INSTRUCTION MANUAL
ค \mathbb{N} MODEL 4
NMOS EPROM PROGRAMMER
R_{2}
1.0 INTRODUCTION 1
1.1 Description of Instrument 1
1.2 Supplied Equipment 2
1.3 Inspection Procedure 3
1.4 Fuses 4
1.5 Power Requirements 4
1.6 Grounding Requirements 6
1.7 Turn-on Procedure 7
1.8 Cleaning the Programmer 7
2.0 FEATURES 8
2.1 PROM Sockets 9
2.2 Programmer Memory 10
2.3 LED Display 11
2.4 Keypad 15
2.5 Mode Select Keys 16
2.6 I/O Interface 20
3.0 MODEL 4 OPERATING PROCEDURES 23
3.1 Turn-on Procedures 24
3.2 Basic Operating Theory 25
3.3 Clearing Programmer Memory 26
3.4 Select Device 27
3.5 Load Internal RAM from Master EPROM 29
3.6 Verify Master EPROM to Copy EPROM 32
3.7 Program Master EPROM into Copy EPROM. 35
3.8 Read/Alter Location 38
3.9 Emulate 42
3.10 Move Routine 44
3.11 Dump and List Routine 50
3.12 Receive from Serial Port 51
3.13 Checksum 53
3.14 Select Baud Rate 54
3.15 Jump Routine 55
Appendix A: Blank EPROM Checksums 56
Appendix B: Data Format 57
Appendix C: Device Pin-out Matrix 59
Appendix D: Calibration Procedure 60
Appendix E: Expected Programming Time 61
Appendix F : I/O Connection 62
Appendix G: I/O Schematic 63
Appendix $H:$ Control Summary 64
Appendix I: Decimal to Hex Conversion Chart 65
Appendix J: Error Codes 67

OPERATORS MANUAL

MODEL 4
NMOS EPROM PROGRAMMER

1.0 INTRODUCTION

1.1 `nstrument Description

The E-H Model 4 PROM Programmer is a stand alone, microprocessor controlled, NMOS EPROM Programmer.

It is designed to Program, Verify, and Modify all NMOS EPROMS, 2704 (4k) through the TI $128 k^{\prime}$ s.* The EPROM device selection is done using Software Personality. ${ }^{T M}$ No Personality Boards are required. Two simple keystrokes select the EPROM of your choice.

The Model 4 can be easily run by any operator, but has a tremendous software package to allow in-depth data manipulation using keyboard commands.

The compact design of the Model 4 permits it to be used as a portable field service instrument, yet is also suitable for use in laboratory and production line environments.

[^0]The Model 4 has everything necessary to make it a complete programming system. It contains $2 k x 8$ RAM which allows EPROM emulation and extensive move and list commands. The sockets are buffered and powered down (cold) after every operation.

The unit also comes standard with an RS232 and TTY serial I/O Interface allowing communication with a terminal, development system, etc.

The Model 4 is laid out for easy operation. The Hex Keypad is used to enter the device type, alter data, and enter commands for editing and emulate software. The 8 digit display shows address, master data and copy data simultaneously. The remaining five keys allow the operator to initialize the protrammer to the command mode using the Reset key, Load Master data into the RAM, Verify the Master to the Copy PROM and Program will automatically blank check the copy PROM, program it from the master using the manufacturers specifications and then verify it back to the Master. The Step key allows manual advance of the programmer, similar to a carriage return.

This manual explains the Model 4 operations in detail. Individual features are discussed in Section 2; operating instructions are given in Section 3.

1.2 Supplied Equipment

The standard accessories supplied with each Model 4 are listed in Table l-1. Optional Accessories are listed in Table 1-2.

TABLE l-1
STANDARD EQUIPMENT SUPPLIED

Descriptior Quantity E-H Part No.

Instruction Manual	1	$148-07718$
Power Cord	1	$786-00020$
Envelope	1	$800-00032$

TABLE 1-2
OPTIONAL ACCESSORIES

Description Quantity E-H Part No.

Emulation Cable	1	$747-00301$
Porto-case	1	$891-00052$
28 Pin Sockets	1	$495-00088$

1.3 Inspection Procedure

The inspection procedure allows you to verify that your programmer is in the best possible condition
upon receipt.

The programmer was carefully packaged to prevent any possible shipping damage. It should, therefore, arrive free of any defect, electrical or mechanical, without marks or scratches, and in perfect operating condition. Carefully inspect the programmer for any damage that may have occurred in transit, and also check that the accessories listed in Table l-2 if ordered are present. If there is any physical damage, file a claim with the carrier and notify E-H International.

Check programmer operation only after performing the turn-on procedure, which is detailed later in this section.

1.4 Fuses

The programmer has one fuse. It is located on the rear panel. The line fuse is a one half amp (slow blow) 3AG.

CAUTION: Before changing fuse, disconnect the programmer from power source.
1.5 Power Requirements

The Programmer has the following power requirements. 1.5.1 Line Voltage: Nominally 100 , 115 , or 230 volts ac. Voltage selection is made on a
barrier strip connected to the base of the programmer. An operating voltage is preselected at the factory. If it is necessary to change operating voltage, refer to Figure 1-1 for instructions. At each voltage (100, 115, or 230) the programmer will operate with the line voltage within $\pm 10 \%$ of the indicated voltage. The operating voltage ranges are, therefore, 90 to 110 volts, 105 to 130 volts, or 210 to 255 volts.

FIGURE 1-1

TABLE 1-3
SELECTION OF OPERATING VOLTAGE

1. Remove top panel by removing the two front feet and two screws at the back panel.
2. Move the clips to wire 4 and 5 for 100 , to wire five and six for 115 or six and seven for 230.
3. Reinstall top panel.
4. Before applying power, check to see proper line fuse is installed.
1.5.2 Line Frequency: Nominally 50 Hertz to 60 Hertz; the programmer will operate within the range 48 to 66 Hertz.
1.5.3 Power Consumption: Maximum power consumption is 30 watts.

1.6 Grounding Requirements

The programmer is designed for operation from a single phase, three wire power source.

CAUTION: It is not intended for operation from two phases of a multi-phase system, or across the legs of a single-phase, three-wire system.

When the power cord is connect into a three-wire AC power sytem, the round connector serves to ground

> the programmer chassis and keyboard, eliminating potential shock hazards. If a three-to-two wire adapter is used to connect the programmer to a twowire AC system, the ground lead of the adapter should be connected to earth (ground) to complete the ground system; failure to do so may cause a potential shock hazard.

1.7 Turn-on Procedure

Set the POWER switch to the OFF position. Connect the power cord to the power input connector at the rear of the programmer and plug the other end into a suitable AC power outlet. Switch Power ON; a small "d" will be displayed. The system is now ready for the first command to be entered from the Hex Keypad. See "Device Select."

1.8 Cleaning the Programmer

Clean the programmer using a soft cloth, dampened in clean water containing a mild detergent. Do not use an excessively wet cloth or allow water to penetrate inside the programmer. Do not use any abrasive materials, especially on the display panel.

2.0 FEATURES

This section contains a basic, general discussion of the Model 4 PROM Programmer's features. The information contained here assumes no prior knowledge of the Model 4 and is intended to provide basic information needed to understand material in the following sections.

Figure 2-1 is a representation of the Model 4 Programmer.

FIGURE 2-1

The programmer is divided into the following functional divisions:

$$
\begin{aligned}
2.1 & \text { PROM Sockets } \\
2.2 & \text { Programmer Memory } \\
2.3 & \text { LED Display } \\
& \text { Address } \\
& \text { Data } \\
2.4 & \text { Keypad } \\
2.5 & \text { Mode Select Keys } \\
& \text { Reset } \\
& \text { Load } \\
& \text { Verify } \\
& \text { Program } \\
& \text { Step } \\
2.6 & \text { I/O Interface }
\end{aligned}
$$

2.1 PROM Sockets
The Master and Copy sockets are both 28 pin zero in-sertion force sockets, mounted on mother sockets foreasy replacement when worn. The Sockets are set upto handle the 2704 (4k) thru the $T I$ l28k's. The.$4 k$ thru $32 k$ PROMS are 24 pin devices and are placedinto the socket as illustrated in Figure 2-2.

The top four holes are blocked off from use until the 64 k and 128 k PROMS are used. When the 28 pin device is to be used, remove the spacer and place the device in the socket as illustrated in Figure 2-2.

The sockets are fully buffered from the microprocessor. No power is applied to the devices in the socket until an operation is started.

2.2 Programmer Memory

The programmer contains 16,384 bits of Random Access Memory (RAM), which is used as a temporary buffer for data storage. It is organizaed 2048 words by 8 bits wide.
and "RAM" are used interchangeably.

The RAM may be loaded with data from the keyboard, from a preprogrammed PROM, or from the serial I/O interface. Data in the RAM may be output either to a PROM or thru the serial I/O. In the verify mode, RAM contents may be compared to contents of a PROM or external peripheral.

Programmer memory is volatile, meaning that memory contents are lost in the absence of AC power.

2.3 LED Display

The display is an 8-digit display. It shows the device type in operation or current operation mode. Also, the Read/Alter mode the display contains the address, Master data and Copy data.

A "B" is displayed as "b" (small B). A "D" is displayed "d". The remaining hex digits are displayed in the normal manner.
2.3.1 Device Type: When the Model 4 is first powered up a "d" shows up in the display.

See Operating Instructions Section 3 for device select. See Table 2-1 for codes.

TABLE 2-1
DEVICE DESIGNATORS

When the unit is first powered on, the display shows a "d" in the window requesting the device type. By depressing a "d" and then a "l" through "A" on the keypad the following devices can be selected: Device Selection:

$$
\text { Triple Supply Dl - } 2704
$$

D2 - 2708
D3 - 2716
Single Supply D4 - 2508/2758
D5 - 2516/2716
D6 - 2532
D7-2732
D8 - 2564
D9 - 2764
DA - TI 128K

Once a device selection number is entered on the keypad, the device type and the number of the device is displayed.

This holds true in all of the devices as they are selected. The device will stay selected until the programmer is powered "off" or a new device is selected.
2.3.2 Operating Mode: The letters in this section appear in the display as that operation is being executed.

TABLE 2-2

OPERATING MODES

For detailed instructions of operating modes, see Section 3, Operating Instructions.

Example:
Load Sequence - When load is depressed an "A" goes into the display.

At the end of the load sequence, the Model 4 automatically does a checksum of the data. (See Checksum Calculation.)

Once the checksum is calculated, it is displayed along with the device select number at the end of the operation.

Alter data - To Alter data an "A" is depressed and then the address to be altered. Once the last Hex number is entered, the Address and the data at that address will be displayed. (FF)

0	0	0	0	F	F

\square

To Alter data the new information will be displayed as it is entered,in the Copy LED location. (00)

0	0	0	0	F	F

To place the new information into the RAM depress "step." This will enter data and step to the next address.

0	0	0	1	F	F

2.4 Keypad

The keypad contains sixteen keys arranged in a hexadecimal format ($0-9, A-F)$. It is used for both address and data entry, and the software control selection.

After a device has been selected the unit goes into a scan operation. It is looking for any entry from the keypad or control switches. When a key is depressed, the key is read and the microprocessor enters a wait state to allow the operator to release the key. If the key is still depressed at the end of the wait,
it is treated like a new keystroke. The debounce circuitry is set up to ensure a delibrate stroke is used on the keys. It will ignore a fast or light touch.

2.5 Mode Select Keys

The load, verify, program and step keys are scanned as part of the keypad. The same algorithms apply.
2.5.1 Reset: When the Reset key is depressed it pulls a halt on the microprocessor and initializes back into the command loop. Once a device has been selected, the reset key will not effect that selection and does not effect data in the RAM or change the baud rate. It's only function is to initialize the programmer back into the command loop.
2.5.2 Load (A): The System has 2 kx 8 of RAM as a standard feature. When "load" is depressed an "A" will be shown in the display. The Model 4 will then transfer data out of the Master PROM socket into the internal RAM. This is the load key's only function. If the EPROM is larger than 2 k ,you will need to specify which 2 k block should be loaded into the RAM. A prompt "b" is displayed, requesting a block designation be entered; a 1 means move 0000
thru 07 FF into the RAM, a 2 means move 0800 thru OFFF into RAM, etc. See the Load routine in the Operating Instructions.

When the Master Socket is empty and the Load key is depressed, it will clear the RAM to all ones (F's). See Appendix A for the Checksum Values of the different address spaces.

FIGURE 2-3

2.5.3 Verify (D): When Verify is depressed a "d" will be displayed. The Verify Key will verify the PROM in the Master Socket to the PROM in the Copy Socket. The verification is a byte by byte compare. Once the verification is complete, it will calculate and display the checksum of the copy in the display. To Verify

RAM data to the copy see Move Routine.
2.5.4 Program (C): When PROG is depressed, the programmer will transfer the data in the Master Socket into the copy socket. This is done in four continuous operations.
(1) The PROM is first checked to insure it is blank. During this operation a "b" is displayed.
(2) A good device will automatically go into the program operation and a "C" will be shown in the display.
(3) At the end of the manufacturers programming time, the programmer will automatically do a verify back to the Master. While in this operation it will display a "d" for verify.
(4) Then the checksum is calculated. A "CC" is displayed during this operation.
(5) Upon completion, the checksum and the device selection number is displayed.

If an error is detected during this sequence, the appropriate error loop is entered.

During the blank check if an illegal bit is located, the programmer will stop and display the address and copy data. To
check for other failures, depress the"step"key and the programmer will continue to the next failure. To continue into program and disregard the illegal bits, depress the "Program" key again. (2) If the error is detected in the verify operation, the programmer will stop and display the address, master and copy data. To check for other errors, depress the "Step" key. The programmer will automatically step to the next failure. After the last error the programmer will do a checksum of the copy PROM.
2.5.5 Step: The"Step"key is used to manually advance the programmer or to designate data flow size in the Dump and Receive Routines. It approximates a carriage return. (See Dump and Receive in the Operating Instructions.) In the manual advance operation, the key is used in the following manners.
(1) In the program or verify operation, if an error is located the step key will move to the next error in the PROM. It stops at each error until the complete PROM is verified.
(2) During the Alter operation, when the Step key is depressed the programmer will advance the address by one location. (See Alter Operation.) If an address is to
be changed, the new data entered on the keypad is inserted into the RAM when the "Step" key is depressed.

In the Dump and Receive Routines, the step key is used in the following manner:
(1) In the Dump Routine, depressing "B" and then"Step"will dump the RAM for the size of the device selected; i.e., 512 bytes if a Dl (2704) is selected.
(2) In the Receive Routine, depressing "F" and then"Step" will store the incoming data stream beginning at address 0000 in the RAM.

2.6 I/O Interface

The Model 4 comes standard with an RS232C and 20ma current loop serial interface. The 25 pin "D" connector is located on the back panel with pin 1 being on the outside upper row of the connector.

For communication cable connectors see Figure 2-4 and 2-5.

The serial to parallel conversion is done with the microprocessor. See Appendix G for schematic.

This restricts the intercharacter gap to 1.2 milliseconds in a receive to RAM and 57 milliseconds in a receive to copy. A clear to send to the programmer signal has been provided to allow the transmitting equipment to not over run the programmer in an interactive usage. The same effect is achieved by putting an appropriate delay, if required, in the transmitting equipment.

The chassis ground is tied to the signal ground which is tied to earth ground. The data set ready and carrier detect signals are constantly hi (+12v) to allow easy interface to equipment requiring these signals.

FIGURE 2-4
COMMUNICATION CABLE CONNECTION
RS232

25 PIN "D" CONNECTOR	
$\frac{\text { PIN }}{1}$	FUNCTION 2 Chassis gnd 3 Data into Programmer 5 Data out of Programmer 6 Clear to send to Programmer 7 Sata Set Ready 8 Carrier Detect.

The 20ma loop uses the same conventions as the RS232. The clear to send signal provides 20 ma to drive a reader relay to ensure the reader does not over run the programmer in a receive to copy usage. See the Schematic in Appendix G.

FIGURE 2-5 20MA LOOP	
25 P	" Connector
PIN	FUNCTION
5	Reader Relay (+)
9	Data out of programmer (+)
10	Data out of programmer (-)
11	Data into programmer (+)
12	Data into programmer (-)
25	Reader Relay (-)

See Appendix F for more detailed connection information.

3.0 MODEL 4 OPERATING PROCEDURES

This section explains operations with the Model 4 Portable PROM Programmer and assumes a basic familiarity with the information contained in the previous sections. Operating procedures are explained in detail, along with programmer response to the various key commands. Individual key functions are discussed in the context of desired operations but are not, however, discussed in detail. Refer to the previous section for functional details of the individual keys.

3.1 Turn-on Procedures

CAUTION: Prior to applying power to the programmer, always remove the PROM from the sockets, as voltage transients during power-up may damage sensitive PROM junctions. For the same reason, also remember to always remove the PROM prior to turning power off.

1. Assure that the line source voltage matches the preset input voltage of the programmer.
2. Plug one end of the power cord into the input voltage connection on the programmer rear panel; plug the other end into a suitably grounded voltage source.
3. Turn POWER ON.

After a slight pause, the programmer data display comes on showing a "d" into the display. Depressing "Reset" will force a "d" into the display.

An EPROM device must be selected before any operation is initiated.

3.2 Basic Operating Theory

The data paths are as follows:

1. Data can be moved from the Master PROM to the copy PROM, Internal RAM or the Serial I/O Port.
2. Data can be moved from the copy PROM to the RAM or the Serial I/O Port.
3. Data can be moved from the Internal RAM to the copy PROM or to the Serial I/O Port.
4. Data can be moved from the keyboard to the RAM or copy PROM.
5. As the data from the Master PROM, Internal RAM, or Serial I/O is being moved into the copy PROM it is programming the data and verifiying it against the data moved.

The following text explains each of the above operations in detail.

3.3 Clearing Programmer Memory

Programmer memory (RAM) may be "cleared" at any time. When memory is cleared, all resident data is erased and replaced with l's (FF in Hex).

On Power Up, the RAM will come up with random data at all of the addresses.

To clear the RAM: D3 or D5 will ensure that the entire 2kx8 RAM is cleared.

1. Select device type.
2. Leave the Master Socket empty.
3. Depress "Load."
4. The memory space of the device selected will be cleared to all l's. (FF in hexidecimal.)

Remember that the RAM is a volatile memory, meaning that stored data is lost in the absence of applied AC power. This means that the RAM is randomized by a power interrupt on the AC line just as if you manually turned power off, then on again.

Keyboard Entry and the five function keys:

The Model 4 is designed to be a very simple programmer to use with a very in-depth software package for data manipulation.

The keyboard and the function keys are all used to execute the software routines.

The following modes are all initiated using a function key, keypad key, or combination of the two.
3.4 Select Device
3.5 Load Internal RAM from Master EPROM
3.6 Verify Master EPROM to Copy EPROM
3.7 Program Master EPROM into Copy EPROM
3.8 Read/Alter location
3.9 Emulate
3.10 Move Routines
3.11 Dump/List to Serial Port
3.12 Receive from Serial Port
3.13 Checksum
3.14 Select Baud Rate
3.15 Jump Routine

Each operating mode is explained in detail in the following text.
3.4 Select Device

When the unit is first powered on, the display shows a "d" in the window, requesting the device type. By depressing a "D" and then a "l" through "A" on the keypad the following devices can be selected:

TABLE 3.1
DEVICE SELECTION

IMPORTANT: The unit will not function properly until a device has been selected.

Example: 1. Turn Power ON.

2. Select EPROM type - 2708. Enter a "D" then a "2". Programmer will respond with:

3. The EPROM is now selected. Any operation on a 2708 Device may now be initiated.

3.5 Load Internal RAM from Master EPROM

The "Load" key's only function is to transfer the Master EPROM data from the Master Socket into the RAM. As mentioned in the Clearing Programmer Memory section, when the Master Socket is empty and "Load" is depressed, all l's will be transfered into the memory space of RAM of the device selected.
"Load" is depressed, data in the EPROM is transfered into the Internal RAM.

If an EPROM that is larger than the RAM has been selected, the programmer will request which 2 k of the Master should be moved into the RAM. It will display:

TABLE 3.2
BLOCK MOVE DESIGNATOR

$\frac{\text { Designator }}{1}$	$\frac{\text { Address }}{2}$		Space
2	0000	-	07 FF
3	0800	-	0 FFF
4	1000	-	17 FF
5	1800	-	1 FFF
6	2000	-	27 FF
7	2800	-	2 FFF
8	3000	-	27 FF
	3800	-	3 FFF

Enter the appropriate designator, "l" through "8" on the keyboard.

At the end of the "Load" cycle, the Model 4 automatically does a checksum of the data transfered and at completion of the cycle, displays this 4 digit Hex number and the device selected number in the display. See Checksum Section for calculation techniques.

Example:

1. Select device type to be used, (D3-2716) depress "D" then "3". Programmer responds with:

| 2 | 7 | 1 | 6 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | d 3

2. Place Master EPROM (2716) into Master Socket. (Checksum of Master EPROM is 2FC5).
3. Depress "Load." Programmer displays "A" during the load operation.

4. At the end of the cycle, a "CC" will be quickly displayed as the unit is calculating the checksum.

5. When the cycle is complete, the checksum is displayed and device selection number.

Verify Master EPROM to Copy EPROM
The "Verify" key will verify only the Master EPROM socket to the COPY EPROM socket. Insert Master EPROM into Master socket and EPROM to be verified into Copy Socket. Depress the "Verify" key. If the two EPROM'S compare, the Model 4 will end the cycle with a checksum calculation and indicate complete with the checksum and device selection number being displayed.

d	3

If the two EPROM'S do not compare, the unit will stop at a failure and display the address, Master data, and Copy data.

To continue the verify operation until the next failure is reached, depress the "Step" key. The Model 4 will continue to compare the data until the next failure and then stop and again display the address that does not compare, the Master data, and the Copy data. When the Model 4 has shown all of the failures and completed the address space for the selected EPROM, the unit will display the checksum of the Copy EPROM and the device selection number.

The verify is done by comparing the data byte in the Master address space with the data byte in the copy address space. Hence a complete, bit to bit, verification is done.

Example: Verify - The two EPROMS compare.

1. Select device type (D5-2716). Programmer will respond with:

| 2 | 7 | 1 | 6 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| d | 5 |
| :--- | :--- |

2. Insert Master EPROM (checksum of 2FC5) into Master and EPROM to be verified into Copy socket.
3. Depress "Verify" - a "d" will be shown in the display while the verify operation is being completed.

4. At end of verify cycle a "CC is displayed while the unit is calculating a checksum.

c	c

5. At completion, the checksum and the device selection numbers are displayed.

| 2 | F | C | 5 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| d | 5 |
| :--- | :--- |

Example: Verify - Does not compare at address 0000 and 03FF

1. Select device type (D5-2716). Programmer will respond with:

2	7	1	6		

d	5

2. Insert Master EPROM (checksum of 2FC5) into Master socket and EPROM to be verified into Copy Socket.
3. Depress "Verify" - the Model 4 will stop at address 0000 and display Master data FF and Copy data 05.

| 0 | 0 | 0 | 0 | F | F |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| 0 | 5 |
| :--- | :--- |

This tells you that the information at this address does not compare.
4. To move to the next verify failure, depress "Step." When the Verify cycle is moving from one failure to another, nothing will be displayed in the window. The next failure is at address 03FF. The programmer will display:

5. Upon completion of the verify cycle, the checksum of the copy is calculated and displayed along with the device selection number.
2
A
$7 \mid 0$
\square

d	5

Notice the checksum of the Copy being displayed is not the same as the Master EPROM.

3.7 Program Master EPROM into Copy EPROM

When the "Prog" key is depressed, the data in the Master Socket is transfered into the copy socket. The "Prog" key will transfer data only from the Master Socket into the copy socket. Once the "Prog" key is depressed, the Model 4 does an automatic Blank check on the copy EPROM. During the blank check operation a "b" is displayed.

If the Copy EPROM passes blank check, the Model 4 automatically goes into the program cycle and displays a "C".

If the copy EPROM fails blank check, the programmer will stop, displaying address and copy data.

0	0	0	0		
1	1				

If the operator wants to continue into the program operation and overide the failure mode, simply depress the "Prog" key again.

To check the remainder of the PROM for non-compares, depress the "Step" key as mentioned in the verify section. If the operator "steps" through all of the blank check failures, the programmer will automatically continue into the program cycle.

At the completion of the manufacturers programming algorithm, the Model 4 will automatically do a verify cycle and compare the Master PROM to the Copy. Any address that does not compare will be displayed with the Master data and Copy data as mentioned in the verify operation. If the EPROM'S compare, the checksum of the device will be displayed along with the device selection number.

Example:

1. Select device type (D5-2716). Programmer will respond with:

| 2 | 7 | 1 | 6 | | | d 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2. Load Master EPROM and blank copy EPROM.
3. Depress "Prog."
4. Programmer first does a blank check. It will display a "b" during the operation:

5. If the copy is not blank, the programmer will display the address and copy data. An FF is assumed for the Master data.

0	0	0	0		

E	F

The Program cycle can be initiated by depressing "Prog" a again.

Further failures can be investigated by depressing "step" as explained in the preceeding text.
6. If the device passes, the unit will automatically go into the program cycle. It will display:

7. Upon completion of this cycle, the devices are automatically compared using a verify cycle.

8. If a failure is found, the programmer follows the verify failure conventions discussed in the verify section.
9. Upon a satisfactory completion of the operation, a checksum is calculated and displayed along with the device selection number.

3.8 Read/Alter Location

The Model 4 programmer is set up to Read and display any location, whether it is in the Master Socket, Copy socket or Internal RAM. This is done using a_{n} address location convention.

FIGURE 3-2

If the Int'ernal RAM is to be read, you simply depress "A" on the keyboard and the address you wish to read using 4 Hexidecimal digits. To read the data at address 0000, Depress "A", "O", "O", "O", "O" and the address and data automatically appears in the display.

The Master socket is read by adding 2000 hex to the EPROM relative address. For example, the data at lF6 in the EPROM that is in the Master socket is desired. Adding 01F6+2000 hex gives 2lF6. Depress "A", "2", "l", "F", "6". The programmer will respond with the relative address and the data at that address. The operator
must remember that the data came from the Master socket.

0	I	F	6	A	B

For another example, if an EPROM address in the Master socket of llF6 were desired, the total would be (2000+ llF6) equal to 31F6. Depress "A", "3", "l", "F", "6". The programmer would respond with:

\square

The copy socket is read by adding 4000 hex to the EPROM relative address, using the same conventions as discussed above.

To alter the address, you first call up the address using the read operation. ("A" + address) Once you have located the address to be changed, simply enter the new data and depress "step."

Addresses in the copy socket as well as the RAM can be read and modified. The single supply parts (D4-DA)
will program to the manufacturers specification.
Care must be taken when using this feature on the triple supply parts (D1 thru D3). The manufacturers specifically do not guarantee data retention on the

EPROM if the full program cycle is not used. The neighboring floating gates are pumped down while that address is being pumped up. It is useful in an engineering environment; however, when data retention is not a problem, the rest of the EPROM can be verified and time is of the essence. When permanent modifications on Dl-D3 are needed, use the $2 k x 8$ of Internal RAM and a move routine. See the Move Routine section.

Example:

1. Select device type (D5-2716).
2. Depress "A" and address 0000. When the last 0 has been depressed the address and data at that address is displayed.
3. To change the data, enter the new changes on the keyboard. As the new data is being entered (ll) it will be displayed in the copy window.

1	1

4. Depress "step." The unit will store the new data (11) into address 0000 and step to the next address.

5. To jump to another address out in the middle of the RAM or to go back and look at the address changed, depress "Reset." This will bring the programmer back into the command mode.

Depress "A" and the address you want to read. (0000)

0	0	0	0	1	1

	\square

3.9 Emulate

To use the EPROM emulation feature, a 24 pin double ended cable is needed. This is run from the Master socket on the Model 4 to the in-circuit PROM socket. To emulate a Master EPROM, you must enter the data in to the internal RAM using a "Load" routine or directly from the keyboard. Once the data is in the RAM, depress "E" and then "Step." When the "E" is depressed an "E" is displayed.

E					

\square

The next key selects between a software jump routine and the emulate feature. To continue into Emulate,
depress "Step." The programmer will respond with:

Power up the system to be debugged. The system is now reading the Internal RAM. To change data in the Model 4 RAM, depress the "reset" key and using the Read/Alter routine, alter the necessary addresses. To go back into the Emulate routine, depress "E" and the "Step."

Example:

1. Select device type (D5-2716).
2. Insert a Master EPROM into the Master Socket.
3. Depress "Load." The programmer will respond with:

4. Upon completion of the load cycle, a checksum and device selection number will appear in the display.

d	5

5. Depress "E" and then "Step."
6. Connect a 24 pin double ended cable to the Master Socket and the in-circuit socket.
7. Power up system under test.

The Emulation feature can be used in the complete $2 k x 8$ of RAM. Devices to be selected are the 2704 , 2708, 2716 triple supply; 2758, 2516, 2716 single supply.

Timing: Data will be valid within 650 ns after all the addresses and $C E$ are valid.

Inputs: CMOS loading and levels.
Outputs: Will drive 1 TTL load.

3.10 Move Routine

The Model 4 is set up to manipulate data using two different methods, $2 k$ block moves or generalized moves.

Block Moves: The block move routine is set up to stack $2 k$ blocks of data into a larger copy EPROM. Thus, if you are using a 4 kx 8 EPROM (2532), you can Program the lower 2 k and then the upper 2 k . The same move is used for 8 kx 8 (2564) and 16 kx 8 EPROM'S.

To initiate the Model 4 into a move routine, depress "A", and then "Prog." Then designate a block to be moved by depressing "B" and then a number "l" through "8". A "l" moves the 2 kx 8 of RAM into the lower 2 k
of data in the copy device. A "2" command moves the RAM data into the next 2 nd 2 k section of the Copy PROM and " 3 " into the 3rd section of the copy EPROM, etc. until the complete copy device selection is programmed.

TABLE 3-2
BLOCK MOVE DESIGNATOR

$\frac{\text { Designator }}{1}$	$\frac{\text { Address }}{}$		$\underline{\text { Space }}$
2	0000	-	$07 F F$
3	0800	-	$0 F F F$
4	1000	-	$17 F F$
5	1800	-	$1 F F F$
6	2000	-	$27 F F$
7	2800	-	$2 F F F$
8	3000	-	$37 F F$
	3800	-	$3 F F F$

IMPORTANT: The block move routine can only be used on a 32 k EPROM or larger. If a $D 6$ or above is not selected, you will get an error code. The smaller devices, Dl through D5, are moved enmass from the RAM to the copy by depressing "A", "Prog,","Step." The device address size is used because it is equal to or less than one $2 k x 8$ block.

Example: Moving two 2716's into one 2532

1. Select device type D5 (2716).
2. Insert Master 2716 into Master Socket.
3. Depress "Load." The $2 k x 8$ EPROM data is transfered into the RAM. The checksum of the Master device is displayed and the selected device number.

4. Take the 2716 out of the Master Socket.
5. Select device type D6-2532.
6. Insert a 2532 into the copy socket.
7. Depress "A" then "Prog."
8. Depress "B" then "l". When the "l" is entered, the programmer starts the move routine. An "AA" is shown in the display until the operation is complete.

9. At the end of the move routine, the Model 4 does a verify cycle, comparing the RAM data moved to the Copy EPROM programmed. If a failure is found, the unit stops and displays the address, RAM data, and copy data. (See Verify against a Master for conventions.) A pass verify will indicate complete by jumping back into the command loop and dis-
```
playing the device selected.
```

| 2 | 5 | 3 | 2 | | | d 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

10. Once the first 2 k block is moved take the 2532 out of the copy socket.
11. Select device type D5 (2716).
12. Start at Instruction 3 and continue through Instruction 7.
13. Depress "B" then "2".
14. Upon completion of the move and verify cycle the 2532 now contains the data of the two 2716's.

Generalized Moves: Any number of bytes can be moved from the Master Socket, Copy Socket, RAM or within the RAM. Using the address conventions used in the Read/ Alter routine, the data can be moved by designation of a beginning and ending address of the data to be moved and the beginning address of the destination. See Figure 3-2 for address conventions.

FIGURE 3-2
ADDRESS CONVENTIONS

Example: Move F hex addresses out of a D6 Master EPROM into the D6 Copy EPROM, insert one new byte of data and then move remainder of the Master EPROM up to the Copy.

1. Depress "A" then "Prog". This sets the programmer into the move routine.
2. Enter the beginning address to be moved $0000+2000=$ "2"e. "O", "O", "O".
3. Enter the ending address $000 \mathrm{~F}+2000=" 2$ ", "O", "O", "F".
4. Enter the beginning address of the designation. 0000+4000="4", "○", "○", "○".
5. An "AA" will appear in the display until the move is completed and verified.
6. Enter new data bit into address 0010 of the copy.

Depress "A" then 0010+4000="4", "O", "l", "O".

Enter new data, for example, "l", "l".
Depress "Step" to place new data at address 0010.
7. Depress "Reset" to get back into command loop.
8. Depress "A" then "Prog."
9. Enter the beginning address "2", "O", "l", "O". This designates the 0010 address of the Master.
10. Enter the ending address "2", "F", "F", "F".
11. Enter beginning address of destination. 0011+ $4000=44 ", ~ " 0 ", ~ " 1 ", ~ " 1 "$.
12. "AA" will appear in the diaply until the move operation is complete.

IMPORTANT: As the information is being transfered into the Copy it is being programmed to the manufacturers specification on the single supply parts, D4 thru DA. The triple supply parts, Dl thru D3, can only be programmed to manufacturers specifications with a block move ("A", "Prog", "Step") or a Master to Copy Program ("Prog"). They must be completely programmed in one continuous operation. Programming one address will tend to pump down adjacent floating gates while pumping up that one. These parts are entered and modified within RAM and then block moved into the copy.

Verify RAM to Copy:
RAM can be verified to the copy by depressing "A" and then "Verify." If D1 thru D5 is selected, the entire RAM is verified to the copy using the conventions discussed in the Ferify section. If a D6 or larger is selected, a block designator is requested using the conventions discussed in the Load section.

3.11 Dump and List Routine

Once the baud rate has been selected (See Baud Rate Select.) and the communication cable and data flow format have been made up and matched (See I/O Interface description and Data Format), the Model 4 is now ready to Dump or list data.

Using the address conventions as mentioned in the Read/Alter and Move routines, the operator can specify the address to be dumped by depressing "B" and then the beginning and ending address. Once the ending address is entered, the dump routine is started. To simplify the dumping of the complete Internal RAM, after depressing "B", depress "Step." This will dump the complete RAM of the device size selected.

Example: Dump RAM to terminal

1. Select device type (D5-2716).
2. "Load" Master EPROM into RAM.
3. Set terminal up to receive.
4. Depress "B" then "Step."
5. A "bb" will appear in the display until the dump sequence is over. At the end of the cycle a checksum is calculated on the data flow and displayed along with the device selection number.

List routine: A list routine has been supplied to give you address information on a dump sequence.

FIGURE 3-3
LIST FORMAT

| Address | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0000 | XX |
| 0010 | XX |

To initialize the List Routine, Depress "B", "Prog", " B ", and the beginning and ending address or just "Step", if you want to dump the complete device selected RAM.

At the end of the data flow a checksum will be calculated and displayed with the device selection number.

3.12 Receive from Serial Port

Once the baud rate has been selected (See Baud Rate Select), the communication cable and data flow format have been made up and matched (See I/O Interface and Data Format), the programmer is ready to receive data.

To set the Model 4 into the receive mode, depress "F" and then "Step." An "FF" will appear in the display showing a receive routine. Once the "Step" key is depressed,the Model 4 is scanning the serial I/O port looking for an SOH (01 Hex, Control A). Once that is received,it will load the data starting at address 0000 in the Internal RAM and continue until an ETX (03 Hex, Control C) is received.

To program the copy socket directly off the serial I/O, use the address conventions for the copy socket. Depress "F" and then "4", "O", "O", "O". The programmer will scan for an SOH and when received, will start programming the data flow starting at address 0000 in the copy socket.

The starting address can be selected anywhere in either the Internal RAM or copy socket by entering whatever address you want to start at, after you depress "F". Don't forget to add 4000 when using the copy socket.

IMPORTANT: As the information is being transfered into the Copy, it is being programmed to the manufacturers specifications on the single supply parts, D4 thru DA. The triple supply parts Dl thru D3, can only be programmed to manufacturers specifications with a block move ("A", "Prog", "Step") or a Master to Copy Program ("Prog"). They must be completely pro-
grammed in one continuous operation. Programming one address will tend to pump down adjacent floating gates while pumping up that one. These parts are entered and modified within RAM and then block moved into the copy.

3.13 Checksum

A checksum calculation is completed after every verify sequence or upon command.

Depressing "C" and then "l" gives you the checksum of the RAM. "C" and "2" gives you the checksum of the Master Socket and "C" and then the "3" gives you the checksum of the copy socket. See Figure 3-4.

TABLE 3-4
CHECKSUM DESIGNATORS

$\mathrm{Cl}=$	RAM
$\mathrm{C} 2=$	Master
	Socket
$\mathrm{C} 3=$	Copy
	Socket

The checksum is a four digit Hex number that is calculated by doing a summation of all the l's and 0's as shown in Figure 3-4. Two byte accuracy is
kept, with carries from the second byte truncated.

FIGURE 3-4

CHECKSUM CALCULATION

Utilizing this verification method insures the operator that the information being used is valid and also gives you a definite figure of merit with which to identify the parts. Every programmer manufacturer that does a checksum may not use the same summation method that is utilized in the Model 4. If this should happen, check the checksum on the Model 4 and document this new number on your device.

3.14 Select Baud Rate

When the Model 4 is first powered up, it automatically is set for 1200 baud. To change the baud rate to 110 . 300 , or 600 the following keys must be depressed. "B", "Prog", and a number from "l" to "4" corresponding to the baud rate you wish to select.

$$
\begin{aligned}
& 1=110 \\
& 2=300 \\
& 3=600 \\
& 4=1200
\end{aligned}
$$

Selection of 110 baud automatically enables the 20 ma current loop receiver. Selecting 300, 600, or 1200 enables the RS232 receiver.

Example:

1. To select 300 baud depress "B" and then "Prog." The display will show:

2. Depress a "2". This selects 300 baud.

3.15 Jump Routine

The programmer will jump to begin execution of an operator assigned address. Depress "E" and then "Prog." The programmer will respond with:

Enter the address of the first instruction. Use the address conventions discussed in the Read/Alter section.

The microprocessor is a Signetics 2650. See Signetics for programming information.

APPENDIX A

Designator	Device	Address Size	Checksum
D1	2704	512	FEOO
D2	2708	1024	FCOO
D3	2716	2048	F800
D4	2508/2758	1024	FCOO
D5	2516/2716	2048	F800
D6	2532	4096	FOOO
D7	2732	4096	FOOO
D8	2564	8192	E000
D9	2764	8192	E000
DA	TI 128 K	16384	C000

APPENDIX B

Data Format

The data format of the I / O stream is essentially ASCII Hex. The figure Bl shows the transmitted format. The receive routine looks for an SOH (01 Hex, Control A on the keyboard,) to start. It then stores the data, beginning at the appropriate address (See Receive Routine Section.) It ignores punctuation and control characters. It will drop into an error routine if it receives a non ASCII Hex character. When it receives an ETX (03 Hex, Control C on the keyboard), it displays the checksum (See section on Checksum.) and enters the command loop.

FIGURE B-2
TRANSMIT FORMAT

ASCII HEX

Description

Leader
Carriage Return
Line Feed
SOH
Data
Data
Space
Data
Data Space
-

\cdot
XX
XX
OD
OA
XX
XX
20

03

Data
Data
Carriage Return
Line Feed
Data
Data
Space
-
-
-
ETX

32 nulls
For formating on screen
Begin data (Control A)
$\begin{aligned} & \text { High order nibble } \\ & \text { Lo order nibble }\end{aligned}>$ First Address
$\begin{aligned} & \text { High order nibble } \\ & \text { Lo order nibble }\end{aligned}>$ Second Address
$\begin{aligned} & \text { High order nibble } \\ & \text { Low order nibble }\end{aligned}>16$ th Address
For formating on screen
High order nibble
Lo order nibble

End of Data (Control C)

APPENDIX D

CALIBRATION PROCEDURE

This procedure allows each of the supplies and timing generators to be measured. A maintenance manual is available from the factory for indepth repair. Compare values measured with those in the Device Pin Out Matrix.

1. Turn on power.
2. Select D2.
3. Depress "Prog." Programmer should drop into program cycle displaying a "C" in the display.
4. Measure Pin 26, 23, and 21.
5. Measure voltage and timing of pin 20.
6. Depress "Reset."
7. Select D5.
8. Depress "Prog."
9. Measure the timing of pin 20.

The previous procedure has checked Vcc (+5 v), VBB (-5 v), VDD (+12 v), $+25 v$ supply, 1 millisecond clock, and 50 ms clock. These measurements ensure the programmer is in calibration.

The system clock is used to time the I/O functions, not the program functions. If a calibration of the system clock is required, open the chassis and measure pin 38 of device A34, the 40 pin microprocessor. The clock should be 1 microsecond plus or minus 2%. It can be adjusted with the potentiometer near the microprocessor.

APPENDIX E

EXPECTED PROGRAMMING TIME

Designator	Device	Address	Minutes
D1	2704	512	1.5
D2	2708	1024	3
D3	TI2716	2048	6
D4	2508/2758	1024	1
D5	2516/2716	2048	2
D6	2532	4096	4
D7	2732	4096	4
D8	2564	8192	8
D9	2764	8192	8
DA	TII28K	16284	16

APPENDIX F

MINIMUM RS232 CONNECTION

FULL RS232 CONNECTION

20 MA CURRENT LOOP CONNECTION

APPENDIX G
I/O SCHEMATIC

Function
 Keystrokes

Device Select Load
Program
Verify
Read/Alter
Move
Block
General

Verify Checksum

Emulate
Jump
Baud Rate

Receive

Dump

List
DZ
LOAD
PROG
VERIFY
AXXXX STEP
YY STEP
$\mathrm{Z}=$ Device designator
Master to RAM
Master to copy
Master to copy
Note address convention
Alter

A PROG BZ
A PROG
XXXX
XXXX
XXXX
A VERIFY
Cl
C2
C3
E STEP
E PROG XXXX
B PROG 1
B PROG 2
B PROG 3
B PROG 4
F STEP
FXXXX
B STEP
B XXXXYYYY
B PROG B STEP XXXX YYYY
$\mathrm{Z}=\mathrm{Block}$ designator
Beginning address of data Ending address of data Beginning address of destination RAM to copy
Checksum of RAM
Checksum of Master Checksum of Copy

Address of first instruction
110 Baud, enable current loop
300 Baud, enable RS 232
600 Baud, enable RS 232
1200 Baud, enable RS 232, default Write data into RAM beginning at address 0000
Write data beginning at address XXXX Dump RAM beginning at address 0000 Dump beginning at XXXX and ending at YYYY
List RAM beginning at address 0000
List beginning at XXXX and ending at YYYY

Block Designator				

APPENDIX I

hexadecimal-decimal integer conversion table
The Table below provides for direct conversions between hexadecimal integers in the range C-3FF and tacimat integers in th: range $0-1023$. For converston of larger integers, the table values may be added to the following figures:

Dectmal	
1	024
2	048
4	096
8	192
12	288
16	384
20	480
24	575
28	672
32	768
36	864
40	960
45	056
49	152
53	248
57	344
61	440
65	536
89	632
73	728
77	824
81	920
86	016
90	112
94	208
98	304
102	400
106	496
110	592
114	688
118	784

Table $I-2$

	0	1	2	3	4	5	6	7	8	9	A	8	6	0	E	F
000	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	0070	0011	0012	0013	0014	0015
010	0016	0017	0018	0019	0020	0021	0022	0023	0024	0025	0025	0027	0028	0027	0030	2031
020	0032	0033	0034	0035	0036	0037	0038	0039	0040	0041	0042	0043	0044	0045	0646	0047
030	0048	0049	0050	0051	0052	0053	0054	0055	0056	0057	0058	0059	0060	0061	0062	0063
040	0064	0065	0056	0067	0068	0069	0070	0071	0072	0073	0074	0075	0076	0077	0078	0079
050	0080	0081	0082	0083	0084	0025	0086	0387	0088	0089	0090	0091	0092	0093	0094	0095
060	0098	0097	0098	0099	2100	0101	0102	-103	0104	0105	0105	0107	0108	0139	0110	01.1
070	0112	0113	0114	0115	0116	0117	0118	0119	0120	0121	0122	0123	0124	0125	0126	0127
080	0128	0129	0130	0131	0132	0133	0134	0135	0136	0137	0138	0139	0140	0141	0142	0143
090	0144	0145	0146	0147	0148	0149	0150	0151	0152	0153	0154	2155	0155	0157	0158	0159
080	0160	0161	0162	0163	0164	0165	0166	0167	0168	0169	0170	0171	0172	0173	0174	0175
080	0176	0177	0178	0179	0180	0181	0182	0183	0184	0185	0186	0187	0188	0189	0190	0191
060	1092	0193	0194	0195	0196	0197	0198	0199	0200	0201	0202	0203	0204	0205	0206	0207
000	0208	0209	0210	0211	0212	0213	0214	0215	0216	0217	0218	0219	0220	0221	0222	0223
OEO	0224	0225	0226	2227	0228	0229	0230	0231	0232	0233	0234	0235	0236	0237	2238	2039
OFO	0240	0241	0242	0243	0244	0245	0246	0247	0248	0249	0250	0251	0252	0253	0254	0255

I-1

I-2

APPENDIX J
 ERROR CODES

Eø1
Eø2
Eø3
Eø4
Eø5
Eø6
Eø7
Еø8
Eø9
E1ø
Ell
El2
E13
El4
E15
El6

First key was not a command key. Illegal first address digit for selected memory. Non Hex Entry. Any key other than "STEP" depressed at end of alter. Attempting to access beyond selected memory space. Illegal device select digit. First key was not "D" after power up. Illegal baud rate digit. Checksum error. Receive character error. Starting address greater than ending address.

Key other than step or B after load.
Illegal move destination.
Selected illegal block number for selected device. Selected block move for Dl-D5.

Illegal checksum key.

[^0]: *Assuming the EPROM manufacturers follow the announced pin out and standard program algorithm on the 64 k and $128 k$ parts.

