where u is the relative permeability of the medium, and u, is the permeabil-
ity of free space. The relative permeability u is a dimensionless constant,
which in free space is equal to 1. In mks units the constant u, is defined to
be equal to 4r X 1077 and has the dimensions of henries per meter or webers
per ampere-meter. Since B has the dimensions of webers per square meter,
H has the dimensions of amperes per meter.

(¢) Ampere’s Circuital Law

Ampere’s Circuital Law states that the line integral of H around any
closed path which surrounds a flow of current I is equal to the flow of cur-
rent across the area enclosed by the path, or

H-dl =1 (1.5-4)
closed path
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If the closed path in this equation lies in a plane normal to a current density
J and if the area surrounded by the closed path is very small and can be
represented by AA, we can divide both sides of the equation by A4 and take
the limit as A4 — 0 to obtain

H-dl
A4

closed path
AA—0

=J (1.5-5)

or, since the left-hand side is the definition of the curl of H,
[VXH|=J
and
VXH=]

where J is a vector parallel to the flow of current and of magnitude equal to
J. Ampere’s Circuital Law applies when the closed path lies within solid
bodies, conductors, or magnetic materials, as well as in regions of free space.

Equation (1.5-4) can be used to obtain the magnetic field intensity at a
distance a from the axis of a long cylindrical conductor in free space which
conducts a current I amperes parallel to its axis. If the closed path in the
equation is a cirele of radius @ and if the cirele is normal to the axis of the
conductor with center on the axis, so that H is parallel to the path at all
points, we obtain

H2rg =1 (1.5-6)
Hence the magnetic flux density B at a distance a from the axis of a long

cylindrical conductor, which carries a current I and which is surrounded
only by free space, is given by

Iy
" 2ra

(1.5-7)

Actually the magnetic field generated by a long straight conductor is a
vector sum of contributions resulting from each element of length of the
conductor. Ampere deduced that when a current I amperes flows in an
element of length dl of a conductor, the magnetic ﬂux density dB at a point »
meters from the length dl is given by

pol(dl X r)
473

where dl is a vector of length dl and direction parallel to the current flow.
The vector r is of length r and directed away from the element dl along a
line joining dl to the point at which dB is determined. This result is known
as Ampere’s Rule. It applies only when there is no magnetie material in the

dB = (1.5-8)
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region. With the aid of Figure 1.5-2 it is easily shown that the sum of the
contributions to the net magnetic flux density at a point a meters from the
axis of a long cylindrical conductor which carries a current I amperes is
given by

x/2
_ ol cosp do _ pol y
B = /_,,2 4ra  2wa (1.5-9)

in agreement with Equation (1.5-7). Ampere’s Rule is really a special form
of the Circuital Law.
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Fia. 1.5-2 A long cylindrical conductor carrying a current I amperes.

Equation (1.5-8) ean in principle be used to determine the magnetic flux
density at any point in space resulting from a coil of any shape, if sufficient
ingenuity is used in carrying out the vector addition of the contributions dB
from each element of current flow.

Perhaps the simplest application of Equation (1.5-8) is the problem of
determining the magnetic flux density at the center of a circular loop of wire
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Fig. 1.5-3 Magnetic field lines associated with a toroidal coil which conducts a
current I amperes.
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which carries a current I and is of radius @. In this case the vectors dB at
the center of the loop resulting from each element dl of the loop are all
parallel. The total magnetic flux density at the center is easily shown to be

- ”oI

Sa (1.5-10)

and is parallel to the axis of the loop.

Figure 1.5-3 shows qualitatively the shape of the magnetic flux lines as-
sociated with a toroidal coil. If the turns are close together and regularly
spaced, it is evident from symmetry considerations that the magnetic field
lines must all lie within the toroid and that B outside the coil is essentially
zero. If there are n turns per unit length around the periphery of the coil,
application of Ampere’s Circuital Law to the path of integration shown in
the figure gives

Hl = nll
or
H=nl (1.5-11)

where [ is the length of the curved part of the path within the toroid. (The
only non-zero contribution to the line integral comes from the curved part
of the path within the toroid.) The magnetic flux density within the coil is
therefore given by B = u.nl. This is also the magnetic flux density at the
center of a long straight coil of n turns per meter.

The inductance of a coil is equal to the number of “fux linkages” per
ampere of current passed through the coil, where the number of flux
linkages is equal to the product of the number of webers linking each turn
of the coil and the number of turns in the coil. In the case of the toroidal
coil shown in Figure (1.5-3), the flux linking each turn of the coil is 7r2B =
wr*usnl, where r is the radius of the turns. If the total number of turns in
the coil is N, the number of flux linkages per ampere is m2unN , or

L = mr?%unN (1.5-12)

where L is the inductance of the coil. In the mks system inductance is
measured in henries. If the coil were filled with a medium of relative per-
meability x, the inductance would be L = wr2uunN.

(b) Permanent Magnets

A number of metals including the elements iron, nickel, and cobalt, and
certain alloys, as well as a group of ceramics called ferrites, exhibit a prop-
erty known as ferromagnetism. When a long cylindrical rod of one of
these materials is placed along the axis of a coil and a current is passed
through the coil, the magnetic flux density B within the rod is often hun-
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dreds or thousands of times that which would be obtained along the axis
of the coil in the absence of the ferromagnetic material. The ratio of the
magnetic flux density within the sample to that which would be obtained in
free space with the same value of H is known as the relative permeability
of the material and is designated by u. The magnetic flux density B with-
in the material can therefore be expressed as B = uuoH, as in Equation
(1.5-3). ,

Figure 1.5-4(a) shows a coil wound around a toroidal sample of ferro-
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F16. 1.5-4 A coil surrounding a toroidal sample of ferromagnetic material and
hysteresis loops for two ferrous alloys. Alnico V is frequently used as a permanent
magnet material, and SAE 1010 steel is often used for pole pieces.
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Fia. 1.5-5 The magnetic flux lines associated with several shapes of permanent
magnets. (a) Three toroidal magnets, two with air gaps. A small amount of flux
leakage which would take place from the sides of the two magnets with the air
gaps is not shown. (b) An ellipsoidal magnet. (¢) A hysteresis loop. (d) A cylindrical
magnet. (e) Plots of B and H along the axis of the cylindrical magnet.

magnetic material. By passing a current I through the coil, a magnetic
field intensity H = nl is established within the sample, where n is the
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number of turns per unit length around the periphery of the toroid. If
a low-frequency alternating current is passed through the coil, the magnetic
flux density® B within the material is found to lag the applied H. The
familiar “hysteresis loop” is a plot of B vs. H obtained in this manner.
Two examples of hysteresis loops are shown in Figure 1.5-4. The shape of
the hysteresis loop is characteristic of the particular ferromagnetic material.
(Notice the difference in the horizontal scale for the two hysteresis loops
shown in the figure.) Materials having hysteresis loops with large enclosed
areas make the best permanent magnet materials.

Figure 1.5-5(a) shows three toroidal rings of ferromagnetic material.
In one the ferromagnetic material forms a closed ring, in one there is a
small air gap, and in one there is a larger air gap. We shall assume that
each has been “magnetized” by winding a toroidal coil around it and
momentarily passing a large current through the coil. When the mag-
netizing current is removed, the line integral of H around any closed path
in the region must be zero, since there is no flow of current in or around the
sample. From symmetry arguments we can easily deduce that within
the closed ring, H = 0, and that B has the value indicated by point C on
the hysteresis loop. The flux lines take the form of circles concentric with
the axis of the toroid, and all are within the sample. There is no magnetic
flux outside the sample.

In the case of the sample with the small air gap, nearly all the lines of
flux cross the gap, so that B in the gap is approximately equal to B in the
solid. However, since H is parallel to the direction of B in the gap and since
the line integral of H along a path following the flux lines must be zero,
H must be in the opposite direction to B in the magnetic material. It will
be convenient to denote the values of B and H in the air gap with the sub-
seript g and the values of B and H in the magnetic material with the sub-
seript m. Then B, = B,. If H is integrated along a path followed by a
flux line which crosses the center of the gap, we obtain

SH-d =IH,+LH,=0 (1.5-13)

where [ is the length of the air gap, and L is the length of the path in the
magnetic material. Evidently H,, is small and negative and the values of
B, and H,, might be those corresponding to point D on the hysteresis loop.
Since B is positive, it follows from Equation (1.5-3) that x for the mag-
netized toroid is negative. In the case of the sample with the larger air gap,
the values of B,, and H., corresponding to point E might apply. In both
samples with the air gap there will actually be “flux leakage” outside the

sChanges in the magnetic flux density B within the sample are linearly proportional
to the time integral of the voltage generated in an auxiliary coil surrounding the sample
and can be measured in this manner.
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gap since H is not zero within the sample, and ¢ H-dl must equal zero for all
closed paths.

Figure 1.5-5(b) shows qualitatively the shape of the magnetic flux lines
associated with an ellipsoidal sample of ferromagnetic material when the
sample is magnetized parallel to the long axis of the ellipsoid. It can be
shown that, when an ellipsoidal sample is magnetized parallel to one of its
axes, the B lines within the sample are all parallel to each other and to the
axis. The values of B, and H., in this case might correspond to point F
on the hysteresis loop.

Figure 1.5-5(d) shows qualitatively the shape of the field lines associated
with a cylindrical bar magnet‘. Some of the flux lines leave the sample
through the sides in this case, with the result that B is less at the ends than
at the center. Consequently, although the values of B, and H,, at the
center of the magnet might correspond to point F on the hysteresis loop, the
values of B, and H, at the ends might correspond to point @. Figure
1.5-5(e) shows qualitatively the variation of H and B along the axis of the
bar magnet.

From the foregoing discussion it is apparent that the operating point on
the hysteresis loop is determined by the geometry of the permanent magnet.
To illustrate this point further, let us return to the two toroidal magnets
with air gaps illustrated in Figure 1.5-5(a). If it is assumed that all the
lines of B cross the gap and that there is no flux leakage from the sides of
the magnet, then

Bn = B, = u.H, (1.5-14)
Combining this with Equation (1.5-13), we obtain
Bw _ _pl
" = 7 (1.5-15)

This defines the slope of a line through the origin of the coordinate system
for the hysteresis loop, and the intersection of this line with the hysteresis
loop defines the operating point for B,, and H,,.

Since $'H-dl = 0 for all closed paths in the neighborhood of a permanent
magnet, it is possible to define a magnetic potential ¥ such ‘ohml:9 the potential

difference between points 4 and B is given by Y5 = — / H-dl. (The
4

magnetic potential difference between two points is often called the mag-
netomotive force, or mmf, in analogy to the electromotive force, or emf, in
electrostatics.) The magnetic field intensity is related to the magnetic
potential ¢ by H = —Vy. Since B = u,H in the region outside a per-

‘After M. Abraham, R. Becker, Classical Theory of Electricity and M agnetism, p. 137,
Blackie and Son, 1932.
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manent magnet, and since V-B = 0 and V- (V) = V2, the magnetic potential
in the space surrounding a permanent magnet satisfies Laplace’s Equation,
vy = 0.

Magnetic fields are used to focus, or confine, the electron beams of a
number of microwave tubes including traveling-wave tubes, klystron
amplifiers, and backward-wave oscillators. Magnetic fields also play an
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Fic. 1.5-6 A permanent magnet circuit used to focus the electron beam of a travel-

ing-wave tube. The outline of the tube is shown in the figure. A plot of the axial

magnetic field B, is shown at the right. The slight peaking of the axial magnetic

field near the ends of the circuit results from the “re-entrancies” in the pole pieces.

Within the pole pieces the axial magnetic field changes direction, and beyond the

pole pieces the axial magnetic field has the opposite direction to that which it has in
the center of the magnet.
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essential role in the operation of magnetron oscillators. By using permanent
magnets rather than electromagnets to provide the magnetic field, the total
power consumption of the tubes can be reduced.

Figure 1.5-6 shows a permanent magnet circuit for a traveling-wave tube.
The circuit produces a magnetic flux density® of nearly 0.06 weber/meter?
along the axis of the tube in the region between the pole pieces. The mag-
netic flux density B in the pole pieces is well below that needed to saturate
the pole piece material, so that H within the pole pieces is extremely small
(see hysteresis loop for SAE 1010 steel in Figure 1.5-4). The pole pieces,
therefore; serve as equipotential bodies, the mmf being nearly constant
throughout their volume. In a similar manner, the permalloy “field straight-
eners” are flat discs of high-permeability steel which serve as equipotential
planes and assure that the lines of B are parallel to the axis of the traveling-
wave tube. Since B = pu.H, and p is very large for the field-straightener
material, H within the field straighteners is correspondingly small. The
permanent magnet is larger at its center than at its ends to account for
flux leakage from its sides.
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Fia. 1.5-7 A permanent magnet circuit for a magnetron.,

50One weber per square meter = 10¢ gauss.
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Figure 1.5-7 shows a permanent magnet circuit for a magnetron. The
circuit produces a magnetic flux density of about 0.5 weber/meter? in the
neighborhood of the magnetron’s cathode. The permendur sleeves inside
the pole pieces serve to shape the magnetic field in the region between the
cathode and anode so as to obtain electron trajectories which give optimum
interaction between the electrons and the rf field.

PROBLEMS

W et

1
<
1

Problem 1.1 -

1.1 At time ¢, a single electron is emitted from electrode A with zero velocity, and
at this time a voltage ¥V = 410 volts is applied between the electrodes in such a
direction that it accelerates the electron toward electrode B. It is assumed that the
electric field intensity is uniform at all points between the electrodes. At time #; the
electron is halfway to electrode B, and the voltage V changes discontinuously to
—90 volts and remains at that value. Which electrode does the electron strike, and
what is its kinetic energy in electron volts when it strikes the electrode?

A B C D

TIME, L

—20 L e

Problem 1.2

1.2 Grids B and C are assumed to be ideal grids having the properties that they
do not intercept electrons and that field lines do not penetrate through the grids.
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A single electron leaves electrode A with zero velocity at time #,. At this time the
voltage V is 410 volts and is in such a direction that the electron is accelerated to-
ward grid B. At time ¢, the electron is midway between grids B and C, and the volt-
age V changes to —20 volts. Which electrode (either D or A) does the electron
strike, and what is its kinetic energy in electron volts when it strikes the electrode?

R

REGION OF
MAGNETIC FIELD

Problem 1.3

1.3 A very fine wire is held stationary at one end, while the other end passes over
a pulley and is fixed to a weight which maintains a tension 7 newtons in the wire.
Over a limited region between the fixed end of the wire and the pulley there is a
magnetic field that varies across the region both in magnitude and direction. If
a current I amperes is passed through the wire, the magnetic field causes a force to
act on the wire which tends to deflect it. The force is equal to BI newtons per meter
length of the wire and acts in the direction normal to both the current flow and the
magnetic field. The resulting shape of the wire might be that shown in the figure.
Suppose that the wire were removed and that an electron were directed toward the
magnetic field along the path previously followed by the wire. Show that, if the
electron momentum mu satisfies the relation mu/e = T/I, the electron trajectory
through the region of the field will coincide with the path followed by the wire.
Assume that the stiffness of the wire can be neglected and that its mass is negligible.

T z
5
2
4 7 3
—
Y
1
Z e
Problem 1.4

1.4 Points 1, 7, and 2 lie on the z axis of a rectangular coordinate system. Points
3,7, and 4 lie on the y axis, and points 5, 7, and 6 lie on the z axis. The distance from
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point 7 to each of its neighboring points is d meters. The region is filled with a
uniform charge density p, coulombs/meter®. Show that if the distance d is very
small, the potential at point 7 is approximately given by

=V1+V2+V3+V4+V5+Ve+dﬁ13

Vi 6 6,

where V, is the potential at point 1, and so on. What effect does the presence of
space charge have on the potential at point 77

1.5 Use Equation (1.4-14) to show that the potential at the center of an isolated
spherical cloud of charge of radius B and uniform charge density p. is given by

poR? 3¢
%, S8weR

where ¢ is the total amount of charge in the cloud.

Veenter =
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Problem 1.6

1.6 Part (a) of the figure shows qualitatively the field lines associated with two
isolated point charges +¢ and —g. The plane A-A’ lies midway between the two
point charges. Since all points on the plane are equidistant from the two point
charges, the potential on the plane is zero. Both charges contribute to the electric
field intensity at the plane A-A’. Show that the total electric field intensity at the

plane can be expressed as
B
2/"-50(7-2 + y2 3/2
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where y is the distance from the point charges to the plane A-A’, and r measures
the distance along the surface of the plane from the line joining the point charges
to the point at which E is determined. The electric field intensity at the plane
A-A’ is, of course, normal to the plane.

Since all points on the plane A-A' are at zero potential, a thin planar conductor
could be inserted along the plane without disturbing the potential and field dis-
tribution in the region. Suppose such a planar conductor were inserted and the
left-hand charge were then removed. Evidently the right-hand half of the field
pattern would remain unchanged. Hence the field distribution shown in part (b)
of the figure must be that which applies when a point charge ¢ is y meters from
planar conductor. Field lines originating on the charge ¢ terminate on negative
induced charges on the surface of the conductor. Use the above expression for E to
obtain an expression for the surface charge density induced on the planar conductor
by the charge 4-g. Show that the total induced charge is equal to —q.

Show that the force tending to draw the charge +¢ toward the planar conductor
in part (b) of the figure is ¢%/[4we,(2y)%] newtons and that the work required to re-
move the charge +¢ to infinite distance from the planar conductor is ¢2/[4we.(4y)]
joules.

1.7 A dc current I amperes flows within a long cylindrical conductor of radius
E. The current density is assumed to be uniform across the wire and directed par-
allel to the axis. Sketch qualitatively how the magnetic flux density B varies with
radius r from the axis of the wire out to several times B. Make a similar sketch for
the radial electric field intensity associated with a cylindrical beam of electrons.
Assume uniform space charge density across the beam cross section.
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Chapter 2

ELECTRON EMISSION

The great majority of electron tubes depend upon thermionic emission
as their source of free electrons. In this emission process, electrons within
a conductor or semiconductor receive sufficient energy by thermal excita-
tion to overcome the forces tending to keep them within the solid.

Our interest in thermionic emission at this point lies in the fact that some
inherent properties of thermionic emission seriously affect the design and
performance of electron tubes. It is found, for instance, that the emitted
electrons have small, but finite, velocities upon emission, so that in con-
sidering the shapes of the electron trajectories in the interelectrode space
of a tube we must take into account the distribution of emission velocities.
When we try to design an electron gun that will produce a thin beam of
electrons with high current density, we find that we are seriously limited
in doing so by the finite electron emission velocities.

It is also found that both the current of emitted electrons and the veloc-
ity distribution of the emitted electrons fluctuate with time. These fluc-
tuations constitute two principal sources of “noise’” in electron tubes and
lead to serious limitations in the performance of many amplifier tubes.

We are further limited in designing an electron tube by the fact that each
thermionic cathode material is characterized by a maximum emission
current density consistent with long life of the emitter. Since the per-
formance requirements of a tube are generally such that a certain total
current must be drawn from the eathode, the maximum emission current
density serves to determine the minimum area of the cathode emitting
surface. In grid-controlled tubes this minimum cathode area usually
determines the area of the remaining electrodes. The high-current-density
beams used in klystrons and traveling-wave tubes are frequently obtained
by making use of a relatively large cathode emitting surface in order to
draw the required total emission current and by using electrostatic fields

30
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to focus the electrons to a beam of smaller diameter. In later chapters we
shall find that a number of the ultimate performance limitations of vacuum
tubes result from the need for using a large cathode emitting surface.

Finally, some properties of the oxide-coated cathode are of concern to
the tube designer and tube user. It is found, for instance, that the resistance
of the oxide coating is often of the order of a few ohms across a square
centimeter of coating. This resistance is effectively inserted between the
cathode lead and the emitting surface. In the case of grid-controlled tubes,
it serves as a negative feedback mechanism which has the effect of reducing
the transconductance of the tube. Furthermore, during the processing
of a tube and during the life of the tube, compounds form at the interface
between the oxide coating and the base metal. These compounds place an
additional impedance between the cathode lead and the emitting surface.
The interface resistance is often ten or more times that of the oxide coating,
and it increases with the life of the tube. End of life for many grid-con-
trolled tubes occurs when the growth of interface resistance reduces the
transconductance of the tube below a minimum useful value.

These limitations are of sufficient importance to merit further consider-
ation of the thermionic emission process, and accordingly a major part of
the present chapter will be concerned with this subject. (Discussion of
noise in electron beams and its excitation by current and velocity fluctua-
tions at the cathode will be deferred until Chapter 13, however.)

Electrons can be emitted from a solid by processes other than thermionic
emission. Whenever electrons near the surface of a solid are given sufficient
energy to overcome the forces tending to keep them within the solid, some
of the electrons escape. Excitation of the electrons near the surface can be
caused by incident electrons, photons, positive ions, or excited atoms, and
each of these means of excitation can lead to electron emission. Electron
emission also can be caused by the application at the surface of sufficiently
high electric fields that the surface forces are reduced to the point where
electrons escape. Electron emission resulting from electrons striking a sur-
face is known as secondary emission; emission resulting from photons strik-
ing a surface is known as photoelectric emission; and emission resulting
from the application of very high electric fields is known as field emission,
or Schottky effect. Some characteristics of secondary emission and photo-
electric emission will be described in Sections 2.5 and 2.6, respectively.
Emission caused by positive ions and excited atoms striking a surface is of
interest in connection with gas-discharge devices, and we shall defer dis-
cussion of it until Chapter 14. Field emission has found only limited ap-
plication in electron-tube work! and will not be described further.

1Some special-purpose cathode-ray tubes and x-ray tubes have field-emission cathodes.
Certain arc-discharge processes are also known to depend upon field emission.
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We shall begin by describing briefly the behavior of electrons in the in-
terior of a metal and the forces that act on electrons at the surface of a
metal.

2.1 Electrons in a Conductor, Work Function, and Contact Potential
(@) Electrons in a Conductor
It is well known that the structure of metals is crystalline. Three crystal

structures frequently formed by the metallic elements are illustrated in
Figure 2.1-1. These are the body-centered cubic structure, the face-
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Fi16. 2.1-1 Three common metallic crystal structures: (a) body-centered cubic
structure; (b) face-centered cubic structure; (¢) hexagonal structure.

centered cubic structure, and the hexagonal structure. The atomic spacings
of several metallic elements that form these structures are shown in Figure
2.1-1. Practically all nearest-neighbor spacings of the atoms in metallic
crystals lie between 2 and 5 angstroms (1 angstrom = 1078 ¢cm).

Let us now look at the electronic structure of the isolated atoms. An
atom is always characterized by certain discrete total energies which its
electrons can have. Each electron in the atom has one of these energies and
therefore is said to be in an energy state of the atom. With each energy
state there is associated a certain characteristic motion of the electron
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about the nucleus. For many purposes, an electron in a given energy
state can be thought of as causing a cloud of charge about the nucleus. The
probability of finding the electron in a given volume element about the
nucleus is proportional to the charge density of the cloud at the volume
element. It is found that electrons in certain energy states tend to con-
tribute their maximum charge density at approximately the same distance
from the nucleus, and consequently there are said to be shells of electrons
about the nucleus. Thus, copper has two electrons in its innermost shell,
eight electrons in the next shell, eighteen in the next, and one in the outer
shell. Metallic atoms have one to four electrons in the outer shell. Gen-
erally, the radius at which the outer-shell electrons in the isolated atoms
contribute their maximum charge density is nearly half the nearest-
neighbor spacings of atoms/in the metallic erystal and at least several times
the radius at which the electrons in the next smaller shell contribute their
maximum charge density.?
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Fia. 2.1-2 The potential experienced by an atomic electron as a function of radius r
from the nucleus of the atom.

Figure 2.1-2 shows qualitatively how the potential that acts on an elec-
tron in an isolated atom varies with distance r from the nucleus. As the
electron travels to large distances from the nucleus, so that it is outside the
charge clouds of the other electrons, it leaves behind a net charge of +e on
the atom and experiences a potential —e/4we.r volts. At smaller distances,
such that the electron is within the charge clouds of the other electrons, its

2Reference 2.1, p. 349, lists the radii at which electrons in the various energy states
of the lighter atoms contribute their maximum charge density.
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potential is complicated by interactions with other electrons. When the
electron is inside the charge clouds of all the other electrons, its potential
approaches — (Ze/4we,r) + C, where Ze is the positive charge on the
nucleus, and C is a constant.
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Fic. 2.1-3 The potential experienced by an electron in a metallic crystal. The

potential is plotted along a line running through the centers of several of the atoms.

The vertical lines in the figure indicate the locations of the atomic centers. The

conduction band might extend from the bottom of the shaded region to well above
V =0.

Figure 2.1-3 shows qualitatively how we may expect the potential to
vary along a line of atoms in a crystal. Clearly, the potential will be
periodic with extreme local variations near the nuclei. The crystal may be
thought of as being made of a lattice of positive charge centers with the
space between the charge centers filled with a cloud of negative charge.
The positive charge centers are the metal atoms minus their outer-shell
electrons, and the cloud of negative charge arises from the outer-shell
electrons. At the interatomic spacings that atoms assume in a crystal, the
charge clouds of the outer-shell electrons overlap appreciably, whereas
very little overlapping takes place for the charge clouds of the electrons in
the inner shells.

The overlapping of the outer-shell charge clouds causes a broadening of
the possible energies that the outer-shell electrons can have into a band of
energy states, known as the conduction band. Each energy state in the
conduction band can be occupied by a maximum of two electrons. In a
metal not all the energy states in the conduction band are filled.. At ab-
solute zero only the lower part of the band is filled, while the higher energy
states are unoccupied. If there are N outer-shell electrons in a piece of
metal which is at absolute zero, the outer-shell electrons occupy the N/2
lowest energy states in the conduction band, there being two electrons in
each state. However, when the metal is at room temperature or higher,
a few of the electrons are excited to higher states by thermal excitation.
(In Figure 2.1-3 the conduction band would extend from the lower part
of the shaded region to well above V = 0.)
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Excitation to the higher states also takes place when an electrie potential
gradient is established within the metal, and it can be shown that the
existence of unfilled states just above the occupied part of the band is an
essential condition for electric conduction. It is the outer-shell electrons
that are responsible for electrical conductivity, for they find themselves
relatively free to drift through the crystal under the influence of an applied
electric field, while those in the inner shells remain bound to their atoms.

(b) Work Function

Next let us consider the forces acting on an electron at the edge of a
metallic erystal. The letter A in Figure 2.1-3 marks the position of a sur-
face atom. An electron moving to the right from A would at first experi-
ence a potential similar to that in an isolated atom. However, at somewhat
larger distances from A, the main effect results from a force called the
image force. A well-known problem in electrostatics® shows that a point
charge +q¢ located y meters from the surface of a conducting plane is acted
on by a force directed toward the plane and equal in magnitude to that
which the charge would experience from an equal and opposite charge 2y
meters away. The actual force arises from an induced surface charge
—¢ on the conducting plane. In the case of an electron y meters from a
planar conductor, the potential arising from the image force is —e/16me.y
volts. If y is measured in angstroms, this becomes —3.6/y volts.

As the distance y decreases and approaches the interatomic spacing d,
the concept that the surface is a planar conductor becomes no longer valid,
and the potential merges with that arising from the surface atoms. The
location of the region over which the merging takes place depends upon the
number of atoms per unit area of the crystal surface and upon the shape of
the outer-shell electron clouds. Consequently, we would expect that the
height to which the potential curve rises above the filled part of the con-
duction band will differ for erystals of different metals.

In Figure 2.1-3 we have shown the outer-shell electrons, or conduction
electrons, to have energies distributed over a band having a definite maxi-
mum and minimum. Such is the case at absolute zero, and it is almost the
case at room temperature. However, as already noted, when the metal is at
room temperature or higher, a number of the electrons are excited to
states just above the part of the conduction band that is filled at absolute
zero. If the temperature is sufficiently high, a few electrons gain sufficient
energy to overcome the image potentlal and leave the surface of the metal.
This is the basis of thermionic emission.

3See Problem 1.6.
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The potential corresponding to the top of the part of the conduction band
that is filled at absolute zero is frequently called the Fermi level. The work
function of a metal is the energy that must be given to an electron at the
Fermi level to enable it to escape from the metal with zero velocity. In
the discussion that follows, we shall designate the work function by ¢ and
assume that it is measured in electron volts. (The work function in electron
volts s numerically equal to the potential rise in volls from the Fermi level to
the potential V = 0 shown in Figure 2.1-3.)

The thermionic emission current density from a surface is closely related
to the work function of the surface. With a large work function, the elec-
trons must be excited to higher energy states in the conduction band in
order to be able to escape, and the emission current density for a given
cathode temperature will be lower.

Table 2.1-1 lists the work functions of several metals.* The work function

TasLE 2.1-1. MEaAN WoRK FUNCTIONS

¢ ¢
Metal (Electron Volts) Metal (Electron Volts)

Ao 4.28 MO, 4.27
Al 3.74 Na...ooviviiiiiien. 2.27
Au... oo 4.58 Ni oo 4.84
Ba......ooovivii. 2.29 Pd.................... 4.82
G 4.39 Sh. ..o 4.08
Caovii e 2.76 Sr. . 2.35-
Ch.ovvii i 3.99 Ta. ..o 4.12
Cs.oviee i 1.89 Tho ..o 3.41
Cu..oovviveii 447 Ti.o o 4.09
Fe................... 4.36 W, 4.50
Koo 2.15

of a clean metal surface is always of the order of a few electron volts, and
the energy separation between the bottom of the conduction band and the
Fermi level is also of about this magnitude.

Actually, ¢ is different for different faces of a metal crystal. The variation
arises in part from the fact that the density of surface atoms changes from
face to face, and the distance from the surface atoms at which the image
potential merges into that of the surface atoms shows a corresponding
variation. In the case of tungsten, the measured values for the different
faces® range from 4.30 electron volts to nearly 6 electron volts. The values
listed in Table 2.1-1 are for polycrystalline surfaces.

4Reference 2.2.
sReference 2.3.
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(¢) Contact Potential

It can be shown that if two dissimilar metals are brought together at
absolute zero, the potentials within the metals immediately become ad-
justed so that the Fermi levels in the two systems coincide. This situation is
illustrated in Figure 2.1-4 for two metals at absolute zero. The figure would
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F1a. 2.1-4 Two metals joined at absolute zero. The symbols ¢ and ¢, indicate
potential differences which are numerically equal to the work functions of the
two metals.

be the same at higher temperatures except that the tops of the filled parts
of the conduction bands would not be well defined, since some of the elec-
trons are excited to higher energies. If the two metals have different work
functions, the potential rises to different heights outside the two metals,
and a potential difference must exist between a point just outside one metal
and a point just outside the other. From the definition of the work function,
we can see that this contact potential difference, as it is called, is numeri-
cally equal to the difference between the work functions of the two metals.

Since there is a potential difference between points A and B in Figure
2.1-4, this can result only from the presence of induced surface charges on
the conductors. The potential in the region between the two metals is
therefore a superposition of the potential caused by the image force and
that arising from the induced surface charge. The surface charges result
from a flow of charge between the metals that takes place when the metals



38 PRINCIPLES OF ELECTRON TUBES

are first joined. The flow of charge is such that the material of lower work
function is positively charged.

If several wires made of different metals are connected in series, the
potential difference in volts between a point just outside the wire on one
end and a point just outside the wire on the other end is numerically equal
to the difference between the work functions in electron volts of the two
end metals. Let us suppose that two parallel metal plates made of different
metals form a parallel-plate capacitor and that the plates are joined by
a wire. If ¢, and ¢; are the work functions of the plates in electron volts,
the potential difference in volts between a point just outside one plate and
a point just outside the other will be numerically equal to ¢ — ¢2. We
shall designate it V. If d is the spacing between the plates, the electric
field intensity in the region betweén the plates will be Vi,/d, neglecting
edge effects, and the surface charge density o on the two surfaces that face
each other will be given by

¢ = e,,-I% (2.1-1)

Evidently as the distance between the plates is varied, charge must flow
along the wire joining them.

When a voltage difference is applied between two electrodes of a tube,
the electric field intensity in the interelectrode space effectively results
from the sum of the applied potential difference and the contact potential
difference. Since the contact potential may amount to two or three volts,
there are many cases where it cannot be overlooked.

If the cathode of a tube is oxide-coated, it will likely have the lowest work
function of any of the electrodes. Thus, if all the electrodes in such a tube
are directly connected together, the emitted electrons experience a retarding
field that returns almost all of them to the cathode. Part of the “‘aging”
or drift in the electrical characteristics of some grid-controlled tubes with
life has been attributed to a change in the contact potential difference be-
tween the control grid and cathode as a result of a gradual contamination
or decontamination of the grid surface.

2.2 The Richardson-Dushman Equation

A derivation of the law governing the thermal emission of electrons from
a metal® involves results that are closely related to the physics of solids and
hence represents a departure from most of the work that will be emphasized
in later chapters. In brief summary, an expression can be derived for the

sSee Reference 2.4, p. 137.
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number of electrons per unit volume of the metal which at temperature
T are excited to states characterized by sufficient energy to enable the
electrons to overcome the surface forces. (In Figure 2.1-3, these states
would lie above the horizontal line corresponding to ¥V = 0.) The current
of electrons in these states striking unit area of surface from within the
metal is assumed to be the emission current density and is found to be

4mek?

Jo = —35—T*%*/"7 amps/meter? (2.2-1)

where & is Planck’s constant, k is Boltzmann’s constant, T is the absolute
temperature of the emitting surface, and ¢ is the work function of the metal
in electron volts. Wy is the “electron-volt equivalent” of the energy kT
and is given by

ET T
Wr = Te] ~ 11,600
where |e| is a positive dimensionless constant numerically equal to the
charge of the electron. Equation (2.2-1) is known as the Richardson-
Dushman Equation for the emission current density. The equation can
be expressed more conveniently in the form

Jo = AT?% ¢/%1 amps/meter? (2.2-3)

electron volts (2.2-2)

where

_ 47mek?

A 5

= 120 X 10 amps/meter?(°K)?
= 120 amps/cm?(°K)?

To a first approximation, ¢ is independent of temperature. However,
experimental evidence indicates that it has a small temperature coefficient,
and hence that it can be expressed as ¢ = ¢, + T, where ¢, is the work
function at absolute zero. (Measurements of the coefficient « for tungsten’
indicate that it is of the order of a few times 107° electron volt/°K.) Sub-
stituting ¢ = ¢, + a7 in Equation (2.2-3), we obtain

Jo = AT2% @otaDIWr = 4ealelBT211,6006,/T
= A'Tre 160907 (2.2-4)

where use has been made of the relations |e |Wr = kT joules and Wr =

T/11,600 electron volts. A non-zero coefficient «, therefore, has the effect

of modifying the constant A in the Richardson-Dushman Equation.
Experimental values® of A’ = Ae2lel/k for clean surfaces of several metals

7Reference 2.5.
sReference 2.6,
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TaBLE 2.2-1
A’ ¢
Metal (Amp [em*(°K)?) (Electron Volts)

Mo..............oi 55 4,27
Ni..oooo i 30 4.84
Pt............. 32 5.29
Ta. ..ot 37 4,12
W 70 4.50

are given in Table 2.2-1, along with the corresponding work functions from
Table 2.1-1. (It should be noted that accurate measurement of A’ is ex-
tremely difficult, since a small error in the absolute temperature 7' can
cause a large error in 4'.)

Equations (2.2-3) and (2.2-4) indicate a critical dependence of the emis-
sion current density upon both the work function ¢ and the temperature
T of the emitting surface. Decreasing the work function by one electron
volt increases the emission current density by €T for the same tem-
perature T. Table 2.2-2 lists values of the emission current density in

TABLE 2.2-2. EmissioN CURRENT DENsITY

Amps/Cm?

T — °K o=10ew ¢=20ew ¢=30ew o¢=40ev ¢=50e
1000 360 3.3 X103 3 X 10t — —
1500 — 17 7.6 X 1073 3X10°% 1.4 X107
2000 — — 44 1.3 X 1072 4 X 1078
2500 — — 230 2.1 2.1 X 107

amperes per square centimeter for several values of ¢ and T assuming that
A’ = 40 amps/ecm?(°K)%. Evidently cathodes with a high work function
must be operated at a high temperature in order to obtain an appreciable
emission current density.

The emission current density given by Equations (2.2-3) and (2.2-4)
is often referred to as the saturation emission current density. Under most
operating conditions less current is actually drawn from the cathode. If
more electrons are emitted from the cathode than are drawn to the other
electrodes, negative space charge accumulates just outside the cathode.
This causes a small retarding field at the cathode surface which returns
some of the emitted electrons to the cathode. The current drawn from the
cathode is then said to be space-charge-limited. If full saturation emission
current flows to the other electrodes, the current drawn from the cathode
is said to be temperature limited, since the cathode temperature then deter-
mines the magnitude of the current flowing to the other electrodes.
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2.3 Cathode Materials

The choice of cathode materials to be used in a particular tube is deter-
mined by such factors as the environment in which the cathode is to be
operated, the required emission current density, the tube life requirements,
the temperature at which the cathode must be operated to obtain the
emission density, and the power which must be supplied to heat the cathode.
Generally, the choice of materials which will satisfy a particular appli-
cation is quite limited.

As a first consideration, all cathode materials are characterized by a
maximum ‘operating temperature consistent with long life of the emitting
surface. This means that they are characterized by a maximum emission
current density consistent with long cathode life. In the case of pure metal
cathodes, such as tungsten filaments, the limiting temperature is that
at which evaporation of the metal starts to be appreciable. In the various
other forms of cathodes to be described in this section, additional chemical
and physical processes tend to limit the life of the cathode when too high
temperatures are used. Since for many applications it is desirable to have
available a high emission current density and since the emission current
density increases rapidly with temperature, the cathode operating tem-
perature is often determined as a compromise between requirements for
high emission density and requirements for long cathode life. Of the
relatively large number of possible cathode materials that have been in-
vestigated,® only a very few are capable of simultaneously giving appreci-
able emission current density and good life performance.

. A second important consideration is the desirability of operating the
cathode at as low a temperature as possible. A low cathode operating tem-
perature means low heater or filament power and greater power efficiency
for the tube. If less heat is dissipated in the tube, less heat is radiated and
conducted from the tube, and there is less heating of the surrounding
apparatus. Furthermore, as the cathode warms up, thermal expansion of
the cathode and its supports frequently causes a change in the electrode
spacings and hence a change in the electrical characteristics of the tube.
With a low cathode operating temperature, it is much easier to minimize
these changes in spacing, and greater reproducibility of the electrical
characteristics from device to device can be obtained. Finally, the noise
which appears in the tube output, and which results from fluctuations
in the emission current and velocities, is less when the required emission
current density is obtained at a lower operating temperature.

Since a cathode with a low work function can provide a given emission
current density at a lower operating temperature than one with a high work

sReference 2.6,
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F1a. 2.3-1 Emission current density vs. cathode temperature for several types of
thermionic emitters. The shaded blocks at the bottom of the figure show the normal
operating range for three of the cathodes. (a) The oxide-coated cathode. Curve A,
gives the saturation emission current density under pulsed conditions. (Circular
points, Reference 2.11; solid curve, Reference 2¢, Volume 1.) Curve A, gives the
de saturation emission density. The position of this curve may vary substantially
with environmental conditions. DC current densities much in excess of 0.5 amp/cm?
lead to relatively short cathode life. (b) The pressed nickel cathode. Curve B shows
the dec saturation emission current density obtained from a pressed nickel cathode
(Reference 2.15). (c) The impregnated nickel cathode. Curve C shows the saturation
emission current obtained from the impregnated nickel cathode. The measure-
ments were taken with 40 microsec pulses and a repetition rate of 60 pulses/sec
(Reference 2.12) (d) Pressed and tmpregnated tungsten cathodes. Curve D shows the
saturation emission density obtained from pressed and impregnated tungsten cath-
odes based on A’ = 2.5 amps/em?(°K)? and ¢ = 1.67 electron volts. (These con-
stants are given in Reference 2.13. However, it is the experience of the writers
that under practical operating conditions somewhat higher cathode temperatures
are needed to yield a given emission current density than those indicated by curve
D). The thortated tungsten cathode. Curve E shows the measured saturation emis-
sion current density of an uncarbonized thoriated tungsten filament (Reference 2.9).
(f) Tungsten filaments. Curve F shows the saturation emission current density of a
tungsten filament based on A’ = 70 amps/cm?(°K)? and ¢ = 4.5 electron volts.
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function, much effort has been devoted to obtaining cathode materials
with low work functions. The oxide-coated cathode combines good emis-
sion properties and appreciable life with a particularly low work function,
and consequently it is the most widely used type of cathode emitter.

Some discussion of the more frequently used cathode materials is given
in Sections (a) to (d) below. Methods for heating the cathode are de-
scribed in Section (e).

(a) Pure Tungsten

Filaments of pure tungsten® are operated at about 2500°K. At this
temperature they yield a saturation emission density of 300 to 400 ma/cm?
and radiate about 70 watts/cm?. This high radiation per unit area means
that a relatively large amount of power is required to heat the filament. If
the ratio of emission current density to power radiated per unit area is
taken as a measure of efficiency in obtaining emitted electrons-for a given
amount of heater power, tungsten cathodes are the least efficient of the
commonly used cathode materials.

The vapor pressure of tungsten at 2500°K is 1.3 X 10~®mm of Hg,
which is sufficiently small that the filaments are able to survive several
thousand hours of operation before failure occurs. Nearly all other common
pure metals have vapor pressures much too high at temperatures at which
appreciable thermionic emission takes place. (One exception is tantalum,
which has found some application as a cathode material.) The melting
point of tungsten is 3640°K.

Curve F in Figure 2.3-1 shows a plot of emission current density vs.
temperature for a tungsten emitting surface.

Tungsten filaments find their chief application in tubes that operate with
anode voltages greater than about 20 thousand volts. Other cathode
materials suffer severe damage from bombardment by positive ions if
used in tubes that operate at very high voltages. The positive ions are
formed by the emitted electrons striking molecules of residual gas in the
tube and are accelerated toward the cathode by the same field that ac-
celerates the electrons away from the cathode. If they strike an oxide-
coated cathode with sufficient energy, they may chip away part of the
emitting surface. However, pure tungsten filaments show less damage as
a result of such bombardment. A number of x-ray tubes, high-voltage
diode rectifier tubes, and some high-voltage transmitting tubes use tung-
sten filaments.

1©The fabrication of tungsten filaments is described in Reference 2.7, Chapter 8.
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(b) Thoriated Tungsten

Thoriated tungsten filaments are made by adding 1 or 2 per cent of
thorium oxide, ThO;, to the tungsten before it is sintered and drawn into
filaments. After drawing, the filament is heated in an atmosphere of
hydrocarbon vapor, causing the surface of the wire to be converted to
tungsten carbide, W.C, to a depth of about one tenth of the wire radius,
a process known as carbonization. The normal operating temperature of the
filament is about 2000°K, and at this temperature the tungsten carbide
slowly reduces the thorium oxide. Free atoms of thorium thus produced
diffuse through the metal and eventually reach the surface, where some
are adsorbed and others evaporate onto surrounding electrodes. Under
normal operating conditions, there is probably somewhat less than a mono-
layer of thorium atoms adsorbed on the surface of the filament. At the
same rate that free thorium atoms diffuse to the surface, other thorium
atoms that were adsorbed on the surface are lost as a result of evaporation,
reaction with residual gases in the tube, and positive ion bombardment.

It is found that a partial layer of thorium atoms adsorbed on a tungsten
carbide surface evaporates at a much slower rate at a given temperature
than it would from solid thorium. As a result, the filament can operate at a
much higher temperature than would be possible for solid thorium. How-
ever, if several layers of thorium are adsorbed on the surface, the evapora-
tion rate of the outer layers is much the same as from solid thorium, so
that there is a tendency for additional layers to be lost, leaving only a
single layer, or perhaps a little less than a layer.

The adsorbed atoms form a dipole layer at the surface with positive
charge on the outside. This modifies the potential acting on a conduction
electron at the surface of the filament causing the work function to be lower.
The resulting work function is not that of thorium, but is one characteristic
of thorium atoms adsorbed on a tungsten carbide surface. At 2000°K
the work function is between 2.6 and 2.7 electron volts and A’ is about 4
amps/em?(°K)2. The reason that A’ is lower than the values measured
for clean metal surfaces is not well understood.

Early thoriated tungsten filaments were not carbonized; thermal re-
duction of the thorium oxide was relied upon to release free thorium.
Generally, the filaments were first “activated” by heating them well above
the normal operating temperature for a few minutes to effect appreciable
reduction of the thorium oxide. This was followed by operation for about
a half hour at a somewhat lower temperature, still above the normal operat-
ing temperature, to permit diffusion of the free thorium to the surface.
However, the rate of thermal reduction of the thorium oxide at the normal
operating temperature was insufficient to keep up with the loss of thorium
from the surface, and the filaments had to be “reactivated” from time to
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time. Carbonization both increases the rate of reduction of the thorium
oxide and reduces the rate of evaporation of thorium atoms from the sur-
face of the filament."

As the filament temperature is increased above 2000°K, “the rate of
evaporation of thorium atoms from the surface increases faster than the
rate of diffusion of thorium atoms from the interior of the filament, with
the result that the fraction of the surface covered with thorium atoms
decreases. This causes ¢ to increase toward the value for a clean tungsten-
carbide surface, and one might expect that the value of A’ would likewise
approach the corresponding value for a clean tungsten-carbide surface.

Curve E in Figure 2.3-1 shows the variation of the saturation emission
current density with temperature for an uncarbonized thoriated tungsten
filament according to measurements by Langmuir'?2. Between 2100°K
and 2300°K, the emission density actually falls because of the rapid in-
crease of ¢ with temperature. Langmuir estimated that at the maximum
of the curve, the surface was covered with about 0.8 of a layer of thorium
atoms, whereas at the minimum to the right, he estimated there was only
about 0.15 layer of thorium on the surface.

A plot similar to curve E for a carbonized thoriated tungsten filament
does not appear to be available at the time of writing. However, at 2000°K
carbonized filaments give an emission current density of about 3 amps/em?
which is comparable to that indicated by curve E for uncarbonized fila-
ments. The radiation from a carbonized filament at 2000°K is about 28
watts/cm?, so that the thoriated tungsten filament offers considerable
advantage over pure tungsten filaments with respect to the ratio of emission
current density to power radiated per unit area.

Thoriated tungsten filaments are used in a number of moderate-voltage
transmitting tubes and a class of hot-cathode gas tubes, known as tungar
rectifiers. Cathodes of thoriated tungsten are also used in high-power beam-
type microwave tubes, where the high emission capabilities of the thoriated
tungsten cathode are an important advantage. The cathodes in this case are
heated by electron bombardment.

(¢) Oxide-Coated Cathodes

Although the physical processes involved in thermionic emission from
an oxide-coated cathode are not well understood at present, the descrip-
tion of the physical processes and the interpretation of the tube processing
given in the following paragraphs appear to be the prevailing thought
in a somewhat simplified form.

uReference 2.8.
12Reference 2.9.
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General. The oxide-coated eathode is used in nearly all general-purpose
tubes, many low-voltage transmitting tubes, and most hot-cathode gas
tubes. It consists of a thin coating of a mixture of metallic oxides applied
to a base of nickel or some nickel alloy.® The oxides most frequently used
are those of the alkaline earths, barium, strontium, and calcium, (ie.,
BaO, Sr0, and Ca0). Since these oxides are unstable in the presence of
atmospheric moisture, the coating is applied to the base in the form of the
corresponding carbonates (BaCOs, ete.), and during the processing of the
tube the cathode is heated to decompose the carbonates and release CO..

To prepare the carbonates for application to the cathode, they are first
ground into a fine powder and mixed with an organic binder and a suitable
solvent. Often nitrocellulose serves as the binder and amyl acetate as the
solvent. The resulting mixture is then applied to the cathode, often by
spraying, although filamentary cathodes are frequently dipped in the
mixture or drawn through it. The coated cathode is then dried in room air.

While the tube is being pumped, the envelope and electrodes are heated,
generally by applying f induction to the metal parts. Sometimes an oven
is also placed over the tube for a period before the rf induction is applied.
This heating of the envelope and electrodes drives off appreciable amounts
of gases that are adsorbed on the inside surfaces of the tube. It also causes
the organic binder in the cathode coating to decompose into volatile
gases, which are pumped away. When the envelope and electrodes are
suitably “outgassed,” the cathode temperature is raised to approximately
1000°K for about a minute. This causes the carbonates in the cathode
coating to decompose into carbon dioxide and the metal oxides, a process
known as ‘“breakdown.” The carbon dioxide is evolved as a gas and is
pumped away.

A coating of the pure oxides is an insulator, and as such is capable of
supporting very little sustained emission. To become suitable for ther-
Imionic emission, the coating must first be “activated.” In this process,
barium oxide is partially reduced, given rise to free barium atoms within
the coating, which in turn aid in making the coating a semiconductor and
increase its emission capabilities. Cathode activation is accomplished by
heating the cathode to a temperature above the normal operating tem-
perature. Sometimes current is drawn from the cathode while at this
elevated temperature. (Often the normal operating temperature lies be-
tween 1000°K and 1150°K.) The heating of the cathode above the normal
operating temperature causes impurity atoms in the base nickel to diffuse
through the nickel, with the result that some reach the interface between
the coating and the nickel, where they reduce the oxides in the coating. It

130ne exception is fluorescent lamps in which tungsten is used for the base.
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is found that the impurity atoms principally react with the barium oxide,
so that the reactions at the interface lead to the release of free barium
atoms. The passage of current through the coating probably also causes
some electrolytic dissociation of the coating.

Most cathodes are activated partly while the tube is being pumped and
partly after the tube is removed from the pump. Usually the cathodes of
general-purpose tubes are raised to a temperature of 1200° to 1450°K for
about 30 seconds during pumping and then “aged” for a length of time
after removing the tube from the pump. Often a series of aging steps is
used in which both the cathode temperature and the anode current are
varied from step to step. The aging time may range from 10 minutes to
several days, depending largely on the quality of the tube being made.
Tubes intended for applications needing high reliability are generally
aged for a longer period of time at a lower cathode temperature.

The activated coating is white in appearance, its thickness is of the order
of 0.5 X 1072 ¢m (0.002 inch), and it is highly porous, having a density of
about one quarter that of the solid oxides. Its electrical properties are those
of an n-type semiconductor.*

In some tubes a mixture of barium, strontium, and calcium oxides is used,
the molecular proportions consisting of 10 to 14 per cent calcium oxide and
about equal percentages of barium and strontium oxides. However, there
has been a trend in the tube industry toward the use of “double-carbonate”
coatings containing barium and strontium oxide in about equal molecular
proportions. The ‘“triple-carbonate” coating (barium, strontium, and
calcium oxides) has been found to give faster activation and consequently
is attractive from a manufacturing standpoint. However, the adherence of
the coating to the base nickel is somewhat poorer, and failure due to peeling
of the coating is more likely. In addition, some recent studies of the life
capabilities of grid-controlled tubes made with double- and triple-carbonate
coatings indicate that greater life can be achieved with the double-car-
bonate coating. The use of barium oxide alone has been found to give
particularly unreproducible resulés,’® whereas an active coating of strontium
oxide has a higher work function than that of a mixture of barium and
strontium oxides.

1At room temperature and higher, electrons are excited to the conduction band of
the coating by donors which are distributed throughout the coating. At the cathode
operating temperature, a few of the conduction electrons gain sufficient energy to over-
come the work function of the coating and escape from the surface. The current of
escaping electrons is the thermionic emission current. At present there is some difference
of opinion as to what constitutes the principal donor in the coating; possibly it is the
free barium atoms.

15t is thought that the barium oxide dissolves into the barium carbonate forming a
solution which melts at about 1175°K. (Reference 2¢, Vol. I, p. 62.)
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At the cathode operating temperature, barium oxide has an appreciably
higher vapor pressure than either strontium oxide or caleium oxide. Con-
sequently, the barium oxide in the outermost part of the coating gradually
becomes depleted, and evaporated barium oxide deposits on the surfaces
surrounding the cathode throughout the operational life of the tube.

Equation (2.2-3), which gives the emission current density from a metal,
does not apply to emission from a semiconductor and hence does not apply
to emission from an oxide-coated cathode. However, it is found that the
variation of emission density with temperature for an oxide-coated cathode
is governed principally by the factor ¢~ ¢1#/*T ag in the case of emission from
metal surfaces. Experimental values of ¢ for commonly used coatings lie
between 1.0 and 1.3 electron volts. .

The cathodes of many general-purpose tubes are operated at tempera-
tures in the range from 1000° to 1150°K. At 1050°K, the heat radiation
from an oxide coating®® is about 3 watts/cm?, and mean cathode current
densities of a few hundred milliamperes per square centimeter are found to
be consistent with reasonably long life of the cathode, perhaps 10 to 30
thousand hours. However, if the cathode temperature is raised in order to
increase the emission current density beyond 500 ma/cm?, the life of present
types of oxide-coated cathodes is found to decrease rapidly with increasing
temperature and cathode current density. When particularly long life is
desired from a tube, lower operating temperatures are used, and the emis-
sion density must be correspondingly less. The oxide-coated cathodes used
in repeater tubes for recently developed underwater telephone cables
operate at 940°K, and are expected to have an average operational life in
excess of 40 years. The mean current density drawn from the cathodes in
this case is only 10 ma/cm?2

The Base Nickel. During operation of the cathode, free barium atoms in
the coating diffuse through the coating, eventually reaching the outer sur-
face, whereupon many evaporate onto surrounding electrodes and the walls
of the tube. Since an excess of barium atoms in the coating is necessary for
the coating to be an active emitter, impurity atoms in the base nickel must
continually reduce the barium oxide and release free barium atoms. For
this reason, much attention has been given to the impurity content of
nickels used as the base material. A nickel too rich in reducing agents will
cause short cathode life, whereas a very pure nickel will lead to insufficient
emission. In addition, most reducing agents form compounds at the inter-
face between the coating and the nickel, and these compounds often have
the effect of placing an electrical impedance between the cathode lead and

18Black-body radiation at this temperature is nearly 7 watts/cm®.
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the emitting surface. In grid-controlled tubes, such an impedance is likely
to cause adverse effects on the electrical performance of the tube.

The principal reducing agents found in cathode nickels are listed in
Table 2.3-1. Those elements near the top of the table are found to be more
active reducing agents than those near the bottom of the table”. Zirconium

TaBLE 2.3-1. CoNCENTRATION OF REDUCING AGENTS IN PER CENT
BY WEIGHT IN AN ACTIVE NIcKEL AND A Passive NICKEL

Reducing Atomic Type A Type B
Agent Number (Active) (Passive)
C 6 0.06 < 0.01
Mg 12 0.04 < 0.01
Al 13 0.006 < 0.005
Si 14 0.03 < 0.01
Ti 22 0.02 < 0.005
Zr 40 None None
w 74 None None

and tungsten are found in cathode nickel only if they have been intentional-
ly added to the nickel. A nickel relatively rich in reducing agents is said to
be an “‘active” nickel and has the property that shorter times are required to
activate and age the coating. The concentration of reducing agents in such
a nickel might be as indicated for Type A in the table. A nickel such as
Type A is frequently used in the manufacture of commerecial grid-controlled
tubes. However, because of the relatively rapid rate of reduction of the
barium oxide and because the formation of interface compounds (see below)
may be appreciable, the life of the coating may be less than might be ob-
tained with smaller amounts of reducing agents.

A nickel that is nearly free of reducing agents, such as Type B in the table,
would be considered to be a “passive” nickel. Such a nickel would be in-
capable of supporting substantial emission from an oxide cathode over an
appreciable length of time because the rate of diffusion of impurity atoms
through the nickel to the oxide coating would be too slow. In the manu-
facture of tubes requiring particularly long life there has been a trend in the
industry toward the use of nickels that are more passive than Type A. Re-
cently, studies have been carried out on the performance of cathodes in
which the base consists of a passive nickel to which one or two reducing
agents are added in controlled amounts. One ‘“‘single-additive” nickel which
appears to perform satisfactorily contains about 0.1 per cent zirconium.
The zirconium both increases the mechanical strength of the nickel and

17"Part of this undoubtedly results from the fact that the elements near the top of the
table are lighter and hence diffuse faster,
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acts as the reducing agent to provide long-term activity of the cathode.
A “double-additive” nickel which has also given good results contains
0.01 to-0.03 per cent magnesium and 2 to 4 per cent tungsten. The magne-
sium makes possible the initial activity of the cathode, but it is soon lost
from the nickel by reaction with the coating and evaporation from the sur-
face. The tungsten makes possible the long-term activity and considerably
increases the mechanical strength of the nickel.

It is believed that the nickel itself does not reduce the oxides in the coat-
ing. Other impurities which are sometimes present in the nickel and which
probably have little effect upon the coating activity are® cobalt, iron,
copper, and molybdenum. One nickel-cobalt-iron alloy which is sometimes
used in oxide-coated filamentary cathodes contains about 19 per cent cobalt
and 2 per cent iron. The addition of the cobalt and iron gives greater
mechanical strength to the filament and increases its resistivity over that
which can be obtained with pure nickel.

Interface. Next let us consider the events that take place at the interface
between the base metal and the coating. When carbon atoms reach the
interface, they react with the oxide to form CO and free barium. The CO is
evolved as a gas, some of which contributes to the residual pressure in the
tube, some is absorbed by the getter material, and some becomes adsorbed
on the inside surfaces of the tube. Other reducing agents in the base form
solid compounds upon reacting with the barium oxide. Various workers

the layer of compounds is referred
to as ‘“interface.”

pedance between the cathode lead
and the emitting surface. An ap-

have reported finding one or more of

] l The presence of such a layer be-
c

proximate equivalent network' for

and Ba;WOs at the interface. Often
the effect of placing an electrical im-~

MgO, BaAl:Qs, BasSiO,, BaTiO,,
T tween the coating and the base has
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the impedance consists of a resist-
ance shunted by a capacitance as
shown in Figure 2.3-2. Values of the
resistance often range from a few
tenths of an ohm to a few tens of

18Manganese and sulfur are known to have adverse effects on cathode activity.
WA more accurate network would include an additional resistance and capacitance in
series which would shunt the network shown in Figure 2.3-2.
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ohms for one square centimeter of emitting surface.” The capacitance
shunting the layer gives the parallel RC combination a time constant
of about a microsecond. In the case of base nickels containing greater than
0.05 per cent silicon, by far the greater part of the interface resistance re-
sults from BasSiOs, whereas base nickels having less than 0.01 per cent
silicon lead to particularly small interface resistances. Often the interface
resistance increases when the cathode is held at operating temperature for
extended periods with no current being drawn. In cases where the silicon
content of the base nickel is high, interface resistances as high as 1000 ohms
and more have been observed after such operation.

The coating also exhibits a resistance, often of the order of a few ohms
across the thickness of a square centimeter of coating. This resistance and
the interface resistance add in series and are effectively inserted between the
cathode lead and the cathode emitting surface. Such a resistance R in series
with the cathode lead of a grid-controlled tube reduces the low-frequency
transconductance of the tube. In a triode, the transconductance is reduced
by the factor 1/(1 4+ g.R), where g, is the transconductance in the absence
of the resistance R. For R = 100 ohms and g, = 10,000 micromhos, the
transconductance is reduced by 50 per cent. At higher frequencies, of the
order of a megacycle or more, the interface resistance is bypassed by the
capacity shunting it, with the result that the transconductance approaches
the value it would have in the absence of interface resistance.

During the life of a tube, the interface resistance increases because of the
formation of additional quantities of interface compounds. This causes a
further reduction in the transconductance, partly because of the factor
1/(1 4+ gnR), and partly because an increase in R causes the cathode
current to decrease, and this in turn reduces the transconductance. Often
the two effects contribute comparable amounts to the decrease in trans-
conductance, and together will account for the failure of a tube.2

Since much smaller interface resistances are obtained with base nickels
having low silicon content, there has been increasing use of such nickels in
grid-controlled tubes and other tubes where minimum interface resistance
is desirable.

Pulsed and DC Emission Current Densities. It is found that the saturation
current density drawn from an oxide-coated cathode under pulsed condi-
tions with pulse lengths of the order of a few microseconds and a low-duty
cycle is often of the order of 10 times that which can be drawn under de
conditions. However, as the pulse length is increased to a few milliseconds,

%Sometimes the coating tends to blister or peel, and this adds to the apparent inter-
face resistance.

*Frequently end of life of a grid-controlled tube is assumed to take place when the
transconductance falls below about 65 per cent of its initial value.



52 PRINCIPLES OF ELECTRON TUBES

or a second, the amplitude of the current pulse decays toward the end of the
pulse. Figure 2.3-3 shows the decay of current density drawn from a par-
ticular diode when a step-function voltage is applied to the anode. Two
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Fig. 2.3-3 The decay of the saturation emission current density drawn from a

particular diode when a step-function voltage is applied to the anode. The abscissa

indicates time elapsed after application of voltage to the anode. (From L. 8.
Nergaard, RCA Rev. 13, 464, December 1952)

effects are thought to be principally responsible for the decay of the pulsed
emission current when the pulse length is increased to times of the order
of a millisecond or a second:

1. Gas released from the anode and other electrodes struck by the elec-
trons tends to destroy cathode activity by oxidizing the impurity centers
in the coating. The gas is released both as a direct result of electron bom-
bardment and as a result of heating caused by the kinetic energy of the
incident electrons. It is known that O, CO., SO., H,0, and CO are all
effective in destroying the impurity centers.

2. Under the influence of the potential gradient established in the coating
when current is conducted through the coating, the impurity centers tend
to migrate toward the nickel base leaving a layer of oxide near the surface
that is partially depleted of impurity centers.?

In Figure 2.3-1, curve A, shows the saturation emission current density
that can be drawn from an oxide-coated cathode in a very clean environ-
ment under pulsed conditions. Curve A4, shows the de saturation emission
current that might be obtained under normal operating conditions. The
position of curve A, depends much on the environment in which the cathode
is operated.

2Reference 2.10.
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Causes of Failure. Finally, let us list the principal causes of failure of
oxide-coated cathodes. These are:

1. Formation of excessive interface.

2. Peeling or blistering of the coating.

3. Destruction of the coating by ion bombardment.

4. Evaporation of the coating,.

5. ‘“Poisoning” of the cathode by residual gases or foreign matter within
the tube.

6. Depletion of the activating agents in the base nickel.

Of course, in filamentary cathodes mechanical failure of the filament itself is
still another cause of failure.

(d) The L-Cathode; Pressed and Impregnated Cathodes of Tungsten and

Nickel

TUNGSTEN
MESH —~~—,

(Ba, Sr)CO3———

MOLYBDENUM ——» [ —MOLYBDENUM

AP

—~

a) (b)

Fie. 2.3-4 The construction of the Philips cathodes: (a) the L-Cathode; (b) the
pressed or impregnated cathode. The heaters are shown schematically. (From
A. Venema et al., Philips Tech. Rev. 19, 177, 1957)

Several forms of cathode in which emission takes place from the surface of
a porous tungsten body, which is covered with adsorbed barium and oxygen
atoms, have been developed by the Philips Laboratories.?® One of these,

#3Philips Laboratories, Eindhoven, The Netherlands, and Irvington-on-Hudson, N.Y.,
U.S.A. The fabrication of the Philips cathodes is described in Reference 2.13.



54 PRINCIPLES OF ELECTRON TUBES

known as the L-Cathode, is illustrated in Figure 2.3-4(a). Here the emitting
surface consists of a porous tungsten body of approximately 27 per cent
porosity which is welded to a nonporous molybdenum support. A chamber
between the tungsten and molybdenum initially contains (Ba, Sr)CO; in
solid solution. However, breakdown of the cathode causes the carbonates
to be reduced to a solid solution of (Ba, Sr)O. During operation of the
cathode, evaporated BaO diffuses and migrates through the tungsten pores,
and some of it is reduced by the tungsten. As a result, the outer surface of
the tungsten body becomes covered with adsorbed barium and oxygen
atoms, perhaps nearly a monolayer of oxygen covered with a monolayer of
barium.?* The emission constants for such a surface as measured by
Philips Laboratories are approximately ¢ = 1.67 electron volts and
A’ = 2.5 amps/em?(°K)2. Curve D in Figure 2.3-1 shows a plot of emission
current density vs cathode temperature based on these constants.

In two other cathodes developed by the Philips Laboratories, the oxides
are contained within the pores of the metal body rather than in a reservoir
beneath it. In one of these, known as the pressed cathode, a powdered
mixture of CaCOs, BaCO;, and AlOs is mixed with a powdered tungsten-
molybdenum alloy containing 75 per cent molybdenum, and the resulting
mixture is pressed together in a die. The compact is then removed from the
die and sintered at 1850°C. The resulting metal body has a porosity of
about 40 per cent. It is mounted in a molybdenum support as shown in
Figure 2.3-4(b). Emission properties of the cathode are similar to the L-
Cathode, but the rate of evaporation of BaO from the pressed cathode is
somewhat higher. The use of Al,Os serves to increase the stability of the
cathode in the presence of atmospheric moisture.

In still another Philips cathode, known as the impregnated cathode, a
porous tungsten body of about 17 per cent porosity is first machined into
the desired geometry. Then a powdered mixture of CaCOs, BaCO;, and
AL,O; is brought in contact with the tungsten body and heated until the
powder melts and is drawn into the pores by capillary action. The resulting
cathode shows a lower rate of evaporation of BaO than the pressed cathode
and has generally found favor over both the pressed cathode and the L-
Cathode. (The L-Cathode requires a relatively long activation cycle, and
difficulties are experienced in welding the porous tungsten body to the
molybdenum holder so that there are no cracks through which the BaO
can evaporate.) The emission properties of all three Philips cathodes are
about the same.

24Reference 2.14.
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Several advantages of the Philips cathodes are:

1. High emission capability consistent with reasonably long life. Emis-
sion of a few amperes per square centimeter can be obtained with a cathode
life of the order of several thousand hours when the cathode is operated in a
relatively clean environment.

2. The emitting surface is physically strong and can be shaped very ac-
curately.

3. The surface is capable of withstanding strong ionic bombardment.

4. There is negligible potential drop across the cathode.

The cathodes have the disadvantage of requiring a higher operating tem-
perature than either the oxide-coated cathode or the pressed or the im-
pregnated nickel cathodes discussed below.

Philips cathodes have found application in a number of beam-type tubes,
including cathode-ray tubes and certain microwave tubes. They have also
been used in some magnetron applications.

Pressed and impregnated cathodes can also be made with the porous
metal body made of nickel. Such cathodes combine most of the advantages
of the Philips cathodes with a somewhat lower operating temperature for a
given current density. The pressed cathode is made by pressing together a
mixture of powdered (Ba, Sr)CO; and powdered nickel in a die and sintering
the resulting compact at 1000°C. The nickel body then has a porosity of
about 50 per cent. Curve Bin Figure 2.3-1 shows measurements® of the de
saturation emission current density vs. cathode temperature for the
pressed nickel cathode. Pressed nickel cathodes are used in a number of
beam-type microwave tubes.

Most magnetron oscillators use either pressed or impregnated nickel
cathodes. The magnetron cathode is cylindrical in shape with the emitting
surface on the outer side of the cylinder. During operation of the tube,
many of the emitted electrons are returned to the cathode with appreciable
velocity after traveling some distance through the tube. This “back
bombardment” tends to destroy an oxide-coated cathode, but pressed or
impregnated cathodes show little effect from the returning electrons.
Generally, a molybdenum sleeve provides a base for the cathode, molyb-
denum having greater strength at the cathode operating temperature than
nickel. However, because the coefficient of expansion of the outer nickel
body is somewhat different from that of molybdenum, one or more interven-
ing layers of porous nickel or nickel-molybdenum alloy are used to help
absorb the difference in expansion. The structure of a typical impregnated

25Reference 2.15.
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cathode is illustrated in Figure 2.3-5. Next to the molybdenum, there is a
layer of nickel-molybdenum alloy followed by a coarse porous nickel layer
onto which is sintered the finer outer layer. The porosity of the outer layer

L—— AX1S OF CATHODE Z

le———EMITTING

'
|
I SURFACE
.
moLyspeNuM 1;j\\o(ﬂ'sk POROUS
BASE /T NIckeL BobY
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ALLOY NICKEL LAYER

Fic. 2.3-5 A cross-sectional view of a portion of an impregnated magnetron cathode

is about 50 per cent. The outer layer is generally impregnated by bringing
it in contact with a colloidal suspension of (Ba, Sr)CO;. This is drawn into
the pores by capillary action. Curve C in Figure 2.3-1 shows measurements
of the saturation emission current density from the impregnated nickel
cathode as a function of cathode temperature.

(e) Heating the Cathode

Most oxide-coated cathodes are indirectly heated. Often the cathode
emitting surface in grid-controlled tubes has the shape of a circular or
elliptical cylinder, and the heater consists of a coiled or folded tungsten wire
which is inserted inside the cathode. To prevent the heater from making
electrical contact with the cathode or short-circuiting to itself, a coating of
aluminum oxide is applied to the heater after forming the wire into its final
shape. The coated heater is then fired in an oven at about 2000°K to sinter
the aluminum oxide. The resulting coating is hard and insulating and can
withstand a moderate amount of abrasion during assembly of the tube.
The normal operating temperature of the heater is about 400°C above that
of the cathode.

Filamentary cathodes have the advantage over indirectly heated cath-
odes of being quicker to reach the operating temperature and of requiring
somewhat less power. However, they have a number of important limita-
tions which preclude their use in many vacuum-tube applications. Principal
among these are:

1. The cathode emitting surface has the shape of a long slender wire.
2. The voltage drop across the filament is often comparable to the inter-
electrode voltages.
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3. Mechanical motion of the filament as it warms up generally precludes
the use of filamentary cathodes in tubes where close electrode spacings are
needed.

4. The filament is mechanically weak at the operating temperature and
hence must be supported at one or more points over its length in order to
prevent it from contacting the other electrodes. If the supports are con-
ductors, they must be insulated from the other electrodes.

5. Direct current must be used to heat the filaments of high-gain ampli-
fier tubes, since an ac filament current would introduce hum in the output
of the tube.

Oxide-coated filamentary cathodes have found application in a number of
diode rectifiers, where the voltage drop across the filament and variations in
the electrode spacings do not have an important effect on the tube per-
formance. They are also used in portable radio applications, where low
power consumption is desirable, and in proximity fuses and other military
applications where extremely fast warmup times are needed.

Cathodes that operate at temperatures above about 1400° or 1500°K are
generally directly heated, either as filaments or by electron bombardment.
Indirect heating would require sufficiently high heater temperatures that
the aluminum-oxide coating on the heater would melt or evaporate.

A number of high-power klystron amplifiers which require an ampere or
more of beam current use thoriated tungsten cathodes to take advantage of
the high emission capabilities of thoriated tungsten. The cathode emitting
surface is in the form of a concave disc and is heated by electron bombard-
ment from the reverse side. A bombarding current of several hundred
milliamperes is obtained from an auxiliary oxide-coated cathode which is
held a kilovolt or more negative with respect to the thoriated-tungsten
cathode. The bombarding electrons generate sufficient heat in the thoriated
tungsten cathode to raise it to an operating temperature of about 2000°K.

2.4 Thermionic Emission Energies

The equations given in Section 2.2 for the emission current density can be
used to predict the distribution of emission energies in the direction normal
to the emitting surface. If the work function ¢ of a metal is increased by
W, electron volts, it follows from Equation (2.2-1) that the emission current
density at temperature T is changed by the factor ¢ "»/#7. Consequently,
this fraction of the emitted electrons is able to overcome a work function W,
electron volts greater than that actually present. It follows that the elec-
trons comprising this fraction have more than W, electron volts of kinetic
energy associated with their motion normal to the cathode at the time of
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emission. Similarly, the fraction of electrons that leave the cathode with
greater than W, + dW, electron volts of kinetic energy in the direction
normal to the cathode is e ("»tdWa/Wr and the fraction of electrons that
leave the cathode with normally directed energy in the range W, to W, +
dW ., electron volts is

dP(W,) = €Wnl¥r — Pt dWIWr = ~WalWr[] — dWalW7] (2.4-1)

If dW, is small compared with Wr, Equation (2.4-1) can be written as

AP(W,) = e Waiwr S s (2.4-2)

Wr
This expression gives the probability that the part of the emission energy
associated with motion normal to the cathode lies in the range W. to
W, + dW.. It can be used as a weighting factor to calculate the average

emission energy in the direction normal to the cathode. Thus,

average normally directed energy = / W .dP(W.) = Wr electron volts
0
(2.4-3)

If u, is the electron velocity corresponding to a kinetic energy of W,
electron volts, then W, = mu,?/(2 | ¢ ), where | e | is a positive dimension-
less constant numerically equal to the charge on the electron. Substituting
for W, in Equation (2.4-2), we find that the probability that the emission
velocity of an electron has a component normal to the cathode surface in the
range u, to u, + du, is given by

Mk

dP(un) = o

&~ munt/2kTcly (2.4_4)

It can further be shown? that the emitted electrons have an average
kinetic energy associated with their motion parallel to the cathode surface of
W electron volts, and the probability that the part of the emission energy
associated with motion parallel to the cathode surface lies in the range W, to
W, + dW, electron volts is

dP(W,) = V—;—Te-W:/Wrth (2.4-5)

where the subseript ¢ refers to motion in the “transverse” direction. If u, is
the electron veloeity corresponding to an energy of W, electron volts, the
probability that the emission velocity has a component parallel to the
cathode surface in the range u, to w; + du. is

mue

dP(u;) = T

MRy, (2.4-6)

26Reference 2.4, p. 141.
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It will be helpful to combine Equations (2.4-4) and (2.4-6) to determine
the distribution of total emission velocities and the angular distribution of
the emission velocities. Multiplying the left-hand sides and right-hand
sides of the two equations, we find that the probability that the emission
velocity simultaneously has a component normal to the cathode surface in
the range . to . + du., and a component parallel to the cathode surface in
the range u, to u; + du, is given by

AP (un,u:) = dP(u,)dP(u;) = ( )u,,ute"""’/""”du due (2.4°7)

kT

where w? = u,’ 4 w2 If the emission velocity u makes an angle 6 with the
normal to the surface, then u, = u cosf, and u, = usind. (See Figure 2.4-1.)
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Fre. 2.4-1 The relationship between u, wn, u., and 6.

The probability that the emission velocity lies in the range % to v + dw and
makes an angle with the normal in the range 6 to 8 + d can therefore be
expressed as

2
dP{u,0) = sing cose(kT) se~mut12kTdydp (2.4-8)

Integrating this expression with respect to 8 from 0 to =/2, we find that the

probability that the emission velocity lies in the range % to u + du is given
by

AP () = T mumr g (2.4-9)
W= okT* 2 '

kT
Substituting W = mu?/2 | e | in this, we obtain the probability that the
total emission energy lies in the range W to W + dW, or
= W wiwrg W
dP(W) = o TdWT (2.4-10)
Figure 2.4-2 shows a plot of this probability function vs. W for a cathode
temperature of 1000°K. The average total emission energy is 2Wo.
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From Equation (2.4-8) we can also obtain the angular distribution of the
emission velocities. By integrating the equation with respect to u from 0 to
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Fia. 2.4-2 The probability functions WrdP(W.)/dW,., W rdP(W.)/dW, and
WpdP(W)/dW are plotted vs. W., W, and W, respectively.

®, the probability that the direction of the emission velocity lies in the
range of angle 6 to § + d9 with respect to the normal is found to be

dP(8) = 2 sinf cosh df (2.4-11)

Since the range of angle 6 to 6 + d¢ with respect to the normal defines a
solid angle 2 sinf df, which is subtended at the surface of the emitter, the
current density emitted per unit solid angle at an angle § with respect to the
normal is

dP@) _ ,cosf
Dremddd T x (24-12)
where J, is the emission current density.

In light optics a source of brightness B is said to emit according to
Lambert’s Law if the radiation per unit area per unit solid angle in the
direction 8 with respect to the normal is B cosf. The total radiation from
unit area of the surface is then

w2
/ B cosf 2w sinf dé = =B (2.4-13)
0
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A thermionic cathode is therefore said to emit according to Lambert’s Law,
and the quantityJ,/= is analogous to the “‘brightness” of the emitter, where
J, is the emission current density.

Appendix IV gives a summary of the important relations presented in
this section. We shall make use of these relations in Section 4.4, where the
effects of the electron emission velocities in electron guns are discussed.

It is interesting to note that the total kinetic energy of an emitted elec-
tron plus the energy required to overcome the work function of the metal
must come from heat energy supplied by the cathode heater. Thus, in
addition to making up for heat that is radiated and conducted away from
the cathode, the heater must supply an amount of power given by I,V 40w
to the emitted electrons, where 7, is the net current drawn from the cathode,
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F16. 2.5-1 Secondary emission ratio vs. primary-electron energy for clean surfaces
of several metals. (Cu— Reference 2.16; C, Ni— Reference 2.17; Mo, W —
Reference 2.18.)

and Vyiewr is a voltage numerically equal to ¢ + 2Wr electron volts. If
several amperes are drawn from the cathode, this power amounts to several
watts.
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2.5 Secondary Emission

All solid surfaces, both conducting and insulating, are capable of second-
ary electron emission. The secondary-electron yield for a given bombarding
energy is found to be directly proportional to the current of primary elec-
trons incident upon the surface, and for metals the yield is nearly independ-
ent of the temperature of the emitting surface.

Two important characteristics of the secondary emission from a surface
are the total yield of secondary electrons as a function of the incident elec-
tron energy, and the distribution of secondary-electron energies for a given
primary-electron energy. Figure 2.5-1 illustrates the results of measure-
ments of the first of these quantities for electrons incident upon clean
surfaces of several metals. Plotted in the figure is the ratio of secondary
electrons to primary electrons (often designated as 8) as a function of the
primary-electron energy. The same general shape of curve is found to apply
t0 a large number of pure metals. In all cases, the curve rises to a maximum
at a particular primary-electron energy and then falls off slowly with in-
creasing primary energy.

RELATIVE NUMBER OF ELECTRONS

) . |

o} 50 100 150
SECONDARY- ELECTRON ENERGY IN ELECTRON VOLTS

Fic. 2.5-2 Distribution of energies of secondary electrons from a gold target when
155-volt primary electrons are incident upon the surface. (From E. Rudberg,
Phys. Rev. 50, 138, 1936)

Figure 2.5-2 illustrates the distribution of energies of secondary electrons
from a gold target when 155-volt primary electrons are incident upon the
surface. The majority of emitted electrons have energies less than 30 elec-
tron volts. However, a few have energies ranging all the way up to that of
the incident electrons. It is probable that the true secondary electrons are
emitted with kinetic energies less than 50 electron volts, and that most of
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the electrons emitted with energies between 50 electron volts and the pri-
mary energy are actually inelastically reflected primary electrons. The
spike at the right of Figure 2.5-2 results from elastically reflected primaries.
For the majority of metals, the most probable emission energy of the true
secondary electrons lies between 1.3 and 6 electron volts.

Next let us say a few words about the interactions that oceur within a
clean metal target when primary electrons with energies of a few hundred
electron volts are incident upon the surface. Generally, the primary elec-
trons travel through many atomic layers of solid before their kinetic energy
is reduced to that of the conduction electrons in the metal. It is believed
that the primary electrons lose their kinetic energy through excitation of
both individual electrons and through electron plasma excitations.”? With
each excitation the primary electron abruptly loses an amount of energy
equal to that imparted to the excited electron or electron plasma.

The excitation energy of an electron plasma is a discrete quantized value
which is characteristic of the particular metal target. In most cases this
energy lies between 5 and 30 electron volts. After a very short time interval
the electron plasma excitation energy is in turn imparted to one or more
electrons in the form of kinetic energy.

It is the electrons that are excited nearest the surface of the metal that
have the greatest chance of escaping from the surface and being observed as
secondary electrons. Measurements of the depths from which secondary
electrons are emitted from a platinum target® indicate that, for 500-volt
primary electrons, some of the emitted electrons receive their excitation
energy as far as 15 atomic layers beneath the surface, and for 1000-volt
primary electrons, some of the emitted electrons receive their excitation
energy as far as 30 to 35 atomic layers beneath the surface.?

Of course, many of the excited electrons never reach the surface, and
others lose sufficient energy before reaching the surface that they are unable
to overcome the work function and escape. To evaluate the effect of change
in work function on the secondary emission yield, McKay® evaporated
somewhat less than a monolayer of sodium onto a tungsten surface, thereby
reducing the work function of the surface to about half that of clean
tungsten. He found that the secondary-electron yield at the primary energy
giving maximum ¢ increased by about 60 per cent. Since the amount of
secondary emission from the sodium was probably very small, he assumed

27Reference 2.20.

2Reference 2.21.

#Elastic reflection of primaries probably takes place from the first one or two atomic
layers. However, some inelastic refléction undoubtedly takes place from appreciably
greater depths.

#Reference 2.22.
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that this increase resulted almost entirely from the change in work function
of the surface.

The interactions between the primary electrons and the electrons of the
solid, while best described by means of quantum mechanics, effectively
result from interactions between the coulomb fields of the electrons. The
excited electron receives an impulse that can be expressed as an integral
of force X time. If the primary electron travels faster, the time of in-
teraction is shorter, so that the impulse is smaller, and the probability of
excitation is correspondingly less. This picture can be used to explain the
shape of the curve giving secondary-electron yield vs. primary-electron
energy. At low primary energies, the yield of secondary electrons increases
with increasing primary energy, because the primary electrons expend more
energy in slowing down and hence cause a greater number of excitations.
At appreciably higher primary energies, the primary electrons are less
effective in causing excitations in atomic layers close to the surface (where
the escape probability is greatest), since they travel faster, and the time of
interaction is shorter. Consequently, the secondary-electron yield at higher
primary energies falls off with increasing energy.

Table 2.5-1 lists values of dmax, the maximum secondary-electron yield,
and the corresponding primary-electron energy for a number of metals.3!

TaBLE 2.5-1*
Corresponding
Primary Electron Energy

Metal Omax (Electron Volts)
Al 1.0 300
AU .o 1.46 750
ot 1.0 300
CU.. e 1.3 600
Mo. . ot 1.25 375
N i 1.3 550
P, s 1.8 800
1 0.9 280
W 14 700
/) S 1.1 350

*From H. Bruining, Physics and Applications of Secondary Electron Emission, Per-
gamon Press, London, 1954.

The values given in the table apply only to clean surfaces of the metals.
However, since the electrode surfaces in an electron tube are generally con-
taminated with adsorbed gases, oxides, and material evaporated from the

31Reference 2f, p. 39.
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cathode, the secondary-electron yield from the electrodes is likely to differ
substantially from that for a clean metal surface. An appreciable amount
of oxide on a metal surface often increases the secondary-electron yield by a
factor of 2 or more.

13
f"—_----—"“~\~
12 =1 cuMg =~y
s
/ .
NiBe ™
1" ;/ |
/ |
0 [ L AgMg
//,/ ‘\\\ ~.\~\\
': 9 A ,/f \ ~\\; ~\\-
: /4 e TS
< / -
= 8 /I// NG ~~d
z 7Y AN l <<
S 7/ ___(':UBG AgMg ~-
g 7 /1’// 'f"-,;'?"\‘~;‘ \
N / 17 e / AgBe T3 \\
e Hif /1 | \\\
[
2 {/ aBe\\ I~~~
§ 5 //// S~
? I
(11 / I

3 / Al203

BeO

(o]

o] 100 200 300 400 500 600 700 800 800 1000 1100 1200
PRIMARY —ELECTRON ENERGY IN ELECTRON VOLTS

Fi6. 2.5-3 Secondary emission yield vs. primary-electron energy for several com-
pound surfaces. (After R. Kollath, Handbook of Physics, Vol. 21, p. 232, Springer
Verlag, Berlin, 1956)

Certain compound surfaces have been found to give particularly high
secondary-electron yields. Values of 8. ranging as high-as 10 or 12 have
been reported in some cases. Several surfaces which have found application
in electron tubes as good secondary-electron emitters are: a film of CssSb
deposited on a metal electrode, magnesium oxide on the surface of a silver-
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magnesium alloy, beryllium oxide on the surface of a copper-beryllium alloy
or a nickel-beryllium alloy, and cesium oxide partially reduced on a base of
silver. Table 2.5-2 lists values® of 8. and the corresponding primary-

TaBLE 2.5-2
Corresponding
Primary Electron Energy

Metal Omeax (Electron Volts)

CssSb. oo 8.0 500

AgMg. .o 9.8 500

CuBe.....covvviiiiiiiiii 3.5-5.5 500-700

NiBe....oviieiiieiiieiaaiann 12.3 700

AgCsOrCs....oooviiiiiiin 5.8-9.5 500-1000

electron energy for these surfaces. Figure 2.5-3 shows a plot of the second-
ary-electron yield for several compound surfaces as a function of the pri-
mary-electron energy. The values of 8.« obtained for these surfaces depend
markedly on the manner of preparation of the surface, wide variations being
possible.

If a surface is very rough, the escape probability of the emitted electrons
may be substantially reduced, since electrons emitted from the bottom of a
hole or valley may strike other projecting parts of the surface and be re-
captured. In cases where it is desirable to reduce the secondary emission
from an electrode, the electrode is often coated with fine earbon granules.
Bruining® found that optimum reduction in the secondary-electron yield
occurs when the carbon granules are about 30 angstroms in diameter and
form a fine labyrinth. A plot of Bruining’s measured secondary-electron
yield for carbonized nickel is shown in Figure 2.5-1 (curve “C(rough)”).
The carbon can be deposited on an electrode either by spraying the elec-
trode with a suspension of lamp black or by passing it through a flame that
is generating carbon.

Curves giving the secondary-electron yield vs. primary-electron energy
for an insulator are similar in shape to those given in Figure 2.5-1, but the
values of 6max are often appreciably greater. Figure 2.5-4 shows a plot of
the secondary-electron yield from mica. In experiments to measure the
secondary emission from an insulator, care must be taken to avoid charging
the surface of the insulator, or the primary-electron energy will be in-
determinate. Several experimenters have devised pulsed techniques which
overcome this difficulty.

2Courtesy Allen B. Dumont Laboratories, Clifton, N.J.
33Reference 2.17.
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Fic, 2.5-4 Secondary emission yield vs. primary-electron energy for mica. (After
H. Salow, Z. Tech. Phystk 21, 8, 1940)

Secondary emission is of interest in electron-tube work, sometimes as a
useful effeet and sometimes as an undesirable effect. In photomultiplier
tubes a number of high-yield secondary emitting surfaces (“dynodes”)
are operated in cascade with the result that very high overall gaints are
obtained. In tubes using 10 dynodes, overall gains of the order of 10° or
108 are often obtained.

In a magnetron many of the emitted electrons are accelerated by the rf
field and then driven back against the cathode with appreciable velocity.
The resulting secondary-electron emission probably accounts for a majority
of the total emission from the cathode, although thermionic emission is
generally also needed to keep the device in operation.

On the other hand, secondary emission often adversely affects the char-
acteristics of certain multielectrode tubes. One such tube is the tetrode
vacuum tube, described in Chapter 5. If the screen grid of a tetrode is
more positive than the anode, secondary electrons emitted from the anode
are drawn to the screen grid; and over a range of the operating parameters,
the anode current of some tubes decreases with increasing anode voltage.

Sometimes circuits employing grid-controlled tubes have been found to
be bistable because of secondary emission from one of the grids. In one
state a grid connected through a resistance to a fixed positive supply acts
as an electron collector, & being less than 1.0. In this case, the potential
of the grid is biased to a value less than that of the fixed supply. In the
other state the grid potential is above that of the fixed supply, with the
result that the electrons arrive with more velocity causing 5 to be greater
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than 1.0, and the grid acts as an electron emitter. To obtain this second
state there must be another electrode nearby at a still higher potential in
order to collect the emitted electrons.

2.6 Photoelectric Emission

Photoelectric emission results from the interaction of photons incident
upon a solid and electrons within the solid. The interaction is such that an
individual photon imparts all its energy to a single electron within the solid.
If the photons are incident upon a conductor or semiconductor and if the
photon energy is greater than the work function of the surface, a fraction
of the photons will be effective in causing the emission of electrons from the
surface.

The energy of a photon is given by kv = ke/\, where h is Planck’s con-
stant, » is the frequency of the radiation, ¢ is the velocity of light, and A
is the wavelength of the radiation. Expressed in electron volts, the photon
energy is equal to 12.4 X 103/ electron volts, where \ is measured in
angstrom units. (The visible spectrum extends from about 3800 to 7600
angstroms corresponding to photon energies ranging from 3.3 to 1.6 electron
volts, respectively.)

At room temperature very few electrons in a conductor are in energy
states above the Fermi level, and hence the maximum energy of the escap-
ing electrons is very nearly given by hv — ¢, where ¢ is the work function
of the surface. If the work function is greater than 3.3 electron volts, only
ultraviolet radiation will cause photoelectron emission from the surface.

Figure 2.6-1 shows plots of photoelectric emission from clean surfaces of
several metals, semimetals, and one semiconductor as a function of the
energy of the incident photons. The ordinate in the figure indicates the
fraction of the photons incident upon the surface that cause emission of a
photoelectron. This fraction is called the quantum efficiency of the surface.
Since visible light corresponds to photon energies in the range between 1.6
and 3.3 electron volts, we see that some surfaces respond only to ultraviolet
light. Thus a clean platinum surface requires photon energies in excess of
4.6 electron volts to cause electron emission. The quantum efficiencies of
clean metal surfaces are generally extremely low, of the order of 10~*
or 1075, and consequently clean metal surfaces have found little application
in photoelectric devices.

Mouch better photoelectron yields are obtained from certain compound
surfaces. Figure 2.6-2 shows the relative photoelectric emission of several

34The preparation of high-yield photoemissive surfaces is described in Reference 2k,
Chapter 1.
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Fia. 2.6-1 Quantum efficiency of clean surfaces of several metals, semimetals,

and one semiconductor as a function of the energy of the incident photons. (After
Phys. Rev. T4, 1462, 1948 76, 270, 1949; 84, 508, 1951; 81, 612, 1951)

frequently used compound surfaces as a function of the wavelength of the
incident light. The $-11 surface is a cesium-antimony film so processed that
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it is largely CssSb. Often the film is deposited as a layer several hundred
angstroms thick on a part of the glass envelope of the tube.® Light is shone
through the glass at the photoemissive surface, and the photoelectrons are
drawn from the opposite side, or vacuum side, of the surface. Electrical
contact to the photoemissive surface is made through an evaporated film

PHOTON ENERGY, hv, IN ELECTRON VOLTS
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Fia. 2.6-2 Photoelectric emission current from several frequently used compound

surfaces as a function of wavelength of the incident light. The curves are for equal

values of incident radiant flux at all wavelengths. (Courtesy Allen B. DuMont
Laboratories, Ine., Clifton, N.J.)

of metal which is deposited on the glass around the edge of the region
through which the light is shone. The S-5 surface is also a cesium-antimony
surface, the processing being somewhat different from that for the S-11
surface. The high response of the S-5 surface in the ultraviolet region is
obtained by making the tube envelope of a glass which is transparent to
ultraviolet light.

The S-8 and S-10 surfaces are compound surfaces prepared from silver,
bismuth, and cesium. Cathodes having the S-3 response have compound
surfaces of silver, rubidium oxide, and rubidium, whereas those having the
S-1 response have compound surfaces of silver, cesium oxide, and cesium.

35Sometimes a layer of manganese oxide is first deposited on the glass.
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Both the 8-3 and S-1 surfaces have relatively low photoelectron yields but

are capable of emission at wavelengths extending well into the infrared
region. The upper limit of sensitivity for the S-3 surface occurs at about
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Fie. 2.6-3 Quantum efficiency of a thick film of Cs;Sb as a function of photon
energy in electron volts. The data refer to electron emission on the same side of the
film as that on which the light was incident.

9000 angstroms, and that for the S-1 surface occurs at about 12,000 ang-
stroms.

The ordinate in Figure 2.6-2 is amperes per watt of incident light, which
is numerically equal to coulombs per joule or electrons per electron volt.
Hence multiplying the ordinate of the curve by the photon energy in elec-
tron volts (i.e., electron volts per photon) gives the quantum efficiency
in electrons per photon. Thus the S-11 curve has a maximum of nearly
52 X 107° amp/watt at a wavelength of 4400 angstroms. The corres-
ponding photon energy is 2.8 electron volts, and the quantum efficiency of
the surface for photons of this energy is 52 X 1073 X 2.8 = 0.15 electron/
photon. Figure 2.6-3 shows results of measurements of the quantum
efficiency of a thick film of Cs;Sb when light is incident upon the same side
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of the film as that from which the emission takes place. Over a range of
wavelengths from 2200 angstroms to 4000 angstroms, about one quantum
in five is effective in causing the emission of a photoelectron.
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Chapter 3

BEAMS AND LENSES

An axially symmetric electric or magnetic field can be used to focus a
beam of electrons much as a light lens focuses visible rays. Figure 3-1
illustrates the focusing action of a converging light lens. Rays that pass
through the lens close to the axis and in directions nearly parallel to the

FOR SMALL &,/

Fie. 3.1 The focusing action of a converging light lens on rays which are close
to the axis and nearly parallel to the axis.

axis are given a deflection which is proportional to the distance of the rays
from the axis.

An axially symmetric electric or magnetic field, or a combination of the
two, acts in a similar manner on the trajectories of electrons traveling
through the field. Electrons that enter the field along paths close to the -
axis and nearly parallel to the axis experience a radial force which is pro-
portional to the distance of the electrons from the axis. The electron tra-
jectories therefore are deflected in proportion to their distance from the axis,
and the axially symmetric field acts as a lens. Figures 3-2(a) and 3-2(b)
illustrate an electric electron lens and a magnetic electron lens, respectively.

74
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A considerable parallelism exists between the geometric relations that
govern the paths of light rays through a light lens and those that govern
the trajectories of electrons through an electron lens. However, it will be
useful to note several important differences between the two kinds of lenses.
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Fie. 3.2 An electric electron lens and a magnetic electron lens.

In the first place, the boundaries of a light lens are usually well defined,
whereas an electron lens between field-free regions has no well-defined
boundaries, since the field approaches zero asymptotically at the ends of
the lens. Rays passing through a light lens, such as that illustrated in
Figure 3-1, suffer abrupt changes in direction in passing between the dif-
ferent media that make up the lens, but the electron trajectories in an
electron lens change only in a continuous manner. The electron lens has
greater versatility than a light lens in that its strength can be varied merely
by changing the field intensity. However, we shall find that a charge-free
region of axially symmetric electric or magnetic field can act only as a
converging lens on a beam of electrons whose path begins and ends in
regions of zero field. In this respect there is no counterpart to the diverging
lens of light optics. Furthermore, aberrations in electron lenses are gen-
erally greater than in light lenses, and correcting for the aberrations is
much more difficult. Finally, a magnetic electron lens causes a rotation
of the image about the axis of the lens, and there is no counterpart to this
in light optics.

It will be convenient to make use of several simplifications in notation
in expressing the equations we shall use in this chapter. A single dot over a
variable will be used to indicate the first derivative with respect to time, and
a double dot will indicate the second derivative with respect to time.
Thus # = dr/dt, and # = d*/di*. Similarly ' = dr/dz, and v’ = d* /dz?,
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F1a. 3.1-1 Several electric electron lenses. Approximate shapes of trajectories of
electrons passing through the lenses are shown by the solid lines.

where z is the axial coordinate. The ratio e/m appears frequently in the
equations, and we shall denote it by 1.

3.1 Electric Lenses

Figure 3.1-1 illustrates several types of electric lenses. The approximate
shapes of trajectories of electrons passing through the lenses are shown in
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the figure. The lens shown in Figure 3.1-1(a) is formed by two coaxial
eylinders of equal radius, the one at the right being at higher potential
than the one at the left. An arrow on the upper trajectory indicates that
it is the trajectory of an electron which passes through the lens from left
to right. To the left of the gap the electron experiences a radial force
tending to deflect it toward the axis, whereas to the right of the gap the
radial force is directed away from the axis. However, since the electron is
further from the axis to the left of the gap, and since the radial component
of the field increases with distance from the axis, the inward force to the
left of the gap is stronger. Furthermore, the electron travels more slowly
to the left of the gap because it is in a region of lower potential. Conse-
quently, the trajectory receives a net deflection toward the axis, and
some distance to the right of the lens the electron crosses the axis.

The lower trajectory shown in Figure 3.1-1(a) is that of an electron which
travels from right to left. As the electron enters the field, it is at first de-
flected away from the axis. However, after passing the gap, the electron
travels more slowly, and since it is further from the axis, it experiences a
relatively strong inward force. The electron, therefore, receives a net de-
flection toward the axis in passing through the lens.

Similar reasoning applies to the other electron trajectories shown in
Figure 3.1-1. Each trajectory is reversible in the sense that an electron
emerging from the lens would follow the same path back through the lens
if its direction of travel were reversed without changing the magnitude of
its velocity. Clearly, for a given potential difference between the electrodes,
the faster an electron is traveling at the time it passes through a lens, the
smaller the angle through which it will be deflected.

A particularly interesting lens is that illustrated in Figures 3.1-1(c) and
3.1-1(d). The lens focuses an electron beam for either Vo > Vior V, < Vi
By holding V; constant and varying V, the stength of the lens can be
varied without changing the electron velocity on either side of the lens.
Such a lens is used in many cathode-ray tubes to focus the electron beam.
It is often called an einzel lens. The German word “einzel” means “single”
and is used in this case to imply that the potential and the electron velocity
are the same on either side of the lens.

Let us consider the radial forces acting on an electron in an axially
symmetric electric field. In Appendix V it is shown that the potential at
radius » from the axis of an axially symmetric potential distribution is
given in terms of the potential along the axis by

2 .
Vie,r) = V(z,0) — Z—V”(z,O) + GL;V”"(z,O) - (3.1-1)

where V(z,0) is the potential along the axis, and the primes indicate dif-
ferentiation with respect to z. By means of Equation (3.1-1) the potential
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at all points in an axially symmetric potential distribution can be described
in terms of the potential on the axis. For regions close to the axis we can
neglect all but the first two terms of this expression, so that

2
Vier) = V(z,0) — g—v"(z,()) (3.1-2)
and the radial gradient of potential is given by
aVizr) _ _Ton

Since the radial force acting on an electron is given by —eE, = e(dV/dr), it
follows that for small r the radial force is proportional to the distance of
the electron from the axis. If the electron is traveling nearly parallel to
the axis, its trajectory is deflected by an amount proportional to the dis-
tance of the trajectory from the axis. This therefore explaing the lens action
of an axially symmetric electric field.

Figure 3.1-2 shows a two-cylinder electron lens in which the spacing
between the cylinders is small compared with their radii. An expression!

vy Va
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Fia. 3.1-2 A two-cylinder electric lens. The axial potential ¥ (z,0) and its first and
second derivatives are shown below the lens. The positions of the principal planes
and the focal points for V, = 4V, are indicated (see Figure 3.1-4).

1Reference 3.1.



BEAMS AND LENSES 79

for the potential along the axis V(2,0) is plotted in the figure together with
plots of V'(2,0) and V''(2,0). The potential V(z,0) varies only slightly
with changes in spacing between the cylinders, provided the spacing re-
mains small compared with the radii of the cylinders. From the foregoing
discussion it is evident that the radial foree on an off-axis electron is pro-
portional to the product of the distance of the electron from the axis and
V”'(2,0). To the left of the mid-point between the cylinders the radial
force is directed toward the axis, and for a given value of r it reaches a
maximum R/2 to the left of the mid-point, where R is the radius of the
cylinders. To the right of the mid-point the radial force is outward, and
for a given value of r it reaches a maximum R/2 to the right of the mid-
point. ,

The equation describing the trajectory of an electron that travels nearly
parallel to the axis of an axially symmetric electric field and at a small
distance r from the axis is known as the paraxial-ray equation. It will be
helpful to derive this equation, since we shall use it in later discussion.
From Equation (3.1-3), we can express the radial force acting on an electron
as

mi = ng”) = ~ZV"G0) (3.1-4)
Now
PR (3.1-5)
and
P =GR+ s (3.1-6)

If the electron trajectory is nearly parallel to the axis, z will be approximate-
ly equal to the total velocity of the electron, and (2)? can be equated to
29V (2,r), where n = e/m, and V(z,r) is measured relative to cathode potential.
The quantity z on the right-hand side of Equation (3.1-6) is equal to the
instantaneous acceleration of the electron in the z direction, or nV'(z,r).
Furthermore, V(z,r) = V(2,0) and V'(z,r) = V'(2,0), so that Equation
(3.1-6) can be rewritten as

= 29V (2,0)r" + 9V'(2,0)r 8.1-1)
Combining this with Equation (3.1-4), we obtain
V'(2,0) V' (2,0)
2 ") o ) -
"+ V0 + 4V(z,0)r 0 (3.1-8)

This is the paraxial-ray equation which we set out to derive. Several
important conclusions can be drawn from it:

1. If ri(z) and ry(z) are two independent solutions of the equation, then
ari(z) + bra(2) is also a solution of the equation, and, in fact, any solution
r3(2) can be expressed in the form r;(2) = ari(z) + bre(2).
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2. Since the equation is homogeneous in V, increasing the electrode
potentials in the same proportion does not change the shape of the tra-
jectory. through the lens. Furthermore, the equation is independent of
¢ and m, so that an electron or a negatively charged ion accelerated through
the same potential rise and entering the lens along the same trajectory
would follow the same path through the lens.

Equation (3.1-8) can be expressed in a second useful form by substituting
r=8y-i (3.1-9)
where V = V(z,0). This leads to

16\ V

Let us integrate Equation (3.1-10) along the axis of an axially symmetric
field from one region of zero field to another. We obtain

S+ 1(2)28 -0 (3.1-10)

22 ’
S — S = _% . (—177)2Sdz (3.1-11)
where z; and z; are the z coordinates of two points on the axis on opposite
sides of the lens and at which the potential gradient is zero. The point 2,
is assumed to be on the initial side of the lens, and the point 2z, is on the final
side. Since the integrand on the right-hand side is always greater than zero,
it follows that

S -8 <0 (3.1-12)

Now 8 = rV¥4 and §' = V4 + rV’/4V3/4. Consider an electron which
approaches the lens along a path that is parallel to the axis but displaced
from it. For such an electron

Sy = | Vs 4 V' /4T |, = 0

since ' = V' =0 at 2 = z. It follows from Equation (3.1-12) that
S’ < 0. However, at z = 2z, V' = 0, so that 7’ < 0 at 2 = z;. Thus the
path of the electron is bent toward the axis by the field, and we must
conclude that all charge-free regions of axially symmetric electric field between
field-free regions act as converging lenses.

If an electron approaches a lens along a path that is parallel to the axis
but displaced from it, the electron emerges from the lens as though it were
deflected at a plane which generally is not at the geometrical center of the
lens. This effect is illustrated in Figure 3.1-3 for several trajectories passing
through an axially symmetric field at different distances from the axis.
The plane at which the trajectories appear to have been deflected is called
a principal plane, and the point where the electrons ultimately cross the
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REGION OF FIELD

PRINCIPAL
PLANES

Fic. 3.1-3 The principal planes, the focal lengths, and the focal points of a lens.

axis is called a focal point. The distance from the principal plane to the
focal point is called the focal length. There are two principal planes I and II,
two focal points F; and F, and two focal lengths f; and f,, one of each associ-
ated with electrons moving in either direction through the lens. If the
electrodes and their potentials are symmetrical about the geometrical
mid-point of the lens, as in the case of the einzel lens shown in Figures
3.1-1(c) and 3.1-1(d), the focal points and principal planes are also sym-
metrically located about the mid-point. However, in the case of the lens
shown in Figure 3.1-2, where the potentials are not the same on either
side of the geometrical mid-point, the principal planes are displaced to-
ward the low-voltage side of the lens, and the focal lengths are not equal.
The location of the principal planes and focal points is shown in Figure
3.1-2 for the case in which the potential of the right-hand cylinder is four
times that of the left-hand cylinder.

Mathematical expressions for the potential V(2,0) along the axis of a
lens are available for only a few electrode configurations, one example
being the two-cylinder lens of Figure 3.1-2. Goddard? has used the ex-
pression for ¥ (z,0) given in Figure 3.1-2 to obtain solutions of the paraxial-
ray equation for the case of electrons which approach the lens along paths
that are parallel to the axis but displaced from it. In this way the positions
of the prineipal planes and the focal lengths of the lens were determined as
functions of V./V.. Figure 3.1-4 shows plots of the focal lengths f, and f.
and the distances z; and z, from the mid-point of the lens to the principal
planes for a range of values of V,/V:. The location of the principal planes
is found to remain nearly constant for V./V, greater than about 4.

2Reference 3.2.
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Fic. 3.1-4 The focal lengths f; and f; for a two-cylinder lens, such as that shown in

Figure 3.1-2, as a function of the ratio of the potentials applied to the cylinders.

The potentials V; and Vs are measured relative to that of the cathode from which

the electrons are emitted. The distances x; and z; from the gap between the cyl-

inders to the principal planes are also plotted in the figure. (From L. 8. Goddard,
Proc. Cambridge Phil. Soc. 42, 106, 1946)

In general, expressions for V(z,0) are very complicated, so that an ex-
plicit solution of the paraxial ray equation is difficult, if not impossible,
to obtain. Furthermore, for many electrode configurations an expression
for V(2,0) is not available. When there is no expression for V(z,0), the
electrode configuration can be simulated in an apparatus called an elec-
trolytic tank, and the axial potential can be measured experimentally.
Approximate solutions to the paraxial-ray equation can then be obtained
by breaking the field up into a number of segments in the axial direction

3See, for instance, Reference 3b, Figure 5.15, p. 67.
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and estimating the path of an electron across each segment.! In a few
specific electron lenses, data concerning the locations of the principal
planes and focal lengths have been obtained by direct measurement of the
focusing action of the lenses upon electron beams passing through them.
Such data are given in Reference 3.5 and in Reference 3e, pp. 369-373.
In Appendix VI the following relations between the object position, the
image position, and the focal lengths of an electron lens are derived:

Ly b
hil_y (3.1-13)
magnification = a8 SIZ& _ hiv (3.1-14)

object size  fru

and

% _ (%)“2 (3.1-15)

where the object is located w units to the left of the first focal plane and the
image is located v units to the right of the second focal plane. The region
to the left of the lens is at potential ¥, with respect to the cathode, and the
region to the right of the lens is at potential V.. From Equation (3.1-15)
we see that for the two-cylinder lens shown in Figure 3.1-2 the focal length
fais twice fi, when V, = 4V,

In a cathode-ray tube the electron gun directs the beam to a “crossover,”
and a lens beyond the crossover forms an image of the crossover at the
screen of the tube. Using Equations (3.1-13) and (3.1-14), the position of
the image and its magnification can be related to the focal lengths of the
lens and the position of the crossover.

The concepts of principal planes, of focal points, and of focal lengths
have been adopted from light optics, where they are used to describe the
paths of light rays through lenses. The arguments that are employed in
Appendix VI to derive Equations (3.1-13) and (3.1-14) apply equally well
to a light lens, and, in fact, Equations (3.1-13) and (3.1-14) are of principal
importance in work with light lenses. It can be shown that the square root
of electric potential in the case of an electron lens is analogous to index
of refraction in light optics. For a light lens at the surface between two
media of different indices of refraction, the ratio of the focal lengths is
given by fo/fi = ns/ni, where n, and n, are, respectively, the refractive
indices of the media in which the focal points F, and F, are located. The
two-cylinder lens shown in Figure 3.1-2 is therefore analogous to a light lens

4Methods for making such computations are discussed in: Reference 3. 3; Reference
3.4; Reference 3a, Chapter III; Reference 3b, p. 101; Reference 3e, p- 360.
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at the boundary between two media of different refractive indices, whereas
the einzel lens is analogous to a light lens surrounded by a medium of the
same index of refraction.

3.2 Magnetic Lenses

Figure 3.2-1 shows a magnetic lens that is formed by a cylindrical per-
manent magnet and two re-entrant pole pieces. Since the magnetic poten-
tial outside, the magnetic material satisfies Laplace’s Equation, the off-axis
magnetic potential can be expressed in terms of the potential on the
axis using Equation (3.1-1), where V(z,0) is replaced by ¢(z,0), the
magnetic potential on the axis. The magnetic flux density B in a region
of free space is proportional to the gradient of magnetic potential, and it
follows from the magnetic equivalent of Equation (3.1-3) that the radial
component of B is directly proportional to r for small ». The z component
of B, on the other hand, is nearly constant with r for small r, since the
equipotential surfaces are normal to the axis at the points where they cross
the axis.

Consider an electron that enters the lens shown in Figure 3.2-1 from the
left along a path that is initially parallel to the axis but displaced a small
distance from it. To the left of the gap the radial component of B is
directed toward the axis and, since the force acting on an electron in a
magnetic field is —e(u X B), the electron experiences a force that is
directed out of the page. This gives the electron angular momentum about
the axis, so that it crosses the z component of B as it passes through the
central region of the lens. The z component of B deflects the electron
toward the axis as it passes through the central part of the lens. Beyond
the center of the lens the lines of B have a radial component away from the
axis, and the electron loses angular velocity about the axis. We shall find
that when the electron has traveled beyond the region of field, its angular
velocity about the axis is reduced to zero. The electron therefore emerges
from the lens with a radial component of velocity, which is directed toward
the axis, and with no angular velocity. At some point beyond the lens the
electron trajectory passes through the axis.

Suppose that two electrons approach the lens along paths that are parallel
to the axis and lying in a plane containing the axis. One path is twice
as far from the axis as the second, and the radial distance from the axis to
each of the paths is small. As the electrons enter the magnetic field, the
radial component of B encountered by the outer electron is twice that en-
countered by the inner electron, so that the outer electron acquires twice
as much velocity in the 6 direction. The angular velocity of the two electrons
about the axis is therefore the same, and the outer electron crosses the z
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Fia. 3.2-1 A magnetic electron lens.
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component of B with twice as much velocity and receives twice as much
deflection toward the axis. Beyond the center of the lens, the outer electron
again experiences twice the radial component of B, this time directed away
from the axis, and loses twice as much velocity in the ¢ direction. Both
electrons therefore emerge from the lens with zero angular velocity, and,
since the outer electron received twice as much deflection toward the axis,
both are directed toward the same point on the axis. Consequently, the
trajectories to the right of the lens lie in a plane which contains the axis,
but which is rotated about the axis from the plane that contained the
trajectories to the left of the lens.

It will be helpful to develop two equations that describe the motion of an

LINES OF B\ ,~SURFACE OF REVOLUTION
/

Frc. 3.2-2 A surface of revolution which contains the electron trajectory. The axis
of the surface of revolution coincides with that of the field.
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electron as it travels through an axially symmetric magnetic field along a
path close to the axis and nearly parallel it. The electron is assumed to
have zero initial angular velocity about the axis. The first equation relates
the instantaneous angular velocity of the electron to the axial magnetic
field, and the second describes the radial motion of the electron in passing
through the field. The second equation is known as the paraxial-ray equa-
tion for magnetic fields.

Figure 3.2-2 shows a portion of a surface of revolution which contains
the trajectory of an electron that enters the magnetic field along a path
directed away from the axis. The axis of the surface of revolution coincides
with that of the field. As the electron crosses the lines of B, it experiences
a force in the 8 direction, and from Equation (1.2-5) we can write €hat

2
98 — wr(sB. — iB.) (3.2-1)
where 6 = d6/dt and 1 = e/m. Multiplying by dt, we obtain
d(r®) = nr(drB, — dzB,) (3.2-2)

Consider an incremental length of trajectory in which the electron ad-
vances a distance dz in the z direction and a distance dr in the r direction.
The magnetic flux that crosses the portion of the surface of revolution cor-
responding to the axial length dz can be expressed as

d® = 2#r(drB, — dzB,) (3.2-3)
where d® is assumed to be positive if the flux within the surface of revolu-

tion increases as z increases. Combining Equation (3.2-2) with Equation
(3.2-3), we obtain

d(r%) = 2”7d¢ (3.2-4)

Integrating this equation along the axis from a point to the left of the
lens where § = & = 0 to a point within the region of field, we obtain

24 — -
720 2‘n_':I> (3.2-5)

For small r, ® is related to the axial magnetic flux density by B, = ®/=r?,

so that

o =22 (3.2-6)
Thus the angular velocity of the electron at a given point on its trajectory

is proportional to the z component of magnetic field at that point, and when

the electron has traveled beyond the region of field, its angular velocity is
reduced to zero.
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From Equation (1.2-4), the radial force acting on the electron is given by

# —r(§)? = —mréB, (3.2-7)
Combining this with Equation (3.2-6), we obtain
2
F + (’”23’) r=0 (3.2-8)

Now for an electron traveling nearly parallel to the axis of an axially
symmetric magnetic field in a region where the electric potential is con-
stant, Equation (3.1-7) reduces to

f = 2q9Vr” (3.2-9)

where V is the potential through which the electrons have been accelerated.
Combining Equations (3.2-8) and (3.2-9) gives

r 5’77B}r =0 (3.2-10)
This is the paraxial-ray equation for electrons traveling in an axially
symmetric magnetic field when no electric fields are present. Together with
Equation (3.2-6) it describes the trajectory of an electron traveling close to
the axis of the field and nearly parallel to the axis. Since Equation (3.2-10)
is linear, any solution of the equation can be expressed as a linear com-
bination of any two other independent solutions.

Rewriting Equation (3.2-10) in the form

v = —gnBr (3.2-11)
we see that wherever B, is different from zero, r” is negative, and the
trajectory is curved toward the axis. Hence all magnetic lenses are con-
verging.

A ““weak’ lens is one for which the focal length is long compared with
the region of field. Suppose that an electron approaches such a lens along
a path that is initially parallel to the axis but displaced a small distance
from it. Integrating Equation (3.2-11) along the axis between points on
either side of the lens where the field is zero, we obtain

2
r = -8—”7 , Borde (3.2-12)
where 2 and z; are points on the axis on opposite sides of the lens and be-
yond the region of field, and .’ is the slope of the trajectory at z = 2.
If the focal length is long compared with the region of field,  will remain
nearly constant in the region of field and can be taken outside the integral
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in Equation (3.2-12). The focal length f for such a lens is then given by

1 22
1__r_ / B.dz (3.2-13)

1

In a magnetic lens the foeal lengths fi and f» are equal; and if the magnet
and pole pieces are symmetric about a central plane, the principal planes
are located equal distances on either side of the central plane. In the weak
lens approximation it is generally sufficient to assume that the principal
planes coincide with the mid-plane of the lens.

Fic. 3.2-3 An electromagnet lens.

Figure 3.2-3 shows an electromagnet lens with re-entrant pole pieces
that almost touch each other. In the eylindrical region of space extending
from the axis out to the pole pieces, f H-dl around any closed path is equal
to zero, and we can define a magnetic potential within the region such that
the magnetic potential difference between two points is equal to fH~dl
along any path between them.® If the cylindrical part of the pole pieces
is made of high permeability steel, so that it acts as a unipotential body,
and if the spacing between the pole pieces is small compared with the
inside radius of the pole pieces, a plot of magnetic potential along the
axis would be of similar shape to the electric potential V(z,0) plotted in
Figure 3.1-2. The axial potential therefore would be proportional to tanh
(1.322/R) + constant, where R is the inside radius of the pole pieces. The

sHowever, we must confine ourselves to a region that does not surround the coil,
since [ H-dl along a closed path which surrounds the coil is not zero, and the magnetic
potential would not be single-valued.
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axial magnetic flux density would be proportional to the gradient of this
and can be expressed as

B, =B, sechz(l'ffz) (3.2-14)

Substituting this expression in Equation (3.2-13), we obtain for the re-
ciprocal of the focal length

1_ 9., 1.322
7= SVB° /; sech“( % )dz (3.2-15)
Using the relations sech? z = 1 — tanh?z and sech? zdz = d(tanh z), we
obtain
1_9,,R (1.32z _ tanh3{1.32z) #
7 = gvbe 1.32[tamh 2 3\ R /.
~1psB 4 _np, :
8VB° 1.323 8VB°R (3:2-16)

where the points z; and 2; have been taken to be effectively at — « and
+ =, respectively. The focal length f is therefore given by

8V |4
7= 3BiR ~ 530 X 10°B.R (3:2-17)
For V' = 10* volts, B, = 10~% weber/meter?, R = 2 X 102 meter (2 cm),
the focal length f is 0.23 meter or 23 em. In prineiple, such a lens might be
used to focus the beam of a television picture tube.

If an electron trajectory on one side of a lens lies in a plane containing
the axis, the trajectory after emerging from the lens will also lie in a plane
containing the axis. However, the second plane is rotated about the axis
from the first plane. From Equation (3.2-6) the angle of rotation between
the planes is given by

¢ 2 .
ol _n [t d _ [a [ ]
o= 2./;1 Bt = 2/;1 Bzdz/dt = VSV_/, B.dz (3.2-18)

1

where {; and ¢, are, respectively, the times at which the z coordinate of the
electron is z; and 2,, and where it is assumed that 2 is very nearly constant
through the lens and is equal to 429V. If B, isin the direction of travel of
the electron, ¢ is positive. In the case of the lens described above with
V = 10* volts, B, = 1072 sech? (1.322/R) weber/meter?, and R = 2 X 102
meter, the angle 6 is 0.45 radian, or 26 degrees.

3.3 Aberrations and Deflection Defocusing Effects

Like light lenses, electron lenses have aberrations, or imperfections in
their image-forming and focusing characteristics. Figure 3.3-1 illustrates
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F1a. 3.3-1 Spherical aberration, or aperture defect.

one type of aberration common to all electron lenses and known as spherical
aberration, or aperture defect. This is one of the most serious defects of
electron lenses. Rays that pass through the lens far from the axis are
focused to a different focal point than the paraxial rays. In the figure, rays
that enter the lens along paths that are parallel to the axis and very close
to it are focused to the point ;. However, rays that are initially displaced

F16. 3.3-2 Measurements of the spherical aberration in a two-cylinder electric
lens. (From O. Klemperer, Electron Optics, 2nd Ed., Cambridge University Press,
1953)
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an appreciable distance A from the axis are focused to the point Fy/, and
rays that are initially displaced a distance 2 from the axis are focused to
the point F,"’. In electron lenses the focal point generally moves closer to
the lens for rays that are further from the axis. The effect can be accounted
for if the theory presented in Sections 3.1 and 3.2 is extended to include
higher-order terms in the expressions for the off-axis fields, and if the
angles through which the electron trajectories are deflected are no longer
assumed to be small.

Figure 3.3-2 shows experimental data concerning the spherical aber-
ration in a two-cylinder electron lens. Rays that approach the lens along
paths that are parallel to the axis and displaced a distance & from it are
deflected so that they cross the axis a distance f’ from the geometrical mid-
point of the lens. For a given semi-aperture A and focal length, the spherical
aberration is evidently less when the electrons are accelerated in passing
through the lens than when they are decelerated. To a first approximation,
the axial displacement of the focal point is proportional to the square of
the lens semi-aperture . Magnetic lenses are generally found to have less
spherical aberration than electric lenses of comparable focal length.

Suppose that in Figure 3.3-1 a screen were placed perpendicular to the
axis at F,. If the semi-aperture of the lens were 24, the rays would strike
the screen over a small circular area. Moving the screen closer to the lens
would at first cause the diameter of the circular area to decrease and later
to increase, the condition of best focus being that corresponding to mini-
mum diameter of the spot on the screen. The circular spot on the screen
at best focus is called the circle of least confusion, as in light optics. As
the semi-aperture of the lens is decreased, the diameter of the circle of least
confusion decreases, and its axial position approaches the paraxial-ray
focal point Fi.

A second type of aberration, known as chromatic aberration, is caused
by the finite distribution of electron velocities in the beam. The faster
electrons in the beam are deflected less by the lens than the slower ones.
Additional types of aberrations are encountered when an electron lens of
large aperture forms an image of an electron source of appreciable size.
Some of these aberrations have counterparts in light opties and are identi-
fied with the same names as those used in light optics. They include coma,
field curvature, astigmatism, and distortion. Magnetic lenses introduce
still other aberrations associated with the rotation of the image. Factors
contributing to the various types of aberrations encountered in electron
optics are summarized below:

1. Higher-order components in the expressions for the off-axis fields to-
gether with geometrical factors relating to the large lens aperture and large
deflection angles.
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2. The distribution of electron velocities (which leads to chromatic
aberration).

3. Space-charge effects in which the electrons are deflected by the electric
field associated with the beam itself.

4. Mechanical imperfections in the alignment or shape of the electrodes
or pole pieces.

5. In the case of magnetic lenses, inhomogeneities in the magnetic
material.

Although much can be done to minimize inherent aberrations in light
lenses by causing the geometrical and physical properties of the lens to
change with radial distance from the axis, similar corrections in electron
lenses are much harder to achieve, since the off-axis fields are directly re-
lated to the axial field. Consequently, the resolution that can be achieved
with a good electron lens is far less than can be achieved with a good light
lens.

Changes in beam shape and focusing also occur when a beam is deflected.
Figure 3.3-3 shows an electron beam that passes through a pair of deflection
plates and is incident upon a planar screen mounted perpendicular to the
axis of the undeflected beam. The undeflected beam is adjusted for best
focus on the screen, and in this condition it is incident over a small circular
region on the screen. When the beam is deflected, the spot on the screen
becomes oval in shape and of area larger than that produced by the unde-
flected beam. Four rays, which are initially at the outer edge of the beam,
are shown in the figure. Ray 1 is closest to the positive deflection plate
when the beam passes between the plates, and ray 2 is closest to the nega-
tive deflection plate. Rays 3 and 4 are at the sides of the beam. Clearly,
electrons in the upper part of the beam are in a region of higher potential
as they pass between the plates, and they will remain in the deflecting field
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Fic. 3.3-3 The deflection defocusing effect.
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for a shorter time than those in the lower part of the beam. Consequently,
electrons in the upper part of the beam will be deflected less than those in
the lower part of the beam, and rays 1 and 2 will cross at a point well in
front of the screen. Rays 3 and 4 cross over somewhat closer to the sereen
but still in front of it, since the distance to the screen is further when the
beam is deflected. The effect of the deflecting field in causing rays 1 and 2 to
cross over sooner than rays 3 and 4 is called deflection defocusing. For a given
mean angle of deflection and a given beam diameter, the difference between
the deflection of rays 1 and 2 decreases as the length of the deflection plates
increases. In applications where small deflection defocusing is particularly
desirable, relatively long deflection plates are used.

Magnetic deflecting fields also cause defocusing effects similar to those
illustrated in Figure 3.3-3. However, since the electrons maintain a con-
stant velocity in passing through a magnetic deflecting field, the deflection
defocusing for a given angle of deflection is less in a magnetic deflecting -
field than in an electrostatic deflecting field. When large deflection angles
are needed, magnetic deflecting fields are usually employed. Thus in televi-
sion tubes where the deflection angle (indicated by the angle 8 in Figure
3.3-3) may range as high as 55 degrees, only magnetic deflection will give
adequate focus of the beam over the whole screen.

In cathode-ray tubes the deflection angles are usually much smaller than
in television tubes, generally less than 15 degrees, and the defocusing result-
ing from electrostatic deflection is usually not severe. Electrostatic deflec-
tion is preferred in cathode-ray tubes for two reasons: (1) Electrostatic de-
flection requires less driving power,® and (2) better linearity between beam
deflection and the applied deflection signal can be achieved with electro-
static deflection.

3.4 The Spreading of an Electron Beam Because of Its Own Radial
Electric Field; Focusing and Confining Beams by Applied Axial
Fields

In a number of microwave tubes it is desirable to use a small-diameter
electron beam with high axial charge density. Such a beam generates a

¢To illustrate this point, consider the energy per unit volume which must be stored
in an electric field and a magnetic field in order to produce a given amount of deflection.
If the deflecting force resulting from a magnetic field B is equal to that from an electric
field E, then Beu = ¢E, and Bu = E. The ratio of the energy stored per unit volume
in the magnetic field to that stored in the electric field is (B2/2u.)/(s,B2/2) = B%*/E?
= ¢2/u?, where c is the velocity of light, and where use has been made of the relations
1oes = 1/¢¢ and Bu = E. Since c is always greater than u, more energy per unit volume
must be stored in the magnetic field in order to produce a given amount of deflection.
Furthermore, the deflecting coils are generally outside the tube so that the volume in
which the energy is stored is appreciably greater with magnetic deflection. These two
factors combine to require much higher driving powers in the case of magnetic deflection
than with electrostatic deflection.
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radial electric field, which in the absence of other applied fields causes the
beam to spread, the off-axis electrons being deflected away from the axis.
Usually it is desirable to prevent the beam from spreading, and this can be
accomplished in several ways: (1) By directing the beam into a region of
uniform axial magnetic field of sufficient intensity, (2) by directing the beam
along the axis of a series of equally spaced magnetic or electric lenses of
suitable strength, or (3) by directing the beam along the axis of a bifilar
helix with the two windings at different potentials. We shall first describe
the spreading of an electron beam because of its radial electric field. Later
we shall consider the use of axial magnetic and electric fields to prevent
the beam from spreading.

The axial linear charge density of a beam of current I, amperes and elec-
tron velocity u, meters per second is I,/u, coulombs per meter. From Equa-
tion (1.4-5) the radial electric field intensity at the surface of the beam is

I,
T 2meru,

E, =

(3.4-1)

where r is the beam radius. For a beam current of 10 ma, a beam diameter
of 1 mm, and a beam voltage” of 1000 volts, Equation (3.4-1) indicates a
radial electric field intensity at the surface of the beam of 19 kv/meter, or
19 volts/mm.

If the beam in the above example passed concentrically within a conduct-
ing cylinder of inside diameter 2 mm, the potential at the surface of the
beam would be 6.6 volts less than that of the cylinder; and if the charge
density across the beam were uniform, the potential at the center of the
beam would be 11.4 volts less than that of the cylinder. However, in prac-
tice, the beam generates positive ions as a result of collisions between the
electrons in the beam and molecules of residual gas in the tube. Since
the radial field of the beam acts on the ions with a force directed toward the
axis, the ions are entrapped by the beam. (The kinetic energy of the ions at
the time they are generated is usually a small fraction of an electron volt,
and this is not sufficient to overcome the potentials resulting from the radial
field of the beam.) The trapping of ions by the beam in turn reduces the net
axial charge density and thereby reduces the radial electric field. Generally,
the ions tend to “drain” in the axial direction, since in most cases there is a
region of lower potential at at least one end of the beam. The extent to
which the beam charge is neutralized is therefore determined in part by the
potential gradients along the axis of the beam and in part by the resid-
ual gas pressure within the tube.

Hines et al.? describe experimental measurements of the ion neutralization

"The net voltage through which the electrons have been accelerated.
8Reference 3.6.
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of a beam having a current of 14.5 ma, a length of 17 cm, and a beam voltage
of 950 volts. An axial magnetic field of 0.075 weber/meter? (750 gauss) was
used to focus the beam. (See later in this section for focusing with magnetic
fields.) The ions drained toward one end of the beam only, the potential
at the other end being higher than that of the main portion of the beam. It
was concluded that the beam was about 14 per cent neutralized with ions at
a tube pressure of 10~ mm of Hg, 50 per cent neutralized at a tube pressure
of 107® mm of Hg, and nearly fully neutralized at a pressure of a few
times 107 mm of Hg. Pressures of the order of 107 to 10~ mm of Hg might
be typical of those attained in a beam-type microwave tube.

If there is no neutralization of the electron space charge by ions, the radial
motion of the electrons at the outer edge of the beam as a result of the radial
electric field intensity is described by the equation

d d¥r el,

M = MU= = —ek, =
* dz? T 2meqru,

o (3.4-2)

If u, is constant, this equation can be solved with the aid of tabulated
functions.® The results are plotted in Figure 3.4-1 for the case of a beam in
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Fic. 3.4-1 The universal beam spread curve.

which the electron trajectories are assumed to be initially parallel to the
axis. The plot shows the radius r of the beam as a funection of distance z
along the beam, the initial radius being r,. The curve is sometimes called
the universal beam spread curve. If the current density over the beam
cross section is initially uniform, the radial field will deflect the trajectories

*Reference 3.7, p. 443.



96 PRINCIPLES OF ELECTRON TUBES

of electrons in the interior of the beam by an amount proportional to their
initial distance from the axis, and at points further along the beam, the
current density over the beam cross section will still be uniform.

For a 10-ma, 1000-volt beam of initial diameter 1 mm in which the
trajectories are parallel to the axis at z = 0 and in which no ion neutraliza-
tion takes place, the beam diameter would be 1.8 mm one centimeter
further along the axis and 9 mm four centimeters along the axis. With
partial ion neutralization the spreading would be less.

In traveling-wave tubes the electron beam must travel inside a long
cylindrical ‘region defined by the slow-wave circuit of the tube with es-
sentially no interception of the beam by the slow-wave circuit. Often the
slow-wave circuit consists of a wire helix of length perhaps 70 to 250 times
its inside diameter. For the beam to travel inside such a slow-wave circuit,
additional fields must be applied to prevent the beam from spreading.
Several methods for doing this, involving the use of axial electric or mag-
netic fields, are considered under separate headings below."

(a) A Uniform Axial Magnetic Field

Figure 3.4-2 shows a magnetic circuit which produces a long region of
uniform magnetic field parallel to its axis. An electron gun is located within
the left-hand pole piece and, because the pole piece acts as a magnetic shield,
there is essentially zero magnetic field in the region of the gun. We shall
assume that the transition along the axis from the region of zero magnetic
field to the full magnetic field takes place over a very short axial distance.
Suppose a single electron approaches the transition region from the side of
zero magnetic field along a path which is initially parallel to the axis but dis-
placed a distance r, from it. In passing through the transition region the
electron acquires an angular velocity about the axis, which from Equation
(3.2-6) is given by

B,

g =122

5 (3.4-3)

A4 first thought it might seem that the beam diameter could be adequately limited
by establishing a high enough gas pressure in the tube that the electron charge would
be almost fully neutralized by ion charge. However, there would always be a small
excess of electrons in the beam and hence a small radial field, since otherwise the ions
would be free to escape. This small radial field would cause too much spreading of the
beam for most traveling-wave tube applications. Furthermore, higher gas pressures
result in greater ion bombardment of the cathode and shorter cathode life. High ion
densities also result in mechanical oscillation of large numbers of the ions within the
potential well formed by the electron beam. The ion motion modulates the beam and
tﬁerebg causes a type of noise, called ion oscillation noise, to appear in the output of
the tube.
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Fie. 34-2 An electron beam directed into a region of uniform magnetic field

where B, is the uniform axial magnetic field, and » = ¢/m. If the electron
passes through the transition region sufficiently quickly, it will still be at
distance r, from the axis upon entering the region of uniform axial field.
Its velocity in the 8 direction therefore will be

7B,
°2
This transverse velocity causes the electron to cross the lines of axial mag-

netic field, so that the motion of the electron in the transverse plane is
circular with radius

U =T =71

(3.4-4)

=% _ T _5)
r_nB, 5 (3.4-5)

The electron therefore travels through the uniform magnetic field in a
helical path of radius r,/2, and since it initially started at distance r, from
the axis, with velocity only in the 8 and z directions, it periodically passes
through the axis and returns to its original radius r,. Interestingly enough,
this result is independent of the magnitude of the axial magnetic field, the
initial electron velocity, or the initial distance of the electron from the axis.
The time taken for the electron to complete one turn of its helical path is
w1 o/Us, 80 that the points at which the electron passes through the axis are
separated by an axial distance given by
o 27

A = Uy ™ = uzn—B‘ (34.-6)
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Suppose a cylindrical electron beam of very low axial charge density is
directed along the axis of the magnetic circuit shown in Figure 3.4-2. We
shall assume that the axial charge density is sufficiently small that the radial
electric field of the beam exerts a much weaker transverse force on the off-

_ - POSITION OF ELECTRON AT
%~ THE TIME OF ENTRY INTO
THE MAGNETIC FIELD

~~~_.BEAM ENVELOPE AT THE
POINT OF ENTRY TO THE
MAGNETIC FIELD

Fic. 3.4-3 The broken line shows the beam envelope at the time the beam is launched
into the magnetic field. The motion of individual electrons in the transverse
plane after entering the magnetic field is shown by the solid lines.

axis electrons than the force exerted by the magnetic field. In such a beam,
electrons which travel along paths that are parallel to the axis just before
entering the magnetic field follow helical paths in the region of uniform
magnetic field with one side of the helical path touching the axis. Each
electron passes through the axis at points spaced by a distance A, the first
point being \./2 beyond its point of entry into the magnetic field. Figure
3.4-3 shows the motion of the electrons in the transverse plane. Since
all the electrons pass through (or close to) the axis at nearly the same
points, the beam envelope necks down from its initial radius to a very small
radius at a point \./2 beyond the point of entry into the magnetic field and
each )\, thereafter. The beam envelope therefore resembles that shown
in Figure 3.4-2 and is said to be “scalloped.” For a 1000-volt beam and
B, = 0.05 weber/meter?, A, = 1.3 cm.

Since electrons that enter the magnetic field with large r, have greater
kinetic energy in the transverse plane than those that enter with small r,
and since all electrons in the beam have essentially the same total kinetic
energy, the outer electrons will have slightly smaller axial velocity in the
region of uniform magnetic field. The total kinetic energy of an electron in
the region of uniform magnetic field can be expressed as

Vo = m(u® + w?) = jml(rmB./2)" + us’] (3.4-7)
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where V, is the voltage through which the electrons have been accelerated.
Clearly, an electron that enters the magnetic field with large r, will have
smaller u,, and hence smaller A;, in the region of uniform magnetic field
than one that enters with small r,, Consequently, the outer electrons in the
beam will gradually slip behind the inner electrons, and the envelope will
be only quasi-periodic in the axial direction.

As the axial charge density of the beam is increased, so that the transverse
force from the radial electric field becomes comparable with that resulting
from the axial magnetic field, the electron motion is appreciably modified.
Brillouin has described an exact solution for electron flow in an axial mag-
netie field in which the outward force resulting from the radial electrie field
of the beam is balanced by the inward force of the axial magnetic field. The
conditions required for Brillouin flow are difficult to achieve in practice, but
the solution defines a value of magnetic flux density in terms of the beam
current, the beam voltage, and the beam diameter, and it is often helpful to
measure the field actually needed to confine a beam to a given diameter in
terms of this field.

To obtain Brillouin flow, the following conditions must apply at the point
of entry of the beam to the region of uniform magnetic field:

1. The beam must have a uniform current density across its diameter.

2. The electron trajectories must be parallel to the axis just before
entering the magnetic field.

3. The transition from zero axial magnetic field to the full field must
ocecur over a very short axial distance.

4, The beam axis must coincide with that of the magnetic field.

In addition, there must be no trapping of ions by the electron beam.

In Brillouin flow an electron which enters the magnetic field at distance »,
from the axis experiences a radial force which is just sufficient to keep it
moving in a helical path of radius 7, about the axis of the beam. The trans-
verse force of the magnetic field must then be sufficient to account for the
radial acceleration of the electron when moving in a helical path of radius r,
plus the force resulting from the radial electric field at radius r,. The axial
magnetic field is therefore determined by the relation

2
B.ous = ’”r“" — B, (3.4-8)

o

If the beam radius is ¢ and if the current density is uniform across the beam
cross section, we can use Equation (3.4-1) to express the second term on the

Reference 3.8.
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right as

re el, To el,

ek, = @ Qmegru, @ 2we,(2nV o) 2

(3.4-9)

where V, is the voltage through which the electrons have been accelerated.
Combining Equations (3.4-4), (3.4-8), and (3.4-9), we obtain

B \2I, _ 0.69 X107,

# 7'.60.,’3/2V°1/2a2 V01/2a2

(3.4-10)

This equation gives the magnetic flux density required for Brillouin flow.
Since it is independent of the radius r,, the same magnetic field applies to all
electron trajectories for which r, < a. For a 10-ma, 1000-volt beam of
diameter 1 mm, the Brillouin magnetic flux density is 2.95 X 10~*weber/
meter?, or 295 gauss.

In Brillouin flow the beam envelope maintains a constant diameter
through the region of longitudinal magnetic field, the individual electrons
following helical trajectories which are concentric with the beam axis, and
the beam as a whole twisting about its axis with angular velocity § = 7B ./2.
In a thin “cross-sectional slab’”’ of the beam the individual electrons main-
tain their positions relative to each other, and the slab as a whole rotates
about the axis with angular velocity 4.

However, in practice, the axial charge density of the beam will be partial-
ly neutralized with ions. In this case the transverse force resulting from a
magnetic field equal to the Brillouin field would predominate, so that the
electrons would periodically pass near to the axis, and the beam envelope
would be scalloped. Furthermore, most convergent electron guns'? give rise
to sufficiently high transverse velocities that the maxima in the diameter of
the scallops would be somewhat larger than the beam diameter at the point
of entry into the magnetic field. (This point is further discussed in Refer-
ence 3g.) However, it is found that by increasing the magnetic field, the
maximum diameter of the scallops can be reduced. Often a magnetic field
equal to 13 to 3 times the Brillouin field is used.

As the magnetic field is increased appreciably above the Brillouin value,
the transverse force resulting from the magnetic field becomes the principal
transverse force acting on the electrons. Harker' and Ashkin'4 have con-
cluded on the basis of experimental measurements that with a magnetic
field greater than, or equal to, about three times the Brillouin field, the
effects of the radial electric field can be neglected, and a majority of the

12Guns which generate a beam of smaller diameter than that of the cathode.
15Reference 3.10.
14Reference 3.11.
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Fia. 3.4-4 Measurements of the beam interception by the slow-wave circuit of a

traveling-wave amplifier as a function of the applied axial magnetic flux density.

The beam was generated by the electron gun illustrated in Figure 4.5-1(a). (From

J. P. Laico et al., Bell System Tech. J. 35, 1285, 1956. Reprinted by permission of
American Telephone and Telegraph Company)

electrons pass through, or very close to, the beam axis. In this case an
electron that enters the magnetic field at distance r, from the axis travels in
a nearly helical path of radius 7,/2 and periodically passes through or close
to the axis.

Figure 3.4-4 shows measurements of the fraction of the beam current
intercepted on a helix-type slow-wave circuit of a traveling-wave amplifier
as a function of the applied axial magnetic flux density. The data are
plotted for several values of beam current. The helix had an inside radius of
1 mm and a length of 17 cm. The electron gun was similar to that shown in
Figure 4.5-1(a). A plot of current density vs. radius for the electron beam
at the point of entry into the magnetic field is shown in Figure 4.5-4. An
electron emitted from the edge of the cathode with zero emission velocity
in the direction parallel to the cathode surface arrives at the point of entry
into the magnetic field at a radius of 0.45 mm from the beam axis. However
other electrons emitted from the edge of the cathode with relatively high
emission velocity parallel to the cathode surface arrive at the point of entry
into the magnetic field at distances from the beam axis as high as 0.7 to
0.8 mm.

Figure 3.4-4 shows that with increasing beam current, a higher magnetic
field was required to prevent interception of the beam by the helix, as would
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Fig. 3.4-5 The data for Figure 3.4-4 are plotted vs. the ratio of the actual magnetic
flux density to the Brillouin flux density for a beam of uniform current density and
a radius of 0.45 mm.

be expected from Equation (3.4-10). Figure 3.4-5 shows the same data
plotted as a function of the ratio of the actual magnetic flux density to the

Brillouin flux density for a beam of uniform current density and radius
0.45 mm.

(b) Confined Flow®

A type of electron flow, known as confined flow, is achieved with the
electron gun entirely immersed in the magnetic field. Often a uniform axial
magnetic field is used. The cathode of the electron gun might consist of a
planar disc which is perpendicular to the field, whereas the accelerating
electrode would have an aperture somewhat larger than the cathode diame-
ter. An electron gun that is used with confined flow (and has several ac-
celerating electrodes) is illustrated subsequently in Figure 4.5-1(c).

1sReference 3b, p. 161.



BEAMS AND LENSES 103

If the magnetie field lines are parallel to the beam axis over the entire
length of the beam, starting at the cathode, the beam diameter obtained
with confined flow is always larger than the cathode diameter, but it
decreases and asymptotically approaches the cathode diameter as the mag-
netic field intensity is increased. With increasing magnetic field the elec-
trons increasingly tend to follow the field lines, and the motion of an
individual electron in the transverse plane becomes limited to a smaller and
smaller area, the motion being nearly circular.

With confined flow the magnetic field required to confine a given beam
current to a given diameter is always greater than that needed when the
beam is generated outside the magnetic field and injected into it, as de-
scribed in Section (a) above. Confined flow has found its chief application
in low-noise microwave amplifier tubes, where the magnetic field in the
region of the potential minimum reduces the transverse motion of the elec-~
trons and thereby effects a reduction in the noise generated by the beam.

Confined flow also can be achieved with a convergent electron gun by es-
tablishing in the region of the gun a magnetic field that converges in the
same manner as the electron trajectories in the absence of the magnetic
field. In this case the electrons “follow the magnetic field lines” through the
accelerating region of the gun, and in the region beyond the gun their mo-
tion is much as described above. -

(c) Focusing with Periodic Magnetic Fields

A series of equally spaced lenses also can be used to focus an electron
beam. In this case the off-axis electrons experience a radial impulse, which
is directed toward the axis, as they pass each lens. The impulses deflect the
electrons toward the axis, but between lenses the beam again spreads be-
cause of the radial electric field due to the space charge. For a particular
condition of lens strength and spacing and for a particular average beam
radius, the impulses from the lenses just balance the integrated radial out-
ward force resulting from the space charge of the beam, and the beam diam-
eter at successive lenses remains constant. The shape of the beam envelope
is then somewhat as illustrated in Figure 3.4-6. Focusing an electron beam

LENS LENS LENS LENS

F1e. 3.4-6 The focusing action of a series of equally spaced lenses.
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F16. 3.4-7 The use of a periodic focusing

structure reduces the weight of magnetic

material needed to produce a given mag-

netic field over a given axial distance.

(From J. T. Mendel ¢t al., Proc. IRE 42,
800, 1954)

PRINCIPLES OF ELECTRON TUBES

with a series of equally spaced lenses
is called periodic focusing, since the
axial field varies periodically in the
2 direction.

The stability of periodic focusing
can be made plausible by noting that
if the beam radius increases above
that needed to obtain the balance
condition, the radial impulses re-
ceived from the lenses predominate,
and the off-axis electrons receive a
net deflection toward the axis. On
the other hand, if the beam radius
becomes less than that required for
balance, the radial outward force
predominates and the beam expands.

Periodic focusing can be achieved
with both electric lenses and mag-
netic lenses. When magnetic lenses

" are used, the axial fields of succes-

sive lenses are usually reversed in
direction, and in this way a substan-
tial reduction in magnet weight can
be achieved over that of a permanent
magnet or electromagnet which
would produce a uniform axial focus-
ing field.®® To explain this, we might
first note that the magnetic circuit
shown in Figure 3.4-2 establishes a
magnetic field throughout a far
larger volume than that occupied by
the beam, and, since the total weight
of the magnet material is closely
related to the magnetic energy
stored in the space surrounding the
magnet, much of the weight of the
magnet would appear to be wasted.

Figure 3.4-7 illustrates how weight can be saved using a periodic perma-
nent magnet circuit. The magnetic circuit shown in Figure 3.4-7(a) is as-
sumed to produce a uniform axial magnetic field over the length of the

16Reference 3.12.
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magnet. By increasing all the linear dimensions of the circuit by a factor of
3, as in the magnetic circuit shown in part (b) of the figure, the length of the
axial magnetic field is increased by three times, but the magnitude of
the axial field remains unchanged. The larger magnet weighs 33 = 27
times as much as the smaller magnet, and the energy stored in the space
surrounding it is 27 times as great. On the other hand, three of the smaller
magnets placed end for end with like poles together (i.e., north beside north
and south beside south), as in the assembly shown in Figure 3.4-7(c), have
1/9 the weight of the larger magnet and produce approximately the same
axial field over the same axial distance, but with two reversals in direction.
The energy stored in the space surrounding the three magnets in Figure
3.4-7(c) is approximately 1/9 that stored in the space around the larger
magnet, since the leakage fields extend only 1/3 as far from the axis.

If the larger magnet were replaced with n smaller permanent magnets of
the same total overall length and axial magnetic field, the weight of the
periodic circuit would be 1/n? times that of the larger magnet. However, in
practice the reversals of the axial field are not really abrupt and, in order to
achieve adequate focusing of the beam, a somewhat higher peak magnetic
field must be used. This requires the magnets of the periodic structure to be
somewhat heavier, and consequently the weight of the periodic circuit
needed to focus a given beam is between 1/7? and 1/n that of a single
permanent magnet which would focus the beam with a uniform axial field.

Periodic structures also have the advantage of much smaller leakage
fields and hence less likelihood of interference with nearby devices or
equipment.

Let us now examine the electron motion in a periodic magnetic field.
Equations (3.1-4) and (3.2-8) can be combined to give an equation that
describes the radial motion of an electron in the presence of both an axial
magnetic field and a radial electric field, namely

d*r nB,\? av
TE + (—2—) r=mg- = 0 (3.4-11)
Suppose the axial magnetic field varies as a cosine function, so that
B, = B, cos ? (3.4-12)

where L is the magnet period, or twice the center-to-center distance between
adjacent pole pieces. Substituting for dV /dr = —E, from Equation (3.4-1),
setting z = u.t, and combining Equations (3.4-11) and (3.4-12), we obtain
the following equation for the motion of an electron at the surface of the

beam:
Fr | (vBe 2w\l 1_
dz? + (2u, cos -7, )r el r 0 (3.4-13)
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106
Tt is convenient to make a change of variables and rewrite this equation in
the form

de T 4 a(l + cos2T)s — 9 -0 (3.4-14)
where

r 27z
=7 =T
_ 1fnB.L (B2L?
a_2(4ruz> = 2.79 X 108—— V.

g LD _ 3L
T Regrtutat |V ila?

and where use has been made of the relations u.2 = 29V, and 2 cos? T = 1

(a)
INSUFFICIENT
MAGNETIC FIELD
o =0.15
A =o0.2

(b}
CORRECT
MAGNETIC FIELD
=02
B =02

(c)
EXCESS
MAGNETIC FIELD
=04
A=o0.2

a

F1c. 3.4-8 The shape of the envelope of a beam for three conditions of the magnetic
field parameter a. The small ripples on the beam are associated with the pole
piece spacing L/2. (From J. T. Mendel et al., Proc. IRE 42, 800, 1954)
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+ cos 2T. The beam radius at the point of entry into the magnetic field is
assumed to be a.

Solutions to Equation (3.4-14) have been obtained with the aid of an
analog computer! for the case in which: (1) The electron flow is “laminar,”
that is, the electron trajectories do not cross one another; and (2) the cur-
rent density across the beam cross section is uniform. (Also implicit in
Equations (3.4-13) and (3.4-14) is the assumption of no ion neutralization.)
The shape of the beam envelope as determined by the computer for three
values of the axial magnetic field is shown in Figure 3.4-8. The computer
results show that minimum beam ripple is obtained when « = 8 or

Bims? = 0.69 X 10“’% (3.4-15)
where Bems = Bo/\2. It will be noted that the right-hand side of this
equation is the same as that of Equation (3.4-10), which gives the Brillouin
field needed to focus a beam of current I,, voltage V,, and radius a. Thus
for a sinusoidally varying field the rms value of the magnetic field must
equal the Brillouin field. This result is perhaps not surprising, since the
radial force resulting from the axial magnetic field is proportional to B2,
and with a sinusoidal field such that Brms = Bapritiouin, the average radial
force from the magnetic field is the same as with Brillouin flow.

By setting 8 = 0 in Equation (3.4-14), the equation reduces to a form of
Mathieu Equation® that is characterized by solutions for ¢ which are
periodic in 7 for certain ranges of a, and which are unstable for other ranges
of a. Figure 3.4-9 shows the ranges of « for which the solutions are stable.

| UNSTABLE UNSTABLE

A\ | \| =
)\ N |

0.66 1.72 3.76 6.1

Fic. 3.4-9 The regions in which Equation (3.4-14) is unstable when 8 = 0.

The significance of this is that, if we reduce the beam current I, to a vanish-
ingly small value, so that 8 — 0, but maintain constant beam voltage,
there will be some values of the parameters B,, L, and V, for which the
beam will be focused by the lenses and others for which ¢ = r/a will be un-
stable and the beam will become divergent. Furthermore, it is found®
that even with higher beam currents the periodiec structure transmits prac-
tically no current in the regions marked ‘“‘unstable” in Figure 3.4-9.

17Reference 3.13.
18Reference 3.14.
18Reference 3.13.
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In practice, most periodic circuits are designed to operate in the first
“pass band” in Figure 3.4-9, corresponding to « < 0.66. To determine the
value of B, that should be used, the beam is first focused with a solenoid
which produces a uniform axial field, and the minimum value of B, which
gives good beam transmission is measured. The value of B, for the periodic
circuit is then taken to be approximately 2 times this field (assuming that
the axial field is to vary in a nearly sinusoidal manner). The period L of
the periodic cireuit is then determined so that e is less than 0.66, perhaps
30 per cent less. For B, = 0.08 weber/meter? (or 800 gauss), and a beam
voltage of 1500 volts, a period L of 1.92 em gives an a of 0.44. Reference
3.15 describes the design of the pole pieces and permanent magnets for a
periodic circuit.

(d) Periodic Focusing with Electric Fields

Tien? has described the focusing of an electron beam using a periodic
electric field. Such a field might be obtained with a series of ring electrodes
as illustrated in Figure 3.4-10(a) or a bifilar helix such as that illustrated in
Figure 3.4-10(b). In both cases the outer electrons experience a relatively
strong force toward the axis when they are close to the electrodes at the

N N

7, N\ N
v, Vs v, V,
@) ;> v, (b) v,>v,

Fig. 3.4-10 Periodic focusing of a beam with electric fields: (a) with a series of ring
electrodes, and (b) with a bifilar helix.

lower potential and a somewhat weaker outward force when they are
opposite the electrodes at the higher potential. Also, their axial velocity is
less when they experience the inward force than when they experience the
outward force. Consequently, there is a net focusing effect that can be
used to balance the outward force of the radial electric field of the beam.
As in the case of periodic focusing with magnetic fields, the beam radius is

#Reference 3.16.



BEAMS AND LENSES

found to be stable for some values
of the focusing parameters, whereas
for others it becomes divergent.
Tien pointed out that the bifilar
helix also can be used as the slow-
wave circuit of a traveling-wave
amplifier. Such a tube has been de-
veloped by RCA.# The helix struc-
ture of the RCA tube isillustrated in
Figure 3.4-11. The length of the
helix is 22 cm. Figure 3.4-12 shows
measurements of the per cent beam
current intercepted by the helix as
a funection of the voltages applied
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F1a. 3.4-11 The bifilar helix used in an

electrostatically focused traveling-wave

amplifier developed by RCA. (Courtesy
Radio Corporation of America)

to the helix. It can be seen that good focusing is achieved over a range of

helix voltages.
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Fia. 3.4-12 Beam interception on the helix structure illustrated in Figure 3.4-11

v8. (Vo — V1)/Vave, where Vi and V, are the voltages applied to the two helices and

Vave = (V14 V2)/2. (From D. J. Blattner and F. E. Vaccaro, Electronics 32, No. 1,
46, 1959. Copyright by Electronics, a MeGraw-Hill Publication)

2AReference 3.17.
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PROBLEMS
ELECTRON
//TRAJECTORY
D 1
——] ’____*.——r-"”
' e R

Problem 3.1

3.1 The figure shows an electrode with a small aperture in it. To the left of the
electrode there is a uniform potential gradient E.. An electron approaches the ap-
erture from the left along a path parallel to the axis of the aperture but displaced
a small distance from it. As the electron passes through the aperture, the diverging
field deflects it away from the axis. Show that the field in the region of the aperture
acts as a diverging lens with focal length approximately equal to 4V,/E., where V,
is the potential through which the electron has been accelerated at the time it passes
through the aperture. Assume that the electron’s velocity is sufficiently large when
it reaches the aperture that the electron remains at nearly constant distance from
the axis as it passes through the aperture, and the effect of the radial field is to give
the electron an outward impulse.

3.2 A single turn of wire which conducts a current I, generates an axially sym-
metric field which can be used as a magnetic lens. Using the expression given in
Equation (3.2-13) for the focal length of a weak lens, show that

= 266V.R  98V.R
- 3mquotl,r I
for such a lens, where R is the radius of the turn, and V, is the beam voltage.

3.3 Sketch a magnetic lens that produces no net rotation of the beam.

3.4 Figure 3.3-3 shows a cylindrical beam of electrons that passes between two
parallel deflection plates and is deflected through a mean angle . However, be-
cause of deflection defocusing effects, electrons at the upper side of the beam are
deflected through a slightly smaller angle, which we shall assume to be § — A9,
and electrons at the lower side of the beam are deflected through an angle 8 | Ag.
Show that for a given beam diameter and given angle 8, the incremental angle Af
is inversely proportional to the length of the deflection plates. Assume that the
field between the deflection plates is uniform, and that the effects of fringing fields
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at the ends of the plates can be neglected. (Actually the fringing field at the exit
end of the deflecting plates has the effect of reducing the deflection defocusing.)

3.5 Two apertured electrodes, one at higher potential than the other, form an
electric lens. An electron beam passes through the lens in the direction of increasing
potential. The electrode at lower potential has a wire grid across its aperture and
is in contact with the grid. The wires of the grid are laid in two directions at right
angles 80 as to produce a fine mesh. Show qualitatively that a beam passing through
the lens experiences a diverging action. Note that this does not contradict the
statements made in section 3.1 about axially symmetric fields acting as converging
lenses.

3.6 Show that with Brillouin flow all the electrons of the beam have the same axial
velocity, equivalent to that produced by an accelerating potential equal to the
potential on the beam axis.
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Chapter 4

DIODES AND ELECTRON GUNS

The simplest vacuum tube is the two-electrode tube, or diode. In its
usual form, this tube consists of a thermionic cathode and an anode. When
the anode is at a positive potential with respect to the cathode, electrons
emitted from the cathode are drawn to the anode, and when the anode is
negative with respect to the cathode, virtually no electrons reach it. The
diode therefore serves as & one-way current device, and as such it finds its
chief application.

The diode geometry that lends itself most readily to analysis of the elec-
tron behavior is that in which the cathode and anode are planar, parallel,
and of linear dimensions large compared with the spacing between them.
We shall find that the significant laws that describe the operation of diodes
with this type of geometry apply also to diodes with more complicated
geometries.

If a small aperture is made in the anode of a planar diode, some of the
electrons emitted from the cathode pass through the aperture into the space
beyond. The device therefore acts as a crude sort of electron gun. Most
electron guns use at least one additional electrode which helps to shape the
field between the cathode and anode. With a suitable choice of geometry for
this electrode, and with a suitable shape of cathode and anode, it is possible
to cause essentially all the current drawn from the cathode to pass through
the anode aperture.

Electron guns are a basic element in many types of electron tubes. Many
microwave tubes make use of high-current-density, cylindrical beams of
electrons. To obtain these beams, electrode geometries must be devised
that accelerate the electrons to the required velocity and focus them to the
required beam diameter. The electron guns used in cathode-ray tubes and
storage tubes focus the beam to a “crossover,” and an electron lens beyond
the crossover forms an image of the crossover on the screen or storage

113
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surface of the tube. Several designs of electron guns for microwave tubes,
cathode-ray tubes, and storage tubes are described in Section 4.5.

Because the electrons emitted from the cathode of an electron gun have a
finite component of velocity parallel to the cathode at the time of emission,
the electrons tend to drift across the beam while being accelerated away
from the cathode. If the electron beam is focused to a smaller diameter
than that of the cathode, the transverse velocities of the electrons in the
beam increase as the beam diameter is decreased. Ultimately, if the beam
is focused to a crossover, the maximum current density that can be obtained
at the crossover for a given cathode current density and beam voltage is
limited by the emission velocities at the cathode. These effects are discussed
in Section 4.4.

In this chapter and in subsequent chapters we shall use the subseript o to
designate dc electrode voltages and currents. Thus Ve, and I, are the de
anode voltage and current.

4.1 The Planar Diode

Here we consider a diode consisting of two planar, parallel electrodes of
linear dimensions large compared with the spacing between them. We as-
sume that the effects of fringing fields at the edges of the electrodes can be
neglected, and that the fields between the electrodes are everywhere normal
to the electrodes.

Figure 4.1-1 shows qualitatively the fields and potential distribution® in
the interelectrode space of such a tube for several conditions of applied
anode voltage and cathode emission current. When electrons are present in
the interelectrode space, electric field lines extend from induced positive
charges on the electrodes to the electrons, and the net positive charge on the
electrodes is equal to the total negalive charge in the inlerelectrode space. In
Figure 4.1-1(a), the anode is held at cathode or ground potential while ap-
preciable electron emission from the cathode takes place. (We assume that
both electrodes have the same work function, so that the effects of contact
potential difference can be neglected.) In this case, electric field lines extend
from induced positive charges on both electrodes to the electrons in the
interelectrode space, with the result that the potential in the space between
the electrodes is less than ground potential and reaches a minimum at some

INotice that in Figures 2.1-2 and 2.1-3 of Chapter 2 we have plotted the potential
that applies to a negative unit charge, whereas in Figure 4.1-1 we plot the potential of
a positive unit charge. In the field of atomic physics, convention calls for using the po-
tentials that apply to negative charges, whereas in electron-tube work the potentials
that apply to positive charges are more frequently used.
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Fie. 4.1-1 The field lines and potential distribution in the interelectrode space of
a planar diode for several conditions of applied anode voltage and cathode
emission current. :
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point between the electrodes. Since the electrons emitted from the cathode
have a range of velocities, the faster electrons are able to overcome the po-
tential minimum and pass on to the anode, whereas those emitted with
relatively small velocity travel only part way out to the potential minimum
before being returned to the cathode.

To the right of the potential minimum, all the electrons move from left to
right, whereas to the left of the potential minimum there are additional
electrons that travel part way out to the potential minimum and return to
the cathode. This means that the electron density to the left of the potential
minimurn is greater than the electron density at points of equal potential to
the right of the potential minimum. Consequently, the potential gradient
is greater to the left of the potential minimum, and the position of the po-
tential minimum is displaced to the left of the mid-point between the elec-
trodes. Later we shall find that the potential difference between the
cathode and the potential minimum is directly proportional to the average
electron emission energy in the direction normal to the cathode. (See
Equation (4.1-1).)

In Figure 4.1-1(b), a voltage V., is assumed to be applied to the anode,
but no cathode emission takes place. In this case, field lines extend from
positive charges on the anode to negative charges on the cathode, and the
potential varies linearly from the cathode to the anode. In Figure 4.1-1(¢),
a small cathode emission is also assumed to take place. In this case, the
emitted electrons experience a field which draws them toward the anode, so
that the entire cathode emission current reaches the anode. The current
drawn from the cathode is then said to be temperature-limited, since its
magnitude is determined by the cathode temperature and shows little varia-
tion with changes in positive anode potential. The density of field lines
leaving the anode in this case is greater than in Figure 4.1-1(b), whereas the
density of field lines arriving at the cathode is less than in Figure 4.1-1(b),
the same anode voltage being applied in each case. (The density of field
lines at a given point is, of course, proportional to the potential gradient
‘at that point.)

As the cathode temperature is raised so that more electrons are emitted,
more field lines originating on the anode terminate on electrons in the inter-
electrode space, and the electric field intensity at the cathode surface de-
creases correspondingly. At a sufficiently high cathode temperature, the
field lines extending from the anode to electrons in the interelectrode space
have sufficient density to account for the potential drop V.., and the electric
field intensity at the cathode is zero. This condition is illustrated in Figure
4.1-1(d). With still greater cathode emission (Figure 4.1-1(e)), a potential
minimum forms in front of the cathode, and some of the emitted electrons
are returned to the cathode.
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‘When a potential minimum is present in front of the cathode, changes in
cathode temperature serve only to raise or lower the potential at the mini-
mum and have very little effect on the net current drawn from the cathode.
The current drawn from the cathode in this case is said to be space-charge-
limited and is determined largely by the voltage applied to the anode.
Increasing the anode voltage requires a greater density of field lines at the
anode to account for the potential difference between the anode and the
potential minimum. This means that more field lines extend from the anode
to the electrons in the interelectrode space, and more of the emitted elec-
trons are drawn to the anode. Thus with increasing anode voltage, the
current drawn from the cathode increases, and the potential at the mini-
mum rises closer to cathode potential. At a sufficiently high anode potential,
the potential minimum disappears, and the current drawn from the cathode
becomes temperature-limited.
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Fia. 4.1-2 An idealized plot of anode current vs. anode voltage for a planar diode.
The cathode temperature is assumed to be fixed.

Figure 4.1-2 shows an idealized plot of anode current vs. anode voltage
for a planar diode. The regions in which the current drawn to the anode is
space-charge-limited and temperature-limited are shown in the figure. A
planar diode with a tungsten cathode would exhibit a current-voltage rela-
tionship that would closely approximate this curve. .

From the discussion of emission energies given in Section 2.4, it will be
recalled that the fraction F of the emitted electrons that can overcome a re-
tarding voltage of V volts is given by F = ¢~*V/*T, Thus, when the current
drawn from the cathode of a diode is space-charge-limited, the fraction F of
the total emission current that is drawn to the anode is given by F =
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<Vn/*T where — V., is the potential at the potential minimum measured
relative to cathode potential. Hence

kT

V= - InF = In F volts (4.1-1)

T

11,600
Tor F = 1/eand T = 1160°K, V,, = 0.1 volt. Under most operating con-
ditions, V. is of the order of a few tenths of a volt or less. It is noteworthy
that V. is directly proportional to k7T, the average emission energy in the
direction normal to the cathode. If the emission energy were zero, the po-
tential minimum would vanish.

The plane of the potential minimum is often called the virtual cathode,
since all the electrons that pass this plane ultimately reach the anode. Let
us now proceed to determine the current-voltage relationship for a space-
charge-limited planar diode. We shall assume that the electrons pass the
virtual eathode with zero velocity. The potential at the virtual cathode is
taken to be zero, and distance z is measured from the virtual cathode toward
the anode. If V(x) is the potential at a point = meters from the virtual
cathode, and u(z) is the electron velocity at that point, the boundary condi-
tionsatz = 0 are V = 0, u = 0, and dV/dz = 0. The equations relating
the parameters of interest are:

Poisson’s Equation

LA (4.1-2)

the energy equation

tmu? = eV (4.1-3)
and the current density relation

J=—pu (4.1-4)

where p is the volume charge density.

In these equations, p, u, and V are assumed to be functions of x, whereas
from the equation of continuity it follows that J is independent of xz. The
charge density p is negative, and u is positive. Eliminating p and u from the
above equations, we obtain

2
@v___ I (4.1-5)

a e\2(e/m)V

Next, both sides of this equation can be multiplied by dV/dz and integrated
with respect to x from = = 0 to z, giving

avip  4Jvie
A R A Ao 4.1-
dzx co\2(e/m) T o (4.1-6)
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Sinece V = dV/dx = 0atz = 0, the constant C, is zero. Taking the square
root of both sides and integrating once more, we obtain

(4/3) V3t = 24J [e,(m/2e) %z 4 C, 4.1-7)

Since V = 0 at z = 0, C: is also zero. Finally, this equation can be solved
for the current density J, giving

J = %so\/Z(e/m)%lf (4.1-8)

If the experimental values of e, m, and ¢, are substituted in this expression,
it becomes

3/2
J =233 X 10‘6%2— amps,/meter? (4.1-9)

Here V = V(z) is the potential at a point # meters from the virtual cathode.
If the applied anode voltage is V.., volts above that of the potential mini-
mum, and if the distance from the virtual cathode to the anode is d meters,
the current density is given by
3/2
J =233 X lO‘ﬁz“};—/ amps,/meter? (4.1-10)
If V.o >> Va, the voltage V., can be taken to be the anode-to-cathode
voltage. Similarly, the distance from the cathode to the potential minimum
is usually small compared with the distance from the potential minimum
to the anode, so that d can be taken to be the anode-to-cathode distance.
Hence, to a good approximation, the current drawn from the cathode under
space-charge-limited conditions varies as the 3/2 power of the anode volt-
age divided by the square of the anode-to-cathode distance. This result is
known as the Child-Langmuir Law. Langmuir? also developed more ac-
curate equations for the planar diode which take into account the dis-
tribution of electron emission velocities and which show the location of the
potential minimum. However, for most purposes, Equation (4.1-10)
gives a sufficiently accurate expression for the current density J, and the
potential minimum can be assumed to be very close to the cathode.

4.2 Diodes with Other Electrode Geometries
Two further conclusions concerning Equations (4.1-9) and (4.1-10) are
of interest:

1. If A is the cathode area of a planar diode, the current drawn to the
anode under space-charge-limited conditions is given by JA = 2.33 X 107®
V.24 /d2. Because of the factor A/d? in this expression, it is evident that,

?Reference 4.1.
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if the linear dimensions of a planar diode are increased by a factor k, the
same current flows to the anode for the same applied voltage.
2. Combining Equations (4.1-9) and (4 1-10), we obtain

Viz) = (4.2-1)

dus
Hence, despite the fact that increasing the anode voltage increases the cur-
rent drawn from the cathode, the potential at points between the electrodes
remains directly proportional to the applied anode voltage.

Equations describing the space-charge-limited flow of electrons between
concentric cylinders and concentric spheres have also been derived.?
In each of these cases, it is found that: (1) The current drawn to the anode
is proportional to the 3/2 power of the applied anode voltage; (2) if two
diodes differ by a factor k in their linear dimensions, the same current flows
to the anode when the same anode voltage is applied; and (3) the potential
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Fia. 4.2-1 A diode with a parabolic-shaped cathode and a planar anode.

at points between the electrodes is directly proportional to the applied
anode voltage when space-charge-limited conditions apply.

In the planar, cylindrieal, and spherical diodes, the field lines are straight,
and the electron trajectories are parallel to the field lines. However, in
diodes with other electrode geometries, this is not the case; when the field
lines are curved, the electron trajectories cross the field lines. This effect is

*Reference 4.1, p. 245, and References 4.2 and 4.3.
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illustrated in Figure 4.2-1 for a diode consisting of a parabolic-shaped
cathode and a planar anode. The trajectory of a single electron is shown
in the figure. Because the electron has inertia, the path it follows does not
bend as sharply as the field lines.

The question then arises as to whether in a space-charge-limited diode
with arbitrarily shaped electrodes the electron trajectories change their
shape when the anode voltage is varied. To answer this question, supposs
that V = Vi(z,y,2) and p = pi(x,y,2) are steady-state solutions for the
potential and charge in the interelectrode space of a particular diode. These
solutions meet the following boundary conditions: ¥V = V,, at the anode
surface, V = dV/dn = 0 at the potential minimum (which we shall
assume coincides with the cathode surface). Here d/dn is the derivative
in the direction normal to the cathode surface. From Poisson’s equation
it follows that, if the anode voltage is now changed to kV,, solutions
of the potential and charge distribution which meet the new boundary
conditions are given by V = kVi(z,y,2) and p = kpi(z,y,2). Furthermore,
it is shown in Appendix VII that only one steady-state solution of Poisson’s
Equation will meet the boundary conditions for a space-charge-limited
diode. It follows, therefore, that the potential in the interelectrode space
of a space-charge-limited diode with arbitrarily shaped electrodes is directly
proportional to the applied anode voltage. This being the case, we can
invoke the same arguments that were used in Section 1.1 to show that the
electron trajectories are not affected by changes in positive anode voltage.
This conclusion, in fact, is experimentally verified, apart from effects
arising from the finite emission velocity of the electrons.

Next let us consider how the current density J = —pu in the inter-
electrode space of a diode with arbitrarily shaped electrodes varies with the
applied anode voltage when space-charge-limited conditions prevail.
From the relationship,

smu? = eV(z,y,z2) (4.2-2)

we see that « = u(z,y,2) is proportional to the square root of V(z,y,2), and
hence it is proportional to the square root of the applied anode voltage.
The charge density p = p(x,y,2) is related to the potential V(z,y,2) by

ViV () = —2 (4.2-3)
Since V(z,y,2) is proportional to the applied anode voltage, and since the
Laplacian operator is linear, it follows that p is directly proportional to the
applied anode voltage. Consequently,J = —pu is proportional to the 3/2
power of the applied anode voltage. Thus the current drawn to the anode
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of a space-charge-limited diode having arbitrarily shaped electrodes is
proportional to the 3/2 power of the applied anode voltage.

By similar reasoning we can deduce that, if the dimensions of a diode
with arbitrarily shaped electrodes are scaled by a constant factor and if
the tube is operated under space-charge-limited conditions, the total
current drawn to the anode for a given applied anode voltage is unchanged.
Let us suppose that the linear dimensions of a diode are increased by the
factor k. The potential at corresponding points between the electrodes
remains the same for the same applied anode voltage, so that the electron
velocity u at corresponding points between the electrodes remains the same.
However, 8V /dx is changed by 1/k, and 82V /d2? is changed by 1/k%
Since p is proportional to V2V (z,y,2), it follows that p is changed by 1/k%
Consequently, the current density J = —pu is changed by 1/k?; and since
the electrode area is k? times its previous value, the current drawn to the
anode for the same applied anode voltage remains unchanged.

4.3 Two Examples of Diode Rectifiers
The 4124 ’

Figure 4.3-1 shows the construction of the Western Electric 412A full-
wave diode rectifier. The tube consists of two diodes with indirectly
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m
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F16. 4.3-1 The construction of the Western Electric 412A full-wave diode rectifier.
The overall height of the tube is 6.7 cm.
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heated cathodes enclosed in a common envelope. A ceramic insulator sep-
arates the heater of each diode from the cathode. The cathodes are cy-
lindrical sleeves of nickel with a ‘“‘double-carbonate’” oxide coating on the
outer side. The cathode-anode spacing is 0.5 mm. The anodes are made of
nickel which is coated with fine carbon particles in order to increase the heat
radiation from the outer surface. This in turn enables the anodes to operate
at a lower temperature for a given power dissipation.

Figure 4.3-2 shows measurements of anode current vs. anode voltage for
the 412A for several heater voltages. The normal heater operating voltage
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Fi16. 4.3-2 Anode current vs. anode voltage for the 412A for several heater operat-
ing voltages V. The normal heater operating voltage is 6.3 volts.

is 6.3 volts. At V, = 6.3 volts, the anode current is space-charge-limited
over the range of anode voltages for which the data are plotted, and the
anode current increases very nearly as the 3/2 power of the anode voltage.
At the other filament voltages for which data are plotted in the figure, the
anode current is space-charge-limited at lower anode voltages and “tem-
perature-limited”” at higher anode voltages. In the region of “temperature-
limited’’ operation, the anode current actually increases with increasing
anode voltage rather than remaining constant, as it would in an ideally
temperature-limited diode. It is thought that this can be attributed to



124 PRINCIPLES OF ELECTRON TUBES

the rough and porous nature of the oxide-cathode emitting surface. At
the onset of temperature-limited operation only the current drawn from the
outermost parts of the cathode surface is temperature-limited, whereas the
current drawn from the re-entrant parts and the entrances to the pores is
still space-charge-limited. Thus, with increasing anode voltage, the current
drawn from regions that are still space-charge-limited continues to increase,
but the total area from which space-charge-limited current is drawn de-
creases. Operation of the tube for an extended time in the temperature-
limited region is found to be harmful to cathode life.

Fia. 4.3-3 The construction of the Western Electric 274B full-wave diode recti-
fier. The over-all height of the tube is 13.8 cm.

Maximum ratings for the 412A are given in Table 4.3-1. The use of a
ceramic insulator between the heater and cathode permits operation of the

diodes with as much as 450 volts potential difference between the heater and
cathode.
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TABLE 4.3-1
Mazximum Rating
Peak inverse voltage®, volts. . ............. .. ... .. .. 1250
Peak anode current per anode, ma. . .................. . ... 300
DC output current (when operated as a full-wave rectifier), ma. . . 100
DC heater-cathode potential, volts. . ........................ 450

*Maximum negative voltage applied to the anode with respect to cathode voltage.

The 274B

The construction of the Western Electric 274B full-wave diode rectifier
is illustrated in Figure 4.3-3. The tube consists of two diodes with fila-
mentary cathodes enclosed in a common envelope. The filaments are made
from a nickel alloy and have a ‘“double-carbonate” oxide coating. The
nickel alloy contains the following elements in addition to nickel:

Per Cent Per Cent
Element by Weight Element by Weight
Co.oovvive 0.5 to 0.75 C..oo 0.04 to 0.07
Cu.................. < 0.10 Sio.oe < 0.03
Fe......ooooiil. < 0.15 Mg................. 0.04 to 0.08
Mn........ooovvvn < 0.20 1 T < 0.03

These small amounts of impurities in the nickel increase its resistivity and
mechanical strength. The elements in the right-hand half of the table
250
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Fi6. 4.3-4 Anode current vs. anode voltage for the 274B for several filament operat-
ing voltages V;. The normal filament operating voltage is 5.0 volts.
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also serve as the reducing agents which maintain the activity of the oxide
coating. The filaments are connected in series within the envelope of the
tube. The anodes are made of carbonized nickel, as in the 412A.

Figure 4.3-4 shows measurements of the anode current vs. anode voltage
for the 274B. The normal filament operating voltage is 5.0 volts. The
shape of the curves in the “temperature-limited” region is further com-
plicated for this tube by the facts that the distance from the filament sur-
face to the anode varies over the filament surface and that there is a voltage
drop along the length of the filament. Consequently, the onset of tempera-
ture-limited operation occurs at different anode voltages for different parts
of the filament surface.

Maximum ratings for the tube are given in Table 4.3-2.

TABLE 4.3-2
Mazximum Rating
Peak inverse voltage, volts. ........... .. ... i 1500
Peak anode current per anode, ma. ... ............ i ann 675
DC output current (when operated as a full-wave rectifier), ma. .. 225

4.4 Some Effects of Thermal Emission Velocities

Appendix IV summarizes the relations pertaining to the velocity dis-
tribution, energy distribution, and angular distribution of the electrons
emitted from a thermionic cathode, as discussed in Section 2.4.

Because the electrons are emitted with a finite component of velocity
parallel to the cathode surface, they tend to drift across the beam while
being drawn away from the cathode by the applied field. In consequence
of this, the electron beams generated by electron guns are always larger
than they would be if the electron emission velocity were zero.

As a simple example to illustrate the sideways drift of electrons in an
accelerating field, let us consider the electron trajectories in the planar,
parallel diode shown in Figure 4.4-1. (In the illustrations used in this
section, it will be convenient to identify the trajectories of electrons emitted
from the cathode with zero kinetic energy with solid lines, and the tra-
jectories of electrons having finite kinetic energy at the time of emission
with broken lines. The former electrons will be called nonthermal electrons,
and the latter will be called thermal electrons.) Suppose the anode-to-
cathode spacing of the diode shown in Figure 4.4-1 is 1 em, and a voltage of
~+10 volts is applied to the anode. We shall assume that the cathode
emission is very small and temperature-limited and that the electric field
between the electrodes is uniform. Consider an electron which is emitted
from the cathode with 1/10 electron volt of kinetic energy parallel to the
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Fie. 4.4-1 Some electron trajectories in the interelectrode space of a planar diode.

cathode surface and no kinetic energy normal to the surface. At the time
the electron strikes the anode, the ratio of its transverse energy to its energy
in the direction of the accelerating field is 1/100. The corresponding
ratio of velocities is equal to the square root of this, or 1/10. Since the
final veloeity in the direction of the accelerating field is twice the average
velocity, the ratio of the transverse velocity of the electron to its average
velocity in the direction of the field is 2/10. Consequently, the electron
does not strike the anode at a point directly opposite its point of emission,
but 2 millimeters to one side.

If the cathode temperature in the above example were 1160°K, the
electron we have considered would have had average transverse energy,
since Wr = T/11,600 electron volts is the average transverse energy.
Other electrons would be emitted with appreciably greater transverse
energies. Furthermore, if the current drawn from the cathode were space-
charge-limited, the time taken by an electron to reach the anode would be
at least 3/2 as great (Problem 4.1), so that the electrons would drift even
farther to the side. Of course, by increasing the accelerating voltage, the
amount of sideways drift is reduced. If the anode voltage in the above
example were increased to 1000 volts, the electron would drift only 0.2 mm
to the side for the case of the uniform accelerating field.

Let us now consider the distribution of points of arrival on the anode of
electrons emitted from a single point on the cathode of a planar diode.
Suppose an electron emitted from a point on the cathode with transverse
velocity \kT/m drifts a distance o to the side in traveling from the cathode
to the anode. If the anode voltage is large compared with k7'/e, we can
neglect the effects of emission velocities normal to the cathode (to a first
approximation) and assume a constant time for electrons to travel from the
cathode to the anode. In this case, an electron emitted from the cathode
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with transverse velocity «; would drift a distance r to the side while travel-
ing from the cathode to the anode, where

r= VJT‘—“TJ . (4.4-1)

Rearranging this equation, we obtain
we = KT 7m (4.4-2)

Substituting for 4, in Equation (2) of Appendix IV from the above equation,
we find that the probability that an electron, which is incident upon the
anode, is displaced a distance in the range r.to r + dr from the point on the
anode directly opposite its point of emission is given by

AP(r) = 5ose iyt (4.4-3)

Equation (4.4-3) implies a Gaussian distribution in two dimensions, and
o can be identified as the standard deviation of the distribution. Thus
electrons emitted from a single point on the cathode will be incident upon
the anode at points whose density is given by a two-dimensional Gaussian
function with standard deviation o.

An electron emitted from the cathode of a planar diode with a component
of velocity parallel to the cathode follows a curved trajectory which bends
increasingly toward the normal to the electrodes. For this reason, the
current density of electrons arriving at the anode per unit solid angle in
the direction normal to the anode is far higher than the cathode emission
current density per unit solid angle in the direction normal to the cathode.
From Equation (7) of Appendix IV it follows that the latter quantity is
Jo/m, whereJ , is the total cathode emission current density. Let us proceed
now to obtain the current density of electrons arriving at the anode per
unit solid angle in the direction normal to the anode. We shall use this
‘quantity in later discussion.

We shall assume, as before, that fringing fields at the edge of the diode
can be neglected, and that an electron emitted from the cathode with a
component of velocity in the direction parallel to the cathode will maintain
this component of velocity throughout its travel from the cathode to the
anode. In this case, an electron which is emitted from the cathode in a
direction making an angle 8, with the normal to the cathode, and which has
kinetic energy eV joules at the time of emission, will be incident upon the
anode at an angle 6, with respect to the normal such that

'V11/2

Wsinﬁ (44-4)

sin02 =



DIODES AND ELECTRON GUNS 129

where V; is the cathode-anode potential difference. Differentiating both
sides of this gives

V2
Vi F Voo

From Equations (5) and (6) of Appendix IV, the current density of
electrons emitted from the cathode with kinetic energy between ¢V, and
e(V1 + dV1) joules and with emission velocities lying in the angular range
6: to 6; + db;, with respect to the normal is

.,ZV‘ —eVi/kT de;’ 19 siné; cosé; db (4.4-6)

where J, is the total cathode emission current density. This is also the
current density at the anode due to electrons which are emitted from the
cathode with kinetic energy in the range eVy to e(V; 4 dVy) joules, and
which arrive at the anode with angles of incidence in the range 6, to 8, +
df,, where 8, is related to 6, by Equation (4.4-4). Thus the current density
arriving at the anode per unit solid angle at an angle 6; with respect to the
normal, and which is composed of electrons emitted from the cathode with
kinetic energy in the range eV, to e(V, + dV)) joules, is

W (Vi8) _ Joe(Vs+ V3) _ 0 deVs
2T Slnaz d02 3 kT k

c0sls d02 = d01 (44.-5)

dJ(Vl,ol) =

cosfy (4.4-7)

where we have substituted from Equations (4.4-4) and (4.4-5) for sing,
and cosfy déy. By setting cosf, = 1 in the right-hand side of Equation
(4.4-7), we obtain the current density which arrives at the anode per unit
solid angle in the direction normal to the anode and which is composed of
electrons emitted from the cathode with kinetic energy in the range eV,
to e(V1 + dV1). Then, by integrating this quantity with respect to V;
from zero to infinity, the total current density incident upon the anode per
unit solid angle in the direction normal to the anode is found to be

Ja(bz = 0) = —(‘% + 1) (4.4-8)

This is the expression we set out to derive. It compares with a cathode
emission current density per unit solid angle in the direction normal to
the cathode of J,/x. In the discussion that follows we shall use Equation
(4.4-8) to obtain an approximate expression for the maximum current
density which can be obtained at a crossover.

Figure 4.4-2 shows a planar diode in which the anode has a small circular
aperture. Two additional electrodes located behind the anode combine
with the anode to form an einzel lens. (See Figures 3.1-1(c) and 3.1-1 (d).)
The beam of electrons passing through the lens is focused to a crossover L
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Fic. 4.4-2 A planar diode with a small circular aperture in the anode. Two aper-

tured electrodes behind the anode combine with the anode to form an einzel lens.

The electrons passing through the anode aperture are focused to a crossover at
the collector electrode.

units from the lens. A collector electrode at the crossover intercepts the
beam. Let us now estimate the current density at the center of the cross-
over. We shall assume that Equation (4.4-8) gives the current density
incident upon the anode aperture per unit solid angle in the direction normal
to the aperture. We shall further assume that electrons emitted from the
cathode with zero transverse velocity and incident upon the anode aperture
from the cathode side are deflected by the lens in the direction of the center
of the crossover. An element of area dA4 in the center of the crossover and
normal to the beam axis will subtend a solid angle d4 /L? at a point on the
aperture. Therefore, unit area of the aperture will transmit a current

Jo (e Ve + 1)5‘E to the element of area d4, and the current density incident

upon dA from unit area of the aperture will be']—<eV2 + 1) If the radius

of the aperture is R, the total current density at the center of the crossover

will be
(eV2 + 1) (4.4-9)

More accurately, it can be shown with the aid of statistical mechanics*
that the maximum current density obtainable at a crossover with any lens
system is given by

J 0(2—1;2 + l)sin"’ﬁ (4.4-10)

‘Reference 4.4. See also Reference 4.5.



DIODES AND ELECTRON GUNS 131

where g is the half angle subtended at the crossover by the aperture di-
ameter. Moreover, it can be shown that this limiting current density can
be approached only when the aperture of the lens system passes a small
part of the total current drawn from the cathode, and when the lens system
is essentially aberration-free. The limiting current density given by the
above expression applies both at a crossover and at an image of a crossover
formed by a subsequent lens system.

In a cathode-ray tube the half angle 8 of the cone of trajectories incident
upon the screen is often of the order of 1/100 radian or smaller, whereas
eVamay be 5 X 10* times k7. Thus the maximum current density obtain-
able at the screen of the tube is often of the same order of magnitude as the
cathode current density J,. However, because of aberrations, the actual
current density at the screen is usually less than J,.

Suppose that in the device shown in Figure 4.4-2 an electron emitted
from the cathode with transverse velocity k7T /m passes through the anode
aperture and strikes the collector at a point ¢ units from the center of the
crossover. If we assume that the transit time from the cathode to the col-
lector is the same for all electrons reaching the collector and that aberrations
in the einzel lens are small, an electron that leaves the cathode with trans-
verse velocity u. will be displaced a distance r = w,0/\kT/m from the
beam axis by the time it reaches the crossover. We then can use the same
arguments that were presented in connection with Equation (4.4-3) to
show that the current density incident upon the collector is proportional to

2
erizng
2462

where r is the distance measured along the surface of the collector from the
beam axis.

If the lens in Figure 4.4-2 is made stronger, L decreases and # increases.
However, ¢ decreases, since the transit time from the aperture to the cross-
over is smaller. Similarly, decreasing the strength of the lens reduces 8
and increases ¢. (Ultimately the beam will diverge at the lens.) Thus an
electron beam can be focused to a crossover of small diameter and large
angle of convergence B, or a large diameter and small angle of convergence,
but not simultaneously to a small diameter and small angle of convergence.

Next let us consider some effects of thermal emission velocities in con-
vergent beams such as are used in many microwave tubes. Figure 4.4-3
shows a diode with a cathode emitting surface and anode which are portions
of spheres, both concentric about the point P. Nonthermal electrons in
such a diode travel in radial lines from the cathode to the anode, since the
forces acting on them are directed toward the point P. The trajectory of
one thermal electron is shown in the figure. Suppose this electron is emitted
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Fig. 4.4-3 Trajectories of a thermal electron and several nonthermal electrons in a
spherical diode.

with velocity u.. parallel to the cathode surface. Since the forces acting on
it are directed toward the point P, angular momentum about the point P
is conserved. When the electron reaches radius 7 from the point P, its
component of velocity wu transverse to the radial direction is given by

MUuF = MgTe (4.4-11)
or
-C dc
Uy = %u,c = gl (4.4-12)

where 7, is the radius of the cathode emitting surface measured from the
point P to the cathode emitting surface, d. is the cathode diameter, and d
is the diameter of the beam at radius 7 from point P. Consequently, as
the thermal electron travels from the cathode toward the anode, its com-
ponent of velocity transverse to the nonthermal electron trajectories increases,
and at a given point it is inversely proportional to the beam diameter at
that point. This result applies when the current drawn from the cathode is
space-charge-limited as well as when it is temperature-limited.

The foregoing is a particular example of a quite general relationship which
applies to paraxial electron beams. This relationship states that, if the
diameter of an electron beam is reduced from d, to d: by the action of axially
symmetric fields and if the fields acting on the electrons are directly pro-
portional to the distance from the beam axis, the transverse velocities of
the thermal electrons measured relative to the trajectories of the non-
thermal electrons are increased by the ratio di/d.. The discussion pre-
sented below will develop this more general relationship.
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It will be convenient to introduce a radial coordinate u which varies
linearly from zero on the beam axis to unity at the beam edge. Let r.(z) be
the beam radius (corresponding to u = 1). We shall assume that the non-
thermal electrons travel in laminar paths, that is, paths that do not cross
one another, and that the radial forces within the beam are directly propor-
tional to distance from the axis. The path traveled by a nonthermal elec-
tron is therefore one of constant x. If there is appreciable space charge in
the beam, the assumption that the radial forces are proportional to distance
from the axis implies a uniform current density over the beam cross section.
(See Equation (3.4-9).)

Consider a thermal electron whose radial coordinate is given by

T = ure (4.4-13)

where both x and r. are functions of z. Differentiating this equation twice
with respect to time gives

o= jire + 2, + uite (4.4-14)
where
fo = 142 (4.4-15)
and
fo = 15" () + 12 (4.4-16)

Similar expressions hold for g and ji. (The notation used here is similar
to that of Chapter 3.) Since the radial forces acting on the thermal electron
are directly proportional to its distance from the axis, the radial acceler-
ation of the thermal electron is u times the radial acceleration of a non-
thermal electron at the edge of the beam, or

P = k. (4.4-17)
Comparing ‘this equation with Equation (4.4-14), we see that
jire + 2pf, = 0 (4.4-18)
or
i(nrﬁ) =0 (4.4-19)
di

Integrating this, we find that
arl = constant (4.4-20)

a relationship which applies over the whole length of the beam. Consider
two points on the electron’s trajectory such that ¢ = u; at one point and
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4 = ug at the second point. Let the beam radius be r.; at the first point and
e at the second point. Then, from Equation (4.4-20),

bl _ Ta (4.4-21)
HiTe1 Te2

Now the quantity aire is the transverse velocity of the thermal electron
measured relative to the trajectories of the nonthermal electrons at the
point where the beam radius is r.. We shall denote it by %.. Similarly we
shall set we = jore. Equation (4.4-21) therefore can be written as

Tel d

=, =2 -
U = rezun dz’un (4.4 22)

where di = 2ra, and d» = 2r,,. This is the relation we set out to obtain.

The case we have just considered applied to a thermal electron whose
initial transverse velocity is in the radial direction only. If the thermal
electron also has an initial component of velocity in the 6 direction, that is,
the direction both perpendicular to the beam axis and the radial direction,
we can use a Cartesian coordinate system in the transverse plane to de-
seribe the transverse motion of the electron. For an axially symmetric
electric field in which E, = ar, the z and y components of the radial field
can be expressed as E, = ar and E, = ay. Furthermore we can rewrite
the foregoing equations replacing r by z or y and p by u. or p,. In this way
it is easily shown that Equation (4.4-22) applies for any direction of the
initial transverse velocity ..

F1e. 4.4-4 A convergent electron gun which generates a beam of diameter d from
a cathode of diameter d..
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The foregoing results can be applied to an electron gun which generates
a beam of diameter d and has a cathode of diameter d.. Such a gun is
illustrated in Figure 4.4-4. The average transverse velocity of the electrons
in the region where the beam diameter is d will be d./d times the average
transverse velocity at the cathode surface, and from Equation (2) of Ap-
pendix IV the probability that an individual electron has transverse
velocity in the range u; to u; + du; at a point where the beam diameter is
d will be

d 2 2 2
dP(u)) = %(Ec) €I Ty, (4.4-23)
Highly convergent electron guns (guns with high d./d) therefore generate
electron beams with high transverse velocities.

4.5 Electron Guns

It will be convenient to consider separately the electron guns used in
microwave tubes and those used in cathode-ray tubes and storage tubes,
since the principles involved in the two cases are quite different.

a. Electron Guns Used in Microwave Tubes

Figure 4.5-1 shows three electron guns that are used in beam-type micro-
wave tubes. The first two have a relatively large cathode area in order to
draw the required total emission current, and electrodes in front of the
cathode focus the beam to a cross section much smaller than the cathode
area. In this way electron beams of current density far greater than the
cathode emission density can be obtained. The third electron gun is oper-
ated in a uniform axial magnetic field, so that the electron beam cross
section is just a little larger than the cathode area, and the electron motion

TaBLE 4.5-1
Gun a b ¢

Beam voltage, volts.................... 2600 500 570
Beam current, amp.................... 0.040 0.066 0.0005
Perveance, amp /volts®2. . .............. 030 X 10 59X10% 3.7 X107
Cathode current density, amp /em?....... 0.21 . 0.19 0.16
Average beam current density, amp /em?. . 5 7 ~ 0.1
Angle of convergence*, degrees.......... 25 145 —

*The angle subtended by a diameter of the cathode at the center of curvature of the
cathode emitting surface.
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F1a. 4.5-1 Three electron guns used in microwave tubes.

is similar to that deseribed in Section 3.4(b) under the heading of Confined
Flow. Table 4.5-1 lists several important characteristics of these guns.
The electron gun shown in Figure 4.5-1(a) consists of a cathode, a ‘“‘beam-



DIODES AND ELECTRON GUNS 137

forming electrode,” which is operated at cathode potential, and an anode.
The cathode emitting surface is concave and spherical in shape. The gun
is called a Pierce electron gun, after J. R. Pierce,® who first put the design
of convergent electron guns on a firm basis.

/,
74

N

() (b)

Fie. 4.5-2 The evolution of a Pierce electron gun from a spherical diode.

To understand the choice of shape for the electrodes, we might first
imagine a diode consisting of portions of two concentric spheres, such as
the one illustrated in Figure 4.5-2(a). The cathode and anode are assumed
to be defined by the intersection between the spherical surfaces and a
right-circular cone with apex at the common center of the spheres. With
such a device we can make a convergent beam of electrons. However, the
nonthermal edge electrons travel in radial lines only if they experience a
radial electric field and no transverse field. A little consideration shows
that this will be the case only if the potential just outside the beam varies
with radius 7 (measured from the common center of the spheres) in the
same way that it does inside the beam. The beam-forming electrode,
therefore, is designed to create a potential along the edge of the beam which
matches as nearly as possible that inside the beam. Finally, since we do
not want to intercept the electrons, a hole must be made in the anode so
that the convergent beam will pass on through. The resulting shape of the
electron gun is similar to that shown in Figure 4.5-2(b).

The beam-forming electrode has its principal effect close to the cathode,
where the electrons are moving more slowly and the transverse fields are

SReference 4.6.
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able to deflect the electron trajectories much more. Let us examine the
shape of the beam-forming electrode in this region more closely. Figure
4.5-3 shows a much expanded view of the edge of the beam close to the

BEAM-FORMING
ELECTRODE ™~

~~ CATHODE -EMITTING
SURFACE

F16. 4.5-3 An expanded view of the edge of the beam in the region of the cathode.

cathode emitting surface. If the dimensions of the portion of the cathode
shown in the figure are assumed to be small compared with the overall
cathode dimensions, we can further assume that the portion of the emitting
surface shown in the figure is planar and that the beam extends a consider-
able distance above and below the page. The potential problem then reduces
to a two-dimensional one and is thereby simplified. In the portion of the
beam we are considering, the potential will vary approximately as in
the planar diode and will be given by

V = At (4.5-1)
where 4 is a constant, and z is the distance measured from the emitting
surface.

Appendix VIII considers two-dimensional potentials which are symmetric
about an axis. It is shown there that, if the z axis of a Cartesian coordinate
system is the axis of symmetry and if V = f(z) is the potential on the z
axis, V = Re f(z + jy) = 3[f(x + jy) + f(z — jy)]is the potential through-
out the z-y plane. Furthermore, symmetry of potential about the z axis
implies that 8V /dy = 0 at y = 0, since the potential and its derivatives
are continuous in a charge-free region.

Suppose we were to establish in the region just above the beam in
Figure 4.5-3 a potential given by

V= ReA@+ i) = Al + )" + @ — ] (452)
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This potential has the property that for y = 0 it reduces to V = Ax*3,
and furthermore that 3V /dy = 0 at y = 0, so that there would be no
transverse force on the electrons at the edge of the beam.

To establish such a potential, the beam-forming electrode must be
shaped to conform to an equipotential defined by Equation (4.5-2) and
must be operated at that potential. A convenient potential is that of the
cathode, since no additional biasing supply is needed in this case. The
equipotential corresponding to cathode potential is obtained by setting
V = 0 in Equation (4.5-2) and is given by

y= Q142 (4.5-3)

This is the equation of a straight line making an angle of 67.5 degrees with
the z axis.

Thus, close to the electron beam, the beam-forming electrode makes an
angle of 67.5 degrees with the beam edge, since in this region the approxi-
mations of a two-dimensional potential and a planar cathode are reasonably
valid. The shape of the beam-forming electrode further from the beam and
the shape of the anode are so chosen that they produce a potential along the
edge of the beam which matches the potential that is characteristic of
electron flow between concentric spheres. Often an electrolytic tank® is
used to determine experimentally suitable electrode contours.

In the region of the anode aperture there is a component of electric field
directed toward the axis of the beam, and this acts as a diverging lens.
If the anode aperture is small compared with the anode-to-cathode distance,
the focal length of this lens is” 4V,,/V’, where V., is the anode voltage, and
V' is the potential gradient on the cathode side of the anode aperture.
(See Problem 3.1.) The lens causes the off-axis electrons to receive a small
deflection away from the axis. Beyond the anode aperture, the radial
electric field of the beam causes a further deflection of the off-axis electrons
away from the axis, with the result that the beam ultimately reaches a
minimum diameter and then diverges. If an axial magnetic field is used to
confine the beam, the beam would normally be launched into the field near
the point of its minimum diameter.

The discussion of Section 4.2 concerning the relationship between anode
current and anode voltage for a space-charge-limited diode applies equally
well to electron guns such as those illustrated in Figures 4.5-1(a) and
4.5-1(b). Over the range of cathode currents for which space-charge-
limited conditions prevail, the beam current varies as the 3/2 power of the

SReference 4a, p. 180.

"The effect of the finite size of the anode aperture in Pierce electron guns has been
considered by Danielson et al., Reference 4.7, who conclude that in a typical case the
focal length given by the above expression should be divided by about 1.1.
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anode voltage. Similarly, if the linear dimensions of an electron gun are
scaled by a constant factor, the same beam current is obtained for the same
applied anode voltage, and the beam dimensions scale with the other
linear dimensions of the gun, provided space-charge-limited conditions
prevail.

The ratio of beam current to (beam voltage)*? is a constant for any
particular electron gun design over the range of beam currents for which
space-charge-limited conditions prevail. The ratio is known as the per-
veance of the gun and is a measure of the amount of beam current the gun
can generate for a given applied voltage. If two guns have the same geome-
try, but differ in their linear dimensions by a constant factor, they both
have the same perveance.
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Fi6. 4.5-4 Beam current density vs. radial distance from the axis at the point of
minimum beam diameter for the electron gun illustrated in Figure 4.5-1(a).

The effects of thermal velocities in Pierce electron guns have been con-
sidered by Cutler and Hines,® and later by Danielson et al. The parameters
that apply to the beam at its point of minimum diameter have been sum-
marized in a family of curves by Herrmann.?® Data concerning the distribu-
tion of current density across the beam cross section, the size of the beam at
its point of minimum diameter, and the location of the point of minimum

8Reference 4.8.
‘Reference 4.7.
1Reference 4.9. See also Reference 4.10.
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diameter with respect to the anode aperture can be obtained by reference to
the papers by these authors. Figure 4.5-4 shows the calculated current
density vs. radial distance from the beam axis at the point of minimum
beam diameter for the electron gun illustrated in Figure 4.5-1(a). The
curves given by Herrmann also indicate that a nonthermal electron emitted
from the edge of the cathode of this electron gun would arrive at the plane
containing the minimum beam diameter at a radius of 0.045 ¢m from the
axis. Notice that Figure 4.5-4 indicates that some of the thermal electrons
are far beyond this radius when they reach the plane of minimum beam
diameter. The beam radius at the cathode is 0.24 em.

A measure of the distribution of transverse velocities in the beam at the
point of minimum diameter can be obtained by assuming that the radial
fields acting on the beam between the cathode and the point of minimum
diameter are directly proportional to distance from the beam axis.* We
then can use Equation (4.4-23) to express the probability that an electron
at the point of minimum diameter has transverse velocity in the range u, to
Us + dut as

mu, M

2
dP(u) = 5 = )e‘"‘“t’('min/'v)”"””du; (4.5-4)

where 7, is the beam radius at the cathode, and 7, is the beam radius at the
point of minimum diameter. This result is sometimes interpreted by saying
that the effective “‘temperature’” of the beam generated by the gun is
(re/rmin)?T. For the gun shown in Figure 4.5-1(a) and for a cathode temper-
ature of 1000°K, we can obtain a first-order estimate of the beam tempera-
ture at the point of minimum diameter by setting r. = 0.24 cm and ruin =
0.045 cm, or the minimum distance from the beam axis to the trajectory of a
nonthermal electron emitted from the edge of the cathode. The resulting
beam temperature is (0.24/0.045)? X 1000 = 28,000°K.

The high transverse velocities in a beam generated by a convergent elec-
tron gun increase the difficulty of focusing the beam by any of the several
methods described in Section 3.4. Higher focusing fields are required to
confine the beam to a given diameter than would be predicted by simple
theory which assumes laminar electron flow.

In most convergent electron guns, the total beam current determines the
cathode area. On the one hand, the cathode emitting surface is character-
ized by a maximum emission eurrent density consistent with long life of the

UThis assumption implies that the beam current density is uniform over the beam
cross section. However, from Figure 4.5-4 it is evident that, in fact, the beam current
density at the point of minimum diameter falls off rapidly from a radius about equal to
one third the beam radius. Consequently, the estimate of the beam temperature which
follows Equation (4.5-4) can only be considered as a first-order estimate.
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emitter, so that the total beam current determines the minimum cathode
area consistent with long cathode life. On the other hand, a larger cathode
area than necessary would be wasteful of heater power, and the transverse
velocities in the beam for a given minimum beam diameter would be un-
necessarily high.

Some reflex klystron oscillators require high-current, high-current-
density beams at relatively low voltages, often a few tens of milliamperes at
a few hundred volts. Electron guns which produce these beams are of much
higher perveance than the gun illustrated in Figure 4.5-1(a). One way to
increase the perveance of an electron gun is to reduce the anode-to-cathode
spacing. This, in turn, necessitates opening the anode aperture in order to
pass the beam. However, it is found that, if the diameter of the anode
aperture approaches half the anode-to-cathode spacing, the potential at the
center of the aperture falls sufficiently below anode potential that the spher-
ical diode is no longer approximated. In this case, the current density
drawn from the edge of the cathode is greater than that drawn from the
center of the cathode, and spherical aberration in'the accelerating field
introduces relatively high transverse velocities in the beam. Furthermore,
it can be shown that, if the ratio 7,/7, = (radius of cathode emitting surface
measured from the center of curvature of the emitting surface)/(distance
from anode aperture to the center of curvature of the cathode emitting
surface) is reduced below 1.4, the lens at the anode aperture becomes suffi-
ciently strong that the beam beyond the anode is divergent.

Higher perveance also can be obtained by maintaining a relatively large
Te/F. and by increasing the angle of convergence (i.e., the angle subtended
by a diameter of the cathode at the center of curvature of the cathode
emitting surface). This is the approach used in the electron gun shown in
Figure 4.5-1(b). The angle of convergence in this case is 145 degrees, or
nearly 6 times that of the gun shown in Figure 4.5-1(a). However, the
anode aperture is still relatively small, and, in fact, the anode is shaped to
follow the beam contour. Although an appreciably higher perveance is
obtained in this manner, spherical aberration in the accelerating field causes
many of the electrons emitted from the edge of the cathode to cross the axis
of the beam near the point of minimum diameter. As a consequence of this,
the electron flow is far from laminar, and the transverse velocities are large.
The beam is therefore difficult to confine with a magnetic field. The use of
even higher angles of convergence would lead to still greater transverse
velocities, and few applications could use such a gun.

Figure 4.5-5 shows a plot of beam current vs. anode voltage for the gun
shown in Figure 4.5-1(b). The plot is made on “two-thirds power” paper in
which the ordinate scale is proportional to the 3/2 power of linear distance
measured up the page from the origin, while the abscissa scale is linear. The
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Fig. 4.5-5 A plot of beam current vs. anode voltage for the gun shown in Figure
4.5-1(b).

straight-line relationship between I,, and V,,, when plotted on this paper,
implies that I,, is proportional to V,,*? as we would expect from our earlier
discussion.

Figure 4.5-1(c) illustrates an electron gun which is used in a low-noise
traveling-wave amplifier. The gun is operated in a uniform axial magnetic
field of 0.06 weber/meter?, and the electron motion is similar to that de-
scribed in Section 3.4(b) under the heading of Confined Flow. Several
apertured accelerating electrodes are provided. The potentials of these
electrodes are adjusted to minimize the amplitude of noise signals excited in
the electron beam by statistical fluctuations in the electron emission veloci-
ty and current at the cathode. (The reduction of noise in an electron beam
by this method is described in Chapter 13.) The uniform axial magnetic
field might be provided by the permanent magnet circuit illustrated in
Figure 1.5-6.

The cathode of the gun illustrated in Figure 4.5-1(c) is planar and of
diameter 0.63 mm. A beam current of 0.5 milliamp is drawn from the
cathode, and the cathode current density is 160 ma/cm? As the beam
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leaves the cathode, its diameter shows a slight increase because of transverse
emission velocities and radial fields in the accelerating region. However,
the axial magnetic field confines the beam diameter sufficiently that the
beam can pass through a helix-type slow wave circuit of inside diameter
1.3 mm and length 13 ¢m with less than 0.5 microamp interception.

b. Electron Guns for Cathode-Ray Tubes and Storage Tubes

These electron guns focus the beam to a crossover which is imaged onto
the screen or storage surface by a lens beyond the crossover. Often an
apertured electrode between the crossover and the lens passes only the
central portion of the beam, so that the effects of aberrations in the gun and
lens are small.

Generally the beam currents incident upon the screen or storage surface
are lower than those used in microwave tubes. Storage tubes that make use
of secondary emission from insulating materials often employ beams of a
few microamperes at one or two thousand volts; cathode-ray tubes fre-
quently employ beam currents of a few tens of microamperes at several
thousand volts, perhaps 2 to 6 thousand volts; whereas the beam incident
upon the screen of a television tube often amounts to a few hundred micro-
amperes at 15 to 20 kv.

%
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Fie. 4.5-6 A triode electron gun such as is used in a cathode-ray tube or storage
tube.
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The crossover is formed by a “triode” system consisting of a cathode, a
“grid,” and an anode, the grid and anode each having a single aperture.
Such a structure is illustrated in Figure 4.5-6. The grid is always biased
negatively with respect to the cathode, and consequently the current drawn
from the cathode comes from a small circular area opposite the grid aperture.
Equipotentials plotted in the figure show that electrons passing through the
grid aperture experience a field which is both accelerating and convergent.
The convergent field causes the nonthermal electrons to cross the axis
between the cathode and the anode, and in this way the crossover is formed.
Beyond the anode, the paths of the thermal electrons emitted from a single
point on the cathode cross one another, and an image of the cathode is
formed. The system is sometimes called an ¢mmersion lens, since the
cathode is “immersed” in the accelerating field.

In the region of the crossover, the beam diameter reaches a minimum.
The size of the minimum beam diameter is affected by three principal
factors: Thermal emission velocities at the cathode, the accelerating po-
tential, and aberrations in the convergent field which forms the crossover.
Space charge may also affect the beam diameter at the erossover if the beam
current is high and the beam voltage is low. If the convergent field were
aberration-free, and if space-charge effects were small, the nonthermal
electrons emitted from all parts of the cathode surface would cross the axis
at essentially the same point. In this case, we might further assume that a
thermal electron passing the crossover would be displaced from the axis by a
distance proportional to its initial transverse velocity and independent of its
point of emission on the cathode. Suppose that an electron emitted from
the cathode with transverse velocity equal to k7T/m were displaced a
distance o from the axis by the time it reached the crossover. Then, using
the arguments presented in connection with Equations (4.4-2) and (4.4-3),
it is easily shown that the current density in the region of the crossover
would be proportional to ¢7*/2", where r is the distance from the axis to the
point where the beam current density is determined. If the lens system
beyond the crossover is aberration-free, and if the beam is focused to a
second crossover at the screen, the current density incident upon the screen
is also of this form, but with a o increased by the magnification of the lens.

If the grid is made sufficiently negative, the beam current is cut off.
Clearly the cutoff condition will prevail when the off-cathode potential
gradient at a point on the cathode surface directly opposite the center of the
grid aperture is zero or negative. Figure 4.5-7(b) shows a plot of the grid
cutoff voltage vs. anode voltage for the triode shown in Figure 4.5-7(a).
The straight-line relationship can be explained by noting that the net off-
cathode potential gradient is a superposition of that caused by the grid and
that caused by the anode, so that doubling the anode voltage requires
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double the grid voltage in order to keep the off-cathode potential gradient at
the center of the cathode equal to zero. The slope of the line, of course, is
dependent upon the electrode dimensions and spacings.

The difference between the applied grid voltage and the cutoff voltage is
called the grid drive voltage. As the grid is made more positive than cutoff,
the area of the region of the cathode from which current is drawn increases,
and the current density drawn from regions of the cathode surface which are
already contributing to the beam current increases. Figure 4.5-7(c) shows
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Fic. 4.5-7 Plots of grid cutoff voltage vs. anode voltage and beam current vs.
grid drive for the triode gun structure shown in part (a) of the figure.
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a plot of beam current vs. grid drive voltage for the triode shown in Figure
4.5-7(a). The slope of the straight-line relationship indicates that the beam
current of this structure increases as about the 2.4 power of the grid drive
voltage over the range of values for which the data are plotted.

Many experimental data concerning relationships between design param-
eters and the electrical performance of electron guns for cathode-ray tubes
and storage tubes are presented in an informative paper by Hilary Moss.!?

PROBLEMS

4.1 For the conditions of applied anode voltage and cathode emission illustrated
in Figure 4.1-1(d), show that the time taken for an electron to travel from the
cathode to the anode of a planar diode is 3/2 as great as the time taken when no
space charge is present. Assume zero emission velocity and dV/dx = 0 at the
cathode.

4.2 The 3/2 power law of anode current vs. anode voltage does not apply to a
diode operating under temperature-limited conditions. Explain why the arguments
presented in Section 4.2 are not applicable in this case.

d ——m— TRAJECTORY OF
THERMAL ELECTRON

—— TRAJECTORY OF
NONTHERMAL ELECTRON

ol

X oy

Problem 4.3

4.3 The figure shows a beam of electrons which is convergent upon the point F.
The trajectories of several nonthermal electrons and one thermal electron are shown
in the figure. The beam current density is assumed to be small, and no external
fields are applied in the region of the beam. From geometrical considerations show
that the thermal electron crosses the nonthermal electron trajectories with a trans-
verse component of velocity which varies inversely as the beam diameter, and hence
that

F di

U = = Uy = 5 Ug
T2 ds

2Reference 4e.
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where uy and up are, respectively, the transverse velocity of the thermal electron
relative to the nonthermal electron trajectories at the points where the beam diam-
eter is d; and ds, respectively.
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Chapter 5

GRID-CONTROLLED TUBES —
STATIC CHARACTERISTICS

If a grid is placed in front of a thermionically emitting cathode and if the
current drawn from the cathode is space-charge-limited, the voltage applied
to the grid can be used to control the current drawn from the cathode. A
triode vacuum tube consists of a cathode, a control grid, and an anode.
Usually, a dc bias voltage is applied to the control grid to make it negative
with respect to the potential minimum and thereby reduce the interception
of the electron beam by the grid. By superimposing a small ac signal on the
de bias voltage, the beam current can be modulated with little expenditure
of power. AC power amplification is then obtained by causing the ac cur-
rent flowing in the anode circuit to pass through a load resistance or im-
pedance of suitable size.

Additional grids also may be inserted between the control grid and anode.
Generally, these are held at fixed potentials, but in some cases their control
action on the beam is used to mix signals from independent sources. A
tetrode has a control grid and a sereen grid, whereas a pentode has a control
grid, a screen grid, and a suppressor grid.

Usually the screen grid in a tetrode is biased at a fixed positive potential
with respect to the cathode. Its shielding action between the anode and
control grid reduces the capacitance between these electrodes and hence the
coupling between the output circuit and the input circuit. In addition, the
current reaching the anode of a tetrode is determined largely by the voltages
applied to the control grid and screen grid and is nearly independent of
anode voltage over a wide range of positive anode voltages. This is an ad-
vantage when high-voltage amplification per stage is required.

Many tetrodes are constructed with a large spacing between the screen
grid and anode so that space charge in the interelectrode space will depress
the potential between the electrodes and prevent secondary electrons

149
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emitted from one electrode from reaching the other. The large spacing also
reduces the output capacitance of the tube, and this is an advantage in
high-gain, broadband amplifiers.

In the pentode, the supressor grid is inserted between the screen grid and
anode. It is of a very coarse mesh, and usually it is biased at cathode
potential. The suppressor grid depresses the potential between the screen
grid and anode and thereby prevents secondary-electron exchange between
these electrodes.

In the present chapter we consider the de behavior of triodes, tetrodes,
and pentodes. The mechanical construction and performance of one ex-
ample of each of these tubes is described. In Chapter 6 the use of grid-
controlled tubes in simple low-frequency amplifier circuits is described, and
in Chapter 7 the problems and limitations of grid-controlled tubes when
operated at very high frequencies are discussed.

As in the previous chapter, we shall use the subscript o to designate de
electrode voltages and currents. Thus V,, and I, are the de anode voltage
and current.

5.1 A Particular Triode and its Electric Field in the Absence of
Space Charge

In this section we first describe the electrode geometry and construction
of a particular triode, the Western Electric 417A. Then we consider the
electric fields in the interelectrode space of this tube when various potentials
are applied to the electrodes, and when no space charge is present. The
electrical characteristics of the 417A with space-charge-limited operation
are described in Section 5.2.

The construction of the 417A is shown in Figure 5.1-1. This is an example
of a triode in which the grid is mounted very close to the cathode to increase
the effectiveness of the grid voltage in controlling the current reaching the
anode. The tube is used in the input stage! of a broadband amplifier which
amplifies signals with frequencies varying from 58 to 90 Mc/sec.

Table 5.1-1 summarizes the important dimensions of the 417 A electrodes.
The cathode area is 0.38 cm?

The cathode consists of a short length of nickel tubing that is flattened to
provide two planar emitting surfaces. The wall thickness of the tubing is

IActually two tubes are used in a “cascode’” stage. Triodes are preferred for the
input stages of high-gain amplifiers because they generate less noise than tetrodes and
pentodes. Since the noise generated by the input stages is amplified by all the remaining
stages, the noise output of a high-gain amplifier is much reduced by using low-noise
tubes in the input stages.
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Fia. 5.1-1 The construction of the Western Flectric 417A triode. The overall
height of the tube is 4.4 cm.

TaABLE 5.1-1
Millimeters
Grid wire diameter... ............. ... ... ... . 0.0074
(or 0.00029 inch)
Grid pitch, P (or center-to-center spacing of the grid wires).... ... 0.065
Cathode-to-grid spacing, dog. . ......... ... 0.045
Cathode-to-anode spacing, dea. . ... ... 0.58

0.075 mm. A “double-carbonate” oxide coating is applied to the emitting
surfaces.

The grid is made by winding tungsten wire onto a molybdenum frame and
then brazing the wire to the frame with a small amount of gold. The high
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tensile strength of tungsten permits winding the grid wire onto the molybde-
aum frame while it is under appreciable tension.? This ensures that the
resonant frequency of the grid wires is high and minimizes the tendency for
mechanical excitation when the tube is vibrated. Vibration of grid wires in
grid-controlled tubes is a principal source of “microphonics.” After brazing
the grid wires to the frame, the grid assembly is gold plated to raise its work
funetion. This reduces thermionic emission from the grid wires, which
would otherwise take place when the grid is heated by thermal radiation
from the cathode.? :

The anode, or “plate,” of the 417A is made of nickel which is coated with
fine carbon particles in order to increase the heat radiation from the outer
surface and thereby reduce the anode operating temperature. Under
typical operating conditions, a power of 3.5 watts is dissipated in the anode,
and the anode temperature is between 500° and 600°C.

Let us consider now the potential obtained in the interelectrode space of
the 417A when various voltages are applied to the electrodes and when no
space charge is present. It is convenient to think of the potential as being a
linear combination of two separate potential functions, which we shall
denote Fi(z,y,2) and Fa(z,y,2). Fi(x,y,2) is the potential obtained in the
interelectrode space when the grid is at +1 volt, and the cathode and anode
are at ground potential. Fu(z,y,2) is the potential obtained when the anode
is at +1 volt and the grid and cathode are grounded. Clearly the functions
F, and F, satisfy Laplace’s Equation, and so does any linear combination of
them. In particular, the linear combination given by V(z,y,2) = Vel +
V ..F; satisfies the boundary conditions for the case in which the cathode is
at ground potential, and the grid and anode are at V,, and Vo, volts, re-
spectively. Since it also satisfies Laplace’s Equation, it must be the poten-
tial function actually obtained with these boundary conditions.

Let us look more closely now at the functions F; and F». Figure 5.1-2(a)
shows a plot of equipotential contours of the function F; in a portion of the
interelectrode space of the 417A.4 Figure 5.1-2(b) shows plots of F1 along
two lines running from the cathode to the anode; one line passes through
the center of a grid wire, and the other passes midway between grid wires.
Figures 5.1-2(c) and (d) show similar plots for the function F.

2About half the breaking tension of the tungsten wire is used.

iGrid emission tends to bias the grid in the positive direction. This increases the
beam current and the power dissipation in the tube, which in turn raises the grid operat-
ing temperature and further aggravates the situation. In an extreme case, with a very
high resistance in the grid circuit, a tube with high grid emission can be destroyed by
excessive power dissipation in its electrodes.

4Plots such as this can be made with the aid of an electrolytic tank. See, for instance,
Reference 4a, p. 180. Analytic expressions for Fi and F: are given in Reference 5.1,
Equations 1 to 4. Approximate expressions are derived in Appendix IX.
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Fia. 5.1-2 Plots of the functions F, and F for the interelectrode space of the 417A.

At the cathode the function 7, has a slope of 176 volts/em for the 417A,
whereas the function F, has a slope of 3.8 volts/em. The ratio of these
electric fields is called the electrostatic amplification factor and is desig-

nated pe,. Thus
aF,
i
Mes = orF,
or

z=0

e

(5.1-1)
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where ¢ measures distance in the direction normal to the cathode and is zero
at the cathode. For the 417A, p,, = 176/3.8 = 46.

The electrostatic amplification factor measures the relative effectiveness
of the grid and anode in creating an electric field at the cathode surface. In
fact, a second definition of x.. which follows directly from Equation (5.1-1)
is that u., is minus the ratio of the anode voltage to grid voltage which gives
zero electric field at the cathode. Finally, since electric fields can be super-
posed, we can write

aVa,

Hes = —
dVgo tant electric field at the cathode

(5.1-2)

where dV,, and dV,, are incremental changes in the anode and grid voltages
which give zero change in the electric field at the cathode.

Figure 5.1-3 shows plots of V = V,.F1 + V,.F. in the region of the
cathode and grid of the 417A for an anode voltage of 100 volts and three
values of ¥, For the particular geometry of this tube, a grid voltage of
—2.2 volts gives nearly zero electric field at the cathode. Using the second
definition of the electrostatic amplification factor, given above, we find that
tee = 100/2.2 = 45.5, or approximately 46, in agreement with the value
previously obtained using Equation (5.1-1). If the grid voltage is changed
by 1 volt with constant anode voltage, the electric field at the cathode
surface changes by

9F,

% o = 176 volts/em

Thus, we can expect that the control action of the grid voltage upon the
current drawn from the cathode with space-charge-limited operation will be
considerable.

From the foregoing discussion it is evident that the electrostatic amplifi-
cation factor is entirely a function of the geometry of the electrodes. In
Appendix IX it is shown that an approximate expression for the electro-
static amplification factor of a planar triode is given by

o = ——— 20 (5.1-9)
Pln (2 sin ﬂ)
P
where d, is the grid-to-anode distance, P is the grid pitch, and R is the
grid-wire radius. The expression is valid when the cathode-to-grid spacing
d,; 2 P and when R < P/20. The electrostatic amplification factor is
independent of the area of the electrodes, but it increases as the grid-to-
anode distance is increased. It also increases if the grid-wire radius and
grid pitch are decreased in such a manner that the ratio of wire radius to

F1e. 5.1-3 Plots of V = V. F1 + VuF in the region of the cathode and grid of the
417A for V, = 100 volts and V,, = —3.4, —2.2, and —1.0 volts.
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pitch is maintained constant. (The ratio 2R/P is sometimes called
the screening fraction of the grid because it indicates the fraction of the
electrode area which is screened or shadowed by the grid.) Note that
Equation (5.1-3) indicates that p., is independent of the cathode-to-grid
spacing. Also given in Appendix IX are expressions for the functions F;
and F. which are valid when d., > P and when R < P/20.

Since V = V,JF1 + V,.F2, we can express the gradient of potential in
the z direction as

v _ . oF oF,
o = Ve T Ve
or,
_ oF 1 ox
ey Vo + V‘"’B_Fl (5.1-4)
or
At the cathode, the potential gradient is therefore given by
| | (vi+ L)
ax z=0 - ax z=0 VW+ es (51-5)

Thus the off-cathode field in the absence of space charge is proportional to
the voltage (V,o + Vao/ues). We shall find in the next section that the
electrical behavior of a triode in the presence of space charge is dependent
upon a voltage which is very nearly equal to (Vo + Vao/ties)-

5.2 The Triode with Space Charge

Grid-controlled tubes are almost always operated with the current drawn
from the cathode space-charge-limited since only then is it possible for the
grid to act effectively as a control electrode. If the cathode emission were
ideally temperature-limited, the ecurrent drawn from the cathode would be
independent of the grid voltage for all grid voltages at which temperature-
limited emission prevailed.

Figure 5.2-1 shows the grid and anode “characteristic curves” for the
417A triode. These curves give the relationship between the current reach-
ing the anode and the voltages applied to the grid and anode. The grid of
the 417A is generally “biased” negatively with respect to the potential
minimum to prevent it from intercepting the electron beam.

The circuit designer is frequently concerned with the small-signal behav-
ior of the active devices in his eircuits and consequently with the slopes of
the curves relating the currents reaching the terminals of a device to the
voltages applied between the terminals. In the case of the triode, the small-
signal behavior of the tube can be described in terms of the slopes of the
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characteristic curves. Two parameters which are derived from these slopes

are the transconductance and the dynamic anode resistance, or dynamic

plate resistance. The transconductance is denoted by® gm and is defined as
dl,, _ 91,

O = AV ouly., = 3V, G21)

"Sometimes by Sp.
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where I,, is the dec anode current. The dynamic anode resistance, denoted
by 74, is defined as

_dVa| _ Ve

7 (5.2-2)
“ dIao Voo aIao
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The product of g and 7, is called the amplification factor and is denoted by p.
Thus

U= gula (5.2-3)

The amplification factor also can be expressed in differential form, similar
to the expressions given above for ¢, and r,. Suppose that V,, and V,,
undergo differential changes dV,, and dV,, at a time when the tube is draw-
ing anode current I,,. The resulting change in anode current is given by

dIao = alao dVﬂo +

aVaa
= gudV 4 + r_adVao (5.2-4)
Now if dV,, and dV,, are such that dI,, = 0, then
Guds = —gg—:: . (5.2-5)
and hence
e~ N (5.2-6)

The amplification factor x is usually approximately equal to the electro-
static amplification factor u.,. Comparison of Equations (5.1-2) and (5.2-6)
makes this approximate equality seem reasonable.

Figure 5.2-2 shows plots of the transconductance, the dynamic anode re-
sistance, and the amplification factor of the 417A for various values of grid
voltage and anode voltage. Evidently the transconductance increases with
increasing anode current, the amplification factor is nearly independent of
anode current, and the dynamic anode resistance decreases with increasing
anode current. Typical operating conditions for the 417A are given in
Table 5.2-1.

Consider the dependence of the anode current on the electrode potentials.
It is found experimentally that an approximate expression for the current
drawn to the anode of a triode is

L. = C(V,,., + I;) (5.27)
where C' and n are constants. Values of n generally lie between 3/2 and 2,
but in some cases may be as high as 5/2. The expression is found to hold
even for small positive grid voltages, provided the anode voltage is much
greater than the grid voltage. The dependence of the anode current upon
the voltage V,, 4+ Vao/u is perhaps not surprising, since we found in the
last section that the off-cathode field in the absence of space charge is pro-
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portional to Vg, + Vao/ue, and we have noted in the present section that
B == Hhes.

In a triode in which the grid is well beyond the region of the potential
minimum, the anode and grid combine to create a field on the grid side of
the potential minimum which is approximately proportional to V. + Vi,./p.
For such a triode we would expect from the discussion given in Section 4.2
that a value of n equal to 3/2 would be applicable in Equation (5.2-7), and
the anode current would vary as (Vo + Vao/w)*2

The constant, C in Equation (5.2-7) can be evaluated for a planar triode
in which n = 3/2 in the manner outlined below. Let us first assume that
the grid is removed and the tube is operated as a space-charge-limited diode.
From Equation (4.1-9) the current drawn to the anode would be

. Vao3/ 2
dcnz

where d., is the distance from the potential minimum to the anode, and 4 is
the cathode area. Solving for V,,, we obtain

I, =233 X 10™ A (5.2-8)

% L B 5.2-0
- [m] . (624)

Next let the grid be inserted at a distance d., from the potential minimum,
and let the applied grid voltage be that which was present in the beam at the
same location before the grid was inserted. A plot of the potential distribu-
tion between the potential minimum and the anode for these conditions is

POTENTIAL >

90

0 deg dca
DISTANCE FROM POTENTIAL MINIMUM ==

Fia. 5.2-3 The potential distribution in a space-charge-limited triode with the grid
at beam potential.
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shown in Figure 5.2-3. The applied grid voltage under these circum-
stances is given by

Voo = | sz g, 0 (5.2-10)
1233 X104 | ° :

With the grid at the potential of the surrounding beam, some of the beam
current is intercepted by the grid wires. However, if the grid-wire diameter
is much smaller than the grid-wire spacing, this interception will be a small
part of the total anode current.

Substituting the above expressions for V,, and V,, into Equation (5.2-7)
and setting n = 3/2, we obtain

I Iao ca“3 32
= Cogrseal o+ | (621D,
from which
2.33 X 10784
C = =" (5.2-12)
l:du«t/s + = ]
Finally, the anode current can be expressed as
—6 3/2
7, = 2:33 X 107°A(Vio + Vool ) (5.2-13)

1/d. \" P
2 = =<
dw [1 + #(dca> ]

This last equation states that the current density drawn from the
cathode of a planar triode is the same as would be drawn by a planar diode
having a cathode-to-anode distance of

d \s T34
°"[1 + (d) ]

and an applied anode voltage of V,, + V../u. Replacing

d 4/37]8/4
00[ 1 + (dcg) ]

by d., where d. is called the equivalent diode spacing of the triode, Equation
(5.2-13) becomes I,, = 2.33 X 10784 (Vo + Vao/u)*?/d2 The distance
d, is a function of the tube dimensions only; it is always greater than d,,
and frequently less than 2d,,.

As the grid is moved closer to the cathode, the potential V,, 4+ V,o/u
affects not only the electric field on the anode side of the potential minimum,
but ¢t affects the potential at the minimum. The dependence of the anode
current upon the voltage V,, + V.,,/u then increases, and accordingly the
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exponent n in Equation (5.2-7) increases. For many “close-spaced”
triodes, that is, triodes with small d,,, n is more nearly equal to 2 than 3/2.
Figure 5.2-4(a) shows a plot of I, vs. (Vo + Vao/u) for the 417A triode.
From the figure it can be seen that a value of n equal to 2 is appropriate for

400 X
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Fia. 5.2-4 Plots of 1,0 vs. (Vo + Vao/w) for the 417A triode and the 300B triode.

this tube. Figure 5.2-4(b) shows a plot of I, vs. (Vo + Vao/u) for the
Western Electric 300B triode in which the cathode-to-grid spacing is ap-
proximately half the cathode-to-anode spacing. Clearly, » = 3/2 is ap-
propriate for this tube.

To determine the relative positions of the grid plane and the plane of the
potential minimum in the 417A, we have plotted in Figure 5.2-5 the poten-
tial in a planar diode in which a current density of 0.071 amp/ecm? passes
the potential minimum.® Such a current density might be typical of that
passing the potential minimum in the 417A. A cathode emission current
density of 0.5 amp/cm? and a cathode temperature of 1025°K are assumed.
The position of the grid wires in the 417A is shown in the figure. The plane

¢The method for obtaining the potential plot is described in References 5.2 and 5.3.
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of the grid wires is about three times as far from the cathode as the plane of
the potential minimum. Of course, the potential on the grid side of the
potential minimum in the 417A would be much different from that shown
by the dashed curve in Figure 5.2-5, because the grid bias voltage depresses

2 . .
5 0.8 T T T T T
5] /
; ASSUMPTIONS: S
= EMISSION CURRENT DENSITY, 0.50 AMP/CM? v
2 0.6[- CURRENT DENSITY PASSING POTENTIAL 7
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z CATHODE TEMPERATURE T=1025°K i
2 4
w 04 —
> e
] 17
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< e
g 0.2 -
< POTENTIAL T
e MINIMUM ,/’ _,' LOCATION OF
& A GRID WIRES
’6 (o] l J/’ | | |
. 0 0.01 0.02 003 0.04 005 0.06 0.07 0.08

DISTANCE FROM CATHODE IN MILLIMETERS

Fia. 5.2-5 The potential in a planar diode in which the current density passing
the potential minimum is typical of that used in the 417A.

the potential in the region of the grid wires, and the potential midway
between grid wires is much higher.

From Figure 5.1-3 it is evident that in the absence of space charge the
potential over a plane which lies one third of the way out from the cathode
to the grid wires is not uniform. Consequently, when space-charge-limited
conditions prevail, we would expect the potential at the potential minimum
would be slightly higher at points opposite the center of the opening be-
tween grid wires than directly under the grid wires. This means that the
current passing the potential minimum is lower directly under the grid
wires, and, if the grid voltage is made increasingly negative, the current
passing the potential minimum will first cut off directly under the grid
wires. This phenomenon is called Inselbildung or “island building.” Some
consequences of Inselbildung are described in Reference 5.1. Inselbildung
effects become particularly important when small grid-to-cathode spacings
are used and when the ratio of grid pitch to grid-to-cathode spacing is large
(of the order of 1 or greater).

In Chapter 6 it is shown that high transconductance is needed for high
gain in an amplifier stage. Let us therefore proceed to examine what
factors affect the transconductance of a tube. Clearly, the transconduct-
ance is directly proportional to the cathode area A. An expression for the
transconductance can be obtained by differentiating Equation (5.2-7) with
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F16. 5.2-6 Transconductance vs. cathode current density for the 417A triode.

respect to V. Thus

aIaa _ Vua n—1 _ I_‘_‘_" {(n—/n
on = S = Cn(v,,,, + L ) - Cn< C) (5.2-14)

Since both I,, and C are proportional to the cathode area A, g. is propor-
tional to 4, as we would expect. Furthermore I,, = JA, where J is the
current density drawn from the cathode. Consequently

gm ¢ JDIn (5.2-15)

For n = 3/2, gn = J3, and for n = 2, g, o< J'2. Figure 5.2-6 shows a
plot of transconductance for the 417A triode vs. cathode current density.
The normal operating point is marked with an X. In the neighborhood of
this point it can be seen that g, is approximately proportional to J'2
whereas at lower current densities g, is proportional to a higher power of J.

The transconductance of a grid-controlled tube also increases as the
distance between the grid and cathode is decreased, except at very small
grid-to-cathode spacings, where Inselbildung effects become important.
Figure 5.2-7 shows values of g./J' /24 vs. d., for several Western Electric
tubes with small grid-to-cathode spacings and for a current density of 0.02
amp/cm? For most of these tubes, g, is approximately proportional to J/?
at cathode current densities in the neighborhood of 0.02 amp/em? The
points appear to be distributed about a line with slope —1, indicating that
gm o 1/dg,.
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A theoretical upper limit to the transconductance that can be obtained
from unit area of the cathode is reached when the grid is located at the
potential minimum and when the grid wires and pitch are sufficiently small
that the potential over the plane of the minimum is equal to that of the grid.
From the discussion given in Section 2.4, it follows that the anode current
under these circumstances is

Too = J oA eVool T (5.2-16)

where J, is the cathode emission current density, A is the cathode area, and
V40 is the grid bias voltage, a negative number. By differentiating this with
respect to V,,, we obtain

1)

Iao

- el
I = 5v,,

kT

= JoA e oht = (5.2-17)
Thus, in this theoretical upper limit of the transconductance of a grid-
controlled tube, the transconductance is directly proportional to the
current density J = I../A drawn from the cathode. (Note that J, is the
cathode emission current density, and J is the current density passing the
potential minimum.) The ratio g./I., is equal to 11,600/T mhos/amp.
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Figure 5.2-8 shows a plot of transconductance vs. grid-to-cathode spacing
for the Western Electric 416B triode, described in Chapter 7 (Section 7.4).
The transconductance reaches a maximum of 0.075 mho when the grid-to-
cathode spacing is about 0.012 mm, and at still smaller spacings the trans-
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Fig. 5.2-8 Transconductance vs. grid-to-cathode spacing for the 416B triode
described in Chapter 7.

conductance falls because of Inselbildung effects. The anode current for
each of the experimental points was 0.03 amp, and the cathode temperature
was close to 1025°K. Using these values in Equation (5.2-17), we find that
the theoretical maximum transconductance is 0.34 mho. This is about 4.5
times the maximum observed transconductance, although the plane of the
grid at maximum transconductance is approximately coincident with the
plane of the potential minimum. It is probable that if a finer grid wire and
smaller grid pitch were used, the theoretical maximum transconductance
would be more nearly attained. However, the grid wire used in this tube is
about as small as present technology permits.

In the 417A the grid is about three times as far from the cathode as the
plane of the potential minimum. In consequence of this, the transconduct-
ance of the 417A is a still smaller fraction of the theoretical maximum.
Typical values for the anode current and cathode temperature in the 417A
are 0.027 amp and 1025°K. Substituting these values into Equation
(56.2-17), we obtain a theoretical maximum transconductance of 0.31 mho,
as compared with an actual transconductance of about 0.025 mho.

Since the plane of the potential minimum is always extremely close to the
cathode, the control grid in most grid-controlled tubes is located well be-
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yond the potential minimum. However in high-performance tubes, high
transconductance is achieved by moving the grid closer to the potential
minimum, generally at the expense of more difficult assembly procedures
and higher cost.

Two more parameters that affect the transeconductance are the grid-wire
diameter and the grid pitch. At small grid-to-cathode spacings, the trans-
conductance increases if both these quantities are reduced in such a manner
that the screening fraction, or the ratio of the wire diameter to the pitch, is
kept constant. An “open” grid structure, or small screening fraction, is
usually desirable, since otherwise the beam current would be reduced, and
the transconductance per unit area would be less. Often a pitch of between
4 and 10 times the grid-wire diameter is used. In many close-spaced, high-
performance amplifier tubes the grid-wire diameter is chosen to be as small
as is practicable from the standpoint of mechanical fabrication of the grid
structure, and the grid pitch is then set to obtain maximum transconduct-
ance per unit area of the cathode, having due regard for limits imposed by
the available cathode current density, the available electrode voltages, and
the permissible electrode heat dissipation.

The following points will summarize our discussion about the trans-
conductance of a triode:

1. The transconductance is directly proportional to the cathode area A.

2. The transconductance is proportional to a power of J which is of the
order of 1/3 to 1/2 in practical cases.

3. The transconductance for a given J increases as the grid is moved
closer to the cathode, until Inselbildung effects become important at very
small grid-to-cathode spacings. When the grid is well beyond the potential
minimum, the transconductance often varies approximately as 1/d,.

4. At small grid-to-cathode spacings, the transconductance increases if
the grid-wire diameter and pitch are reduced in such a manner that the
screening fraction is kept constant.

The amplification factor is independent of the cathode area 4, and it is
almost independent of the cathode current density J (see Figure 5.2-2).
Like the transconductance, the amplification factor increases if the grid-
wire diameter and pitch are reduced in such a manner that the screening
fraction remains constant. The amplification factor also increases as the
grid-to-anode distance is increased.

Figure 5.2-9 shows the values of u, gn, and 7, for a number of commereial
and Western Electric grid-controlled tubes used in low-power amplifier
applications. The code numbers of the Western Electric tubes begin with
the numbers 3 and 4. Values of u for triodes typically vary from 5 to 100,
values of g, vary from 0.002 to 0.05 mho, and values of r, vary from 10? to
10* ohms.
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5.3 Tetrodes and Beam-Power Tubes
(a) Tetrodes

In the tetrode, a second grid, known as the screen grid, is inserted be-
tween the control grid and anode. The screen grid is usually of a coarser
mesh than the control grid and is operated at a fixed positive voltage with
respect to the cathode. It serves three principal functions:

1. It reduces the capacitance between the control grid and anode and
hence the coupling between the input circuit and the output cireuit.

2. In Chapter 6 we show that the input capacitance of a grounded-
cathode triode amplifier stage is given by C.; + (1 4+ K)C, where C., is
the cathode-to-grid capacitance, C,, is the grid-to-anode capacitance, and
K is the voltage gain of the stage. Since K may be a fairly large number, a
small capacitance between the grid and anode may cause considerable
shunting of the input signal at higher frequencies.” When a tetrode or
pentode tube is used in a grounded-cathode amplifier stage, the shunting
effect of the grid-to-anode capacitance is small, because Cy, is small, and
consequently much higher input impedances are possible.

3. Over a range of positive anode voltages the current reaching the anode
of a tetrode is determined almost entirely by the voltages applied to the
control grid and screen grid and is nearly independent of the anode voltage.
This means that the dynamic anode resistance of the tetrode is high, and
this is an advantage in obtaining high gain per stage. In Chapter 6, the
gain of a simple amplifier stage without feedback is shown to be gnRL/
(1 + Rp/r.), where R. is the load resistance and 7, is the dynamic anode
resistance. (See Equation (6.3-7).) Clearly, high r, is desirable where high
gain is needed.

Figure 5.3-1 shows a cross-sectional view of the Western Electric 448A
tetrode. Figure 5.3-1(c) shows a few of the grid wires and the relative
spacings of the electrodes. Notice that the distance from the cathode to
the screen grid in this tube is comparable with the distance from the cathode
to the anode in the 417A. (See Figure 5.1-1 for comparison.) The 448A
is used in a multistage amplifier which amplifies signals ranging in fre-
quency from 58 to 90 Me.

“Certain grounded-cathode triode circuits provide for ‘neutralization’” of the grid-
to-anode capacitance (Reference 5.4, p. 468), and much higher input impedances can
be obtained. However, these circuits usually require careful adjustment of the circuit
components in each stage if nearly complete neutralization is to be obtained. The
grounded-grid circuit shown in Figure 6.3-5 has a much smaller capacitance between
the anode and input circuit because the grid acts as an electrostatic shield. However,
this circuit has a relatively low input impedance, of the order of 1/g= in parallel with
Rx. See Section 6.3.



GRID-CONTROLLED TUBES—STATIC CHARACTERISTICS 171

GETTER
\

SCREEN
=" GRID
=
————— CATHODE
- HEATER
____CONTROL
GRID
<——— ANODE

Y

SECTION A-A
(b)

. -~ SCREEN GRID N
HE
i%~———— CONTROL GRID
P

k N o

| I 1 I
o

CATHODE
ANODE

1
2 3 4 5
SCALE IN MILLIMETERS

(c)

Fi16. 5.3-1 The construction of the Western Electric 448A tetrode. The overall
height of the tube is 4.8 cm.

The cathode of the 448A is a flattened nickel sleeve with a “double-
carbonate” oxide coating. The control-grid wires are made of tungsten
which is gold plated to raise its work function and reduce grid emission.
The screen grid is also made of tungsten, but the wires are coated with fine
carbon particles to increase heat radiation and reduce the operating tem-
perature of the wires. The anode is made of carbonized nickel. The carbon-
izing increases the heat radiation from the outer surface and reduces the
anode operating temperature. It also reduces secondary-electron emission
from the anode.

Figure 5.3-2 shows the characteristic curves for the 448A. The screen-
grid voltage is indicated by V... Notice that the grid characteristics with
Veo = Vo are quite similar to the grid characteristics for a triode. The
anode characteristics show that I,, is nearly independent of V,, over a
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range of positive anode voltages extending from well below screen-grid
voltage to +200 volts or higher. Typical operating conditions for the 448A
are given in Table 5.2-1.

Figure 5.3-1 shows that there is a large spacing between the screen grid
and anode in the 448A. This serves two purposes:

1. With a large spacing, space charge between the screen grid and anode
depresses the potential in the interelectrode space so that secondary
electrons emitted from the anode are prevented from reaching the screen
grid, and secondary electrons from the screen grid are prevented from
reaching the anode. Without the potential depression, the current flowing
in the anode circuit would be highly dependent on the relative voltages
applied to the screen grid and anode, and the performance of the tube in
an amplifier circuit would be seriously limited.

2. The large screen-anode spacing also reduces the output capacitance
of the tube. The output capacitance is the capacitance between the anode
and all other electrodes except the control grid. In Chapter 6 we shall find
that a small output capacitance is desirable for tubes used in high-gain,
broadband amplifiers.

Let us now look more closely at the potential between the screen grid and
anode in the 448A. If we assume that the electron motion is normal to the
plane of the electrodes and if edge effects are neglected, the potential be-
tween the screen grid and anode satisfies the one-dimensional form of
Poisson’s Equation,

BV _ _p_ __J

dzx? € e 29V

where J is the beam current density passing through the screen grid, and x
is the coordinate of the point at which V is determined. The potential ¥
is measured relative to cathode potential, and the coordinate x is measured
in the direction normal to the electrodes. Solutions of this equation cover-
ing four ranges of anode voltages V., are given in a paper by Fay, Samuel,
and Shockley.® Figure 5.3-3 shows plots of these solutions for conditions
which apply to the screen-anode space of the 448A. The four solutions of
Fay, Samuel, and Shockley are described under separate headings below:

(6.3-1)

Solution A. V4, < 0. In this case the potential decreases monotonically
from the screen grid to the anode, but the shape of the potential is modified
by the presence of space charge in the interelectrode space. At the point
where the potential becomes negative, essentially all the electrons reverse

8Reference 5.5.
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screen grid-anode spacing of 5 mm, and a beam current density of 0.0268 amp/cm?.

These are approximately the conditions that apply in the screen grid-anode space of
the 448A tetrode under normal operating conditions.

the direction of their velocity and return to the screen grid. There is no
space charge beyond this point. The anode current for this solution is, of
course, zero.

Solution B. 0 < V,, < V1. Here the anode voltage is positive, but a
“virtual cathode” with potential ¥ = 0 exists between the screen grid and
anode. Since the electrons are emitted from the true cathode with a range
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of velocities, the faster electrons pass the virtual cathode and reach the
anode, while the remaining electrons reverse the direction of their velocity
at the virtual cathode and return to the sereen grid. The fraction of electrons
passing the virtual cathode is determined by the applied anode voltage.
When V,, = 0, essentially all the electrons are returned to the screen grid.
As V,, is increased from zero, the fraction of electrons passing the virtual
cathode increases until at some voltage V5, all the electrons pass the virtual
cathode, and the potential distribution suddenly changes to that of Solution
C described below. (Note that 0 < V,, < V; is a necessary but not suf-
ficient condition for Solution B to prevail, as discussed below.)

Solution C. Va < Voo < V5. Here the anode voltage is positive, and
space charge between the electrodes depresses the potential in the inter-
electrode space so that there is a plane of minimum potential at some point
between the electrodes. The potential at the minimum is greater than
zero and less than either the screen or anode potential. All the electrons
passing through the screen grid reach the anode when this solution prevails.

If the anode voltage is increased from zero through the voltage V,, the
potential distribution changes abruptly from the ‘‘virtual-cathode” dis-
tribution of Solution B to the “potential-minimum” distribution of Solution
C. If the anode voltage is then lowered through the voltage V3, Solution C
prevails until some lower voltage V. is reached. Lowering the anode voltage
still further causes the potential distribution to change abruptly to the
virtual-cathode solution. This “hysteresis effect’”” in which there are two
possible solutions to the potential distribution in the interelectrode space
for anode voltages between Vi and V., can be observed in a number of
tetrode vacuum tubes. Of course, the anode current is less than the full
beam current when Solution B prevails.

The position of the plane of minimum potential of Solution C moves
closer to the screen grid as the anode voltage is increased. When V,, = V3,
the plane of the potential minimum coincides with that of the screen grid.

Solution D. V,, > V3. Here the potential increases monotonically from
the screen grid to the anode, and all the electrons reach the anode, as in
Solution C.

In normal operation of the 448A, Solution C prevails. From Figure
5.3-3 it can be seen that, when V,,, = V,, = 125 volts, the potential
minimum is about 18 volts below the screen and anode voltage. This po-
tential depression greatly reduces the exchange of secondary electrons
between the anode and the sereen grid.

There are several sources of error involved in the use of Equation (5.3-1)
and the solutions of Fay, Samuel, and Shockley to obtain the potential in
the interelectrode space of a tube such as the 448A. First, edge effects are
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neglected. Second, many of the electrons that pass close to the screen-
grid wires as they enter the screen-anode space are deflected by strong
local fields close to the screen-grid wires, so that the motion of these elec-
trons is certainly not entirely in the x direction. Finally, from Figure
5.3-1(b) it is evident that the spacing between the screen grid and anode
of the 448A is comparable with the linear dimensions of the cathode of the
448A, and consequently we would expect that the beam would spread as it
travels between the screen grid and anode.

(b) Beam-Power Tubes

A second class of screen-grid tubes, known as beam-power tubes, also
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F16. 5.3-4 The construction of the Western Electric 350B beam-power tube. The
overall height of the tube is 14 cm.
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makes use of a large screen-anode spacing so that the space charge of the
electron beam depresses the potential between the screen grid and anode,
and secondary electrons from one electrode are prevented from reaching
the other. Figure 5.3-4 shows the construction of the Western Electric
350B beam-power tube. Notice that each screen-grid wire is directly
opposite a control-grid wire. This construction greatly reduces the inter-
ception of the electron beam by the screen grid, since the negative bias
on the control grid causes a “shadowing’” of the sereen-grid wires from the
beam. In beam-power tubes an additional electrode, called a “beam-
forming electrode,” is located near the edge of the beam and held at cathode
potential. This electrode also helps to depress the potential between the

200

350 B BEAM-POWER TUBE

/
o iy

-35 -30 -25 -20 -15 =10 -5 [
CONTROL-GRID VOLTAGE,Vgo, IN VOLTS

Vgo=5

300 /

ANODE CURRENT, lag, IN MILLIAMPERES

200 = —

100

T,
/
/"— -20

o 100 200 300 400 500 600 700
ANODE VOLTAGE ,Vg0,IN VOLTS

Fi1e. 5.3-5 The grid and anode characteristic curves for the Western Electric 350B
beam-power tube.
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screen grid and anode, but the principal cause of the potential depression
in the region of the beam still arises from the space charge of the electron
beam. The beam-forming electrode also prevents secondary electrons
liberated from the anode from reaching the screen grid by means of paths
outside the incident beam.

Typical operating conditions for the 350B are given in Table 5.2-1. The
grid and anode characteristic curves for the 350B are shown in Figure 5.3-5.
Note that the ratio of anode to screen-grid current is 8.9:1 for the 350B,
whereas the same ratio for the 448A is 2.8:1.

The transconductance of a tetrode or beam-power tube is determined
largely by the electrode geometry in the region between the cathode and
the screen grid. However, it is reduced by the division of beam current
between the screen grid and the anode. Often the interception of the beam
current by the screen grid reduces the transconductance by 10 to 30 per
cent over what it would be if the screen grid and anode were connected.
The transconductance of the 350B is much lower than that of the 448A,
principally because the 350B has a relatively large spacing between the
cathode and control grid, and the distance between the control-grid wires is
larger.

Figure 5.2-9 shows the g, g, and r, of a number of tetrodes and beam-
power tubes. The transconductances of tetrodes and beam-power tubes fall
in about the same range as those of triodes. However, the amplification
factors of tetrodes are about an order of magnitude greater than those of
triodes because of the shielding action of the screen grid.

5.4 Pentodes

Still another approach to the problem of eliminating the exchange of
secondary electrons between the anode and the screen grid is that used in
the pentode. Here a third grid, known as the suppressor grid, is inserted
between the screen grid and anode. The suppressor grid is usually biased
at eathode potential and therefore does not intercept any of the beam. Its
pitch, or center-to-center wire spacing, is large, so that the potential at
mid-point between grid wires is always well above cathode potential. In
this way, most of the electrons that pass through the screen grid also pass
through openings between suppressor-grid wires and travel on to strike the
anode. However, the suppressor grid causes sufficient depression of the
potential between the screen grid and the anode that it stops virtually all
exchange of secondary electrons between these electrodes.

The pentode is by far the most widely used grid-controlled tube. Its
advantages include high gain per stage and low grid-to-anode capacitance.
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The construction of the Western Electric 403A
Figure 5.4-1. The electrode structure of this tube
6AKS5, a commercial code, and we shall refer to the
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As in the tetrode, the transconductance of a pentode is determined
largely by the electrode geometry in the region between the cathode and
the screen grid and is reduced by the division of beam current between the
screen grid and anode. Pentode transconductances are therefore of about
the same magnitude as those of triodes and tetrodes. However, the ampli-
fication factor and dynamic anode resistance of a pentode tend to be even
higher than for a tetrode because the suppressor grid provides added shield-
ing between the anode and cathode. Pentode amplification factors usually
lie between 10° and 10%, whereas the dynamic anode resistance usually falls
between 0.1 and a few megohms.

PROBLEMS

5.1 Show that the electrostatic amplification factor u., of a planar triode is given
by

Mes =

Ces
where C., is the capacitance between the grid wires and the cathode, but does not
include the capacitance between the leads and electrode supports, and C., is the
capacitance between the cathode and anode electrodes, but does not include the
capacitance between the leads and electrode supports.

5.2 Equation (5.1-3) indicates that the electrostatic amplification factor u.
depends upon the grid-wire diameter, the grid pitch, and the grid-to-anode spacing.
However, it is nearly independent of the cathode-to-grid spacing d.,, provided d.,
is large enough that the electric field at the surface of the cathode is uniform over the
cathode surface. Can you explain qualitatively why p.. should be nearly independ-
ent of d.,?

5.3 An amplifier is constructed with two triodes in parallel. For the particular
set, of voltages applied to the electrodes, the dynamic characteristics of one tube are
gm1, Tai, 80d g, and those of the other tube are gms, 72, and p». What are the gu,
74, and u of the parallel combination?

5.4 A particular beam-power tube has a dynamic anode resistance of 200,000
ohms at a control-grid voltage of V,, = V), a screen-grid voltage V. = V3, and an
anode voltage V4, = V.. If the screen grid is connected to the anode and the tube is
operated as a triode, the dynamic anode resistance is 10,000 ohms with V,, = V;
and Vg = Vo = Vi For a particular application the screen grid is used as the
control electrode and the control grid is maintained at a constant bias voltage V..
The screen grid and anode operating voltages are V.. What is the transconductance
of the tube using the screen grid as control electrode under these conditions?
Assume that the screen-grid wires are ideally shielded behind the control-grid wires
so that there is essentially zero current intercepted by the screen grid. Note that,
for incremental variations in the applied potentials, the incremental change in anode
current can be expressed as

3l 3l Al

alg = aV—WdV,., + dem + aV.,,dV“
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Chapter 6

INDUCED CURRENTS, EQUIVALENT NETWORKS,
AND GAIN-BANDWIDTH PRODUCT

In the application of electron tubes as circuit elements we are interested
in the currents that flow in the circuits external to the tube as a result of
electron motion in the space between the electrodes. In this chapter we
show how the external currents are related to the electron currents in the
interelectrode space of a tube for cases in which the period of the ac voltages
applied to the electrodes is long compared with the time taken by the elec-
trons to travel between the electrodes.

When an electron is gaining kinetic energy under the influence of an elec-
tric field, the source that provides the field loses an equal amount of energy.
Similarly, when an electron is slowed down by an electric field, an amount of
energy equal to the kinetic energy lost by the electron appears elsewhere
in the system. Several problems that illustrate these effects are discussed
in Sections 6.1 and 6.2.

In Section 6.3 we consider the small-signal analysis of simple circuits
using grid-controlled tubes. We shall find that a grid-controlled tube oper-
ated with negative bias on the control grid and driven by a small ac signal
can be simulated by either of two networks. One network contains a con-
stant current generator and passive elements, such as resistances, capac-
itances, and inductances, whereas the second contains a constant voltage
generator and passive elements. In analyzing the small-signal behavior
of an amplifier stage, these networks can be substituted in place of the
tube, and the currents that flow in the various circuit elements can be
determined by simple application of Kirchhoff’s Laws.

By applying the networks to the analysis of an amplifier stage which is
part of a multistage amplifier, we find that the product of gain and band-
width that can be obtained from the stage is a constant that depends only
on parameters of the tube itself and on the capacitances that shunt the

183
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input and output eircuit. Maximum possible gain-bandwidth product would
be obtained if all external capacitances shunting the input and output
circuits were reduced to zero. The expression for this maximum gain-
bandwidth product provides a useful figure of merit for comparing tubes
to be used in high-gain, broadband amplifiers. High figure-of-merit tubes
have a high transconductance and low input and output capacitances.

6.1 Induced Currents Resulting from the Motion of Charge Between
Electrodes

When an electron travels near a conductor, surface charges are induced
on the conductor so that the eleetric field within the conductor is zero at
all times. As the electron moves, the surface charges rearrange themselves
to maintain zero field within the cogductor. If several conductors are pres-
ent in the region, and if the conductors are insulated from each other,
their potentials vary with the motion of the electron. However, if two of
the conductors are joined by a wire, the potential difference between them
remains zero for all motions of the electron, and in general this condition
can be satisfied only by a flow of charge along the wire joining the con-
ductors.

Suppose an electron is very near one of two conductors that are joined
by a wire. Practically all the lines of electric field arriving at the electron
originate on positive charges on the surface of the nearby conductor. A
surface charge distribution of total charge +e is therefore induced on the
nearby conductor. A similar situation exists when the electron is very near
the other conductor. It follows, therefore, that motion of the electron from
a point very near the first conductor
to a point very near the second must
be accompanied by a flow of charge
~+e from the first conductor to the
second through the wire joining

them.
A . — B7 Figure 6.1-1 shows an electron
/ moving in the region between two
conductors A and B. A battery
maintains conductor B at a potential

¥, volts above that of conductor A.

If the electron travels a distance Az

Vo vOLTS in the direction of conductor B and

ol L the potential rise over the distance

Fia. 6.1-1 An electron moving between A% is AV volts, the kinetic energy of
two conductors. the electron is increased by eAV
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joules, where —e is the charge on the electron. This increase in kinetic
energy must have come from the battery. We conclude that an amount of
positive charge has flowed from conductor 4 to conductor B through the
battery, and that the work done by the battery on the charge is eAV.
Let the amount of charge that flowed from A to B be Aq. Then

AqV, = eAV 6.1-1)
or

Ag = —AV (6.1-2)
o
Let At be the time taken by the electron in traveling the distance Ax.
Dividing both sides of Equation (6.1-2) by Af, we obtain
Ag e AV

a-V.A (6.1-3)
This can be expressed in differential form as
_dq_ ¢|dVdr dVdy 9OVdel _ ep
tta T Vo[ax d Ty d o dt] = —yEu 614

where 7 is the current that flows in the external circuit joining A and B,
—e is the charge on the electron, E is the electric field acting on the electron,
and u is the electron velocity. We notice that E is proportional to V,, so
that, for a given electron velocity u, the current i is independent of the vollage
applied between the electrodes. Let us set —E(2,y,2)/V, = Ei(z,y,2), where
E, is a vector function of position having the dimensions of meters™ and
equal in magnitude and direction to the electric field obtained when
conductor B is held 1 volt negative with respect to conductor 4. Equation
(6.1-4) can then be expressed as

i =¢eEu (6.1-5)

Fic. 6.1-2 Four arbitrarily shaped elec- Fia. 6.1-3 An electron moving between
trodes joined by a wire. two planar electrodes.
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Since ¢ is independent of V,, this must be the current that flows when the
battery is omitted and the conductors are joined only by a wire or an impedance.

Equation (6.1-5) can be applied to a system of several conductors, such
as that illustrated in Figure 6.1-2. If ¢ is the current flowing toward
conductor 4, then E, is a vector field having the same magnitude and
direction as the electric field obtained when conductor 4 is held at a po-
tential of —1 volt, and the remaining conductors are at ground potential.

Of particular interest is the problem of an electron moving between two
planar electrodes whose linear dimensions are large compared with their
spacing. Two such electrodes are illustrated in Figure 6.1-3. The electrodes
are connected by a wire and are spaced by a distance of d meters. Neglect-
ing edge effects, the vector function E; is equal in magnitude to 1/d at all
points between the electrodes, and its direction is normal to the plane of
the electrodes. If the velocity of the electron is also normal to the electrodes,
the current flowing in the wire is given by

i = % (6.1-6)
This result also can be obtained directly from Equation (6.1-2). For the

case of the planar electrodes Equation (6.1-2) can be written as
Ag = e=— = e~ 6.1-7)

Dividing both sides by At and taking the limit as At — 0, Equation (6.1-6)
is obtained.

If many electrons are present between the electrodes shown in Figure
6.1-1 and if they produce a charge density p, it follows from Equation
(6.1-5) that the current in the external circuit is given by?

1= — / oE; - udzdydz

volume

= —/ J-Eldxdydz (6'1'8)

volume

where J = pu is the current density at the volume element dzdydz, and the
integral is taken over the region occupied by the space charge. This result
also applies if the electrodes are joined by a wire or an impedance instead
of the battery.

Next let us consider the currents that flow in the wires joining the elec-

If p is a positive charge and moving toward electrode B, the incremental induced
current pE, -u dzdydz flows away from electrode B.
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trodes shown in Figure 6.1-4(a) when a single electron travels from elec-
trode A to electrode B. We shall assume that the electron starts from rest
at electrode A at time ¢, The field between the grid and electrode A
accelerates the electron toward the grid, and at time ¢, it passes through an

A GRID B l"mT to ty to

% t
*—>
o] tg% bt

ta(t) L3(t)

Hi—S

Lit)

L;,(t)T to >
| I—
- T t ta
ti-to=2(ta-ty)
(a) (b)
Fig. 6.1-4 Induced currents which flow in the external ¢ircuit when an electron

travels from electrode A4 to electrode B. Itis assumed that the electron starts at rest
from electrode A.

=

fl
!
|

opening in the grid. The electron subsequently moves with constant veloc-
ity through the second region and strikes electrode B at time f. In
Figure 6.1-4(b) the induced currents that flow from ground toward the
electrodes are plotted as functions of time. When the electron is between
electrode A and the grid, it experiences a uniform accelerating field, so that
its velocity and the induced current, eu/d, increase uniformly with time.
To the right of the grid, where the electron travels at a steady velocity,
the induced current is constant with time. The area under each of the
shaded regions in Figure 6.1-4(b) is equal to the electronic charge.

While the electron is traversing the distance between electrode A and the
grid, a total charge of +e flows through the battery from the negative
terminal to the positive terminal. This means that the battery expends
eV joules of work. The work is imparted to the electron in the form of
kinetic energy by the field between electrode A and the grid. When the
electron strikes electrode B, its kinetic energy is dissipated in the electrode
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as heat. Thus the energy expended by the battery is turned into heat
energy in electrode B. The positive charge that flows through the external
circuit to electrode B is cancelled when the electron strikes the electrode.

6.2 Currents Induced in External Impedances

Let us consider the induced currents that flow in an external resistance
connected between two electrodes. Figure 6.2-1 shows a beam of electrons
which passes through a grid and strikes electrode B. Each electron is

assumed to pass through the grid
, BEAM OF with the same kinetic energy. If n
/"ELECTRONS .
/ electrons pass through the grid per
CATHODE y B .
second, the same number strike elec-
trode B per second, and a current
I, = ne amperes flows from ground
through the resistance to meet the
arriving electrons. This current
causes a voltage drop of IR volts in
the resistance. (We assume that the
THROUGH GRID_~~ voltage drop is less than the voltage
JuTHENERCY =V R through which the electrons have
* 1 been accelerated, so that the elec-
N trons are not stopped before reach-
ing electrode B.) The power dis-
sipated in the resistance by the flow
of charge is I,2R watts.

Because there is a voltage drop in the resistance, each electron faces a
decelerating field and loses kinetic energy el R joules in traveling from the
grid to electrode B. Since 7 electrons lose this amount of kinetic energy per
second, the total power lost by the electrons in traversing the region is
nel B = I 2R watts. But this is the power dissipated in the resistance by
the positive charges flowing to meet the electrons. Hence the kinetic energy
lost by the electrons while traveling from the grid to electrode B is transformed
into heat energy which is disstpated in the resistance . When the electrons
strike electrode B, the remaining part of their kinetic energy is trans-
formed into heat energy in electrode B.

Next let us suppose that the number of electrons passing the grid per
unit time can be varied without changing their velocity. Let the ecurrent
of electrons passing through the grid be given by ¢ = I, 4 Iicos wt. An
ac voltage IR cos wt appears across the resistance, and the total instantane-
ous power developed in the resistance is

2R = (I, + I, cos wi)’R watts (6.2-1)

ELECTRONS PASS

Fic. 6.2-1 Two electrodes connected
by a resistance.
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When this is averaged over time, we obtain
2
Pu = IR + B8 wasts 6.2-2)

Evidently this power is greater than the de¢ power developed in the
resistance in the absence of modulation. However, the average number of
electrons passing through the grid per second is the same as in the de case,
and each has the same kinetic energy as it passes through the grid. Hence
the average energy of the electrons when they strike electrode B must be
less when the beam is modulated than in the de case. To explain this, we
may note that during the half cycle in which the total beam current is
greater than I, the number of electrons passing the grid is greater than
average. The voltage drop in the resistance and the retarding field are also
greater than average during this half cycle. Consequently, more than half
the electrons lose more kinetic energy than under de conditions. During
the other half of the cycle, less than half the electrons lose less kinetic
energy than under de conditions. Thus the ac power represented by the
term I,2R/2 in Equation (6.2-2) is also obtained at the expense of the
kinetic energy of the electrons.

It is easy to extend our considerations to include impedances in the
external circuit. If the resistance R in the above example were replaced
by an impedance Z, the instantaneous voltage across the impedance and
hence the instantaneous voltage across the interelectrode space would be
Re[(I, + Ie#*)Z], where i = Re(l, + Iie™*) is the instantaneous current
of electrons crossing between the electrodes.

It is important to emphasize at this point that the voltage developed
across the impedance is not caused by the electrons that strike electrode B
flowing through the impedance. The results of Section 6.1 showed that the
induced currents flow in the external circuit only while the charge is crossing
between the electrodes. When the individual electrons strike electrode B,
they cancel positive charges that have flowed to meet them.

That the induced current flowing through the impedance in the external
circuit is independent of the size of the impedance is indeed a very impor-
tant result. The induced current is determined only by the current of
electrons crossing between the electrodes and is equal to that current. If the
beam is modulated, the ac power developed in the resistive part of the
load increases linearly with this resistance. Consequently, if we can modu-
late the beam in a manner that consumes very little power, we have a means
for amplifying ac power. The ac power output, of course, is obtained at the
expense of the supplies that provide the de voltage to accelerate the electrons.

In the remainder of this chapter we shall describe the ac operation of
grid-controlled tubes, and in later chapters we shall describe klystron
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amplifiers and traveling-wave amplifiers. We shall find that, although
these tubes differ in the means used to modulate the beam and the type of
load -in which the ac power is developed, each provides ac power ampli-
fication by modulating an electron beam and causing ac induced currents
to flow in external impedances. In klystron amplifiers and traveling-wave
amplifiers the energy provided by the dc supply is first converted into
kinetic energy of the electrons. This energy in turn is partly converted into
ac power which is dissipated in the load and losses of the system and
partly into heat energy of the electrode struck by the electrons. In grid-
controlled tubes employing screen grids, a similar energy transfer occurs
when the anode and screen grid are connected to the same dc supply
voltage. (The screen grid and anode connections in this case would be

similar to those illustrated in Figure 6.2-1.)
However, if the de supply provid-
__BEAM OF ing the field that accelerates the elec-

/“ELECTRONS N N

trons is connected in series with the
external impedance, as in the case of
the triode tube, the transfer of power
is somewhat different. In Figure
6.2-2 we show the electrodes of the
previous example with a battery of
V volts connected in series with the
external resistance. The electrons
in this case are assumed to pass
R through the grid with negligible
+ velocity and are accelerated toward
T—v electrode B by the field provided by
= the battery. In this case the induced
Fic. 6.2-2 Two electrodes connected ~currents flowing through the battery
by a de supply and a resistance in series. ~ and the load resistance cause some of
the power expended by the battery
to be transferred directly to the load resistance. The remaining power ex-
pended by the battery is converted into kinetic energy of the electrons,
which in turn becomes heat energy of electrode B. If the instantaneous
beam current is given by 7 = I, + I, cos «i, the average power developed
in the resistance is I,2R + I,?R/2, just as in the previous example. The
average power expended by the battery is I,V, and the average power

2
dissipated in electrode B is I,V — (I R+ 1123),

/
ELECTRONS PASS 4
THROUGH GRID -~
WITH NEGLIGIBLE
VELOCITY

6.3 Equivalent Networks

Consider a grid-controlled tube in which the control-grid voltage and
anode voltage are varied, while the potentials applied to the remaining
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electrodes are held constant. The current reaching the anode can be ex-
pressed as

Iao = Iao(Vgo,Vao) (6'3'1)
where V,, and V,, are the control-grid and anode voltages. Generally this
function is single-valued and continuous. If I, undergoes a differential
change because of differential changes in V,, and V,,, then

6100 alao
dIao _7 dvgo +aVao dVao (6.3-2)

Vg

It follows that if very small ac voltages v, and v, are applied to the control
grid and anode, the induced ac current flowing in the anode circuit will be
. 6140 aIGO
e tar, (633)
In terms of the tube parameters g. and r, discussed in Chapter 5, Equation
(6.3-3) can be rewritten as

Ta = gm¥y + i—va (6.3-4)

a

This important equation gives the induced ac current 7, which flows in the
anode circuit when small ac voltages v, and v, are applied to the grid and
anode.

Let us now consider two simple networks which we shall show to be
described by Equation (6.3-4) and which can be used to simulate the tube

A io
A 4 5 ANODE

i
U L=—gmV, r, v,
GENERATOR 9mV¥q 2 a

-0 CATHODE

Fie. 6.3-1 The constant-current-generator small-signal equivalent network for a
grid-controlled tube.

for network analysis. The first of these is illustrated in Figure 6.3-1. It
involves a constant current generator,? which generates a current —g..v,,
in parallel with a resistance equal to the dynamic anode resistance r,.
Referring to the figure, it is evident that the current flowing through the
resistance r, away from the point 4 is —gmv; + 4.. This current, multi-

2The symbol used in Figure 6.3-1 for a constant current generator will be used in
subsequent illustrations in this and later chapters. Likewise, the symbol used in Figure
6.3-3 for a constant voltage generator will be used in subsequent illustrations in this
and later chapters.
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plied by the resistance r,, must equal the voltage v, applied between the
terminals. Hence

va = (—gmby + @a)7a (6.3-5)

A simple rearrangement of this equation shows that it is just another form
of Equation (6.3-4). Thus, when a voltage v, is applied between the termi-
nals of the network shown in Figure 6.3-1, a current <., given by Equation
(6.3-4), flows through the network from one terminal to the other. The
same current flows in the anode lead of a grid-controlled tube when ac
voltages », and v, are applied to the control grid and anode. Consequently,
the network shown in Figure 6.3-1 can be used in place of the tube for
purposes of network analysis. Figure 6.3-2(b) shows the construction of an

RL

(@) TRIODE AMPLIFIER
STAGE

Va
VQT +
G _ -0
L
La la
- -
' ———0 [ S—
ded HY g e o ez 25 ot
B8
I )
— ) T
>
o : . . o o o
(b) CONSTANT—CURRENT-GENERATOR (C) CONSTANT -VOLTAGE -
EQUIVALENT NETWORK GENERATOR EQUIVALENT

NETWORK

Fic. 6.3-2 A grounded-cathode triode amplifier stage and two low-frequency, small-
signal equivalent networks.

equivalent network for analysis of the low-frequency response of the simple
grounded-cathode triode amplifier stage shown in Figure 6.3-2(a). Con-
stant current generators always have infinite internal impedance. This
means that the voltages applied across the terminals of the generator do
not affect the current generated.

In constructing the equivalent network shown in Figure 6.3-2(b), we
have assumed that the control grid of the triode has a sufficiently negative
bias that it does not draw any current. Secondly, since Equation (6.3-4) is
valid only when the amplitudes of the ac signals are small, the equivalent
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network is suitable only for analysis of the small-signal operation of the
stage. Finally, since we have not accounted for interelectrode capacitances,
interwiring ecapacitances, and lead

— inductances, the equivalent network

© ANODE can be used only at sufficiently low

frequencies that these capacitances

la and inductances can be neglected.
TVa The second network deseribed by

Equation (6.3-4) is shown in Figure

6.3-3. Itinvolves a constant voltage

——0 CATHODE generator, which generates a volt-
Fic. 6.3-3 The constant-voltage-gener- age —uvy, in series W_ith & resistaflce
ator small-signal equivalent network for equal to the dynamic anode resist-
a grid-controlled tube. ance 7,. By equating the sum of the
voltages around the loop in this net-

TV:—/LVg

work to zero, we obtain.
Vo — Tala + o, = 0 (6.3-6)

Substituting p = gmr, into this, we see that this equation is also equivalent
to Equation (6.3-4). Thus the network shown in Figure 6.3-3 also can be
used to simulate the ac response of a grid-controlled tube with ac voltages
vy and v, applied to the control grid and anode. Figure 6.3-2(c) shows the
construction of a constant-voltage-generator equivalent network for the
triode stage in Figure 6.3-2(a). Constant voltage generators always have
zero internal impedance.

If the triode in Figure 6.3-2(a) were replaced by a tetrode or pentode and
the additional electrodes were maintained at constant potentials, the
equivalent networks shown in Figures 6.3-2(b) and 6.3-2(¢) would still be
applicable at low frequencies. However, since u and r, tend to be extremely
high for tetrodes and pentodes, the constant-current-generator equivalent
network is usually found more satisfactory for the analysis of stages using
these tubes.

The voltage gain of the amplifier stage shown in Figure 6.3-2 is given by
the magnitude of the ratio of the ac voltage developed across the load
resistance K to the input voltage v,. From the figure it can be seen that
this ratio is given by

Vg

Vg

_ “RL - raRL
B Ta + RL gmru + RL

In stages employing tetrodes and pentodes, 7. may be very large compared
with R, in which case the gain is very nearly given by

voltage gain = (6.3-7)

voltage gain = ¢,Ry. (6.3-8)
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Next let us extend the equivalent network shown in Figure 6.3-2(b)
to include the effects of interelectrode capacitances and stray wiring capac-
itances. In the 417A triode described in Sections 5.1 and 5.2, the inter-
electrode capacitances are:

pf*
Grid to-anode capacitance. . .......... ... ... ... 1.5
Grid-to-cathode capacitance. .................... 5.4
Anode-to-cathode capacitance .. .............. ... 0.2

*One picofarad = 1072 farad.

These capacitances include those between the internal leads to the elec-
trodes. In addition, the stray capacitances associated with external
wiring and other circuit components may easily amount to 4 or 5 pf both
between the grid circuit and ground and between the anode circuit and

i
o =t o
Ry | Coa & lra |RL
E
v, T~ = < o
Tg § Ccg| Cea T@ I_II, § g VaT
S e}

i=-gmvq
A=
[
’\/\/\fm
é ~
—_—

0 e, o o O
(b) TETRODE AMPLIFIER STAGE

ch = CATHODE-CONTROL GRID CAPACITANCE PLUS STRAYS
Cca = CATHODE-ANODE CAPACITANCE PLUS STRAYS

Csa = SCREEN—ANODE CAPACITANCE

Cga = CONTROL GRID-ANODE CAPACITANCE

Cgs = CONTROL GRID-SCREEN CAPACITANCE

F1e. 6.3-4 Small-signal equivalent networks for a triode amplifier stage and a
tetrode amplifier stage. The networks include the effects of interelectrode capaci-
tance and stray capacitance.
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ground. At frequencies above 100 ke the reactances associated with
these capacitances may be comparable with other circuit impedances and
consequently they must be considered in the circuit analysis. Figure
6.3-4 shows equivalent networks for simple triode and tetrode amplifier
stages where the interelectrode and stray capacitances are taken into
account. In both networks we have assumed that the reactance of the
capacitance Ck is small compared with Ex and therefore that both quanti-
ties can be neglected.

Let us use the equivalent network shown in Figure 6.3-4(a) to determine
the input admittance of the triode stage shown in the figure. This ad-
mittance is given by

_1 L+
Yom g+ 20

(6.3-9)

LY

where I, is the phasor corresponding to the current ¢; which flows through
the cathode-to-grid capacitance C., (that is, 71 = Re L%, where w is the
angular frequency of the signal), I. is the phasor corresponding to the
current ¢, which flows through the grid-to-anode capacitance C,q, and V, is
the phasor corresponding to the input voltage v,. Now I, = V, jwC.,,
and I, = (V, — V) jwCy, where V, is the phasor corresponding to the
output voltage v.. Substituting these expressions into Equation (6.3-9),
we obtain

1 . Ve
Y= E +]w[0cg + (1 - VIJ)CW] (6.3-10)

The ratio — V./V, is the complex gain of the stage. Since this is likely
to have a large, positive real part, the input signal may be shunted by a
large apparent capacitance. Because Cy, is-much smaller in tetrodes and
pentodes, the shunting capacitance given by Equation (6.3-10) is greatly
reduced in stages employing these tubes. In Section 6.4 we shall see that
a low input capacitance is needed for tubes used in high-gain, broadband
amplifiers. For this reason, most multistage high-gain, broadband ampli-
fiers employ tetrode or pentode tubes. However, triodes are sometimes used
in the input stages of these amplifiers because of their better noise per-
formance. (See Chapter 13.)

Finally, let us determine the low-frequency input admittance of the
grounded-grid amplifier stage shown in Figure 6.3-5(a). A low-frequency
equivalent network for the stage is shown in part (b) of the figure. Whena
small ac voltage v, is applied to the cathode, an ac current ¢, flows in the
cathode and anode leads of the tube, and an ac current ¢; flows in the re-
sistance r, of the equivalent network. We neglect the effects of the anode-
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L=-9mVg=9mVe

[, _ © O
(@) (b)
Fic. 6.3-5 A grounded-grid amplifier stage and its low-frequency equivalent
network.

to-cathode capacitance in this analysis. Applying Kirchhoff’s Laws to the
network, we obtain

Ia = _(ngc + Il) (6.3'11)
and
Vc = Ilra - IaRL_ (63-12)

where I,, I;, and V. are the phasors corresponding to %, ¢, and v.. These
equations can be solved for I,/V., and the input admittance can be ex-
pressed as

Y~———1——£=1 gm + 1/74

TRV R IF R €313

If 7, > Ry and u 3> 1, this reduces to
1
Y= P + gm (6.3-14)

If the tube has a transconductance of 0.025 mho, the input impedance is
40 ohms in parallel with Rx. Grounded-grid amplifier stages are of limited
usefulness because of their low input impedance.

6.4 Gain-Bandwidth Product

Resonant circuits are used in high-frequency amplifier stages to establish
the frequency at which maximum gain is obtained. Because the gain falls
off on either side of this frequency, each stage can be characterized by a
bandwidth, or a range of frequencies sbout the resonant frequency over
which the gain of the stage is within certain limits. Usually these limits are
expressed as a number of db below the maximum gain. Thus the “3-db
bandwidth” of an amplifier stage is the range of frequencies over which the
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power gain is within 3 db of the maximum gain. Since 3 db very nearly
corresponds to a power ratio of 2 and a voltage ratio of 42, the voltage gain
at the extreme frequencies of the 3-db bandwidth is 1/4/2 times that at
maximum gain.

In this section we show that the product of gain and bandwidth for an
amplifier stage employing resonant circuits is a constant which depends
only upon parameters of the tube itself and upon the external capacitances
shunting the tube. By changing the load resistance in the anode cireuit,
both the gain of the stage and the bandwidth change in such a manner
that the product of gain and bandwidth remain unchanged. First, it will
be helpful to examine a few properties of resonant circuits.

If a parallel-resonant circuit is excited by an external source and then
allowed to oscillate freely, the excitation energy is stored alternately in
the electric field of the capacitance and in the magnetic field of the in-
ductance. As the oscillation continues, the losses of the circuit cause the
amplitude of the oscillation to de-
crease. Although there is always 9
some capacitance and resistance be-
tween the terminals of the induct-
ance, and some inductance and re-
sistance between the terminals of the L ==cC R
capacitance, for most purposes the
circuit can be assumed to consist of a
pure inductance, a pure capacitance,
and a pure resistance, all in parallel. °
Such a ecircuit is shown in Figure Fie. 6.4-1 A parallel resonant circuit.
6.4-1. The resistance R is assumed
to be of a magnitude which accounts for losses in the inductance and capaci-
tance, as well as any additional resistance which is connected in parallel
with the cireuit. The magnitude of the admittance of the parallel combina-
tion is given by

Y] = VA/R)® + («C — 1/wL)? (6.4-1)

where o is the angular frequency of the exciting signal. If the circuit is
excited by a constant current source which generates a current I, sin o,
a sinusoidal voltage with amplitude I,/|Y] is developed across the circuit.
Resonance occurs when «C = 1/wL, orw = 1/4[LC. At this frequency |Y|
is & minimum and equal to 1/R.

A measure of the quality of a parallel resonant circuit is given by the Q of
the circuit, which is defined as

Q=2 energy stored at resonance
T energy lost per cycle

(6.4-2)
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Since the energy stored in a capacitance C which is charged to a voltage V
is 1 C'V2, it is easily shown that, for a parallel resonant circuit, @ is given by

10V max® R
2 max_ _ _
Vmaxz.!-_ B NOCR B woL

2R 7,

Q =2=r (6.4-3)

where Ve is the peak voltage appearing across the circuit, and v, = 2f,
is the angular frequency of resonance.

From Equation (6.4-1) it follows that, if the circuit is excited by an ac
current of constant amplitude but variable frequency, the voltage developed
across the circuit falls to 1/42 of its maximum value when the angular
frequency w is such that

’ wC — (6.4-4)

_1_‘ =1
wL| R
Multiplying both sides of this equation by B/Q and substituting for B/Q
from Equation (6.4-3), we obtain

o _w|_1 ]
o @~ 0 (6.4-5)
Rearranging this gives
(w — wo){w + wo) _1_~2Af
‘ ww, Q f (6.4-6)
or
Q=2 (6.4-7)

28]

where Af is the number of cycles away from resonance at which the voltage
across the circuit falls to 1/42 of its maximum value. The frequency
2Af gives a measure of the width of the resonance response of the tuned
circuit when excited by a constant current generator.

Let us now use these parallel-resonant-circuit concepts to determine
the gain-bandwidth produet for a pentode amplifier stage. The amplifier
stage is shown in Figure 6.4-2, together with its equivalent network. The
capacitance C; in the equivalent network is the input capacitance of the
tube, or the sum of the capacitances between the control grid and all other
electrodes except the anode. C, is the output capacitance of the tube, or
the sum of the capacitances between the anode and all other electrodes
except the control grid. C, is the sum of the stray capacitances shunting
the output circuit plus any lumped capacitances that are connected across
the output circuit. We shall assume that the capacitance C,. between the
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Fic. 6.4-2 A pentode amplifier stage with a parallel resonant circuit connected to
the anode.

control grid and anode is sufficiently small that it can be neglected. Also,
the coupling capacitance C is assumed to be large enough that it has neg-
ligible reactance at the frequencies under consideration. The resistance B
accounts for the losses in the output circuit, including those in the in-
ductance and capacitances. Usually it will be much larger than the load
resistance R;.

Maximum gain for the stage occurs at the frequency at which the in-
ductance L resonates with the capacitances in parallel with it. If we let R,
be the equivalent resistance of ., K, and B, in parallel, the maximum gain of
the amplifier stage is given by

gain = g, R, (6.4-8)

Since r, and R are likely to be large compared with R, this is very nearly
equal to g.lr. The @ of the tuned circuit shunted by the resistance R, is
given by

Q = wo(Co +Ci+ Cs)Re (6.4-9)

where C; is the input capacitance of the following stage. From Equation
(6.4-7), the bandwidth over which this stage gives at least 1/y2 of the
maximum voltage gain is given by

1
27I'(Ca + Ci “I" Cs)Re

20f = {—5 = (6.4-10)
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Finally, the product of gain and bandwidth for the stage is obtained by
multiplying Equations (6.4-8) and (6.4-10). Thus,

gain X bandwidth =

g )
2n(Co + C: + Co) (6.4-11)
If the stray capacitances were zero and there were no lumped capacitances
shunting the output circuit, the expression would reduce to

gain X bandwidth = (6.4-12)

__gn
27 (C, + C5)

The product given by Equation (6.4-12) represents a theoretical limit
that is not attained in practice because of the stray capacitances that are

always present. If we assume that the input capacitance C; of the tube in
the next stage is the same as that of the tube under consideration, the gain-

F16. 6.4-3 A double-tuned resonant circuit between amplifier stages.

1l

Al
A

bandwidth product given by Equation (6.4-12) depends entirely on the
parameters of the tube itself, and not upon R, or L. The equation shows
that we can design the stage to have high gain at the expense of narrow
bandwidth, or lower gain and a larger bandwidth. High gain, of course, is
associated with large B;. It should be noted that R includes the effect of
the input loading of the following stage (see Section 7.3), and in practice
this loading places an upper limit on the maximum gain per stage.

Sometimes double-tuned resonant circuits are employed between ampli-
fier stages, as illustrated in Figure 6.4-3. For such a circuit the gain-
bandwidth product depends upon the degree of coupling between the two
circuits and upon the @’s of the circuits. If the circuits are adjusted for
“critical coupling” and if the @'s of the primary and secondary circuits
are equal, it can be shown? that the gain-bandwidth product of the stage is
given by

gain X bandwidth = (6.4-13)

gm
2m\2 VC.C,
where C; is the total input capacitance of the following stage, including
strays, and C, is the total output capacitance, including strays.

3Reference 6b.
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Equations (6.4-12) and (6.4-13) tell us that tubes to be used in high-
gain, broadband amplifiers should have high transconductance and low
input and output capacitances. Unfortunately, increasing the transcon-
ductance by increasing the cathode area also increases both the input and
output capacitances, and if the transconductance is increased by decreasing
the cathode-to-grid spacing, this also increases the input capacitance.
However, in practice the stray capacitances which shunt the input circuit
represent an appreciable part of the input capacitance, so that, if the tube
design is changed to double the cathode area and hence double the trans-
conductance, it is likely that the total input capacitance including strays
will not be doubled, the stray capacitance being nearly constant. Further-
more, when double-tuned circuits are employed, the gain-bandwidth prod-
uct increases directly with the transconductance but depends only on the
reciprocal of the square root of the input capacitance. For these reasons,
tubes for use in high-gain, broadband amplifiers are designed to have high
transconductance. A large spacing between the anode and screen grid or
suppressor grid is also desirable, since the output capacitance C, is then
reduced.

Equation (6.4-12) is frequently used to give a figure of merit for compar-
ing tubes for use in high-gain, broadband amplifier applications.* By using
a tube with a high gain-bandwidth product in a multistage amplifier, less
stages are needed to achieve a total over-all gain and bandwidth. Table
5.2-1 lists the maximum-possible-gain-bandwidth product ¢../2x(C, + C.)
for the 448A tetrode and 403A /6 AK5 pentode as 215 and 95 Mec, respective-
ly. In practice, stray capacitance amounting to a total of 9 pf might shunt
the input and output circuits, and in this case the actual gain-bandwidth
products would be reduced to 160 Mc and 46 Mec for stages using these
tubes.

PROBLEMS

6.1 Show that for a space-charge-limited planar diode the current pulse induced
in the external circuit by the passage of a single electron from the cathode to the
anode is given by

where it is assumed that the potential minimum coincides with the cathode, 7 is
the length of the current pulse, and ¢ is the time measured from the instant the elec-
tron passes the potential minimum. Hint: Show that 7 is proportional to £ without

‘Sometimes Equation (6.4-13) is used.
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calculating the exact value of the constant of proportionality, then use the fact
that fo " idt= e to find the value of this constant.

PLATE GRID PLATE
A B C

CATHODE
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£ 4 I BarTeRY
Problem 6.2

6.2 In the apparatus shown, a single electron leaves the cathode and is accelerated
toward plate A. It passes through the hole in plate A with 20 electron volts of
kinetic energy and travels on through grid B to strike plate C.

(a) Sketch the current that flows from ground toward grid B as the electron
travels from plate A to plate C. Indicate the relative values of the induced
current at the times when the electron is at electrodes 4, B, and C.

(b) When the electron has struck plate C, where can the 20 electron volts of
kinetic energy that the electron had when it passed through plate 4 be found?
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Problem 6.3

6.3 The figure shows a grounded-grid triode amplifier stage. C; and C, are,
respectively, the input and output capacitances of the tube plus strays. (Notice
that in this case the input capacitance is the cathode-to-grid capacitance, and the
output capacitance is the grid-to-anode capacitance.) The input and output in-
ductance L; and L, resonate with C; and C,, respectively, at the same frequency.
The conductance G; and @, take into account the effects of losses in the input and
output resonant circuits.

(a) Sketch the constant current generator equivalent network for the stage.

(Neglect the cathode-to-anode capacitance.)

(b) The power gain of the stage can be defined as

power delivered to a matched load with conductance G = G,
power dissipated in input circuit
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Show that the power gain at resonance is given by ¢./4G,. Assume that the
dynamic anode resistance r, is sufficiently large that very little of the current
from the constant current generator flows through r,.

(c) Show that the product of the power gain at resonance and the 3-db band-
width for the stage is g../47C,, where the 3-db bandwidth is the bandwidth
between frequencies at which the power gain has dropped 3 db below maxi-
mum gain.

6.4 In an amplifier stage such as that shown in Figure 6.3-4(a) the gain falls off
with increasing frequency because of the capacitance shunting the output circuit.
Show that the product of the zero-frequency voltage gain and bandwidth over
which the gain is within 3 db of the zero-frequency gain is given by g./2wC, where C
is the total capacitance shunting the output. Neglect the effect of the control grid-
to-anode capacitance.
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Chapter 7

HIGH-FREQUENCY EFFECTS AND
BEAM ADMITTANCE

In Chapter 6 we found that a modulated beam crossing between two
electrodes induces an ac current in the external circuit joining the electrodes.
If the electron transit time across the gap between the electrodes is small
compared with the period of the beam modulation frequency, the induced
ac current equals the ac component of the beam current. However, at high
frequencies and moderate or low electron velocities, the electron transit time
may be an appreciable part of the period of the ac signal. Suppose, for ex-
ample, that the electron transit time is one half the period of the modulation
frequency. In this case one half a ¢ycle of the modulated beam lies between
the electrodes at any instant. Since the induced current is a sum of contri-
butions from the moving electrons in each volume element between the
electrodes and since the phase of the beam modulation varies over the dis-
tance between the electrodes, the contributions to the induced current are
not all in phase, and consequently the total induced current is less than the
ac beam current. '

Consider a modulated beam crossing between the screen grid and anode
of a tetrode or between the grid and anode of a grounded-grid triode. If the
modulation frequency is sufficiently high that the electron transit time is
comparable with the period of the signal, the ac induced current flowing in the
external circuit is less than the ac beam current, and the tube transconduct-
ance is correspondingly reduced. In general, at frequencies sufficiently
high that electron transit-time effects are important, the transconduct-
ance and other tube parameters become complex numbers instead of real
numbers, and their magnitudes are functions of the signal frequency.

Suppose an unmodulated beam passes through two grids. If an ac signal
is applied between the grids, the electrons are acted on by the ac field, and
their velocity acquires an ac component. Each electron in transit between

204
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the grids induces a current proportional to its velocity in the external
circuit joining the grids and hence in the signal generator. Since the total
induced current is a sum of contributions by the individual electrons in
transit between the grids and since the electron velocities have an ac com-
ponent, the total induced current has an ac component. Furthermore,
because the electrons have inertia, the ac component of their velocity is
generally not in phase with the applied signal, and the ac induced current is
likewise not in phase with the applied signal. The ratio of the ac induced
current flowing through the signal generator to the ac voltage applied to
the grids is called the beam admittance or beam loading. Beam admittance
effects become important at high frequencies where the electron transit
time is comparable with the period of the ac signal. The small-signal beam
admittance is directly proportional to the de beam current. Generally it
has both a conductive and a susceptive part.

In Chapter 6 we noted that the capacitance between the control grid and
anode in a grounded-cathode amplifier stage causes a capacitive loading of
the input circuit. At high frequencies a conductive loading of the input
circuit also occurs in grounded-cathode stages. This is caused partly by the
inductance in the cathode lead and partly by beam admittance. At signal
frequencies where input conductance first becomes important, the total
input conductance is approximately proportional to the product of the low-
frequency transconductance of the tube and the square of the signal fre-
quency.

High input conductance is a principal limitation of the performance of
high-frequency grounded-cathode amplifiers and oscillators. In some tubes,
input conductance limitations become important at frequencies of the order
of a few tens of megacycles. However, by using very short cathode leads,
and sometimes multiple cathode leads, the cathode lead inductance can be
reduced, and the useful operating frequency raised. Similarly, short elec-
trode spacings and high electrode voltages help to increase the operating
range by reducing the electron transit times. The electron transit time
across the cathode-control grid region can be reduced by locating the plane
of the grid wires close to the potential minimum and by using a higher
voltage at the grid plane and hence a higher cathode current density.

Still another increase in the input admittance takes place when series
resonance occurs between the inductance in the cathode and control grid
leads and the capacitance between the cathode and control grid. In de-
signing high-frequency grid-controlled tubes, care must be taken that the
frequency of this resonance is well above the operating range.

Generally tubes in which the electrode connections are brought out
through the base are useful only at frequencies below 100 Me, or perhaps
a few hundred megacycles in exceptional cases. If operation at still higher
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frequencies is needed, planar electrodes are used, and the electrode con-
nections are brought out radially by means of disc leads which pass through
the envelope. In this way the lead inductance and rf losses in the leads can
be reduced to a minimum.

The chapter concludes with a description of two tubes designed for
operation at frequencies well above 100 Me.

7.1 Electron Transit Time and Beam Admittance

When the electron transit time between the electrodes of a tube is
comparable with the period of the ac signal applied to the electrodes, the
tube behavior can be modified in several important ways. In this section
we consider under separate headings three examples which illustrate these
effects.

() A Modulated Beam Passing Between Two Electrodes

As a starting point, it will be helpful to consider the dimensions, beam
voltages, and frequencies that are likely to be involved in problems in
which transit-time effects are important. Suppose an electron beam is
accelerated from zero velocity through 100 volts and then passes at con-
stant velocity through two grids separated by 1 mm. The electron velocity
is 5.93 X 108 meters/sec, and the transit time from one grid to the other is
(1/5.93) X 107° sec. This time is equal to the period of a 5930-Mec signal.
If the beam current were modulated at this frequency, one whole cycle of
the modulated beam would be between the grids at any instant. If the
grids were spaced by 1 em, the electron transit time would equal the period
of a 593-Mc signal.

Let us proceed to determine the current induced in the external circuit

ELECTRON
MOTION

! | "

CATHODE

| v
e 1Y =
Vo v

Fia. 7.1-1 The beam passing through grids B and C is modulated by an ac signal
applied to grid A.
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joining two grids when a modulated beam passes between the grids. A
suitable electrode arrangement is shown schematically in Figure 7.1-1.
The current of electrons drawn from a planar cathode is modulated by an
ac voltage applied to grid A. The electrons are then accelerated through
a potential rise V, and pass at nearly uniform velocity between grids B
and C. Finally, they are collected by a planar anode. An admittance ¥
is connected between grids B and C. It is assumed that the ac voltage
developed across this admittance is small compared with the voltage V..
It is further assumed that grids B and C are ideal electrostatic shields, so
that electric fields on one side of the grids do not penetrate through the grids
to the other side. ‘

The results of Chapter 6 tell us that the current flowing in the admitiance
Y s determined only by the electron current in the space between grids B and C.
The electrons striking the anode cancel positive charges which have flowed to
the anode to meet them, but they do not give rise to an additional component of
current through the admitiance Y. In fact, the induced current flowing in
the admittance ¥ would be no different if grid C were replaced by the anode.

Equation (6.1-8) indicates that the ac current flowing in the admittance
Y is given by

it) = — / J(x,y,2,t) - Erdzdydz (7.1-1)
volume

where J(z,y,2,t) is the instantaneous ac current density at the volume
element dxdydz, and E; is a vector function of position discussed in Section
6.1. The integral is taken over the volume of the beam between grids B
and C. If the grids extend well beyond the edge of the beam on all sides,
E, within the beam is normal to the plane of the grids, it.is directed from
grid B toward grid C, and it is equal in magnitude to 1/d, where d is the
spacing between the grids. Let the electron velocity corresponding to
the beam voltage V, be u,, and let the direction normal to the plane of
the electrodes be the z direction. We shall assume that the magnitude of J
can be expressed as Ji(x,y) sin w(f — z/u,), and that { Ji(x,y)dzdy = I,
where the integral is taken over the beam cross section. Substituting for
E: and [ Ji(z,y)dzdy in Equation (7.1-1), and assuming that J-E; is a
negalive quantity, we obtain

i) = I—lfdsinw t—i)dz
d Q Uo
_ I1 Uo wd
=7 ;—[cos(wt - u—a) — cos wt] (7.1-2)

where distance 2 is assumed to be measured from grid B toward grid C.
If we set (wt — wd/2u,) = A, and wd/2u, = B, the part of Equation (7.1-2)
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in brackets can be written in the form cos (4 — B) — cos (A4 + B). Then
using the identity that cos (4 — B) — cos (4 + B) = 2 sin 4 sin B, we
can write Equation (7.1-2) as

wd

sin—
. 2u, . d
i(t) = Iy Yosin w(t — %) (7.1-3)
2u,

Finally, the electron transit time 7', between grids B and C is equal to
d/u,, so that

sinf’L-’
. 2 . T,
i(t) = Il—w__T;—sm w(t — ?> (7.1-4)
2

The factor [sin (wT,/2)]/(wT./2) is known as the beam-coupling co-
efficient, and the angle T, is called the transit angle. The beam-coupling
coefficient measures the ratio of the ac current induced in the external
circuit to the ac component of the beam current. In subsequent discussion
we shall designate this ratio with the letter M. Figure 7.1-2 shows a plot
of M as a function of the transit angle T,

From Equation 7.1-4 we see that the phase of the induced current flowing
in the external circuit is the same as that of the beam current at a point
midway between the grids.

1.0
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Fig. 7.1-2 The beam-coupling coefficient M plotted as a function of wT,.
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Consider a tetrode amplifier stage in which the screen grid and anode are
operated at the same voltage, and there is little potential depression be-
tween the screen grid and anode. The effect of a non-zero transit angle for
the screen-grid to anode space is that the magnitude of the current gener-
ated by the constant current generator of the equivalent network is multi-
plied by the factor M and hence is given by | Mg, V,|.

In the 448A tetrode, described in Section 5.3, the screen grid and anode
are operated at 125 volts, and the spacing between these electrodes is
0.5 em. If the beam current is reduced so that there is little potential
depression between the electrodes, the transit angle T, is equal to 4.74
X 107° f radians, where f is the signal frequency in cycles per second. At
a frequency of 1320 Mc, T, = 2, and from Figure 7.1-2 we see that the
beam-coupling coefficient M is zero. Furthermore at integral multiples
of this frequency, T, is an integral multiple of 2=, and the beam-coupling
coefficient is again zero. The frequency 1320 Me corresponds to the re-
ciprocal of the electron transit time for this particular electrode spacing
and beam voltage, so that at this frequency there is one whole cycle of the
modulated beam between the electrodes at any instant. When the fre-
quency is an integral multiple of 1320 Mc, there is an integral number of
cycles of the modulated beam between the electrodes. Since the induced
current flowing in the external circuit is a sum of contributions from each
volume element between the electrodes, the tofal induced current must be
zero when there is an integral number of cycles of the modulated beam
between the electrodes.

The 448A is normally operated at frequencies below 100 Me. Since 7,
for the screen-grid to anode space of the 448A is equal to 0.157 at a fre-
quency of 100 Me, it is evident from Figure 7.1-2 that M for this inter-
action region is nearly equal to unity for frequencies below 100 Mc. How-
ever, in designing tubes to operate at frequencies approaching 1000 Me,
transit-time effects in the output region of the tube may be a serious
limitation. Notice that for a given ac beam current passing between the
screen grid and anode of a tetrode, the electron-transit time from the
cathode to the screen grid does not affect the magnitude of the ac current
induced in the output circuit provided the screen grid acts as a good
electrostatic shield. However, the phase of the output signal is delayed by
the finite transit times involved, and consequently the transconductance
as defined by Equation (5.2-1) becomes a complex number.

(b) Small-Signal Admittance of an Unmodulated Beam Passing Between
Two Grids at Equal Potential

Suppose an ac signal is applied between two parallel planar grids, and an
initially unmodulated electron beam passes through the grids. The motion
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of the electrons in the space between the grids varies in response to the
applied ac field, and this causes an induced ac current to flow through the
signal generator. The ratio of the induced ac current flowing in the ex-
ternal circuit to the ac voltage applied by the signal generator is called the
beam admittance, or beam loading.

Let us derive an expression for the small-signal admittance of an un-
modulated beam passing between two grids whose de potentials are equal.
A suitable arrangement of electrodes is shown schematically in Figure
7.1-3. The grids are assumed to be ideal electrostatic shields. An electron
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F1e. 7.1-3 The ac voltage applied between grids A and B causes the electron motion

to vary in response to the applied field. An induced ac current therefore flows

through the signal generator, and the electron beam acts as a load on the
signal generator.

beam of current I, is accelerated through a potential rise V, before passing
through grid A. The space-charge density between the grids is sufficiently
low that there is negligible potential depression between the grids. An ac
voltage V, sin wt is applied between the grids by means of a signal generator.
We assume that the signal generator has zero internal impedance for both
ac and dc signals and that V, is small compared with V..

We shall first determine the transit time of an electron which passes
from grid A to grid B and is acted on by the ac field (V/d) sin wt as it crosses
the interelectrode space, where d is the grid spacing. The acceleration of
the electron in the region between the grids is given by

d2 _ 'lﬂ/_l . Uo Vl

T g sin wt = 5T, Vosm wt (7.1-5)

where u, = 27V, is the velocity of the electrons passing through grid 4,
and T, = d/u, is the electron transit time in the absence of an applied
signal. Let the time the electron passed through grid 4 be ¢,. The velocity
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of the electron at time ¢ is found by integfating Equation (7.1-5) with re-
spect to time from ¢, to ¢ and adding u,. Thus

dz _ ~ u, Vi _
il T o8 V,,(COS wt — cos wi,) (7.1-6)

Integrating once more from ¢, to ¢, we find that the z coordinate of the
electron at time ¢ is given by

ZT g +[8in wt — sin wt, — w(t — ¢,)cos wt,)
(7.1-7)

where distance z is measured from grid A toward grid B. If wesetz = din
this equation, the time ¢ corresponds to the time of arrival of the electron
at grid B, and the time ¢ — ¢, for z = d is the electron transit time. We
shall designate this electron transit time by I'. Then

2= ut — 1) —

d=uT — [sm wt — sin wt, — wT cos wt,) (7.1-8)
2T Vo

or

T="T,4+ = —I[sin wt — sin wt, — &T cos wt,) (7.1-9)

Vi
2T Vo
where we have substituted T', for d/u,. Now as V1 —0, T — T,. Since
we assume that Vi is small, the second term on the right-hand side of
Equation (7.1-9) is small compared with the first term. We shall use the
approximations that t, =¢{— T, and T = T, in the second term of the
right-hand side of the equation. This is equivalent to neglecting terms
which involve the product of two or more small quantities. The electron
transit time then becomes

T=T,+ 5%+ 2T 5[s1n wt — sinw(t — T) — 0T cos w(t — T,)]
(7.1-10)

We can now proceed to determine the current that flows in the external
signal generator at time t. This current is a sum of contributions from all
electrons in transit between the grids and hence includes all electrons that
passed through grid 4 from time ¢ back to time ¢ — T. One electron induces

a current ¢ = E:ii_t in the external circuit. In an increment of time d¢, an
amount of charge I,dt, passes through grid A. At time ¢ this charge causes

an induced current L ddt" Z’i to flow in the external circuit, where dz/dt is

the velocity of the electrons that comprise the charge I, df,, and dz/dt is
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evaluated at time {. The total induced current flowing in the signal gener-
ator therefore is

) A Io dz
o = ,/-t.,=t_1' d _oﬁdt" (7.1-11)

Substituting for dz/dt from Equation (7.1-6) and carrying out the in-
tegration, we obtain

WO S A — inot 4 sin ot —
i(t) = I"To ~ 3Ty V,,[wT ¢0s wt — sin wi + sin w(E — T)]
(7.1-12)

In the first term on the right we can substitute for T from Equation
(7.1-10), and in the second term we can use the approximations¢, = ¢t — T’
and T = T,, since the second term is already a small quantity. Thus we
obtain
I, [2(1 — cos wT,) — wT,sin wT"sin .
2Vo|_ (WT0)2 ¢

+ 2 sin wT, — wT,(1 + cos oT',)
(T,)?
This is of the form 7(t) = I, + gV sin wt + bV cos wt, where
2(1 — eos wT,) — wT,sin w7,

i) = I+ Vi

cos wt] (7.1-13)

=9 2(wT,)?
_ 2sin T, — oT,(1 + coswT,)
b=g, ST,y (7.1-14)

and g, = I,/V,. TFigure 7.1-4 shows plots of g/g, and b/g..

Equation (7.1-13) shows that the current flowing in the signal generator
due to the presence of the beam is made up of a de term equal to the de
beam current and two ac terms, one in phase with the applied voltage and
one in quadrature with the applied voltage. The capacitance between the
grids also shunts the voltage generator, and an additional current is drawn
from the signal generator to charge this capacitance. An equivalent net-
work for the system is shown in Figure 7.1-5. The capacitance C, is the
capacitance between the grids in the absence of the beam. Positive b cor-
responds to a capacitative susceptance, and negative b corresponds to an
inductive susceptance. The admittance g + jb is called the beam ad-
mittance or beam loading. It shunts any external circuit connected between
the grids. Figure 7.1-4 shows that as T, approaches zero, both g and b go
to zero. ’

In further explanation of the beam admittance, let us return to Equation
(7.1-6). Because the electrons are acted on by the applied ac field, their
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Fi¢. 7.1-4 The quantities g/g, and b/g, plotted as functions of the angle wT,.

velocity has an ac component. However, each electron induces a current
_edz

T ddt

induced current resulting from an individual electron has an ac component.
When the induced currents from all the electrons in transit between the
grids are added together, the resulting total induced current also has an
ac component. Furthermore, because the electrons have inertia, the ac
component of their velocity is not in phase with the applied field. This
accounts for the susceptive part of the beam admittance.

) in the external circuit, and since dz/dt has an ac component, the
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V, sinwt l

A
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o
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EFFECT OF
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F1a. 7.1-5 An equivalent network for the region between grids A and B in Figure
7.1-3.
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To illustrate the magnitudes that might arise from beam-loading effects,
consider a 100-volt, 100-ma beam crossing between two grids spaced by
1 em. We shall assume that the beam current density is sufficiently low
that there is negligible potential depression between the grids. If a signal
frequency of 200 Me is applied to the grids, T, = 2.11 radians, and
g+ b = (1.38 + 70.78) X 10~* mho. This is equivalent to a resistance of
7200 ohms in parallel with a capacitive reactance of 13,000 ohms. If a
parallel resonant circuit were connected between the grids, the beam
admittance would change both the tuning and @ of the circuit.

(¢) Impedance of a Space-Charge-Limited Planar Diode

As a final example of electron transit-time effects, we derive in Appendix
X the impedance of a space-charge-limited planar diode. It is assumed in
the derivation that the potential minimum coincides with the cathode and
that edge effects can be neglected. The impedance of the diode is found to
be

(7.1-15)
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Fie. 7.1-6 The quantities r/r, and z/7, plotted as functions of the transit angle wT,.
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where A is the area of the electrodes, and r and z are given by

_ 2(1 — cos wT,) — 0T, sin T,
r = 127',,[ AL ] (7.1-16)
and
_ 1 oT (1 + cos wT,) — 2 sin T,
x = 12r“[6wT,, + BT ] (7.1-17)

Here T, is the time required for an electron to travel from the cathode to
the anode under the influence of the applied de field, and w7, is the cor-
responding transit angle. The resistance r, is the ‘“‘dynamic anode re-
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Fia. 7.1-7 The conductance and capacitance of a space-charge-limited planar

diode. The conductance g, is equal to 3J,4/2V,, and the capacitance C, is equal to

the capacitance of the parallel plate capacitor formed by the electrodes in the
absence of space charge.

sistance” for a unit area of the diode and is equal to 2V,,/3J, where
V.o is the de voltage applied to the anode, and J, is the de¢ current density
drawn to the anode. Figure 7.1-6 shows plots of r/r, and z/r, as functions
of the electron transit angle wT,. Figure 7.1-7 shows the conductance and
capacitance of the diode as functions of &T,.
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It is also shown in Appendix X that at low frequencies the diode can be
represented by an admittance ¥ such that

Y = go+ ngc,, (7.1-18)

where g, = A/ra, and C, is the capacitance of the parallel-plate capacitor
formed by the electrodes in the absence of space charge. Thus at low fre-
quencies the capacitance of the diode is reduced by the presence of space
charge to 3/5 of the diode’s capaci-
tance in the absence of space charge.
That the capacitance should be
changed by the space charge is
perhaps not surprising if we note
Fic. 7.1-8 A low-frequency equivalent that the field distribution a’fld
network for a space-charge-limited charges on the electrodes are quite
planar diode. different when space charge is
present. In fact, when the potential
minimum coincides with the cathode, there is no surface charge on the
cathode at all. A low-frequency equivalent network for the diode is shown
in Figure 7.1-8.

O

9=9o ~C=3/5C,

O

7.2 The Llewellyn and Peterson Equations

An important contribution to present understanding of the high-frequen-
¢y electronies of grid-controlled tubes with planar electrodes was made in
some studies by Llewellyn and Peterson.! We shall not attempt to sum-
marize their paper here but merely show the form of the equations from
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——————————— -

I = AReA X(JTi = JT2)

(b)

Fie. 7.2-1 (a) The interaction region applicable to Equation (7.2-1). (b) The inter-

action region bounded by planes a and b is followed by a second interaction region

bounded by planes b and ¢. From J,, Us, and Jr,, the quantities J; and U, can be

calculated. These can be used as entrance conditions for the second interaction
region, and J, and U, can be calculated.

1Reference 7a.
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which their studies developed. The reader who is interested in pursuing
further the subject of high-frequency effects in grid-controlled tubes will
find many interesting problems examined in the Llewellyn-Peterson paper.

The approach taken by Llewellyn and Peterson considers the parallel
flow of electrons between two planes, a and b, as illustrated in Figure 7.2-1
(a). Plane a might be a cathode or an ideal grid, whereas plane b might be
an anode or an ideal grid. Suppose the electron beam passes through plane
a with an ac component of convection current density J, and an ac com-
ponent of velocity U.. An ac voltage V. — V; is applied between the
planes, where V, — V3 is small compared with the average dc beam voltage
in the space between the planes. The electron velocity is assumed to be
single-valued over any plane normal to the beam, and the ac component of
the electron velocity is small compared with the de component. The
Llewellyn-Peterson equations then take the form:

Ve — Vo= A¥r 4+ B¥, + C*U,
Jy = D¥¢ + E¥, + F*U, (7.2-1)
Uy, = G¥r + HY, + I*U,

where J; is the ac convection current density at plane b, U, is the ac com-
ponent of the electron velocity at plane b, and J7 is the total ac beam current
density between the planes, that is, the convection current density plus
displacement current density, as discussed in Appendix X. Between any
two electrodes Jr is a constant, independent of distance from an electrode.
If plane b were an anode, then Jr times the area of the beam would be the
ac current flowing in the anode lead, edge effects being neglected. The
coefficients A* to I* are tabulated in Appendix XI. The coefficients are
simple functions of the de electron velocities at planes a and b, the dec
transit time for the electrons crossing from plane e to plane b and the
corresponding transit angle, and a space charge parameter { which varies
from 0 with no space charge to 1 with maximum possible space charge.
It should be noted that all quantities in Equations (7.2-1) are phasors.

If plane b is followed by a second “interaction region” bounded by planes
b and ¢, as shown in Figure 7.2-1(b), the quantities J; and Us, together
with the corresponding dec quantities, can be used as entrance conditions
for the second region. The total current density.in the second region,
Jry, is equal to Jr minus the current per unit area flowing into plane b
through an external lead. In terms of Js, Us, and Jrs, the ac convection
current density and electron velocity at the third plane, J. and U,, can be
calculated by further application of Equations (7.2-1).

Now the total current density Jr flowing toward any grid plane or
electrode (from both sides) multiplied by the area of the beam equals the
ac current flowing away from the electrode in the external lead. Llewellyn
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and Peterson used this relationship and the expressions for Jr in the various
interaction regions of a multi-electrode tube to construct an equivalent
network for such a tube. The network is of particular value in analyzing

the high-frequency performance of

VizVe) Yo planar grid-controlled tubes. The

equivalent network of a triode oper-

' ating with the grid negative with re-

L |v. Yoz | spect to the cathode is shown in
c\A/%%;—': L} ANogg Figure 7.2-2. Llewellyn and Peter-
l c son show that under usual operating

9 conditions the effects of space charge

1:, in the region between the control

GR,Dg grid and anode can be neglected, and

Fic. 7.2-2 The equivalent network for }n this case tl}e a‘d mittance y» shown
a triode with grid negative with respect n the' figure is simply the free-space
to the cathode, as derived by Llewellyn ~capacitance Cx between the anode
and Peterson. and a conducting plane coincident

with the grid plane. The capaci-

tance C, is equal to uCy,, where p is the amplification factor of the tube.
(If the grid were an ideal electrostatic shield, » would be infinitely large,
and C, could be replaced by a direct connection from the grid terminal to
the central node of the network.) The admittance yy is the admittance
of a space-charge-limited planar diode of spacing equal to the cathode-grid
spacing and applied dc voltage equal to the effective beam voltage at the
grid. Tt is the reciprocal of the impedance z given by Equation (7.1-15).
At low frequencies the transadmittance y;» is approximately equal to minus
the low-frequency transconductance of the tube. However, at higher fre-
quencies, it is modified to take into account the effects of the finite transit
angles in the cathode-grid region and the grid-anode region. In Reference
7a, Figure 8 shows the effect of frequency on the phase and magnitude of yi.
Some consequences of Llewellyn’s and Peterson’s work are as follows:

1. The three results presented in Section 7.1 can be obtained directly by
the application of Equations (7.2-1) to the particular problems considered.
However, the equations are of much more general applicability in the
sense that they can be used to solve a variety of similar problems with
different de electrode voltages and different amounts of space charge in the
beam.

2. At high frequencies the effects of non-zero transit angles in the various
interaction regions of a grid-controlled tube can be evaluated by exami-
nation of the appropriate equivalent network.

3. When the transit angles in the input region of a grounded-cathode
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amplifier are significantly greater than zero, the electron beam causes a
loading of the input circuit. (See Section 7.3(a) for further discussion of
this effect.) An expression for this beam loading was derived by Llewellyn
and Peterson using the appropriate equivalent network. The expression
indicates that at frequencies at which the beam loading first becomes
important, the conductive part of the loading is approximately proportional
to the product of the low-frequency transconductance and the square of the
signal frequency. The derivation assumes that the electrons are emitted
from the cathode with zero velocity and hence that the potential minimum
coincides with the cathode.

7.3 Input Admittance

At high frequencies a principal limitation of grid-controlled tubes when
operated as grounded-cathode amplifiers or oscillators arises from con-
ductive loading of the input circuit. Two effects contribute to the loading:
one results from inductance in the cathode lead, and the second results
from beam loading. Both contribute a conductive loading which is approxi-
mately proportional to the product of the transconductance of the tube and
the square of the signal frequency. We consider the effects under separate
headings below.

(@) Lead Inductance Effects

Although the distance from the socket to the cathode electrode of most
grid-controlled tubes is small, often only 1 or 2 ¢m, the inductance associ-
ated with this length of lead can give rise to an important loading of the
input circuit. Figure 7.3-1 shows schematically a grid-controlled tube in
which the cathode lead inductance is '
represented by a lumped inductance ba
within the tube. We shall assume
that the impedance between the —»
socket and ground is negligible, and
we shall neglect the loading which V;,T
results from the non-zero transit
angle in the input region of the tube.

The phasor corresponding to the in-

put signal v, is then given by Fi6. 7.3-1 Schematic representation of
. grid-controlled tube with cathode-
Vi=V,+ juL(,+ 1)) (7.3-1) lead inductance.

where V, is the phasor corresponding to the ac voltage between the cathode
and grid electrodes, I, is the phasor corresponding to the current 7, flowing
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in the anode circuit, and I; is the phasor corresponding to the current 7
flowing in the input circuit. If the load resistance in the anode circuit is
small compared with the dynamic anode resistance, the current flowing in
the anode circuit can be expressed as

Ia = ngg (7.3-2)

where g, is the transconductance of the tube. If we assume that I, < I,
Equation (7.3-1) can be written as

Vi = Vg(l +ijcgm) (73‘3)

If the input capacitance of the tube is principally that between the
control grid and cathode, the voltage V, is related to the current flowing in
the input circuit by

I

o= JwCeg

where C., is the capacitance between the control grid and cathode. Com-
bining Equations (7.3-3) and (7.3-4), we can express the input admittance as

5L _ JoCleq _ j"’Cco(l - j‘*’chm)

Vi 1+ joLge 1+ o?Ligm? (7.35)
At frequencies of interest the term w?L.gn’ in the denominator is small
compared with unity and can be neglected. The input admittance then has
a positive real part given by

Gi = W*’LCosfim (7.3-6)

This conductance shunts the input circuit, and since it is proportional
to the produect of L, and C., it is desirable that both of these quantities be
as small as possible in tubes used at very high frequencies.

In “miniature” tubes, such as the 403A/6AK5 pentode, described in
Section 5.4, low cathode-lead inductance is achieved because of the short
distance between the internal electrodes and the pins at the base of the tube.
Furthermore, two cathode leads are used in the 403A/6AKS5, each con-
nected to separate pins at the tube base. This permits parallel connection
at the tube socket and results in a further reduction in the cathode-lead
inductance. In the 403A/6AKS5, L. = 5 millimicrohenries with parallel
connection to the cathode, C,, = 3.7 pf (ie., 3.7 X 107 farad), and
gm = 5 X 1073 mho. Using these values in Equation (7.3-6), we find that
at a frequency of 100 Me, G; = 3.6 X 107 mho. This is equivalent to a
shunting resistance of 28,000 ohms at the input of the tube. This resistance
is paralleled by the beam-loading conductance discussed in Part (b) below.

In the 448A tetrode, described in Section 5.3, higher transconductance is
achieved by the use of a larger cathode area than in the 403A/6AK5 and

(7.3-4)

Y,'=
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a closer cathode-control grid spacing. This increases C,,, and consequently
it is even more important to have a low cathode-lead inductance in this
tube. For this reason, three separate cathode leads are brought out of the
448A for parallel connection at the base. Measurement of the cathode-
lead inductance of the 448A with the three cathode leads in parallel in-
dicates that it is about 4 millimicrohenries. The capacitance C., is 18 pf,
and g is 0.034 mho. Substituting these values into Equation (7.3-6),
we find that G; = 9.7 X 107* mho at 100 Mec. This is equivalent to a
shunting resistance of 1030 ohms across the input circuit.

A second important lead inductance effect in a tube such as the 448A is
the fact that series resonance can occur between the inductance of the
cathode and control-grid leads and the capacitance between the cathode and
control grid. If we assume a total of 10 millimicrohenries inductance in
the cathode and control-grid leads in the 448A, series resonance with the
18-pf capacitance between the control grid and cathode occurs at a fre-
quency of 375 Mec. At this frequency the input impedance would be re-
duced to a very small value.

(b) Beam Loading in Grounded-Cathode Stages

The beam loading of the input circuit also has a conductive part which
at low and moderate frequencies is proportional to the product of the
transconductance and the square of the signal frequency. The discussion
that follows explains why this is so. Consider a single electron that travels
from the cathode to the anode of a grounded-cathode triode. An induced
current somewhat like that shown in Figure 7.3-2(b) flows in the external
circuit connected between ground and the grid electrode. At time ¢, the
electron leaves the cathode. At time #; it passes the grid, and the direction
of the induced current reverses because the direction of the electron velocity
relative to the grid plane reverses. At time ¢, the electron strikes the anode.
(If the tube were a tetrode or pentode, the time & could be taken as the time
at which the electron passes the plane of the screen grid.) The area under
the part of the induced current curve from ¢, to {; equals the area under the
part from #, to &, and if the grid were an ideal electrostatic shield, each area
would equal the electronic charge e. At low frequencies, and with many
electrons passing the grid per cycle, the current induced in the grid circuit
by electrons crossing from the cathode to the grid plane is just balanced by
the induced current caused by the electrons crossing from the grid plane to
the anode, and there is no net current induced in the grid circuit. However,
at higher frequencies, where the electron transit time T, = £, — , is a
significant part of the period of the ac signal, the induced currents resulting
from electrons crossing the two regions may not be exactly 180° out of
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phase. As a result, current 7, flows in the grid circuit when a voltage is
applied by the signal generator to the grid terminal. The ratio of this ac
induced current to the applied signal is called the beam loading admittance.
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Fia. 7.3-2 The induced current i shown in part b flows in the grid lead when a
single electron travels from the cathode to the anode. %, is the total induced current
from all the electrons.

Suppose the ac grid voltage is given by V, sin wt. The ac beam current
is then ¢,V, sin wt, where g, is the transconductance of the tube. During
the half cycle when the grid voltage is increasing, the current of electrons
leaving the cathode (or really the current leaving the potential minimum)
is also increasing. We would expect that during most of this half cycle
the current induced in the grid circuit by electrons crossing from the
cathode to the grid plane would exceed that resulting from electrons cross-
ing from the grid plane to the anode, whereas during the other half cycle
the opposite would be the case. Consider the instant when sin ot = 0,
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and the ac part of the grid voltage is changing from negative to positive.
The grid voltage is increasing most rapidly at this instant, and likewise the
current of electrons leaving the cathode is increasing most rapidly. Be-
cause of the finite transit time ¢, — ¢, required for electrons to cross the
cathode-grid region, the number of electrons in transit in this region is not
maximum at the same instant as the current leaving the cathode is a maxi-
mum, but a short time later. Furthermore, the current induced in the
grid circuit by an individual electron is essentially zero as the electron
leaves the cathode (because the electron velocity is nearly zero), but it
increases as the electron approaches the grid plane. For these reasons,
the net current induced in the grid circuit is not maximum when the rate of
change of the current leaving the cathode is maximum, but a short time At
later, where At s an appreciable fraction of t, — t,. Of course, similar reason-
ing applies to the grid-anode region of the tube and the current induced in
the grid circuit by electrons crossing this region. Consequently, the time
At is actually a function both of &4 — ¢, and & — ¢,

From the foregoing discussion, we would expect that the magnitude of
the induced grid current ¢, would be proportional to the maximum rate
of change of the beam current and hence proportional to the product of
gnV, and the angular frequency w. Also, for transit times which are small
compared with the period of the ac signal, doubling the transit time in the
two regions of the tube also doubles the difference between the induced
grid currents resulting from electrons crossing the two regions of the tube,
and the net induced grid current 7, is doubled. Thus %, is also proportional
to the transit time T, and can be expressed as

19y = KgnV T, cos w(t — At) (7.3-7)
where K is a constant. This can be expanded to give
1y = Kgn VT [cos wi cos wAt -+ sin wt sin wAf) (7.3-8)

The second term in brackets is in phase with the applied grid signal, so
that the ratio of this term to the grid voltage V, sin wt is the conductive
part of the input loading. Hence,

Gin = KgnwT, sin wAl (7.3-9)
If the electron transit time is small compared with the period of the ac

signal, wAf is a small angle, and to a first approximation the sine of the
angle can be replaced by the angle. Thus

Gin < gma?T Al (7.3-10)

It is significant that both the input conductance resulting from cathode-
lead inductance and the input conductance resulting from beam loading are
proportional to gmw®. Some experimental measurements of the input
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loading with grounded-cathode operation are described in Section (c) below.

The input conductance of a grounded-grid amplifier stage is high even
at relatively low frequencies. From Figure 7.2-2 and the accompanying
discussion it can be seen that the input admittance with grounded-grid
operation is essentially yu in series with Cy + Co = Ca (u + 1). (We
assume the anode is bypassed to ground.) At moderate frequencies the
reactance of Cx (x + 1) is negligible, and the input admittance of the ampli-
fier is yu. Now yu is the admittance of a space-charge-limited diode of the
same electrode area as the triode, with current density equal to the average
beam current density, electrode spacing equal to the cathode-grid spacing,
and applied anode voltage equal to the effective beam voltage at the grid.
The variation with frequency of the conductive and capacitive parts of
this admittance are plotted in Figure 7.1-7. The input conductance of a
grounded-grid amplifier stage, therefore, varies as the conductive term
plotted in this figure. (We should qualify this statement by noting that the
derivation which led to the conductive term plotted in Figure 7.1-7 assumed
that the electrons leave the cathode with zero velocity and hence that the
potential minimum coincides with the cathode. Actually, it is probable that
the electrons which travel part way out to the potential minimum and
return to the cathode contribute significantly to the input loading. Further-
more, the derivation does not take into account the Maxwellian distribution
,of emission velocities, and this also must have an important effect.)

(¢) Some Measurements of the Input Admittance of Grounded-Cathode
Amplifier Stages

When the beam current of a tube is varied by changing the control-
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Fic. 7.3-3 Change of input conductance and capacitance with cathode current for
the 448A tetrode.
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grid voltage, both the input capacitance and input conductance vary.
If the control grid is biased negatively to cut off the beam, the input
capacitance results only from the interelectrode capacitance plus the
capacitance between the leads to the electrodes, and the input conductance
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Fic. 7.3-4 Input conductance and input capacitance vs. frequency for the 448A
tetrode.

results only from the effects of the series resistance in the leads to the
electrodes. However, as the beam current is increased, both the input
capacitance and input conductance increase. The increase in input capaci-
tance results from beam loading, whereas the increase in input conductance
results from both beam loading and cathode-lead inductance.

Figure 7.3-3 shows the change in input conductance and change in input
capacitance vs. beam current for the 448A tetrode, described in Section 5.3.
The measurements were made at a frequency of 75 Me. When the beam is
cut off, the input conductance is 1.5 X 107¢ mho, and the input capacitance
is 18 pf. Under normal operating conditions, the cathode current is about
35 ma. At this cathode current the input conductance is about 1.03 X 1072
mho. Figure 7.3-4 shows the variation of input conductance and capac-
itance with frequency for the 448A. At about 70 Mec the input con-
ductance increases approximately as the square of the signal frequency,
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2 whereas at lower frequencies it does
not increase as rapidly. Figure 7.3-5
shows plots of the input conductance

10-3 A4 vs. frequency for the 6AC7 and
w 8 )4 6AKS5 codes. The 6AK5 is described
£ B in Section 5.4.
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Fia. 7.3-5 Input conductance vs. fre- 1 The tl_lbe must have a high
quency for the 6AC7 and 6AK5 (Cour- gain-bandwidth product and hence a
tesy Radio Corporation of America.) high transconductanceand low input

and output capacitances. This
means that the transconductance per unit area of the electrodes must be
high, and a short cathode-control grid spacing must be used.

2. The transit angle in the cathode-control grid region must be small so
that the input loading (for grounded-cathode operation) is small. The
transit angle in the cathode-control grid region can be made small by using
a short spacing between the control grid and cathode and a relatively high
average voltage at the grid plane and hence a high cathode current density.?

3. High voltages and not-too-large electrode spacings must be used at
the output interaction gap to reduce the transit angle and keep the beam-
coupling coefficient near to unity.

4. The cathode-lead inductance must be small to reduce the input loading,
and other lead inductances must be small to prevent the occurrence of
series resonance with the interelectrode capacitances.

?Equation (2) of Appendix X shows that the electron transit time for a planar diode
(with potential minimum coincident with the cathode) is proportional to d!/3/J /3
where d is the electrode spacing, J, is the cathode current density. Consequently, the
use of a high cathode current density and short cathode-control grid spacing reduces
the input transit angle.
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Figure 7.4-1 shows the construction of the Bell Telephone Laboratories

1983 tetrode, a developmental tube designed for operation at frequencies
of several hundred megacycles per second. The cathode, control grid,
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Fie. 7.4-1 The construction of the Bell Telephone Laboratories 1983 tetrode. The
overall height of the tube is 5.1 centimeters.

screen grid, and anode connections are brought out radially from the elec-
trodes by means of “disc” leads which are spaced by ceramic rings. The
heavy slanted lines in the figure indicate the cross section of the ceramic
rings. Vacuum-tight seals are formed between the ceramic rings and the

disc leads. This type of envelope construction offers several important
advantages:

1. The lead inductance can be made extremely small.

2. At frequencies above 100 Mc/sec, rf losses in wire leads to electrodes
become important, and the effects of these losses increase with signal
frequency. By using disc leads, the surface area of the leads is greatly
increased, and the losses are correspondingly reduced.

3. Power dissipated as heat in the screen grid and anode can be effectively
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conducted away, thus increasing the permissible power dissipation within
the tube. '

Table 5.2-1 lists the operating conditions and important performance
characteristics of the 1983 tetrode. A comparison with the 448A tetrode
data shows that the high gain-bandwidth produect is achieved at the ex-
pense of higher cathode current density and reduced cathode-control grid
spacing. The transconductance per unit area of the cathode in the 1983
is seven times that of the 448A.

Much more power can be dissipated in the anode of the 1983 than in the
anode of the 448A, because the thermal conduction from the anode to the
external connections is much better in the 1983. A higher anode voltage
can therefore be used, and this helps to reduce the transit angle in the
output gap. Also, a smaller spacing between the screen grid and anode is
used — 2 mm for the 1983 compared with 5 mm for the 448A. By operating
the anode of the 1983 at a voltage well above that of the sereen grid, second-
ary electrons emitted from the anode are prevented from reaching the
screen grid. However, part of the primary current to the anode results from
secondary emission at the screen grid. To reduce this seecondary emission,
and in fact to reduce the primary current to the screen grid, a larger screen-
grid pitch is used in the 1983, about twice that of the 448A, the screen-grid
wire diameter being the same in the two tubes. The heat dissipated in the
anode and screen grid of the 1983 is carried away partly by conduction
through the external connections to the leads and partly by forced-air
cooling.

At the time of writing, a one-stage, grounded-cathode amplifier has been
assembled using the 1983. The amplifier has a 50-ohm resistance connected
between the control grid and cathode, and a signal generator with a 50-ohm
internal impedance is used to drive the amplifier. The amplifier provides
a midband gain of 10 db with a 3-db bandwidth extending from 0.5 Mec/sec
to 250 Mec/sec. (Note that because of the low input impedance of the
stage, only the output capacitance limits the bandwidth in such a stage.
Consequently, the gain-bandwidth product given by Equation (6.4-11)
is not applicable here.)

The second tube which we shall describe is the Western Electric 416B
triode, a tube designed as a grounded-grid amplifier for signal frequencies
in the neighborhood of 4000 Mc/sec. The construction of the 416B is illus-
trated in Figure 7.4-2. The envelope is a metal-and-glass structure in which
glass rings separate the anode, grid, and cathode terminals and form
vacuum-tight seals with these terminals. The input and output connections
to the tube are made by means of waveguides.> A cross-sectional view of

*See Chapter 8.
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the associated waveguide components is shown in Figure 7.4-3. The lower
part of the bulb is capacitively coupled to the cathode, and rf connection
to the cathode is made through this capacitance. DC connection to the
cathode is made through a pin in the base. The electrical characteristics
of the 416B are summarized in Table 5.2-1.
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Fia. 7.4-2 The construction of the Western Electric 416B triode. The overall
height of the tube is 4.8 cm.

The principal design considerations which led to the electrode structure of
the 416B are described in Reference 7¢c. The design was chosen to obtain
as large as possible a product of (midband power gain) X (bandwidth)
consistent with practical values of cathode current density and anode and
grid power dissipation. (At signal frequencies of 4000 Mc/sec it is more
meaningful to use a gain-bandwidth produet involving the power gain
rather than the voltage gain, since the power gain can be measured directly,
whereas the voltage gain must be calculated from measurements of power
gain.) Using the equivalent network for a triode given in Figure 7.2-2, the
midband power gain with grounded-grid operation can easily be shown
to be | y12 [2/2GuG,, where Gy is the real part of yu1, and G, is the conductance
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F16. 7.4-3 The waveguide connections to the 416B. There is effectively a coaxial

line from the anode terminal of the tube to a probe which extends into the output

waveguide and which acts as a transducer between the coaxial line and the
output waveguide.

of the output circuit. We assume here that the characteristic admittance
of the output waveguide appears at the tube as an admittance G,/2 and
that the losses in the output circuit of the amplifier are adjusted to match
this admittance. Hence the total conductance shunting the output circuit
is G,. If is further assumed that the losses in the input circuit contribute
a shunting admittance at the input which is small in comparison with Gy,
and hence the effect of the input losses can be neglected. The capacitance
C, in Figure 7.2-2 is assumed to have negligible reactance at 4000 Mec/sec.
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Since the input conductance of a grounded-grid stage is extremely high, the
Q of the input circuit is correspondingly low, and the bandwidth of the
stage is determined primarily by the output circuit. From Equations
(6.4-3) and (6.4-7) the 3-db bandwidth of the output circuit is G,/2xC,,
where C, is the capacitance shunting the output circuit. Thus

2
(midband power gain) X (3-db bandwidth) = Lvmlt (7.4-1)
47rGIICn
The power gain decreases with increasing transit angle in the cathode-
grid region, and accordingly a high cathode current density and extremely
small cathode-grid spacing are used to minimize the input transit angle.
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F16. 7.4-4 The grid-wire diameter, the grid pitch, and the cathode-grid spacing
for several tubes described in this chapter and in Chapter 5 are compared. Only
two grid wires from each code are shown.

Figure 7.4-4 shows a comparison of the cathode-grid spacing used in this
tube and in several tubes described earlier. The cross section of two grid
wires from each tube are shown in relation to a common “cathode plane.”
The 416B has the same cathode area as the 1983, but a smaller cathode-grid
spacing.

Several factors bearing upon the choice of grid-anode spacing in the 416B
are:

1. The bandwidth G./27C, can be increased by increasing the grid-anode
spacing and hence reducing C..

2. Increasing the grid-anode spacing with a fixed anode voltage increases
the transit angle for the grid-anode region and reduces the power gain.
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3. Increasing the anode voltage to reduce the transit angle in the grid-
anode region increases the power dissipation in the envelope structure.
In practice, the permissible anode dissipation is limited to about 6 watts
because of the proximity of the metal-glass seal which joins the anode
terminal to the glass ring that surrounds it.

4. Increasing the grid-anode spacing with a fixed anode voltage requires
a higher average voltage at the grid plane in order to draw the required
cathode current density and total anode current. However, the peak
grid voltage cannot be permitted to go very far positive, or the grid inter-
ception would become excessive.

In practice the highest possible anode voltage is used consistent with
the power handling capabilities of the envelope structure. This permits a
reasonably large grid-anode spacing with not too large a transit angle
(92 degrees at 4000 Mec/sec) and without excessive grid interception.
Forced-air-cooling of the anode is used to help conduct away the 6 watts of
power dissipated in the anode by the electron beam.

The 416B is used in a three-stage amplifier which provides a small-
signal power gain of 9db per stage at a midband frequency close to 4000
Mec/sec. The 3-db bandwidth of a single stage is 100 Me/sec. As the input
signal is increased from zero, the power gain at 4000 Mc/sec remains nearly
constant up to a power output of about 20 milliwatts. However, at higher
power outputs, the power gain falls with increasing power output; and
at a power output of 0.5 watt, the midband power gain of the output stage
is reduced to 5db.

PROBLEM

1. The beam of a cathode-ray tube passes between two parallel deflection plates
of length d in the direction of the electron motion. Show that for small deflections
of the beam by an ac signal applied to the deflection plates, the amplitude of the
sin(wT,/2)

wT,/2
the time the electrons spend in traveling the distance d, and v is the angular fre-
quency of the ac signal applied to the plates. Assume that edge effects at the de-
flection plates can be neglected and that the field between the plates is uniform at
any instant.

deflection is proportional to the beam coupling coefficient y» where T, is
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Chapter 8

MICROWAVE COMPONENTS AND CIRCUITS

We have discussed in the previous chapter some of the high-frequency
effects which occur in grid-controlled tubes. Lead inductances, inter-
electrode capacitances, conductor resistances, beam loading, and electron
transit-time effects contribute deleteriously to the performance of high-
frequency, grid-controlled amplifiers. As will be noted later in this chapter,
conductor resistance losses actually worsen with increasing frequency due
to an effect known as “‘skin effect.” Furthermore, as frequency increases,
it is possible for lead wires to have lengths comparable with a wavelength,
in which case they can act as antennas and radiate electromagnetic energy.
These considerations lead one to abandon the wires and lumped components
used at lower frequencies and to seek new and more appropriate components
for microwave frequencies.

Let us first consider the evolution of the tuned circuit as the resonant
frequency is inecreased into the microwave range. At low and moderate
frequencies, lumped-constant resonant circuits, such as the one illustrated
schematically in Figure 8-1(a), are frequently used in electronic circuitry.
The resonant frequency is given by f = 1/2x+LC, where L is the induct-
ance, and C is the capacitance. In a tetrode amplifier circuit, for example,
an inductance L may be used to resonate with the interelectrode and stray
capacitances of the output cireuit so as to give maximum gain at a partic-
ular frequency.

As the operating frequency is increased, both the capacitance and in-
ductance could be decreased in order to maintain resonance at the operating
frequency. However, for the case of the tetrode amplifier, a limiting value
of the capacitance is soon reached for two practical reasons. First, transit-
time effects set a limit to how far the electrodes can be pulled apart. Second,
the area to which the beam cross section can be reduced may be limited
by (1) the maximum allowable cathode current density or (2) considerations
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(a)

(c)
Tie. 8-1 Evolution of a cavity resonator from its low-frequency prototype. (a)
Low-frequency prototype. (b) Inductance decreased to that of a single turn wire.

(c) Single wires in parallel, reducing the inductance further. (d) Cavity resonator
resulting from a continuation of the process of Figure 8-1(c).

PRINCIPLES OF ELECTRON TUBES

(a)

relating to beam spreading and confining the beam with external fields,
as diseussed in Section 3.4. This determines a minimum area for the elec-
trodes. As the frequency is further increased, therefore, one must resort
to reducing the inductance. However, we soon reach the point where the
inductance is a single short wire, as shown in Figure 8-1(b). Still higher
resonant frequencies can be obtained by paralleling the single wire with
additional single-wire inductances, as indicated in Figure 8-1(c). As
this procedure is carried to the limit, one obtains the re-entrant cavity
structure shown in Figure 8-1(d). A cross-sectional view of such a cavity
is shown in Figure 8-2. Such resonant cavities are used in klystrons and
microwave triodes and tetrodes. Not only has the inductance been de-
creased in the resonant cavity, but also the resistance losses are lessened,
and the self-shielding configuration prevents radiation losses. The fact that
all of the electromagnetic fields are confined to the interior of the cavity
will become more obvious after a discussion of “‘skin effect.”

To calculate the resonant frequency of a cavity such as that shown in
Figure 8-2 is often a difficult process.! However, approximate calculations

IReferences 8.1, 8.4.
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can often be made to obtain useful

information. For instance, we note T_T

that in the cavity shown in Figure i

8-2, the capacitive gap is short com- ]

pared with its diameter. Thiscavity § [/ é

may be thought of as two shorted i
coaxial lines joined by a capacitance. _ﬂ=:‘.t h

It can be shown that the input im- |

pedance to each shorted coaxial line |

is given by the expression? ’:Z

. i

Zi,,=-2‘7—1r é‘:"ln%tan%l (8-1) b 1 4

e -2 -~
where ¢ = 1/4u., is the velocity of ke 2a-
light. The capacitance of the gapis Fic. 8-2 Re-entrant cavity resonator
given by the expression which _can b'e analyzed by simple
\ transmission l{ne .theory. The cavity
c, = Ea;l;b (8-2) is airfilled.

where fringing effects are neglected. At resonance, the inductive reactance
of the two shorted coaxial lines in series is equal in magnitude to the capac-
itive reactance of the gap, but of opposite sign. Hence,

I (Bl 1n® tan @ — 2 ;
T\/; (ln b) tan — s 0 (8-3)
The solution to this equation gives the resonant frequency. Rearranging
the equation, we obtain

wl wl hl
—tan — = p
b2 ln 5

¢ ¢ (8-4)

For the particular set of dimensions given by a =, h = 0.0318/, and
a = 4b, Equation (8-4) is satisfied by wl/c = 0.571, and we can scale the
dimensions to suit any frequency. At 3000 Mc, ! is equal to 0.91 cm. This
sort of scaling operation is a general property of microwave components.
That is, if we multiply all dimensions by a factor K, all frequencies of
interest are divided by K.

In the above example, the solution wl/c = 0.571 is equivalent to saying
that I is 0.0908 wavelength long. It can be shown that averaged over a
cycle, a shorted coaxial line of this length contains 8.84 times as much

2Reference 8.2.
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magnetic stored energy as it contains electric energy. The balance of the
electric stored energy appears in the gap, since at resonance the electric
and magnetic stored energies are equal in magnitude (but 90 degrees out of
time phase). The region outside of the gap is called the inductive region
of the cavity, and to a good approximation it can be considered to have
only magnetic fields. The cavity can therefore be represented by the equiv-
alent circuit of Figure 8-1(a), where the capacitance C is the gap capaci-
tance, and the inductance is chosen to give the correct resonant frequency.

Since Equation (8-4) contains the tangent function, it has an infinite
number of solutions with larger values of frequency. Physically, this
corresponds approximately to additional half wavelengths on the coaxial
line at higher frequencies. This behavior is typical of all microwave
cavities; that is, there are an infinite number of resonant frequencies or
modes of oscillation. However, resonant cavities are nearly always operated
in the lowest frequency, or dominant, mode because the resistive losses are
usually lower in that mode. Resistive losses in the cavity can be repre-
sented in the equivalent circuit of Figure 8-1(a) by a parallel resistance of
such a value as to give the correct power loss per cycle for a given amount of
stored energy.

Next let us consider the problem of transmitting microwave energy
from one point to another with as little resistive and radiation losses as
possible. Radiation losses can be kept to a minimum by using a suitable
form of transmission line, such as a coaxial line, stripline, or a waveguide.
Of these types of transmission line, the waveguide is capable of giving
minimum attenuation per unit length at a given signal frequency, and it is
the most commonly used form of transmission line at microwave fre-
quencies. A study of wave propagation in a waveguide provides a suitable
introduction to a discussion of wave propagation along other forms of
transmission line such as are used in microwave tubes.

Our principal mathematical tool for studying the transport of electro-
magnetic energy from one point to another is a set of equations, known as
Mozwell's Equations. These equations can be used to describe electro-
magnetic wave propagation in free space, and in principle they can be used
to describe electromagnetic wave propagation along an arbitrarily shaped
transmission line. We shall first consider the plane electromagnetic wave
in free space and then show that electromagnetic wave propagation in a
waveguide can be considered as a superposition of two plane electromag-
netic waves.

Suppose the direction of propagation of a plane electromagnetic wave is
taken to be the z direction. With proper choice of the rectangular coor-
dinate system, the wave consists of an electric field component E. and a
magnetic field component H,, both of which vary sinusoidally in the 2z
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direction with wavelength A, = ¢/f, where ¢ is the velocity of propagation,
and f is the frequency of the signal. For a plane wave in free space I, is
related to E, by H, = (\e,/u.)E.. The power density flowing in the 2z
direetion is equal to |E .| |H,| watts per square meter of wave front.
Figure 8-3 shows the field lines associated with two plane waves of equal
amplitude. One wave is propagating upwards and to the right with velocity

——» MAGNETIC FIELD LINES
[o] ELECTRIC FIELD LINES COMING OUT OF PAGE
® ELECTRIC FIELD LINES GOING INTO PAGE

Fic. 8-3 Two plane waves. One is advancing upwards and to the right with veloc-
ity ¢, and one is advancing upwards and to the left with velocity c.

¢, and one is propagating upwards and to the left with velocity ¢. Each
wave front makes an angle 6 with the vertical, or 2, direction. Maxwell’s
Equations are linear, so that the field pattern resulting from a super-
position of the two waves is obtained by a vector addition of the individual
field components. Figure 8-4 shows the field pattern which results from
this vector addition.

The field pattern of Figure 8-4 moves only in the z direction. Exam-
ination of the vector diagram shown in the upper right-hand part of the
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figure shows that, in the time taken for an individual plane wave to travel
the distance EF, the field pattern of Figure 8-4 travels in the z direction a
distance EG. Thus the phase velocity of the field pattern in Figure 8-4 is
given by v, = ¢/sind. On the other hand, the electromagnetic energy
associated with the individual plane waves propagates in the direction of
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Fia. 8-4 A superposition of the two plane waves shown in Figure 8-3. With increas-
ing time the whole pattern moves in the z direction with phase velocity v, = ¢/sind.
The wavelength in the z direction is given by A, = A,/sin. The energy associ-
ated with the two separate waves propagates in the direction of travel of the wave
fronts of the separate waves. This direction makes an angle of 90° — 6 with the 2
direction. Hence, the energy associated with the above pattern propagates in the z
direction with a group velocity given by v, = ¢ cos (90° — 6 = csind.
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travel of the wave fronts and hence at an angle of 90 — 9 degrees with re-
spect to the z direction. Since one wave transports electromagnetic energy
to the right and upwards, and the other wave transports electromagnetic
energy to the left and upwards, the net transport of energy is in the 2
direction only. The velocity with which the energy is transported in the 2
direction is given by the group velocity v, = ¢ cos (90° — 8) = c siné.

The wavelength A, of the field pattern in Figure 8-4 is easily seen to be
related to the free-space wavelength A, by A, = A\,/sinf.

From Figure 8-4 it is evident that the electric field intensity is zero along
the planes AB and CD at all times, and the magnetic field lines never
cross the planes. Hence, if thin conducting sheets were inserted along these
planes, the field pattern would not be disturbed. In this case the two plane
waves between the conducting sheets reflect from one side to another, at
the same time progressing in the z direction. The plane waves outside the
conducting sheets are likewise reflected from the conducting sheets, and the
net result is that the field pattern of Figure 8-4 is undisturbed.

Next, let us remove the field pattern for a moment and suppose we have
two conducting plates of very large area and spaced by the distance from
plane AB to plane CD in Figure 8-4. Suppose that two plane waves are
launched between the plates with the E field parallel to the plates and with
the wave fronts making an angle 6 with the surface of the plates. The angle
between the two wave fronts is then 26, as in Figure 8-3. The two waves are
reflected from plate to plate, and the resulting field pattern is identical to
that shown between the planes AB and CD in Figure 8-4.

Finally, suppose that the two “side plates” of the previous paragraph
are joined by ‘“top” and “bottom” plates to form a rectangular wave-
guide, as shown in Figure 8-5. The electric field lines now terminate on
surface charges on the top and bottom plates, but the shape of the field
pattern is otherwise unchanged. The waves propagate along the wave-
guide with phase velocity v, = ¢/sinf, and the electromagnetic energy
propagates with the group velocity given by v, = ¢ sinf. The axial wave-
length of the field pattern in the waveguide is given by A. = \,/siné.

What we have done here is to find a field pattern that satisfies the bound-
ary conditions imposed by the rectangular waveguide. These boundary
conditions require that the tangential component of electric field intensity
at the surface of the conducting walls be zero, and the normal component
of magnetic field intensity at the surface of the waveguide be zero. From
Figure 8-4 it is evident that the distance between planes AB and CD is
determined by the angle § and the wavelength A\, of the plane waves.
Conversely, if we have a waveguide of a given width a and a given wave-
length \,, the angle ¢ is determined. If we set the width a of the waveguide
equal to A\./2, it is evident from Figure 8-4 that cos § = \./\., and hence
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F1c. 8-5 Field patterns in a rectangular waveguide. The broken lines indicate the
shapes of the magnetic field lines, and the solid lines indicate the shapes of the
electric field lines.

sing = 1 — cos?8 = \1 — A2/A 2. Thus we have the relations

vy = (8-5)
VI = A2/

v, = c\1 — A2/A2 (8-6)

and

WP, (8-7)

TN A2

So far we have described only the most frequently used dominant mode
of propagation of waves in a rectangular waveguide. From Figure 8-4 it is
evident that waves in this mode can propagate only if A, is less than ..
We also note that Equations (8-5) and (8-6) indicate that v, and v, become
imaginary quantities when A, > A.. The wavelength A, is called the cutoff
wavelength and is a characteristic of the waveguide and the mode of prop-
agation. Signals of wavelength shorter than A\, can propagate, but signals
of longer wavelength cannot propagate. (We assume here that the di-
mension b of the waveguide is smaller than a.)

Finally, let us return once more to Figure 8-4. Suppose the plane CD
were translated to the right a distance A./2. The field pattern between the
planes would then consist of two side-by-side patterns similar to the one
described above for the dominant mode of the rectangular waveguide.
Clearly this field pattern also satisfies the boundary conditions of an
enlarged waveguide, that is, one twice as wide as we have previously con-
sidered. Or, conversely, for a given waveguide width, such a field pattern
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can be established in the waveguide provided the free space wavelength
of the signal is sufficiently short. In g similar way, we see that an infinite
number of field patterns or modes of propagation can be established in a
rectangular waveguide. As the field pattern becomes more complex, the
cutoff wavelength becomes shorter, and the signal frequency must be
higher. Furthermore, since waves can be reflected from the top and bottom
of the rectangular waveguide, there is a second infinite set of modes of prop-
agation in which the electric field lines are parallel to the a dimension of
the waveguide. Also, for a given signal frequency, a mode with the E field
parallel to the a dimension can be superimposed on a mode with the E
field parallel to the b dimension. The resulting field patterns, therefore,
can be very complex. Later in the chapter we shall find that there are still
other modes of propagation in which the E field has a z component and the
H field is entirely transverse to the z direction.

The final section of the chapter considers the propagation of electro-
magnetic waves along transmission lines which are characterized by phase
velocities that are less than the velocity of light. Such transmission lines
form integral parts of a number of microwave tubes, such as traveling-wave
tubes, backward-wave oscillators, and magnetrons.

8.1 Maxwell’s Equations and the Wave Equation

Some of the laws governing the behavior of static electric and magnetic
fields were discussed in Chapter 1. The equations from that chapter which
are pertinent to our present discussion are listed below.

Equation (1.1-4): 74 Edl=0 (8.1-1)
closed path

Equation (1.4-3): VD =p (8.1-2)

Equation (1.5-2): V-B=0 (8.1-3)

Equation (1.5-5): VXH=] (8.1-4)

We shall consider these equations one by one to see what form they take
when time-varying fields are present.

First, it may be stated that Equations (8.1-2) and (8.1-3) are true as they
stand for time-varying fields and charges as well as for static fields and
charges.

Let us next consider Equation (8.1-1) as it applies to a closed loop of
resistance wire. The experiments of Faraday have shown that, if the loop
is linked by changing magnetic fields, there will be current flow around the
loop and hence a voltage drop around the loop. That is to say, the right-
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hand side of Equation (8.1-1) is not equal to zero in such a time-varying
field. Faraday’s law may be stated mathematically as

&dl = —— / ®-ndS (8.1-5)

closed path surface

where the surface of integration is taken as any surface bounded by the
closed path. Secript letters are used for the time-varying field vectors to
distinguish them from the de vectors used previously. Physically the law
states that the total voltage induced in a closed loop is given by the time
rate of change of magnetic flux linking the loop. We can convert this equa-
tion to a more useful form by applying it to a small loop of area AA, the
loop being small enough that ® can be taken as uniform in magnitude and
direction. Let the component of & normal to the plane of the loop be denoted
by ®.. Dividing both sides of the equation by A4 and taking the limit as
AA — 0, we have

lim f gdl = — (8.1-6)

closed path
But the left-hand side is equal to the component of V X & normal to the

plane of the loop, so that

®
VX &= -  (8.1-7)
Expressions for the curl in rectangular and eylindrical coordinate systems
are given in Appendix XII.

Maxwell’s great contribution to these fundamental laws was a recognition
of the fact that ac magnetic fields are set up not only by real currents con-
sisting of charges in motion, but also by so-called displacement currents.
The displacement current density is given by the time rate of change of the
electric flux density vector (3/9f) D, so that Equation (8.1-4) becomes

vxm=3+% (8.1-8)
If we take the divergence of both sides of Equation (8.1-8), we obtain
0D
w(s+2) -0

since the divergence of a curl is identically zero. Using Gauss’s Law,
Equation (8.1-2), this may be written as

d
Vig+g =
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the equation of continuity, Equation (1.3-2). Thus, the introduction of
the displacement current density in Equation (8.1-8) is necessary to
satisfy the equation of continuity.

We may thus summarize our results for ac and de fields in the four
equations known as Maxwell’s equations:

B

VXE=—" (8.1-9)
VX =49+ %? (8.1-10)
VD =p (8.1-11)
V® =0 (8.1-12)

Equations (8.1-9) and (8.1-10) when taken together, with conduction
current density g set to zero, form a very interesting pair. Equation (8.1-9)
states that a changing magnetic field gives rise to an electric field, and
Equation (8.1-10) in turn states that a changing electric field gives rise to
a magnetic field. Thus it is clear how wave propagation and standing-
wave phenomena are obtained: each type of electromagnetic field vector
acts as a source for the other. A change in one produces the other, and
vice versa. Thus, energy oscillates continuously from the electric fields to
the magnetic fields and back.

In all our discussions of microwave tubes we shall describe physical be-
havior for a simple sinusoidal variation at a fixed frequency. In all cases
we shall be dealing with linear phenomena, and hence we can represent
any arbitrary input or response by a superposition of sinusoidal inputs and
responses. We can therefore use the phasor notation to describe the
currents and field vectors:

& = Re Ee®, g = Re Je, ete.
Then

%fi — Re juEe®!, ete. (8.1-13)
Thus, if all quantities vary sinusoidally at a single frequency, we have the
following form of Maxwell’s Equations:

VXE = —juB (8.1-14)
VXH=J+ juD (8.1-15)
VD=5 (8.1-16)

vV-B=20 (8.1-17)
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In rectangular coordinates Equations (8.1-14) and (8.1-15) can be written as
3E, OE,

W = —joup.H .
86121 _ ‘Z_i’z = —jopu.H,
«% _ % = —jounH, (8.1-18)
and
85: _ agu = J, + jwee E,
63_1? _ a;iz =J, + juwee E,
a;i" ~ a;;, = J. + juse s (8.1-19)

where we have substituted B = uu H in Equation (8.1-14) and D = ¢, Ein
Equation (8.1-15).

In addition to Equations (8.1-14) through (8.1-17), it should be noted
that two other equations from Chapter 1 are valid for time-varying fields
as well as for dc fields. These are the equations for the force on an electron,
Section 1.2, and the equation of continuity, Equation (1.3-2), which in
phasor notation becomes

V-J = —jup (8.1-20)

Let us now use Equations (8.1-14) and (8.1-15) to derive the wave equa-
tion for an electromagnetic wave in a region in which there are no free
charges and no conduction currents. In this case the equations reduce to

VXE = —jopuH (8.1-21)
V X H = joee.E (8.1-22)

Taking the curl of both sides of the first equation and combining the result
with the second equation, we obtain

VX (VXE) = —jouu,V X H = wpuseE (8.1-23)
Now from Equation 13 of Appendix XIT,
VX (VXE)=VV-E)— VE (8.1-24)

The first term on the right here is zero since, from Equation (8.1-16),

E =2 (8.1-
V-E poy (8.1-25)
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and we have assumed p = 0 in the region of space under consideration,
Equation (8.1-23) then can be written as

VE 4+ KE =0 (8.1-26)

where k* = w’upsee,. This equation is known as the wave equation for an
electric field. Equations (8.1-21) and (8.1-22) also can be used in a similar
manner to derive the wave equation for a magnetic field, namely

VH+FPH =0 (8.1-27)

Equations (8.1-26) and (8.1-27) describe the propagation of an electro-
magnetic wave in a region of free space in which there are no free charges or
conduction currents.

Perhaps the simplest application of Equations (8.1-26) and (8.1-27)
is in the deseription of a plane electromagnetic wave, such as one might
obtain at a very large distance from a radiating antenna. Let us assume
that the electric field intensity of the wave is directed only in the z direction
and is given by E,. For a wave propagating in the z direction, Equation
(8.1-26) then reduces to

dzE" 2 —_
97 +KkE,=0 (8.1-28)
This has the solution
E, = E % (8.1-29)

Now k? = w?upe,, and in free space u = ¢ = 1. We shall set k¥ = w/cfora
wave in free space, where ¢ = 1/4uss,. If time dependence is included, and
if we assume the propagating medium is free space, the expression for the
electric field intensity becomes

) ) z
&: = Re B, e/@tt*) = Re E, ot = F_ cos w(t + Z)

(8.1-30)

Here the plus sign in the term cos w[¢ & (2/c)] applies to a wave propagating
in the negative 2 direction, and the minus sign applies to a wave propagating
in the positive z direction. We see that the quantity ¢ = 1/4/us, is the
velocity of propagation of the plane wave, equal to 3 X 108 meters/sec.

By setting E, = E. = 0 in Equation (8.1-18), we find that H, = H, = 0,
and

, =L %_ Lp ;_E (8.1-31)

where we have assumed & wave propagating in the positive z direction and
have used a minus sign in the exponent on the right-hand side of Equation
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(8.1-29). We have also assumed that » = ¢ = 1. Equation (8.1-31) indicates
that for a plane wave propagating in free space, the ratio of the electric field
intensity to the magnetic field intensity is given by Vuo/e,. This ratio has the
dimensions of an impedance and is numerically equal to 377 ohms.

8.2 Energy Stored in Electric and Magnetic Fields; Power Flow in an
Electromagnetic Wave

Here we shall first derive expressions for the energy stored per unit
volume in electric and magnetic fields. The expressions apply to both static
and time-varying fields.?

(@) Electric Fields

Consider a capacitor that is charged to a voltage of v volts. If an incre-
mental amount of charge dg is added to the charge already on the capacitor,
the work done in adding the incremental charge is vdg. This work is con-
verted to energy stored in the electric field of the capacitor. Now from
Equation (1.4-7) we have ¢ = Cv, and hence dg = Cdv. Thus the work
done in adding the charge dg to the capacitor is Cvdy. If the capacitor is
charged from zero volts to v volts, the energy stored in the electric field of
the capacitor is given by

energy stored = / Cvdy = 3Cv? ) (8.2-1)

If the capacitor is a parallel-plate device in which the plates are of area 4
and spacing d, and if edge effects are neglected, C = e,4 /d, and the energy
stored per unit volume between the plates is 3Cv?/Ad = 3es,(v/d)%. Setting
v/d = &, where & is the electric field intensity between the plates, we obtain

energy stored per unit volume = Jes,&? (8.2-2)

We see that the expression for the energy stored per unit volume depends
only on the magnitude of the electric field intensity and is independent of
the geometry of the electrodes that generate the field.

(b) Magnetic Fields

Equation (8.1-5) indicates that the voltage induced in a loop of resistance
wire by a changing magnetic field is equal to the time rate of change of the
magnetic flux linking the loop. Consider a toroidal coil, such as that shown
in Figure 1.5-3. If the coil has N turns and all are linked by the flux ¢, the

*References 8a, 8¢, 8d.
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voltage induced in the coil by a changing ¢ is given by
d¢
dt

Now the inductance L of the coil is equal to the number of flux linkages per
ampere of current passing through the coil. Hence N¢ = Lz, and

v =

(8.2-3)

Nd¢ = Ldi (8.2-4)
Equation (8.2-3) then can be written as
di
v=Ig (8.2-5)

This equation states that when the current through the coil is changing,
there is a voltage v developed across the coil proportional to the rate of
change of the current. (The resistive losses in the coil are neglected here.)

The rate at which work is being done to change the current in the coil is
vi. Thus the work done in an inerement of time d¢ during which the current
changes by di is vidt = Lidi. This work is converted to energy stored in the
magnetic field of the coil. The total energy stored in the magnetic field
when the current in the coil is increased from zero to ¢ is then

energy stored = / Lidi = 1Ls? (8.2-6)
0

In the case of the toroidal coil shown in Figure 1.5-3, L = mrupnN,
where 7 is the radius of the individual turns of wire, u is the relative permea-
bility of the medium filling the eoil,  is the number of turns per unit length
around the coil, and N is the total number of turns in the coil. If R'is the
mean radius of the toroid, n = N/2«xR. The volume within which the
magnetic energy is stored is approximately given by (nr?)(27R). Hence the
energy stored per unit volume within the coil is given by $L:?/(7r?) (27R),
which reduces to

energy stored per unit volume = %uu,(nt)? = Suu,3C2 (8.2-7)

where we have substituted 3¢ = ni from Equation (1.5-11). Again we see
that the energy stored per unit volume depends only on the magnitude of
the magnetic field intensity and is independent of the field configuration.

(¢) Power Flow in an Electromagnetic Wave

Here we shall examine the power flow associated with a plane wave propa-
gating in free space. We shall assume that the wave propagation is in the 2
direction and consists of an electric field component &, and a magnetic field
component 3¢,. Consider a pillbox element of volume with faces of area A
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lying parallel to the z-y plane and having thickness dz in the z direction.
The energy stored in this volume will vary with time as the wave propagates
past the volume element. From Equations (8.2-2) and (8.2-7), the in-
stantaneous stored energy in the volume element is given by

W = 3(ebs? + poIC,HAdz (8.2-8)
The rate of change of energy stored in the volume element is
%‘%&7 = Adz(eo 288, + po yag(t:”
- —Adz(s,a%:f + scu%%)
= —Ade- (650, (8.2-9)

where we have substituted e.(68./8t) = —a3¢,/dz from Equation (8.1-10)
and p.(d3C,/8t) = —d8./0z from Equation (8.1-9).

Thus the time rate of change of the energy stored in the volume element is
equal to the change in the quantity A8,3¢, in the distance dz. Since energy
flows only in the z direction, we see that &3¢, is of the nature of a power
density, or rate of flow of energy per unit area. It is customary to represent
the power density by a vector S, which is directed in the direction of
propagation. In the present case,

|S| =8, =83, (8.2-10)

More generally, whenever there is propagation of electromagnetic energy,
the power density can be represented by a vector S such that

S=8X1 (8.2-11)

The vector S is called the Poynting vector after the man who discovered it.

The power density is measured in watts per square meter.
Equation (8.2-10) can be written in another useful form as follows:

S = (szgcy + Szgcy) = —['\/_812 + '\/"‘—ascy ] [ 5081 + 2#03(314 ]
(8.2-12)

where we have substituted & = uo/e, 3¢, from Equation (8.1-31) and
¢ = 1/\us.. Thisstates that the energy stored in the electric and magnetic
fields of the plane wave propagates in the z direction with velocity ¢, as we
might expect.

8.3 Boundary Conditions

Maxwell’s Equations constitute a set of differential equations which can
be solved in a given region subject to imposed boundary conditions. In
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many cases, the region over which a solution is sought can be divided up
into several subregions, and appropriate matching of fields is made at the
boundaries between these regions. Let us therefore consider the relation-
ships between the fields adjacent to a boundary but on either side of it.

(a) Electric Fields

Figure 8.3-1(a) shows the boundary between two regions of different
relative dielectric constants e4 and ez. A single electric field line passing
through the boundary between the two regions is shown. In region A the
electric field has magnitude E,4, and in region B it has magnitude Ez. A
small rectangle is drawn about the point where the field line crosses the
boundary. The rectangle is Az units long in the direction parallel to the
boundary and Az units wide in the direction normal to the boundary. Half
of the rectangle is in each region. We shall assume that E4 can be resolved
into two components, one parallel to the boundary E) 4, and one normal to
the boundary E,,. Similarly, Ez can be resolved into components E| s
and E 1B.

Da=€,E0Ep

\
REGION A RE
REGION A AREA AA

REGION B REGION B De=tstols

(a) (b)

Fie. 8.3-1 Electric field vectors at a point on the boundary between two regions.
Region A has permittivity es&, and region B has permittivity eze,.

Let us evaluate Equation (8.1-5) for the region defined by the rectangle
AzAz in Figure 8.3-1(a). Substituting & = Re E ¢** and @ = Re B ¢**in
the equation, we obtain

E-dl = —jw / B-ndS (8.3-1)
closed loop surface
If both Az and Az are assumed to be very small, E in region 4 or region B

will be constant in magnitude and direction over the part of the rectangle
included in the region. Let the average value of the component of B
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normal to the plane of the rectangle be B,. Equation (8.3-1) can then be
written

E-dl

A A Ax A
E Az + EJ.B"; + EJ.A'21: — B8z — ELA? - E_LB?:E
rectangle

= —jwBAzxAz (8.3-2)

Next let Az — 0 in such a way that the rectangle is still centered about
the boundary. The right-hand side of Equation (8.3-2) then approaches
zero, and the equation reduces to

E|pAz — Ejj40z = 0 (8.3-3)
from which
Ens=Eys (8.3-4)

Thus the components of E parallel to the boundary are equal on both
sides of the boundary, despite the fact that the two regions have different
dielectric constants.

Next let us consider the field perpendicular to the boundary. We shall
work with the D vector in this case and show that the normal component of
D is continuous at the boundary. Figure 8.3-1(b) shows an electric field
line which passes through the boundary between regions 4 and B. In
region A, D4 = e4e,E4, and in region B, Dp = eps,Ep. A small pillbox-
shaped volume surrounds the point where the field line passes through the
boundary. The pillbox has area AA on the faces paraliel to the boundary
and thickness Az. We assume that D, can be resolved into a component
Dy 4 perpendicular to the boundary and D4 parallel to the boundary.
Similarly, Dp can be resolved into D) and D s.

Equation (8.1-16) can be written in the form

/ V-Ddv = f odv (8.3-5)

volume volume

Using Gauss’s theorem (Appendix XII) this may be written as

D-ndS = f pdy (8.3-6)

closed surface volume
This is the same as Equation (1.4-2). Let us now apply this equation to the
pillbox-shaped volume in Figure 8.3-1(b). If we let the thickness Az of the

box become vanishingly small, and if we assume there is no surface charge
at the boundary,

D-ndS = DJ_AAA - D‘_LBAA = / de =0 (8.3-7)

closed surface volume
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Then
Dyy=Dip (8.3-8)

Thus the perpendicular component of electric flux density is continuous at a
boundary.

(b) Magnetic Fields

Next, consider the boundary between regions of relative permeability
w4 and up, as shown in Figure 8.3-2(a). The figure shows a single magnetic
field line which passes through the boundary. A rectangle of dimensions Az

Ba=upuoHa

REGION A REGION A

Ay
AREA AA

REGION B REGION B Bp= ugioHp

(a) (b)

Fia. 8.3-2 Magnetic field vectors at a point on the boundary between two regions.
Region A has permeability pap, and region B has permeability uasy..

by Az surrounds the point where the field line crosses the boundary and is
centered about the boundary so that the rectangle lies in each region. We
assume that H, can be resolved into components H, 4 and H)., per-
pendicular and parallel to the boundary. Similarly, Hz ean be resolved into
components H 5 and H|p.

Let us evaluate Equation (8.1 -15) for the region defined by the rectangle
AzAz in Figure 8.3-2(a). The equation can be written in the integral form

/ (Vv X H)-ndS = / (J + jwD)-ndS (8.3-9)

surface surface

Applying Stoke’s theorem (see Appendix XIT), we obtain

H-dl = /(J'+ij)~ndS (8.3-10)

closed loop surface

If both Az and Az are very small, H in region A or B will be constant in
magnitude and direction over the part of the rectangle included in the
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region, and J and D will be uniform over the area of the rectangle. Let the
average values of the components of J and D normal to the plane of the’
rectangle be J, and D,. Equation (8.3-10) can then be written as

A A
Hdl = H”BAZ + HJ_B’2—1; + H_LA—;-: -_— H“AAZ

closed loop

—H“ézf _ HLB% — (. + juD))AvAz (8.3-11)

If we now let Az approach zero, th: right-hand side of the equation ap-
proaches zero, and the equation reduces to

H“BAZ s H||AAZ =0 (8.3-12)
or
Hya = Hyz (8.3-13)

Hence the tangential component of the magnetic field intensity vector is
continuous at a boundary.

Finally, let us consider the normal components of magnetic field at the
boundary. We shall start with Equation (8.1-17) in the integral form:

/ V-Bdv =0 (8.3-14)

volume

Using Gauss’s theorem (Appendix XIT) gives us

B-ndS =0 (8.3-15)

closed surface

If this equation is applied to the pillbox-shaped volume shown in Figure
8.3-2(b) and if we let the thickness Az of the volume become vanishingly
small, we obtain

B-ndS = Bi14sAA — BipAAd =0 (8.3-186)
closed surface

Hence
Bis = Bis (8.3-17)

Thus the perpendicular component of magnetic flux density is continuous
at a boundary.

In summary, at an infinitesimally thin boundary between two regions
which have different permeability and permittivity, the tangential com-
ponents of E and H are continuous, and the perpendicular components of D
and B are continuous.
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8.4 Ohm’s Law and Skin Effect
(a) Ohm’s Law

Ohm’s Law is perhaps the first learned and most basic of the experi-
mental laws of electricity. At low frequencies this law states that the
ratio of voltage drop to current in a resistor is a constant. At microwave
frequencies, the current density throughout a resistor or a conductor is
usually not constant, and Ohm’s Law is best stated in the form

J=oE (8.4-1)

where J is the current density, E is the electric field intensity, and o is the
conductivity of the medium.

This equation can be related to
the more familiar form of Ohm’s
Law in the following way. Consider
a conductor of length ! and cross-
sectional area A, as shown in Figure
8.4-1. A voltage V is applied over
the length !, and a current density
J flows parallel to the length .. We
assume the current density is uni- Fig, 8.4-1 A uniform cylindrical con-
form over the cross section of the ductor of conductivity .
conductor. The electric field in-
tensity within the conductor is of magnitude E. ThenJ = ¢F, and the
total current flowing in the conductor is given by

I =JA =0EA = all]A = % (8.4-2)

or
V=1IR (8.4-3)

where B = [/cA is the resistance of the conductor over the length I.
Equation (8.4-3) expresses the more familiar form of Ohm’s Law.

(b) Skin Effect

Here we shall derive the distribution of current density in a semi-infinite
conductor when an rf electric field is applied parallel to the surface of the
conductor.t Figure 8.4-2 shows a portion of the conductor. We shall as-
sume that the electric field is applied in the 2z direction only and that it
does not vary in magnitude in the y and z directions. Let the electric field

‘Reference 8a.
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just outside the conductor be E.,. From the discussion in Section 8.3, we
know that this field will be continuous across the boundary between the
conductor and free space, and hence that E,, also will be the electric field
intensity just inside the surface of the conductor. We shall first determine

z

FREE
SPACE

Y AXIS DIRECTED INTO PAGE

Fig. 8.4-2 Current flow near the surface of a conductor at microwave frequencies.

the variation of E, with distance z into the conductor, and since J, = ¢E.,
we shall note that J, varies in a similar manner with distance into the
conductor.

Let us use Equations (8.1-18) and (8.1-19) to derive an equation for E,
within the conductor. Since E, = E, = 0E./dy = 0, Equations (8.1-18)
reduce to

H,=H,=0 (8.4-4)
and

. JE,

Joppoy = 2= (8.4-5)

We shall setJ, = ¢E, and J, = J, = 0 in Equations (8.1-19). Then

aH,
o (8.4-6)
and
Oy _ (5 4 juse,)E. (8.47)

ox
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Substituting for H, in Equation (8.4-7) from Equation (8.4-5), we obtain

*E, . .

i Joupolo + jwee,)E, (8.4-8)
Consideration of the actual values of o, w, and ee, for conductors at micro-
wave frequencies shows that

o> wee, (8.4-9)
Hence to a good approximation
aE, .
o Jopp.ol, (8.4-10)

This is the wave equation for an electric field in a conducting medium. The
equation is analogous to Equation (8.1-26), which applies to electro-
magnetic waves in free space or in a dielectric medium. Equation (8.4-10)
has the solution

E, = E, e Wtdussgi2 z (8.4-11)
Finally, substituting J. = oE, and J,, = ¢E.,, we obtain
J. = J o6 W Dorsgi2 (8.4-12)

This equation shows that not only does the current density decay in magni-
tude away from the surface, but it also experiences a progressive phase
shift. Although this relationship has been derived for a plane surface of
infinite depth, it may be applied to curved surfaces of finite depth as long as
the current decays in a distance small compared with the thickness and
radius of curvature of the conductor.

It is convenient to write Equation (8.4-12) in the form

Jo = J, e UFdalt (8.4-13)
where

1
0= 8.4-14
Vrfupoo ( )

The length 8 is known as the skin depth. The skin depth & is a measure of
the rate at which the current density decays into the metal. In a distance &
from the surface, the current density has dropped to 1/¢ of its value at the
surface. This is a very rapid decay at microwave frequencies for most
metals. Table 8.4-1 gives the number of skin depths in a 1.59 mm (1/16
inch) thick wall of several metals commonly used in microwave transmission
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TasLE 8.4-1. NuMBER oF SKIN DeprHs IN 1.59 MM THICKNESS
WarLs oF VARIOUS MATERIALS

Number at Number at

Metal 3 Ge 9Gc
Silver. . ..o 1352 2340
(970)¢) 4= P 1318 2280
Gold. ... 1106 1913
Molybdenum. . ................... 726 1258
Nickel........ccvv i 583 1010
Stainless steel (nonmagnetic). .. ... .. 181 314

lines and electron tubes. This thickness is used for the wall of several stand-
ard size waveguides at microwave frequencies. Because the skin depth is so
small at microwave frequencies, one normally assumes negligible currents
exist on the outer surface of a waveguide or cavity. For example, at 3 Ge
a copper waveguide of 1.59-mm wall thickness has current densities on the
outer surface which are only 10~ times thé current density on the inner
surface. Thus, in effect, perfect shielding is accomplished. Since the
current density decays so rapidly with distance, the bulk of the metal in
microwave conducting structures is not used to provide a path for current
flow but rather is used for structural rigidity. It is an excellent approxima-
tion to visualize the wall currents in microwave structures as consisting
solely of surface currents.

The imaginary part of the exponent in the right-hand side of Equation
(8.4-11) gives the phase change of the electric field intensity as it propagates
into the conductor. We see that the skin depth & corresponds to 1/2x
wavelengths of the type of wave propagation that takes place in the
conductor.

Orie can use Equation (8.4-13) to determine the total ohmic power loss
per unit surface area of the conductor for a given tangential component of
magnetic field in free space just outside the conductor. The ohmic power
loss in an element of volume having unit length parallel to the surface, unit
width parallel to the surface, and thickness dz in the direction normal to the
surface is (1/20) |J . |? dz. The total power loss per unit area of the surface
is then

1 [* 8
P[] = %-/0 IJ,de = Z;lJzolz (84.-15)

where we have substituted for J. from Equation (8.4-13).
Often it is more convenient in using this equation to express J., in terms
of the magnetic field in free space just outside the conductor. Within the
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conductor we can rewrite Equation (8.3-10) in the form

H-dl = / (¢ + juee,)E-ndS = / E-ndS

closed loop surface surface

= / J ndS (8.4-16)
surface

where we have again made the approximation that ¢ 3> wes, within the con-
ductor. Figure 8.4-3 shows a cross-sectional view of the conductor near the

e 2conolu/cma%//\

PATH OF INTEGRATION

y
b
X

Fic. 8.4-3 Current flow in a conductor at microwave frequencies. The length L is
much greater than 8. The component of magnetic field parallel to the path of inte-
gration is therefore zero along the right-hand side of the path of integration.

surface. The current flow J, is assumed to be normal to the page and
directed out of the page. Let us evaluate the left-hand side of Equation
(8.4-16) for the path of integration shown in the figure. We assume that the
length L is very large so that J, is essentially zero at the right-hand side of
the path. For symmetry reasons there is no net contribution to the line
integral for a component of H parallel to the top and bottom sides of the
path of integration (assuming h is infinitesimally short). Then

H-dl = Hyh = / J-ndS =J,,,h/ Dl gy
closed loop surface ¢
J2ohé
1+

(8.4-17)
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where H| is the magnetic field parallel to the surface just outside the con-
ductor. Then

J b
H, =-—2— 4-
=T (8.4-18)
Substituting into Equation (8.4-15), we obtain
_lH e
Pp = 553 (8.4-19)

This equation is most useful in the sense that ohmic losses in cavity or wave-
guide walls can be computed directly from the magnetic fields in the free
space adjacent to the metal without resorting to calculations of the currents
within the metal conductors themselves.

Equation (8.4-14) shows that § is inversely proportional to the square root
of the frequency. Hence, by Equation (8.4-19), the ohmic loss is propor-
tional to the square root of the frequency, for a constant conductivity and
for a given magnetic field at the surface.

() The Perfect Conductor

The concept of a perfect conduetor is often used in the study of micro-
wave components. In essence, this concept assumes, for purposes of solving
for the fields in regions not containing metal, that the conductivity of the
metal is infinite. Now, infinite conductivity implies that charges could
travel instantaneously to neutralize any electric field which would tend to
be set up within a conductor; thus the electric field within a perfect con-
ductor is zero. Since the tangential component of electric field is continuous
at the surface of the conductor, the tangential component of electric field
outside the conductor must be zero adjacent to the surface. However,
electric field lines can terminate on surface charges on the conductor, the
field lines being perpendicular to the surface at the point of intersection.
On the other hand, magnetic field lines cannot pass through a perfect con-
ductor or terminate on it. Thus, there can only be a tangential component
of magnetic field just outside a perfect conductor.

The errors involved in using the concept of a perfect conductor to find
the external field distribution are of the same order of magnitude as the
ratio of the skin depth to the other cavity or waveguide dimensions, and
generally they may be considered to be negligible. Thus, for most purposes,
the electromagnetic fields within a cavity or waveguide can be found under
the assumption that the metal walls are perfect conductors. The fact that
the conductor is imperfect affects only the power loss or attenuation, and
this may be accounted for by using the concept of skin depth together with
Equation (8.4-19).
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8.5 Waveguides

In this section we shall discuss solutions of the wave equation for the case
of electromagnetic wave propagation in a waveguide. Figure 8.5-1 shows an
end view of a waveguide. We shall assume that the waveguide is of infinite
length in the z direction and its cross-sectional dimensions remain constant
with z. The walls of the waveguide are perfect conductors, so that the
solutions we obtain must satisfy the boundary conditions that the tangen-
tial component of electric field and the normal component of magnetic
field be zero at the conducting surfaces. It turns out that there are an
infinite number of solutions to the wave equation which satisfy these
boundary conditions. These solutions are known as modes of propagation.
This is analogous to the infinite number of possible modes of vibration for a
vibrating string. Which modes are vibrated depend on how the string is
plucked. In the waveguide, the manner and frequency of excitation at the
input determine which modes are excited.

<————o’——-——>1

Fie. 8.5-1 Rectangular waveguide.

The infinite number of waveguide modes of propagation can be divided
into two classes. Modes with E, equal to zero are known as transverse
electric modes or TE modes. Modes with H, equal to zero are known as
transverse magnetic modes or TM modes. As long as the waveguide is
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uniformly filled with dielectric (including air or vacuum) the solutions fall
into one or the other of these two classes.®

(@) TE Modes

The solution for the TE modes can be obtained as follows. The wave
equations, Equations (8.1-26) and (8.1-27), are vector equations and hence
are satisfied by each component of the electric and magnetic fields. Thus
the 2z component of magnetic field satisfies the equation

VeH, + B*H, = 0 (8.5-1)
where k% = w?uuce,. Expanding the Laplacian, we obtain

FH,  °H, | &H, | .0 _
T2 T o + 37 + kH, =0 (8.5-2)
A particular solution to this equation may be obtained by the method of
separation of variables as

H, = A cos Zn_g_y cos %e—iﬁz (8.5-3)

where m and n are arbitrary integers. We shall see later that this solution
meets the boundary conditions imposed by the waveguide walls. Substitut-
ing Equation (8.5-3) into Equation (8.5-2), we find that the following re-
lationship must be satisfied for Equation (8.5-3) to be a solution:
g+ (m)2 + (ﬂ)2 = K = e, = (8.5-4)
a b ct

The presence of the integers m and n in this equation indicates that there
are an infinite number of solutions corresponding to an infinite number of
modes of propagation.

If the variation of the magnetic field with time is included in Equation
(8.5-3), the equation becomes

mwy N

. =Red €08 ——= c08 — /@ =h2)

m nrx
= A cos —aﬂ cos ==

We see that the wave travels in the z direction with a phase velocity
given by

cos (wt — B2) (8.5-5)

(8.5-6)

™I e

Up

SReference 8.3.
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where 8 is determined by Equation (8.5-4) and is a characteristic of the
particular mode of propagation.

The other components of the fields in the waveguide can be obtained from
Equation (8.5-3) by means of Equations (8.1-18) and (8.1-19). Let us first
note that (1) E, is zero, and (2) all field quantities will vary with z as
¢ # g0 that differentiating with respect to z is equivalent to multiplying
by —jB. We shall assume that the waveguide is filled with air, so that to a
good approximation p = ¢ = 1. Equations (8.1-18) then give

JBE, = —jup.H: (8.5-7)
and
JBE, = jop.H, (8.5-8)
From Equations (8.1-19) we obtain
. 0H, .
_]6Hz — .5._ = ]wEoEy (8.5-9)
x
and
%% + jBH, = jwe K, (8.5-10)

Finally, combining Equations (8.5-7) and (8.5-9) as well as Equation (8.5-3)
gives

and
H.= % 274 cos 7L in e (8.5-12)

Combining Equations (8.5-8), (8.5-10), and (8.5-3) gives

E = kf ‘f"ﬁz mTWA sin % cos nTﬂe'fﬂ' (8.5-13)
and
H, = F]—B—ﬁz M7 4 sin ™Y gog "I s (8.5-14)

Examination of Equations (8.5-11) through (8.5-14) shows that H, is
zero whenz = 0 and whenz = b,and H, = O wheny = 0 and wheny = a.
Similarly, E. = 0 when y = 0 and when y = a, and E, = 0 when z = 0
and when 2 = b. Thus the normal component of H and the tangential
component of E are zero at the inside walls of the waveguide. The field
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solutions given by Equations (8.5-3) and (8.5-11) through (8.5-14) therefore
satisfy the wave equation and the boundary conditions imposed by the
waveguide.

From Equations (8.5-7) and (8.5-8) we note that

B, _ _Ey _ wpo (8.5-15)

showing that the perpendicular components of E and H are constant
through the cross section of the waveguide.

In the introductory part of this chapter, we described the dominant TE
mode, that is the TE mode with the lowest cutoff frequency. This is the
TEp mode (m =1, n = 0). The field components for this mode are

g, = Jontd o Y e (8.5-16)
T a .
g, = 1804 G s (8.5-17)
T a
H, = A cos %ye-fﬂt (8.5-18)
and
B,=E. =H, =0 (8.5-19)

The field configuration for this mode is shown in Figure 8-5.
Setting m = 1, n = 0 in Equation (8.5-4) gives

ot (5)2 ko ‘ci: _ (2{_'>2 (8.5-20)

g = (?\—7)2(1 - ;—:) 8.521)

where we have set A\, = 2mc/w, the free-space wavelength of a wave of
radian frequency w, and N, = 2q, as in the introductory part of this chapter.
The phase velocity for the TE; mode then becomes

or

® WA, c

Up == = = 8.5-22
? ﬁ 27!'V1 - )\02/>\02 '\/1 - XO2/)\¢:2 ( )

as in Equation (8-5). Similarly
=2 oA (8.5-23)

B NI = a2

Next let us consider the group velocity »,. This is equal to the time
average power flow in the waveguide divided by the energy stored per unit
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length in the z direction. From Equation (8.2-11), the time average power
flow for the TEy mode is given by

time average power flow = / (time average of | S |)dzdy
wavarade
_ Bupa®bA?
=z (8.5-24)

where (time average of | S|) = (time average of | & X 8¢ |) = } | E.H, |,
and we have substituted for E, and H, from Equations (8.5-16) and (8.5-17)
From Equations (8.2-2), (8.2-7), and Equation (6) of Appendix XIV, the
average energy stored per unit length in the z direction is given by

energy stored per unit length

1 bofe Mg . 9 . _ o?ua’hA®
—;///Zum o Hy [+ o | H. [y = o0
(8.5-25)

Then

_ _ time average power flow _ g ———
~ energy stored per unit length  « NI = AZ/A? (8.5-26)

Uy

as in Equation 8-6. Some further discussion of the group velocity is given
in Appendix XTITI where it is shown that

a
v, = 5% (8.5-27)
From Equation (8.5-4) it is evident that 898 = wdw/c?, and hence
O (8.5-28)

Substituting for v, from Equation (8.5-22) in this expression, we obtain

v = ¢yl — A2/A3 as in Equation (8.5-26).
The characteristic impedance® of the waveguide is defined in terms of the
time average power flow and a “voltage” at the center of the waveguide
b

given by the integral / E.dz, where E, is evaluated at y = a/2. From
[}

Equation (8.5-16), the mean-square value of this voltage is

mean-square “voltage” _ u/a’A%’ (8.5-29)
at center of waveguide 27? ’

%This definition is not unique. Two other definitions for waveguide impedance are
also used. See Reference 8b, pp. 36, 37.
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The characteristic impedance for the TE;, mode is then given by

7 _ _Wean-square voltage _ 2b Vio/%o _ 754b ohms
°" time average power flow o T — XZ/A2  ayl — AZ/A2
(8.5-30)

where we have substituted from Equation (8.5-24) for the time average
power flow.

Let us plot Equation (8.5-4) as » vs. 8. We obtain the family of hyper-
bolas shown in Figure 8.5-2. Note that each mode has a cutoff frequency
given by 8 = 0 in Equation (8.5-4):

Woutoft = C ('m_w)2 + (7%)2 (8.5-31)

a

Furthermore, each curve is asymptotic to the straight line

w = fc (8.5-32)
This straight line has a slope equal to ¢, the velocity of light. A simple
geometric construction enables us to obtain the phase velocity correspond-
ing to any frequency for any mode. Suppose we want to know the phase
velocity corresponding to propagation in the TEy mode at a radian fre-
quency wi. The slope of a line drawn from the origin to a point on the w-8

7/
;/

o £y P —>

Fic. 8.5-2 w8 diagram for the TE modes in a rectangular waveguide. All the
curves are asymptotic to lines through the origin with slopes equal in magnitude to
the velocity of light. a/b = 2.3.
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curve for the correct mode and frequency (line 4 in Figure 8.5-2) gives the
phase velocity, according to Equation (8.5-22). Note that the phase veloc-
ity for all propagating frequencies and all modes is greater than the velocity
of light. If the waveguide were filled with a dielectric of relative dielectric
constant ¢, the asymptote would correspond to ¢ = 1/+/esou,. The fact that
the phase velocity is greater than the velocity of light is a universal property
of waveguides of this type, having transverse dimensions invariant with
axial position.

The group velocity v, = dw/d8 is equal to the slope of a line tangent to
the w-B curve at the operating frequency (line B in Figure 8.5-2). It is
evident that the group velocity is always less than the velocity of light.

(b) TM Modes

So far we have considered only the transverse electric or TE modes. We
shall now consider the equivalent relationships for the transverse magnetic
or TM modes.

We may begin consideration of the TM modes by considering the z
component of Equation (8.1-26).

V2E, + kE, =0 (8.5-33)
A particular solution to this equation is given by
E, = A sin ™Y sin T2 (8.5-34)
where m and n are integers. When this solution is substituted back into
Equation (8.5-23), we find that

as in the case of TE modes (Equation (8.5-4)).

The other field components may be obtained from Equation (8.5-34) by
application of Equations (8.1-18) and (8.1-19), in whlch case weset H, = 0.
Thus we obtain

]w% mwx 7"?/ _ —'ﬂz -
H,= P—fa A cos —= m b E (8.5-36)
H, = — sz‘f" % %IA sin m;ry cos n;xe"f"’ (8.5-37)
_ Jwﬂ nw MEY o TTE s }
E, = i A sin oG08 = g (8.5-38)
E, = _kTJ—Q_E’ T4 cos _(;r_y sin n—b—e""‘ (8.5-39)

It is easily shown that these field components satisfy the boundary condi-



266 PRINCIPLES OF ELECTRON TUBES

tions imposed by the waveguide, and hence these are the field components
associated with transverse magnetic waves. Figure 8.5-3 shows the field
pattern for the TMy mode (m = n = 1).

A
| \dﬂi};/ FEN S PR W N—
R e L ]

]
SECTION A-A :
E LINES — e ﬂ _______________
H LINES ———+» l(- A -)‘

Fiac. 8.5-3 TM;; mode in a rectangular waveguide.

A complete w-8 diagram for both the TE and TM modes is shown in
Figure 8.5-4. All of the TM modes are degenerate; that is, a TE mode has
the same w-8 curve. The two lowest modes are TE modes and have no TM
counterpart. Rectangular waveguide is normally operated in the mode of
lowest cutoff frequency, the TE;, mode.

o p—

Fie. 8.5-4 Complete w-f diagram for a rectangular waveguide. All the curves are
asymptotic to the velocity of light lines. a/b = 2.3.
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The relationships of power flow, group velocity, and phase velocity are
the same for TM as for TE modes. If, for instance, we draw a straight line
from the origin, as shown in Figure 8.5-4, then at the frequencies of inter-
section on each mode branch the phase velocities are all the same; cor-
respondingly, by Equation (8.5-28), the group velocities are also identical
at these points.

We have not considered any losses in the above discussion. Losses may be
taken into account by allowing the propagation constant 8 to be complex,
so that the wave is attenuated in the z direction. In this manner, we can
allow both for resistive losses in the walls and also dielectric losses if the
guide contains dielectric.

Transmission line theory may be applied directly to waveguides. For
instance, a quarter wavelength away from a short circuit one sees an open
circuit. Of course, in the case of a = e
waveguide, a wavelength is no
longer equal to a free space wave-

length ¢/f. Rather it is a guide wave- / =)
length, given by A\, = 2x/8, and 8 is e

obtained from the w-8 curve; A, is
thus a function of frequency and of
the mode of propagation. )
No mention has yet been made of

coupling energy in or out of a wave- []COAXIAL LINE

guide. One common method of e
coupling between a coaxial line and ‘
\

a waveguide is shown in Figure
8.5-5. The center conductor of a
coaxial line is brought down through
the broad wall of the waveguide.
The center conductor acts like an
antenna to radiate energy into the
waveguide. A short is placed in the
waveguide a quarter wavelength to  Fig, 8.5-5 Coaxial line to waveguide
the left of the probe causing the re- transition.

gion to the left of the probe to look

like an open circuit at the probe. Hence, resultant power flow is to the
right. At the receiving end of the waveguide, a similar transition may be
used to couple energy back into a coaxial line.

WAVEGUIDE

8.6 Caﬁty Resonators

In the introductory section of this chapter, we looked at cavity resonators
from the point of view of an evolution from a simple L-C circuit. With the
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discussion of waveguides behind us, we can now look at cavity resonators
from a different point of view.

Let us consider the electric field solutions for the TE; mode in a rec-
tangular waveguide. From Equations (8.5-16) and (8.5-19),

E, = Bsin %ye-fﬂ= (8.6-1)

E,=E, =0 (8.6-2)

Now this solution corresponds to a wave traveling in the positive z direction.
There is an.equally valid solution corresponding to propagation in the nega-
tive z direction:

E, = Csin %yeﬁ,, (8.6-3)
E,=E =0 (8.6-4)

where 8 is taken to be positive in both Equations (8.6-1) and (8.6-3)-
Physically, the wave traveling in the negative z direction could be set up by
an obstacle in a waveguide which reflects part of the outgoing energy back
toward the source. The general solution is thus given by the superposition
of the above two waves, resulting in

E, = (Be#: + Ceti) gin ’%’ (8.6-5)

E,=E, =0 (8.6-6)

Now, we can make a rectangular cavity resonator out of a rectangular
waveguide simply by placing walls perpendicular to the z axis at z = 0 and
z = L. Equation (8.6-5) must then satisfy the additional boundary condi-
tion of being zero at the added walls. Setting E. to zero at z = 0 gives us

0=B4+C (8.6-7)
80 that Equation (8.6-5) may be written

E, = 2{C sin z sin ’%’ (8.6-8)
The additional boundary condition at z = L is satisfied for

=Pr -
8 T (8.6-9)
where p is an integer. Since A, = 2x/B, this states that the cavity must be
an integral number of half guide wavelengths long.
Using Equation (8.4-30) and setting m = 1 and n = 0 for the case of the
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TEw mode, we obtain an expression for the resonant frequencies of the

cavity:
2 2
wp = c\/(%’—') + (:;’), p=123... (8.6-10)

A sketch of the lowest frequeney, or p = 1, mode of oscillation is shown
in Figure 8.6-1 for the case in which L = a. In a cavity at resonance, the
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SECTION A-A
Fic. 8.6-1 Field patterns for the dominant mode of a rectangular cavity resonator.

electric and magnetic lines are 90 degrees out of time phase. The stored
energy oscillates back and forth between the two kinds of fields. Unlike the
waveguide fields, the resonator fields remain fixed in space, varying sinus-
oidally with time uniformly throughout the cavity.

This resonator and its field patterns may be compared w1th the re-
entrant cavity of Figure 8-1. One might have anticipated that the patterns
of Figure 8.6-1 would occur when the heights of the posts in Figure 8-1(d) are
reduced to zero.

A field analysis such as we have just carried out also enables one to obtain
the resonant frequencies of all the higher-order modes. These higher-order
modes are usually of interest not because of their utility but rather because
of the trouble they can cause. For instance, in a magnetron, higher-order
modes may give rise to undesirable output signals.

Resonant cavities of the type considered here are useful as microwave
circuit elements. In essence, they are low-loss resonant circuits, and they may
be coupled together in various ways to achieve filter-type characteristics.
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As an example of a rectangular cavity resonator, let us consider a reso-
nator of the general shape shown in Figure 8.6-1. If we assume the base to
be square, Equation (8.6-10) indicates the cavity will resonate in the TE;n
mode (m = 1,n = 0, p = 1) at a frequency of 3000 Mc fora = L = 7.07
cm. The largest dimension of the re-entrant cavity of Figure 8-2 resonant
at the same frequency was only 1.85 em. Thus the effect of re-entrancy in a
cavity is seen to be a decrease in overall size for the same resonant frequency.
Further analysis reveals that this decrease in size is obtained at the expense
of increased losses for the same stored energy in the two types of cavity.

8.7 Slow-Wave Structures

We have seen in Section 8.5 that wave propagation in ordinary wave-
guides is characterized by a phase velocity which is greater than the velocity
of light. The phase velocity is the velocity with which an observer would
have to move so as to remain always in the same phase of the wave.

In the operation of traveling-wave and magnetron type devices, the
electron beam must keep in step (or nearly in step) with a propagating wave
Sinee electrons can be accelerated only to velocities which are less than the
velocity of light, we must look for microwave circuits or structures capable
of propagating waves with phase velocities less than the velocity of light.

— ——

HLINES

—_—

- >~

F1e. 8.7-1 Transmission line composed of a single wire above a ground plane.
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Fig. 8.7-2 The helix slow-wave structure. (a) Helical coil within a concentric con-

ducting cylinder. This slow-wave circuit is obtained by wrapping the single-wire-

above-ground into a helix, with the ground plane becoming the surrounding cylinder.
(b) Electric field lines for a helix in free space.

For reasons that will become clearer in later chapters, ordinary waveguides
partially or completely filled with dielectric are not satisfactory solutions to
this problem. Instead, the solution will be found in a whole new class of
structures appropriately called slow-wave structures or slow-wave circuits.

A simple, yet highly useful, slow-wave circuit can be demonstrated easily.
Consider first a transmission line consisting of a single wire above a ground
plane as shown in Figure 8.7-1. The propagation characteristics of such a
line are well known.” An oppositely charged image of the round conductor
may be constructed within the ground plane, whereby the behavior of the
single-wire-above-ground line becomes identical with the common two-wire
line. This line propagates a TEM mode in a direction parallel to the axis of

"Reference 8.2.
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the wire at the velocity of light. The TEM designation means that both
the electric and magnetic field lines lie entirely in the transverse plane.

Now it is intuitively obvious that gradual bends or twists of the wire
above the ground plane, keeping the spacing from wire to ground constant,
will have only a minor effect on propagation characteristics of the line. The
field lines will faithfully follow the wire, despite such bends. Thus we can
imagine the line distorted into the helical coil shown in Figure 8.7-2(a).
The requirement that the spacing from wire to ground remain constant is
met by having the ground plane become a cylinder enclosing the coil. If the
spacing from wire to cylinder is much less than the cylinder diameter and
much less than the spacing between turns, the electric field lines from each
wire will terminate almost entirely on the adjacent cylinder surface, and the
field pattern will be similar to that of Figure 8.7-1.

Since the wave follows the wire at very nearly the velocity of light, the
resultant velocity along the axis of the cylinder must be less than the
velocity of light. Consequently, an electron can be shot along the cylinder
axis at a velocity which enables it to keep in step with the wave. The
velocity at which the ‘“in step’’ electron moves is the phase velocity of the
slow-wave circuit. From geometrical considerations, this phase velocity is
eagily shown to be approximately given by

Vp = PR (8.7-1)

Vp? + (wd)?

where d and p are the helix diameter and pitch, respectively.

Helices are commonly used as slow-wave circuits in low and medium
power traveling-wave tubes. However, generally they are employed with-
out the attendant conducting eylinder surrounding the helix. This causes
some quantitative changes in the physical picture presented above, but the
basic nature of the slowing process is unchanged. Figure 8.7-2(b) shows the
approximate shape of the electric field lines when no outer cylinder is
present. For the particular case chosen in the figure, the free-space wave-
length of the signal is approximately equal to the length of wire in twelve
turns of the helix.

For a structure to be a slow-wave circuit, it is necessary that it possess
physical periodicity in the axial direction. That is, there is a finite length,
called the period, by which the infinitely long structure must be translated
in the axial direction so that one obtains the same structure back again,
point for point. In the case of the helical circuit of Figure 8.7-2, for instance,
a translation back or forth through a distance of one pitch length results in
identically the same structure again. Thus, the period of this helical slow-
wave structure is the same as its pitch.
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Only periodic structures can propagate slow waves when filled with air
or vacuum. It can be shown that smooth, air- or vacuum-filled, nonperiodic
structures such as the waveguides of Section 8.4 propagate fast waves only.

(a) Floquet’s Theorem

Since slow-wave structures are necessarily periodic structures? let us
examine some general theorems concerning the solutions of Maxwell’s
Equations and the relations between phase velocity, group velocity, stored
energy, and power flow in periodic structures.

Floquet’s Theorem concerns the nature of the single-frequency solutions
for the electromagnetic fields obtained from Maxwell’s Equations. It may
be stated as follows for a periodic structure consisting of identical cells
of periodic length L placed end to end.

The steady-state solutions for the electromagnetic fields of a single
propagating mode in a periodic structure have the property that fields
in adjacent cells are related by a multiplicative complex constant,
this constant being the same for all pairs of adjacent cells.

Mathematically the theorem niay be stated as
E(x)y;z - L) = I‘E(x,y:z) (8.7-2)

where L is the length of one period of the structure, and T is a complex con-
stant. The direction of propagation is along the z axis, as before. The same
expression can be written with E replaced by H.

The proof of Floquet’s Theorem may be obtained by use of the unique-
ness theorem® of electromagnetic theory which states that the field
solutions in two identical microwave structures, operating at the same fre-
quency, can differ only by a complex multiplicative constant, corresponding
physically to two different levels of excitation. An analogous situation
occurs in ordinary circuit theory where two identical circuits are excited
by two different sources at the same frequency. The corresponding phasor
currents in the two circuits can differ only by a complex constant, equal to
the ratio of the phasors representing the two sources.

Consider the infinitely long periodic structures shown schematically in
Figure 8.7-3(2). Each cell is numbered for identification purposes. Assume
that the solutions for the electromagnetic fields for a wave propagating to
the right have been obtained. Thus, the electric field in cell n may be des-
ignated

Ea n

8Reference 8f.
9Reference 8¢, pp. 486—488.
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where the first subseript indicates that the solution pertains to the circuit
in Figure 8.7-3(a), and the second subsecript identifies the cell number.

Now let us consider a second structure obtained from the first by a
linear translation in the axial direction of one periodic length as shown in

= —— | ————]
n-1 n N+
(a)
n-2 n-4 n

(o) ’

Fic. 8.7-3 Infinitely long periodic structures having identical boundary conditions.
(a) The original structure. (b) Structure obtained from the original structure by a
linear translation of one period in the axial direction.

Figure 8.7-3(b). Because of the translational symmetry, the new structure

will appear identical to the old structure. The uniqueness theorem requires

that the fields of structure b be identical to those of structure a, except for
a constant complex multiplier. That is,
Eb(n—l) = PEan

Eb,, = FEa(n+1), ete. (87-3)

Now we identify structure b by its true nature; it is, after all, merely a
translated version of structure a so that the field pattern in structure b is
the same as in structure a but translated one period to the right.

Eb(n—l) = Ea(n—l)

Es. = Ean, ete. (8.7-4)
Combining Equations (8.7-3) and (8.7-4), we get
Eonyy = TEqp
Eon = IEgenyy, ete. (8.7-5)

This proves the theorem, since = is, of course, arbitrary.

This simple and highly useful theorem is analogous to theorems concerned
with wave propagation in other types of periodic ensembles. For instance,
the currents and voltages in an infinite chain of identical filter sections are
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governed by the same basic rule; that is, the currents and voltages of one
section are equal to the corresponding quantities in the preceding section
multiplied by a complex constant. This analogy is often put to use when a
microwave periodic structure is represented by an equivalent ecircuit con-
sisting of such a chain of filter sections.’

Let us now rewrite the complex constant T in Equation (8.7-2) using the
defining relationship

= el (8.7-6)
so that Equation (8.7-2) becomes
E(@,y,z — L) = PLE(z,y,2) (8.7-7)

Now, B, could in general be complex. If it were a pure real quantity,
it is clear that Equation (8.7-7) implies only a phase shift from one cell to
the next. A negative imaginary part to 8, would imply a decay in the
strength of the fields with distance along the structure, corresponding to
ohmic losses. For simplicity, let us assume a lossless structure, so that
B.isreal. Our results can be generalized later by allowing 8, to be complex,
if we wish to take losses into account.

Now we shall postulate that the solution to Maxwell’s Equations in a
periodic structure can be written in the following form

E(x;y;z) = Ep(x’y’z)e—iﬁoz (8.7-8)

where E,(z,y,2) is a periodic function of z with period L. A similar expres-
sion holds when E is replaced by H. Equation (8.7-8) can be proven to be
the solution if two conditions are fulfilled. First, it must satisfy the wave
equation for the electric field, Equation (8.1-26) and the proper boundary
conditions; and second, it must satisfy Floquet’s Theorem, Equation
(8.7-2). Let us first show that the latter condition is satisfied.

Equation (8.7-8) can be rewritten with z replaced by z — L.

E(z,y,2 — L) = E,(x,y,2 — L)e #o~D) (8.7-9)
Since E, is a periodic function with period L,
E,(x,y,2 — L) = Ep(x,y,2) (8.7-10)
so that Equation (8.7-9) becomes
E(z,y,2 — L) = Ey(x,y,2)e Boretibol (8.7-11)

Equation (8.7-8) may be used in the right-hand side of this equation,
obtaining

E(z,y,2 — L) = E(z,y,2)eoL (8.7-12)

wReference 8h, Chapter 4.
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But this expression is the mathematical statement of Floquet’s Theorem,
Equation (8.7-7). Therefore, Equation (8.7-8) does indeed satisfy Floquet’s
Theorem.

The requirement that the right-hand side of Equation (8.7-8) should
satisfy the wave equation will be applied later after we write Equation
(8.7-8) in a more convenient form. Since E,(z,y,2) is periodic in z with
period L, we can express it by means of a Fourier series:

E,(z,5,2) = 2 Eu(z,y)e itmnils (8.7-13)

This equation is a vector equation, and it is merely a shorthand way
of writing three separate equations, one for each vector component. The
quantities E, in the Fourier sum are the usual Fourier coefficients, except
that they are functions of the transverse coordinates # and y. This may
seem strange at first to one who is more familiar with the usual Fourier
series in time, where the Fourier coefficients are constants. From this
more conventional point of view, Equation (8.7-13) actually represents an
infinite number of Fourier series, one for each choice of z and y.

Using Equation (8.7-13), the solution for a propagating wave in a peri-
odie structure, Equation (8.7-8) can be written

E(@02) = 3 Ealag)eiooteniin 8719

Defining
Ba = B+ 22" (8.7-15)

we have
E(0) = 3 Eamy)e 8.7-16)

The quantities E.(x,y)e % are known as space harmonics by analogy
with time-domain Fourier series. Now we can impose the necessary con-
dition that our solution should satisfy the wave equation, Equation (8.1-26).
Substituting Equation (8.7-16) into the wave equation, we obtain

V2[ iEn(x,y)e—ianz] + k2[ iE,.(x,y)e'f""‘] =0 (8.7-17)

Since the wave equation is linear, we can interchange the order of dif-
ferentiation and summation, obtaining

> VIE.(z,y)e 8 + KB, (z,y)e P = 0 (8.7-18)
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From this equation we see that if each space harmonic is itself a solution of
the wave equation, that is, if the bracketed term is zero for each value of n,
the summation of space harmonies automatically satisfies the wave equation,
Equation (8.7-17). Thus each space harmonic is chosen as a solution of the
wave equation and consequently must also satisfly Maxwell’'s Equations.
These statements do not imply that each space harmonic satisfies all of the
boundary conditions in the structure; only the complete solution, Equation
(8.7-16), satisfies this requirement. Physically, this means that it is impos-
stble to have wave propagation in a periodic structure consisting solely of one
space harmonic; a mode of propagation must necessarily consist of an infinite
number of space harmonics.

For simplicity in this section we have considered a periodic structure of
infinite length. As in the case of ordinary transmission lines, a finite
length structure will have propagation properties identical to those of the
infinite structure, except that forward and backward traveling waves
must be superimposed to allow for mismatches at the ends of the structure.
In nearly all tubes using periodic structures, the structure is matched at
both ends so as to eliminate reflected waves.

(b) Field Solutions in a Particular Slow-Wave Structure

A simple example may help to clarify some of the above points. Let us
investigate wave propagation in the periodic structure shown in Figure
8.7-4.11 This structure consists of two parallel infinite conducting planes.

Y/
[} X A
REGION 2 | z d
|
| |
REGION 1 rl'n
| |
| 1
Y Y

700 7 /zi Ai A
k-1 ]
F1e. 8.7-4 A slow-wave structure consisting of thin fins mounted perpendicular to

one plate of a parallel-plate line. The direction of propagation is to the right or left.

On the bottom plane are mounted infinitesimally thin conduecting fins of
height & and infinite width (in the direction perpendicular to the page).
The separation from the top of the fins to the top plane is d.

Reference 8g.
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A set of coordinate axes may be chosen as shown, with the origin at the
center between two fins. The periodic spacing is L. Slow-wave propagation
can exist in the z direction.

As in any microwave structure there are many modes of propagation
possible. The mode of lowest frequency is often the simplest to analyze,
and in most structures it is the most commonly used mode. We shall thus
content ourselves with studying the simplest mode of the structure shown
in Figure 8.7-4. Since the structure itself is invariant in the y direction, we
shall assume the electromagnetic fields are also invariant in this direction.
A consequence: of this assumption is that spatial derivatives in the y
direction must be zero.

It will be convenient to divide the space between the planes into two
regions. Region 1 is the space for which —h < x < 0, the region of the
vanes. Region 2 is the gap above the vanes for which 0 < z < d. We can
then solve Maxwell’s Equations separately in the two regions, and finally,
we can equate the tangential components of electric and magnetic field at
the boundary between the two regions, that is, at z = 0. Continuity of the
tangential electric and magnetic field vectors is necessary, as discussed in
Section 8.3. In each region we shall choose our solutions so that the
boundary condition at a perfect conductor of zero tangential electric field
is satisfied.

Region 1 will be considered first. Consider the unit cell bounded by the
two vanes at z = = L/2. The simplest solution here is a standing-wave
solution to Maxwell’s Equations consisting of E, and H, components only.
The desired solution for E, is

E,=Asink(x + h) (8.7-19)

where 4 is an arbitrary constant and k = w/c. It may be verified that
this solution satsifies the wave equation, Equation (8.1-26), and the
boundary condition E, = 0 at z = —h. The solution for the magnetic
field may be obtained from Equation (8.7-19) by use of the second of
Equations (8.1-18),

. oFE, OE,
Jopd, = T (8.7-20)
Using Equation (8.7-19) and the fact that E, is zero, we obtain
H, = —j\/Z—"A cos k(z + h) (8.7-21)

It may be verified that the other components of H are zero.
Floquet’s Theorem, Equation (8.7-7), may be used to find the fields in
region 1 in between the other pairs of vanes. If the gaps are numbered in
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order with N = 0 corresponding to the gap centered at z = 0, N = 1 to the
gap centered at z = L, etc., we then have from Floquet’s Theorem, in all of
region 1,

E, = A sink(zx + h) ¢ 8oL (8.7-22)
H, = —j\/izA cos k(x + h) ¢ NBoL (8.7-23)

Next, we proceed to solve Maxwell’s Equations in region 2. The general
solution is.given by Equation (8.7-16). Let us consider the z component:

E, = ) E,.(x)e #n (8.7-24)

Each space harmonic will satisfy Maxwell’s Equations, or equivalently,
the wave equation, Equation (8.1-26), which in our case can be written

a—2+iﬁ+k2E (x)e #nz = 0 (8.7-25)
ozt ' 922 anlT)e T = a
Performing the z differentiation, we obtain

2

=B+ kz)E.,.(x)e-ﬂ’»z -0 (8.7-26)
or simply
62 — 2 2 —
((.,—x—2 B2+ K )E =0 8.7-27)

This equation has the solution
E,, = B, sinh y,.(z — C,) (8.7-28)
where
Vol = Ba — K
and B, and C, are arbitrary constants. The hyperbolic sine solution rather
than the trigonometric sine solution has been chosen so that 8.2 > k%,

since we are looking for slow waves. Since the phase velocity for a space
harmonic according to Equation (8.7-24) is given by

®

VUpn = E ' (8.7-29)

we see that v, < cif 8, > k = w/e.
Equation (8.7-24) may now be written using Equation (8.7-28):

E, = Y B,sinh v.(z — C,) e (8.7-30)
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The boundary condition that E, = 0 at x = d can be satisfied if we choose
C.,=4d (8.7-31)
so that

E, = X B, sinh y,(x — d) ¢ (8.7-32)

Next we equate the two expressions for E, given by Equations (8.7-22)
and (8.7-32) at the boundary between regions 1 and 2. We can simplify
this matching technique somewhat by noting that Floquet’s Theorem
implies that if solutions are matched at the boundary in one cell of a periodie
structure, they will be matched in all cells. Let us therefore match over the
range —L/2 < z < L/2. We obtain

— > B, sinhy,d e # = Asinkh
for

L
2

<z<Z g (8.7-33)

The coefficients B, can be obtained by the following process. Multiply
both sides of the equation by %=+ and integrate over a period:

— > B.sinh y,,d/

—L/2

Lj2 L/2

e/BnPrizdz = A sin kh f ePmedz (8.7-34)
2

—L/

The right-hand side is easily integrated. The left-hand side can be manip-
ulated as follows, using Equation (8.7-15):

fm ) L {O forn #= m
i Bm—Bu)zdy = ICTILY n— ey = (8.7-35)
~L/2 —L2 Lforn=m
Equation (8.7-34) thus becomes

BamL

sin ——
3 sin kh (8.7-36)

2

—B,.Lsinh y,d = A

By substituting Equation (8.7-36) into Equation (8.7-32), we obtain for
E, in region 2

- sin 2L sinh yuz — d)

B = —Asnkh Y BL2

2

¢ Bnz * (8.7-37)

sinh v.d
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We thus have a complete description of the z component of electric field in
terms of an arbitrary amplitude factor 4.

The other components of the electric and magnetic fields in region 2 may
be obtained as follows. First, because E, = 0 in region 1, it will also be
zero in region 2, since tangential components of E are continuous at the
boundary.

Next, the divergence equation, Equation (8.1-16), of Maxwell’s Equations
is written (using Equation (2) of Appendix XII) as

9E, | 9K, _

= + % = 0 (8.7-38)

since there is no free charge in the region. This equation can be solved for
E,:

dE,
E.=— / a—zax (8.7-39)

Performing the indicated operations on Equation (8.7-37), we obtain
» 8in %—I—' cosh y.(x — d)
E,= —jAsinkh Y, 7 € IBnz (8.7-40)
= I Sinhyad
2
The components of the magnetic field can be obtained by use of Equa-
tions (8.1-18). Since E, = 0, and derivatives with respect to y are also

zero, we see that

H,=H,=0 (8.7-41)
Equations (8.7-37), (8.7-40), and (8.1-18) together give, after simplification,
» sin BnL cosh v,.(z — d)

H, = —josA sinkh 3 — 2
'“’1% sinh v,d

B (8.7-42)

At this point we have a complete description of the fields in the slow-wave
structure, assuming that we know what value of 8, corresponds to a given
frequency of operation. All the values of 8, and ¥, can be obtained from
8, using Equation (8.7-15) and the relation defining v,

vl = Ba — K* (8.7-43)

A sketch of the electric field lines for 8,L = /10 is shown in Figure 8.7-5.

An equation determining 8, from the frequency may be obtained by
matching the tangential components of the magnetic field at the boundary
between regions 1 and 2. However, at this point we must note that the
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7

F1c. 8.7-5 Electric field lines in the slow-wave structure of Figure 8.7-4 for
ﬁoL = 7!'/ 10.

solutions we have obtained are only approximate, due to the neglect of
fringing fields near the vane tips in region 1. Because of this approximation,
the magnetic fields in the two regions will not match point for point at the
boundary. Let us therefore content ourselves with matching at the mid-
point of the gap, where z = 0.

Equating Equations (8.7-21) and (8.7-42) for z = 0 and # = 0, we obtain

. B.L

cot kh _ ism 5 coth v.d
kh - =% B.L

> ¥uh

(8.7-44)

where

k=ow VieEo

2mn

ﬁn=Bo+T
Yo = VB2 — k?

The solutions to this equation are obtained numerically. We shall discuss
the resultant w-8 diagram in the next section.

Let us review briefly what we have accomplished in this section. We
have used approximate solutions to Maxwell’s Equations in a periodic
structure to obtain the slow-wave propagation fields. One may wonder as
to the effect of the approximations involved. It turns out that the resultant
w-B diagram is relatively insensitive to small errors in the shapes of the
field solutions, so that information derived from the -8 diagram can be
taken to be quite accurate. The exact shape of the fields will be somewhat
in error, but this information is usually needed only approximately.

(¢) The Brillouin Diagram

We have seen in Sections (a) and (b) that the electric or magnetic field
for a propagating mode in a slow-wave structure can be expanded as a
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summation of space harmonics, as in Equation (8.7-16), which we repeat
here.

E@y,2) = 2 Ea(g,y)e # (8.7-45)
where
:Hn = 60 + 2%% (87-46)

Each space harmonic propagates in the positive z direction with a
different phase velocity given by

w

Vpn = E (87-47)

Therefore, the mode of propagation cannot be characterized at some
frequency by a unique velocity as it was in the case of ordinary smooth
waveguides. Referring to our previous interpretation of the phase velocity,
we see that ¢t is no longer possible for an ““observer” to move so as to be always
in the same phase of the total field. It is possible for the “observer” to move
in synchronism with only one of the space harmonics that make up the total
field. The phases of the other space harmonics will be continually changing
as viewed by the ‘“observer.” If the “observer” takes a time average of the
total field that he sees over a sufficiently long period of time as he moves in
synchronism with one of the space harmonics, the average obtained will
be that given by the synchronous space harmonic alone, the net contri-
bution of the others being negligible in comparison. It will be useful in
later chapters to bear in mind this interpretation of the phase velocity.

Let us now plot the w-B curve for the periodic structure of Figure 8.7-4.
We will want to make sure we include values of the propagation constant
8. for all of the space harmonics. This w-8 diagram is known as a Brillouin
diagram.?? It is customary to label the abscissa as the 8 axis instead of the
B. axis. Each branch of the Brillouin diagram is numbered according to
the space harmonie to which it refers.

The fundamental space harmonic (n = 0) propagation constant is
obtained as a function of frequency from Equation (8.7-44). Since thisis a
transeendental equation, there will be an infinite number of frequencies
or modes of propagation for each value of 8. This infinite number of modes
should come as no surprise, since we first encountered them in the analysis
of ordinary waveguides. The w-8 curves for the fundamental space har-
monics are shown in Figure 8.7-6, including the higher-order modes. We have

2After L. Brillouin who studied extensively wave propagation in periodic structures.
See Reference 8f.
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included only the modes propagating in the positive z direction for the time
being. The negative propagating modes have branches which are the mirror
images of these about the w axis, as in Figure 8.5-4. We have labeled the
lower branch with a zero, indicating
that it corresponds to the funda-
mental (n = 0) space harmonic.
We shall omit labeling the higher-
order modes. Physically, these
higher modes correspond approxi-
mately to additional half wave-
lengths in region 1 of Figure 8.7-4.
Now from Equation (8.7-46), we
see that the Brillouin diagram
| branches for the other space har-
/ monics are obtained by taking
/ the fundamental space harmonic
[o]
|
J

|

£ —

branches in Figure 8.7-6 and tran-
slating them parallel to the 8 axis
through distances which are integral
multiples of 2#/L. Figure 8.7-7
shows this construction utilized to
obtain the plus-one and minus-one

.. . space harmonies.
F1a. 8.7-6 The branches of the Brillouin . . .
diagram corresponding to the funda- It would be enlightening at this

mental space harmonics of modes prop- point to consider the group velocity
agating in the positive z direction. in a periodic structure. It is defined
as in Section 8.5 for ordinary wave-

o T —
L I

guides (Equation (8.5-27)):
_ 0w
R
It has the same physical significance as before; that is, it is the velocity at
which energy is transported down the periodic structure. Since all of the
space harmonics must be taken together to constitute a mode of prop-
agation, we would expect all of them to have the same group velocity,
corresponding to the velocity of energy transport. A glance at Figure
8.7-7 shows that this is indeed the case. All of the branches for any mode of
propagation have the same slope at any given frequency, hence, the same
group velocity. Group and phase velocities are measured by geometrical
constructions as in Figure 8.5-2. It should be noted that no equation similar
to Equation (8.5-28) exists for slow-wave structures.

Figure 8.7-7 also shows that the minus space harmonics (n = —1,
—2, ete.) have phase velocities that are negative, albeit the group veloc-

Vg

(8.7-48)
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Fic. 8.7-7 Branches of the Brillouin diagram for the three lowest space harmonics
of modes propagating in the positive z direction.

ity is positive. This is an interesting property of periodic structures which
has no parallel in the smooth waveguide case. This means that an electron
“observer”’ can remain in synchronism with a wave which is actually trans-
porting energy in the opposite direction. This remarkable property has
made possible the backward-wave oscillator and M-Carcinotron which will
be described in later chapters.

Because the slow-wave structure shown in Figure 8.7-4 consists of two
separate conducting members, it has no lower cutoff frequency, and in
fact it propagates signals with frequencies ranging down to zero frequency,
as is evident from the Brillouin diagram.

The branches marked n = —1, 0, and +1 in Figure 8.7-7 correspond to
the principal mode of propagation. The broken lines in the figure have
slopes corresponding to phase velocities of +c¢ and —¢, where ¢ is the veloc-
ity of light. We see that all spatial harmonies of the principal mode of
propagation lie either to the right or to the left of the v, = ¢ lines rather
than between these lines. This means that the phase velocities of the
fundamental and higher-order space harmonics of the principal mode are of
magnitude less than the velocity of light. Furthermore, the phase veloc-
ity of the n = 1 space harmonic of the principal mode is less than that of
the fundamental, or n = 0 space harmonic, and the phase velocity of the
n = 2 space harmonic is less than that of the n = 1 space harmonic.
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So far we have considered energy propagating solely in the positive z
direction. The branches for the negative propagating modes are obtained
by simply reflecting all the branches of Figure 8.7-7 about the w axis, as in
Figure 8.7-8, where the complete Brillouin diagram is shown. It is seen that

\

27
L

£

am 3T
L L

R

_
L

rliy
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Fia. 8.7-8 Complete Brillouin diagram for the periodic structure of Figure 8.7-4.

all of these additional branches have negative group velocities, as expected.
The numbers of these additional branches are chosen so as to correspond to
the reflected branches.

(d) Power Flow

In order to complete our discussion of periodic structures we must con-
sider a means of calculating power flow from a knowledge of the electro-
magnetic fields of a propagating mode.

Equation (8.5-26) states that the power flow in a smooth waveguide is
given by the produect of the group velocity and the energy stored per unit
length.’® Now, for a lossless periodic structure Floquet’s Theorem, Equa-
tion (8.7-7), states that the fields in all cells are equal in magnitude, dif-
fering only in phase. This means that the stored energy in each unit cell

13n cases where the electromagnetic fields are known only approximately, this gives
a more accurate evaluation of the power flow than does integration of the Poynting
vector.
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of the periodic structure is the same as that in all the others. Hence, the
stored energy per unit length can be simply calculated by taking the stored
energy in any one unit cell and dividing by the length of the cell. With
this adaptation, Equation (8.5-26) can be used to calculate the power flow in
a periodie structure. It may be written as

P = UgT (8.7-49)

where W, is the time average energy stored per cell and L is the length of
the cell.

In calculating the average stored energy per period, it is convenient to
realize that the time average stored electric energy per period is equal to the
time average stored magnetic energy. Thus it is necessary to calculate only
the average stored energy due to either the magnetic or electric fields and
multiply this by two. This relationship can be proved rigorously for a
periodic structure, but the proof is rather long and complicated.

As an example, we may compute the power flow per unit width in the
periodic structure of Figure 8.7-4. We have already solved for the field
components, finding expressions for E, and H, in region 1 and E,, E,, and
H, in region 2, the other components being zero. In finding the stored
energy it will be easier to use the magnetic field expressions, since only one
compounent is involved.

The time average stored energy per cell (see Appendix XIV) is given by

Wi =5 / | H |2dv (8.7-50)
unit cell
Since the structure is of infinite width, we shall determine only the power

flow per unit width, designated

2

unit cell

Wi, = L2 / / | H, |*dzdx (8.7-51)

where use is made of the fact that H, = H, = 0.
The contribution to this integral in region 1 is obtained by using Equation
(8.7-21):

0

W s = %s,,LA2 / cost k(@ + hdz

sin 2kh] (8.7-52)

8,,LhA2|: 1 + W

NP

14Reference 8g, pp. 10-14.
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In region 2, H, is given by Equation (8.7-42), repeated below:

» Sin —B—;—Ii cosh v,(z — d)
H, = —jwe,A sinkh 3 e #e (8.7-53)

== —”’g"L sinh v.d

| Hy |? is obtained by multiplying this quantity by its conjugate,

» Sin bnL cosh yu(z — d)

H* = +josod sinkh 3 — ,,,2L cHitme (8.7-54)
5

sinh y,d

Equation (8.7-51) becomes, for region 2,

d (L/2
Wiee = $uw'etA?sin?kh 2 3, ] / CC neF @ 1L =2yl
m n Jo J—L/

(8.7-55)
where we have written

sin B;L cosh v.(x — d)
C,=
Aol b yd
2
1.6 I
Vp=C
1.4 l il "]
’ // P
1.0 /
kh
0.8 ]
0.6
0.4 /
0.2
g
o o s 37 T
4 2 4
ﬁol- —

Fie. 8.7-9 Fundamental branch of the Brillouin diagram for the slow-wave struc-
ture of Figure 8.7-4, with dimensions given by A/d = 4 and A/L = 5.
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Performing the z integration, using Equation (8.7-35), we obtain

. BnL
% 242, sin2k S Sm—z— cosh? v.(x — d)
Wsz—-z-noweoALsm h_zm TB.L Zﬁ sinh? v.d dx
Yn 9
(8.7-56)
Integrating this expression and simplifying, we obtain
N .
= — 2 2 n! _
W Lu s,,LdA sin? kh ); vA TBL Sy 8757
2

The total time average stored energy is the sum of that given by Equations
(8.7-52) and (8.7-57). Although Equation (8.7-57) is complicated, it is
easily evaluated, since the series converges quite rapidly.

Next, we can compute the power flow, using Equation®(8.7-49) for a par-
ticular geometry of the finned structure shown in Figure 8.7-4. Consider
a structure with dimensions chosen such that h/d = 4 and /L = 5. Equa-
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Fic. 8.7-10 Power per unit width in the structure of Figure 8.74 for a vane tip-to-
tip voltage of one volt. h/d = 4 and /L = 5.
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tion (8.7-44) is solved numerically to obtain the fundamental space har-
monic branch of the Brillouin diagram for the lowest frequency mode.
This is shown in Figure 8.7-9. A line with slope equal to the velocity of
light is drawn in for reference. We note, as before, that the phase velocity
at every point on the curve is less than the velocity of light. The upper
cutoff frequency is approximately that for which the vanes are a quarter
wavelength long. We might have expected this, since the input impedance
to a quarter wavelength shorted line is infinite, presenting an open circuit as
far as axial current flow is concerned.

Having thus determined the relationship between » and 8., we can pro-
ceed to calculate the power flow. It will be more interesting here to deal
with an actual structure, designed for a specific operating frequency. Let
us choose dimensions such that the mode cuts off at 10 Ge. This occurs for

h = 0.706 cm
L =0.141cm = h/5
d = 0.1766 cm = h/4

The power flow per unit width of the structure is presented in Figure
8.7-10 as a function of 8.L. This curve is obtained by multiplying the
group velocity by the time average stored .energy per unit length, where
the former quantity is obtained by measuring slopes-in Figure 8.7-9. The
power flow given is that amount required to produce a peak voltage of
one volt from one vane tip to the next. From Equation (8.7-19) we see that
this occurs for

E.(0)L = ALsinkh = 1 volt

The power flow goes to zero as SL approaches 7 because the group velocity
goes to zero. On the other hand, as 8L goes to zero, we approach the de
condition where the top plate is all at one potential and the fins are all at
the opposite potential. It becomes more and more difficult to maintain a
voltage difference of one volt from one vane to the next, and the power
required becomes infinitely large.

PROBLEMS

8.1 The equivalent circuit for the cavity in Figure 8-2 is given by a resistance,
capacitance, and inductance in parallel. (a) Calculate the values of the capacitance
and inductance at 3000 Mc for the dimensions given in the text. (b) The magnetic
field in the inductive sections of the cavity can be written
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where 2z is measured from the top or bottom wall, respectively, and I is the current
through the equivalent circuit inductance. Using Equation (8.4-19), find an ex-
pression for the ohmic power loss in the cavity at resonance for the dimensions
given in the text. From this power loss find an expression for the resistance in the
equivalent circuit. Neglect losses in the capacitive region of the cavity.

8.2 Scaling laws apply exactly to microwave structures whose walls are perfect
conductors and approximately to others. The scaling law may be stated mathemati-
cally as follows. If E(z,y,z,wt) is a solution to the wave equation, then E(Kz,Ky,Kz,
Kwt) is also a solution, where K is a numerical constant. Demonstrate the validity
of this statement.

8.3 Suppose that the cavity of Problem 8.1 is scaled to be resonant at K times
3000 Mec. (a) What are the resistance, capacitance, and inductance of the equivalent
circuit for the new cavity, assuming the cavity walls are made of the same material?
(b) What is the ratio of the @’s of the two circuits, where @ = R/wL.

8.4 By applying Stoke’s theorem to Equation (8.1-14) show that the component
of magnetic field perpendicular to a perfect conductor is zero, given that the parallel
component of electric field is zero.

8.5 Show that the resistive power loss in a conductor may be derived assuming a
uniform current density in a wall of a thickness equal to the skin depth, where the
wall current per unit width is given by

I,=/ Jdz
°

and J., is given by Equation (8.4-13).

8.6 Slow-wave structures may sometimes be represented by an equivalent
circuit consisting of a uniform lossless transmission line periodically loaded by either
a series or a shunt reactance. If Z, = 1/Y, is the characteristic impedance and
@, is the phase shift per period of the unloaded line, then periodic shunt loading due
to a susceptance B results in the relation

B
cos B.L = cos ¢, — 27, sing,
where 8, is the periodic phase shift of the periodically loaded structure. Similarly,
for periodie series loading due to a reactance X, one obtains

X .
cos B,L = cos ¢o — o7, Sine.

Prove either one of these relationships using the fact that corresponding voltages
and currents in adjacent cells are related by the factor e=#L. Use the results of
uniform transmission line theory which state that the input and output voltages and
currents for a line of electrical length ¢, are related by:

Vin = Voutcos Do + JI outZ oSN @Yo
Iin = Iouteos ¢, + jVourYosin @,

8.7 How is Equation (8.7-37) modified if the vanes of Figure 8.7-4 have a finite
thickness A?
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8.8 From Equation (8.7-37) compute the relative magnitudes of then = 0, =1,
=2 gpace harmonics at the frequency for which 8, = 7/2. Compute them at the
value of z for which they are a maximum.

8.9 A slow-wave structure has an equivalent circuit consisting of a cascade of
filter sections whose shunt arm is a pure capacitance C and whose series arm is
an open-circuited transmission line. The transmission line has a characteristic
admittance of 3w,C, where w, is the lowest radian resonant frequency of the line;
i.e., the susceptance of the series arm is given by B, = }w.C tan (rw/2w,). Sketch
the Brillouin diagram over the range 0 < w < 4w, and —27 < L < 27. Deter-
mine the cutoff frequencies accurately and then qualitatively sketch in the curves.
Make use of the filter formula cos 8,L = 1 4+ B./2B,;, where B; is the susceptance of
the shunt arm.

8.10 By studying the symmetries of a slow-wave structure one may deduce cer-
tain facts about its space harmonics. In the figure is shown an interdigital line,
assumed to be infinitesimally thin in the y direction. This structure has a symmetry
such that a translation of L/2 in the z direction accompanied by a reflection about
the y-z plane results in the structure mapping back onto itself.

PR
Problem 8.10

The solution for the electric field near x = 0 is of the form

E, = Z (4, cos kx + B, sin kz)e~1wle—ibne

Because of the symmetry described above we can replace z by z + (L/2) and z by
—z, and the resulting expression for E, can differ from the original only by a com-
plex constant. Use these facts to show that either A, = 0 for n odd and B,, = 0 for
n even (symmetric mode), or else 4, = 0 for n even and B, = 0 for n odd (anti-
symmetric mode).
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Chapter 9

KLYSTRONS

We have seen in Chapter 7 the deleterious effects that occur in con-
ventional triodes and tetrodes as the signal frequency is increased. The
factors degrading gain-bandwidth product and power output in these tubes
may be divided into two categories:

1. Circuit Factors

These include lead inductance, stray capacitance, and power losses
due to radiation, dielectric loss factor, and resistance.

2. Transit-Time Effects
‘These effects occur because of the finite time electrons take to travel
between electrodes.

The losses due to circuit factors can be reduced by a judicious use of the
microwave components discussed in the preceding chapter. On the other
hand, one encounters certain fundamental difficulties in trying to mini-
mize transit-time effects. In the triode and the tetrode, it is the cathode-
to-grid transit time which is the real culprit degrading the high-frequency
gain and efficiency. One can decrease this transit time by decreasing the
cathode-to-grid spacing. This approach has been used successfully in the
Western Electric 416B triode, described in Section 7.4. But as one can see
from the dimensions of this tube, as given in Section 7.4, it is unlikely
that the operating frequency could be extended much higher by further
reduction of electrode spacings. Accordingly, one must seek other means
for modulating the electron beams in tubes operating at high microwave
frequencies.

In the present chapter we shall describe two microwave tubes which
make use of a second type of modulation called velocity modulation. Veloc-
ity modulation is obtained by impressing a small ac component of velocity

204
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on a dc electron beam. This can be done by allowing the beam to pass
through two grids between which there is applied a small ac voltage. If
the grids are spaced very close together, equal numbers of electrons emerge
from the grids in equal intervals of time, but the velocity of the electrons
has a small ac component. Such a beam is said to be velocity modulated.
As the electrons travel away from the grids, the faster electrons move away
from the slower electrons behind them and tend to overtake the slower
electrons ahead of them. The axial density of electrons is therefore no
longer uniform, and the beam current passing a point some distance from
the grids has an ac component. In view of this, it is frequently said that
the velocity modulation imparted to the beam when it passed through the
grids gives rise to current modulation farther along the beam.

DISTANCE FROM THE INPUT GAP «—>

[=]

SPEEDING \/ \_/ A

SLOWING \ INSTANTANEOUS
DOWN - GAP VOLTAGE

Figc. 9-1 Applegate diagram showing representative electron trajectories. The slope

of each trajectory is proportional to the electron velocity. Velocity modulation is

produced at the gap by the changing gap voltage. This results in density modulation
beyond the gap.

The velocity modulation is illustrated in Figure 9-1, known as an Apple-
gate diagram. In this figure, plots of distance vs. time are given for a num-
ber of representative electrons (24 per cycle). The effects of space-charge
forces are neglected in drawing the figure. The electrons leave the grids
spaced uniformly in time, corresponding to the lack of current modulation
at this point, However, each electron has a slightly different velocity,
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depending on the instantaneous rf voltage between the grids when the
electron passed through the grids. The instantaneous voltage between the
grids is indicated on the figure. The slope of a trajectory is proportional
to the electron velocity. Because of the difference in slopes, many of the
trajectories converge so as to form electron bunches at some distance from
the grids. We note that the bunches tend to form about an electron which
goes through the grids when the voltage is zero and increasing. Similarly,
the electrons tend to move away from an electron which goes through the
grids when the voltage is zero and decreasing; this electron locates what is
termed the antibunch.

If the ac voltage applied between the grids is of a very high frequency,
the distance along the beam between maxima and minima in velocity will,
of course, be very short. This means that appreciable density variations

ELECTRON INPUT OUTPUT
GUN CAVITY CAVITY

| COLLECTOR

— Lt WAVEGUIDE
|IF——k COUPLING
N /
COAXIAL LINE _ 7
COUPLING — —l l |_
INPUT
SIGNAL LOAD

Fic. 9-2 Two-cavity klystron ampliﬁer.

will appear after the electrons have traveled a relatively short distance
from the grids. Velocity modulation, therefore, lends itself particularly to
high-frequency tubes. The two velocity modulated tubes described in the
present chapter, the klystron amplifier and the reflex oscillator, are gen-
erally designed for operation at frequencies above 200 Mc. Reflex klystron
oscillators have been built which give useful output at frequencies greater
than 100,000 Me, or 100 Ge.

In both these tube types the beam passes through grids that are an in-
tegral part of a resonant cavity. If the cavity is excited, the voltage devel-
oped across the cavity, and hence between the grids, imparts the velocity
modulation to the beam. Power is extracted from the beam in the case of
the klystron amplifier by allowing the beam to pass through a second
resonant cavity. The cavity is excited by the induced currents associated
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with the beam just as in the case of an external resonant circuit connected
between a pair of grids. In the reflex oscillator the beam is caused to return
through the modulating cavity with the right phase so that it adds to the
excitation energy of the cavity.

Figure 9-2 illustrates a two-cavity klystron amplifier. In this particular
example the rf signal is coupled into the input cavity by means of a coaxial
cable. The output cavity is coupled to the load by means of a waveguide,
taking advantage of the lower attenuation inherent in waveguide.

The electron beam is produced by an electron gun of the type shown in
Figure 4.5-1(a). This is a convergent Pierce gun which produces a small
diameter beam from a cathode of much larger diameter. Thus, much higher
beam current densities are available for a given cathode electron-emission
density than in a triode or tetrode. This allows a large increase in the beam
power passing through electrode gaps of a fixed area and capacitance and
hence a large increase in the gain-bandwidth product which can be achieved
with such a tube.- The klystron is usually operated with the cathode at a
negative potential and the other electrodes grounded, for reasons of con-
venience and safety.

Since the electrons must travel a considerable distance, the beam is
prevented from spreading radially, due to the space charge repulsion, by
applying an axial dc magnetic field. This field is provided by a permanent
magnet or solenoid, as discussed in Section 3.4.

After passing through the output cavity, the beam strikes a collector
electrode. The function of the collector electrode could be performed by
replacing the second grid of the output cavity with a solid piece of metal.
However, having a separate electron collector has several advantages.
First, the collector can ge made as large as is desired in order to collect the
beam at a lower power density, thus minimizing localized heating. If the
collector were part of the rf circuit, its size would be limited by the maxi-
mum gap capacitance consistent with good high-frequency performance.
Second, by having a separate collector, its potential can be reduced con-
siderably below the beam potential in the rf interaction region, thus re-
ducing the power dissipated in the collector and increasing the overall effi-
ciency of the device. It should be clear that the electron beam does not
extract energy from any dc power supply unless the electrons are actually
collected by an electrode connected to that power supply. Thus in Figure
9-2, if a separate power supply were connected between cathode and col-
lector and if the cavity grids intercepted a negligible part of the beam, the
power supply between the cathode and collector would be the only one
supplying any power to the tube.

It is clear that the two-cavity klystron amplifier has considerable advan-
tage over the conventional triode and tetrode for microwave signal ampli-
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fication. Circuit losses are greatly reduced by the use of resonant cavities
at the interaction gaps and by the use of microwave transmission lines for
making input and output connections. Furthermore, transit-time effects,
which limit the high-frequency performance of triodes and tetrodes, are
largely overcome by the use of velocity modulation. In the following sec-
tions, we shall take a more quantitative look at the electron interaction proc-
ess in the klystron amplifier. Later in the chapter we shall describe the
reflex klystron oscillator.

9.1 Quantitative Theory of Klystron Interaction

The quantitative theory of klystron interaction may be conveniently
divided into three parts, as follows:

1. The velocity modulation produced by a given voltage at the input
cavity.

2. The current modulation at the output cavity resulting from the
initial velocity modulation at the input cavity.

3. The current induced in the output cavity by the current modula-
tion on the beam.

The first and third parts have to do with the interaction between an
electron beam and the grids of a cavity. (The region between the grids of
a cavity is known as the cavity gap.)

(@) Velocity Modulation Produced by an RF Voltage Applied to the Grids
of a Cavity

d The grids of the input cavity are
represented in the equivalent circuit
of Figure 9.1-1. An rf voltage source
is shown connected to these grids.
This voltage source is an equivalent
source at the grids which replaces

—_——_—— e

—_—
DIRECTION
i OF

T —r——— "% the external signal source indicated
- ] ________, in Figure 9-2. As indicated in the

introduction, this voltage will pro-
duce a velocity modulation on the
beam, whose value we shall now
determine.

AsiNwt . .
A Let the z axis be taken in the
N\ direction of electron flow, with the

Fie. 9.1-1 Klystron buncher gap with
rf voltage applied. Velocity modula-
tion is produced on the electron beam.

entrance grid at the position z = 0.
The grids are assumed to be ideal;
that is, all electrons pass through
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without interception, and the rf electric field lines are perpendicular to
and terminate on the grids.
Although an electron is between the grids, it experiences a force due to the

rf electric field. This force causes an acceleration, as in Equation (1.1-1).
dz_ _°p ©.1-1)
e m T

This equation holds for time-varying electric fields as well as for static

fields. For the gap in Figure 9.1-1,

B = —% sin ol 9.1-2)

where d is the grid spacing, and A4 sin «f is the instantaneous gap voltage.
Thus, the motion of an electron is given by the solution to the equation:

dz eA .
9B = masin wl (9.1-3)
Integrating once, we obtain
dz eA
g Yo~ W(cos wt — cos wiy) (9.14)

where {; is the time at which the electron passed through the first grid, and
u, is the dc velocity of the electrons entering the gap. The velocity u, is
given by
e

U, = EV" (9.1-5)
where V, is the de voltage of the electron beam, as in Figure 9-2. Equation
(9.1-4) gives the velocity of the electron at any instant while it is in the gap.
To find the exit velocity, we must substitute the time at which the elec-
tron leaves the gap for¢ in the above equation. Calling this time £, the
exit velocity is given by

u(d) = u, — :TAd(cos wly — €os wh) (9.1-6)

If we assume that the amplitude of the rf voltage 4 is very small com-
pared with the de voltage of the beam V,, the electron transit time in the
gap is very nearly that given by the de velocity alone. Thus, if ¢, is the
instant at which the electron is at the center of the gap,

d
h=1t, — %, (9.1-7)
and
ts = Lo + i (9.1-8)

2u,
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If these expressions are substituted into Equation (9.1-6) and if we simplify
the resulting expression by the use of trigonometric identities, we obtain
the following expression for the exit velocity:

2¢A

u(d) = u, + i sin 25 sin wt, 9.1-9)

If the beam-coupling coefficient M is defined as in Chapter 7,

sin ;—
M= —2%e (9.1-10)
wd
2u,
Equation (9.1-9) becomes
w(@d) = uo + 4
(1 o sm wt,,) (9.1-11)

M is plotted as a function of the gap transit time in Figure 7.1-2. It is
unity for zero transit time and drops off for non-zero values of transit time.

(b) The Bunching Process

Having discussed the process by which velocity modulation is produced
on the beam at the input gap, we next consider the mechanism by which
this velocity modulation causes bunching or current modulation to occur
in the drift region between the two cavities.

This bunching process has already been described in connection with
Figure 9-1, and we shall now seek a quantitative description of the process
in order to answer important questions such as: What should the spacing
be between the two cavities in order to achieve a maximum degree of
bunching? What magnitude of current is induced in the output cavity?

For the moment we shall neglect the mutually repulsive forces of space
charge. This approximation is reasonably valid for low-power tubes, where
the electron density in the beam is relatively small. We shall further assume
that all motion is in the z direction. Physically, this requires either that
the space-charge forces be too small to cause transverse spreading or else
that the electron motion be confined by a strong de magnetic field in the 2
direction.

The electrons emerging from the input cavity have a velocity given by
Equation (9.1-11). Since there are no accelerating fields in the drift space
between the two cavities, each electron moves at a constant velocity given
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by this equation for its particular value of f,. This behavior has been
depicted in the Applegate diagram of Figure 9-1.

Assuming a separation ! between the centers of the input and output
cavity gaps, the time of arrival ¢ of a particular electron at the output
cavity is given by the expression:

t— 1t =

l

MA .
u,,(l + 57, sin wto>
Let us make the simplifying assumption that the input cavity voltage
amplitude is much less than the dc beam voltage. This will be true in most
cases, except for some very high power tubes. The second term in the

(9.1-12)

e+

®
+
nly

W(OUTPUT GAP ARRIVAL TIME) IN RADIANS
[\ ]
'

Ny @

-7 - o T 4
2 2
W(INPUT GAP DEPARTURE TIME) IN RADIANS
Fic. 9.1-2 Output-gap arrival time plotted vs. the time of departure from the input
gap for various values of X, the bunching parameter, defined by Equation (9.1-14).

6 is the dc transit angle. For X greater than unity, some electrons leaving the input
gap at three different instants arrive at the same instant at the output gap.
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denominator is thus much less than unity, and Equation (9.1-12) can be
approximately written as

l MA .
t— i, = Jo(l - E 'I—/-;Sln wto) (91-13)

or, in terms of radians,

MA .
wt — wl, = 0(1 — 5‘ -17;811’1 wt,)

=@ — X sin wi, . (9.1-14)

where 8 = wl/u, is the de tradsit angle between cavities, and X = (M/2)
(A/V,)8 is a parameter known as the bunching parameter.

In Figure 9.1-2 are plotted curves showihg output-gap arrival time as a
function of input-gap departure time over one rf cycle, for various values of
the bunching parameter. One notes that for values of the bunching param-
eter greater than unity, the departure time is a multivalued function of the
arrival time for electrons near the bunch center. However, the arrival time
is always a single-valued function of the departure time.

Let us first consider the situation for X less than unity. The instantane-
ous current reaching the output cavity can be written as

i) = %‘—It 9.1-15)

where dg is the amount of charge arriving at the output cavity in a time
interval d¢. In Figure 9.1-2 the ordinate and abscissa are proportional to ¢
and £,, respectively. We see from this figure that the amount of charge
arriving in a time df can be related to the corresponding departure time
interval df, by

dg = —1.dt, (9.1-16)

since electrons leave the input cavity evenly spaced at a rate given by the
de current. The minus sign is used so that I, may be a positive quantity;
dg is of course negative for electrons.

Substituting Equation (9.1-16) into Equation (9.1-15), we obtain

dt,
“dt

where the derivative is obtained simply by measuring slopes on the curve of
Figure 9.1-2. Current waveforms for several values of the bunching
parameter are shown in Figure 9.1-3. Infinite current peaks are obtained at
the arrival times for which the curves of Figure 9.1-2 have zero slope.

For values of the bunching parameter greater than unity, the fact that
the curve of Figure 9.1-2 is multivalued results in three values of slope for a

i) = -1 (9.1-17)
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~-i(t) X=0

-i{t) X=0.5

UL
JOUJOL-

TIME —>

F1e. 9.1-3 Beam current waveforms at the output gap. For X greater than or equal

to unity, infinite peaks are obtained at the points corresponding to zero slope in

Figure 9.1-2. In an actual tube, these peaks though large would remain finite be-
cause of the space-charge forces.

given arrival time near the bunch center. This situation is easily handled
as follows. Since Equation (9.1-16) must include the total chargbz;or a
given arrival time, we must include a term for each of the three departure
times; thus

dq = '_Io [dtall + dto|2 + dtol:i] (9~1'18)
Corresponding to Equation (9.1-17), we obtain
. dt, dt, dt,
i(t) = —Io[ E’ . + 715 . + 'Zi‘t' 3] (9.1-19)

In each case, the absolute value of the derivative must be taken. Physically
this corresponds to the fact that the charge incrementdg has the same sign
regardless of the sequence of arrival of ¢€lectrons. A negative value of
dt,/dt merely indicates that electronswhich left the input cavity last arrive
at the output cavity first; dg always has a negative value.

The current waveforms of Figure 9.1-3 may be Fourier analyzed to
determine the fundamental component and the various harmonics. This
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could be done graphically. However, it is possible to solve this problem
analytically. We shall proceed with such an analysis.
The current at the output gap can be written as the Fourier series:

i@t) = —I,+ Zl[a,, cos n(wt — 8) + b, sinn(wt — 6)] (9.1-20)
where

1 (ax g
an == / 1(t) cos n(wt — 0)d(wt)

0—x

and
1 0+x
b, = ;/; (8 sin n(wt — 0)d(wt)

Let us consider first the situation for X less than unity, so that the curves of
Figure 9.1-2 are single-valued.

It will be convenient to change the variable of integration from arrival
time to departure time. Equation (9.1-17) gives us

i()d(wt) = —ILd(wto) 9.1-21)

From Figure 9.1-2, we see that the limits of integration become —= to +m.
When Equations (9.1-21) and (9.1-14) are substituted into the above
integrals, we obtain

An = —%—’/ cos n(wt, — X sin wi,)d{wt,)
and
I, (7 . .
bp = s sin n(wt, — X sin wto)d(wto) (9.1-22)

b is identically equal to zero since the integrand is an odd function of wi,.
The definite integral in the expression for a. is given by a Bessel function:'

T

cos n(wt, — X sin wio)d(wts) (9.1-23)

o (nX) = f
K
Equation (9.1-20) thus becomes
i) = —1, — 21, Y, J.(nX) cos n{wt — 6) (9.1-24)
n=1

For values of X greater than unity, the same expression is obtained. This
is shown in Appendix XV. For small values of X, J1(X) = X/2and J.(nX)

1Reference 9.1, p. 150.
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_is very small for n > 1. Equation (9.1-24) then becomes () = —1I,
[1 + X cos (wt — 8)] for small X and hence for small input signals.

Equation (9.1-24) shows that the various harmonics in the bunched beam
have amplitudes proportional to Bessel functions of order n, where n is the
0.6
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Fia. 9.1-4 Bessel functions of various orders. The maximum value of J; occurs at
X = 1.84 and is equal to 0.582.

same as the harmonic. These Bessel functions are plotted in Figure 9.1-4.
Since the abscissa in this figure is proportional to the transit time between
cavities, we can adjust either the beam velocity or the distance between
cavities so as to obtain a maximum amplitude for any of the harmonics.
For an amplifier, we would make X equal to 1.84 so as to peak the funda-
mental component at the output cavity. On the other hand, it is also
possible to use the tube of Figure 9-2 as a harmonic generator, in which case
we would choose the transit time to correspond to the peak of one of the
higher-order Bessel functions of Figure 9.1-4. Since these other peaks are
nearly as large as that of the fundamental, the two-cavity klystron can be
a very efficient harmonic generator. Of course, the output cavity would be
tuned to the harmonic frequency.

Since the electrons become bunched about an electron which passed
through the input cavity when the voltage across the input cavity was
changing from decelerating the electrons to accelerating them, the center of
the electron bunch arrives at the output cavity delayed by the de transit
angle, but advanced by =/2. This can also be seen by comparison of the
phase of the voltage applied to the input cavity with the phase of the funda-
mental component in Equation (9.1-24).
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(¢) Current Induced in the Output Cavity by the Bunched Beam

To complete the deseription of klystron interaction, we must consider the
current induced in the output cavity by the bunched beam. This problem
has already been considered in Section 7.1(a), where we have considered
the current induced by a modulated beam into a load connected between

two grids. Although the discussion

i(_d_)‘ presented in Chapter 7 was applied

to a tetrode, it might equally well be

applied to a klystron, where we in-

N terpret the pair of grids to be the

grids of a re-entrant cavity reso-
nator.

We shall find it convenient to
adopt the conventions for positive
gap voltage and induced current in-
- dicated in Figure 9.1-5. The direc-
l 1 tion for positive induced current is
opposite to that used in Chapters 6
and 7. In microwave tube work it is
customary to assume that the ac
component of beam current is posi-

—_—
DIRECTION
—_—— OF
- __, ELECTRON
FLOW

—_——— —— ———— ——

—_—— — e — ——

LI

Fic. 9.1-5 Convention for positive in-

duced current adopted in this chapter.

The induced current is equal to M times

the beam current modulation at the

center of the gap (in magnitude and
phase).

tive when directed from left to right.
Thus, the induced current indicated
in Figure 9.1-5 is positive when the
ac component of beam current is

positive.
From Equation (9.1-24), the dc and fundamental components of beam
current at the output cavity are given by

ity = —1I, 4 11c08 w(t — ui) 