
W
MOTOROLA

intelligence everywhere digital dna

MOTOROLA. COM/SEMICONDUCTORS

HCSO8

Family Reference
Manual

HCS08RMv1/D
Rev. 1, 6/2003

e

EBVEtektronik
Planetenbaan 116
NL-3606 AK Maarssenbroek
Phone +31(0)346 58 30 10
Fax +31(0)346 58 30 25

www.ebucom I An Avnet Company

HCS08RMv1/D

HCSO8

Family Reference Manual

Volume 1

© MOTOROLA
intelligence everywhere digital dna„

Important Notice to Users

While every effort has been made to ensure the accuracy of all information in this
document, Motorola assumes no liability to any party for any loss or damage caused
by errors or omissions or by statements of any kind in this document, its updates,
supplements, or special editions, whether such errors are omissions or statements
resulting from negligence, accident, or any other cause. Motorola further assumes no
liability arising out of the application or use of any information, product, or system
described herein: nor any liability for incidental or consequential damages arising from
the use of this document. Motorola disclaims all warranties regarding the information
contained herein, whether expressed, implied, or statutory, including implied
warranties of merchantability or fitness for a particular purpose. Motorola makes no
representation that the interconnection of products in the manner described herein will
not infringe on existing or future patent rights, nor do the descriptions contained herein
imply the granting or license to make, use or sell equipment constructed in accordance
with this description.

Trademarks

This document includes these trademarks:

Motorola and the Motorola logo are registered trademarks
of Motorola, Inc.

Motorola, Inc., is an Equal Opportunity / Affirmative Action Employer.

This product incorporates SuperFlash° technology licensed from SST.

© Motorola, Inc., 2003; All Rights Reserved

Reference Manual — Volume I HCS08 — Revision 1

4 MOTOROLA

HCS08 Family Reference Manual

List of Sections

Section 1. General Information and Block Diagram . . .19

Section 2. Pins and Connections 25

Section 3. Modes of Operation 33

Section 4. On-Chip Memory 51

Section 5. Resets and Interrupts 91

Section 6. Central Processor Unit (CPU) 113

Section 7. Development Support 209

Appendix A. Instruction Set Details 293

Appendix B. Equate File Conventions 393

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA List of Sections 5

List of Sections

Reference Manual — Volume I HCSO8 — Revision 1

6 List of Sections MOTOROLA

HCS08 Family Reference Manual

Table of Contents

Section 1. General Information and Block Diagram

1.1 Introduction to the HCS08 Family of Microcontrollers 19

1.2 Programmer's Model for the HCS08 CPU 20

1.3 Peripheral Modules 21

1.4 Features of the MC9S08GB60 22
1.4.1 Standard Features of the HCS08 Family 22
1.4.2 Features of MC9S08GB60 MCU 23

1.5 Block Diagram of the MC9S08GB60 23

Section 2. Pins and Connections

2.1 Introduction 25

2.2 Recommended System Connections 25
2.2.1 Power 27
2.2.2 MC9S08GB60 Oscillator 27
2.2.3 Reset 29
2.2.4 Background/Mode Select (BKGD/MS) 29
2.2.5 General-Purpose I/O and Peripheral Ports 30

Section 3. Modes of Operation

3.1 Introduction 33

3.2 Features 33

3.3 Run Mode 34

3.4 Active Background Mode 34

3.5 Wait Mode 36

3.6 Stop Modes 37
3.6.1 Stop1 Mode 38

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Table of Contents 7

Table of Contents

3.6.2 Stop2 Mode 39
3.6.3 Stop3 Mode 40
3.6.4 Active BDM Enabled in Stop Mode 41
3.6.5 OSCSTEN Bit Set 41
3.6.6 LVD Enabled in Stop Mode 42
3.6.7 On-Chip Peripheral Modules in Stop Modes 42
3.6.8 System Options Register (SOPT) 45
3.6.9 System Power Management Status and Control 1

Register (SPMSCI) 46
3.6.10 System Power Management Status and Control 2

Register (SPMSC2) 48

Section 4. On-Chip Memory

4.1 Introduction 51

4.2 HCS08 Core-Defined Memory Map 51
4.2.1 HCS08 Memory Map 52
4.2.2 MC9S08GB60 Memory Map 54
4.2.3 Reset and Interrupt Vector Assignments 55

4.3 Register Addresses and Bit Assignments 57

4.4 RAM 63

4.5 60-Kbyte FLASH 63
4.5.1 Features 64
4.5.2 Program, Erase, and Blank Check Commands 65
4.5.3 Command Timing and Burst Programming 67
4.5.3.1 Rows and FLASH Organization 68
4.5.3.2 Program Command Timing Sequence 68
4.5.4 Access Errors 69
4.5.5 Vector Redirection 70
4.5.6 FLASH Block Protection (MC9S08GB60) 71

4.6 Security (MC9S08GB60) 72

4.7 FLASH Registers and Control Bits (MC9S08GB60) 74
4.7.1 FLASH Clock Divider Register (FCDIV) 74
4.7.2 FLASH Options Register (FOPT and NVFOPT) 76
4.7.3 FLASH Configuration Register (FCNFG) 77
4.7.4 FLASH Protection Register (FPROT and NVFPROT) 78
4.7.5 FLASH Status Register (FSTAT) 79

Reference Manual — Volume I HCS08 — Revision 1

8 Table of Contents MOTOROLA

Table of Contents

4.7.6 FLASH Command Register (FCMD) 81

4.8 FLASH Application Examples 82
4.8.1 Initialization of the FLASH Module Clock 83
4.8.2 Erase One 512-Byte Page in FLASH 84
4.8.3 DoOnStack Subroutine 86
4.8.4 SpSub Subroutine 88
4.8.5 Program One Byte of FLASH 89

Section 5. Resets and Interrupts

5.1 Introduction 91

5.2 Reset and Interrupt Features for MC9S08GB60 91

5.3 MCU Reset 92

5.4 Computer Operating Properly (COP) Watchdog 93

5.5 Interrupts 93
5.5.1 Interrupt Stack Frame 95
5.5.2 External Interrupt Request (IRQ) Pin 96
5.5.2.1 Pin Configuration Options 96
5.5.2.2 Edge and Level Sensitivity 97
5.5.3 Interrupt Vectors, Sources, and Local Masks 97

5.6 Low-Voltage Detect (LVD) System 99
5.6.1 Power-On Reset Operation 99
5.6.2 LVD Reset Operation 99
5.6.3 LVD Interrupt Operation 99
5.6.4 Low-Voltage Warning (LVW) 100

5.7 Real-Time Interrupt (RTI) 100

5.8 Reset, Interrupt, and System Control Registers and
Control Bits 100

5.8.1 Interrupt Request Status and Control Register (IRQSC) 101
5.8.2 System Reset Status Register (SRS) 103
5.8.3 System Background Debug Force Reset

Register (SBDFR) 105
5.8.4 System Options Register (SOFT) 105
5.8.5 System Device Identification Register (SDIDH, SDIDL) 107
5.8.6 System Real-Time Interrupt Status and Control

Register (SRTISC) 107

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Table of Contents 9

Table of Contents

5.8.7 System Power Management Status and Control 1
Register (SPMSCI) 109

5.8.8 System Power Management Status and Control 2
Register (SPMSC2) 111

Section 6. Central Processor Unit (CPU)

6.1 Introduction 113

6.2 Programmer's Model and CPU Registers 114
6.2.1 Accumulator (A) 115
6.2.2 Index Register (H:X) 116
6.2.3 Stack Pointer (SP) 118
6.2.4 Program Counter (PC) 122
6.2.5 Condition Code Register 122

6.3 Addressing Modes 131
6.3.1 Inherent Addressing Mode (INH) 132
6.3.2 Relative Addressing Mode (REL) 132
6.3.3 Immediate Addressing Mode (IMM) 133
6.3.4 Direct Addressing Mode (DIR) 134
6.3.5 Extended Addressing Mode (EXT) 135
6.3.6 Indexed Addressing Mode 135
6.3.6.1 Indexed, No Offset (IX) 135
6.3.6.2 Indexed, No Offset with Post Increment (IX+) 136
6.3.6.3 Indexed, 8-Bit Offset (IX1) 136
6.3.6.4 Indexed, 8-Bit Offset with Post Increment (IX1+) 136
6.3.6.5 Indexed, 16-Bit Offset (IX2) 136
6.3.6.6 SP-Relative, 8-Bit Offset (SP1) 137
6.3.6.7 SP-Relative, 16-Bit Offset (SP2) 138

6.4 Special Operations 138
6.4.1 Reset Sequence 139
6.4.2 Interrupts 140
6.4.3 Wait Mode 141
6.4.4 Stop Mode 142
6.4.5 Active Background Mode 142
6.4.6 User's View of a Bus Cycle 143

6.5 Instruction Set Description by Instruction Types 144
6.5.1 Data Movement Instructions 144
6.5.1.1 Loads and Stores 145

Reference Manual — Volume I HCS08 — Revision 1

10 Table of Contents MOTOROLA

Table of Contents

6.5.1.2 Bit Set and Bit Clear 148
6.5.1.3 Memory-to-Memory Moves 149
6.5.1.4 Register Transfers and Nibble Swap 150
6.5.2 Math Instructions 151
6.5.2.1 Add, Subtract, Multiply, and Divide 151
6.5.2.2 Increment, Decrement, Clear, and Negate 156
6.5.2.3 Compare and Test 156
6.5.2.4 BCD Arithmetic 156
6.5.3 Logical Operation Instructions 157
6.5.3.1 AND, OR, Exclusive-OR, and Complement 158
6.5.3.2 BIT Instruction 160
6.5.4 Shift and Rotate Instructions 160
6.5.5 Jump, Branch, and Loop Control Instructions 162
6.5.5.1 Unconditional Jump and Branch 164
6.5.5.2 Simple Branches 164
6.5.5.3 Signed Branches 165
6.5.5.4 Unsigned Branches 165
6.5.5.5 Bit Condition Branches 166
6.5.5.6 Loop Control 167
6.5.6 Stack-Related Instructions 168
6.5.7 Miscellaneous Instructions 173

6.6 Summary Instruction Table 176

6.7 Assembly Language Tutorial 186
6.7.1 Parts of a Listing Line 187
6.7.2 Assembler Directives 188
6.7.2.1 BASE - Set Default Number Base for Assembler 189
6.7.2.2 INCLUDE — Specify Additional Source Files 189
6.7.2.3 NOLIST/LIST —Turn Off or Turn On Listing 190
6.7.2.4 ORG - Set Program Starting Location 190
6.7.2.5 EQU — Equate a Label to a Value 192
6.7.2.6 dc.b — Define Byte-Sized Constants in Memory 192
6.7.2.7 dc.w — Define 16-Bit (Word) Constants in Memory 194
6.7.2.8 ds.b — Define Storage (Reserve) Memory Bytes 194
6.7.3 Labels 196
6.7.4 Expressions 198
6.7.5 Equate File Conventions 200
6.7.6 Object Code (S19) Files 201

HCS08 — Revision 1 Reference Manual — volume I

MOTOROLA Table of Contents 11

Table of Contents

Section 7. Development Support

7.1 Introduction 209

7.2 Features 210

7.3 Background Debug Controller (BDC) 212
7.3.1 BKGD Pin Description 213
7.3.2 Communication Details 215
7.3.2.1 BDC Communication Speed Considerations 215
7.3.2.2 Bit Timing Details 217
7.3.3 BDC Registers and Control Bits 220
7.3.3.1 BDC Status and Control Register 220
7.3.3.2 BDC Breakpoint Match Register 223
7.3.4 BDC Commands 223
7.3.4.1 SYNC — Request Timed Reference Pulse 226
7.3.4.2 ACK_ENABLE 227
7.3.4.3 ACK_DISABLE 227
7.3.4.4 BACKGROUND 228
7.3.4.5 READ_STATUS 228
7.3.4.6 WRITE_CONTROL 230
7.3.4.7 READ_BYTE 231
7.3.4.8 READ_BYTE_WS 232
7.3.4.9 READ_LAST 233
7.3.4.10 WRITE_BYTE 233
7.3.4.11 WRITE_BYTE_WS 234
7.3.4.12 READ_BKPT 235
7.3.4.13 WRITE_BKPT 235
7.3.4.14 GO 236
7.3.4.15 TRACEI 236
7.3.4.16 TAGGO 236
7.3.4.17 READ_A 237
7.3.4.18 READ_CCR 237
7.3.4.19 READ_PC 238
7.3.4.20 READ_HX 239
7.3.4.21 READ_SP 239
7.3.4.22 READ_NEXT 240
7.3.4.23 READ_NEXT_WS 241
7.3.4.24 WRITE_A 241
7.3.4.25 WRITE_CCR 242
7.3.4.26 WRITE_PC 242
7.3.4.27 WRITE_HX 242
7.3.4.28 WRITE_SP 243
7.3.4.29 WRITE_NEXT 243

Reference Manual — Volume I HCS08 — Revision 1

12 Table of Contents MOTOROLA

Table of Contents

7.3.4.30 WRITE_NEXT_WS 244
7.3.5 Serial Interface Hardware Handshake Protocol 245
7.3.6 Hardware Handshake Abort Procedure 248
7.3.7 BDC Hardware Breakpoint 253
7.3.8 Differences from M68HC12 BDM 254
7.3.8.1 8-Bit Architecture 255
7.3.8.2 Command Formats 255
7.3.8.3 Read and Write with Status 256
7.3.8.4 BDM Versus Stop and Wait Modes 257
7.3.8.5 SYNC Command 257
7.3.8.6 Hardware Breakpoint 258

7.4 Part Identification and BDC Force Reset 258
7.4.1 System Device Identification Registers (SDIDH:SDIDL) 259
7.4.2 System Background Debug Force Reset Register 260

7.5 On-Chip Debug System (DBG) 260
7.5.1 Comparators A and B 261
7.5.2 Bus Capture Information and FIFO Operation 262
7.5.3 Change-of-Flow information 264
7.5.4 Tag vs. Force Breakpoints and Triggers 265
7.5.5 CPU Breakpoint Requests 266
7.5.6 Trigger Modes 266
7.5.6.1 A-Only Trigger 268
7.5.6.2 A OR B Trigger 268
7.5.6.3 A Then B Trigger 268
7.5.6.4 Event-Only B Trigger (Store Data) 268
7.5.6.5 A Then Event-Only B Trigger (Store Data) 269
7.5.6.6 A AND B Data Trigger (Full Mode) 269
7.5.6.7 A AND NOT B Data Trigger (Full Mode) 269
7.5.6.8 Inside Range Trigger: A ≤ Address ≤ B 270
7.5.6.9 Outside Range Trigger: Address <A or Address > B 270
7.5.7 DBG Registers and Control Bits 270
7.5.7.1 Debug Comparator A High Register (DBGCAH) 271
7.5.7.2 Debug Comparator A Low Register (DBGCAL) 271
7.5.7.3 Debug Comparator B High Register (DBGCBH) 271
7.5.7.4 Debug Comparator B Low Register (DBGCBL) 271
7.5.7.5 Debug FIFO High Register (DBGFH) 272
7.5.7.6 Debug FIFO Low Register (DBGFL) 272
7.5.7.7 Debug Control Register 273
7.5.7.8 Debug Trigger Register 275
7.5.7.9 Debug Status Register 276

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Table of Contents 13

Table of Contents

7.5.8 Application Information and Examples 278
7.5.8.1 Orientation to the Debugger Examples 280
7.5.8.2 Example 1: Stop Execution at Address A 281
7.5.8.3 Example 2: Stop Execution at the Instruction at

Address A 282
7.5.8.4 Example 3: Stop Execution at the Instruction at

Address A or Address B 283
7.5.8.5 Example 4: Begin Trace at the Instruction at

Address A 284
7.5.8.6 Example 5: End Trace to Stop After A-Then-B

Sequence 285
7.5.8.7 Example 6: Begin Trace On Write of Data B to

Address A 286
7.5.8.8 Example 7: Capture the First Eight Values Read From

Address B 287
7.5.8.9 Example 8: Capture Values Written to Address B

After Address A Read 288
7.5.8.10 Example 9: Trigger On Any Execution Within a

Routine 289
7.5.8.11 Example 10: Trigger On Any Attempt To Execute

Outside FLASH 290
7.5.9 Hardware Breakpoints and ROM Patching 291

Appendix A. Instruction Set Details

A.1 Introduction 293

A.2 Nomenclature 293

A.3 Convention Definitions 298

A.4 Instruction Set 298
ADC Add with Carry 299
ADD Add without Carry 300
AIS Add Immediate Value (Signed) to Stack Pointer 301
AIX Add Immediate Value (Signed) to Index Register 302
AND Logical AND 303
ASL Arithmetic Shift Left 304
ASR Arithmetic Shift Right 305
BCC Branch if Carry Bit Clear 306
BCLR n Clear Bit n in Memory 307
BCS Branch if Carry Bit Set 308

Reference Manual — Volume I HCS08 — Revision 1

14 Table of Contents MOTOROLA

Table of Contents

BEQ Branch if Equal 309
BGE Branch if Greater Than or Equal To 310
BGND Background 311
BGT Branch if Greater Than 312
BHCC Branch if Half Carry Bit Clear 313
BHCS Branch if Half Carry Bit Set 314
BHI Branch if Higher 315
BHS Branch if Higher or Same 316
BIH Branch if IRQ Pin High 317
BIL Branch if IRQ Pin Low 318
BIT Bit Test 319
BLE Branch if Less Than or Equal To 320
BLO Branch if Lower 321
BLS Branch if Lower or Same 322
BLT Branch if Less Than 323
BMC Branch if Interrupt Mask Clear 324
BMI Branch if Minus 325
BMS Branch if Interrupt Mask Set 326
BNE Branch if Not Equal 327
BPL Branch if Plus 328
BRA Branch Always 329
BRCLR n Branch if Bit n in Memory Clear 331
BRN Branch Never 332
BRSET n Branch if Bit n in Memory Set 333
BSET n Set Bit n in Memory 334
BSR Branch to Subroutine 335
CBEQ Compare and Branch if Equal 336
CLC Clear Carry Bit 337
CLI Clear Interrupt Mask Bit 338
CLR Clear 339
CMP Compare Accumulator with Memory 340
COM Complement (One's Complement) 341
CPHX Compare Index Register with Memory 342
CPX Compare X (Index Register Low) with Memory 343
DAA Decimal Adjust Accumulator 344
DBNZ Decrement and Branch if Not Zero 346
DEC Decrement 347
DIV Divide 348

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Table of Contents 15

Table of Contents

FOR Exclusive-OR Memory with Accumulator 349
INC Increment 350
JMP Jump 351
JSR Jump to Subroutine 352
LDA Load Accumulator from Memory 353
LDHX Load Index Register from Memory 354
LDX Load X (Index Register Low) from Memory 355
LSL Logical Shift Left 356
LSR Logical Shift Right 357
MOV Move 358
MUL Unsigned Multiply 359
NEG Negate (Two's Complement) 360
NOP No Operation 361
NSA Nibble Swap Accumulator 362
ORA Inclusive-OR Accumulator and Memory 363
PSHA Push Accumulator onto Stack 364
PSHH Push H (Index Register High) onto Stack 365
PSHX Push X (Index Register Low) onto Stack 366
PULA Pull Accumulator from Stack 367
PULH Pull H (Index Register High) from Stack 368
PULX Pull X (Index Register Low) from Stack 369
ROL Rotate Left through Carry 370
ROR Rotate Right through Carry 371
ASP Reset Stack Pointer 372
RTI Return from Interrupt 373
RTS Return from Subroutine 374
SBC Subtract with Carry 375
SEC Set Carry Bit 376
SEI Set Interrupt Mask Bit 377
STA Store Accumulator in Memory 378
STHX Store Index Register 379
STOP Enable IRO Pin, Stop Processing 380
STX Store X (Index Register Low) in Memory 381

SUB Subtract 382
SWI Software Interrupt 383
TAP Transfer Accumulator to Processor Status Byte 384
TAX Transfer Accumulator to X (Index Register Low) 385
TPA Transfer Processor Status Byte to Accumulator 386

Reference Manual — Volume I HCS08 — Revision 1

16 Table of Contents MOTOROLA

Table of Contents

TST Test for Negative or Zero 387
TSX Transfer Stack Pointer to Index Register 388
TXA Transfer X (Index Register Low) to Accumulator 389
TXS Transfer Index Register to Stack Pointer 390
WAIT Enable Interrupts; Stop Processor 391

Appendix B. Equate File Conventions

B.1 Introduction 393

B.2 Memory Map Definition 394

B.3 Vector Definitions 395

B.4 Bits Defined in Two Ways 395

B.5 Complete Equate File for MC9S08GB60 397

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Table of Contents 17

Table of Contents

Reference Manual — Volume I HCS08 — Revision 1

18 Table of Contents MOTOROLA

HCS08 Family Reference Manual

Section 1. General Information and Block Diagram

1.1 Introduction to the HCS08 Family of Microcontrollers

Motorola's new HCS08 Family of microcontrollers, while containing new
instructions to implement rapid debugging and development, is still fully
compatible with all legacy code written for the M68HC08 Family. This
reference manual uses the MC9S08GB60, the first HCS08 Family
member, for describing applications and module behavior. When
working with another HCS08 Family MCU, refer to the device data sheet
for information specific to that MCU.

Each MCU device in the HCS08 Family consists of the HCS08 core plus
several memory and peripheral modules. The HCS08 core consists of:

• HCS08 CPU

• Background debug controller (BDC)

• Support for up to 32 interrupt/reset sources

• Chip-level address decode

The HCS08 CPU executes all HC08 instructions, as well as a
background (BGND) instruction and additional addressing modes on the
LDHX, STHX, and CPHX instructions to improve compiler efficiency.
The maximum clock speed for the CPU is 40 MHz (typically generated
from a crystal or internal clock generator). The CPU performs operations
at this 40 MHz rate and the maximum bus rate is 20 MHz (half the CPU
clock frequency). See Section 6. Central Processor Unit (CPU) for
more information.

The background debug controller (BDC) is built into the CPU core to
allow easier access to address generation circuits and CPU register
information. The BDC includes one hardware breakpoint. Other more
sophisticated breakpoints are normally included in the separate on-chip
debug module. The BDC allows access to internal register and memory

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA General Information and Block Diagram 19

General Information and Block Diagram

locations via a single pin on the MCU. See Section 7. Development
Support for more information.

The core includes support for up to 32 interrupt or reset sources with
separate vectors. The peripheral modules provide local interrupt enable
circuitry and flag registers. See Section 5. Resets and Interrupts for
more information.

Although the exact memory map for each derivative is different, some
basic aspects are controlled by decode logic in the HCSO8 core which is
not expected to change from one HCSO8 derivative to another. The
registers for input/output (I/O) ports and most control and status
registers for peripheral modules are located starting at $0000 and
extending for 32, 64, 96, or 128 bytes. The space from the end of these
direct page registers to $107F is reserved for static RAM memory. A
space starting at $1800 is reserved for high-page registers. These are
status and control registers that do not need to be accessed as often as
the direct page registers. For example, system setup registers that are
written only once after reset may be located in this high-register space
to make more room in the direct addressing space for registers and
RAM. The remaining space from $1 COO through $FFFF is reserved for
FLASH or ROM memory. The last 64 locations ($FFCO—$FFFF) are
further classified as vector space (for up to 32 interrupt and reset
vectors).

1.2 Programmer's Model for the HCSO8 CPU

The programmer's model for the HCSO8 CPU shown in Figure 1-1
includes the same registers as the M68HC08. These include one 8-bit
accumulator (A), a 16-bit index register made up of separately
accessible upper (H) and lower (X) 8-bit halves, a 16-bit stack pointer
(SP), a 16-bit program counter (PC) and an 8-bit condition code register
(CCR) which includes five processor status flags (V, H, N, Z, and C) and
the global interrupt mask (I).

Reference Manual — Volume I HCS08 — Revision 1

20 General Information and Block Diagram MOTOROLA

General Information and Block Diagram
Peripheral Modules

H

7 0

A

X

0
SP

0
J PC

0

ACCUMULATOR

16-BIT INDEX REGISTER H:X

INDEX REGISTER (HIGH)

15

INDEX REGISTER (LOW)

8 7
STACK POINTER

15
PROGRAM COUNTER

CONDITION CODE REGISTER
7
V 1 1 H I N Z C CCR

L CARRY
ZERO
NEGATIVE
INTERRUPT MASK
HALF-CARRY (FROM BIT 3)
TWO'S COMPLEMENT OVERFLOW

Figure 1-1. CPU Registers

1.3 Peripheral Modules

The combination of peripheral modules included on a specific derivative
can vary widely, however there will always be memory for programs and
data, and there will always be a clock module and debug module. Some
of the peripheral modules in the HCS08 Family include:

• 4K-60K byte FLASH or ROM memory

• 128-4K byte Static RAM

• Asynchronous serial I/O (SCI)

• Synchronous serial I/O (SPI and IIC)

• Timer/PWM modules (TPM)

• Keyboard interrupts (KBI)

• Analog to digital converter (ADC)

• Clock generation modules

— Full-featured internal clock generator (ICG) capable of
operation with no external components (frequency
multiplication is accomplished with a frequency-locked loop
(FLL) that does not use any external filter components)

— Traditional Pierce oscillator with no FLL or PLL (OSC)

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA General Information and Block Diagram 21

General Information and Block Diagram

• Debug module with nine trigger modes and bus capture FIFO
(DBG)

Always refer to the appropriate data sheet for more specific information
about the features in each HCS08 derivative MCU.

1.4 Features of the MC9S08GB60

The first device in the HCS08 Family is the MC9S08GB60 which is
presented here as a representative example of a derivative HCS08
MCU.

1.4.1 Standard Features of the HCS08 Family

• 40-MHz HCS08 CPU (central processor unit)

• HC08 instruction set with added BGND instruction

• Background debugging system

• Breakpoint capability to allow single breakpoint setting during
in-circuit debugging (plus two more breakpoints in on-chip debug
module)

• Debug module containing two comparators and nine trigger
modes. Eight deep FIFO for storing change-of-flow addresses and
event-only data. Debug module supports both tag and force
breakpoints.

• Support for up to 32 interrupt/reset sources

• Power-saving modes: wait plus three stops

• System protection features:

— Optional computer operating properly (COP) reset

— Low-voltage detection with reset or interrupt

— Illegal opcode detection with reset

— Illegal address detection with reset (some devices don't have
illegal addresses)

Reference Manual — Volume I HCS08 — Revision 1

22 General Information and Block Diagram MOTOROLA

General Information and Block Diagram
Block Diagram of the MC9S08GB60

1.4.2 Features of MC9S08GB60 MCU

• 60K on-chip in-circuit programmable FLASH memory with block
protection and security options

• 4K on-chip random-access memory (RAM)

• 8-channel, 10-bit analog-to-digital converter (ATD)

• Two serial communications interface modules (SCI)

• Serial peripheral interface module (SPI)

• Clock source options include crystal, resonator, external clock or
internally generated clock with precision NVM trimming

• Inter-integrated circuit bus module to operate up to 100 kbps (IIC)

• One 3-channel and one 5-channel 16-bit timer/pulse width
modulator (TPM) modules with selectable input capture, output
compare, and edge-aligned PWM capability on each channel.
Each timer module may be configured for buffered, centered PWM
(CPWM) on all channels (TPMx).

• 8-pin keyboard interrupt module (KBI)

• 16 high-current pins (limited by package dissipation)

• Software selectable pullups on ports when used as input.
Selection is on an individual port bit basis. During output mode,
pullups are disengaged.

• Internal pullup on RESET and IRQ pin to reduce customer system
cost

• 56 general-purpose input/output (I/O) pins, depending on package
selection

• 64-pin low-profile quad flat package (LQFP)

1.5 Block Diagram of the MC9S08GB60

Figure 1-2 is an overall block diagram of the MC9S08GB60 MCU
showing all major peripheral systems and all device pins. The
MC9S08GB60 is a representative device in the HCS08 Family.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA General Information and Block Diagram 23

General Information and Block Diagram

HCS08 CORE INTERNAL BUS

CPU INT

DEBUG
MODULE(DBG) BDC BKP

HCS08 SYSTEM CONTROL

RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT

8-BIT KEYBOARD
INTERRUPT MODULE (KBI) RESET

NOTE 4

IRQ
NOTES 2, 3 IIC MODULE (IIC)

RTI COP

IRO LVD
SERIAL COMMUNICATIONS
INTERFACE MODULE (SCII)

USER FLASH

SERIAL COMMUNICATIONS
INTERFACE MODULE (SCl2)

(GB60 = 61,268 BYTES)
(GB32 = 32,768 BYTES) N ✓

USER RAM 3-CHANNEL TIMER/PWM

(GB60 = 4096 BYTES) MODULE (TPM1)
(GB32 = 2048 BYTES)

VDDAD -~

VSSAD -*

5-CHANNEL TIMER/PWM
MODULE (TPM2) 10-BIT

ANALOG-TO-DIGITAL
VREFH CONVERTER (ATD)
VREFL _*

SERIAL PERIPHERAL
INTERFACE MODULE (SPI)

INTERNAL CLOCK
GENERATOR (ICG)

LOW-POWER OSCILLATOR

ADD -►

Vss
VOLTAGE
REGULATOR

C

C

C

C>

C>

C>

C>

C>

a

0 a

0

a

0

0 a-

0
uJ

a

U-

O a

(7

0 a

8
.4-*.- PTA7/KBIP7-

PTA0/KBIP0

8
PTB7/AD7-
PTB0IAD0

•4-► PTC7
H PTC6
! ► PTC5
H PTC4

PTC3/SCL
H PTC2/SDA
t-► PTC1/RxD2
<-► PTC0/TxD2

} NOTES 1,6

} NOTE 1

! ► PTD7/TPM2CH4
> PTD6/TPM2CH3

-4-► PTD5/TPM2CH2
4--► PTD4/TPM2CH1
 PTD3/TPM2CH0
F► PTD2/TPMICH2
 ► PTD1/TPMICHI

PTD0/TPM1 CH0

-4 ► PTE7
H PTE6
! ► PTE5/SPSCK

-.4--! PTE4/MOSI
-.4--► PTE3/MISO
-t ► PTE2/SS
! ► PTE1/RxD1

E---► PTE0/TxD1

NOTES 1, 5

NOTE 1

NOTE 1

8
.4-7t-►PTF7-PTF0 NOTES 1, 5

H PTG7
-4---- PTG6
F3► PTGS
-.4--► PTG4

-► PTG3
-4--► PTG2/EXTAL
t-► PTG1 /XTAL

PTG0/BKGD/MS

NOTES:
1. Port pins are software configurable with pullup device if input port.
2. Pin contains software configurable pullup/pulldown device if IRQ enabled (IRQPE = 1).
3. IRQ does not have a clamp diode to VDD. IRQ should not be driven above VDD.
4. Pin contains integrated pullup device.
5. High current drive
6. Pins PTA[7:4] contain software configurable pullup/pulldown device.

Figure 1-2. MC9S08GB60 Block Diagram

Reference Manual — Volume I

NOTE 1

HCS08 — Revision 1

24 General Information and Block Diagram MOTOROLA

HCS08 Family Reference Manual

Section 2. Pins and Connections

2.1 Introduction

This section shows basic connections that are common to typical
application systems. Additional details are provided for power, oscillator,
reset, mode, and background interface connections. The example
system uses the MC9S08GB60, which is a representative device in the
HCS08 Family.

On-chip peripheral systems share pins so that when a peripheral system
is not using a pin or pins, those pins may be used as general-purpose
input/output (I/O) pins. When planning system connections, the designer
should consider the reset condition of these pins, as well as the
characteristics of the pins after software has configured them for their
application purpose.

For example, a serial TxD pin would have the characteristics of an
actively driven CMOS output after the SCI transmitter is enabled.
However, between reset and when application software enables the SCI
transmitter, the pin will have the characteristics of a high-impedance
input. Although floating CMOS inputs are generally considered
undesirable, the delay from reset until the pins are reconfigured for other
functions is so short that this is almost never a serious concern in most
applications. If this is determined to be a problem, the user may need to
connect an external pullup resistor to such pins.

2.2 Recommended System Connections

Figure 2-1 shows pin connections that are common to most typical
HCS08 application systems. This particular example shows the
MC9S08GB60 because it is a representative device in the HCS08
Family. Always refer to the data sheet for a specific derivative to find
detailed information about unusual pins.

A more detailed discussion of system connections follows.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Pins and Connections 25

Pins and Connections

SYSTEM
POWER

3V

V20

CBLK = I C'BY
10µF T 0.1µF

I R
I

_ I Rs

i •- I
C21 X1 C1 i

L J

BACKGROUND HEADER
X X

00❑

OO

VREFH

UDDAD

VSSAD

VREFL
ADD

vss

XTAL
NOTE 2

EXTAL
NOTE 2

~

OPTIONAL
MANUAL
RESET

ASYNCHRONOUS
INTERRUPT

INPUT

T
{

PTGO/BKDG/MS t

PTG1/XTAL t

PTG2/EXTAL t

PTG3

PTG4

PTC5

PTG6

PTG7

NOTES:
1. Not required if

using the internal
oscillator option.

2. These are the
same pins as
PTG1 and PTG2.

3. BKGD/MS is the
same pin as PTGO.

PTFO

PTF1

PTF2

PTF3

PTF4

PTF5

PTF6

PTF7

ss08GB60

BKGD/MS
NOTE 3

RESET

IRO

PORT

F

PORT
A

PORT
B

PORT
C

PORT
D

PORT
E

> PTAO/KBIPO

 > PTA1/KBIP1

 ► PTA2/KBIP2

 ► PTA3/KBIP3

 ► PTA4/KBIP4

 ► PTA5/KBIP5

 > PTA6/KBIP6

PTA7/KBIP7

 ► PTBO/ADO

 > PTB1/AD1

 ► PTB2/AD2

 ► PTB3/AD3

 ► PTB4/AD4

 ► PTB5/AD5
 > PTB6/AD6

> PTB7/AD7

 ► PTCO/TxD2
PTC1/RxD2

 > PTC2/SDA

 ► PTC3/SCL

 ► PTC4
 ►- PTC5

 > PTC6

 ► PTC7

 ► PTDO/TPMICHO

PTD1/TPMICHI

 > PTD2/TPMICH2

 ► PTD3/TPM2CHO

 ► PTD4/TPM2CH1
 PTD5/TPM2CH2

► PTD6/TPM2CH3

 ► PTD7/TPM2CH4

Figure 2-1. Basic System Connections

 > PTEO/TxD1

 ► PTE1/RxD1

 ► PTE2/SS

PTE3/MISO

 P PTE4/MOST

 > PTE5/SPSCK

 ► PTE6

 ► PTE7

I/O AND

PERIPHERAL

INTERFACE TO

APPLICATION

SYSTEM

Reference Manual — Volume I HCS08 — Revision 1

26 Pins and Connections MOTOROLA

Pins and Connections
Recommended System Connections

The following paragraphs discuss system connections in more detail.

2.2.1 Power

Vpp and Vgg are the primary power supply pins for the HCS08 MCU.
This voltage source supplies power to all I/O buffer circuitry and to an
internal voltage regulator. This internal voltage regulator provides
regulated 2.5-volt (nominal) power to the CPU and other internal circuitry
of the MCU.

Typically, application systems have two separate capacitors across the
power pins. In this case, there should be a bulk electrolytic capacitor,
such as a 10-µF tantalum capacitor, to provide bulk charge storage for
the overall system and a 0.1-µF ceramic bypass capacitor located as
close to the MCU power pins as practical to suppress high-frequency
noise.

Due to the sub-micron process used, internal logic in the HCS08 MCU
uses a lower power supply voltage than earlier MCUs. In addition to
allowing the smaller layout geometry, this also has the benefit of
lowering overall system power requirements. This implies that an
on-chip voltage regulator is used to step down the voltage from the
external MCU supply voltage to the internal logic voltage.

VDDAD and VssAD are the analog power supply pins for the MCU. This
voltage source supplies power to the ATD. A 0.1-µF ceramic bypass
capacitor should be located as close to the MCU power pins as practical
to suppress high-frequency noise.

2.2.2 MC9S08GB60 Oscillator

This section describes the oscillator in the MC9S08GB60. Not all HCS08
derivatives use the same type of oscillator; some have no external
oscillator components. Always refer to the data sheet for a particular
HCS08 derivative for more details.

The MC9S08GB60 can be operated with no external crystal or oscillator.
When this occurs, the MCU uses an internally generated self-clocked
rate equivalent to about 8-MHz crystal rate. This frequency source is

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Pins and Connections 27

Pins and Connections

used during reset startup to avoid the need for a long crystal startup
delay.

The oscillator in the MC9S08GB60 is a traditional Pierce oscillator that
can accommodate a crystal or ceramic resonator in either of two

frequency ranges selected by the RANGE bit in the ICGC1 register. The
low range is 32 kHz to 100 kHz and the high range is 1 MHz to 16 MHz.

Rather than a crystal or ceramic resonator, an external oscillator with a
frequency up to 40 MHz can be connected to the EXTAL input pin and
the XTAL output pin must be left unconnected.

Refer to Figure 2-1 for the following discussion. RS (when used) and RF
should be low-inductance resistors such as carbon composition
resistors. Wire-wound resistors, and some metal film resistors, have too
much inductance. Cl and C2 normally should be high-quality ceramic
capacitors that are specifically designed for high-frequency applications.

RF is used to provide a bias path to keep the EXTAL input in its linear
range during crystal startup and its value is not generally critical. Typical
systems use 1 MQ to 10 M . Higher values are sensitive to humidity
and lower values reduce gain and (in extreme cases) could prevent
startup.

Cl and C2 are typically in the 5-pF to 25-pF range and are chosen to
match the requirements of a specific crystal or resonator. Be sure to take
into account printed circuit board (PCB) capacitance and MCU pin
capacitance when sizing Cl and O2. The crystal manufacturer typically
specifies a load capacitance which is the series combination of Cl and
C2 which are usually the same size. As a first-order approximation, use
10 pF as an estimate of combined pin and PCB capacitance for each
oscillator pin (EXTAL and XTAL).

Normally, RS is used for the 32-kHz to 100-kHz range. Use up to 10 kS2
or consult the crystal manufacturer for recommendations. Rg is not

normally needed for the 1-MHz to 16-MHz range and may be replaced
with a direct connection.

Reference Manual — Volume I HCS08 — Revision 1

28 Pins and Connections MOTOROLA

Pins and Connections
Recommended System Connections

2.2.3 Reset

Not all HCS08 derivatives have a reset pin. When there is no reset pin,
you can cause a reset by cycling power to force power-on reset (POR),
using a background command to write to the BDFR bit in the SBDFR
register, or using software to force something like an illegal opcode
reset.

In the MC9S08GB60, the reset pin is a dedicated pin with a pullup device
built in. It has input hysteresis, a 10-mA output driver, and no output slew
rate control. Internal power-on reset and low-voltage reset circuitry
typically make external reset circuitry unnecessary. This pin is normally
connected to the standard 6-pin background debug connector so a
development system can directly reset the MCU system. If desired, a
manual external reset can be added by supplying a simple switch to
ground (pull reset pin low to force a reset).

Whenever any reset is initiated (whether from an external signal or from
an internal system), the reset pin is driven low for about 4.25 µs,
released, and sampled again about 4.75 µs later. If reset was caused by
an internal source such as low-voltage reset or watchdog timeout, the
circuitry expects the reset pin sample to return a logic 1. If the pin is still
low at this sample point, the reset is assumed to be from an external
source. The reset circuitry decodes the cause of reset and records it by
setting a corresponding bit in the reset status register (SRS).

Never connect any significant capacitance to the reset pin because that
would interfere with the circuit and sequence that detects the source of
reset. If an external capacitance prevents the reset pin from rising to a
valid logic 1 before the reset sample point, all resets will appear to be
external resets.

2.2.4 Background/Mode Select (BKGD/MS)

The background/mode select (BKGD/MS) pin includes an internal pullup
device, input hysteresis, a 2-mA output driver, and no output slew rate
control. If nothing is connected to this pin, the MCU will enter normal
operating mode at the rising edge of reset. If a debug system is
connected to the 6-pin standard background debug header, it can hold

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Pins and Connections 29

Pins and Connections

BKGD/MS low during the rising edge of reset which forces the MCU to
active background mode.

The BKGD pin is used primarily for background debug controller (BDC)
communications using a custom protocol that uses 16 clock cycles of the
target MCU's BDC clock per bit time. The target MCU's BDC clock could
be as fast as the 20-MHz bus clock rate, so there should never be any
significant capacitance connected to the BKGD/MS pin that could
interfere with background serial communications.

Although the BKGD pin is a pseudo open-drain pin, the background
debug communication protocol provides brief, actively driven, high
speedup pulses to ensure fast rise times. Small capacitances from
cables and the absolute value of the internal pullup device play almost
no role in determining rise and fall times on the BKGD pin.

2.2.5 General-Purpose I/O and Peripheral Ports

Fifty-six pins on the MC9S08GB60 are shared among general-purpose
I/O and on-chip peripheral functions such as timers and serial I/O
systems. Immediately after reset, all 56 of these pins except
PTG0/BKGD/MS are configured as high-impedance general-purpose
inputs with internal pullup devices disabled. To avoid extra current drain
from floating input pins, the reset initialization routine in the application
program should either enable on-chip pullup devices or change the
direction of unused pins to outputs so the pins do not float.

For information about controlling these pins as general-purpose I/O pins
or, for information about how and when on-chip peripheral systems use
these pins, refer to the appropriate section from the data sheet for a
particular derivative.

When an on-chip peripheral system is controlling a pin, data direction
control bits still determine what is read from port data registers even
though the peripheral module controls the pin direction by controlling the
enable for the pin's output buffer.

Pullup enable bits for each of the 56 I/O pins control whether on-chip
pullup or pulldown devices are enabled whenever the pin is acting as an
input even if it is being controlled by an on-chip peripheral module.

Reference Manual — Volume I HCS08 — Revision 1

30 Pins and Connections MOTOROLA

Pins and Connections
Recommended System Connections

Sometimes a pulldown resistor is substituted for the pullup resistor
based on control bits, as in the MC9S08GB60 keyboard interrupt pins
and IRQ pin. When the PTA7—PTA4 pins are controlled by the KBI
module in the MC9S08GB60 and are configured for
rising-edge/high-level sensitivity, the pullup enable control bits enable
pulldown devices rather than pullup devices. Similarly, when the IRQ
input in the MC9S08GB60 and is set to detect rising edges, the pullup
enable control bit enables a pulldown device rather than a pullup device.

HCS08 outputs have software controlled slew rate. This feature allows
you to effectively choose between two output transistor sizes. When the
smaller size is chosen, the output switching slew rate is slower which
can result in lower EMI noise. The larger size can be selected where
speed of heavy loads are more important.

Some HCS08 output pins have high-current drivers capable of sourcing
or sinking on the order of 10 mA each (subject to a total chip I/O current.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Pins and Connections 31

Pins and Connections

Reference Manual — Volume I HCS08 — Revision 1

32 Pins and Connections MOTOROLA

HCS08 Family Reference Manual

Section 3. Modes of Operation

3.1 Introduction

This section discusses stop and wait power-saving modes, as well as
run mode versus the active background mode. Entry into each mode,
exit from each mode, and functionality while in each of the modes are
described.

An on-chip voltage regulator is a new feature of MCUs in Motorola's
HCS08 Family. The primary function of this regulator is to produce an
internal 2.5-volt logic power supply from the MCU's Vpp power supply.
This regulator has standby, passthrough, and power-down modes,
which are used to place an 9S08GB/GT into stopl, stop2, and stop3
modes. These modes and the related functions and registers are
discussed in this section. Since registers and control bits may not be
identical for all HCS08 derivatives, always refer to the data sheet for a
specific derivative for more information.

3.2 Features

• Run mode for normal user operation

• Active background mode for code development

• Wait mode:

— CPU shuts down to conserve power

— System clocks running

— Full voltage regulation maintained

• Stop modes:

— System clocks stopped; voltage regulator in standby

— Stop1 — Full power down of internal circuits for maximum
power savings

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 33

Modes of Operation

- Stop2 — Partial power down of internal circuits, RAM contents
retained

— Stop3 — All internal circuits powered for fast recovery

— Separate periodic wakeup clock can stay running in stop2,
stop3

— Oscillator can be left on to reduce crystal startup time in stop3

3.3 Run Mode

This is the normal operating mode for the 9S08GB/GT. This mode is
selected when the BKGD/MS pin is high at the rising edge of reset. In
this mode, the CPU executes code from internal memory with execution
beginning at the address fetched from memory at $FFFE:$FFFF after
reset.

3.4 Active Background Mode

The active background mode functions are managed through the
background debug controller (BDC) in the HCSO8 core. The BDC,
together with the on-chip debug module (DBG), provide the means for
analyzing MCU operation during software development.

Active background mode is entered in any of five ways:

• When the BKGD/MS pin is low at the rising edge of reset

• When a BACKGROUND command is received through the BKGD
pin

• When a BGND instruction is executed

• When encountering a BDC breakpoint

• When encountering a DBG breakpoint

Once in active background mode, the CPU is held in a suspended state
waiting for serial background commands rather than executing
instructions from the user's application program.

Reference Manual — Volume I HCS08 — Revision 1

34 Modes of Operation MOTOROLA

Modes of Operation
Active Background Mode

Background commands are of two types:

• Non-intrusive commands, defined as commands that can be
issued while the user program is running. Non-intrusive
commands can be issued through the BKGD pin while the MCU is
in run mode; non-intrusive commands can also be executed when
the MCU is in the active background mode. Non-intrusive
commands include:

— Memory access commands

— Memory-access-with-status commands

— BDC register access commands

— The BACKGROUND command

• Active background commands, which can only be executed while
the MCU is in active background mode. Active background
commands include commands to:

— Read or write CPU registers

— Trace one user program instruction at a time

— Leave active background mode to return to the user's
application program (GO)

The active background mode is used to program a bootloader or user
application program into the FLASH program memory before the MCU
is operated in run mode for the first time. When the 9S08GB/GT is
shipped from the Motorola factory, the FLASH program memory is
erased by default unless specifically noted so there is no program that
could be executed in run mode until the FLASH memory is initially
programmed. The active background mode can also be used to erase
and reprogram the FLASH memory after it has been previously
programmed.

Users may choose to use some other communication channel such as
the on-chip serial communications interface (SCI) to erase and
reprogram the FLASH memory. Typically, the user would program a
bootloader into the upper address locations of the FLASH. This
bootloader could allow execution of normal user application programs.
When some special sequence of characters is received through the SCI

HCSO8 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 35

Modes of Operation

or some special combination of I/O signals is detected, control can be

passed to the bootloader to allow FLASH erase and programming or
other debug operations.

The user decides the operation of the bootloader program because the
operation is not written and preprogrammed into the MCU by Motorola.
The user is free to write this program to do anything within the MCU's
capability. The function of this bootloader or other application programs
is primarily limited by the imagination of the programmer.

For additional information about the active background mode, refer to
Section 7. Development Support.

3.5 Wait Mode

Wait mode is entered by executing a WAIT instruction. Upon execution
of the WAIT instruction, the CPU enters a low-power state in which it is

not clocked. The I bit in CCR is cleared when the CPU enters the wait
mode, enabling interrupts. When an interrupt request occurs, the CPU
exits the wait mode and resumes processing, beginning with the
stacking operations leading to the interrupt service routine. Peripheral
modules can be disabled to conserve power in wait mode but a
peripheral must be enabled to be the source of an interrupt that will wake
the MCU from wait.

Only the BACKGROUND command and memory-access-with-status
commands are available when the MCU is in wait mode. The
memory-access-with-status commands do not allow memory access,
but they report an error indicating that the MCU is in either stop or wait
mode. The BACKGROUND command can be used to wake the MCU
from wait mode and enter active background mode.

Reference Manual — Volume I HCS08 — Revision 1

36 Modes of Operation MOTOROLA

Modes of Operation
Stop Modes

3.6 Stop Modes

One of three stop modes is entered upon execution of a STOP
instruction when the STOPE bit in the system option register is set. In all
stop modes, all internal clocks are halted. If the STOPE bit is not set
when the CPU executes a STOP instruction, the MCU will not enter any
of the stop modes and an illegal opcode reset is forced. The stop modes
are selected by setting the appropriate bits in the system power
management status and control 2 register (SPMSC2).

Table 3-1 summarizes the behavior of the MCU in each of the stop
modes.

Table 3-1. Stop Mode Behavior

Mode
CPU, Digital
Peripherals,

FLASH
RAM Clock

Module ATD KBI Regulator I/O Pins RTI

Stop Off Off Off Disabled Off Off Reset Off

Stop2 Off Standby Off Disabled Off Standby
States
held

Optionally on

Sto 3 P Standby Y Standby Y
Standby

(1) Disabled Optionally on P Y Standby Y
States
held

Optionally on P Y

1. crystal oscillator can be configured to run in stop3. Please see the ICG registers.

Normally, the interrupt input paths for the IRO and keyboard interrupt
inputs pass through clocked synchronization logic. Since there are no
clocks when the MCU is in stop mode, these synchronizers are
bypassed in stop mode so asynchronous inputs to IRQ for all stop
modes and keyboard interrupt inputs for stop3 can wake the MCU from
stop.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 37

Modes of Operation

Table 3-2 summarizes the configuration and exit conditions for stop 1,
stop2, and stop3.

Table 3-2. Stop Mode Selection and Source of Exit

Mode

SPMC2
Configuration Source of

Exit
Condition Upon Exit~1~

PDC PPDC

Stop1 1 0 IRO or reset POR

Stop2 1 1
IRO or reset,
RTI

FOR (PPDF bit set in
SPMSCR)

Stop3 0
Don't
care

IRQ or reset,
Rh, KBI

Either reset or normal
operation continues
from the interrupt vector

1. FOR is valid exit in all cases.

3.6.1 Stop1 Mode

Stop1 mode provides the lowest possible standby power consumption
by causing the internal circuitry of the MCU to be powered down. To
select entry into stop mode, the PDC bit in SPMSC2 must be set and
the PPDC bit in SPMSC2 must be clear upon execution of a STOP
instruction.

When the MCU is in stopl mode, all internal circuits that are powered

from the voltage regulator are turned off. The voltage regulator is in a
low-power standby state, as is the ATD.

Exit from stops is done by asserting either of the wake-up pins on the
MCU: RESET or IRQ. IRQ is always an active low input when the MCU
is in stops, regardless of how it was configured before entering stopl.

Entering stopl mode automatically asserts LVD. Stop1 cannot be exited
until VDD > VLvDH/L rising (VDD must rise above the LVI rearm voltage).

Upon wake-up from stop mode, the MCU will start up as from a
power-on reset (POR). The CPU will take the reset vector.

Reference Manual — Volume I HCS08 — Revision 1

38 Modes of Operation MOTOROLA

Modes of Operation
Stop Modes

3.6.2 Stop2 Mode

Stop2 mode provides very low standby power consumption and
maintains the contents of RAM and the current state of all of the I/O pins.
To select entry into stop2, the user must execute a STOP instruction
while the PPDC and PDC bits in SPMSC2 are set.

Before entering stop2 mode, the user can save the contents of the I/O
port registers, as well as any other memory-mapped registers which they
want to restore after exit of stop2, to locations in RAM. Upon exit of
stop2, these values can be restored by user software before pin driver
latches are opened.

When the MCU is in stop2 mode, all internal circuits that are powered
from the voltage regulator are turned off, except for the RAM. The
voltage regulator is in a low-power standby state, as is the ATD. Upon
entry into stop2, the states of the I/O pins are latched. The states are
held while in stop2 mode and after exiting stop2 mode until a logic 1 is
written to PPDACK in SPMSC2.

Exit from stop2 is done by asserting either of the wake-up pins: RESET
or IRQ, or by an RTI interrupt. IRQ is always an active low input when
the MCU is in stop2, regardless of how it was configured before entering
stop2. When the RTI is used to cause a wakeup event, a separate
self-clocked source (=1 kHz) for the real-time interrupt allows a wakeup
from stop2 or stop3 mode with no external components. When
RTIS2:RTISI:RTISO = 0:0:0, the real-time interrupt function and this
1-kHz source are disabled. Power consumption is lower when the 1-kHz
source is disabled.

Upon wake-up from stop2 mode, the MCU will start up as from a
power-on reset (POR) except pin states remain latched. The CPU will
take the reset vector. The system and all peripherals will be in their
default reset states and must be initialized.

After waking up from stop2, the PPDF bit in SPMSC2 is set. This flag
may be used to direct user code to go to stop2 recovery routine. PPDF
remains set and the I/O pin states remain latched until a logic 1 is written
to PPDACK in SPMSC2.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 39

Modes of Operation

To maintain I/O state for pins that were configured as general-purpose
I/O, the user must restore the contents of the I/O port registers, which
have been saved in RAM, to the port registers before writing to the
PPDACK bit. If the port registers are not restored from RAM before
writing to PPDACK, then the register bits will assume their reset states
when the I/O pin latches are opened and the I/O pins will switch to their
reset states.

For pins that were configured as peripheral I/O, the user must
reconfigure the peripheral module that interfaces to the pin before writing
to the PPDACK bit. If the peripheral module is not enabled before writing
to PPDACK, the pins will be controlled by their associated port control
registers when the I/O latches are opened.

3.6.3 Stop3 Mode

Upon entering stop3 mode, all of the clocks in the MCU, including the
oscillator itself, are halted. The clock module (ICG on the
MC9S08GB/GT) enters its standby state, as does the voltage regulator
and the ATD. The states of all of the internal registers and logic, as well
as the RAM content, are maintained. The I/O pin states are not latched
at the pin as in stop2. Instead they are maintained by virtue of the states
of the internal logic driving the pins being maintained.

Exit from stop3 is done by asserting RESET, an asynchronous interrupt
pin, or through the real-time interrupt. The asynchronous interrupt pins
are the IRQ or KBI pins.

If stop3 is exited by means of the RESET pin, then the MCU will be reset
and operation will resume after taking the reset vector. Exit by means of
an asynchronous interrupt or the real-time interrupt will result in the MCU
taking the appropriate interrupt vector.

A separate self-clocked source (=1 kHz) for the real-time interrupt allows
a wakeup from stop2 or stop3 mode with no external components. When
RTIS2:RTISI:RTIS0 = 0:0:0, the real-time interrupt function and this
1-kHz source are disabled. Power consumption is lower when the 1-kHz
source is disabled, but in that case the real-time interrupt cannot wake
the MCU from stop.

Reference Manual — Volume I HCS08 — Revision 1

40 Modes of Operation MOTOROLA

Modes of Operation
Stop Modes

3.6.4 Active BDM Enabled in Stop Mode

Entry into the active background mode from run mode is enabled if the
ENBDM bit in BDCSCR is set. This register is described in the
Section 7. Development Support section of this reference manual. If
ENBDM is set when the CPU executes a STOP instruction, the system
clocks to the background debug logic remain active when the MCU
enters stop mode so background debug communication is still possible.
In addition, the voltage regulator does not enter its low-power standby
state but maintains full internal regulation. If the user attempts to enter
either stopl or stop2 with ENBDM set, the MCU will instead enter stop3.

Most background commands are not available in stop mode. The
memory-access-with-status commands do not allow memory access,
but they report an error indicating that the MCU is in either stop or wait
mode. The BACKGROUND command can be used to wake the MCU
from stop and enter active background mode if the ENBDM bit is set.
Once in background debug mode, all background commands are
available. The table below summarizes the behavior of the MCU in stop
when entry into the background debug mode is enabled.

Table 3-3. BDM Enabled Stop Mode Behavior

Mode PDC PPDC
CPU, Digital
Peripherals,

FLASH
RAM

Clock
Module

ATD Regulator I/O Pins RTI

Stop3
Don't
care

Don't
care

Standby Standby Active Disabled Active
States
held

Optionally on

3.6.5 OSCSTEN Bit Set

When the oscillator is enabled in stop mode (OSCSTEN = 1), the
individual clock generators are enabled but the clock feed to the rest of
the MCU is turned off. This option is provided to avoid long oscillator
startup times if necessary.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 41

Modes of Operation

3.6.6 LVD Enabled in Stop Mode

The LVD system is capable of generating either an interrupt or a reset
when the supply voltage drops below the LVD voltage. If the LVD is
enabled in stop by setting the LVDE and the LVDSE bits in SPMSCI
when the CPU executes a STOP instruction, then the voltage regulator
remains active during stop mode. If the user attempts to enter either
stop or stop2 with the LVD enabled for stop (LVDSE = 1), the MCU will
instead enter stop3. The table below summarizes the behavior of the
MCU in stop when the LVD is enabled.

Table 3-4. LVD Enabled Stop Mode Behavior

Mode PDC PPDC
CPU, Digital
Peripherals,

FLASH
RAM

Clock
Module

ATD Regulator I/O Pins RhI

Stop3
Don't
care

Don't
care

Standby Standby Standby Disabled Active
States
held

Optionally on

3.6.7 On-Chip Peripheral Modules in Stop Modes

When the MCU enters any stop mode, system clocks to the internal
peripheral modules are stopped. Even in the exception case
(ENBDM = 1), where clocks are kept alive to the background debug
logic, clocks to the peripheral systems are halted to reduce power
consumption. Refer to 3.6.1 Stop1 Mode, 3.6.2 Stop2 Mode, and
3.6.3 Stop3 Mode for specific information on system behavior in stop
modes. The information provided here applies to the MC9S08GB60.
Consult the device-specific data sheet for information about another
MCU.

I/O Pins

• All I/O pin states remain unchanged when the MCU enters stop3
mode.

• If the MCU is configured to go into stop2 mode, all I/O pins states
are latched before entering stop.

• If the MCU is configured to go into stopl mode, all I/O pins are
forced to their default reset state upon entry into stop.

Reference Manual — volume I HCS08 — Revision 1

42 Modes of Operation MOTOROLA

Modes of Operation
Stop Modes

Memory

The contents of the FLASH memory are non-volatile and are preserved
in any of the stop modes.

• All RAM and register contents are preserved while the MCU is in
stop3 mode.

• All registers will be reset upon wake-up from stop2, but the
contents of RAM are preserved and pin states remain latched until
the PPDACK bit is written. The user may save any
memory-mapped register data into RAM before entering stop2
and restore the data upon exit from stop2.

• All registers will be reset upon wake-up from stopl and the
contents of RAM are not preserved. The MCU must be initialized
as upon reset.

ICG — In stop3 mode, the ICG enters its low-power standby state. Either
the oscillator or the internal reference may be kept running when the ICG
is in standby by setting the appropriate control bit (OSCSTEN). In both
stop2 and stops modes, the ICG is turned off. Neither the oscillator nor
the internal reference can be kept running in stop2 or stopl, even if
enabled within the ICG module. Upon exit from stops or stop2, the ICG
must be initialized as if from a POR. The digitally controlled oscillator
(DCO) in the ICG preserves previous frequency settings, allowing fast
frequency lock when recovering from stop3 mode.

CPU — On entry to stop mode, the CPU clocks are stopped and CPU
operation is halted. If the voltage regulator was not configured to go into
power-down mode and an interrupt wakes the CPU from stop, CPU
clocks are restored and the CPU resumes processing with the stacking
operation leading to the interrupt service routine. When an RTI
instruction is executed to return from this interrupt, the return address
takes the CPU back to the instruction that immediately follows the STOP
instruction. If the voltage regulator was powered down or a reset was
used to wake the MCU from stop mode, processing resumes by fetching
the reset vector.

TPM — When the MCU enters stop mode, the clock to the TPM1 and
TPM2 modules stop. The modules halt operation. If the MCU is

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 43

Modes of Operation

configured to go into stop2 or stopl mode, the TPM modules will be
reset upon wake-up from stop and must be reinitialized.

ATD — When the MCU enters stop mode, the ATD will enter a
low-power standby state. No conversion operation will occur while in
stop. If the MCU is configured to go into stop2 or stopl mode, the ATD
will be reset upon wake-up from stop and must be reinitialized.

KBI — During stop3, the KBI pins that are enabled continue to function
as interrupt sources that are capable of waking the MCU from stop3. The
KBI is disabled in stopl and stop2 and must be reinitialized after waking
up from either of these modes.

SCI — Take precautions to avoid going into stop mode while SCI
communications are in progress. Since clocks are stopped, any serial
character that was being received or sent will be stopped, causing the
communication to fail. No SCI characters can be received while the MCU
is stopped. When the MCU enters stop mode, the clocks to the SCI1 and
SC12 modules stop. The modules halt operation. If the MCU is
configured to go into stop2 or stopi mode, the SCI modules will be reset
upon wake-up from stop and must be reinitialized.

SPI — It would be unusual to go into stop mode while SPI
communications are in progress. Since clocks are stopped, any serial
transfer that was in progress will be stopped. Since the SPI is a
synchronous serial communication interface, there is no lower limit on
the communication speed. Although it would be unusual, a transfer that
was in progress when the MCU went into stop3 can resume after stop.
No SPI transfers can be completed while the MCU is stopped. When the
MCU enters stop mode, the clocks to the SPI module stop. The module
halts operation. If the MCU is configured to go into stop2 or stopl mode,
the SPI module will be reset upon wake-up from stop and must be
reinitialized.

IIC — When the MCU enters stop mode, the clocks to the IIC module

stop. The module halts operation. If the MCU is configured to go into
stop2 or stop mode, the IIC module will be reset upon wake-up from
stop and must be reinitialized.

Reference Manual — Volume I HCS08 — Revision 1

44 Modes of Operation MOTOROLA

Modes of Operation
Stop Modes

Voltage Regulator —The voltage regulator enters a low-power standby
state when the MCU enters any of the stop modes unless the LVD is
enabled in stop mode or BDM is enabled.

3.6.8 System Options Register (SOPT)

This register may be read at any time. Bits 3 and 2 are unimplemented
and always read 0. This is a write-once register so only the first write
after reset is honored. Any subsequent attempt to write to SOPT
(intentionally or unintentionally) is ignored to avoid accidental changes
to these sensitive settings. SOPT should be written during the user's
reset initialization program to set the desired controls even if the desired
settings are the same as the reset settings.

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

0 0
C0PEi1> C0PTi1i ST0PEt1I BKGDPE

1 1 0 1

= Unimplemented or Reserved

1. This bit can be written only one time after reset. Additional writes are ignored.

0 0

Figure 3-1. System Options Register (SOPT)

1

COPE — COP Watchdog Enable

This write-once bit defaults to 1 after reset. This bit does not relate
directly to modes of operation, but is shown here because some bits
in this register can be written only once after reset.

1 = COP watchdog timer enabled (force reset on timeout).
0 = COP watchdog timer disabled.

COPT — COP Watchdog Timeout

This write-once bit defaults to 1 after reset. This bit does not relate
directly to modes of operation, but is shown here because some bits
in this register can be written only once after reset.

1 = Long timeout period selected (218 cycles of BUSCLK).
0 = Short timeout period selected (213 cycles of BUSCLK).

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 45

Modes of Operation

STOPE - Stop Mode Enable

This write-once bit defaults to 0 after reset, which disables stop mode.
If stop mode is disabled and a user program attempts to execute a
STOP instruction, an illegal opcode reset is forced.

1 = Stop mode enabled.
0 = Stop mode disabled.

BKGDPE — Background Debug Mode Pin Enable

The BKGDPE bit enables the PTDO/BKGD/MS pin to function as
BKGD/MS. When the bit is clear, the pin will function as PTDO, which
is an output only general purpose I/O. This pin always defaults to
BKGD/MS function after any reset.

1 = BKGD pin enabled.
0 = BKGD pin disabled.

3.6.9 System Power Management Status and Control 1 Register (SPMSC1)

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

LVDF 0
LVDIE LVDREIti LVDSEiti LVDEiti

0 0

LVDACK

0 0 0 1

= Unimplemented or Reserved

1. This bit can be written only one time after reset. Additional writes are ignored.

1 1 0 0

Figure 3-2. System Power Management Status and Control 1 Register (SPMSCI)

Reference Manual — Volume I HCS08 — Revision 1

46 Modes of Operation MOTOROLA

Modes of Operation
Stop Modes

LVDF — Low-Voltage Detect Flag

Provided LVDE = 1, this read-only status bit indicates a low-voltage
detect event. This bit does not relate directly to modes of operation,
but is shown here because some bits in this register can be written
only once after reset.

LVDACK — Low-Voltage Detect Acknowledge

This write-only bit is used to acknowledge low voltage detection
events (write 1 to clear LVDF). Reads always return logic 0. This bit
does not relate directly to modes of operation, but is shown here
because some bits in this register can be written only once after reset.

LVDIE — Low-Voltage Detect Interrupt Enable

This read/write bit enables hardware interrupt requests for LVDF. This
bit does not relate directly to modes of operation, but is shown here
because some bits in this register can be written only once after reset.

1 = Request a hardware interrupt when LVDF = 1.
0 = Hardware interrupt disabled (use polling).

LVDRE — Low-Voltage Detect Reset Enable

This read/write bit enables LVDF events to generate a hardware reset
(provided LVDE = 1). This bit does not relate directly to modes of
operation, but is shown here because some bits in this register can be
written only once after reset.

1 = Force an MCU reset when LVDF = 1.
0 = LVDF does not generate hardware resets.

LVDSE — Low-Voltage Detect Stop Enable

Provided LVDE = 1, this read/write bit determines whether the
low-voltage detect function operates when the MCU is in stop mode.
This bit does not relate directly to modes of operation, but is shown
here because some bits in this register can be written only once after
reset.

1 = Low-voltage detect enabled during stop mode.
0 = Low-voltage detect disabled during stop mode.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 47

Modes of Operation

LVDE — Low-Voltage Detect Enable

This read/write bit enables low-voltage detect logic and qualifies the
operation of other bits in this register. This bit does not relate directly
to modes of operation, but is shown here because some bits in this
register can be written only once after reset.

1 = LVD logic enabled.
0 = LVD logic disabled.

3.6.10 System Power Management Status and Control 2 Register (SPMSC2)

This register is used to report the status of the low voltage warning
function, and to configure the stop mode behavior of the MCU.

Read:

Write:

Power-on reset:

LVD reset:

Any other reset:

Bit 7 6 5 4 3 2 1 Bit 0

LVWF 0
LVDV LVWV

PPDF 0
PDC PPDC

LVWACK PPDACK

of I 0 0 o 0 0 0 0

0(1) 0 U U 0 0 0 0

0(1) 0 U U 0 0 0 0

= Unimplemented or Reserved U = Unaffected by reset

1. LVWF will be set in the case when Vs PPiy transitions below the trip point or after reset and Vs pPiy is already
below VLvw.

Figure 3-3. System Power Management Status and Control 2 Register (SPMSC2)

LVWF — Low-Voltage Warning Flag

The LVWF bit indicates the low voltage warning status. This bit does
not relate directly to modes of operation, but is shown here because
some bits in this register can be written only once after reset.

1 = Low voltage warning is present or was present.
O = Low voltage warning not present.

Reference Manual — Volume I HCS08 — Revision 1

48 Modes of Operation MOTOROLA

Modes of Operation
Stop Modes

LVWACK — Low-Voltage Warning Acknowledge

The LVWF bit indicates the low voltage warning status. This bit does
not relate directly to modes of operation, but is shown here because
some bits in this register can be written only once after reset.

Writing a logic 1 to LVWACK clears LVWF to a logic 0 if a low voltage
warning is not present.

LVDV — Low-Voltage Detect Voltage Select

The LVDV bit selects the LVD trip point voltage (VLVD). This bit does
not relate directly to modes of operation, but is shown here because
some bits in this register can be written only once after reset.

1 = High trip point selected (for 3 V system).
0 = Low trip point selected (for 2 V system).

LVWV — Low-Voltage Warning Voltage Select

The LVWV bit selects the LVW trip point voltage (VLVw). This bit does
not relate directly to modes of operation, but is shown here because
some bits in this register can be written only once after reset.

1 = High trip point selected (for 3 V system).
0 = Low trip point selected (for 2 V system).

PPDF — Partial Power Down Flag

The PPDF bit indicates that the MCU has exited stop2 mode.
1 = Stop2 mode recovery.
0 = Not stop2 mode recovery.

PPDACK — Partial Power Down Acknowledge

Writing a logic 1 to PPDACK clears the PPDF bit.

PDC — Power Down Control

The write-once PDC bit controls entry into the power down (stop2 and
stopl) modes.

1 = Power down modes are enabled.
0 = Power down modes are disabled.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 49

Modes of Operation

PPDC — Partial Power Down Control

The write-once PPDC bit controls which power down mode, stopl or
stop2, is selected.

1 = Stop2, partial power down, mode enabled if PDC set.
0 = Stop 1, full power down, mode enabled if PDC set.

Table 3-5. Stop Mode Selection and Source of Exit

Mode

SPMC2
Configuration Source of

Exit
Condition Upon Exit

PDC PPDC

Stop1 1 0 IRQ or reset POR

Stop2 1 1
IRQ or reset,
RTI

POR (PPDF bit set in
SPMSCR)

Stop3 0
Don't
care

IRQ or reset,
RTI, KBI

If reset is used, then
POR; else, normal
operation continues
from the interrupt vector

Reference Manual — Volume I HCS08 — Revision 1

50 Modes of Operation MOTOROLA

HCS08 Family Reference Manual

Section 4. On-Chip Memory

4.1 Introduction

This section shows the overall 64-Kbyte memory map and then explains
each major memory block in greater detail.

• Direct-page registers, high-page registers, and nonvolatile
registers are shown in tables which provide the register names,
absolute addresses, and the arrangement of control and status
bits within the registers.

• The RAM description includes information about initialization of
the system stack pointer.

• The FLASH section explains programming and erase operations
and block protection.

• The security section explains how internal FLASH and RAM
contents can be protected against unauthorized access.

• The register descriptions explain the control and status bits
associated with the FLASH memory module.

4.2 HCS08 Core-Defined Memory Map

In the HCS08 architecture, the core defines the address decode for six
major blocks within the 64-Kbyte memory space. The on-chip memory
modules use these block decode signals as module selects. The base
address for each peripheral module is determined by additional decode
logic in a system integration module which defines a block of addresses
for each peripheral. The peripheral then uses this module select and
additional low-order address lines to develop the select signals for each
register within the module.

HCS08 — Revision 1 Reference Manual — volume I

MOTOROLA On-Chip Memory 51

On-Chip Memory

4.2.1 HCS08 Memory Map

The five major memory spaces that are defined by the core are shown

in Table 4-1. Refer to the data sheet for a particular derivative for exact
information about the size and boundaries of each of these blocks.
4.2.2 MC9S08GB60 Memory Map shows the memory map for the

MC9S08GB60 as a representative example of an HCS08 MCU memory

map.

Table 4-1. Core-Defined Memory Spaces

Name Address Comment

Direct-page registers $0000-$00xx Up to 128 bytes

RAM $00xx—
Includes some direct
page locations

High-page registers $1800-$18yy System configuration

FLASH Memory —$FFFF Up to 60 Kbytes

Vectors $FFC0—$FFFF Up to 32 x 2 bytes

Direct-page registers include the I/O port registers and most peripheral
control and status registers. Locating these registers in direct address
space ($0000-$00xx) allows bit manipulation instructions to be used to
set, clear, or test any bit in these registers with the BSET, BCLR,
BRSET, and BRCLR instructions. Using the direct addressing mode

versions of other instructions to access these registers also saves
program space and execution time compared to the more general

extended addressing mode instructions.

The RAM memory block starts immediately after the end of the
direct-page register block and extends to higher addresses. For example
in the MC9S08GB60, the direct-page registers are located at
$0000-$007F and the 4096-byte RAM is located at $0080-$107F. This
places a portion of the RAM in the direct addressing space so that
frequently used program variables can take advantage of code size and
execution time savings offered by the direct addressing mode version of
many CPU instructions. Also, since the bit manipulation instruction only
support direct addressing mode, this allows bit-addressable RAM
variables.

Reference Manual — Volume I HCS08 — Revision 1

52 On-Chip Memory MOTOROLA

On-Chip Memory
HCS08 Core-Defined Memory Map

High-page registers are located at $1800 to $182B. These are registers
that are used less often than the direct-page registers so they are not
located in the more valuable direct address space. This space includes
a few system configuration registers such as the COP watchdog and
low-voltage detect setup controls, the debug module registers, and the
FLASH module registers.

A few of the registers in the high-page register area should always be
located at the same addresses in all HCS08 derivatives. The SBDFR
register at $1801 includes the BDFR control bit which allows a background
debug host to reset the MCU by way of a serial command. There is also a
device identification number in the SDIDH:SDIDL register pair at $1806
and $1807. These registers allow a host debug system to determine the
type of HCS08 and the mask set revision number. This information allows
the debug host to be aware of memory types and sizes, register names,
bit names, and addresses in the target MCU.

FLASH memory fills the 64-Kbyte memory map to $FFFF. The starting
address of this block depends on how much FLASH memory is included
in the MCU. For example if there is 16 Kbytes of FLASH, it will be located
at $C000—$FFFF. If the FLASH memory block overlaps the high-page
register space, the register block has priority so the FLASH locations at
the conflicting addresses are not accessible. This only occurs when
there is more than 57 Kbytes of FLASH.

The vector space is part of the FLASH memory at $FFC0—$FFFF but it
is separately decoded so that other HCS08 modules can recognize
when an interrupt vector is being fetched.

Specific HCS08 derivatives have other address areas such as a block of
nonvolatile registers and illegal address blocks. These areas are
decoded in a system integration module rather than in the core.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 53

On-Chip Memory

4.2.2 MC9S08GB60 Memory Map

This section describes the memory map of the MC9S08GB60. The data
sheet for each HCS08 device provides similar information explaining the
detailed memory map for that HCS08 derivative.

As shown in Figure 4-1, on-chip memory in the MC9S08GB60 consists

of RAM, FLASH program memory, plus I/O and control/status registers.
The registers are divided into three groups:

• Direct-page registers ($0000 through $007F)

• High-page registers ($1800 through $182B)

• Nonvolatile registers ($FFB0 through $FFBF)

Reset and interrupt vectors are at $FFCC through $FFFF. An illegal

address detect feature on some derivatives forces the MCU to reset if
the CPU attempts to access data or execute an instruction from any
address that is identified as an illegal address in the 64-Kbyte memory
map.

Background debug mode (BDM) accesses do not trigger an illegal
access error. On the MC9S08GB60, all 64 Kbytes of memory space are
used for memory and registers so this device does not have any illegal
address locations.

Unused and reserved locations in register areas are not considered
designated illegal addresses and do not trigger illegal address resets.

Reference Manual — Volume I HCSO8 — Revision 1

54 On-Chip Memory MOTOROLA

On-Chip Memory
HCS08 Core-Defined Memory Map

$0000

$007F
$0080

$107F
$1080

$17FF
$1800

$182B
$182C

$FFFF

DIRECT PAGE REGISTERS

RAM

4096 BYTES

FLASH

1920 BYTES

HIGH PAGE REGISTERS

FLASH

59348 BYTES

MCOSOSGB60

Figure 4-1. MC9S08GB60 Memory Map

4.2.3 Reset and Interrupt Vector Assignments

Table 4-2 shows address assignments for reset and interrupt vectors in
the MC9S08GB60. For names and address assignments for vectors in
other HCS08 derivatives, always refer to the appropriate data sheet. The
vector names shown in this table are the labels used in the equate file
provided by Motorola for the MC9S08GB60. For more details about
resets, interrupts, interrupt priority, and local interrupt mask controls,
refer to Section 5. Resets and Interrupts.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 55

On-Chip Memory

Table 4-2. Reset and Interrupt Vectors for the MC9S08GB60

Address
(High/Low) Vector Vector Name

$FFCO:FFC1

=

$FFCA:FFCB

Unused Vector Space
(available for user program)

$FFCC:FFCD RTI Vrti

$FFCE:FFCF IIC Viic

$FFDO:FFD1 ATD Conversion Vatd

$FFD2:FFD3 Keyboard Vkeyboard

$FFD4:FFD5 SCl2 Transmit Vsci2tx

$FFD6:FFD7 SCl2 Receive Vsci2rx

$FFD8:FFD9 SCl2 Error Vsci2err

$FFDA:FFDB SCI1 Transmit Vsciitx

$FFDC:FFDD SCI1 Receive Vscilrx

$FFDE:FFDF SCI1 Error Vsciierr

$FFEO:FFE1 SPI Vspi

$FFE2:FFE3 TPM2 Overflow Vtpm2ovf

$FFE4:FFE5 TPM2 Channel 4 Vtpm2ch4

$FFE6:FFE7 TPM2 Channel 3 Vtpm2ch3

$FFE8:FFE9 TPM2 Channel 2 Vtpm2ch2

$FFEA:FFEB TPM2 Channel 1 Vtpm2chl

$FFEC:FFED TPM2 Channel 0 Vtpm2ch0

$FFEE:FFEF TPM1 Overflow Vtpmiovf

$FFFO:FFF1 TPM1 Channel Vtpmlch2

$FFF2:FFF3 TPM1 Channel 1 Vtpmichi

$FFF4:FFF5 TPM1 Channel VtpmlchO

$FFF6:FFF7 ICG Vicg

$FFF8:FFF9 Low Voltage Detect Vlvd

$FFFA:FFFB IRQ Virq

$FFFC:FFFD SWI Vswi

$FFFE:FFFF Reset Vreset

Reference Manual — Volume I HCS08 — Revision 1

56 On-Chip Memory MOTOROLA

On-Chip Memory
Register Addresses and Bit Assignments

4.3 Register Addresses and Bit Assignments

The registers in the MC9SO8GB60 are divided into these three groups:

• Direct-page registers are located in the first 128 locations in the
memory map, so they are accessible with efficient direct
addressing mode instructions.

• High-page registers are used much less often, so they are located
above $1800 in the memory map. This leaves more room in the
direct page for more frequently used registers and variables.

• The nonvolatile register area consists of a block of 16 locations in
the 60-Kbyte FLASH memory at $FFBO—$FFBF.

Nonvolatile register locations include:

— Two values which are loaded into working registers at reset

— An 8-byte backdoor comparison key which optionally allows a
user to gain controlled access to secure memory

— A reserved location for storage of a trim adjustment value that
could be determined during final testing at Motorola

Since the nonvolatile register locations are FLASH memory, they
must be erased and programmed like other FLASH memory
locations.

Direct-page registers can be accessed with efficient direct addressing
mode instructions. Bit manipulation instructions can be used to access
any bit in any direct-page register. Table 4-3 is a summary of all
user-accessible direct-page registers and control bits.

The registers in Table 4-3 can use the more efficient direct addressing
mode so, as a reminder, only the low order half of the addresses in the
first column are shown in bold. In Table 4-4 and Table 4-5 the whole
address in column one is shown in bold. In Table 4-3, Table 4-4, and
Table 4-5, the register names in column two are shown in bold to set
them apart from the bit names to the right. Cells that are not associated
with named bits are shaded. A shaded cell with a 0 indicates this unused
bit always reads as a 0. Shaded cells with dashes indicate unused or
reserved bit locations that could read as is or Os.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 57

On-Chip Memory

Table 4-3. Direct-Page Register Summary (Sheet 1 of 3)

Address Register Name
$0000 PTAD
$0001 PTAPE

$0002 PTASE

$0003 PTADD
$0004 PTBD
$0005 PTBPE
$0006 PTBSE
$0007 PTBDD
$0008 PTCD
$0009 PTCPE
$000A PTCSE

$000B PTCDD

$000C PTDD
$0000 PTDPE

$000E PTDSE
$000F PTDDD
$0010 PIED
$0011 PTEPE
$0012 PTESE
$0013 PTEDD
$0014 IRQSC
$0015 Reserved
$0016 KBISC
$0017 KBIPE
$0018 SCIIBDH
$0019 SCIIBDL
$001A SCI1C1
$001B SCI1 C2
$001C SCI1S1
$0010 SCI1S2

$001E SCI1 C3
$OO1F SCI1D

$0020 SCl2BDH
$0021 SCl2BDL
$0022 SCl2C1
$0023 SCl2C2
$0024 SCl2S1
$0025 SCl2S2
$0026 SCl2C3
$0027 SCl2D

Bit 7 6 5 4 3 2 1 Bit 0

PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTADO

PTAPE7 PTAPE6 PTAPE5 PTAPE4 PTAPE3 PTAPE2 PTAPEI PTAPEO

PTASE7 PTASE6 PTASE5 PTASE4 PTASE3 PTASE2 PTASEI PTASEO

PTADD7 PTADD6 PTADD5 PTADD4 PTADD3 PTADD2 PTADDI PTADDO

PTBD7 PTBD6 PTBD5 PTBD4 PTBD3 PTBD2 PTBD1 PTBDO

PTBPE7 PTBPE6 PTBPE5 PTBPE4 PTBPE3 PTBPE2 PTBPEI PTBPEO

PTBSE7 PTBSE6 PTBSE5 PTBSE4 PTBSE3 PTBSE2 PTBSEI PTBSEO

PTBDD7 PTBDD6 PTBDD5 PTBDD4 PTBDD3 PTBDD2 PTBDDI PTBDDO

PTCD7 PTCD6 PTCD5 PTCD4 PTCD3 PTCD2 PTCD1 PTCDO

PTCPE7 PTCPE6 PTCPE5 PTCPE4 PTCPE3 PTCPE2 PTCPEI PTCPEO

PTCSE7 PTCSE6 PTCSE5 PTCSE4 PTCSE3 PTCSE2 PTCSEI PTCSEO

PTCDD7 PTCDD6 PTCDD5 PTCDD4 PTCDD3 PTCDD2 PTCDDI PTCDDO

PTDD7 PTDD6 PTDD5 PTDD4 PTDD3 PTDD2 PTDD1 PTDDO

PTDPE7 PTDPE6 PTDPE5 PTDPE4 PTDPE3 PTDPE2 PTDPEI PTDPEO

PTDSE7 PTDSE6 PTDSE5 PTDSE4 PTDSE3 PTDSE2 PTDSEI PTDSEO

PTDDD7 PTDDD6 PTDDD5 PTDDD4 PTDDD3 PTDDD2 PTDDDI PTDDDO

PTED7 PTED6 PTED5 PTED4 PTED3 PTED2 PTED1 PTEDO

PTEPE7 PTEPE6 PTEPE5 PTEPE4 PTEPE3 PTEPE2 PTEPEI PTEPEO

PTESE7 PTESE6 PTESE5 PTESE4 PTESE3 PTESE2 PTESEI PTESEO

PTEDD7 PTEDD6 PTEDD5 PTEDD4 PTEDD3 PTEDD2 PTEDDI PTEDDO

0 0 IRQEDG IRQPE IRQF IRQACK IRQIE IRQMOD

KBEDG7 KBEDG6 KBEDG5 KBEDG4 KBF KBACK KBIE KBIMOD

KBIPE7 KBIPE6 KBIPE5 KBIPE4 KBIPE3 KBIPE2 KBIPEI KBIPEO

0 0 0 SBR12 SBR11 SBR10 SBR9 SBR8

SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBRO

LOOPS SCISWAI RSRC M WAKE ILT PE PT

TIE TCIE RIE ILIE TE RE RWU SBK

TORE TC RDRF IDLE OR NF FE PF

0 0 0 0 0 0 0 RAF

R8 T8 TXDIR 0 ORIE NEIE FEIE PEIE

Bit 7 6 5 4 3 2 1 Bit 0

0 0 0 SBR12 SBR11 SBR10 SBR9 SBRS

SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBRO
LOOPS SCISWAI RSRC M WAKE ILT PE PT

TIE TCIE RIE ILIE TE RE RWU SBK

TDRE TO RDRF IDLE OR NF FE PF
0 0 0 0 0 0 0 RAF

R8 T8 TXDIR 0 ORIE NEIE FEIE PEIE

Bit 7 6 5 4 3 2 1 Bit 0

Reference Manual — Volume I HCSO8 — Revision 1

58 On-Chip Memory MOTOROLA

On-Chip Memory
Register Addresses and Bit Assignments

Table 4-3. Direct-Page Register Summary (Sheet 2 of 3)

Address Register Name Bit 7
$0028 SPIC1
$0029 SPIC2

$002A SPIBR

$002B SPIS

$002C Reserved

$0020 SPID

$002E Reserved
$002F Reserved
$0030 TPMISC
$0031 TPMICNTH
$0032 TPMICNTL
$0033 TPMIMODH

$0034 TPM1MODL

$0035 TPM1COSC

$0036 TPMICOVH

$0037 TPMICOVL

$0038 TPM1C1SC

$0039 TPMICIVH
$003A TPMICIVL
$003B TPMIC2SC
$003C TPMIC2VH

$003D TPMIC2VL

$003E—
Reserved

$003F

$0040 PTFD

$0041 PTFPE

$0042 PTFSE

$0043 PTFDD
$0044 PTGD
$0045 PTGPE
$0046 PTGSE
$0047 PTGDD

$0048 ICGC1

$0049 ICGC2

$004A ICGS1

$004B ICGS2

$004C ICGFLTU
$004D ICGFLTL
$004E ICGTRM
$004F Reserved

6 5 4 3 2 1 Bit 0
SPIE SEE SPTIE MSTR CPOL CPHA SSOE LSBFE

0 0 0 MODFEN BIDIROE 0 SPISWAI SPCO
0 SPPR2 SPPR1 SPPRO 0 SPR2 SPR1 SPRO

SPRF 0 SPTEF MODE 0 0 0 0
0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 Bit 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

TOF TOIE CPWMS CLKSB CLKSA PS2 PS1 PSO
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0

CHOF CHOIE MSOB MSOA ELSOB ELSOA 0 0

Bit 15 14 13 12 11 10 9 Bit 8

Bit 7 6 5 4 3 2 1 Bit 0
CH1F CH11E MS1B MS1A ELSOB ELS1A 0 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0

CH2F CH2IE MS2B MS2A ELSOB ELSOA 0 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0

PTFD7 PTFD6 PTFD5 PTFD4 PTFD3 PTFD2 PTFD1 PTFDO

PTFPE7 PTFPE6 PTFPE5 PTFPE4 PTFPE3 PTFPE2 PTFPEI PTFPEO

PTFSE7 PTFSE6 PTFSE5 PTFSE4 PTFSE3 PTFSE2 PTFSEI PTFSEO

PTFDD7 PTFDD6 PTFDD5 PTFDD4 PTFDD3 PTFDD2 PTFDDI PTFDDO
PTGD7 PTGD6 PTGD5 PTGD4 PTGD3 PTGD2 PTGD1 PTGDO

PTGPE7 PTGPE6 PTGPE5 PTGPE4 PTGPE3 PTGPE2 PTGPEI PTGPEO
PTGSE7 PTGSE6 PTGSE5 PTGSE4 PTGSE3 PTGSE2 PTGSEI PTGSEO
PTGDD7 PTGDD6 PTGDD5 PTGDD4 PTGDD3 PTGDD2 PTGDDI PTGDDO

0 RANGE REFS CLKS OSCSTEN - 0

LOLRE MFD LOCRE RFD

CLKST REFST LOLS LOCK LOCS EROS ICGIF

0 0 0 0 0 0 0 DCOS

0 0 0 0 FLT
FLT

TRIM
0 0 0 0 0 0 0 0
This bit is reserved for Motorola internal use only. Always write a 0 to this bit.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 59

On-Chip Memory

Table 4-3. Direct-Page Register Summary (Sheet 3 of 3)

Address Register Name Bit 7
$0050 ATDC
$0051 ATDSC

$0052 ATDRH

$0053 ATDRL
$0054 ATDPE
$0055—
$0057

Reserved

$0058 IICA
$0059 IICF
$005A IICC

$005B IICS
$005C IICD

$005D-
$005F

Reserved

$0060 TPM2SC
$0061 TPM2CNTH
$0062 TPM2CNTL
$0063 TPM2MODH

$0064 TPM2MODL

$0065 TPM2COSC

$0066 TPM2COVH

$0067 TPM2COVL

$0068 TPM2CISC

$0069 TPM2C1VH
$OO6A TPM2CIVL
$OO6B TPM2C2SC
$OO6C TPM2C2VH
$OO6D TPM2C2VL
$OO6E TPM2C3SC
$OO6F TPM2C3VH

$0070 TPM2C3VL

$0071 TPM2C4SC
$0072 TPM2C4VH
$0073 TPM2C4VL
$0074—

Reserved $007F

6 5 4 3 2 1 Bit 0
ATDPU DJM RES8 SON PRS

CCF ATDIE ATDCO ATDCH

BIT9 BIT 8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2
BIT1 BITS 0 0 0 0 0 0

ATDPE7 ATDPE6 ATDPE5 ATDPE4 ATDPE3 ATDPE2 ATDPEI ATDPEO

ADDR 0
MULT ICR

IICEN IICIE MST TX TXAK RSTA 0 0
TCF IAAS BUSY ARBL 0 SRW IICIF RXAK

DATA

TOF TOIE CPWMS CLKSB CLKSA PS2 PS1 PSO
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0

Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0

CHOF CHOIE MSOB MSOA ELSOB ELSOA 0 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0

CH1F CH1IE MS1B MS1A ELSOB ELS1A 0 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0

CH2F CH2IE MS2B MS2A ELSOB ELS2A 0 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0

CH3F CH3IE MS3B MS3A ELS3B ELS3A 0 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0

CH4F CH4IE MS4B MS4A ELS4B ELS4A 0 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0

Reference Manual — Volume I HCS08 — Revision 1

60 On-Chip Memory MOTOROLA

On-Chip Memory
Register Addresses and Bit Assignments

High-page registers, shown in Table 4-4, are accessed much less often
than other I/O and control registers so they have been located outside
the direct addressable memory space, starting at $1800.

Address Register Name

S1800 SRS

S1801 SBDFR

$1802 SOPT

$1803-
S1805

Reserved

S1806 SDIDH

S1807 SDIDL

$1808 SRTISC

$1809 SPMSCI

S18OA SPMSC2

S18OB—
$180F

Reserved

$1810 DBGCAH
$1811 DBGCAL

$1812 DBGCBH

S1813 DBGCBL

$1814 DBGFH

$1815 DBGFL

$1816 DBGC

$1817 DBGT

S1818 DBGS

$1819
Reserved $181F

$1820 FCDIV

$1821 FOPT

$1822 Reserved

$1823 FCNFG

$1824 FPROT

$1825 FSTAT

$1826 FCMD

$1827 Reserved $1626

HCSO8 — Revision 1

Table 4-4. High-Page Register Summary

Bit 7 6 5 4 3 2 1 Bit 0

POR PIN COP ILOP 0 ICG LVD 0
0 0 0 0 0 0 0 BDFR

COPE COPT STORE - 0 0 BKGDPE -

REV3 REV2 REV1 REVO ID11 1010 109 ID8
ID7 ID6 ID5 ID4 ID3 102 101 IDO

RTIF RTIACK RTICLKS RTIE 0 RTIS2 RTIS1 RTISO
LVDF LVDACK LVDIE LVDRE LVDSE LVDE 0 0

LVWF LVWACK LVDV LVWV PPDF PPDACK PDC PPDC

Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0

Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0

Bit 15 14 13 12 11 10 9 Bit 8

Bit 7 6 5 4 3 2 1 Bit 0

DBGEN ARM TAG BRKEN RWA RWAEN RWB RWBEN

TRGSEL BEGIN 0 0 TRG3 TRG2 TRG1 TRGO
AF BF ARMF 0 CNT3 CNT2 CNT1 ONTO

DIVLD PRDIV8 DIV5 DIV4 DIV3 DIV2 DIVi DIVO
KEYEN FNORED 0 0 0 0 SECO1 SEC00

0 0 KEYACC 0 0 0 0 0

FPOPEN FPDIS FPS2 FPS1 FPSO 0 0 0

FCBEF FCCF FPVIOL FACCERR 0 FBLANK 0 0

FCMD7 FCMD6 FCMD5 FCMD4 FCMD3 FCMD2 FCMD1 FCMDO

Reference Manual — Volume I

MOTOROLA On-Chip Memory 61

On-Chip Memory

Nonvolatile FLASH registers, shown in Table 4-5, are located in the
FLASH memory and include two nonvolatile setup registers for the
FLASH memory module plus an 8-byte backdoor key which optionally
can be used to gain access to secure memory resources. During reset
events, the contents of the two locations in the nonvolatile register area
of the FLASH memory are transferred into corresponding working
registers in the high-page registers to control security and block
protection options.

Table 4-5. Nonvolatile Register Summary

Address Register Name

$FFBO— NVBACKKEY
$FFB7

$FFB8— Reserved
$FFBC

$FFBD NVPROT

$FFBE Reservedltl

$FFBF NVOPT

Bit 7 6 5 4 3 2 1 Bit 0

8-Byte Comparison Key

FPOPEN FPDIS FPS2 FPS1 FPSO 0 0 0

KEYEN FNORED 0 0 0 0 SECO1 SECOO

1. This location can be used to store a trim value for the ICG.

Provided the key enable (KEYEN) bit is 1, the 8-byte comparison key
can be used to temporarily disengage memory security. This key
mechanism can be accessed only through user code running in secure
memory. (A security key cannot be entered directly through background
debug commands.) This security key can be disabled completely by
programming the KEYEN bit to 0. If the security key is disabled, the only
way to disengage security is by mass erasing the FLASH (normally
through the background debug interface) and verifying that FLASH is
blank. To avoid returning to secure mode after the next reset, program
the security bits (SECOI:SEC00) to the unsecured state (1:0). See
4.6 Security (MC9S08G660) for more details about secure memory.

Reference Manual — Volume I HCS08 — Revision 1

62 On-Chip Memory MOTOROLA

On-Chip Memory
RAM

4.4 RAM

The MC9SO8GB60 includes 4096 bytes of static RAM located from
$0080 to $107F. The first 128 bytes of RAM ($0080—$OOFF) can be
accessed using the more efficient direct addressing mode, and any
single bit in this area can be accessed with the bit manipulation
instructions (BCLR, BSET, BRCLR, and BRSET). Locating the most
frequently accessed program variables in this area of RAM is preferred.

Provided the Vpp supply voltage remains above the minimum RAM
retention voltage and stopl mode is not entered, RAM locations retain
their contents. If stops mode is selected by setting the PDC bit and
clearing the PPDC bit in SPMSC2, when stopl is entered, the internal
voltage regulator is turned off and voltage is disabled to internal circuitry,
including the RAM. Upon exit from stopl, RAM contents are uninitialized
and all other registers return to their reset state. (See Section 3. Modes
of Operation for more information about stop modes.)

For compatibility with older M68HC05 MCUs, the HCSO8 resets the
stack pointer to $DOFF. In the MC9SO8GB60, it is usually best to
reinitialize the stack pointer to the top of the RAM ($107F) so the direct
page RAM ($0080—$OOFF) can be used for frequently accessed RAM
variables and bit-addressable program variables. Include the following
2-instruction sequence in your reset initialization routine (where
RamLast is equated to $107F in the equate file provided by Motorola).

LDHX #RamLast+1 ;point one past RAM

TXS ;SP<-(H:X-1)

4.5 60-Kbyte FLASH

The 60-Kbyte FLASH memory is intended primarily for program storage.
In-circuit programming allows the operating program to be loaded into
the FLASH memory after final assembly of the application product. It is
possible to program the entire 60-Kbyte array through the single-wire
background debug interface in about three seconds. Because no special
voltages are needed for FLASH erase and programming operations,
in-application programming is also possible through the serial
communications interface (SCI) (RS232 interface) or some other

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 63

On-Chip Memory

software-controlled communication path. For a more detailed discussion

of in-circuit and in-application programming, refer to 4.8 FLASH

Application Examples.

4.5.1 Features

Features of the FLASH memory include:

• FLASH —61268 bytes (120 pages of 512 bytes each)

• Single power supply program and erase

• Command interface for fast program and erase operation

• Fast automated byte program, page or mass erase, and blank
check operations (about three seconds to program 60 Kbytes)

• Up to 100,000 program/erase cycles at typical temperature and
voltage

• Flexible block protection

• Security feature for FLASH and RAM

• Auto power-down for low-frequency read accesses

This FLASH memory module includes integrated program/erase voltage
generators and separate command processor state machines which are
capable of performing automated byte programming, page (512 bytes
FLASH) or mass erase, and blank check commands. Commands are
written to the command interface, and status flags report errors and
indicate when commands are complete.

Blocks of 512, 1K, 2K, 4K, 8K, 16K, or 32K bytes at the end of the
FLASH memory can be block protected. Another control bit allows for
block protection of the whole 60-Kbyte FLASH array (see 4.7.4 FLASH
Protection Register (FPROT and NVFPROT). Block protect settings
are programmed into a nonvolatile setup register (NVFPROT). A
security mechanism can be engaged to prevent unauthorized access to
the FLASH and RAM memory contents. An optional user-controlled
backdoor key mechanism can be used to allow controlled access to
secure memory contents for development purposes.

Reference Manual — Volume I HCS08 — Revision 1

64 On-Chip Memory MOTOROLA

On-Chip Memory
60-Kbyte FLASH

4.5.2 Program, Erase, and Blank Check Commands

Before any program or erase command can be accepted, the FLASH
clock divider register (FCDIV) must be written to set the internal clock for
the FLASH module to a frequency (fFCLK) between 150 kHz and
200 kHz (see 4.7.1 FLASH Clock Divider Register (FCDIV)). This
register can be written only once, so normally this write is done during
reset initialization. One period of the resulting clock (1/fFcLK) is used by
the command processor to time program and erase pulses. An integer
number of these timing pulses are used by the command processor to
complete a program or erase command.

Commands are written to the command interfaces of the FLASH to do
any of these:

• Program a byte in the FLASH array

• Erase a 512-byte page of FLASH memory

• Mass erase the whole 60-Kbyte FLASH array

• Check all bytes in the FLASH array for the erased state ($FF)

A strictly monitored procedure must be followed or the command will not
be accepted. This minimizes the possibility of any unintended change to
the FLASH memory contents. The command buffer empty flag (FCBEF)
indicates when the command buffer has room to write a new command.
The command complete flag (FCCF) indicates when all commands are
complete and no new command is waiting in the associated FLASH
command buffer. A command sequence must be completed by writing a
1 to FCBEF to register the command before starting any new command
for the FLASH memory.

Figure 4-2 demonstrates the procedure for issuing commands. Two
types of errors can arise as commands are issued:

• A protection violation error is indicated by the FPVIOL flag in
FSTAT if the command tries to erase or write to a FLASH location
that is block protected (see 4.7.4 FLASH Protection Register
(FPROT and NVFPROT)).

• Any other violation of the required sequence or other error
condition will set the access error (FACCERR) flag bit in the
FSTAT register. Refer to 4.5.4 Access Errors for a detailed list of
actions that cause access errors.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 65

On-Chip Memory

Assuming no protection violation or access errors arise, a command
sequence can be simplified to three basic steps. They are:

1. Write a data value to an address in the FLASH array. The address
and data information from this write is latched into the command
buffer and this write is a required first step in any command
sequence. For erase and blank check commands, the value of the
data is not important. For page erase commands, the address
may be any address in the 512-byte page of FLASH to be erased.
For mass erase and blank check commands, the address can be
any address in the 60-Kbyte FLASH memory.

2. Write the command code for the desired command to FCMD. The
five valid commands are blank check ($05), byte program ($20),
burst program ($25), page erase ($40), and mass erase ($41).
The command code is latched into the command buffer.

3. Write a 1 to the FCBEF bit in FSTAT to clear FCBEF and register
the command (including its address and data information).

A partial command sequence can be aborted manually by writing a 0 to
FCBEF any time after the write to the memory array and before writing
the 1 that clears FCBEF and registers the complete command. Aborting
a command in this way sets the FACCERR access error flag which must
be cleared before starting a new command.

Reference Manual — Volume I HCS08 — Revision 1

66 On-Chip Memory MOTOROLA

On-Chip Memory
60-Kbyte FLASH

FACCERR ?

1

CLEAR ERROR

FCBEF?

I
1

WRITE TO FLASH
TO BUFFER ADDRESS AND DATA

WRITE COMMAND TO FCMD

WRITE 1 TO FCBEF
TO REGISTER COMMAND

AND CLEAR FCBEFh1

YES

FPVIOL OR
FACCERR ?

NO

MORE COMMANDS?

NO

FCCF ?

1

(DONE)

YES

(I) Wait at least four bus cycles before
checking FCBEF or FCCF.

 > (ERROR EXIT)

Figure 4-2. FLASH Command Flowchart

4.5.3 Command Timing and Burst Programming

This section explains the sequence and timing of nonvolatile memory
commands in greater detail. When more than one byte within a row is
programmed one after the other, it is called burst programming. Byte
programming takes slightly longer for the first byte in a row compared to
queued byte programming commands for subsequent bytes within the
same row.

HCSOS — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 67

On-Chip Memory

4.5.3.1 Rows and FLASH Organization

The 60-Kbyte FLASH memory array is made up of 120 pages of
512 bytes each. Each page is made up of 8 rows of 64 bytes each,
beginning at address $1000. Address lines A5—AO define an address
within a FLASH row, A8—A6 identify the row number, and A15—A9
identify the page number. Whole pages of 512 bytes are the smallest
block of FLASH that may be erased. The first 128 bytes ($1000—$107F)
of the first FLASH row are hidden behind the higher priority RAM located

at these same locations.

Rows are important because a burst program command takes less time
when the address is within the same row as the previous byte or burst
program command. To benefit from this reduced program time, the burst
programming command must be registered in the command buffer
before the previous byte programming operation in the same row is
completed (otherwise, the small extra overhead for a new byte
programming operation applies).

4.5.3.2 Program Command Timing Sequence

For this discussion, we assume the FCDIV setting results in a 5-µs
timing pulse to the command state machine. If the FCDIV setting and
system clock speed result in a different timing pulse period, all
programming time intervals will need to be adjusted accordingly.

A complete program command consists of seven timing intervals. They
are:

• Start — 0 to 5µs, depending on synchronization between the
command and the 200-kHz internal nonvolatile memory clock.
When the command buffer is kept full, each command ends at an
edge of the 200-kHz clock. The new command needs to wait a full
period to synchronize to the clock so the start time can normally
be taken to be the full 5µs.

• Nonvolatile setup — 5µs

• Program setup —10 is

• Program byte — 20 µs

Reference Manual — Volume I HCS08 — Revision 1

68 On-Chip Memory MOTOROLA

On-Chip Memory
60-Kbyte FLASH

• Program hold —10 ns (negligible)

• Nonvolatile hold — 5µs (minus the program hold time)

• Memory recover time — 5µs

Programming more than one location in the same row (and as long as
the command buffer remains filled with a burst program command so
there is no gap between commands) is called burst programming, and
all steps except the byte programming time are skipped.

Table 4-6 shows program and erase times. System clock and control bit
settings determine the frequency of FCLK (fFCLK). The time for one cycle
of FCLK is tFcyc = 11fFCLK The times are shown as a number of cycles
of FCLK and as an absolute time for the case where tFcyc = 5µs.

Table 4-6. Program and Erase Times

Parameter Cycles of FCLK Time if FCLK = 200 kHz

Byte program 9 45 µs

Byte program (burst) 4 20

Page erase 4000 20 ms

Mass erase 40,000 200 ms

1. Excluding start/end overhead

4.5.4 Access Errors

Any of the following specific actions will cause the access error flag
(FACCERR) in FSTAT to be set. In the case of an access error,
FACCERR must be cleared by writing a 1 to FACCERR in FSTAT before
starting a new command.

• Writing to a FLASH address before the internal FLASH clock
frequency has been set by writing to the FCDIV register

• Writing to an unimplemented FLASH location before writing to
FCMD (MC9S08GB60 has no unimplemented FLASH locations.)

• Writing to a FLASH address while FCBEF is not set (A new
command cannot be started until the command buffer is empty.)

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 69

On-Chip Memory

• Writing a second time to a FLASH address before registering the
previous command (There is only one write to FLASH for every
command.)

• Writing a second time to FCMD before registering the previous
command (There is only one write to FCMD for every command.)

• Writing to any FLASH control register other than FCMD after
writing to a FLASH address

• Writing any command code other than the five allowed codes
($05, $20, $25, $40, or $41) to FCMD

• Writing to any FLASH control register other than FSTAT (to clear
FCBEF and register the command) after writing the command to
FCMD

• The MCU enters stop mode while a program or erase command is
in progress (The command is aborted.)

• Writing the byte program, burst program, or page erase command
code ($20, $25, or $40) with a background debug command while
the MCU is secured (The background debug controller can only do
blank check and mass erase commands when the MCU is
secure.)

• Writing 0 to FCBEF to cancel a partial command

4.5.5 Vector Redirection

Whenever any block protection is enabled, the reset and interrupt
vectors will be protected. Vector redirection allows users to modify
interrupt vector information without unprotecting bootloader and reset
vector space. Vector redirection is enabled by programming the
FNORED bit in the NVOPT register located at address $FFBF to zero.
For redirection to occur, at least some portion but not all of the FLASH
memory must be block protected by programming the NVPROT register
located at address $FFBD. All of the interrupt vectors (memory locations
$FFC0—$FFFD) are redirected, while the reset vector ($FFFE:FFFF) is
not.

For example, if 512 bytes of FLASH are protected, the protected address
region is from $FE00 through $FFFF. The interrupt vectors

Reference Manual — Volume I HCS08 — Revision 1

70 On-Chip Memory MOTOROLA

On-Chip Memory
60-Kbyte FLASH

($FFC0—$FFFD) are redirected to the locations $FDC0—$FDFD. Now, if
an SPI interrupt is taken for instance, the values in the locations
$FDE0:FDE1 are used for the vector instead of the values in the
locations $FFE0:FFE1. This allows the user to reprogram the
unprotected portion of the FLASH with new program code including new
interrupt vector values while leaving the protected area, which includes
the default vector locations, unchanged.

4.5.6 FLASH Block Protection (MC9S08GB60)

Block protection prevents program or erase changes for FLASH memory
locations in a designated address range. Mass erase is disabled when
any block of FLASH is protected. The MC9S08GB60 allows a block of
memory at the end of FLASH and/or the entire 60 Kbytes of FLASH
memory to be block protected. A disable control bit and a 3-bit control
field allow you to set the size of this block to 512, 1K, 2K, 4K, 8K, 16K,
or 32K bytes. A separate control bit allows block protection of the whole
60-Kbyte FLASH memory array. All five of these control bits are located
in the FPROT register (see 4.7.4 FLASH Protection Register (FPROT
and NVFPROT)).

At reset, the high-page register (FPROT) is loaded with the contents of
the NVFPROT location which is in the nonvolatile register block of the
FLASH memory. The value in FPROT cannot be changed directly from
application software so a runaway program cannot alter the block
protection settings. If the last 512 bytes of FLASH which includes the
NVFPROT register is protected, the application program cannot alter the
block protection settings (intentionally or unintentionally). The FPROT
control bits can be written by background debug commands to allow a
way to erase a protected FLASH memory.

One use for block protection is to block protect an area of FLASH
memory for a bootloader program. Then this bootloader program can be
used to erase the rest of the FLASH memory and reprogram it. Since the
bootloader is protected, it remains intact even if MCU power is lost in the
middle of an erase and reprogram operation.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 71

On-Chip Memory

4.6 Security (MC9S08GB60)

The MC9S08GB60 includes circuitry to prevent unauthorized access to
the contents of FLASH and RAM memory. When security is engaged,
FLASH and RAM are considered secure resources. Direct-page
registers, high-page registers, and the background debug controller are
considered unsecured resources. Programs executing within secure
memory have normal access to any MCU memory locations and
resources. Attempts to access a secure memory location with a program
executing from an unsecured memory space or through the background
debug interface are blocked (writes are ignored and reads return all Os).

Security is engaged or disengaged based on the state of two nonvolatile
register bits (SEC0I:SEC00) in the FOPT register. During reset, the
contents of the nonvolatile location NVFOPT are copied from FLASH
into the working FOPT register in high-page register space. A user
engages security by programming the NVFOPT location which can be
done at the same time the FLASH memory is programmed. The 1:0 state
disengages security while the other three combinations engage security.
Notice that the erased state (1:1) makes the MCU secure. During
development, whenever the FLASH is erased, it is good practice to
immediately program the SEC00 bit to 0 in NVFOPT so
SEC0I:SEC00 = 1:0. This would allow the MCU to remain unsecured
after a subsequent reset.

The on-chip debug module cannot be enabled while the MCU is secure.
The separate background debug controller can still be used for
non-intrusive background memory access commands, but the MCU
cannot enter active background mode except by holding BKGD/MS low
at the rising edge of reset.

A user can choose to allow or disallow a security unlocking mechanism
through an 8-byte backdoor security key. If the nonvolatile KEYEN bit in
NVFOPT/FOPT is 0, the backdoor key is disabled and there is no way
to disengage security without completely erasing all FLASH locations. If
KEYEN is 1, a secure user program can temporarily disengage security
by:

1. Writing 1 to KEYACC in the FCNFG register. This makes the
FLASH module interpret writes to the backdoor comparison key
locations (NVBACKKEY through NVBACKKEY+7) as values to be

Reference Manual — Volume I HCS08 — Revision 1

72 On-Chip Memory MOTOROLA

On-Chip Memory
Security (MC9S08GB60)

compared against the key rather than as the first step in a FLASH
program or erase command.

2. Writing the user-entered key values to the NVBACKKEY through
NVBACKKEY+7 locations. These writes must be done in order
starting with the value for NVBACKKEY and ending with
NVBACKKEY+7. Normally, user software would get the key codes
from outside the MCU system through a communication interface
such as the SCI.

3. Writing 0 to KEYACC in the FCNFG register. If the 8-byte key that
was just written matches the key stored in the FLASH locations,
SEC0I:SEC00 are automatically changed to 1:0 and security will
be disengaged until the next reset.

The security key can be written only from a secure memory, so it cannot
be entered through background commands without the cooperation of a
secure user program.

The backdoor comparison key (NVBACKKEY through NVBACKKEY+7)
is located in FLASH memory locations in the nonvolatile register space
so users can program these locations just as they would program any
other FLASH memory location. The nonvolatile registers are in the same
512-byte block of FLASH as the reset and interrupt vectors, so block
protecting that space also block protects the backdoor comparison key.
Block protects cannot be changed from user application programs, so if
the vector space is block protected, the backdoor security key
mechanism cannot permanently change the block protect, security
settings, or the backdoor key.

Security can always be disengaged through the background debug
interface by following these steps:

1. Disable any block protections by writing FPROT. FPROT can be
written only with background debug commands, not from
application software.

2. Mass erase FLASH, if necessary.

3. Blank check FLASH. Provided FLASH is completely erased,
security is disengaged until the next reset.

To avoid returning to secure mode after the next reset, program
NVFOPT so SEC01:SEC00 = 1:0.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 73

On-Chip Memory

4.7 FLASH Registers and Control Bits (MC9S08GB60)

Although these registers and bits are representative of the FLASH
registers and control bits in any HCS08 derivative, always refer to the
data sheet for a specific HCS08 derivative when writing application
software. The FLASH module in the MC9S08GB60 has six 8-bit

registers in the high-page register space, two locations in the nonvolatile
register space in FLASH memory which are copied into two
corresponding high-page control registers at reset. There is also an
8-byte comparison key in FLASH memory. Refer to Table 4-4 and
Table 4-5 for the absolute address assignments for all FLASH registers.
This section refers to registers and control bits only by their names.
Normally, an equate or header file provided by Motorola is used to
translate these names into the appropriate absolute addresses.

4.7.1 FLASH Clock Divider Register (FCDIV)

Bit 7 of this register is a read-only status flag. Bits 6 through 0 may be
read at any time but can be written only one time. Before any erase or
programming operations are possible, write to this register to set the
frequency of the clock for the nonvolatile memory system within
acceptable limits.

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

DIVLD
PRDIV8 DIV5 DIV4 DIV3 DIV2 DIV1 DIVO

0 0 0 0
 = Unimplemented or Reserved

Figure 4-3. FLASH Clock Divider Register (FCDIV)

0 0 0 0

DIVLD — Divisor Loaded Status Flag

When set, this read-only status flag indicates that the FCDIV register
has been written since reset. Reset clears this bit and the first write to
this register causes this bit to become set regardless of the data
written.

1 = FCDIV has been written since reset; erase and program
operations enabled for FLASH

0 = FCDIV has not been written since reset; erase and program
operations disabled for FLASH

Reference Manual — Volume I HCS08 — Revision 1

74 On-Chip Memory MOTOROLA

On-Chip Memory
FLASH Registers and Control Bits (MC9S08GB60)

PRDIV8 — Prescale (Divide) FLASH Clock by 8
1 = Clock input to the FLASH clock divider is the bus rate clock

divided by 8
0 = Clock input to the FLASH clock divider is the bus rate clock

[DIVS:DIVO] — Divisor for FLASH Clock Divider

The FLASH clock divider divides the bus rate clock (or the bus rate
clock divided by 8 if PRDIV8 = 1) by the value in the 6-bit [DIVS:DIVO]
field plus one. The resulting frequency of the internal FLASH clock
must fall within the range of 200 kHz to 150 kHz for proper FLASH
operation. Program/Erase timing pulses are one cycle of this internal
FLASH clock which corresponds to a range of 5µs to 6.7 µs. The
automated programming logic uses an integer number of these
pulses to complete an erase or program operation.

Equation 1: if PRDIV8 = 0, then fFCLK = fBus - ([DIVS:DIVO] + 1)

Equation 2: if PRDIV8 = 1, then fFCLK = fBus _ (8 x ([DIVS:DIVO] + 1))

Table 4-7 shows the appropriate values for PRDIV8 and [DIVS:DIVO] for
selected bus frequencies.

Table 4-7. FLASH Clock Divider Settings

fBus
PRDIV8
(Binary)

[DIV5:DIV0]
(Decimal) fFCLK

Program/Erase Timing Pulse
(5 µs Min, 6.7 µs Max)

20 MHz 1 12 192.3 kHz 5.2 µs

10 MHz 0 49 200 kHz 5µs

8 MHz 0 39 200 kHz 5µs

4 MHz 0 19 200 kHz 5µs

2 MHz 0 9 200 kHz 5µs

1 MHz 0 4 200 kHz 5µs

200 kHz 0 0 200 kHz 5µs

150 kHz 0 0 150 kHz 6.7 µs

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 75

On-Chip Memory

4.7.2 FLASH Options Register (FOPT and NVFOPT)

During reset, the contents of the nonvolatile location NVOPT are copied
from FLASH into FORT. Bits 6 through 2 are not used and always read
0. This register may be read at any time, but writes have no meaning or
effect. To change the value in this register, erase and reprogram the
NVOPT location in FLASH memory as usual and then issue a new MCU
reset.

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

KEYEN FNORED 0 0 0 0 SEC01 SEC00

This register is loaded from nonvolatile location NVOPT du ing reset.

= Unimplemented or Reserved

Figure 4-4 FLASH Options Register (FOPT)

KEYEN — Backdoor Key Mechanism Enable

When this bit is 0, the backdoor key mechanism cannot be used to
disengage security. The backdoor key mechanism is accessible only
from user (secured) firmware. BDM commands cannot be used to
write key comparison values that would unlock the backdoor key. For
more detailed information about the backdoor key mechanism, refer
to 4.6 Security (MC9S08GB60).

1 = If user firmware writes an 8-byte value that matches the
nonvolatile backdoor key (NVBACKKEY through
NVBACKKEY+7 in that order), security is temporarily
disengaged until the next MCU reset.

0 = No backdoor key access allowed

FNORED — Vector Redirection Disable

When this bit is 1, then vector redirection is disabled.
1 = Vector redirection disabled.
0 = Vector redirection enabled.

SEC0I:SEC00 - Security State Code

This 2-bit field determines the security state of the MCU as shown in
Table 4-8. When the MCU is secure, the contents of RAM and
FLASH memory cannot be accessed by instructions from any

Reference Manual — Volume I HCS08 — Revision 1

76 On-Chip Memory MOTOROLA

On-Chip Memory
FLASH Registers and Control Bits (MC9S08GB60)

unsecured source including the background debug interface. For
more detailed information about security, refer to 4.6 Security
(MC9S08GB60).

Table 4-8. Security States

SEC01:SEC00 Description

0:0 secure

0:1 secure

1:0 unsecured

1:1 secure

SEC0I:SEC00 changes to 1:0 after successful backdoor key entry or a
successful blank check of the FLASH memory.

4.7.3 FLASH Configuration Register (FCNFG)

Bit 5 may be read or written at any time. The remaining bits always read
0 and cannot be written.

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

0 0
KEYACC

0 0 0 0 0

0 0 0 0

= Unimplemented or Reserved

Figure 4-5. FLASH Configuration Register (FCNFG)

0 0 0 0

KEYACC — Enable Writing of Access Key

This bit enables writing of the backdoor comparison key. For more
detailed information about the backdoor key mechanism, refer to
4.6 Security (MC9S08GB60).

1 = Writes to NVBACKKEY ($FFB0—$FFB7) are interpreted as
comparison key writes.

0 = Writes to $FFB-$FFB7 are interpreted as the start of a FLASH

programming or erase command.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 77

On-Chip Memory

4.7.4 FLASH Protection Register (FPROT and NVFPROT)

During reset, the contents of the nonvolatile location NVFPROT is
copied from FLASH into FPROT. Bit 6 is not used and always reads 0.
This register may be read at any time, but user program writes have no
meaning or effect. Background debug commands can write to FPROT
at $1824.

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

FPOPEN FPDIS FPS2 FPS1 FPSO 0 0 0

(1) (1) (1) (1) (1)

This registe is loaded from nonvolatile location NVPROT during reset.

= Unimplemented or Reserved

1. Background commands can be used to change the contents of these bits in FPROT.

Figure 4-6. FLASH Protection Register (FPROT)

FPOPEN — Open Unprotected FLASH for Program/Erase
1 = Any FLASH location, not otherwise block protected or secured,

may be erased or programmed.
0 = Whole FLASH is block protected (no program or erase

allowed).

FPDIS - FLASH Protection Disable
1 = No FLASH block is protected.
0 = FLASH block specified by FPS2:FPSI:FPSO is block protected

(program and erase not allowed).

FPS2:FPSI:FPS0 - FLASH Protect Selects

When FPDIS = 0, this 3-bit field determines the size of a protected
block of FLASH locations at the high address end of the FLASH (see
Table 4-9). Protected FLASH locations cannot be erased or
programmed.

Reference Manual — Volume I HCS08 — Revision 1

78 On-Chip Memory MOTOROLA

On-Chip Memory
FLASH Registers and Control Bits (MC9S08GB60)

Table 4-9. High Address Protected Block

FPS2:FPSI:FPS0 Protected Address Range Protected Block Size Redirected Vectorsti l

0:0:0 $FE00—$FFFF 512 bytes $FDC0-$FDFDiz>

0:0:1 $FC00-$FFFF 1 Kbytes $FBC0-$FBFD

0:1:0 $F800—$FFFF 2 Kbytes $F7C0-$F7FD

0:1:1 $F000—$FFFF 4 Kbytes $EFC0-$EFFD

1:0:0 $E000—$FFFF 8 Kbytes $DFC0-$DFFD

1:0:1 $C000—$FFFF 16 Kbytes $BFC0-$BFFD

1:1:0 $8000—$FFFF 32 Kbytes $7FC0-$7FFD

1:1:1 $8000—$FFFF 32 Kbytes $7FCO—$7FFD

1. No redirection if FPOPEN = 0, or FNORED = 1.
2. Reset vector is not redirected.

4.7.5 FLASH Status Register (FSTAT)

Bits 3, 1, and 0 always read 0 and writes have no meaning or effect. The
remaining five bits are status bits that can be read at any time. Writes to
these bits have special meanings that are discussed in the bit
descriptions.

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

FCBEF
FCCF

FPVIOL FACCERR
0 FBLANK 0 0

1 1 0 0

= Unimplemented or Reserved

Figure 4-7. FLASH Status Register (FSTAT)

0 0 0 0

FCBEF - FLASH Command Buffer Empty Flag

FLASH commands are buffered so a second command can be written
into the buffer while the command processor is executing another
command during a burst programming sequence. As soon as a

command is finished, the command processor can start on an
additional burst programming command if one is present in the buffer.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 79

On-Chip Memory

FCBEF is set automatically when the command buffer can accept a
new command. A command is registered, and FCBEF is cleared, by
writing a 1 to the FCBEF bit. Writing 0 to FCBEF, after a write to the
FLASH but before the FCBEF clear that registers the command,
causes the partially entered command to be manually aborted and
clears the command buffer.

1 = A new command may be written to the command buffer.
0 = Command buffer is full (not ready for additional commands).

FCCF — FLASH Command Complete Flag

FCCF is set automatically when the command buffer is empty and no
command is being processed. FCCF is cleared automatically when a
new command is started (by writing 1 to FCBEF to register a
command). Writing to FCCF has no meaning or effect.

1 = All commands complete
0 = Command in progress

FPVIOL — Protection Violation Flag

FPVIOL is set automatically when FCBEF is cleared to register a
command that attempts to erase or program a location in a protected
block (the erroneous command is ignored). FPVIOL is cleared
automatically by writing a 1 to FPVIOL.

1 = An attempt was made to erase or program a protected location.
0 = No protection violation

FACCERR — Access Error Flag

FACCERR is set automatically when the proper command sequence
is not followed exactly (the erroneous command is ignored), if a
program or erase operation is attempted before the FCDIV register
has been initialized, or if the MCU enters stop while a command was
in progress. For a more detailed discussion of the exact actions that
are considered access errors, see 4.5.4 Access Errors. FACCERR
is cleared by writing a 1 to FACCERR. Writing a 0 to FACCERR has
no meaning or effect.

1 = An access error has occurred.
0 = No access error

Reference Manual — Volume I HCS08 — Revision 1

80 On-Chip Memory MOTOROLA

On-Chip Memory
FLASH Registers and Control Bits (MC9S08GB60)

FBLANK - FLASH Verified as All Blank (erased) Flag

FBLANK is set automatically at the conclusion of a blank check
command if the entire FLASH array was verified to be erased.
FBLANK is cleared by clearing FCBEF to write a new valid command.
Writing to FBLANK has no meaning or effect.

1 = After a blank check command is completed and FCCF = 1,
FBLANK = 1 indicates the FLASH array is completely erased
(all $FF).

0 = After a blank check command is completed and FCCF = 1,
FBLANK = 0 indicates the FLASH array is not completely
erased.

4.7.6 FLASH Command Register (FCMD)

Bits 7, 4, 3, and 1 always read 0 and cannot be written by user
application programs. Only five command codes are recognized in
normal user modes as shown in Table 4-10. Refer to 4.5.2 Program,
Erase, and Blank Check Commands for a detailed discussion of
FLASH programming and erase operations.

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

FCMP7 FCMP6 FCMP5 FCMP4 FCMP3 FCMP2 FCMP1 FCMPO

0 0 0 0 0 0

Figure 4-8. FLASH Command Register (FCMD)

Table 4-10. FLASH Commands

0

Command FCMD Equate File Label

Blank check $05 mBlank

Byte program $20 mByteProg

Byte program — burst mode $25 mBurstProg

Page erase (512 bytes/page) $40 mPageErase

Mass erase (all FLASH) $41 mMassErase

All other command codes are illegal and generate an access error.

0

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 81

On-Chip Memory

It is not necessary to perform a blank check command after a mass
erase operation. Blank check is required only as part of the security
unlocking mechanism.

4.8 FLASH Application Examples

This section discusses several examples to demonstrate how
programming and erase operations are performed on the FLASH in an
HCS08 MCU. These examples focus on the routines that would be found
in typical application systems as opposed to the programs that are used
to program the initial application programs into the FLASH the first time.
Normally, a third-party development tool would be used to program the
first application programs (including programs such as those shown in
these examples) into the HCS08 system.

A complete monitor program is presented and discussed in application
note AN2140, Serial Monitor forMC9SO8GB60. This bootloader resides
in protected FLASH at the high-address end of the FLASH and works
through the asynchronous serial communications interface (SCI1) of the
MC9S08GB60 to allow a user to program or erase FLASH, or debug
user applications.

A set of primitive binary monitor commands is supported by this monitor
so a host debugger running on your PC can read and write memory or
registers, set breakpoints, trace instructions, or go to a user program.
Refer to AN2140 for more information.

Most third-party debug systems and programmers use the background
debug interface for all programming operations. Typically, they would
download a small routine into the RAM of the target system and then
jump to that routine. This is more efficient than manipulating the FLASH
programming controls through serial background debug commands so it
is the preferred method when larger blocks of nonvolatile memory need
to be programmed. Since the nonvolatile memory modules in HCS08
devices have built-in state machines to process critical timing
operations, it is possible to manipulate the programming controls directly
through serial background commands. Normally, this would only be
done if the development host needed to program a few individual
locations.

Reference Manual — Volume I HCS08 — Revision 1

82 On-Chip Memory MOTOROLA

On-Chip Memory
FLASH Application Examples

4.8.1 Initialization of the FLASH Module Clock

The internal state machines that control programming and erase
operations on the FLASH use a 150 kHz to 200 kHz clock (FCLK) which
is derived by dividing the BUSCLK. The FLASH clock divider register
(FCDIV) is used to set the divider. FCDIV can only be written one time
after reset and no programming or erase operations are allowed until this
register has been written. It is customary to write this register during a
reset initialization routine shortly after reset.

The divider must be set so that FCLK is between 150 kHz and 200 kHz.
Programming and erase operations use a fixed number of these clock
cycles so the closer FCLK is to 200 kHz, the faster commands can be
performed. For example if FCLK is 200 kHz, it takes 45 microseconds to
program a single random location in FLASH. If FCLK is 150 kHz, the
same byte program operation takes 60 microseconds.

Refer to Figure 4-9 for the following discussion. The first part of this code
example shows an application equate which sets up the initialization
value for the FCDIV register. The second part shows the two lines of
code that would be placed in the reset initialization routine. Notice that
we could not use a MOV instruction to set the initial value in FCDIV
because it is a high-page register and MOV can only be used for
immediate, direct, or indexed operands. The initialization value shown in
this example is for a system that has a 32.768 kHz crystal and is using
the FLL to multiply this up to BUSCLK = 18.874368 MHz. The value in
FCDIV causes this to be divided by 8 x 12, producing
FCLK = 196.608 kHz (as close to 200 kHz as possible without going
over).

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 83

On-Chip Memory

initFCDIV: equ %01001011 ;FLASH clock divider

I I
1 1 1 1+-DIVO \

+

~ I I+--DIV1

~ I+---DIV2 >-- divide by (11+1)

+----DIV3 BUSCLK/(8*12)-=196,608 Hz

+ DIV4

 DIV5 /

 PRDIV8 -- divide (prescale) by 8

 DIVLD --- read-only status

lda initFCDIV

sta FCDIV ;set fFCLK = about 200kHz

Figure 4-9. FCLK Initialization

The requirement for FCLK to be at least 150 kHz implies that BUSCLK
must also be at least 150 kHz (because the smallest divide that can be
set by FCDIV is 1). This requirement only applies to programming and
erase operations, not to reads. This means lower bus frequencies may

be used to reduce power consumption, but the bus frequency must be
at least 150 kHz during program and erase operations.

Applications that adjust the bus frequency during normal operations
(using post-FLL divider controls), must be aware of the FCLK frequency
requirements for programing and erase operations. Since the FCDIV
register is write-once, it cannot be adjusted to accommodate dynamic
changes in bus frequency. During program and erase operations, the
bus clock would need to be changed to make FCLK fall within legal
limits. Many applications do not adjust the bus clock frequency
dynamically so this issue does not arise.

4.8.2 Erase One 512-Byte Page in FLASH

Program and erase operations for the FLASH memory are a little more
complicated compared to many application programs because it is not
possible to execute a program out of FLASH during FLASH program and
erase operations. This example shows one way to overcome this
limitation by placing the routine on the stack so the CPU is executing out
of stack RAM while the FLASH is unavailable due to the program or
erase operation.

Reference Manual — Volume I HCS08 — Revision 1

84 On-Chip Memory MOTOROLA

On-Chip Memory
FLASH Application Examples

The example shown in Figure 4-10 is located in the FLASH memory and
can be used to erase one 512-byte page of FLASH (that is, any page
other than the page where this routine is located). This routine is useful
because HCS08 devices have no separate EEPROM. In an HCS08
device, one or more pages of FLASH could be used for storage of
nonvolatile configuration values or logged history data. Typically, the
main body of the application code, including these routines, would reside
in a block protected portion of the FLASH. A BDM interface pod is
required to change the block protection settings so protected code
cannot be erased accidentally or altered as a result of an application
program error.

This FlashErasel routine calls the DoOnStack subroutine which, in turn,
copies a small instruction sequence onto the stack and jumps to that
stack routine to complete the requested FLASH program or erase
command before returning to the calling program in FLASH. The initial
steps in the FLASH program or erase command can be executed from
within the FLASH, but the command sequence itself should not be
executed from within the FLASH memory.

;* FlashErasel - erases one page of FLASH (512 bytes)

;* On entry... H:X - points at a location in the page to be erased

;* Calling convention:

;* jsr FlashErasel

;* Uses: DoOnStack which uses SpSub

;* Returns: H:X unchanged and A = FSTAT shifted left by 2 bits

;* Z=1 if OK, Z=0 if protect violation or access error

;* uses 32 bytes of stack space + 2 bytes for BSR/JSR used to call it
.***

FlashErasel: psha ;adjust sp for DoOnStack entry

lda #(mFPVIOL+mFACCERR) ;mask

sta FSTAT ;abort any command and clear errors

lda #mPageErase ;mask pattern for page erase command

bsr DoOnStack ;finish command from stack-based sub

ais #1 ;deallocate data location from stack

its ;Z = 0 means there was an error

Figure 4-10. Erase One 512-Byte Page in FLASH

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 85

On-Chip Memory

The PDHA instruction at the beginning of FlashErasel places a dummy
data value onto the stack so the DoOnStack subroutine can fetch it with
an LDA SpSubSize+6,sp instruction later. The AIS #1 instruction just
before the RTS instruction at the end of FlashErasel deallocates this
byte before returning.

Just in case there was a pending protection violation or access error
(FPVIOL or FACCERR) from some previous operation, the second and
third instructions in FlashErasel will clear these flags so the command
processor is ready to receive a new command. Within this example case
we do not check these error flags because we are assuming we know
what we are doing. However, some applications will include additional
checks of FPVIOL and FACCERR to guard against unintended errors
such as an attempt to erase a protected location.

4.8.3 DoOnStack Subroutine

This is an unusual subroutine because it moves instructions onto the
stack and then jumps there so that the FLASH command subroutine
finishes execution from the stack RAM. This solves the problem that you
cannot execute instructions out of the FLASH memory while any
program or erase operation is in progress. The DoOnStack subroutine is
located in FLASH, but during the critical portion of the routine when the
program or erase command is actually in progress, the CPU will be
executing instructions on the stack (that is, in the on-chip RAM).

;* DoOnStack - copy SpSub onto stack and call it (see also SpSub)

;* Deallocates the stack space used by SpSub after returning from it.

;* Allows flash prog/erase command to execute out of RAM (on stack)

;* while flash is out of the memory map.

;* This routine can be used for flash byte-program or erase commands

;* Calling Convention:

;* psha ;save data to program (or dummy
data for an erase command)

lda #(mFPVIOL+mFACCERR) ;mask

eta FSTAT ;abort any command and clear errors

lda #mByteProg ;mask pattern for byte prog command

jsr DoOnStack ;execute prog code from stack RAM

ais #i ;deallocate data location from stack

without disturbing A or CCR

or substitute #mPageErase for page erase

Reference Manual — Volume I HCS08 — Revision 1

86 On-Chip Memory MOTOROLA

On-Chip Memory
FLASH Application Examples

;* Uses 29 bytes on stack + 2 bytes for BSR/JSR used to call it

;* returns H:X unchanged and A=0 and Z=1 if no flash errors

HCS08 — Revision 1

DoOnStack: pshx

pshh

psha

ldhx #SpSubEnd
SpMoveLoop: lda ,x

psha

aix #-1

cphx #SpSub-1

bne SpMoveLoop

tsx

tpa

and #$08

bne I set

sei

lda SpSubSize+6,sp

jsr ,x

cli

bra I_cont

I_set: lda SpSubSize+6,sp

jsr ,x

I cont: ais #SpSubSize+3

Isla

its

;save pointer to flash

;save command on stack

;point at last byte to move to stack
;read from flash

;move onto stack

;next byte to move

;past end?

;loop till whole sub on stack

;point to sub on stack

;move OCR to A for testing

;check the I mask

;skip if I already set

;block interrupts while FLASH busy

;preload data for command

;execute the sub on the stack

;ok to clear I mask now

;continue to stack de-allocation

;preload data for command

;execute the sub on the stack

;deallocate sub body + H:X + command

;H:X flash pointer OK from SpSub

;A=00 & Z=1 unless PVIOL or ACCERR

;to flash where DoOnStack was called

Figure 4-11. DoOnStack Subroutine (Complete FLASH Command)

First, DoOnStack pushes the FLASH location pointer (H:X) and the
command code (A) onto the stack to free up these CPU registers. H:X is
set to point at the last byte of the SpSub subroutine. Next, a 5-instruction
loop copies the stack routine from FLASH onto the stack one byte at a
time. After moving the last byte onto the stack, SP points at the next
lower address. The TSX instruction adds one to SP as the value is
copied to the H:X register pair. This leaves H:X pointing at the first byte
of the routine that was just moved onto the stack.

The next several instructions are used to determine whether or not
interrupts are masked. If interrupts are masked (I set to 1), A is loaded
with the data for the FLASH program or erase operation and the copy of
SpSub on the stack is called. If interrupts were not masked, an SEI
instruction is used to block interrupts, A is loaded, SpSub is called
(JSR ,X), and the ACLI re-enables interrupts. The stack subroutine is
described in 4.8.4 SpSub Subroutine immediately below.

Reference Manual — Volume I

MOTOROLA On-Chip Memory 87

On-Chip Memory

After returning from SpSub, the AIS #SpSubSize+3 instruction
deallocates the stack space used for SpSub and associated parameters.
ASLA moves the PVIOL and ACCERR error flags to the most significant
2 bits of A. A should now be 0 if there were no errors.

4.8.4 SpSub Subroutine

The SpSub subroutine (see Figure 4-12) is moved onto the stack by the
DoOnStack subroutine (described in 4.8.3 DoOnStack Subroutine
immediately above) and then it is called (from DoOnStack). This
subroutine completes the program or erase command and then waits for
all FLASH commands to finish before returning. These instructions are
located on the stack in on-chip RAM when they are executed. This
satisfies the requirement that you cannot execute instructions out of
FLASH while a program or erase command is in progress.

;* SpSub - This variation of SpSub performs all of the steps for

;* programming or erasing flash from RAM. SpSub is copied onto the

;* stack, SP is copied to H:X, and then the copy of SpSub in RAM is

;* called using a JSR 0,X instruction.

;* At the time SpSub is called, the data to be programmed (dummy data

;* for an erase command), is in A and the flash address is on the

;* stack above SpSub. After return, PVIOL and ACCERR flags are in bits

;* 6 and 5 of A. If A is shifted left by one bit after return, it

;* should be zero unless there was a flash error.

;* Uses 24 bytes on stack + 2 bytes if a BSR/JSR calls it

SpSub: ldhx

sta

lda

eta

lda

sta

flop

ChkDone: lda

lsla
bpl

SpSubEnd: its

SpSubSize: equ

SpSubSize+4,sp

0,x

SpSubSize+3,sp

FCMD

#mFCBEF

FSTAT

FSTAT

ChkDone

(*-SpSub)

;get flash address from stack

;write to flash; latch addr and data

;get flash command

;write the flash command

;mask to initiate command

;[pwpp] register command

;[p] want min 4-. from w cycle to r

;[prpp] so FCCF is valid

;FCCF now in MSB
;loop if FCCF = 0

;back into DoOnStack in flash

Reference Manual — Volume I

Figure 4-12. SpSub Subroutine (Executes on Stack)

HCS08 — Revision 1

88 On-Chip Memory MOTOROLA

On-Chip Memory
FLASH Application Examples

In SpSub, H:X is loaded (using a stack pointer-relative LDHX instruction)
with the address for the FLASH program or erase operation. The STA
o,x instruction completes the first step of the FLASH program or erase
command sequence. Next, another stack pointer-relative LOAD
instruction is used to load A with the command code for a PageErase or
a ByteProgram command and this code is written to FCMD. The next
two instruction write a 1 to the FCBEF bit in FSTAT to register the
command and start the program or erase operation.

The cycle-by-cycle activity for the STA FSTAT, NOP, and LDA FSTAT
instructions is shown in square brackets in the comment fields of these
instructions because there is a requirement that there must be at least
four cycles after the FSTAT write that registers the command before the
first read to check the FCBEF or FCCF status flags. The p cycles are
program fetch cycles, the w cycle is where the FSTAT register was
written, and the r cycle is where the FSTAT register is read.

Next, the ASLA instruction moves the FCCF flag to the MSB of the
accumulator and sets or clears the N bit in the CCR according to the
value of FCCF (now in this MSB). If FCCF was clear, the BPL instruction
will cause a branch back to ChkDoneEl to repeat the status check.
When FCCF is set, the branch will fall through indicating the command
is finished and no additional commands are pending. At this point, the
FLASH reappears in the memory map so it is safe to use the RTS
instruction to return to the calling program in FLASH.

4.8.5 Program One Byte of FLASH

This example demonstrates a simple routine to program a single location
in FLASH. It assumes the location was previously blank (erased to $FF)
and does not perform any error checking. We assume we are following
the correct programming procedure so we will not get access errors and
we assume the programmer knows that the location is not located in a
protected block which would cause a protection violation error. This
example uses the DoOnStack and SpSub routines described in
4.8.3 DoOnStack Subroutine and 4.8.4 SpSub Subroutine above.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 89

On-Chip Memory

.***

;* F1ashProgl - programs one byte of FLASH

;* This routine waits for the command to complete before returning.

:* assumes location was blank. This routine can be run from FLASH

;* On entry... H:X - points at the FLASH byte to be programmed

;* A holds the data for the location to be programmed

;* Calling convention:

;* jsr F1ashProgl

;* Uses: DoOnStack which uses SpSub

;* Returns: H:X unchanged and A = FSTAT shifted left by 2 bits

;* Z=1 if OK, Z=0 if protect violation or access error

;* uses 32 bytes of stack space + 2 bytes for BSR/JSR used to call it
.***

F1ashProgl: psha ;temporarily save entry data

lda #(mFPVIOL+mFACCERR) ;mask

sta FSTAT ;abort any command and clear errors

lda #mByteProg ;mask pattern for byte prog command

bsr DoOnStack ;execute prog code from stack RAM

ais #1 ;deallocate data location from stack

its ;Z = 0 means there was an error

Figure 4-13. Program One Byte in FLASH

One advantage of the way FlashProgl and FlashErasel are written is
that this code can reside in FLASH. Only the code for the actual
programming or erase operation is copied onto the stack so it can be
executed in RAM while the FLASH is out of the memory map.

One drawback to this approach is that each command must be
completed before anything else can be done. For applications where
only a few locations are programmed at a time, this limitation is not
serious. On the other hand, this approach would not be appropriate for
programming larger blocks of data into the FLASH. For those cases use
an approach where the entire programming algorithm is located in a
RAM routine. Burst programming commands can be queued such that
there is always another command waiting in a buffer so it can
immediately transfer into the on-chip command processor as soon as
the previous command finishes. In the case of programming multiple
bytes within the same 64-byte FLASH row, this allows burst
programming which takes less than half as long as programming a
single isolated byte.

Reference Manual — Volume I HCS08 — Revision 1

90 On-Chip Memory MOTOROLA

HCS08 Family Reference Manual

Section 5. Resets and Interrupts

5.1 Introduction

This section discusses the basic reset and interrupt mechanisms along
with the various sources of reset and interrupts in most HCS08
derivatives. Some interrupt sources from peripheral modules are
discussed in greater detail within other sections of this reference
manual. This section gathers information about all reset and interrupt
sources in one place for easy reference. A few reset and interrupt
sources, including the computer operating properly (COP) watchdog
and periodic interrupt timer, are not part of on-chip peripheral systems
that have their own sections. These functions and their registers are
described in this section. For more information about the reset and
interrupt sources for a specific derivative, refer to the appropriate data
sheet.

5.2 Reset and Interrupt Features for MC9S08GB60

The set of reset and interrupt sources differs for each HCS08 derivative.
This section describes the sources for the first HCS08 device
(MC9S08GB60). Refer to the data sheet for a specific device for more
information.

Reset and interrupt sources include:

• Eight possible sources of reset:

— Power-on detection (POR)

— External RESET pin with enable

— COP watchdog with enable and two timeout choices

— Illegal address (not applicable on the MC9S08GB60)

— Illegal opcode detect

— Clock generator loss-of-lock and loss-of-clocks

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 91

Resets and Interrupts

— Low-voltage detect (LVD) with enable

— Serial command from a background debug host

• Reset status register to indicate cause of most recent reset

• 25 separate interrupt vectors (reduces polling overhead):

— Software interrupt instruction (SWI)

— IRO pin with enable, choice of polarity, level, and/or edge

— Low-voltage detect with enable

— Clock generator loss-of-lock or loss-of-clocks

— Ten timer interrupts; two overflow, eight channels total for two
TPMs

— One SPI interrupt

— Six SCI interrupts; Rx, Tx, and error for each of two SCIs

— Keyboard wakeup

— ATD conversion complete

— Periodic wakeup from stop with enable and multiple rates
based on a separate 1-kHz self-clocked source or an external
source

5.3 MCU Reset

Reset provides a way to start processing from a known set of initial
conditions. During reset, most control and status registers are forced to
initial values and the program counter is loaded from the reset vector
($FFFE:$FFFF). On-chip peripheral modules are disabled and I/O pins
are initially configured as general-purpose high-impedance inputs with
pullup devices disabled. The I bit in the condition code register (CCR) is
set to block maskable interrupts until the user program has a chance to
initialize the stack pointer (SP) and system control settings. SP is forced
to $00FF at reset, but this is almost never where the stack should be
located in an HCS08 system. Normally, SP should be changed during
reset initialization.

Reference Manual — Volume I HCS08 — Revision 1

92 Resets and Interrupts MOTOROLA

Resets and Interrupts
Computer Operating Properly (COP) Watchdog

The MCU defaults to using the self-clocked mode (approximately 4 MHz
bus clock) so it doesn't need to wait for the external oscillator to start and
stabilize. In most systems, the user's initialization program will configure
the clock module to operate at the system's optimal frequency.

5.4 Computer Operating Properly (COP) Watchdog

The COP watchdog is intended to force a system reset when the
application software fails to execute as expected. To prevent a system
reset from the COP timer (when it is enabled), application software must
reset the COP timer periodically. If the application program gets lost and
fails to reset the COP before it times out, a system reset is generated to
force the system back to a known starting point. The COP watchdog is
enabled and controlled by the SOPT register (see 5.8.4 System
Options Register (SOPT) for additional information). The COP timer is
reset by writing any value to the address of the reset status register
(SRS). This write does not affect the data in the read-only SRS register.
Instead, the act of writing to this address is decoded and sends a reset
signal to the COP timer.

After any reset, the COP timer is enabled, because depending on any
application program instructions to enable the watchdog that is
supposed to detect software errors is not reliable. If the COP watchdog
is not used in an application, it can be disabled by clearing the COPE bit
in the write-once SOPT register. Also, the COPT bit can be used to
choose one of two timeout periods (218 or 213 cycles of the bus rate
clock). Even if the application will use the reset default settings in COPE
and COPT, you should still write to the write-once SOPT register during
reset initialization to lock in the settings so they cannot be changed
accidentally if the application program gets lost.

The write to SRS that services (clears) the COP timer should not be
placed in an interrupt service routine (ISR) because the ISR could
continue to be executed periodically even if the main application
program fails.

5.5 Interrupts

Interrupts provide a way to save the current CPU status and registers,
execute an interrupt service routine (ISR), and then restore the CPU

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 93

Resets and Interrupts

status so that processing resumes where it left off before the interrupt.
Other than software interrupt (SWI), which is a program instruction,
interrupts are caused by hardware events such as an edge on the IRQ
pin or the reception of a serial I/O character. The debug module can also
generate SWI interrupts under certain circumstances (see
7.5.9 Hardware Breakpoints and ROM Patching).

If an event occurs in an enabled interrupt source, an associated
read-only status flag will become set, but the CPU will not respond until
and unless the local interrupt mask is a logic 1 to enable the interrupt and
the I bit in the condition code register (CCR) is logic 0 to allow interrupts.
The global interrupt mask (I bit) in the CCR is initially set after reset
which masks (prevents) all maskable interrupt sources. This allows the
user program to initialize the stack pointer and perform other system
setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the
current instruction before responding to the interrupt. The interrupt
sequence follows the same cycle-by-cycle sequence as the SWI
instruction and consists of:

• Saving the CPU registers on the stack

• Setting the I bit in the CCR to mask further interrupts

• Fetching the interrupt vector for the highest priority interrupt that is
currently pending

• Filling the instruction queue with the first three bytes of program
information starting from the address fetched from the interrupt
vector locations

While the CPU is responding to the interrupt, the I bit is automatically set
to avoid the possibility of another interrupt interrupting the ISR itself (this
is called nesting of interrupts). Normally, the I bit is restored to 0 when
the CCR is restored from the value that was stacked on entry to the ISR.
In rare cases, the I bit may be cleared inside an ISR (after clearing the
status flag that generated the interrupt) so that other interrupts can be
serviced without waiting for the first service routine to finish. This
practice is not recommended for anyone other than the most
experienced programmers because it can lead to subtle program errors
that are difficult to debug.

Reference Manual — Volume I HCS08 — Revision 1

94 Resets and Interrupts MOTOROLA

Resets and Interrupts
Interrupts

The interrupt service routine ends with a return-from-interrupt (RTI)
instruction which restores the CCR, A, X, and PC registers to their
pre-interrupt values by reading the previously saved information off the
stack. For compatibility with the M68HC08, the H register is not
automatically saved and restored. So it is good programming practice to
push H onto the stack at the start of the interrupt service routine (ISR)
and restore it just before the RTI that is used to return from the ISR.

5.5.1 Interrupt Stack Frame

Figure 5-1 shows the contents and organization of a stack frame. Before
the interrupt, the stack pointer (SP) points at the next available byte
location on the stack. The current values of CPU registers are stored on
the stack starting with the low-order byte of the program counter (PCL)
and ending with the condition code register (CCR). After stacking, the
SP points at the next available location on the stack which is the address
that is one less than the address where the CCR was saved. The PC
value that is stacked is the address of the instruction in the main program
that would have executed next if the interrupt had not occurred.

1
TOWARD LOWER ADDRESSES

UNSTACKING
ORDER

1
5 1

4 2

3 3

2 4

1 5

I
STACKING
ORDER

0

CONDITION CODE REGISTER

ACCUMULATOR

INDEX REGISTER (LOW BYTE X) *

PROGRAM COUNTER HIGH

PROGRAM COUNTER LOW

SP AFTER E-
INTERRUPT STACKING

SP BEFORE
~- THE INTERRUPT

TOWARD HIGHER ADDRESSES

High byte (H) of index register is not stacked.

Figure 5-1. Interrupt Stack Frame

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 95

Resets and Interrupts

When an RTI instruction is executed, these values are recovered from
the stack in reverse order. As part of the RTI sequence, the CPU fills the
instruction pipeline by reading three bytes of program information,
starting from the PC address that was just recovered from the stack.

The status flag that caused the interrupt must be acknowledged
(cleared) before returning from the ISR. Typically, the flag should be
cleared at the beginning of the ISR so that if another interrupt is
generated by this same source, it will be registered so it can be serviced
after completion of the current ISR.

5.5.2 External Interrupt Request (IRQ) Pin

External interrupts are managed by the IRQ status and control register
(IRQSC). When the IRQ function is enabled, synchronous logic monitors
the pin for edge-only or edge-and-level events. When the MCU is in stop
mode and system clocks are shut down, an asynchronous path is used
so the IRQ (if enabled) can wake the MCU from stop.

5.5.2.1 Pin Configuration Options

The IRQ pin enable (IRQPE) control bit in the IRQSC register must be 1
in order for the IRQ pin to act as the interrupt request (IRQ) input. As an
IRQ input, the user can choose the polarity of edges or levels detected
(IRQEDG), whether the pin detects edges-only or edges and levels
(IRQMOD), and whether an event causes an interrupt or just sets the
IRQF flag which can be polled by software.

When the IRQ pin is configured to detect rising edges, an optional
pulldown resistor is available rather than a pullup resistor. BIH and BIL
instructions may be used to detect the level on the IRQ pin when the pin
is configured to act as the IRQ input.

NOTE: The voltage measured on the pulled up IRQ pin may be as low as V00

— 0.7 V. The internal gates connected to this pin are pulled all the way to
Vop. All other pins with enabled pullup resistors will have an unloaded
measurement of Voo.

Reference Manual — Volume I HCSOB — Revision 1

96 Resets and Interrupts MOTOROLA

Resets and Interrupts
Interrupts

5.5.2.2 Edge and Level Sensitivity

Synchronous logic is used to detect edges. Prior to detecting an edge,
the IRQ pin must be at its deasserted logic level. A falling edge is
detected when the enabled IRQ input signal is seen at logic 1 during one
bus cycle and then at logic 0 during the next cycle. A rising edge is
detected when the input signal is seen as a logic 0 during one bus cycle
and then a logic 1 during the next cycle.

The IRQMOD control bit can be set to reconfigure the detection logic so
that it detects edges and levels. In this mode, the IRQF status flag
becomes set when an edge is detected (when the IRQ pin changes from
the deasserted to the asserted level), but the flag is continuously set
(and cannot be cleared) as long as the IRQ pin remains at the asserted
level.

5.5.3 Interrupt Vectors, Sources, and Local Masks

Table 5-1 provides a summary of all interrupt sources in the
MC9S08GB60. Higher-priority sources are located toward the bottom of
the table. The high-order byte of the address for the interrupt service
routine is located at the first address in the vector address column, and
the low-order byte of the address for the interrupt service routine is
located at the next higher address. The vector name is the label used in
the equate or header file provided by Motorola.

When an interrupt condition occurs, an associated flag bit becomes set.
If the associated local interrupt mask is 1, an interrupt request is sent to
the CPU. Within the CPU, if the global interrupt mask (I bit in the CCR)
is 0, the CPU will finish the current instruction, stack the PCL, PCH, X,
A, and CCR CPU registers, set the I bit, and then fetch the interrupt
vector for the highest priority pending interrupt. Processing then
continues in the interrupt service routine.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 97

Resets and Interrupts

Table 5-1. Interrupt Summary (MC9S08GB60)

Vector
Priority

Address
(High/Low)

Vector
Name

Module Source Enable Description

Lower

Higher

W

$FFCO/FFC1
through

$FFCA/FFCB

Unused Vector Space
(available for user program)

$FFCC/FFCD Vrti
System
control

RTIF RTIE
Real-time
interrupt

$FFCE/FFCF Viic IIC IICIS IICIE IIC control

$FFDO/FFD1 Vatd ATD COCO AIEN
AD conversion

complete

$FFD2/FFD3 Vkeyboard KBI KBF KBIE Keyboard pins

$FFD4/FFD5 Vsci2tx SCl2
T~CE TIE

TC E
SCl2 transmit

$FFD6/FFD7 Vscilrx SCl2
IDLE
RDRF

ILIE
RIE

SCl2 receive

$FFD8/FFD9 Vsci2err SCl2

OR
NF
FE
PF

ORIE
NFIE
FETE
PFIE

SCl2 error

$FFDA/FFDB Vsciltx SCI1 TDCE
TIE

TC E
SCI1 transmit

$FFDC/FFDD Vscilrx SCI1
IDLE
RDRF

ILIE
RIE

SCI1 receive

$FFDE/FFDF Vscilerr SCI1

OR
NF
FE
PF

ORIE
NFIE
FETE
PFIE

SCI1 error

$FFEO/FFE1 Vspi SPI
SPIF

MODF
SPTEF

SPIE
SPIE

SPTIE
SPI

$FFE2/FFE3 Vtpmlovf TPM2 TOE TOIE TPM2 overflow

$FFE4/FFE5 Vtpm2ch4 TPM2 CH4F CH4IE TPM2 channel 4

$FFE6/FFE7 Vtpm2ch3 TPM2 CH3F CH3IE TPM2 channel 3

$FFE8/FFE9 Vtpm2ch2 TPM2 CH2F CH2IE TPM2 channel 2

$FFEA/FFEB Vtpmlchl TPM2 CH1F CH1IE TPM2 channel 1

$FFEC/FFED Vtpm2chO TPM2 CHOF CHOIE TPM2 channel 0

$FFEE/FFEF Vtpmlovf TPM1 TOF TOIE TPM1 overflow

$FFFO/FFF1 Vtpmlch2 TPM1 CH2F CH2IE TPM1 channel

$FFE2/FFF3 Vtpmlchl TPM1 CH1F CHOIE TPM1 channel 1

$FFF4/FFF5 Vtpmlch0 TPM1 CHOF CHOIE TPM1 channel

$FFF6/FFF7 Vicg ICG
ICGIF

(LOLS/LOGS)
LOLRE/LOCRE ICG

$FFF8/FFF9 Vlvd System control LVDF LVDIE
Low-voltage

detect
$FFFA/FFFB Virq IRQ IRQF IRQIE IRQ pin

$FFFC/FFFD Vswi Core SWI Instruction — Software interrupt

$FFFE/FFFF Vreset Systemcontrol

COP COPE
LVDRE

—

Watchdog timer
Low-voltage

External pin
Illegal opcode

RESEDT pin
Illegal opcode

Reference Manual — Volume I HCS08 — Revision 1

98 Resets and Interrupts MOTOROLA

Resets and Interrupts
Low-Voltage Detect (LVD) System

5.6 Low-Voltage Detect (LVD) System

The 9S08GB/GT includes a system to protect against low voltage
conditions in order to protect memory contents and control MCU system
states during supply voltage variations. The system is comprised of a
power-on reset (FOR) circuit and an LVD circuit with a user selectable
trip voltage, either high (VLVDH) or low (VLVDL). The LVD circuit is
enabled when LVDE in SPMSCI is high and the trip voltage is selected
by LVDV in SPMSC2. The LVD is disabled upon entering any of the stop
modes unless the LVDSE bit is set. If LVDSE and LVDE are both set,
then the MCU cannot enter stopl or stop2, and the current consumption
in stop3 with the LVD enabled will be greater.

5.6.1 Power-On Reset Operation

When power is initially applied to the MCU, or when the supply voltage
drops below the VPOR level, the POR circuit will cause a reset condition.
As the supply voltage rises, the LVD circuit will hold the chip in reset until
the supply has risen above the VLVDH level. Both the POR bit and the
LVD bit in SRS are set following a POR.

5.6.2 LVD Reset Operation

The LVD can be configured to generate a reset upon detection of a low
voltage condition by setting LVDRE to 1. Once an LVD reset has
occurred, the LVD system will hold the MCU in reset until the supply
voltage has risen above the level determined by LVDV. LVDV is not
altered when an LVD reset occurs. The LVD bit in the SRS register is set
following either an LVD reset or POR.

5.6.3 LVD Interrupt Operation

When a low voltage condition is detected and the LVD circuit is
configured for interrupt operation (LVDE set, LVDIE set, and LVDRE
clear), then LVDF will be set and an LVD interrupt will occur.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 99

Resets and Interrupts

5.6.4 Low-Voltage Warning (LVW)

The LVD system has a low voltage warning flag to indicate to the user
that the supply voltage is approaching, but is still above, the LVD

voltage. The LVW does not have an interrupt associated with it. There
are two user selectable trip voltages for the LVW, one high (VLVWH) and
one low (VLVWL). The trip voltage is selected by LVWV in SPMSC2.

5.7 Real-Time Interrupt (RTI)

The real-time interrupt function can be used to generate periodic
interrupts based on a divide of the external oscillator during run mode. It
can also be used to wake the MCU from stop2 using the internal 1 -kHz
reference, or from stop3 using either the internal reference or the
external oscillator if it is enabled in stop modes. The RTICLKS bit in the
system real-time interrupt status and control register (SRTISC) is used
to select between these two modes of operation.

The SRTISC register includes a read-only status flag, a write-only
acknowledge bit, and a 3-bit control value (RTIS2:RTISI:RTIS0) used to
disable the clock source to the real-time interrupt or select one of seven
wakeup delays between 8 ms and 1.024 seconds. The 1 -kHz clock
source and therefore the periodic rates have a tolerance of about 30
percent. The RTI has a local interrupt enable, RTIE, to allow masking of
the real-time interrupt. It can be disabled by writing 0:0:0 to
RTIS2:RTISI:RTISO so the clock source is disabled and no interrupts
will be generated. See 5.8.6 System Real-Time Interrupt Status and
Control Register (SRTISC) for detailed information about this register.

5.8 Reset, Interrupt, and System Control Registers and Control Bits

One 8-bit register in the direct page register space and five 8-bit
registers in the high-page register space are related to reset and
interrupt systems.

Refer to the direct-page register summary in Section 4. On-Chip
Memory of this reference manual for the absolute address assignments
for all registers. This section refers to registers and control bits only by

Reference Manual — volume I HCS08 — Revision 1

100 Resets and Interrupts MOTOROLA

Resets and Interrupts
Reset, Interrupt, and System Control Registers and Control Bits

their names. An equate or header file provided by Motorola is used to
translate these names into the appropriate absolute addresses.

Some control bits in the SOPT and SPMSC2 registers are related to
modes of operation. Although brief descriptions of these bits are
provided here, the related functions are discussed in greater detail in
Section 3. Modes of Operation.

This section describes register and bit details for the MC9S08GB60.
Although these descriptions are representative of HCS08 devices, you
should always refer to the data sheet for details about a specific HCS08
device.

5.8.1 Interrupt Request Status and Control Register (IRQSC)

This direct page register includes two unimplemented bits which always
read 0, four read/write bits, one read-only status bit, and one write-only
bit. These bits are used to configure the IRQ function, report status, and
acknowledge IRQ events.

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

0 0 IRQF 0
IRQEDG IRQPE IRQIE IRQMOD

IRQACK

0 0 0 0

= Unimplemented or Reserved

Figure 5-2. Interrupt Request Status and Control Register (IRQSC)

0 0 0 0

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 101

Resets and Interrupts

IRQEDG — Interrupt Request (IRQ) Edge Select

This read/write control bit is used to select the polarity of edges or
levels on the IRQ pin that cause IRQF to be set. The IRQMOD control
bit determines whether the IRQ pin is sensitive to both edges and
levels or just edges. When the IRQ pin is enabled as the IRQ input
and is configured to detect rising edges, the optional pullup resistor is
reconfigured as an optional pulldown resistor.

1 = IRQ is rising edge or rising edge/high-level sensitive.
0 = IRQ is falling edge or falling edge/low-level sensitive.

IRQPE — IRQ Pin Enable

This read/write control bit enables the IRQ pin function. When this bit
is set the IRQ pin can be used as an interrupt request. Also, when this
bit is set, either an internal pull-up or an internal pull-down resistor is
enabled depending on the state of the IRQMOD bit.

1 = IRQ pin function is enabled.
0 = IRQ pin function is disabled.

IRQF — IRQ Flag

This read-only status bit indicates when an interrupt request event
has occurred.

1 = IRQ event detected.
0 = No IRQ request.

IRQACK — IRQ Acknowledge

This write-only bit is used to acknowledge interrupt request events
(write 1 to clear IRQF). Writing 0 has no meaning or effect. Reads
always return logic 0. If edge-and-level detection is selected
(IRQMOD = 1), IRQF cannot be cleared while the IRQ pin remains at
its asserted level.

IRQPE — IRQ Interrupt Enable

This read/write control bit determines whether IRQ events generate a

hardware interrupt request.
1 = Hardware interrupt requested whenever IRQF = 1.
0 = Hardware interrupt requests from IRQF disabled (use polling).

Reference Manual — Volume I HCS08 — Revision 1

102 Resets and Interrupts MOTOROLA

Resets and Interrupts
Reset, Interrupt, and System Control Registers and Control Bits

IRQMOD — IRO Detection Mode

This read/write control bit selects either edge-only detection or
edge-and-level detection. The IRQEDG control bit determines the
polarity of edges and levels that are detected as interrupt request
events. See 5.5.2.2 Edge and Level Sensitivity for more details.

1 = IRQ event on falling edges and low levels or on rising edges
and high levels.

0 = IRO event on falling edges or rising edges only.

5.8.2 System Reset Status Register (SRS)

This register includes seven read-only status flags to indicate the source
of the most recent reset. When a debug host forces reset by writing 1 to
BDFR in the FBDFR register, none of the status bits in SRS will be set.
Writing any value to this register address clears the COP watchdog timer
without affecting the contents of this register. The reset state of these
bits depends on what caused the MCU to reset.

Read:

Write:

Power-on reset:

Low-voltage reset:

Any other reset:

Bit 7 6 5 4 3 2 1 Bit 0

POR PIN COP ILOP 0 ICG LVD 0

Writing any value to SRS address clears COP watchdog timer.

1

0

0

0

0

0

0

0

0

(t) (1) (t)

0

0

0

0

0

(f)

1

1

0

0

0 0

1. Any of these reset sources that are active at the time of reset will cause the corresponding bit(s) to be set;
bits corresponding to sources that are not active at the time of reset will be cleared.

Figure 5-3. System Reset Status (SRS)

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 103

Resets and Interrupts

POR — Power-On Reset

Reset was caused by the power-on detection logic. Since the internal
supply voltage was ramping up at the time, the low-voltage reset
(LVR) status bit is also set to indicate that the reset occurred while the
internal supply was below the LVR threshold.

1 = POR caused reset
0 = Reset not caused by FOR

PIN — External Reset Pin

Reset was caused by an active-low level on the external reset pin.
1 = Reset came from external reset pin.
0 = Reset not caused by external reset pin

COP — Computer Operating Properly (COP) Watchdog

Reset was caused by the COP watchdog timer timing out. This reset
source may be blocked by COPE = 0.

1 = Reset caused by COP timeout
0 = Reset not caused by COP timeout

ILOP — Illegal Opcode

Reset was caused by an attempt to execute an unimplemented or
illegal opcode. The STOP instruction is considered illegal if stop is
disabled by STOPE = 0 in the SOFT register. The BGND instruction
is considered illegal if active background mode is disabled by
ENBDM = 0 in the BDCSC register.

1 = Reset caused by an illegal opcode
0 = Reset not caused by an illegal opcode

ICG — Internal Clock Generation Module Reset

Reset was caused by an ICG module reset.
1 = Reset caused by ICG module.
0 = Reset not caused by ICG module.

LVD — Low Voltage Detect

If the LVDRE and LVDSE bits are set and the supply drops below the
LVD trip voltage, an LVD reset will occur. This bit is also set by POR.

1 = Reset caused by LVD trip or POR.
0 = Reset not caused by LVD trip or POR.

Reference Manual — Volume I HCS08 — Revision 1

104 Resets and Interrupts MOTOROLA

Resets and Interrupts
Reset, Interrupt, and System Control Registers and Control Bits

5.8.3 System Background Debug Force Reset Register (SBDFR)

This register contains a single write-only control bit. A serial background
command such as WRITE BYTE must be used to write to SBDFR.
Attempts to write this register from a user program are ignored. Reads
always return $00.

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

0 0 0 0 0 0 0 0

BDFR 1

0 0 0 1 0 0 0 0

= Unimplemented or Reserved

1. BDFR is writable only through serial background debug commands, not from user
programs.

Figure 5-4. System Integration Module Control Register (SBDFR)

BDFR — Background Debug Force Reset

A serial background command such as WRITE_BYTE may be used
to allow an external debug host to force a target system reset. Writing
logic 1 to this bit forces an MCU reset. This bit cannot be written from
a user program.

5.8.4 System Options Register (SOPT)

This register may be read at any time. Bits 3, 2, and 0 are
unimplemented and always read 0. This is a write-once register so only
the first write after reset is honored. Any subsequent attempt to write to
SOPT (intentionally or unintentionally) is ignored to avoid accidental
changes to these sensitive settings. SOPT should be written during the
user's reset initialization program to set the desired controls even if the
desired settings are the same as the reset settings.

HCS08 — Revision 1

0

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

0 0
COPE COPT STOPE BKGDPE

1 1 0 1

= Unimplemented or Reserved

Figure 5-5. System Options Register (SOPT)

0 1 1

Reference Manual — Volume I

MOTOROLA Resets and Interrupts 105

Resets and Interrupts

COPE — COP Watchdog Enable

This write-once bit defaults to 1 after reset.
1 = COP watchdog timer enabled (force reset on timeout)
0 = COP watchdog timer disabled

COPT — COP Watchdog Timeout

This write-once bit defaults to 1 after reset.
1 = Long timeout period selected (218 cycles of BUSCLK)
0 = Short timeout period selected (213 cycles of BUSCLK)

STOPE - Stop Mode Enable

This write-once bit defaults to 0 after reset, which disables stop mode.
If stop mode is disabled and a user program attempts to execute a
STOP instruction, an illegal opcode reset is forced.

1 = Stop mode enabled
0 = Stop mode disabled

BKGDPE — Background Debug Mode Pin Enable

The BKGDPE bit enables the PTDO/BKGD/MS pin to function as
BKGD/MS. When the bit is clear, the pin will function as PTDO, which
is an output only general purpose I/O. This pin always defaults to
BKGD/MS function after any reset.

1 = BKGD pin enabled.
0 = BKGD pin disabled.

Reference Manual — Volume I HCS08 — Revision 1

106 Resets and Interrupts MOTOROLA

Resets and Interrupts
Reset, Interrupt, and System Control Registers and Control Bits

5.8.5 System Device Identification Register (SDIDH, SDIDL)

This read-only register is included so host development systems can
identify the HCS08 derivative and revision number. This allows the
development software to recognize where specific memory blocks,
registers, and control bits are located in a target MCU.

Read:

Reset:

Read:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

REV3 REV2 REV1 REVO ID11 ID10 ID9 ID8

Ol i 01' I 0111 111 0 0 0 0

ID7 ID6 ID5 ID4 ID3 ID2 IDl IDO

0 0 0 0 0 0 1 0

1. The revision number that is hard coded into these bits reflects the current silicon revision level.

Figure 5-6. System Device Identification Register (SDIDH, SDIDL)

REV[3:0] — Revision Number

The high-order 4 bits of address $1806 are hard coded to reflect the
current mask set revision number (0—F).

ID[11:0] — Part Identification Number

Each derivative in the HCS08 Family has a unique identification
number. The 9S08GB/GT is hard coded to the value $003.

5.8.6 System Real-Time Interrupt Status and Control Register (SRTISC)

This register contains one read-only status flag, one write-only
acknowledge bit, three read/write delay selects, and three
unimplemented bits, which always read 0.

HCSO8 — Revision 1

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

RTIF 0 0
RTICLKS RTIE RTIS2 RTIS1 RTISO

RTIACK

0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-7. System RTI Status and Control Register (SRTISC)

Reference Manual — Volume I

MOTOROLA Resets and Interrupts 107

Resets and Interrupts

RTIF — Real-Time Interrupt Flag

This read-only status bit indicates the periodic wakeup timer has
timed out.

1 = Periodic wakeup timer timed out.
0 = Periodic wakeup timer not timed out.

RTIACK — Real-Time Interrupt Acknowledge

This write-only bit is used to acknowledge real-time interrupt request
(write 1 to clear RTIF). Writing 0 has no meaning or effect. Reads
always return logic 0.

RTICLKS — Real-Time Interrupt Clock Select

This read/write bit selects the clock source for the real-time interrupt.
1 = Real-time interrupt request clock source is external clock.
0 = Real-time interrupt request clock source is internal 1-kHz

oscillator.

RTIE — Real-Time Interrupt Enable

This read-write bit enables real-time interrupts.
1 = Real-time interrupts enabled.
0 = Real-time interrupts disabled.

RTIS2:RTISI:RTISO — Real-Time Interrupt Delay Selects

These read/write bits select the wakeup delay for the RTI. The clock
source for the real-time interrupt is a self-clocked source which
oscillates at about 1 kHz, is independent of other MCU clock sources.
Using external clock source the delays will be crystal frequency
divided by value in RTIS2:RTISI:RTISO.

Reference Manual — Volume I HCS08 — Revision 1

108 Resets and Interrupts MOTOROLA

Resets and Interrupts
Reset, Interrupt, and System Control Registers and Control Bits

Table 5-2. Real-Time Interrupt Frequency

RTIS2:RTISI:RTIS0 1-kHz Clock Source Delay
(1) Using External Clock Source Delay

(crystal frequency)

0:0:0 Disable periodic wakeup timer Disable periodic wakeup timer

0:0:1 8 ms divide by 256

0:1:0 32 ms divide by 1024

0:1:1 64 ms divide by 2048

1:0:0 128 ms divide by 4096

1:0:1 256 ms divide by 8192

1:1:0 512 ms divide by 16384

1:1:1 1.024 s divide by 32768

1. Normal values are shown in this column based on fRTI = 1 kHz. See the appropriate data sheet fRTI for the tolerance
on these values.

5.8.7 System Power Management Status and Control 1 Register (SPMSCI)

This register is used to control actions associated with low VDD detection
circuitry. If low-voltage detection is enabled, by setting LVDE =1, bits 5-3
control the action associated with the low voltage detection. LVDF is a
flag, used to alert the occurrence of low voltage. LVDAC is used to
acknowledge and clear LVDF.

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

LVDF 0
LVDIE LVDREh1 LVDSE111

LVDE11 0 0

LVDACK

0 0 0 1

= Unimplemented or Reserved

1. This bit can be written only one time after reset. Additional writes are ignored.

1 1 0

Figure 5-8. System Power Management Status and Control 1 Register (SPMSCI)

0

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 109

Resets and Interrupts

LVDF — Low-Voltage Detect Flag

Provided LVDE = 1, this read-only status bit indicates a low-voltage
detect event.

LVDACK — Low-Voltage Detect Acknowledge

This write-only bit is used to acknowledge low voltage detection errors
(write 1 to clear LVDF. Reads always return logic 0.

LVDIE — Low-Voltage Detect Interrupt Enable

This read/write bit enables hardware interrupt requests for LVDF.
1 = Request a hardware interrupt when LVDF = 1.
0 = Hardware interrupt disabled (use polling).

LVDSE — Low-Voltage Detect Reset Enable

This read/write bit enables LVDF errors to generate a hardware reset
(provided LVDE = 1).

1 = Force an MCU reset when LVDF = 1.
0 = LVDF does not generate hardware resets.

LVDSE — Low-Voltage Detect Stop Enable

Provided LVDE = 1, this read/write bit determines whether the
low-voltage detect function operates when the MCU is in stop mode.

1 = Low-voltage detect enabled during stop mode.
0 = Low-voltage detect disabled during stop mode.

LVDE — Low-Voltage Detect Enable

This read/write bit enables low-voltage detect logic and qualifies the
operation of other bits in this register.

1 = LVD logic enabled.
0 = LVD logic disabled.

Reference Manual — Volume I HCS08 — Revision 1

110 Resets and Interrupts MOTOROLA

Resets and Interrupts
Reset, Interrupt, and System Control Registers and Control Bits

5.8.8 System Power Management Status and Control 2 Register (SPMSC2)

This register is used to report the status of the low voltage warning
function, and to configure the stop mode behavior of the MCU.

Read:

Write:

Power-on reset:

LVD reset:

Any other reset:

Bit 7 6 5 4 3 2 1 Bit 0

LVWF 0
LVDV LVWV

PPDF 0
PDC PPDC

LVWACK PPDACK

Oi1> 0 0 0 0 0 0 0

oi'> 0 U U 0 0 0 0

oi1> 0 U U 0 0 0 0

= Unimplemented or Reserved U = Unaffected by reset

1. LVWF will be set not just in the case when Vs ppiy transitions below the trip point but also after reset and
Vsuppiy is already below VLVW.

Figure 5-9. System Power Management Status and Control 2 Register (SPMSC2)

LVWF — Low-Voltage Warning Flag

The LVWF bit indicates the low voltage warning status.
1 = Low voltage warning is present or was present.
0 = Low voltage warning not present.

LVWACK — Low-Voltage Warning Acknowledge

The LVWF bit indicates the low voltage warning status.

Writing a logic 1 to LVWACK clears LVWF to a logic 0 if a low voltage
warning is not present.

LVDV — Low-Voltage Detect Voltage Select

The LVDV bit selects the LVD trip point voltage (VLvD).
1 = High trip point selected (VLVD = VLVDH)•
0 = Low trip point selected (VLVD = VLVDL)•

LVWV — Low-Voltage Warning Voltage Select

The LVWV bit selects the LVW trip point voltage (VLVW).

1 = High trip point selected (VLVW = VLVWH)•
0 = Low trip point selected (VLVW = VLVWL)•

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 111

Resets and Interrupts

PPDF — Partial Power Down Flag

The PPDF bit indicates that the MCU has exited the stop2 mode.
1 = Stop2 mode recovery.
0 = Not stop2 mode recovery.

PPDACK — Partial Power Down Acknowledge

Writing a logic 1 to PPDACK clears the PPDF bit.

PDC — Power Down Control

The write-once PDC bit controls entry into the power down (stop2 and
stop 1) modes.

1 = Power down modes are enabled.
0 = Power down modes are disabled.

PPDC — Partial Power Down Control

The write-once PPDC bit controls which power down mode, stopl or
stop2, is selected.

1 = Stop2, partial power down, mode enabled if PDC set.
0 = Stop 1, full power down, mode enabled if PDC set.

Reference Manual — Volume I HCS08 — Revision 1

112 Resets and Interrupts MOTOROLA

HCS08 Family Reference Manual

Section 6. Central Processor Unit (CPU)

6.1 Introduction

The HCS08 CPU is the latest generation in a series of a CPU family that
started in 1979 with the NMOS (N-channel metal-oxide semiconductor)
M6805 Family. Next Motorola developed the M146805 Family using
metal gate CMOS (complementary MOS). Eventually, this process was
replaced by silicon gate CMOS and Motorola developed the M68HC05
CPU. The next major step in this series was the M68HC08 which
significantly expanded the instruction set to allow more efficient C
compilers. The current HCS08 CPU has been developed using a new
process-independent design methodology, allowing it to keep pace with
rapid developments in silicon processing technology.

Compared with the M68HC08 CPU, the HCS08 CPU added:

• New addressing modes for LDHX instruction:

— Extended addressing mode (EXT)

— Indexed — no offset (IX)

— Indexed — 8-bit offset (IX1)

— Indexed — 16-bit offset (IX2)

— Stack pointer relative — 8-bit offset (SP1)

• New addressing modes for STHX and CPHX instructions:

— Extended addressing mode (EXT)

— Stack pointer relative — 8-bit offset (SP1)

• New background (BGND) instruction

• Operating bus frequency increased to 20 MHz on first derivatives

• Instruction queue (or pipeline) to improve instruction throughput

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 113

Central Processor Unit (CPU)

The new addressing modes for instructions involving the 16-bit H:X
register pair improve the efficiency of C compilers. The BGND instruction
is used only in debug situations to implement software breakpoints.

The instruction queue improves instruction throughput because it makes
the opcode and one byte of operand information available to the CPU
immediately at the start of an instruction. Without the queue, the CPU
would have to spend the first few cycles of an instruction waiting for the
program information to be fetched into the CPU. On any change of flow
— such as branch, jump, or interrupt — the CPU performs three program
fetches to fill this instruction queue. The instruction queue caused some
changes in the cycle counts and the order of operations within
instructions compared to the M68HC08 CPU, but the benefits from being
able to start instructions sooner more than offset the costs for filling the
queue on changes of flow.

6.2 Programmer's Model and CPU Registers

Figure 6-1 shows the programmer's model for the HCS08 CPU. These
registers are not located in the memory map of the microcontroller. They
are built directly inside the CPU logic.

Reference Manual — Volume I HCS08 — Revision 1

114 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Programmer's Model and CPU Registers

7 0
ACCUMULATOR A

16-BIT INDEX REGISTER H:X

H INDEX REGISTER (HIGH) INDEX REGISTER (LOW) X

15 8 7 0

STACK POINTER SP

15 0
PROGRAM COUNTER PC

7 0
CONDITION CODE REGISTER V 1 1 H I N Z C CCR

CARRY
ZERO
NEGATIVE
INTERRUPT MASK
HALF BIT 3) -CARRY (FROM
TWO'S COMPLEMENT OVERFLOW

Figure 6-1. CPU Registers

6.2.1 Accumulator (A)

This general-purpose 8-bit register is the primary data register for the
HCS08. Data can be read into A from memory with a load accumulator
(LDA) instruction or from the stack with a pull (PULA) instruction. The
data in A can be written into memory with a store accumulator (STA) or
onto the stack with a push (PSHA). Various addressing mode variations
allow a great deal of flexibility in specifying the memory location involved
in a load or store instruction. Transfer instructions allow values to be
transferred from A to X (TAX), from X to A (TXA), from A to the CCR
(TAP), or from the CCR to A (TPA). The P in TAP and TPA stands for
processor status. The nibble-swap A (NSA) instruction exchanges the
high-order four bits of A with the low-order four bits.

You can also perform mathematical, shift, and logical operations on the
value in A as in ADD, SUB, ASLA, RORA, INCA, DECA, AND, ORA,
EOR, etc. In some of these instructions, such as INCA or ASLA, the
value in A is the only input operand and the result replaces the value in
A. In other cases, such as ADD or AND, there are two operands: the
value in A and a second value from memory. The result of the arithmetic
or logical operation replaces the value in A.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 115

Central Processor Unit (CPU)

Multiply and divide instructions use A as an operand and also store part
of the result in A. MUL does an unsigned multiply of A times X and stores
the 16-bit result in X:A. DIV does an unsigned 16-bit by 8-bit divide of
H:A by X and stores the result in A and the remainder in H.

The decimal adjust A (DAA) instruction is used, after an ADD or ADC
instruction involving two BCD numbers, to correct the value in A to a
valid 2-digit BCD number with a proper carry indication. For a more
detailed discussion of this instruction, refer to 6.5.2.4 BCD Arithmetic.

It should be apparent that the accumulator is a very busy register, so it
would be helpful if some operations could avoid using A. For instance,
memory-to-memory move instructions (MOV) are helpful. DBNZ also
helps because it allows a loop counter to be implemented in a memory
variable rather than the accumulator. The X register can also be used as
a second general-purpose 8-bit data register in many cases. Some
arithmetic operations such as clear, increment, decrement, complement,
negate, and shift can also be used with the X register.

6.2.2 Index Register (H:X)

This 16-bit index register is actually two separate 8-bit registers (H and
X). The indexed addressing modes use H:X as a 16-bit base reference
pointer and variations of indexed addressing allow an
instruction-supplied 16-bit offset, 8-bit offset, or no offset. Other
variations of indexed addressing automatically increment the 16-bit
index register after the index is used to access a memory operand. Refer
to 6.3.6 Indexed Addressing Mode for a more detailed discussion of
the indexed addressing mode.

The 8-bit X register (low-order half of H:X) can also be used as a general
purpose data register. The read-modify-write instructions (ASLX, ASRX,
CLRX, COMX, DECX, INCX, LSLX, LSRX, NEGX, ROLX, RORX, and
TSTX) allow a subset of the ALU operations that can be performed on
the accumulator. Be careful not to try to use these instructions when you
really want to affect the full 16-bit H:X index register because these
instructions only affect X. Consider the following instructions and
sequences to get 16-bit versions of 8-bit operations on X.

Reference Manual — Volume I HCSO8 — Revision 1

116 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Programmer's Model and CPU Registers

ldhx #$0000 ;16-bit version of CLRX

aix #1 ;16-bit version of INCX

aix #-1 ;16-bit version of DECX

cphx #$0000 ;16-bit version of TSTX

Load, store, push, and pull instructions are available for X with the same
addressing mode variations as the ones used for A. There are also load
and store instructions for the 16-bit H:X register pair; however, not as
many different addressing modes are offered. There are push (PSHH)
and pull (PULH) instructions for H, and simple 2-instruction sequences
can be used to push and pull the full 16-bit index register (H:X).

pshx

pshh

pulh

pulx

;push low half of H:X

;push high half of H:X

;pull high half of H:X

;pull low half of H:X

Sometimes the stack pointer value needs to be transferred to the H:X
register pair so H:X can act as a pointer to information on the stack. The
stack pointer always points at the next available location on the stack,
but normally the index register should point directly at data. Because of
this, the 16-bit value in SP is incremented by one as it is transferred to
H:X with a TSX instruction. Because of this adjustment, after a TSX
instruction H:X points at the last byte of data that was stacked. A
complementary adjustment takes place during a TXS instruction. (The
value is decremented by one during TXS.) One way to think about this
is that the 16-bit address points at the next available stack location when
it is in SP and to the last byte of information that was stacked when it is
in H:X.

For compatibility with the earlier M68HC05, interrupts do not save the H
register on the stack. It is good practice to include a PSHH instruction as
the first instruction in interrupt service routines (to save H) and to include
a PULH instruction (to restore H) as the last instruction before the RTI
that ends the service routine. You may leave these instructions out if you
are absolutely sure H is not altered in your interrupt service routine, but
be sure there are no AIX instructions or instructions that use the
post-increment variation of indexed addressing because these
instructions could cause H to change. Unless you really can't tolerate the

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 117

Central Processor Unit (CPU)

extra two bytes of program space, one extra temporary byte on the

stack, and five bus cycles of execution time, it is much safer to simply

include the PSHH and PULH as a matter of habit.

Multiply and divide instructions use X as an operand, and MUL also
stores part of the result in X. MUL does an unsigned multiply of A times
X and stores the 16-bit result in X:A. DIV does an unsigned 16-bit by 8-bit
divide of H:A by X and stores the result in A and the remainder in H.

6.2.3 Stack Pointer (SP)

This 16-bit address pointer register is used by the CPU to automatically
maintain a last-in-first-out (LIFO) stack. When the CPU executes ajump-
or branch-to-subroutine (JSR or BSR) instruction, it automatically saves
the return address on the stack. When the return-from-subroutine (RTS)
instruction at the end of the subroutine is executed, this return address
is automatically recovered from the stack so execution resumes where
it left off when the subroutine was called. Since SP is a full 16-bit register,
the stack may be located anywhere in the memory map, and it may be
any size up to the size of available RAM on the chip.

The stack pointer always points at the next available location on the
stack. When a value is pushed onto the stack, it is written to the address
pointed to by the SP and then SP is automatically decremented to point
at the next available location. When a value is pulled from the stack, SP
is first incremented to point at the most recent data that was pushed on
the stack, and then the data is read from the address now pointed to by
SP. Notice that the data pointed to by SP is not changed in the process
of pulling it from the stack. If you were to look at memory below where
SP is currently pointing, you would see old values that were previously
stored on the stack. When new values are pushed onto the stack, they
over-write whatever is in those memory locations. If RAM in the area of
the stack was cleared during reset initialization, the maximum depth that
the stack has grown to can be seen by noticing which memory locations

are still clear.

For compatibility with the earlier M68HC05, SP is set to $D0FF by reset.
This is almost never where the top of the stack in new HCS08
applications should be because the RAM in the area from the end of the
input/output (I/O) and control registers to $00FF is more valuable for

Reference Manual — Volume I HCS08 — Revision 1

118 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Programmer's Model and CPU Registers

frequently accessed variables. The memory area from $0000 to $OOFF
can be accessed using the direct addressing mode which saves
program space and executes faster than general accesses to other
memory locations.

Also for compatibility with the M68HC05, the reset stack pointer (RSP)
instruction forces the low-order half of SP to $FF. In the M68HC05, this
forced SP to the same value ($OOFF) it had after reset. RSP is seldom
used in the HCS08 because it doesn't affect the high-order half of SP,
and, therefore, it doesn't necessarily restore SP to its reset value.

In new HCS08 programs you would typically initialize SP to point at the
highest address in the on-chip RAM. Normally, the following
2-instruction sequence is included within the first few instructions of a
reset initialization routine.

ldhx #RamLast+1 ;point one past RAM

txs ;SP<-(H,X-1)

Normally, RamLast is defined in an equate or header file that describes
the particular HCS08 device used in your application. RamLast+1
causes H:X to be loaded with the next higher address past the end of
RAM because the TXS instruction includes an automatic adjustment
(decrement by 1) on the value during the transfer. This adjustment
makes SP point at the next available location on the stack. In this case,
SP now points at the last (highest address value) location in RAM, and
this will be the first location where data will be stacked. The stack will
grow toward lower addresses as values are pushed onto the stack.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 119

Central Processor Unit (CPU)

When an interrupt is requested, the CPU saves the current contents of
CPU registers on the stack so, after finishing the interrupt service
routine, processing can resume where it left off. Figure 6-2 shows the
order that CPU registers are saved on the stack in response to an
interrupt. Before the interrupt, SP points to the next available location on
the stack. As each value is saved on the stack, the data is stored to the
location pointed to by SP and SP automatically is decremented to point
at the next available location on the stack. The return-from-interrupt
(RTI) instruction that concludes the interrupt service routine restores the
CPU registers by pulling them from the stack in the reverse order. Refer
to 6.4.2 Interrupts and 5.5 Interrupts for more detailed discussions of
interrupts.

f TOWARD LOWER ADDRESSES

UN STACKING
ORDER

5

I
1

4 2

3 3

2 4

1 5

1
STACKING
ORDER

CONDITION CODE REGISTER

ACCUMULATOR

INDEX REGISTER (LOW BYTE X) *

PROGRAM COUNTER HIGH

PROGRAM COUNTER LOW

0
SP AFTER

~- INTERRUPT STACKING

SP BEFORE
~- THE INTERRUPT

TOWARD HIGHER ADDRESSES

*High byte (H) of index register is not stacked.

Figure 6-2. Interrupt Stack Frame

For compatibility with the earlier M68HC05 CPU, interrupts do not save
the H register on the stack. It is good practice to include a PSHH
instruction as the first instruction in your interrupt service routines (to
save H) and to include a PULH instruction (to restore H) as the last
instruction before the RTI that ends the service routine.

Reference Manual — Volume I HCS08 — Revision 1

120 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Programmer's Model and CPU Registers

The add immediate value to SP (AIS) instruction may be used to allocate
space on the stack for local variables. Although this is most common in
C programs, the technique is also useful for assembly language
programs. The following code example demonstrates allocation and
deallocation of space for local variables on the stack. There is a more
detailed discussion of stack techniques in 6.5.6 Stack-Related
Instructions.

ais #-5 ;allocate 5 bytes for locals

ais #5 ;deallocate local space

SP-relative indexed addressing with 8-bit offset (SP1) or 16-bit offset
(S P2) allows many instructions to directly access the information on the
stack. This is important for efficient C compilers and the same
techniques can be used in assembly language programs.

Push and pull instructions are similar to store and load instructions
except they load or store the data relative to the current SP value rather
than accessing a specific memory location. The stack must always be
"balanced," meaning that for every operation that places a byte of data
on the stack, there must be a corresponding operation that removes a
byte of data. For each JSR or BSR, there should be an RTS. For each
interrupt or SWI, there should be an RTI. For each push, there should be
a pull. If you allocate space for locals with an AIS instruction, you should
have a corresponding AIS instruction to deallocate the same amount
of space.

Suppose you had a subroutine that included a PSHA instruction, but you
forgot to do a corresponding PULA before returning from the subroutine.
The return from subroutine (RTS) would not work correctly because SP
would not be pointing at the correct return address when RTS was
executed.

Another error is a subroutine that calls itself, but doesn't have a reliable
way to limit the number of nesting iterations. This produces a stack that
grows beyond the space set aside for the stack. Usually this ends when
stack operations start storing things on top of RAM variables or I/O and
control registers. This is called stack overflow, and it can also happen
when an interrupt service routine clears the I mask inside the service

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 121

Central Processor Unit (CPU)

routine which makes nested interrupts possible. Each level of nesting
adds at least five more bytes to the stack.

6.2.4 Program Counter (PC)

The program counter is a 16-bit register that contains the address of the
next instruction or operand to be fetched.

During normal execution, the program counter automatically increments
to the next sequential memory location every time an instruction or
operand is fetched. Jump, branch, interrupt, and return operations load
the program counter with an address other than that of the next
sequential location. This is called a change-of-flow.

During reset, the program counter is loaded with the reset vector which
is located at address $FFFE and $FFFF. The vector is the address of the
first instruction to be executed after exiting from the reset state.

6.2.5 Condition Code Register

The 8-bit condition code register contains the interrupt mask (I) and five
status flags. Bit 6 and bit 5 are permanently set to logic 1. The following
paragraphs provide detailed information about the CCR bits and how
they are used. Figure 6-3 identifies the CCR bits and their bit positions.

0
CONDITION CODE REGISTER V 1 1 H I N Z C CCR

L CARRY
ZERO
NEGATIVE
INTERRUPT MASK
HALF-CARRY (FROM BIT 3)
TWO'S COMPLEMENT OVERFLOW

Figure 6-3. Condition Code Register (CCR)

Reference Manual — Volume I HCS08 — Revision 1

122 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Programmer's Model and CPU Registers

The I bit is an interrupt mask control bit unlike the other bits in the CCR
which are processor status bits. The I bit is also the only one of the six
implemented bits in the OCR to be initialized by reset. The I bit is forced
to 1 at reset so interrupts are blocked until you have initialized the stack
pointer. The other five status bits (V, H, N, Z, and C) are unknown after
reset and will take on known values only after executing an instruction
that affects the bit(s). There is no reason to force these bits to a particular
value at reset because it would not make sense to do a conditional
branch that used these bits unless you had just executed an instruction
that affected them.

The five status bits indicate the results of arithmetic and other
instructions. Conditional branch instructions will either branch to a new
program location or allow the program to continue to the next instruction
after the branch, depending on the values in the OCR status bits. Simple
conditional branch instructions (BCC, BCS, BNE, BEQ, BHCC, BHCS,
BMC, BMS, BPL, and BMI) cause a branch depending on the state of a
single OCR bit. Other branch instructions are controlled by a more
complex combination of two or three of the OCR bits. For example
branch if less than or equal (BLE) branches if the Boolean expression
[(Z) I (NV)] is true. The V bit (which was not present in the older
M68HC05 instruction set) allows signed branches because V is the two's
complement overflow indicator. Separate unsigned branch instructions
are based on the C bit which is effectively an overflow indicator for
unsigned operations.

Often, the conditional branch immediately follows the instruction that
caused the OCR bit(s) to be updated as in this sequence:

cmp #5 ;compare accumulator A to 5

bit less ;branch if A<5

more: deca ;do this if A not < 5
less:

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 123

Central Processor Unit (CPU)

Other instructions may be executed between the test and the conditional
branch as long as only instructions that do not disturb the CCR bits that
affect the conditional branch are used. A common example is when a
test is performed in a subroutine or function and the conditional branch
is not executed until the subroutine has returned to the main program.
This is a form of parameter passing (that is, information is returned to the
calling program in the condition code bits). Consider the following
example which checks a character, received through the SCI, to see if it
is the ASCII code for a valid hexadecimal digit 0-9, a-f, or A-F.

lda SCIlD ;read character from SCI

jsr upcase ;strip MSB & make upper case

jsr ishex ;see if valid hex digit

bne errorHex ;branch if char wasn't hex

goodHex: flop ;here if it was good hex digit

errorHex: ;here if it wasn't

* ishex - check character for valid hexadecimal (0-9 or A-F)

* on entry A contains an unknown upper-case character

* returns with original character in A and Z set or cleared

* if A was valid hexadecimal, Z=1, otherwise Z=0

ishex: psha ;save original character

cmp #'0' ;check for < ASCII zero

bin nothex ;branches if C=0 (Z also 0)

cmp #'9' ;check for 0-9

bls okhex ;branches if ASCII 0-9

cmp #'A' ;check for < ASCII A

blo nothex ;branches if C=0 (Z also 0)

cmp #'F' ;check for A-F

bhi nothex ;branches if > ASCII F

okhex: clra ;forces Z bit to 1

nothex: pula ;restore original character

its ;return Z=1 if char was hex

Figure 6-4. Parameter Passing in CCR Bits

Reference Manual — Volume I HCS08 — Revision 1

124 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Programmer's Model and CPU Registers

Three branch instructions could lead to the exit sequence at nothex and
in each case the programmer knows that the Z bit in the CCR would have
to be 0 if the branch was taken. There are two ways to get to okhex and
in each case the Z bit could be either 0 or 1, so the CLRA instruction is
used to force the Z bit to be set to 1. The PULA and RTS instructions are
executed after the tests that updated the Z bit but before the BNE
errorHex instruction that uses the Z value. This works because the
programmer checked the instruction set details to be sure PULA and
RTS would not disturb the Z bit. This example shows that it is just as
important to know which instructions do not change CCR status bits as
it is to know which instructions do affect CCR status bits.

I — Interrupt Mask

The interrupt mask bit is a global interrupt mask that blocks all
maskable interrupt sources while I = 1. Reset forces the I bit to logic 1
to block interrupts until the application program can initialize the stack
pointer. If interrupts were allowed before the stack pointer was
initialized, CPU register values could get saved (written) to
inappropriate memory locations. The user program can set or clear I
using the set interrupt mask (SEI) and clear interrupt mask (CLI)
instructions, respectively.

The I bit is set automatically in response to any interrupt (including the
SWI instruction) to prevent unwanted nesting of interrupts. It is
possible to explicitly allow nesting of interrupts in a controlled manner
by including a CLI instruction inside an interrupt service routine;
however, this is not usually recommended because it can lead to
subtle system errors which are particularly difficult to find and correct.

The WAIT and STOP instructions automatically clear the I bit because
interrupts are the normal way to wake up the CPU from stop or wait
modes. These instructions could have been designed so a separate
CLI instruction was needed before executing WAIT or STOP.
However, clearing I within these instructions saves the program
space and execution time the separate CLI would have required, and
prevents any possibility of an interrupt getting recognized after I is
cleared but before the WAIT or STOP instruction.

HCS08 — Revision 1 Reference Manual — volume I

MOTOROLA Central Processor Unit (CPU) 125

Central Processor Unit (CPU)

When an interrupt occurs, The CCR value is saved on the stack
before the I bit is automatically set (I would be 0 in the stacked CCR
value). When the return-from-interrupt (RTI) instruction is executed to
return to the main program, the act of restoring the CCR value from
the stack normally clears the I bit.

When the I bit is set, the change takes effect too late in the instruction

to prevent an interrupt at the instruction boundary immediately
following an SEI or TAP instruction. In the case of setting I with a TAP
or SEI instruction, I is actually set at the instruction boundary at the
end of the TAP or SEI instruction. In the case of clearing I with a TAP
or CLI instruction, I is actually cleared at the instruction boundary at
the end of the TAP or SEI instruction. Because of this, the next
instruction, after a CLI or TAP that cleared I, will always execute even
if an interrupt was already waiting when the CLI or TAP that cleared I

was executed. In the case of the RTI instruction, the CCR is restored
during the first cycle of the instruction so the 1-cycle delay, associated
with clearing I, expires several cycles before the RTI instruction
finishes. WAIT and STOP also clear I in the middle of the instruction,
so the delay expires before actually entering wait or stop mode.

V — Two's Complement Overflow Flag

This bit is set by the CPU when a two's complement overflow results
from an arithmetic operation on signed binary values. For an addition
operation, the V bit will be set if the sign (bit 7) is the same for both
operands that were being added, but different from the sign of the
result. For a subtract or compare operation, the V bit will be set if a
positive number (bit 7=0) is subtracted from a negative number
(bit 7=1) and the result is positive, or if a negative number is
subtracted from a positive number and the result is negative.

The most common use of the V bit is to support the signed conditional
branches (BLT, BLE, BGE, and BGT) after executing a CMP, CPHX,
CPX, SAC, or SUB instruction. These instructions cause the ALU to
subtract the contents of the referenced memory location (m) from the
contents of a CPU register (r) and to set or clear V, N, Z, and C
according to the results. (C is used for unsigned branches but not for
signed conditional branches.) In the case of BLT, for example, the
branch will be taken if the CPU register (r) was less than the memory
location (m).

Reference Manual — Volume I HCS08 — Revision 1

126 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Programmer's Model and CPU Registers

Several other instructions affect the V bit, and a clever programmer
can sometimes use the condition of the V bit to control program flow.
The Boolean formula for each affected CCR bit is given in the
instruction details in Appendix A. Instruction Set Details.

The ADD and ADC instructions set V if both operands had the same
sign and the sign of the result is different. Since no simple branch
instructions are based on V alone, a sequence of two instructions is
needed to test for two's complement overflow after an add operation.
You could say BGE to no_overflow, followed by BMI to no_overflow,
and falling through both of these branches implies there was a signed
overflow condition. Operations like this are not common, but they can
be understood by studying Boolean formulae and the Boolean
equations for the branches in the instruction set detail pages in
Appendix A. Instruction Set Details.

Arithmetic or logical shift left (ASL or LSL) is like multiplying a binary
number by two. In this case, the V bit will be set if the sign of the result
is different from the original signed value. The meaning of V after a
right shift is less useful for signed arithmetic operations but could
have some useful logical meaning in some systems.

The DAA instruction can change the V bit, so don't try to do a signed
branch after a DAA instruction without executing a new compare or
subtract instruction.

H — Half-Carry (Carry from Bit 3 to Bit 4)

The half-carry flag is intended for use with operations involving
binary-coded-decimal (BCD) numbers. A BCD number is a decimal
number from 0 through 9 which is coded into a single 4-bit binary
value. This allows a single 8-bit value to hold exactly two BCD digits.
The hexadecimal values $A through $F are considered illegal BCD
values. The ALU's normal binary addition function can be used to add
BCD numbers, but the results need to be checked and corrected so
the result is still a valid BCD value. In the earlier M68HC08, the
programmer had to do this checking and correction in a small
program using the BHCC and BHCS conditional branch instructions.
The HCS08 includes the decimal adjust accumulator (DAA)
instruction to simplify the checking and correction operation into a
single instruction.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 127

Central Processor Unit (CPU)

The H bit is affected only by a few instructions. RTI restores the H bit
to the value it had before servicing an interrupt. TAP allows the
programmer to directly load all CCR bits with the contents of the
accumulator. The multiply instruction (MUL) clears H as a side effect
of its operation so avoid using a MUL instruction between an add
operation and the DAA, BHCC, or BHCS instruction that needs the
H bit value.

The add instructions (ADD and ADC) are the only instructions that
affect the H bit in a meaningful way. These instructions set the H bit if
there was a carry out of bit 3 into bit 4 of the result (from one BCD digit
to the next). Although BHCC and BHCS instructions could be used to
build a program that restores the result of an addition with BCD
operands into a valid BCD result, it is more likely that you would use
the DAA instruction because it performs the whole checking and
correction operation in a single instruction. Refer to 6.5.2.4 BCD
Arithmetic for a more detailed explanation of BCD arithmetic.

N — Negative Flag

This flag indicates that the most significant bit of the result was set (1).
It is called the negative flag because in two's complement notation a
number is said to be negative if its most significant bit is a logic 1. If
an operation involves 16-bit numbers (such as LDHX or CPHX), the
N bit will be set if bit 15 of the result is set. In practice, this flag has
many uses that are not related to signed arithmetic.

Branch if plus (BPL) and branch if minus (BMI) are simple branches
which branch based solely on the value in the N bit. The N bit is also
used by the signed branches BLT, BLE, BCE, and BGT since it
indicates the sign of the result. All load, store, move, arithmetic,
logical, shift, and rotate instructions cause the N bit to be updated.
TAP allows N to be set directly from the value in bit 2 of A, and RTI
restores N to the value that was saved on the stack when the interrupt

service routine started.

The most significant bit of an I/O port, a control register, or a memory
variable can be tested efficiently because just loading data from or
storing data to a location automatically updates the N bit. In the
following code fragment, a port is read where a switch is connected to
bit 7. The N bit indicates whether the switch was on or off without any
further test.

Reference Manual — Volume I HCS08 — Revision 1

128 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Programmer's Model and CPU Registers

ida PTAD ;read I/O port A
bmi swOff ;branches if PTA7 was high

swOn: flop ;here if MSB=O
swOff: ;here if MSB=i (sw off)

Z — Zero Flag

The Z bit is set to indicate the result of an operation was $00 (or $0000
if it was a 16-bit operation). The related branch instructions are
branch if equal (BEQ) and branch if not equal (BNE) because
compare instructions perform an internal subtraction of a memory
operand from the contents of a CPU register. If the original operands
were equal, the result of this internal subtraction would be 0 and Z
would be set to 1.

Branch if equal (BEQ) and branch if not equal (BNE) are simple
branches which branch based solely on the value in the Z bit. The Z
bit is also used by the signed branches BLE and BGT and the
unsigned branches BLS and BHI. All load, store, move, arithmetic,
logical, shift, and rotate instructions cause the Z bit to be updated.
TAP allows Z to be set directly from the value in bit 1 of A, and RTI
restores Z to the value that was saved on the stack when the interrupt
service routine started.

Figure 6-4. Parameter Passing in CCR Bits shows an example
where the Z bit is used to pass information back to a main program
from a subroutine. To understand this example, study how compare
instructions affect CCR bits and the Boolean formulae that are used
by the branch instructions. This information is found in
Appendix A. Instruction Set Details.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 129

Central Processor Unit (CPU)

C — Carry (Out of Bit 7)

After an addition operation, the C bit is set if the source operands
were both greater than or equal to $80 or if one of the operands was
greater than or equal to $80 and the result was less than $80. This is
equivalent to an unsigned overflow. A subtract or compare performs
a subtraction of a memory operand from the contents of a CPU
register so after a subtract operation, the C bit is set if the unsigned
value of the memory operand was greater than the unsigned value of
the CPU register. This is equivalent to an unsigned borrow or
underflow.

Branch if carry clear (BCC) and branch if carry set (BCS) are simple
branches which branch based solely on the value in the C bit. The C
bit is also used by the unsigned branches BLO, BLS, BHS, and BHI.
Add, subtract, shift, and rotate instructions cause the C bit to be
updated. After a divide instruction, C is set if there was an attempt to
perform an illegal divide-by-zero operation. TAP allows C to be set
directly from the value in bit 0 of A, and RTI restores C to the value
that was saved on the stack when the interrupt service routine started.
The branch if bit set (BRSET) and branch if bit clear (BRCLR)
instructions copy the tested bit into the C bit to facilitate efficient
serial-to-parallel conversion algorithms. Set carry (SEC) and clear
carry (CLC) allow the carry bit to be set or cleared directly. This is
useful in combination with the shift and rotate instructions and for
routines that pass status information back to a main program, from a
subroutine, in the C bit.

The C bit is included in shift and rotate operations so those operations
can easily be extended to multibyte operands. The shift and rotate
operations can be considered 9-bit shifts which include an 8-bit
operand or CPU register and the carry bit of the CCR. After a logical
shift, C holds the bit that was shifted out of the 8-bit operand. If a
rotate instruction is used next, this C bit is shifted into the operand for
the rotate, and the bit that gets shifted out the other end of the
operand replaces the value in C so it can be used in subsequent
rotate instructions. Refer to 6.5.4 Shift and Rotate Instructions to
see a more detailed demonstration of this technique.

Reference Manual — Volume I HCS08 - Revision 1

130 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Addressing Modes

6.3 Addressing Modes

Whenever the MCU reads information from memory or writes
information into memory, an addressing mode is used to determine the
exact address where the information is read from or written to. This
section explains several different ways to address memory, and each is
useful in varying programming situations. For instance, in some
addressing modes, the address is determined by the assembler when
the program is written. Other addressing modes allow the address to be
influenced by the contents of CPU registers. This is important because
it allows the address to be computed during execution of the program.

Every opcode tells the CPU to perform a certain operation in a certain
way. Many instructions such as load accumulator (LDA) allow several
different ways to specify the memory location to be operated on, and
each addressing mode variation requires a separate opcode. All of these
variations use the same instruction mnemonic, and the assembler
knows which opcode to use based on the syntax of the operand field. In
some cases, special characters are used to indicate a specific
addressing mode (such as the # [pound] symbol which indicates
immediate addressing mode). In other cases, the value of the operand
tells the assembler which addressing mode to use. For example, the
assembler chooses direct addressing mode instead of extended
addressing mode if the operand address is between $0000 and $D0FF.

Some instructions use more than one addressing mode. For example,
the move instructions use one addressing mode to access the source
value from memory and a second addressing mode to access the
destination memory location. For these move instructions, both
addressing modes are listed in the documentation. All branch
instructions use relative (REL) addressing mode to determine the
destination for the branch, but BRCLR, BRSET, CBEQ, and DBNZ also
need to access a memory operand. These instructions are classified by
the addressing mode used for the memory operand, and the relative
addressing mode for the branch offset is just assumed.

In the following paragraphs, the discussion includes how each

addressing mode works and the syntax clues the assembler uses to
know that the programmer wants a specific addressing mode.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 131

Central Processor Unit (CPU)

6.3.1 Inherent Addressing Mode (INH)

This addressing mode is used when the CPU inherently knows
everything it needs to complete the instruction, and no addressing
information is supplied in the source code. Usually, the operands that the
CPU needs are located in the CPU's internal registers, as in ASLA,
CLRX, DAA, DIV, RSP, and others. Instructions like clear carry bit (CLC)
and set interrupt mask (SEI) affect a single bit within the CCR. A few
inherent instructions, including no operation (NOP) and background
(BGND), have no operands.

Another group of instructions listed as inherent (INH) actually access

memory based on the value of the stack pointer. Instructions of this type
include PSHx, PULx, RTI, RTS, and SWI. A purist could argue that SWI

uses a form of indexed addressing to push CPU register values onto the
stack and extended addressing to fetch the SWI vector, but since there
is no program-supplied addressing information, it is considered an
inherent instruction.

6.3.2 Relative Addressing Mode (REL)

Relative addressing mode is used to specify the destination address for
branch instructions. Typically, the programmer specifies the destination
with a program label or an expression in the operand field of the branch
instruction. The assembler calculates the difference between the
location counter (which points at the next address after the branch
instruction at the time) and the address represented by the label or
expression in the operand field. This difference is called the offset and is
an 8-bit two's complement number. The assembler stores this offset in
the object code for the branch instruction.

During execution, the CPU evaluates the condition that controls the
branch. If the branch condition is true, the CPU sign-extends the offset
to a 16-bit value, adds the offset to the current PC, and uses this as the
address where it will fetch the next instruction and continue execution
rather than continuing execution with the next instruction after the
branch. Since the offset is an 8-bit two's complement value, the
destination must be within the range —128 to +127 locations from the
address that follows the last byte of object code for the branch
instruction.

Reference Manual — Volume I HCS08 — Revision 1

132 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Addressing Modes

A common method to create a simple infinite loop is to use a branch
instruction that branches to itself. This is sometimes used to end short
code segments during debug. Typically, to get out of this infinite loop,
use the debug host (through background commands) to stop the
program, examine registers and memory or to start execution from a
new location. This construct is not used in normal application programs
except in the case where the program has detected an error and wants
to force the COP watchdog timer to timeout. (The branch in the infinite
loop executes repeatedly until the watchdog timer eventually causes
a reset.)

6.3.3 Immediate Addressing Mode (IMM)

In this addressing mode, the operand is located immediately after the
opcode in the instruction stream. This addressing mode is used when
the programmer wants to use an explicit value that is known at the time
the program is written. A # (pound) symbol is used to tell the assembler
to use the operand as a data value rather than an address where the
desired value should be accessed.

The size (8 bits or 16 bits) of the immediate operand is assumed based
on the size of the CPU register indicated in the instruction. For example,
a load A or add A instruction implies an 8-bit operand while a load H:X
or compare H:X instruction implies a 16-bit operand to match the width
of the H:X register pair. The assembler automatically will truncate or
extend the operand as needed to match the size needed for the
instruction. Most assemblers generate a warning if a 16-bit operand is
provided where an 8-bit operand was expected.

A common programming error is to accidentally forget the # symbol
before an immediate operand. In the following example, the first
instruction tells the assembler to compare the contents of the H:X
register pair to the address of tableEnd. Leaving the # symbol off in the
second instruction tells the assembler to compare the contents of the
H:X register pair to the 16-bit value stored at tableEnd and tableEnd+1
(using extended addressing mode).

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 133

Central Processor Unit (CPU)

182 CO4A 65 OOBF cphx #tableEnd ;H:X points at end of table?

183 CO4D 75 BF cphx tableEnd ;compare to value at tableEnd

184 CO4F A6 55 lda #$55 ;load pattern $55 into A

185 C051 B6 55 lda $55 ;load A from address $0055

It is the programmer's responsibility to use the # symbol to tell the
assembler when immediate addressing should be used. The assembler
does not consider it an error to leave off the # symbol because the
resulting statement is still a valid instruction (although it may mean
something different than the programmer intended).

6.3.4 Direct Addressing Mode (DIR)

This addressing mode is used to access operands located in direct
address space ($0000 through $OOFF). This is a more efficient
addressing mode than extended addressing because the upper 8 bits of
the address are implied rather than being explicitly provided in the
instruction. This saves a byte of program space and the bus cycle that
would have been needed to fetch this byte.

The programmer does not use any special syntax to choose this mode.
Rather, the assembler evaluates the label or expression in the operand
field and automatically chooses direct addressing mode if the resulting
address is in the range $0000 through $OOFF. During execution, the
CPU gets the low byte of the direct address from the operand byte that
follows the opcode, appends a high byte of $00, and uses this 16-bit
address ($OOxx) to access the intended operand.

Most of the I/O and control registers are located in the first 64 or
128 bytes of memory (a few rarely used registers are located in high
memory at $18xx). Some of the on-chip RAM is also located in the direct
page to allow frequently accessed variables to be located there so direct
addressing can be used. After reset, the stack pointer points at $OOFF
and it is recommended that you change SP to point at the top of RAM
instead, to make the RAM below $OOFF available for direct addressed
variables.

Reference Manual — Volume I HCS08 — Revision 1

134 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Addressing Modes

6.3.5 Extended Addressing Mode (EXT)

In the extended addressing mode, the full 16-bit address of the operand
is included in the object code in the next two bytes after the opcode. This
addressing mode can be used to access any location in the 64-Kbyte
memory map. Normally, the programmer uses a program label to specify
the address and the assembler substitutes the equivalent 16-bit address
as the program is assembled.

6.3.6 Indexed Addressing Mode

Indexed addressing mode is sometimes called indirect addressing mode
because a CPU index register is used as a reference, an offset is
optionally added to the index reference, and the resulting address is then
used to access the intended operand. In some cases the value in the
index register is incremented automatically after the operand has been
accessed. This can save programming steps by making the index
register point at the next operand in a list or by incrementing a loop
count.

An important feature of indexed addressing mode is that the operand
address is computed during execution based on the then-current
contents of a CPU index register rather than being a constant address
location that was determined during program assembly. This allows the
programmer to write a compact program loop that accesses successive
values in a list or table on each pass through the loop. It also allows a
program to be written that accesses different operand locations
depending on the results of earlier program instructions (rather than
accessing a location that was determined when the program was
written).

6.3.6.1 Indexed, No Offset (IX)

In this variation of indexed addressing, the content of the H:X index
register pair is used as the address of the operand to be accessed.

HCS08 — Revision 1 Reference Manual — volume I

MOTOROLA Central Processor Unit (CPU) 135

Central Processor Unit (CPU)

6.3.6.2 Indexed, No Offset with Post Increment (IX+)

In this variation of indexed addressing, the content of the H:X index
register pair is used to access the intended operand, and then the H:X
register pair is incremented by one. CBEQ and MOV instructions are the
only instructions which use this addressing mode.

ldhx #stringBytes ;point at top of block

lda #' ;pattern to search for

findSP: cbeq x+,foundSP ;found ASCII space ($20) ?

H:X pointing at location after space

bra findSP ;keep looking

foundSP: aix #-1 ;back up to the space

6.3.6.3 Indexed, 8-Bit Offset (IXI)

In this variation of indexed addressing, an instruction-supplied unsigned
8-bit offset is added to the H:X register pair to form the address of the
operand to be accessed. The addition of the offset is an internal
calculation that does not affect the contents of H:X.

6.3.6.4 Indexed, 8-Bit Offset with Post Increment (1X1+)

In this variation of indexed addressing, an instruction-supplied unsigned
8-bit offset is added to the H:X register pair to form the address of the
operand to be accessed. The addition of the offset is an internal
calculation that does not affect the contents of H:X. After the operand
has been accessed, the H:X register pair is incremented by one. CBEQ
is the only instruction which uses this addressing mode.

6.3.6.5 Indexed, 16-Bit Offset (1X2)

In this variation of indexed addressing, an instruction-supplied unsigned
16-bit offset is added to the H:X register pair to form the address of the
operand to be accessed. The addition of the offset is an internal
calculation that does not affect the contents of H:X.

This addressing mode is particularly useful for addressing two data
structures in different areas of memory from a single index reference
value in H:X. The following example demonstrates this technique.

Reference Manual — Volume I HCS08 — Revision 1

136 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Addressing Modes

199 string compare with one string in flash, the other in RAM (IX2)
200 C064 45 0088 ldhx #moveBlkl ;point at string 1 in RAM
201 C067 65 0092 chkLoop: cphx #moveBlkl+10 ;see if past end
202 C06A 27 06 beq stringOK ;if so, you are done

203 0060 06 BF7F lda (stringBytes-moveBlkl),x ;load from flash

204 006F 71 F6 cbeq x+,chkLoop ;compare to byte in flash

205 0071 9D stringBad: nop ;here if string didn't match

206 stringOK: ;here if it did

In the example, the two data structures have similar structures. One is in
RAM and holds current data values. The second data structure is a set
of constant values in FLASH memory. The assembler computes the
expression (stringBytes—moveBlkl) to get the 16-bit offset from
moveBlkl in RAM to stringBytes in flash. As the index is incremented (in
the CBEQ instruction), the LDA (stringBytes-moveBlkl),X accesses the
next byte from stringBytes and CBEQ 0,X+,chkLoop accesses the next
byte from moveBlkl in RAM.

6.3.6.6 SP-Relative, 8-Bit Offset (SP1)

In this variation of indexed addressing, an instruction-supplied unsigned
8-bit offset is added to the stack pointer (SP) to form the address of the
operand to be accessed. The addition of the offset is an internal
calculation that does not affect the contents of SP. Note that the SP
points at the next available location on the stack rather than the last
value that was pushed onto the stack, so read operations with an offset
of zero are normally not useful.

Stack pointer relative addressing is most commonly used to access
parameters and local variables on the stack. This is a common practice
for compiled C code. Depending on the number of stack relative
accesses and what the H:X register pair is being used for, the compiler
will sometimes temporarily save the current H:X value and move SP into
H:X to allow indexed addressing from H:X rather than SP because
SP-relative addressing typically takes an extra cycle and byte of
program space compared to H:X-relative addressing.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 137

Central Processor Unit (CPU)

209

210
211
212
213

0072 A7 FD

0074 9E6F

0077 9E6F
02
03

ais #-3

sp+l is a byte sized local

sp+2:sp+3 is a 16-bit local

c1r 2,sp

clr 3,sp

;space for 3 bytes of locals

(an integer variable)

;clear high byte of local int

;clear low byte of local int

214 C07A A6 04 lda #4

215 0070 9EE7 01 sta l,sp ;set local byte to 4

217 tax & index based on H:X to save code size comapred to previous

218 tax cost 1 byte but saved 4 (overall savings equal 3 bytes)

219 C07F A7 FD ais #-3 ;space for 3 bytes of locals

220 0081 95 tax ;H:X <- SP+l

221 0082 6F 01 clr l,x ;clear high byte of local int

222 C084 6F 02 clr 2,x ;clear low byte of local int

223 0086 A6 04 lda #4

224 0088 F7 sta ,x ;set local byte to 4

6.3.6.7 SP-Relative, 16-Bit Offset (SP2)

In this variation of indexed addressing, an instruction-supplied unsigned

16-bit offset is added to the stack pointer (SP) to form the address of the

operand to be accessed. The addition of the offset is an internal

calculation that does not affect the contents of SP. Note that the SP

points at the next available location on the stack rather than the last

value that was pushed onto the stack.

This addressing mode is used to access data that is more than 255
locations deep in the stack. If the offset is 255 or less, the assembler will
automatically use the more efficient SP1 addressing mode.

6.4 Special Operations

Most of what the CPU does is described by the instruction set, but a few
special operations need to be considered, such as how the CPU gets
started at the beginning of an application program after power is first
applied. Once the program is running, the current instruction normally
determines what the CPU will do next. A few exceptional events can

cause the CPU to temporarily suspend normal program execution.

Reset events force the CPU to start over at the beginning of the
application program as directed by the contents of the reset vector.
Hardware interrupts can come from external pins or from internal

Reference Manual — Volume I HCSO8 — Revision 1

138 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Special Operations

peripheral modules. These interrupts cause the CPU to complete the
current instruction and then respond to the interrupt rather than
continuing to the next instruction in the application program. Finally, a
host development system can cause the CPU to go to active background
mode rather than continuing to the next instruction in the application
program.

Wait and stop modes are activated as the result of the WAIT and STOP
instructions, respectively; however, these special instructions also affect
other systems in the microcontroller (MCU). While these modes are
active, CPU activity is suspended indefinitely until some hardware event
occurs to wake up the MCU.

6.4.1 Reset Sequence

Processing begins at the trailing edge of a reset event. The number of
things that can cause reset events can vary slightly from one HCS08
derivative to another; however, the most common sources are power-on
reset, the external RESET pin, low-voltage reset, COP watchdog
timeout, illegal opcode detect, and illegal address access. For more
information about how the MCU recognizes reset events and determines
the differences between internal and external causes, refer to
Section 5. Resets and Interrupts. For detailed information about all of
the possible causes of reset in a particular HCS08 derivative, refer to the
appropriate technical data sheet.

Reset events force the MCU to immediately stop what it is doing and
begin responding to reset. Any instruction that was in process will be
aborted immediately without completing any remaining clock cycles. A
short sequence of activities is completed to decide whether the source
of reset was internal or external and to record the cause of reset. For the
remainder of the time the reset source remains active, the internal clocks
are stopped to save power. At the trailing edge of the reset event, the
clocks resume and the CPU exits from the reset condition.

The CPU performs a 6-cycle sequence to exit reset before starting the
first program instruction. The high-order byte of the reset vector is
fetched from $FFFE and stored in the high-order byte of the program
counter. The low-order byte of the reset vector is fetched from $FFFF

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 139

Central Processor Unit (CPU)

and stored in the low-order byte of the program counter. The next bus
cycle is a free cycle where the CPU does not access memory because
the low-order half of the vector is not yet available to the CPU. Whenever
the CPU performs a memory read operation, there is a 1 cycle delay
before the data has time to propagate into the CPU where it can be used
in any subsequent operation. Next, the CPU places the program counter
address on the bus to fetch the first byte of program information and then

increments the program counter. (The program counter contained the
reset vector that was just fetched from $FFFE, FFFF.) The next cycle
(fifth in the reset sequence) fetches the second byte of program
information into the instruction queue, and the next cycle (last in the
reset sequence) accesses the third byte of program information so it is
on its way into the instruction queue.

After the 6-cycle reset sequence, two bytes of program information are
available to the CPU in the instruction queue and a third byte is on its
way. Notice that MCU operations form a continuous stream of activity
and different parts of the system see different events within this stream
at any particular instant in time. To avoid confusion, the user's
perception of a bus cycle is used as the single point of reference for all
further discussions. See 6.4.6 User's View of a Bus Cycle.

6.4.2 Interrupts

As the name implies, interrupts interrupt the normal flow of instructions.
Except for the SWI instruction, interrupts are caused by hardware events
and are generally asynchronous to the operating program. The software
interrupt instruction (SWI) behaves like other interrupts except that it is
not maskable (cannot be inhibited by the I bit in the CCR being 1).

When an interrupt is requested, the CPU completes the current
instruction before responding to the interrupt. The interrupt sequence
follows the same cycle-by-cycle sequence as the SWI instruction and
consists of saving the CPU registers on the stack, setting the I bit in the
CCR to mask further interrupts, fetching the interrupt vector for the
highest priority interrupt that is currently pending, and filling the
instruction queue with the first three bytes of program information for the
interrupt service routine. For more information about how the MCU
recognizes and processes interrupts, refer to Section 5. Resets and
Interrupts.

Reference Manual — Volume I HCS08 — Revision 1

140 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Special Operations

The interrupt mask bit (I bit) in the CCR acts as a global interrupt mask.
When I is 1, interrupt requests are ignored by the CPU. Immediately after
reset, the I bit is 1 so that interrupts are disabled. Before clearing the I bit
to enable interrupts, initialize the stack pointer.

For compatibility with the earlier M68HC05 Family, the stack pointer is
automatically initialized to $OOFF at reset. This is rarely where you want
the stack to be located in an HCS08 system because this would cause
the stack to use valuable direct address space (the space from $0000
through $DOFF). Usually, the stack pointer should be set to point at the
highest address in the on-chip RAM. Since there isn't a load stack
pointer instruction, load H:X with the address of the last RAM location
plus one, and then transfer this value to SP. There is an automatic
adjustment of the 16-bit value as it is transferred from H:X to SP so the
stack pointer will point at the next available location on the stack (in this
case, so H:X points at the last location in the on-chip RAM). Refer to
6.2.3 Stack Pointer (SP) for a more detailed explanation of the stack
pointer.

Again for compatibility with the earlier M68HC05, the HCS08 does not
stack the high-order half of the index register (H) in response to an
interrupt. In rare cases, you can choose not to stack H inside the
interrupt service routine if you are absolutely sure the service routine will
never alter H. Many instructions, including AIX and post-increment
indexed addressing versions of instructions, can cause H to change.
Therefore, it is generally safer to include a PSHH instruction as the first
instruction in the interrupt service routine and a PULH instruction as the
last instruction before the RTI that ends the service routine.

6.4.3 Wait Mode

Wait mode is entered by executing a WAIT instruction. This instruction
clears the I bit in the CCR (so interrupts can wake up the MCU from wait
mode), and then shuts down the clocks in the CPU to save power. The
CPU remains in this low-power state until an interrupt or reset event
wakes it up. For more detailed information about wait mode, refer to

3.5 Wait Mode.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 141

Central Processor Unit (CPU)

6.4.4 Stop Mode

Stop mode is entered by executing a STOP instruction. This instruction
clears the I bit in the CCR (so interrupts can wake up the MCU from stop
mode), and then shuts down the clocks in the CPU to save power.
Depending on other control settings in the MCU, the system oscillator
may be completely disabled to reduce power consumption even further.
The CPU remains in this low-power state until an interrupt or reset event
wakes it up. The wakeup sequence depends on whether the oscillator
was completely stopped, and what type of clock generation system is
controlling the particular derivative. For more detailed information about
stop mode, refer to 3.6 Stop Modes.

6.4.5 Active Background Mode

Active background mode refers to the condition where the CPU has
stopped executing user program instructions and is waiting for serial
commands from the background debug system. The CPU cannot enter
active background mode unless it has been enabled by a serial
WRITE CONTROL command which has set the ENDBM bit in the
BDCSCR. (BDCSCR is a status and control register within the
background debug controller (BDC) and is not accessible from the user
program.) The usual way the CPU gets into active background mode is
in response to a BACKGROUND command through the serial
background communication interface (BKGD pin). The CPU can also
enter active background mode due to a reset event where the BKGD pin
is held low at the trailing edge of reset, due to a BGND instruction, or in
response to a hardware breakpoint event.

Reset with BKGD low provides a way for a development system to gain
control of a target MCU immediately after reset before any user reset
vector is fetched and before any user instructions are executed. This is
important in systems where the program memory and vectors are not yet
programmed.

BGND instructions are used only by development systems to set
software breakpoints and should never be used in normal application
programs. If a program runaway condition causes the CPU to encounter
a BGND instruction when no development system is connected to the
BKGD pin, ENBDM would be 0 and the BGND instruction would be
treated as an illegal opcode.

Reference Manual — Volume I HCS08 — Revision 1

142 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Special Operations

The hardware breakpoint that is built into the BDC system is only
accessible by serial commands through BKGD, so this breakpoint would
only occur if a development system is connected to BKGD and
ENBDM = 1.

Some HCS08 MCUs can have additional hardware breakpoints built
outside the CPU and BDC systems. These hardware breakpoints can be
controlled by user programs as well as development systems. If this type
of hardware breakpoint is encountered while ENBDM = 1, the CPU
completes the current instruction and then enters active background
mode. If this type of hardware breakpoint is encountered while
ENBDM = 0, the CPU will execute an SWI instruction rather than trying
to execute an illegal BGND instruction. With proper planning, this
mechanism can be used to allow a form of ROM patching. Refer to
7.5.9 Hardware Breakpoints and ROM Patching.

The CPU can remain in the active background mode indefinitely until a
serial GO, TRACEI , or TAGGO command causes it to return to the
user's application program. In a 3-cycle sequence on exit from active
background mode, the CPU does three program fetches to fill the
instruction queue. There is no way for the CPU to know whether the
development system has altered program memory, so the CPU always
refills the instruction queue upon exit from active background mode.

6.4.6 User's View of a Bus Cycle

In modern microcontrollers, operations are pipelined such that different
parts of the circuit can be working on different information at any
particular instant in time. To avoid confusion, it is important to have a
single consistent point of reference so other system timing can be
related to this common reference. This common reference point for the
HCS08 is a bus cycle. A read bus cycle is considered to begin with the
CPU internally generating an address which is then presented to the
internal address bus. The addressed memory location then places the
requested data on the internal data bus after a memory access time. A
write cycle begins like a read cycle, with the CPU internally generating
an address which is then presented to the internal address bus. Next the
data to be written is presented to the internal data bus and remains valid
long enough for the memory access to be completed.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 143

Central Processor Unit (CPU)

Since these internal activities are not directly visible from the outside of
the chip, we must relate this to an external event such as the trailing
edge of a reset event. The cycle-by-cycle sequence for the reset
operation is vvfppp where the first two v cycles are the bus cycles where

the upper and lower bytes of the reset vector are fetched from $FFFE

and $FFFF, respectively. The f cycle is a free cycle where the CPU does

not use the internal buses. The three p cycles are used to fill the
instruction queue with the first three bytes of object code for the user
program beginning at the address just fetched from the reset vector.
From this point, a user can tell exactly what should be on the internal
buses for every bus cycle of a program because every CPU instruction
and exception event has a known sequence of bus cycles.

The exit from reset is synchronized to an internal bus clock so there is
an uncertainty of up to one bus cycle from the actual release of the active
low at the reset pin and when the first v cycle starts. There is a
propagation delay from the external oscillator input (if present) to the
internal bus clock which is not specified because the user cannot access
the internal bus clock to make a measurement.

6.5 Instruction Set Description by Instruction Types

In this section, the instruction is listed by types of instructions.
Explanations of how these instructions can be used within the context of
an application program are provided. Example code segments are used
to show practical examples of common programming constructs.

6.5.1 Data Movement Instructions

This group of instructions is used to move data between memory and
CPU registers, between memory locations, or between CPU registers.
Load, store, and move instructions automatically update the condition

codes based on the value of the data. This allows conditional branching
with BEQ, BNE, BPL, and BMI immediately after a load, store, or move
instruction without having to do a separate test or compare instruction.

Reference Manual — Volume I HCS08 — Revision 1

144 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

6.5.1.1 Loads and Stores

Table 6-1. Load and Store Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss

M
o
d
e

O
p
co

d
e

O
p

e
ra

n
d

C
yc

le
s

V H I NZC

LDA #opr8i IMM A6 ii 2
LDA opr8a DIR B6 dd 3
LDA oprl6a EXT C6 hh II 4
LDA oprxl6,X Load Accumulator from IX2 D6 ee ff 4
LDA oprx8,X Memory A F (M) 0 _ _ IX1 E6 ff 3
LDA ,X IX F6 3
LDA oprxl6,SP SP2 9ED6 ee if 5
LDA oprx8,SP SP1 9EE6 ft 4

LDHX #oprl6i IMM 45 ii kk 3
LDHX opr8a DIR 55 dd 4
LDHX oprl6a EXT 32 hh II 5
LDHX ,X
LDHX oprxl6,X

Load Index Register (H:X) H:X E- (M:M + $0001) from Memory IX2 9EBE ee ff 6 0 - - I I - IX 9EAE 5

LDHX oprx8,X IX1 9ECE ft 5
LDHX oprx8,SP SP1 9EFE if 5

LDX #opr8i IMM AE ii 2
LDX opr8a DIR BE dd 3
LDX oprl6a EXT CE hh II 4
LDX oprxl6,X Load X (Index Register IX2 DE ee ff 4
LDX oprx8,X Low) from Memory X €_() M 0 - - - IXi EE ft 3
LDX ,X IX FE 3
LDX oprxl6,SP SP2 9EDE ee if 5
LDX oprx8,SP SP1 9EEE if 4

STA opr8a DIR B7 dd 3
STA oprl6a
STA oprxl6,X

EXT
IX2

C7
D7

hh II
ee ft

4

STA oprx8,X Store Accumulator in M - (A) 0 - - i I - IXt E7 if 3
STA ,X Memory IX F7 2
STA oprxl6,SP SP2 9ED7 ee if 5
STA oprx8,SP SP1 9EE7 if 4

STHX opr8a DIR 35 dd 4
STHX oprl6a Store H:X (Index Reg.) (M:M + $0001) F (H:X) 0 - - - EXT 96 hh II 5
STHX oprx8,SP SP1 9EFF if 5

STX opr8a DIR BF dd 3
STX oprl6a EXT CF hh II 4
STX oprxl6,X Store X (Low 6 Bits of IX2 DF ee if 4
STX oprx8,X Index Register) M F (X) 0 - - - IXi EF if 3
STX ,X in Memory IX FE 2
STX oprxl6,SP SP2 9EDF ee if 5
STX oprx8,SP SP1 9EEF if 4

HCSO8 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 145

Central Processor Unit (CPU)

Load A and load X cause an 8-bit value to be read from memory into
accumulator A or into the X register. Load H:X causes one 8-bit value to

be read from memory into the H register and a second 8-bit value to be

read from the next sequential memory location into the X register. Load

A and load X each allow eight different addressing modes for maximum

flexibility in accessing memory. LDHX allows seven different addressing

modes to specify the memory locations of the values being read.

The following instructions demonstrate some of the uses for load
instructions. This collection of instructions is not intended to be a
meaningful program. Rather, they are unrelated load instructions to
demonstrate the many possible addressing modes that allow access to

memory in different ways.

226

227

load A - various addressing modes

immediate (IMM) addressing mode examples

228 0089 A6 55 lda #$55 ;IMM - $ means hexadecimal

229 0085 A6 64 lda #100 ;decimal 100 (hexadecimal $64)

230 COED A6 3F lda #%00111111 means binary

231 COBF A6 41 lda #'A' ;single quotes around ASCII

232 0091 A6 80 lda #illegalop ;label used as immediate value

233 direct (DIR) addressing mode examples

234 0093 56 55 lda $55 ;load from address $0055

235 0095 B6 90 lda directByte ;label as a direct address

236 extended (EXT) addressing mode

237 0097 06 FFFE lda $FFFE ;high byte of reset vector

238 009A 06 0101 lda extByte ;label used as an address

239 C09D 06 C09D lda ;* means "here loads opcode

240 COAO C6 009D lda fwdRef ;forces ext addressing mode

241 not all assemblers treat forward references the same way

242 0000 009D fwdRef: equ directByte ;forward referenced direct

243

244 COA3 45 0007 ldhx #stringBytes ;point at string in flash

245 indexed addressing mode (relative to H:X index register pair)

246 COA6 06 4081 lda (moveBlkl-stringBytes),x ;IX2 mode

247 COA9 E6 01 lda l,x ;IX1 - 8-bit offset

248 COAB F6 lda ,x ;IX - no offset

249

250 indexed addressing mode (relative to SP stack pointer)

251 COAC 45 0001 ldhx #1

252 COAF 94 txs ;temp move SP for 16-bit offset ex.

253 0050 9ED6 0120 lda 300,sp ;SP2 - 16-bit offset

254 00B4 9EE6 01 lda l,sp ;SP1 - 8-bit offset

Reference Manual — Volume I HCS08 — Revision 1

146 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

Since one operand input to the arithmetic logic unit (ALU) is connected
to the A accumulator, you typically need to use an LDA instruction to
read one value into A before performing mathematical or logical
operations involving a second operand.

add A + B (assumes sum is < or = 255)

lda oprA ;oprA -> accumulator

add oprB ;oprA + oprB -> accumulator

In some cases, you can plan your program so that the results that were
stored in accumulator A as the result of one operation can be used as an
operand in a subsequent operation. This can save the need to store one
result and reload the accumulator with the next operand.

add A + B + C (assumes sum is < or = 255)

lda oprA ;oprA -> accumulator

add oprB ;oprA + oprB -> accumulator

add oprC ;accum. + oprC -> accum.

The next example shows an intermediate value being saved on the
stack. This is sometimes faster than storing temporary results in
memory. The amount of savings depends on what addressing mode
would be needed to store the temporary value in memory and whether
the X register was needed for something else at the time.

compute (A + B) - (C + D) (assumes no carry or borrow)

lda oprC ;oprC -> accumulator

add oprD ;oprC + oprD -> accumulator

psha ;intermediate result to SP+1

lda oprA ;oprA -> accumulator

add oprB ;oprA + oprB -> accumulator

sub i,sp ;(A+B)-(C+D) to accumulator

ais #1 ;deallocate local space

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 147

Central Processor Unit (CPU)

Table 6-2. BSET, BCLR, Move, and Transfer Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss

M
o
d
e

O
p
co

d
e

O
p
e
ra

n
d

C
yc

le
s

V H I NZC

DIR (b0) 10 dd 5
DIR (b1) 12 dd 5
DIR (b2) 14 dd 5
DIRb3 16 dd 5

BSET n,opr8a Set Bit n in Memory Mn E- 1 — — — — — — DIR (b4) 18 dd 5
DIR (b5) 1A dd 5
DIR (b6) 1C dd 5
DIR (b7) 1E dd 5

DIR (b0) 11 dd 5
DIR (b1) 13 dd 5
DIR (b2) 15 dd 5
DIR b3 17 dd 5

BCLR n,oprsa Clear Bit n in Memory Mn 4-0 - - - - - - DIR (b4) 19 dd 5
DIR (b5) 1B dd 5
DIR (b6) 1O dd 5
DIR (b7) 1F dd 5

MOV opr8a,opr8a (M)destination 4- (M)source DIR/DIR 4E dd dd 5
MOV opr8a,X+

0 2 2 DIR/IX+ 5E dd 5
MOV #opr8i,opr8a Move H:X< (H:X)+$0001 in IMM/DIR 6E ii dd 4
MOV ,X+,opr8a IX+/DIR and DIR/IX+ Modes IX+/DIR 7E dd 5

TAX Transfer Accumulator to
X (Index Register Low)

X (A) _ _ _ _ _ INH 97 1

TXA Transfer X (Index Reg.
Low) to Accumulator A F (X) - - - - - - INH 9F 1

TAP
Transfer Accumulator to CCR

F (A) ? INH 84 1

TPA Transfer CCR to
Accumulator

 A F (CCR) - - - - - - INH 85 1

NSA Nibble Swap
Accumulator A F (A[3:0]:A[7:4]) - - - - - - INH 62 1

6.5.1.2 Bit Set and Bit Clear

Bit set (BSET) and bit clear (BCLR) instructions can be thought of as
bit-sized store instructions, but these instructions actually read a full 8-bit

location, modify the specified bit, and then re-write the whole 8-bit

location. In certain cases, such as when the target location is something

other than a RAM variable, this subtle behavior can lead to unexpected

results. If a BSET or BCLR instruction attempts to change a bit in a

nonvolatile memory location, naturally, the bit will not change because

nonvolatile memories require a more complex sequence of operations to

make changes.

Some status bits are cleared by a sequence involving a read of the
status bit followed by a write to another register in the peripheral module.
Some users are surprised to find that a BSET or BCLR instruction has

satisfied the requirement to read the status register. To avoid such

problems, just remember that the BSET and BCLR instructions are

read-modify-write instructions that access a full 8-bit location in parallel.

Reference Manual — Volume I HCS08 — Revision 1

148 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

Some control or I/O registers do not access the same physical logic
states for reads and writes. In general, do not use read-modify-write
instructions on these locations because they may produce unexpected
results.

276

277 COD3 16 lB

278

279 CODS B6 lB

280 COD7 AA 08

281 CODS B7 15

BSET example - turns on TE without changing RE

bset TE,SCIIC2 ;enable SCI transmitter

functionally equivalent to..

lda SCI1C2 ;read current SCCR2 value

ora #mTE ;OR in TE bit (mask)

sta SCIlC2 ;upate value in SCCR2

6.5.1.3 Memory-to-Memory Moves

Move instructions can be helpful in an accumulator architecture like the
HCS08 where the number of registers is limited. MOV performs a read
of an 8-bit value from one memory location and stores the value in a
different location. Like the load and store instructions, MOV causes the
N and Z bits in the CCR to be updated according to the value of the data
being moved.

Although load and store instructions could be used to do the same thing
as a MOV instruction, MOV does not require the accumulator to be
saved so that A can be used as the transport means for the move
operation. In many cases, the MOV approach is faster and smaller
(object code size) than the load-store combination. MOV allows four
different address mode combinations to specify the source and
destination locations for the move.

The following example shows how move instructions can be used to
initialize several register values.

284 CODB 6E 03 00 mov #$03,PTAD ;0011 to 4 LS bits

285 CODE 6E OF 03 mov #$OF,PTADD ;make 4 LS bits outputs

286 COE1 6E FO 01 mov #$FO,PTAPE ;pullups on 4 MS bits

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 149

Central Processor Unit (CPU)

The next example shows a string move operation using load and store

instructions rather than move instructions.

288 block move example to move a string to a RAM block

289 COE4 45 0088 ldhx #moveBlkl ;point at destination block

290 COE7 D6 BF7F movLoopl: lda (stringBytes-moveBlkl),x ;get source byte

291 COEA 27 04 beg dunLoopl ;null terminator ends loop

292 COEC F7 sta ,x ;save to destination block

293 COED 5C incx ;next location (assumes DIR)

294 COEE 20 F7 bra movLoopl ;continue loop

295 dunLoopl:

6.5.1.4 Register Transfers and Nibble Swap

TAX and TXA offer an efficient way to transfer a value from A to X or from
X to A. Depending on whether the X register is already being used, this
can be an efficient way to temporarily save the accumulator value so A
can be used for some other operation.

TAP and TPA provide a means for moving the value from A into the CCR
(processor status byte) or from the CCR into A. This is used more in
development tools like debug monitors than in normal user programs.

The nibble swap A (NSA) instruction exchanges the upper and lower
nibbles of the accumulator (A). An 8-bit value is called a byte and a
nibble is the upper- or lower-order four bits of a byte. Each nibble
corresponds to exactly one hexadecimal digit. This instruction is useful
for conversions between binary or hexadecimal and ASCII, and for

operations on binary-coded-decimal (BCD) numbers.

* chexl - convert upper nibble of A to ASCII

* chexr - convert lower nibble of A to ASCII

* on entry A contains any binary (hexadecimal) number

* returns with resulting ASCII character in A

chexl: nsa ;swap nibble into low half

chexr: and #$OF ;strip off upper nibble

add #$30 ;now $30 - $3F

cmp #$39 ;check for < or = '9'

bls dunChex ;if so, just return

add #7 ;adjust to $41-$46

dunChex: its ;return with ASCII in A

Reference Manual — Volume I HCS08 — Revision 1

150 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

6.5.2 Math Instructions

Math instructions include the traditional add, subtract, multiply, and
divide operations, a collection of utility instructions including increment,
decrement, clear, negate (two's complement), compare, and test, and a
decimal adjust instruction for computations involving BCD numbers. The
compare instructions are actually subtract operations where the CCR
bits are affected but the result is not written back to a CPU register. The
test instructions affect the N and Z condition code bits, but do not affect
the tested value.

6.5.2.1 Add, Subtract, Multiply, and Divide

Table 6-3. Add, Subtract, Multiply, and Divide Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss

M
od

e

O
pc

od
e

O
pe

ra
nd

C
yc

le
s

V H I NZC

ADC #opr8i IMM A9 ii 2
ADC opr8a DIR B9 dd 3
ADC oprl6a EXT C9 hh II 4
ADC oprxl6,X Add IX2 D9 ee if 4
ADC oprx8,X with C Carry A A C() + (M) + () — - IX1 E9 If 3
ADC ,X IX F9 3
ADC oprxl6,SP SP2 9ED9 ee if 5
ADC oprx8,SP SP1 9EE9 if 4
ADD #opr8i IMM AB ii 2
ADD opr8a DIR BB dd 3
ADD oprl6a EXT CB hh II 4
ADD oprxl6,X IX2 DB ee ff 4
ADD oprx8,X Add without Carry A F (A) + (M) — - - IX1 EB If 3
ADD ,X IX FB 3
ADD oprxl6,SP SP2 9EDB ee if 5
ADD oprx8,SP SP1 9EEB If 4

AIX #opr8i
Add Immediate Value
(Signed) to Index H:X F (H:X) + (M)

M)bit — — — — — — IMM AF ii 2
Register (H:X) M is sign extended to a value

SUB #opr8i IMM AO ii 2
SUB opr8a DIR BO dd 3
SUB oprl6a EXT CO hh II 4
SUB oprxl6,X IX2 DO ee ff 4
SUB oprx8,X Subtract A F (A) - (M) - - - - IX1 E0 if 3
SUB ,X IX FO 3
SUB oprxl6,SP SP2 9ED0 ee if 5
SUB oprx8,SP SP1 9EE0 If 4

SBC #opr8i IMM A2 ii 2
SBC opr8a DIR B2 dd 3
SBC oprl6a EXT C2 hh II 4
SBC oprxl6,X IX2 D2 ee ff 4
SBC oprx8,X

Subtract with Carry A f- (A) — (M) —(O) - - IX1 E2 ff 3
SBC ,X IX F2 3
SBC oprxl6,SP SP2 9ED2 ee if 5
SBC oprxs,SP SP1 9EE2 if 4

MUL Unsigned multiply X:A F (X) x (A) - 0 - - - 0 INH 42 5

DIV Divide A E- (H:A)+(X)
H - Remainder

_ _ _ — INH 52 6

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 151

Central Processor Unit (CPU)

The ADD instructions add the value in A to a memory operand and store
the result in A. ADC adds the value in A, plus the carry bit from a
previous operation, to a memory operand and stores the result in A. This
operation allows performance of multibyte additions as demonstrated by
the following example.

add 8-bit operand to 24-bit sum

lda oprA ;8-bit operand to A

add sum24+2 ;LS byte of 24-bit sum

sta sum24+2 ;update LS byte

lda sum24+1 ;middle byte of 24-bit sum

adc #0 ;propigate any carry

sta sum24+1 ;update middle byte

lda sum24 ;get MS byte of 24-bit sum

adc #0 ;propigate carry into MS byte

sta sum24 ;update MS byte

The AIX instruction adds a signed 8-bit value to the 16-bit H:X index
register pair and stores the result back into H:X. Unlike other arithmetic
instructions, AIX does not affect the CCR bits.

ldhx #tblOfStruct ;H:X pointing at first struct

aix to update pointer into table of 5-byte structures

aix #5 ;point to next 5-byte struct

The SUB instructions subtract a memory operand from the value in A
and store the result in A. The carry status bit acts as a borrow indicator
for this subtraction. SBC subtracts a memory operand and the carry bit
from a previous operation from the value in A and stores the result back
in A. This operation allows performance of multibyte subtractions as
demonstrated by the following example.

16-bit subtract... resultl6 = oprE - oprF

lda oprE+1 ;low half of oprE

sub oprF+1 ;oprE(lo) - oprF(lo)

sta resultl6+1 ;low half of result
lda oprE ;high half of oprE

sbc oprF ;oprE(hi) - oprF(hi) - borrow

sta resultl6 ;high half of result

Reference Manual — Volume I HCS08 — Revision 1

152 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

MUL multiplies the unsigned 8-bit value in X by the unsigned 8-bit value
in A and stores the 16-bit result in X:A where the upper eight bits of the
result are stored in X and the lower eight bits of the result are in A. There
is no possibility of a carry (or overflow) since the result will always fit into
X:A, so C is cleared after this operation.

DIV divides the 16-bit unsigned value in H:A by the 8-bit unsigned value
in X and stores the 8-bit result in A and the 8-bit remainder in H. The
divisor in X is left unchanged so it could be used in later calculations. Z
indicates whether the result was zero, and C indicates whether there
was an attempt to divide by zero or if there was an overflow. An overflow
will occur if the result was greater than 255.

This first divide example shows a simple 8-bit by 8-bit integer divide to
get an 8-bit result.

HCSU8 — Revision 1

divide examples

8/8 integer divide... A = A/X

clrh

lda divid8

ldx divisor

div

sta quotient8

;clear MS byte of dividend

;load 8-bit dividend

;load divisor

;H:A/X -> A, remainder -> H

;save result

The second divide example demonstrates how to use DIV to perform an
8-bit by 8-bit divide and another DIV to resolve the remainder into a
fractional result (eight more places to the right of the radix point).

8/8 integer divide, resolve remainder to 8 fractional bits..

r8.f8 = A/X, remainder resolved into 8-bit binary fraction

16-bit result -> (8-bit integer result) . (8-bit fraction)

clrh ;clear MS byte of dividend

lda divid8 ;load 8-bit dividend

ldx divisor ;load divisor

div ;H:A/X -> A, remainder -> H

sta quotientl6 ;upper integer part of result

clra ;H:A = remainder:0

div ;H:A/X -> A

eta quotientl6+1 ;lower fractional part

In the third divide example, we divide an 8-bit dividend by a larger 8-bit
divisor to get a 16-bit fractional result where the radix point is just left of
the MSB of the result. In a binary fraction, the MSB has a weight of
one-half, the next bit to the right has a weight of one-fourth, and so on.

Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 153

Central Processor Unit (CPU)

8/8 fractional divide, 16-bit fractional result

.r16 = H/X, result is a 16-bit binary fraction

radix assumed to be in same position for H and X

16-bit result -> (16-bit fraction)

divid8 and divisor defined so H & X both loaded with one ldhx

clra ;clear LS byte of dividend

ldhx divid8 ;H:X = dividend:divisor

div ;H:A/X -> A, remainder -> H

sta quotientl6 ;upper byte of result

clra ;H:A = remainder:0

div ;H:A/X -> A

sta quotientl6+1 ;next 8 bits of result

The fourth divide example uses a technique like long division to do an
unbounded 16-bit by 8-bit integer divide.

unbounded 16/8 integer divide (equivalent to long division)

r16.f8 = H:A/X, result is 16-bit int.8-bit binary fraction

clrh ;clear MS byte of dividend

lda dividl6 ;upper byte of dividend

ldx divisor ;load divisor

div ;H:A/X -> A, remainder -> H

sta quotient24 ;upper byte of result

lda dividl6+1 ;H:A = remainder:dividend(lo)

div ;H:A/X -> A, remainder -> H

sta quotient24+1 ;next byte of result
cira ;H:A = remainder:0

div ;H:A/X -> A

sta quotient24+2 ;fractional bits of result

The fifth divide example demonstrates a 16-bit by 8-bit divide with
overflow checking.

bounded 16/8 integer divide (with overflow checking)
r8 = H:A/X, result is 8-bit integer

ldhx dividl6 ;H:X = 16-bit dividend
txa ;H:A = 16-bit dividend
ldx divisor ;X = 8-bit divisor

div ;H:A/X -> A, remainder -> H

bcs divOvrf low ;Overflow?

sta quotient8 ;upper byte of result

divOvrflow: ;here on overflow

Reference Manual — Volume I HCS08 — Revision 1

154 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

Table 6-4. Other Arithmetic Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss

M
od

e

O
p
co

d
e

O
p

e
ra

n
d

C
yc

le
s

V H I NZC

NC opr8a M — (M) + $01 DIR 3C dd 5
NCA A — (A) + $01 INH 4C 1
NCX X — (X) + $01 INH 50 1
NC oprx8,X Increment M — (M) + $01

_ _ _
IX1 6C if 5

NC ,X M E- (M) + $01 IX 7C 4
NC oprx8,SP M - (M) + $01 SP1 9E60 if 6

DEC opr8a M — (M) — $01 DIR 3A dd 5
DECA A4—(A)—$01 INH 4A 1
DECX X (X) —$01 INH 5A 1
DEC oprx8,X Decrement M <— (M) — $01

_
IX1 6A if 5

DEC ,X M — (M) —$01 IX 7A 4
DEC opn 8,SP M - (M) -$01 SP1 9E6A ft 6
CLR opr8a M—$00 DIR 3F dd 5
CLRA A—$00 INH 4F 1
CLRX X — $00 INH 5F 1
CLRH Clear H — $00 0 — — 0 1 — INH 8C 1
CLR oprx8,X M f — $00 IX1 6F if 5
CLR ,X M *— $00 IX 7F 4
CLR oprx8,SP M i- $00 SP1 9E6F ft 6
NEG opr8a M--(M)=$00-(M) DIR 30 dd 5
NEGA A -- - (A) = $00- (A) INH 40 1
NEGX Negate X E- - (X) = $00- (X) INH 50 1
NEG oprx8,X (Two's Complement) M F - (M) = $00- (M) - IX1 60 if 5
NEG ,X M - - (M) = $00- (M) IX 70 4
NEG oprx8,SP M F - (M) = $00- (M) SP1 9E60 if 6

CMP #opr8i
CMP opr8a
CMP oprl6a

IMM
DIR
EXT

Al
B1
Cl

ii
dd
hh II

N
c
)

V
C

)c
)ln

V

CMP oprxl6,X Compare Accumulator (A) _ (M) 1X2 D1 ee if
CMP oprx8,X with Memory (OCR Updated But Operands Not — — - - IX1 E1 if
CMP ,X
CMP oprxl6,SP
CMP oprx8,SP

Changed) IX
SP2
SP1

F1
9ED1
9EE1

ee if
if

CPHX oprl6a EXT 3E hh II 6
CPHX #oprl6i Compare Index Register (H:X) — (M:M + $0001) IMM 65 jj kk 3
CPHX opr8a (H:X) with Memory (OCR Updated But Operands Not - - 2 : DIR 75 dd 5
CPHX oprx8,SP Changed) SP1 9EF3 if 6
CPX #opr8i IMM A3 ii 2
CPX opr8a DIR B3 dd 3
CPX oprl6a
CPX op Compare X (Index (X) — (M) EXT

IX2
03
D3

hh II
ee if

4
4

CPX op,-x8,XrxB,X Register Low) with (OCR Updated But Operands Not I — — IXi E3 if 3
CPX ,X Memory Changed) IX F3 3
CPX oprxl6,SP SP2 9ED3 ee if 5
CPX oprx8,SP SP1 9EE3 if 4

TST opr8a (M)—$00 DIR 3D dd 4
TSTA (A)-$00 INH 4D 1
TSTX (X) -$00 INH 5D 1
TST oprx8,X Test for Negative or Zero (M)-$00 0 - - - IX1 60 if 4
TST ,X (M)-$00 IX 7D 3
TST oprx8,SP (M)-$00 SP1 9E6D if 5

Decimal Adjust
DAA AccumulatorAfferADDor (A)10 U - - 2 2 INH 72 1

ADC of BCD Values

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 155

Central Processor Unit (CPU)

6.5.2.2 Increment, Decrement, Clear, and Negate

Increment and decrement instructions let you adjust the value in A, X, or
a memory location by one. Clear instructions let you force an 8-bit value
in A, X, H, or a memory location to zero.

Negate instructions perform a two's complement operation that is
equivalent to multiplying a signed 8-bit value by negative one.
Functionally, this instruction inverts all the bits in A, X, or the memory
location and then adds one. The value $80 represents the signed
number —128. The negative of this value would be +128, but the largest
positive number that can be represented with a two's complement, 8-bit
number is +127. If A was $80 and you execute a NEGA instruction, the
CPU first inverts all the bits to get $7F and then adds one to get $80.
Since this causes the sign to change from positive to negative, the V bit
in the CCR is set to indicate the error.

6.5.2.3 Compare and Test

CMP instructions affect CCR bits exactly like the corresponding SUB
instruction, but the result is not stored back into the accumulator so A
and the memory operand are left unchanged. Compare instructions
compare the contents of A, X, or the H:X register pair to a memory
operand. In the case of CPHX, M is the address of the referenced
memory location, H corresponds to memory location M, and X
corresponds to memory location M+1. CPHX performs a 16-bit
subtraction (without storing the result back to H:X).

The test instructions are equivalent to subtracting zero from A, X, or a
memory operand. This operation clears V and sets or clears N and Z
according to what was in the tested value. The tested value is not
changed.

6.5.2.4 BCD Arithmetic

In a binary coded decimal (BCD) number, one hexadecimal digit (4
binary bits) represents a single decimal number from 0 to 9. When two
8-bit BDC numbers are added, the CPU actually does a normal binary
addition. Depending on the BCD values involved, this could result in a
value that is no longer a valid 2-digit BCD number. Based on the H and

Reference Manual — Volume I HCS08 — Revision 1

156 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

C condition code bits that resulted from an ADD or ADC instruction
involving two legal BCD numbers, the decimal adjust A (DAA) instruction
"corrects" the result to the proper BCD result and sets or clears the C bit
as needed to reflect the result of the BCD addition. In the past, this was
done with a relatively complex set of instructions that tested the values
of each BCD digit of the result and the H and C bits. The DAA instruction
greatly simplifies this operation.

The following examples demonstrate two of the possible cases that can
result from adding 8-bit BDC numbers and the actions taken by a DAA
instruction to correct the results to the appropriate BCD result and carry
flag. The first example shows a BCD addition that does not require
adjustment. The second example shows a case where the result was not
a legal BCD value and the carry did not reflect the correct BCD result. In
this second example, the DAA instruction adds a correction factor and
adjusts the carry flag to reflect the correct BCD result.

ida #$11 ;BCD 11

add #$22 ;il + 22 = 33

daa ;no adjustment in this case

LDA #$59 ;BCD 59
ADD #$57 ;59 + 57 = $BO

C=O, H=1, A=$BO - wanted 59 + 57 = 116 or A=$16 with carry set
DAA ;adds $66 and sets carry

$BO + $66 = $16 with carry bit set

6.5.3 Logical Operation Instructions

These instructions perform eight bitwise Boolean operations in parallel.
For the complement instruction, each bit of the register or memory
operand is inverted. The other logical instructions involve two operands,
one in the accumulator (A) and the other in memory. Immediate, direct,
extended, or indexed (relative to H:X or SP) addressing modes may be
used to access the memory operand. Each bit of the accumulator is
ANDed, ORed, or exclusive-ORed with the corresponding bit of the
memory operand. The result of the logical operation is stored into the
accumulator, overwriting the original operand.

HCS08 - Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 157

Central Processor Unit (CPU)

Table 6-5. Logical Operation Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss

M
o
d
e

O
p
co

d
e

O
p
e
ra

n
d

C
yc

le
s

V H I NZC

AND #opr8i
AND opr8a
AND oprl6a
AND oprxl6,X
AND oprx8,X
AND ,X
AND oprxl6,SP
AND oprx8,SP

Logical AND A — (A) & (M) 0 — _

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A4
64
C4
D4
E4
F4

9ED4
9EE4

ii
dd
hh II
ee if
if

ee if
if

2
3
4
4
3
3
5
4

ORA #opr8i
ORA opr8a
ORA oprl6a
ORA oprxl6,X
ORA opo8,X
ORA ,X
ORA oprxl6,SP
ORA oprx8,SP

Inclusive OR Accumulator
and Memory A (A) I (M) 0 - _

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AA
BA
CA
DA
EA
FA

9EDA
9EEA

ii
dd
hh II
ee if
if

ee if
ft

2
3
4
4
3
3
5
4

FOR #opr8i
FOR opr8a
FOR oprl6a
FOR oprxl6,X
FOR oprx8,X
FOR ,X
FOR oprxl6,SP
FOR oprx8,SP

Exclusive OR
Memory with
Accumulator

A — (A O M) 0 — — + —

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A8
B8
C8
D8
E8
F8

9ED8
9EE8

ii
dd
hh II
ee ff
ft 3

ee if
if

2
3
4
4

3
5
4

COM opr8a
COMA
COMX
COM oprx8,X
COM ,X
COM oprx8,SP

Complement
(One's Complement)

M (— L)= $FF — (M)
A — (A) = $FF — (A)
X - L) = $FF — (X)
M E- (M) = $FF — (M)
M <- (M) = $FF - (M)
M e- (M) = $FF - (M)

p — — j I 1

DIR
INH
INH
IX1
IX
SP1

33
43
53
63
73

9E63

dd

ft

if

5
1
1
5
4
6

BIT #opr8i
BIT opr8a
BIT oprl6a
BIT oprxl6,X
BIT oprx8, X
BIT ,X
BIT oprxl6,SP
BIT oprx8,SP

Bit Test
(A) & (M)

(CCR Updated but Operands

Not Changed)

0 — -
i

IMM
DIR
EXT IX2

Xi
IX
SP2
SP1

AS
BS
C5 D5

E5
F5

9ED5
9EE5

ii
dd
hh II ee if

ff

ee if
ft

2
3
4 4

3
3
5
4

6.5.3.1 AND, OR, Exclusive-OR, and Complement

These instructions provide the basic AND, OR, exclusive-OR, and invert
functions needed to perform Boolean logical functions.

lda #$0C ;bit pattern 00001100

and #$0A ;bit pattern 00001010

result is $08 00001000

lda #$35 ;bit pattern 00110101

and #$0F ;bit pattern 00001111

result is $05 00000101

Reference Manual — Volume I HCS08 — Revision 1

158 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

You may notice some similarity between the AND operation and the
BCLR instruction. However, BCLR can be used only on memory
locations $0000—$OOFF and can clear only one bit at a time while AND
can clear any combination of bits and may be used with several different
addressing modes to identify the memory operand to be ANDed with A.

lda #$0C ;bit pattern 00001100

ora #$0A ;bit pattern 00001010
result is $0E 00001110

You may notice some similarity between the ORA operation and the
BSET instruction; however, BSET can be used only on memory
locations $0000-$00FF and can set only one bit at a time while ORA can
set any combination of bits and may be used with several different
addressing modes to identify the memory operand to be ORed with A.

Exclusive-OR can be used to toggle bits in an operand. One operand is
considered a mask where each bit that is set in the mask corresponds to
a bit value in the other operand that will be toggled (inverted). The next
example reads an I/O port, exclusive-ORs it with an immediate mask
value of $03 to toggle the two least significant bits, and then writes the
updated result to the I/O port.

402 C162 A6 0C lda #$0C ;bit pattern 00001100
403 C164 A8 OA eor #$0A ;bit pattern 00001010
404 result is $06 00000110

405

406 C166 B6 00 lda PTAD ;read I/O port A

407 C168 A8 03 eor #$03 ;inverts 2 LSBs

408 C16A B7 00 sta PTAD ;update I/O port A

Complement instructions simply invert each bit of the operand. Don't
confuse this with the negate instruction which performs the arithmetic
operation equivalent to multiplication by minus one.

lda #$C5 ;bit pattern 11000101

coma ;result is 00111010

HCSOS — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 159

Central Processor Unit (CPU)

6.5.3.2 BIT Instruction

The BIT instruction ANDs each bit of A with the corresponding bit of the
addressed memory operand (just like AND), but the result is not stored
to the accumulator. The N and Z condition codes are set or cleared
according to the results of the AND operation to allow conditional
branches after the BIT instruction. If you load A with a mask value where
each bit that is set in the mask corresponds to a bit in the memory
operand to be tested, then execute a BIT instruction, the Z bit will be set
if none of the tested bits were is.

Ida SCI1S1 ;read SCI status register

bit #(mOR+mNF+mFE+mPF) ;mask of all error flags

bne sciError ;branch if any flags set

A still contains undisturbed status register

sciError: ;here if any error flags

6.5.4 Shift and Rotate Instructions

All of the shift and rotate instructions operate on a 9-bit field consisting
of an 8-bit value in A, X, or a memory location and the C bit in the CCR.
Drawings are provided in the instruction descriptions to show where the
C bit fits into the shift or rotate operation. The logical shift instructions are
simple shifts which shift a zero into the first bit of the value and shift the
last bit into the carry bit. The arithmetic shifts treat the value to be shifted
as a signed two's complement number. An arithmetic shift left is like
multiplying a value by 2 and an arithmetic shift right is like dividing the
number by 2. The arithmetic shift right (ASR) instruction copies the
original most significant bit (MSB) back into the MSB to preserve the sign
of the operand. ASL and LSL are just two different mnemonics for the
same instruction because there is no functional difference between the
logical and arithmetic shifts to the left.

Reference Manual — Volume I HCS08 — Revision 1

160 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

Table 6-6. Shift and Rotate Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss

M
od

e

O
p
co

d
e

O
p

e
ra

n
d

C
yc

le
s

V H I NZC

LSL opr8a
LSLA
LSLX
LSL oprx8,X
LSL ,X
LSL oprx8,SP

Logical Shift Left i
(Same as ASL) - 2 I

DIR
INH
INH
IXi
IX
SP1

38
48
58
68
78

9E68

dd

ff

if

5
1
1
5
4
6

—0

b7 b0

LSR opr8a
LSRA
LSRX
LSR oprx8,X
LSR ,X
LSR oprx8,SP

Logical Shift Right I - - o j

DIR
INH
INH
IXi
IX
SP1

34
44
54
64
74

9E64

dd

ff

if

►

0
b7 b0

ASL opr8a
ASLA
ASLX
ASL oprx8,X
ASL ,X
ASL oprx8,SP

Arithmetic Shift Left
(Same as LSL) I - -

.
'

DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E68

dd

ft

if

5
1
1
5
4
6

0
b7 b0

ASR opr8a
ASRA
ASRX
ASR oprx8,X
ASR ,X
ASR oprx8,SP

Arithmetic Shift Right I _ _ y I

DIR
INH
INH
IXi
IX
SP1

37
47
57
67
77

9E67

dd

ff

ft

5
1
1
5
4
6

+
•....... c
b7 b0

ROL opr8a
ROLA
ROLX
ROL oprx8,X
ROL ,X
ROL oprx8,SP

Rotate Left through Carry _ _ I I f

DIR
INH
INH

IX
SP1

39
49
59

79
9E69

dd

ft

ft

5
1
1

4
6

~
IXi 69 b7 b0

ROR opr8a
RORA
RORX
ROR oprx8,X
ROR ,X
ROR oprx8,SP

Rotate Right through
Carry - -

,

DIR
INH
INH
IXi
IX
SP1

36
46
56
66
76

9E66

dd

ft

if

5
1
1
5
4
6

•••••••
b7 b0

Including the carry bit in the shifts and rotates allows extension of these
operations to multibyte values. The following examples show a 24-bit
value being shifted either right or left.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 161

Central Processor Unit (CPU)

24-bit left shift

dc

initial condition sum24 = hhhh hhhh : mmmm mmmm : 1111 1111

lsl sum24+2 ;C to LSB of low byte

now sum24 = hhhh hhhh mmmm mmmm : C=1(7) : 1111 1110

rol sum24+1 ;rotate middle byte

now sum24 = hhhh hhhh : C=m(7) : mmmm mmml : 1111 1110

rol sum24 ;rotate high byte

now sum24 = C=h(7) : hhhh hhhm mmmm mmml : 1111 1110

;clear C bit

: 0

24-bit right shift
dc ;clear C bit

initial condition sum24 = 0 : hhhh hhhh mmmm mmmm : 1111 1111

lsr sum24 ;C to MSB of high byte

now sum24 = Ohhh hhhh : C=h(0) : mmmm mmmm : 1111 1111

rol sum24+1 ;rotate middle byte

now sum24 = 0hhh hhhh : hmmm mmmm : C=m(0) : 1111 1110

rol sum24+2 ;rotate low byte

now sum24 = Ohhh hhhm : hmmm mmmm : mlll 1111 : C=1(0)

Figure 6-5. Multibyte Shifts

6.5.5 Jump, Branch, and Loop Control Instructions

The instructions in this group cause a change of flow which means that

the CPU loads a new address into the program counter so program
execution continues at a location other than the next memory location
after the current instruction.

Jump instructions cause an unconditional change in the execution
sequence to a new location in a program. Branch and loop control
instructions cause a conditional change in the execution sequence.
Branch and loop control instructions use relative addressing mode to
conditionally branch to a location that is relative to the location of the
branch. Processor status indicators in the CCR control whether a
conditional branch or loop control instruction will branch to a new
address or simply continue to the next instruction in the program. BRA

is a special case because the branch always occurs and BRN is special
because the branch is never taken (this is functionally equivalent to a
2-byte, 3-cycle NOP). BIL and BIH are special because they use the
state of the IRQ pin rather than the condition of a bit(s) in the CCR to
decide whether to branch.

Reference Manual — Volume I HCS08 — Revision 1

162 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

Table 6-7. Jump and Branch Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss

M
od

e

O
p
co

d
e

O
pe

ra
nd

C
yc

le
s

V H I NZC

JMP opr8a DIR BC dd 3
JMP oprl6a EXT CC hh II 4
JMP oprxl6,X Jump PC <— Jump Address — — — — — — 1X2 DC ee if 4
JMP oprx8,X IX1 EC ff 3
JMP ,X IX FC 3
BRA ref Branch Always No Test — — — — — — REL 20 rr 3
BRN ref Branch Never Uses 3 Bus Cycles — — — — — — REL 21 rr 3
BEQ ref Branch if Equal Branch if (Z) = 1 — — — — — — REL 27 rr 3
BNE ref Branch if Not Equal Branch if (Z) = 0 — — — — — — REL 26 rr 3
BCC ref Branch if Carry Bit Clear Branch if (C) = 0 - - - - - - REL 24 rr 3

BCS ref Branch if Carry Bit Set
(Same as BLO) Branch if (C) = 1 — — — — — — REL 25 rr 3

BPL ref Branch if Plus Branch if (N) = 0 — — — — — — REL 2A rr 3
BMI ref Branch if Minus Branch if (N) = 1 — — — — — — REL 2B rr 3
BIL ref Branch if IRO Pin Low Branch if IRO pin = 0 — — — — — — REL 2E rr 3
BIH ref Branch if IRQ Pin High Branch if IRO pin = 1 — — — — — — REL 2F rr 3

BMC ref Branch if Interrupt Mask
Clear

Branch if (I) = 0 — — — — — — REL 2C rr 3

BMS ref $ranch if Interrupt Mask Branch if (I) = 1 — — — — — — REL 2D rr 3

BHCC ref Branch if Half Carry Bit
Clear

Branch if (H) = 0 - - - - - - REL 28 rr 3

BHCS ref Branch if Half Carry Bit Branch if (H) = 1 — — — — — — REL 29 rr 3

BLT ref Branch if Less Than
(Signed Operands)

Branch if (N B V) = 1 — — — — — — REL 91 rr 3

Branch if Less Than
BLE ref or Equal To Branch if (Z) I (N ® V) = 1 — — — — — — REL 93 rr 3

(Signed Operands)

Branch if Greater Than or
BGE ref Equal To Branch if (N O+ V) = 0 - - - - - - REL 90 rr 3

(Signed Operands)

BGT ref Branch if Greater Than
(Signed Operands) Branch if (Z) I (N O V) =0 - - - - - - REL 92 rr 3

BLO ref Branch if Lower
(Same as BCS) Branch if (C) = 1 - - - - - - REL 25 rr 3

BLS ref Branch if Lower or Same Branch if (C) I (Z) = 1 — — — — — — REL 23 rr 3

BHS ref Branch if Higher or Same
(Same as BCC) Branch if (C) = 0 - - - - - - REL 24 rr 3

BHI ref Branch if Higher Branch if (C) 1(Z) = 0 - - - - - - REL 22 rr 3

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 163

Central Processor Unit (CPU)

6.5.5.1 Unconditional Jump and Branch

Jump (JMP), branch always (BRA), and branch never (BRN) are
unconditional and do not depend on the state of any CCR bits. Jump may
be used to go to any memory location in the 64-Kbyte address space
while branch instructions are limited to destinations within —128 to +127
locations from the address immediately after the branch offset byte.

The following example illustrates the use of a JMP instruction to extend
the range of a conditional branch. For every conditional branch
instruction there is another branch that uses the opposite condition. For
example the opposite of a branch if equal (BEQ) instruction is the branch
if not equal (BNE) instruction. Suppose you wrote the instruction:

beg farAway ;more than 128 locs away

and the assembler flagged an error because farAway was more than
128 locations away. You can replace the BEQ with a BNE that branches
around a jump instruction like this:

aroundJ:

bne aroundJ ;skip if NOT equal

jmp farAway ;jump if equal

;here if not equal

6.5.5.2 Simple Branches

The simple branches only depend on the state of a single condition (a
CCR bit or the IRQ pin state).

Table 6-8. Simple Branch Summary

Branch
Condition

Branch
if True

Branch
if False

Z BEQ BNE

C BCS BCC

N BMI BPL

IRO pin BIH BIL

I BMS BMC

H BHCS BHCC

Reference Manual — Volume I HCS08 — Revision 1

164 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

6.5.5.3 Signed Branches

Branch if less than (BLT), branch if less than or equal (BLE), branch if
greater than or equal (BGE), and branch if greater than (BGT) are used
after operations involving signed numbers. The simple branches, branch
if equal (BEQ), and branch if not equal (BNE) can also be used after
operations involving signed numbers.

The M68HC05 Family did not implement the V bit in the CCR, so it could
not do signed branches. The difference between signed and unsigned
branches is that the signed branches use the exclusive-OR of N and V
in place of the C bit which is used in the Boolean equations that control
the unsigned branches. The exclusive-OR of N and V provides an
indication of overflow above +127 (+32,767) or borrow below —128
(-32,768). The C bit indicates overflow beyond +255 (+65,535).

6.5.5.4 Unsigned Branches

Branch if lower (BLO), branch if lower or same (BLS), branch if higher or
same (BHS), and branch if higher (BHI) are used after operations
involving unsigned numbers. The simple branches, branch if equal
(BEQ) and branch if not equal (BNE), can also be used after operations
involving unsigned numbers.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 165

Central Processor Unit (CPU)

Table 6-9. Bit Branches and Loop Control

Source
Form Operation Description

Effect
on CCR

A
d
d
re

ss

M
o

d
e

O
p
co

d
e

O
pe

ra
nd

C
yc

le
s

VH I NZC

DIR (b0) 01 dd rr 5
DIR(bl) 03 dd rr 5
DIR (b2) 05 dd rr 5

BRCLR n,opr8a,rel Branch if Bit n in Memory
Clear

Branch if (Mn) = 0 _ _ _ _ _ - DIR (b3)
DIR (b4)

07
09

dd rr
dd rr

5
5

DIR (b5) OB dd rr 5
DIR (b6) OD dd rr 5
DIR (b7) OF dd rr 5
DIR (b0) 00 dd rr 5
DIR (b1) 02 dd rr 5
DIR (b2) 04 dd rr 5

BRSET n,opr8a,rel Branch if Bit n in Memory
Set

Branch if (Mn) = 1 _ _ _ _ _ - DIR (b3)
DIR (b4)

06
08

dd rr
dd rr

5
5

DIR (b5) OA dd rr 5
DIR (b6) OC dd rr 5
DIR (b7) OE dd rr 5

CBEQ opr8a,rel Branch if (A) = (M) DIR 31 dd rr 5
CBEQA #opr8i,rel Branch if (A) = (M) IMM 41 ii rr 4
CBEQX #opr8i,rel Compare and Branch if Branch if (X) = (M) IMM 51 ii rr 4
CBEQ oprx8,X+,rel Equal Branch if (A) = (M) IX1+ 61 ff rr 5
CBEQ ,X+,rel Branch if (A) = (M) IX+ 71 rr 5
CBEQ oprx8,SP,rel Branch if (A) = (M) SP1 9E61 if rr 6

DBNZ opr8a,rel DIR 3B dd rr 7
DBNZA ref INH 4B rr 4
DBNZX ref Decrement and Branch if Decrement A, X, or M INH 5B rr 4
DBNZ oprxB,X,rel Not Zero Branch if (result) m 0 — — — — — — IX1 6B if rr 7
DBNZ ,X,rel DBNZX Affects X Not H IX 76 rr 6

DBNZ oprx8,SP,rel SP1 9E6B if rr 8

6.5.5.5 Bit Condition Branches

These branch instructions test a single bit in a memory operand in direct
addressing space ($0000—$OOFF) and BRSET branches if the tested bit
is set while BRCLR branches if the bit was clear. Although this seems
like a limited number of locations, it includes all of the I/O and control
register space and a significant portion of the RAM where program

variables may be located. By having separate opcodes for each bit
position, these instructions are particularly efficient, requiring only three
bytes of object code and five bus cycles.

waitRDRF: brclr RDRF,SCI1S1,waitRDRF ;loop till RDRF set

brclr OneSecond, flags, skipUpdate
updateTime: bclr OneSecond,flags ;acknowledge one sec flag

skipUpdate:

Reference Manual — Volume I HCS08 — Revision 1

166 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

6.5.5.6 Loop Control

The CBEQ instructions compare the contents of the accumulator to a
memory location and branch if they are equal to each other. CBEQA and
CBEQX allow A or X to be compared against an immediate operand. The
H:X-relative indexed versions of CBEQ automatically increment H:X after
comparing A to the indexed memory location. These variations can be
used to check through a list of values in memory looking for a particular
value such as a null at the end of a string, a carriage return, or an
end-of-file mark. The other variations of CBEQ allow a memory location
to be used as a loop counter. (The incrementing or decrementing of this
loop count would be performed by other instructions in the loop.)

lda #$OD ;ASCII <cr>

cbeq oprA,gotCR ;skip if oprA=$OD

here if oprA is anything but <cr>

gotCR: ;here if oprA was <cr>

similar but IMM addr mode instead of DIR

lda SCIIDRL

cbeqa #$OD,gotCR ;branch if it was <cr>

;read SCI character

Other examples showing the CBEQ instruction can be found in
6.3.6.2 Indexed, No Offset with Post Increment (IX+) and
6.3.6.5 Indexed, 16-Bit Offset (IX2).

The DBNZ instructions decrement A, X, or a memory location and then
branch if the decremented value is still not zero. This provides an
efficient way to implement a loop counter.

lda #4 ;loop count

sta directByte ;save in RAM

loopTop: flop ;start of program loop

dbnz directByte,loopTop ;loop directByte times

use local on stack for loop count

lda #4 ;loop count

psha ;put loop count on stack

loopTopl: flop ;start of program loop

dbnz 1,sp,loopTopl ;loop directByte times

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 167

Central Processor Unit (CPU)

6.5.6 Stack-Related Instructions

Table 6-10. Stack-Related Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss

M
od

e

O
p
co

d
e

O
pe

ra
nd

C
yc

le
s

V H I NZC

RSP Reset Stack Pointer SP F $FF
(High Byte Not Affected)

_ _ _ _ _ _ INH 9C 1

TXS Transfer Index Reg. to SP SP <- (H:X) -$0001 - - - - - - INH 94 2

TSX Transfer SP to Index Reg. H:X f- (SP) + $0001 - - - - - - INH 95 2

JSR opr8a DIR BD dd 5
JSR oprl6a PC 4- (PC) + n (n = 1, 2, or 3) EXT CD hh II 6
JSR oprxl6,X Jump to Subroutine Push (PCL); SP - (SP) — $0001 1X2 DD ee ft 6
JSR oprxB,X Push (PCH); SP E- (SP) -$0001 IX1 ED ff 5
JSR ,X PC Unconditional Address IX FD 5

PC (PC) + $0002
BSR rel Branch to Subroutine push (PCL); SP - (SP) — $0001

push (PCH); SP — (SP) —$0001 REL AD rr 5
PC — (PC) + ref

RTS Return from Subroutine SP 4- SP + $0001; Pull (PCH)
SP SP + $0001; Pull (PCL)

_ - _ - INH 81 6

PC <— (PC) + $0001
Push (PCL); SP (SP) —$0001
Push (PCH); SP - (SP) —$0001

Push (X); SP F (SP) -$0001
SWI Software Interrupt Push (A); SP - (SP) -$0001 - - 1 - - - INH 83 11

Push (CCR); SP F- (SP) —$0001
14-i;

PCH e Interrupt Vector High Byte
PCL 4- Interrupt Vector Low Byte

SP - (SP) + $0001; Pull (CCR)
SP F- (SP) + $0001; Pull (A)

RTI Return from Interrupt SP F (SP) + $0001; Pull (X) 2 2 2 T T I INH 80 9
SP *- (SP) + $0001; Pull (PCH)
SP E- (SP) + $0001; Pull (PCL)

PSHA Push Accumulator onto
Stack Push (A); SP F- (SP) -$0001 - - - - - - INH 87 2

PSHH Push H (Index Register
High) onto Stack Push (H); SP e- (SP) -$0001 - - - - - - INH 8B 2

PSHX Push X (Index Register
Low)onto Stack Push (X); SP F (SP) -$0001 - - - - - - INH 89 2

PULA Pull Accumulator from
Stack SP - (SP + $0001); Pull (A) - - - - - - INH 86 3

PULH Pull H (Index Register
High) from Stack SP - (SP + $0001); Pull (H) - - - - - - INH 8A 3

PULX Pull X (Index Register
Low) from Stack SP F (SP + $0001); Pull (X) - - - - - - INH 88 3

AIS #opr8i Add Immediate Value
(Signed) to Stack Pointer

SP - (SP) + (M)
M is sign extended to a 16-bit value

_ _ _ _ _ _ IMM A7 ii 2

Reference Manual — Volume I HCS08 — Revision 1

168 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

The reset stack pointer (RSP) instruction was included for compatibility
with the earlier M6805. This instruction loads the low-order half of SP
with $FF and does not affect the high-order half of SP. In the older
architectures, the high half of SP was hard-wired to $00 so RSP would
force SP to its reset state ($OOFF). In HCS08 systems, $DOFF would
rarely be used as the starting point of the stack. Also, you cannot be sure
the upper half would remain $00, so RSP is not usually useful in new
HCS08 programs.

Transfer H:X to SP (TXS) is most commonly used to set up the initial SP
value during reset initialization. Since SP points one location below
where the last actual value is located on the stack, the value in H:X is
decremented by one during the TXS transfer from H:X to SP. The
following two instructions may be used to set SP to point to the last
location in RAM which is the normal location for the stack in HCS08
systems.

ldhx #RamLast+1 ;point one past RAM

txs ;SP<-(H:X-1)

Transfer SP to H:X (TSX) is typically used to copy the SP value into H:X
so subsequent instructions can access variables on the stack with
H:X-relative indexed addressing instructions which are slightly more
efficient than SP-relative indexed instructions. Because SP points at the
next available location on the stack, the value is automatically
incremented by one during the transfer so H:X points at the most
recently stacked byte of information on the stack after the TSX transfer.

Jump-to-subroutine (JSR) and branch-to-subroutine (BSR) instructions
are used to go to a sequence of instructions (a subroutine) somewhere
else in a program. Normally, at the end of the subroutine, a
return-from-subroutine (RTS) instruction causes the CPU to return to the
next instruction after the JSR or BSR that called the subroutine.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 169

Central Processor Unit (CPU)

The software interrupt (SWI) instruction is similar to a JSR except that
the X, A, and CCR registers are saved on the stack in addition to the
return PC address, and, rather than specifying a subroutine address as
part of the instruction, the interrupt service routine address is fetched
from an interrupt vector near the end of memory. In the case of SWI, the
vector is located at $FFFC and $FFFD.

The more detailed sequence of events for the SWI is:

1. PC is advanced to the next location after the SWI opcode (this is
the return address.)

2. Push PCL — Store PC (low byte) at location pointed to by SP and
then decrement SP.

3. Push PCH.

4. Push X, A, and CCR in that order — At the end of this sequence
the SP points at the next address below where the CCR was
pushed.

5. Set I bit in CCR so interrupts are disabled while executing the
interrupt service routine.

6. Load PCH from $FFFC — Fetch high byte of the address for the
interrupt service routine.

7. Load PCL from $FFFD.

8. Go to the address that was fetched from $FFFC:FFFD.

For compatibility with the earlier M68HC05, the H register is not
automatically stacked. It is good practice to manually push H at the
beginning of the interrupt service routine and to pull H just before
returning from the interrupt service routine.

Other hardware interrupts cause the cu to execute the same
sequence of micro-instructions as the SWI except that each hardware
interrupt source has a different interrupt vector which holds the address
of the interrupt service routine.

Reference Manual — Volume I HCS08 — Revision 1

170 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

Normally, the last instruction in an interrupt service routine is a return
from interrupt (RTI). RTI restores the CCR, A, X, PCH, and PCL in the
opposite order that they were saved on the stack. As each byte is pulled
from the stack, SP is incremented by one to point at the data to be pulled
and the appropriate register is loaded from the address pointed to by SP.
After executing RTI, the program resumes at the return address that was
just pulled off the stack during the RTI.

The interrupt mask (I bit in the CCR) is set during entry to the interrupt
just after the CCR is stacked. During the RTI, the pre-interrupt value of
the CCR is restored which typically restores the I bit to 0 to allow new
interrupts.

Push A (PSHA), push X (PSHX), and push H (PSHH) allow individual
CPU registers to be saved on the stack. The push operation stores the
selected register in memory where SP is pointing and then decrements
SP so it points at the next available location on the stack. Pull A, X, and
H (PULA, PULX, and PULH) allow A, X, or H to be loaded with data from
the stack. The pull operation first increments SP and then loads the
selected register with the contents of the memory location pointed to
by SP.

The following example shows one use of pushes and pulls. Some C
compilers use X:A to pass a 16-bit parameter to a function. This code
segment shows how this integer value is saved on the stack (lines 604
and 605) and then later gets loaded into H:X (line 620) where it can be
used as an index pointer. Notice that you can push one register
(line 605) and then pull that value into a different register. (Nothing about
the value on the stack associates it with a particular CPU register.)

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 171

Central Processor Unit (CPU)

579

580

581 *********************

582 9 stack bytes used for this routine including return addr

583 ; a pointer is passed in X:A, 3 bytes are used for stack locals,

584 ; and two bytes are used for temporary storage on stack

585 pntr points at list of 4 constant multipliers k(0) - k(3)

586 ; VarY is a 16-bit integer, VarN is an 8-bit loop count

587 VarY = sum(k(0)*oprA + k(1)*oprB + k(2)*oprC + k(3)*oprD)

588 ; return result (VarY) in X:A

589 C1F2 87 multAcc: psha ;save pntr LS byte

590 C1F3 89 pshx ;save pntr MS byte

591 C1F4 A7 FD ais #-3 ;allocate for 3 local bytes

5,92 at this point VarN @ l,sp; VarY(hi) @ 2,sp; VarY(lo) @ 3,sp;

593 pntr(hi) @ 4,sp; pntr(lo) @ 5,sp

594 C1F6 9E6F 02 clr 2,sp ;VarY MS byte on stack

595 C1F9 9E6F 03 clr 3,sp ;VarY LS byte on stack

596 C1FC A6 04 lda #4 ;loop count

597 C1FE 9EE7 Ol sta l,sp ;VarN = 4

598 C201 45 OOAO ldhx #oprA ;operands oprA-oprD

599 C204 F6 iteration: lda ,x ;get operand(n)

600 C205 AF O1 aix #1 ;point to next operand

601 C207 89 pshx ;MS byte of oprX pointer

602 C208 85 pshh ;LS byte of oprX pointer

603 at this point VarN @ 3,sp; VarY(hi) @ 4,sp; VarY(lo) @ 5,sp;

604 pntr(hi) @ 6,sp; pntr(lo) @ 7,sp

605 C209 9EFE 06 ldhx 6,sp ;load pntr from stack (6,sp)

606 C20C 9E6C 07 inc 7,sp ;pntr(lo)=pntr(lo)+l

607 C20F 26 03 bne skip ;skip if no carry

608 C211 9E6C 06 inc 6,sp ;add carry into pntr(hi)

609 C214 FE skip: ldx ,x ;load k(n)

610 C215 42 mul ;A*X -> X:A

611 C216 9EEB 05 add 5,sp ;add to VarY(lo)

612 C219 9EE7 05 sta 5,sp ;update VarY(lo)

613 C21C 9F txa ;MS byte to A

614 C2lD 8A pulh ;restore oprX pointer (hi)

615 C21E 88 pulx ;restore oprX pointer (lo)

616 at this point VarN @ l,sp; VarY(hi) @ 2,sp; VarY(lo) @ 3,sp;

617 pntr(hi) @ 4,sp; pntr(lo) @ 5,sp

618 C21F 9EE9 02 adc 2,sp ;add with carry to VarY(hi)

619 C222 9EE7 02 ste 2,sp ;update VarY(hi)

620 C225 9E6B O1 DE dbnz l,sp,iteration ;dec VarN and loop if not 0

621 C229 9EEE 02 ldx 2,sp ;VarY(hi)

622 C22C 9EE6 03 lda 3,sp ;VarY(lo)

623 C22F A7 05 sic #5 ;deallocate all locals

624 C231 81 its ;return VarY in X:A

625 *********************

* multAcc - 4 iteration mutiply-accumulate example

Reference Manual — Volume I HCS08 — Revision 1

172 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

The add immediate to stack pointer (AIS) instruction allows an 8-bit
signed immediate value to be added to SP. This is most commonly used
to allocate and deallocate space on the stack for local variables. Adding
a negative number to SP allocates space on the stack and adding a
positive number to SP deallocates space.

ais #-5 ;allocate 5 bytes for locals
ais #5 ;deallocate local space

6.5.7 Miscellaneous Instructions

Table 6-11. Miscellaneous Instructions

Source
Form Operation Description

Effect
on CCR

A
dd

re
ss

M

od
e

O
pc

od
e

O
pe

ra
nd

m

o VH I NZC

NOP No Operation Uses 1 Bus Cycle - - - - - - INH 9D 1

SEC Set Carry Bit C f- 1 - - - - - 1 INH 99 1

CLC Clear Carry Bit C +- 0 - - - - - 0 INH 98 1
SEI Set Interrupt Mask Bit I F 1 - - 1 - - - INH 9B 1
CLI Clear Interrupt Mask Bit I F 0 - - 0 — — — INH 9A 1

BGND Enter Active Background
if ENBDM = 1

Waits For and Processes BDM
C ds Until GO, TRACEI, or Commands

TAGGO
— — — — — — INH 82 5+

WAIT Enable Interrupts; Wait
for Interrupt I bit F 0; Halt CPU - - 0 - - - INH 8F 2+

STOP
Enable Interrupts:
Stop Processing
Refer to MCU
Documentation

I bit F 0; Stop Processing - - 0 - - - INH 8E 2+

The no-operation (NOP) instruction is typica ly used in software
generated delay programs. It consumes execution time but does not
cause any changes to condition code bits or other CPU registers. This
example uses a software loop including a NOP to generate a 1 ms delay.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 173

Central Processor Unit (CPU)

627

628

629

630 ; 1 bus cycle = 50 nanoseconds so 20,000 cycles = lms

631 JSR (EXT) takes [5 or 6] cycles. Total overhead is 24-25 cycles

632 total delay 20000 = 8n+24; so n = 19976/8 = 2497

633 C232 SB dlylms: pshh ;[2] save H

634 C233 89 pshx [2] save X

635 C234 9D nop [1] makes n even

636 C235 45 09C0 ldhx #2496 [3] loop count

637 C238 AF FF looplms: aix #-1 [2] H:X = H:X - 1

638 C23A 65 0000 cphx #$0000 [3] check for zero

639 C23D 26 F9 bne looplms [3] loop till H:X = $0000

640 C23F 88 pulx [3] restore X

641 C240 8A pulh [3] restore H

642 C241 81 its [6] return

643 *********************

* dlylms - delay lms at bus frequency = 20MHz

One way the set and clear carry (SEC and CLC) instructions can be used

is to force the value of the carry bit before doing a shift or rotate

instruction. See Figure 6-5 for more information.

Set interrupt mask (SEI) and clear interrupt mask (CLI) instructions are
used to disable or enable interrupts, respectively. After reset, the I bit is
set to prevent interrupts before the stack pointer and other system

conditions have been initialized. After enough system initialization has

been completed, use a CLI instruction to enable interrupts. In some

programs, it is necessary to prevent interrupts during some sensitive

code sequence. SEI is used before the sequence and CLI is used after

the sequence to prevent interrupts during the sensitive code sequence.

The background (BGND), WAIT, and STOP instructions are unusual in
that they cause the CPU to stop executing new instructions for an

indefinite period of time. A hardware event, such as an interrupt or a
serial background debug command, is needed to tell the CPU when it is

time to resume processing normal instructions. In the instruction detail

tables, these instructions are listed with a minimum number of bus
cycles, followed by a + (plus) to indicate that this is the minimum number

of cycles needed to complete these instructions.

Reference Manual — Volume I HCS08 — Revision 1

174 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

BGND instructions can be used by a development system to set
software breakpoints in a user program that is being debugged. Normal
user programs never use the BGND instruction. When the CPU
encounters a BOND instruction, it checks the ENBDM control bit in the
background debug controller module. This control bit is not accessible to
a user program; it can be changed only by reset or a serial background
command. If ENBDM = 0 (its default state), BGND opcodes are treated
as illegal instructions which cause an MCU reset. For more information
about background debug mode, see 7.3 Background Debug
Controller (BDC).

WAIT causes the CPU to shut down its clocks to save power. Other
peripheral systems continue to run normally. An interrupt or reset event
is needed to wake up the CPU from wait mode. The interrupt can come
from the external IRO pin or from an internal peripheral system. See
3.5 Wait Mode for a detailed discussion of the wait mode.

STOP forces the MCU to turn off all system clocks to reduce system
power to an absolute minimum. In previous M68HC05 and M68HC08
systems, all clocks including the oscillator were disabled in stop mode.
Depending on the version of the clock generation circuitry in an HCS08
system, you can set control bits so the oscillator and the timebase
module continue to operate in stop mode. This provides a means of
waking the MCU from stop mode periodically without any external
components. All clocks other than the oscillator and a small number of
flip-flops in the timebase module are stopped in this mode, so system
power is reduced to a bare minimum.

The HCS08 always starts out using a self-clocked clock source after
reset or stop to avoid delays associated with crystal startup. After stop,
the CPU starts execution by responding to the interrupt or reset event
that woke it up. For more detailed information, refer to 3.6 Stop Modes.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 175

Central Processor Unit (CPU)

6.6 Summary Instruction Table

Instruction Set Summary Nomenclature

The nomenclature listed here is used in the instruction descriptions in

Table 6-1 through Table 6-12.

Operators

() = Contents of register or memory location shown inside
parentheses

= Is loaded with (read: "gets")
& = Boolean AND
I = Boolean OR

O+ = Boolean exclusive-OR
x = Multiply

= Divide
= Concatenate

+ = Add
— = Negate (two's complement)

CPU registers

A = Accumulator
CCR = Condition code register

H = Index register, higher order (most significant) 8 bits
X = Index register, lower order (least significant) 8 bits

Program counter
Program counter, higher order (most significant) 8 bits
Program counter, lower order (least significant) 8 bits
Stack pointer

PC =
PCH =
PCL =

SP =

Memory and addressing

M = A memory location or absolute data, depending on
addressing mode

M:M + $0001= A 16-bit value in two consecutive memory locations.
The higher-order (most significant) 8 bits are located
at the address of M, and the lower-order (least
significant) 8 bits are located at the next higher
sequential address.

Reference Manual — Volume I HCS08 — Revision 1

176 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Summary Instruction Table

Condition code register (CCR) bits

V = Two's complement overflow indicator, bit 7
H = Half carry, bit 4
I = Interrupt mask, bit 3

N = Negative indicator, bit 2
Z = Zero indicator, bit 1
C = Carry/borrow, bit 0 (carry out of bit 7)

CCR activity notation

- = Bit not affected
0 = Bit forced to 0
1 = Bit forced to 1

= Bit set or cleared according to results of operation
U = Undefined after the operation

Machine coding notation

dd = Low-order 8 bits of a direct address $0000-$00FF
(high byte assumed to be $00)

ee = Upper 8 bits of 16-bit offset
ff = Lower 8 bits of 16-bit offset or 8-bit offset
ii = One byte of immediate data
jj = High-order byte of a 16-bit immediate data value

kk = Low-order byte of a 16-bit immediate data value
hh = High-order byte of 16-bit extended address

II = Low-order byte of 16-bit extended address
rr = Relative offset

Source form

Everything in the source forms columns, except expressions in italic
characters, is literal information which must appear in the assembly
source file exactly as shown. The initial 3- to 5-letter mnemonic is always
a literal expression. All commas, pound signs (#), parentheses, and plus
signs (+) are literal characters.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 177

Central Processor Unit (CPU)

n — Any label or expression that evaluates to a single
integer in the range 0-7

opr8i Any label or expression that evaluates to an 8-bit
immediate value

oprl6i — Any label or expression that evaluates to a 16-bit
immediate value

opr8a — Any label or expression that evaluates to an 8-bit
value. The instruction treats this 8-bit value as the low
order 8 bits of an address in the direct page of the
64-Kbyte address space ($00xx).

oprl6a — Any label or expression that evaluates to a 16-bit
value. The instruction treats this value as an address
in the 64-Kbyte address space.

oprx8 — Any label or expression that evaluates to an unsigned
8-bit value, used for indexed addressing

oprxl6 — Any label or expression that evaluates to a 16-bit
value. Since the HCS08 has a 16-bit address bus, this
can be either a signed or an unsigned value.

rel — Any label or expression that refers to an address that
is within —128 to +127 locations from the next address
after the last byte of object code for the current
instruction. The assembler will calculate the 8-bit
signed offset and include it in the object code for this
instruction.

Address modes

INH = Inherent (no operands)
IMM = 8-bit or 16-bit immediate
DIR = 8-bit direct
EXT = 16-bit extended

IX = 16-bit indexed no offset
IX+ = 16-bit indexed no offset, post increment (CBEQ and

MOV only)
IX1 = 16-bit indexed with 8-bit offset from H:X

IX1+ = 16-bit indexed with 8-bit offset, post increment
(CBEQ only)

IX2 = 16-bit indexed with 16-bit offset from H:X
REL = 8-bit relative offset
SP1 = Stack pointer with 8-bit offset
SP2 = Stack pointer with 16-bit offset

Reference Manual — Volume I HCSO8 — Revision 1

178 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Summary Instruction Table

Table 6-12. Instruction Set Summary (Sheet 1 of 6)

Source
Form Operation Description

Effect
on CCR

A
d
d
re

ss

M
od

e

O
pc

od
e

O
pe

ra
nd

C
yc

le
s

V H I NZC

ADC #opr8i IMM A9 ii 2
ADC opr8a DIR B9 dd 3
ADC oprl6a EXT C9 hh II 4
ADC oprxl6,X Add Carry IX2 D9 ee ff 4
ADC oprx8,X with A (A) + (M) + (C) - - - IX1 E9 if 3
ADC ,X IX F9 3
ADC oprxl6,SP SP2 9ED9 ee if 5
ADC oprx8,SP SP1 9EE9 If 4
ADD #opr8i IMM AB ii 2
ADD opr8a DIR BB dd 3
ADD oprl6a EXT CB hh II 4
ADD oprxl6,X IX2 DB ee ff 4
ADD oprx8,X Add without Carry A F (A) + (M) I I — i - IX1 EB If 3
ADD ,X IX FB 3
ADD oprxl6,SP SP2 9EDB ee if 5
ADD oprx8,SP SP1 9EEB If 4

AIS #opr8i Add Immediate Value
(Signed) to Stack Pointer

SP - (SP) + (M)
M is sign extended to a 16-bit value

_ _ _ _ _ - IMM A7 ii 2

AIX #opr8i
Add Immediate Value
(Signed) to Index H:X F (H:X) + (M)

M) — — — — — — IMM AF ii 2
Register (H:X) M is sign extended to a bit value

AND #opr8i IMM A4 ii 2
AND opr8a DIR B4 dd 3
AND oprl6a EXT C4 hh II 4
AND oprxl6,X Logical AND IX2 D4 ee if 4
AND oprx8,X A — (A) & (M) 0 - - - IX1 E4 If 3
AND ,X IX F4 3
AND oprxl6,SP SP2 9ED4 ee if 5
AND oprx8,SP SP1 9EE4 If 4
ASL opr8a DIR 38 dd 5
ASLA INH 48 1
ASLX Arithmetic Shift Left INH 58 1
ASL oprx8,X (Same as LSL) - - IX1 68 If 5

b7 bo ASL ,X IX 78 4
ASL oprx8,SP SP1 9E68 If 6
ASR opr8a

►
DIR 37 dd 5

ASRA INH 47 1
ASRX Arithmetic Shift Right ■■U•••■■ C i i - INH 57 1
ASR oprx8,X
ASR ,X b7 bo

- -
IX1
IX

67
77

ff 5
4

ASR opo8,SP SP1 9E67 If 6
BCC ref Branch if Carry Bit Clear Branch if (C) = 0 — — — — — — REL 24 rr 3

DIR (b0) 11 dd 5
DIR (b1) 13 dd 5
DIR (b2) 15 dd 5

BCLR n,opr8a Clear Bit n in Memory Mn 4- 0 _ _ _ _ _ _ DIR (b3)
DIR (b4)

17
19

dd
dd

5
5

DIR (b5) 1B dd 5
DIR (b6) 1D dd 5
DIR (b7) 1 F dd 5

BCS ref Branch if Carry Bit Set
(Same as BLO) Branch if (C) = 1 — — — — — — REL 25 rr 3

BEQ ref Branch if Equal Branch if (Z) = 1 — — — — — — REL 27 rr 3
Branch if Greater Than or

BGE ref Equal To Branch if (N O V) = 0 - - - - - - REL 90 rr 3
(Signed Operands)

BGND Enter Active Background
if

Waits For and Processes BDM
Commands Until GO, TRACEI, or — — — — — — INH 82 5+ ENBDM = 1 TAGGO

BGT ref Branch if Greater Than
(Signed Operands) Branch if (Z) I (N O V) = 0 - - - - - - REL 92 rr 3

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 179

Central Processor Unit (CPU)

Table 6-12. Instruction Set Summary (Sheet 2 of 6)

Source
Form Operation Description

Effect
on CCR

A
d
d
re

ss

M
o
d
e

O
p
co

d
e

O
p

e
ra

n
d

C
yc

le
s

V H I NZC

BHCC rel Branch if Half Carry Bit
Clear Branch if (H) = 0 - - - - - - REL 28 rr 3

BHCS rel Se nch if Half Carry Bit Branch if (H) = 1 - - - - - - REL 29 rr 3

BHI rel Branch if Higher Branch if (C) 1 (Z) = 0 - - - - - - REL 22 rr 3

BHS rel Branch if Higher or Same
(Same as BCC) Branch if (C) = 0 — — — — — — REL 24 rr 3

BIH rel Branch if IRQ Pin High Branch if IRO pin = 1 — — — — — — REL 2F rr 3

BIL rel Branch if IRO Pin Low Branch if IRO pin = 0 - - - - - - REL 2E rr 3

BIT #opr8i
BIT opr8a
BIT oprf6a
BIT oprxl6,X
BIT oprx8,X
BIT ,X
BIT oprxl6,SP
BIT oprx8,SP

Bit Test
(A) & (M)

(CCR Updated but Operands

Not Changed)

0 — ' _

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A5
B5
C5
D5
ES
F5

9ED5
9EE5

ii
dd
hh II
ee if
ff

ee if
if

2
3
4
4
3
3
5
4

BLE rel
Branch if Less Than
or Equal To
(Signed Operands)

Branch if (Z) I (N O V) = 1 — — — — — — REL 93 rr 3

BLO rel Branch if Lower
(Same as BCS) Branch if (C) = 1 — — — — — — REL 25 rr 3

BLS rel Branch if Lower or Same Branch if (C) I (Z) = 1 — — — — — — REL 23 rr 3

BLT rel Branch if Less Than
(Signed Operands)

Branch if (N O V) = 1 — — — — — — REL 91 rr 3

BMC rel Branch if Interrupt Mask
Clear Branch if (I) = 0 — — — — — — REL 2C rr 3

BMI rel Branch if Minus Branch if (N) = 1 — — — — — — REL 2B rr 3

BMS rel Bra if Interrupt Mask
Set Branch if (I) = 1 — — — — — — REL 2D rr 3

BNE rel Branch if Not Equal Branch if (Z) = 0 — — — — — — REL 26 rr 3

BPL rel Branch if Plus Branch if (N) = 0 — — — — — — REL 2A rr 3

BRA rel Branch Always No Test — — — — — — REL 20 rr 3

BRCLR n,opr8a,re1 Branch if Bit n in Memory
Clear

Branch if (Mn) = 0 _ _ _ _ _ I

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
OD
OF

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BRN rel Branch Never Uses 3 Bus Cycles — — — — — — REL 21 rr 3

BRSET n,opr8a,rel Branch if Bit n in Memory Set Branch if (Mn) = 1 — — — — — I

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
OA
0C
OE

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BSET n,opr8a Set Bit n in Memory Mn — 1 _ _ _ _ _ _

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

Reference Manual — Volume I HCS08 — Revision 1

180 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Summary Instruction Table

Table 6-12. Instruction Set Summary (Sheet 3 of 6)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss

M
od

e

O
pc

od
e

O
pe

ra
nd

C
yc

le
s

V H I NZC

PC F- (PC) + $0002

BSR rel Branch to Subroutine push (PCL); SP F (SP) -$0001
push (PCH); SP F (SP) -$0001

_ REL AD rr 5

PC F (PC) + rel

CBEQ opr8a,rel Branch if (A) _ (M) DIR 31 dd rr 5
CBEQA #opr8i,rel Branch if (A) _ (M) IMM 41 ii rr 4
CBEQX #opr8i,rei Compare and Branch if Branch if (X) _ (M) IMM 51 ii rr 4
CBEQ oprx8,X+,rel Equal Branch if (A) _ (M) — — — — — — IX1+ 61 if rr 5
CBEQ ,X+,rei Branch if (A) _ (M) IX+ 71 rr 5
CBEQ oprx8,SP,rel Branch if (A) _ (M) SP1 9E61 if rr 6
CLC Clear Carry Bit C F 0 - - - - - 0 INH 98 1
CLI Clear Interrupt Mask Bit I F 0 - - 0 - - - INH 9A 1
CLR opr8a M4-$00 DIR 3F dd 5
CLRA A4—$00 INH 4F 1
CLRX X F $00 INH 5F 1
CLRH Clear H F- $00 0 - - 0 1 - INH 8C 1
CLR oprx8,X M F $00 IX1 6F if 5
CLR ,X M F- $00 IX 7F 4
CLR oprx8,SP M F $00 SP1 9E6F if 6
CMP #opr8i IMM Al ii 2
CMP opr8a DIR B1 dd 3
CMP oprl6a EXT Cl hh II 4
CMP oprxl6,X Compare Accumulator (A) — (M) IX2 D1 ee if 4
CMP oprx8,X with Memory (CCR Updated But Operands Not - - I I IXi E1 ft 3
CMP ,X Changed) IX F1 3
CMP oprxl6,SP SP2 9ED1 ee if 5
CMP oprx8,SP SP1 9EE1 if 4
COM opr8a M (— (,f)= $FF — (M) DIR 33 dd 5
COMA A E- (A) _ $FF — (A) INH 43 1
COMX Complement X — (X) _ $FF — (X) INH 53 1
COM oprx8,X (One's Complement) M — (M) _ $FF — (M)

0 - - l
IX1 63 if 5

COM ,X M F- (M) _ $FF - (M) IX 73 4
COM oprx8,SP M r- (M) _ $FF - (M) SP1 9E63 if 6

CPHX oprl6a EXT 3E hh II 6
CPHX #oprl6i Compare Index Register (H:X) — (M:M + $0001) IMM 65 jj kk 3
CPHX opr8a (H:X) with Memory (CCR Updated But Operands Not - - I I DIR 75 dd 5
CPHX oprx8,SP Changed) SP1 9EF3 if 6
CPX #opr8i
CPX opr8a
CPX oprl6a
CPX oprxl6,X Compare X (Index (X) — (M)

IMM
DIR
EXT
IX2

A3
B3
C3
D3

ii
dd
hh II
ee ft

N

C
o V

7

C
O

 C
o

CPX oprx8,X Register Low) with (CCR Updated But Operands Not — — I 1 if
CPX ,X
CPX oprxl6,SP
CPX oprx8,SP

Memory Changed) X
SP2
SP1

F3
9ED3
9EE3

ee ft
if

Decimal Adjust
DAA AccumulatorAfterADDor (A)10 U — — INH 72 1

ADC of BCD Values

DBNZ oprsa,rel DIR 36 dd rr 7
DBNZA rel INH 4B rr 4
DBNZX rel Decrement and Branch if Decrement A, or M INH 5B rr 4
DBNZ oprx8,X,rel Not Zero Branch if (result) m — — — — — IX1 6B if rr 7
DBNZ ,X,rel DBNZX Affects X Not H IX 7B rr 6
DBNZ oprx8,SP,rel SP1 9E6B ft rr 8

DEC opr8a M4—(M)—$01 DIR 3A dd 5
DECA A 6- (A) —$01 INH 4A 1
DECX X F (X) -$01 INH 5A 1
DEC oprx8,X Decrement M F- (M) —$01

_ _ _
IX1 6A if 5

DEC ,X M <- (M) -$01 IX 7A 4
DEC oprx8,SP M F (M) -$01 SP1 9E6A if 6

DIV Divide A f- (H:A)+(X)
H l-- Remainder

- _ _ _ I I INH 52 6

HCSO8 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 181

Central Processor Unit (CPU)

Table 6-12. Instruction Set Summary (Sheet 4 of 6)

Source
Form

Operation Description

Effect
on CCR

A
d
d
re

ss

M
o
d
e

O
p

co
d

e

O
p
e
ra

n
d

C
yc

le
s

V H I NZC

FOR #opr8i IMM A8 ii 2
FOR opr8a DIR B8 dd 3
FOR oprl6a EXT C8 hh II 4
FOR oprxl6,X Exclusive OR IX2 D8 ee ff 4
FOR oprx8,X Memory with A <— (A © M) 0 — — - — IX1 E8 if 3
FOR ,X Accumulator IX F8 3
FOR oprxl6,SP SP2 9ED8 ee if 5
FOR oprx8,SP SP1 9EE8 ff 4

NC opr8a M — (M) + $01 DIR 3C dd 5
NCA A — (A) + $01 INH 4C 1
NCX
NC oprx8,X Increment X (X) + $01

M f— (M) + $01 - - 2 2 -
INH
IX1

5C
6C if

1
5

NC ,X M F (M) + $01 IX 7C 4
NC oprx8,SP M - (M) + $01 SP1 9E6C ft 6

JMP opr8a DIR BC dd 3
JMP oprl6a EXT CC hh II 4
JMP oprxl6,X Jump PC — Jump Address — — — — — — IX2 DC ee if 4
JMP oprx8,X IX1 EC if 3
JMP ,X IX FC 3

JSR opr8a DIR BD dd 5
JSR oprl6a PC (PC) + n (n= 1, 2, or 3) EXT CD hh II 6
JSR oprxl6,X Jump to Subroutine Push (PCL); SP - (SP) -$0001 — — — _ _ _ IX2 DD ee if 6
JSR oprx8,X

o

Push (PCH); SP e- (SP) -$0001 IX1 ED if 5
JSR PC F Unconditional Address IX FD 5

LDA #opr8i IMM A6 ii 2
LDA opr8a DIR B6 dd 3
LDA oprl6a EXT C6 hh II 4
LDA oprxl6,X Load Accumulator from IX2 D6 ee ff 4
LDA oprx8,X Memory

A — M () 0 — — 2 2 —
IX1 E6 ff 3

LDA ,X IX F6 3
LDA oprxl6,SP SP2 9EO6 ee if 5
LDA oprx8,SP SP1 9EE6 if 4

LDHX #oprl6i IMM 45 jj kk 3
LDHX opr8a DIR 55 dd 4
LDHX oprl6a EXT 32 hh II 5
LDHX ,X Load Index Register (H:X) H:X F (M:M + $0001) 0 - - 2 - IX 9EAE 5
LDHX oprxl6,X

from Memory
IX2 9EBE ee if 6

LDHX oprx8,X IX1 9ECE if 5
LDHX oprx8,SP SP1 9EFE if 5

LDX #opr8i IMM AE ii 2
LDX opr8a DIR BE dd 3
LDX oprl6a EXT CE hh II 4
LDX oprxl6,X Load X (Index Register IX2 DE ee If
LDX oprx8,X Low) from Memory X (M) 0 - - 2 IX1 EE if 3
LDX ,X IX FE 3
LDX oprxl6,SP SP2 9EDE ee if 5
LDX oprx8,SP SP1 9EEE if 4

LSL opr8a DIR 38 dd 5
LSLA INH 48 1
LSLX Logical Shift Left

— — 1
INH 58 1 C p

LSL oprx8,X
LSL

(Same as ASL) b7 bo Xi
IX

68
78

ff 5
4 ,X

LSL oprx6,SP SPi 9Ees if 6
LSR opr8a DIR 34 dd 5
LSRA ► INH 44 1
LSRX Logical Shift Right - - 0 2 2 INH 54 1 c = ►~
LSR oprx8,X IX1 64 if 5
LSR ,X b7 b0 IX 74 4
LSR oprx8,SP SP1 9E64 if 6
MOV opr8a,opr8a (M)destination (M)source DIR/DIR 4E dd dd 5
MOV opr8a,X+ DIR/IX+ 5E dd 5
MOV #opr8i,opr8a Move H:X — (H:X) + $0001 in 0 - — IMM/DIR 6E ii dd 4
MOV ,X+,opr8a IX+/DIR and DIR/IX+ Modes IX+/DIR 7E dd 5

Reference Manual — Volume I HCS08 — Revision 1

182 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Summary Instruction Table

Table 6-12. Instruction Set Summary (Sheet 5 of 6)

Source
Form Operation Description

Effect
on CCR

A
d
d
re

ss

M
o
d
e

O
p
co

d
e

O
p

e
ra

n
d

C
yc

le
s

VH I NZC

MUL Unsigned multiply X:A — (X) x (A) — 0 - - - 0 INH 42 5
NEG opr8a M--(M)=$00-(M) DIR 30 dd 5
NEGA A F — (A) = $00- (A) INH 40 1
NEGX Negate X F — (X) = $00- (X) INH 50 1
NEG oprx8,X (Two's Complement) M F — (M) = $00- (M) - IXi 60 if 5
NEG ,X M F - (M) = $00- (M) IX 70 4
NEG oprx8,SP M - - (M) = $00- (M) SP1 9E60 ff 6
NOP No Operation Uses 1 Bus Cycle - - - - - - INH 9D 1

NSA Nibble Swap
Accumulator

A *— (A[3:0]:A[7:4]) - - - - - - INH 62 1

ORA #opr8i IMM AA ii 2
ORA opr8a DIR BA dd 3
ORA oprl6a EXT CA hh II 4
ORA oprxl6,X InclusiveORAccumulator IX2 DA ee if 4
ORA oprx8,X and Memory A F (A) 1 (M) 0 - - j

- IX1 EA ff 3
ORA ,X IX FA 3
ORA oprxl6,SP SP2 9EDA ee ff 5
ORA oprx8,SP SP1 9EEA if 4

PSHA Push Accumulator onto
Stack Push (A); SP F (SP) -$0001 - - - - - - INH 87 2

PSHH Push H (Index Register
High) onto Stack Push (H); SP F- (SP) -$0001 - - - - - - INH 8B 2

PSHX Push X (Index Register
Low) onto Stack Push (X); SP F (SP) -$0001 - - - - - - INH 89 2

PULA Pull Accumulator from
Stack

 SP F (SP + $0001); Pull (A) - - - - - - INH 86 3

PULH Pull H (Index Register
High) from Stack SP F (SP + $0001); Pull (H) - - - - - - INH 8A 3

PULX Pull X (Index Register
Low) from Stack SP F (SP + $0001); Pull (X) - - - - - - INH 88 3

ROL opr8a DIR 39 dd 5
ROLA INH 49 1
ROLX INH 59 1 Lc~T!. ROL oprx8,X Rotate Left through Carry I _ _ I I

IXi 69 ff 5
ROL ,X b7 b0 IX 79 4
ROL oprx8,SP SP1 9E69 ff 6
ROR opr8a DIR 36 dd 5
RORA INH 46 1
RORX Rotate Right through INH 56 1
ROR oprx8,X Carry 2 — — I ` 1 IXi 66 ff 5
ROR ,X b7 b0 IX 76 4
ROR oprxs,SP SP1 9E66 ff 6

RSP Reset Stack Pointer SP e- $FF
(High Byte Not Affected)

_ _ _ _ _ _ INH 9C 1

SP E- (SP) + $0001; Pull (CCR)
SP - (SP) + $0001; Pull (A)

RTI Return from Interrupt SP F (SP) + $0001; Pull (X) 2 L I $ INH 80 9
SP F- (SP) + $0001; Pull (PCH)
SP €- (SP) + $0001; Pull (PCL)

RTS Return from Subroutine SP - SP + $0001; Pull (PCH)
SP E- SP + $0001; Pull (PCL)

_ _ _ _ INH 81 6

SBC #opr8i IMM A2 ii 2
SBC opr8a DIR B2 dd 3
SBC oprl6a EXT C2 hh II 4
SBC oprxl6,X 1X2 D2 ee ff 4
SBC oprx X Subtract with Carry A - (A) - (M) - (C) - IXi E2 ff 3
SBC ,X IX F2 3
SBC oprxl6,SP SP2 9ED2 ee if 5
SBC oprx8,SP SP1 9EE2 if 4

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 183

Central Processor Unit (CPU)

Table 6-12. Instruction Set Summary (Sheet 6 of 6)

Source
Form Operation Description

Effect
on CCR

A
d
d
re

ss

M
o
d
e

O
p

co
d

e

O
p

e
ra

n
d

C
yc

le
s

V H I NZC

SEC Set Carry Bit C F 1 - - - - - 1 INH 99 1

SEI Set Interrupt Mask Bit I - 1 - - 1 - - - INH 9B 1

STA opr8a
STA oprl6a
STA oprxl6,X
STA oprx8,X
STA ,X
STA oprxl6,SP
STA oprx8,SP

Store Accumulator in
Memory M F (A) 0 - - I I -

DIR
EXT
IX2
IX1
IX
SP2
SP1

B7
C7
D7
E7
F7

9ED7
9EE7

dd
hh II
ee ff
if

ee if
if

3
4
4
3
2
5
4

STHX opr8a
STHX oprl6a
STHX oprx8,SP

Store H:X (Index Reg.) (M:M+$0001) F (H:X) 0 - - i -
DIR
EXT
SP1

35
96

9EFF

dd
hh II
ft

4
5
5

STOP

Enable Interrupts:
Stop Processing
Refer to MCU
Documentation

I bit 4-0; Stop Processing - - 0 - - - INH 8E 2+

STX opr8a
SIX oprl6a
STX oprxl6,X
STX oprx8,X
SIX ,X
SIX oprxl6,SP
SIX oprx8,SP

Store X (Low 8 Bits of
Index Register)
in Memory

M f- (X) 0 - - I I -

DIR
EXT
IX2
IX1
IX
SP2
SP1

BE
CF
DF
EF
FF

9EDF
9EEF

dd
hh II
ee if
if

ee if
if

3
4
4
3
2
5
4

SUB #opr8i
SUB opr8a
SUB oprl6a
SUB oprxl6,X
SUB oprx X
SUB ,X
SUB oprxl6,SP
SUB oprx8,SP

Subtract A F (A) - (M) - - - I I I

IMM
DIR
EXT
1X2
IX1
IX
SP2
SP1

AO
BO
CO
DO
EO
FO

9EDO
9EEO

ii
dd
hh II
ee ff
if

ee if
if

2
3
4
4
3
3
5
4

SWI Software Interrupt

PC (— (PC) + $0001
Push (PCL); SP F (SP) —$0001
Push (PCH); SP - (SP) —$0001

Push (X); SP - (SP) -$0001
Push (A); SP e- (SP) -$0001

Push (CCR); SP - (SP) -$0001
IF1;

PCH F Interrupt Vector High Byte
PCL F Interrupt Vector Low Byte

- - 1 - - - INH 83 11

TAP Accumulator to
CCR CCR CCR e- (A) i i I I I INH 84 1

TAX Transfer Accumulator to
X (Index Register Low) X F (A) - - - - - - INH 97 1

TPA Transfer CCR to
Accumulator

 A F (CCR) - - - - - - INH 85 1

TST opr8a
TSTA
TSTX
1ST oprx8,X
TST ,X
1ST oprx8,SP

Test for Negative or Zero g

(M)—$00
(A)-$00
(X) —$00
(M) —$00
(M) -$00
(M)-$00

0 - - I I

DIR
INH
INH
IX1
IX
SP1

3D
48
5D
6D
7D

9E6D

dd

if

ft

4
1
1
4
3
5

TSX Transfer SP to Index Reg. H:X f- (SP) + $0001 - - - - - - INH 95 2

TXA Transfer X (Index Reg.
Low) to Accumulator A F (X) - - - - - - INH 9F 1

TXS Transfer Index Reg. to SP SP - (H:X) -$0001 - - - - - - INH 94 2

WAIT Enable Interrupts; Wait
for Interrupt I bit 4- 0; Halt CPU - - 0 - - - INH 8F 2+

Reference Manual — Volume I HCS08 — Revision 1

184 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Summary Instruction Table

Table 6-13. Opcode Map (Sheet 1 of 2)
Bit-Man pulation Branch Read-Modify-Write Control Register/Memory

00 5 10
BRSETO
3 DIR

520
BSETO

2 DIR

330
BRA

2 REL

5 40
NEG

2 DIR

1 50
NEGA

1 INN

1 60
NEGX

1 INI-I

5 70
NEG

2 IX1

480
NEG

1 IX

8 80
RTI

1 INN

3A0
BGE

2 REL

2B0
SUB

2 IMM

3C0
SUB

2 DIR

4D0
SUB

3 EXT

4 E0
SUB

3 IX2

3 F0
SUB

2 IX1

3
SUB

1 IX
01 5 11
BRCLRO
3 DIR

521
BCLRO

2 DIR

331
BRN

2 REL

541
CBEQ

3 DIR

4 51
CBEQA

3 IMM

461
CBEQX
3 IMM

5 71
CBEQ

3 IX1+

581
CBEQ

2 IX+

6 91
RTS

i INH

3A1
BLT

2 REL

261
CMP

2 IMM

3d
CMP

2 DIR

4D1
CMP

3 EXT

4
CMP

3 IX2

E1 3F1
CMP

2 IX7

3
CMP

1 IX
02 5 12
BRSETI
3 DIR

522
BSETI

2 DIR

332
BI-II

2 REL

542
LDHX

3 EXT

5 52
MUL

1 INN

662
DIV

1 INN

1 72
NSA

1 INN

1 82
DAA

1 INH

5- 52
BOND

1 INH

3A2
BGT

2 REL

2B2
SBC

2 IMM

3C2
SBC

2 DIR

4D2
SBC

3 EXT

4 E2
SBC

3 IX2

3F2
SBC

2 IX7

3
SBC

1 IX
03 5
BRCLRI
3 DIR

13 5
BCLRI

2 DIR

23 3
BLS

2 REL

33 5
COM

2 DIR

43 1
COMA

1 INH

53 1
COMX

1 INN

63 5
COM

2 IXI

73 4
COM

1 IX

83 11
SWI

1 INH

93 3
BLE

2 REL

A3 2
CPX

2 IMM

83 3
CPX

2 DIR

C3 4
CPX

3 EXT

D3 4
CPX

3 IX2

E3 3
CPX

2 IX7

F3 3
CPX

1 IX
04 5 14
BRSET2
3 DIR

5 24
BSET2

2 DIR

3 34
BCC

2 REL

544
LSR

2 DIR

1 54
LSRA

1 INH

1 64
LSRX

1 INH

574
LSR

2 IX7

484
LSR

1 IX

1 94
TAP

1 INH

2A4
TXS

1 INH

284
AND

2 IMM

3C4
AND

2 DIR

4D4
AND

3 EXT

4 E4
AND

3 IX2

3F4
AND

2 IX1

3
AND

1 IX
O5 5
BRCLR2
3 DIR

15 5
BCLR2

2 DIR

25 3
BCS

2 REL

35 4
STHX

2 DIR

45 3
LDHX

3 IMM

55 4
LDHX

2 DIR

65 3
CPHX

3 IMM

75 5
CPHX

2 DIR

85 1
TPA

1 INH

95 2
TSX

1 INN

A5 2
BIT

2 IMM

B5 3
BIT

2 DIR

CS 4
BIT

3 EXT

D5 4
BIT

3 1X2.2

E5 3
BIT

IX1

F5 3
BIT

1 IX
O6 5
BRSET3
3 DIR

16 5
BSET3

2 DIR

26 3
BNE

2 REL

36 5
ROR

2 DIR

46 1
RORA

1 INN

56 1
RORX

1 INH

66 5
ROR

2 IX7

76 4
ROR

1 IX

86 3
PULA

1 INN

96 5
STHX

3 EXT

A6 2
LDA

2 IMM

B6 3
LDA

2 DIR

C6 4
LDA

3 EXT

D6 4
LDA

3 122

E6 3
LDA

2 IX1

F6 3
LDA

1 IX
07 5 17
BRCLR3
3 DIR

5 27
BCLR3

2 DIR

3 37
BED

2 REL

547
ASR

2 DIR

1 57
ASRA

1 INH

1 87
ASRX

1 INN

577
ASR

2 IX7

487
ASR

1 IX

2 97
PSHA

1 INH

1 A7
TAX

1 INN

287
AIS

2 IMM

3C7
STA

2 DIR

4D7
STA

3 EXT

4E7
STA

3 122

3 F7
STA

2 IXi

2
STA

1 IX
O8 5 18
BRSET4
3 DIR

5 28
BSET4

2 DIR

3 38
BHCC

2 REL

548
LSL

2 DIR

1 58
LSLA

1 INN

1 68
LSLX

1 INN

578
LSL

2 IX7

488
LSL

1 IX

3 98
PULX

1 INH

1
CLC

7 INN

AO 288
FOR

2 IMM

3C8
FOR

2 DIR

4D8
FOR

3 EXT

4E8
FOR

3 122

3 F8
FOR

2 1X1

3
FOR

1 IX
09 5
BRCLR4
3 DIR

19 5
BCLR4

2 DIR

29 3
BHCS

2 REL

39 5
ROL

2 DIR

49 1
ROLA

i INH

59 1
ROLX

1 INN

69 5
ROL

2 IX7

79 4
ROL

1 IX

89 2
PSHX

1 INN

99 1
SEC

1 INH

A9 2
ADC

2 IMM

B9 3
ADC

2 DIR

C9 4
ADC

3 EXT

D9 4
ADC

3 122

E9 3
ADC

2 1XI

F9 3
ADC

1 IX
OA 5
BRSET5
3 DIR

1A 52A
BSET5

2 DIR

3 3A
BPL

2 REL

54A
DEC

2 DIR

1
DECA

i INH

5A 1
DECX

1 INN

6A 5 7A
DEC

2 IX1

48A
DEC

1 IX

3 9A
PULH

1 INH

7
CLI

1 INN

AA 2
ORA

2 IMM

BA 3
ORA

2 DIR

CA 4
ORA

3 EXT

DA 4
ORA

3 1X2

EA 3
ORA

2 IX1

FA 3
ORA

1 IX
OB 5
BRCLR5
3 DIR

1B 5
BCLRS

2 DIR

2B 3
BMI

2 REL

3B 7
DBNZ

3 DIR

48 4
DBNZA

2 INN

5B 4
DBNZX

2 INN

68 7
DBNZ

3 IX7

7B 6
DBNZ

2 IX

BB 2
PSHH

1 INN

9B 1
SEI

1 INN

AB 2
ADD

2 IMM

BB 3
ADD

2 DIR

CB 4
ADD

3 EXT

DB 4
ADD

3 IX2

ES 3
ADD

2 IX7

FB 3
ADD

1 IX
OC 5
BRSET6
3 DIR

1C 5
BSET6

2 DIR

2C 3
BMC

2 REL

3C 5
INC

2 DIR

4C 1
INCA

1 INH

5C 1
INCX

1 INN

6C 5
INC

2 IX1

7C 4
INC

1 IX

80 1
CLRH

1 INH

9C 1
RSP

1 INH

BC 3
JMP

2 DIR

CC 4
JMP

3 EXT

DC 4
JMP

3 IX2

EC 3
JMP

2 IX1

FC 3
JMP

1 IX
OD 5
BRCLR6
3 DIR

ID 5
BCLR6

2 DIR

2D 3
BMS

2 REL

3D 4
TST

2 DIR

4D 1
TSTA

1 INN

5D 1
TSTX

1 INN

6D 4
TST

2 IX1

7D 3
TST

1 IX

90 1
NOP

1 INN

AD 5
BSR

2 REL

BD 5
JSR

2 DIR

CD 6
JSR

3 EXT

DD 6
JSR

3 IX2

ED 5
JSR

2 IX7

FD 5
JSR

1 IX
OE 5
BRSET7
3 DIR

1E 5
BSET7

2 DIR

2E 3
BIL

2 REL

3E 6
CPHX

3 EXT

4E 6
MOV

3 DD

5E 5
MOV

2 DIX+

6E 4
MOV

3 IMD

7E 5
MOV

2 IX+D

8E 2+
STOP

1 INH

9E
Page2

AE 2
LDX

2 IMM

BE 3
LDX

2 DIR

CE 4
LDX

3 EXT

DE 4
LDX

3 IX2

EE 3
LOX

2 IX7

FE 3
LDX

1 IX
OF 5
BRCLR7
3 DIR

1F 5
BCLR7

2 DIR

2F 3
BIH

2 REL

3F 5
CLR

2 DIR

4F 1
CLRA

1 INN

5F 1
CLRX

1 INH

6F 5
CLR

2 IX1

7F 4
CLR

1 IX

8F 2+
WAIT

i INH

9F 1
TXA

1 INN

AF 2
AIX

2 IMM

BF 3
STX

2 DIR

CF 4
STX

3 EXT

DF 4
STX

3 IX2

OF 3
STX

2 IX7

FF 2
STX

1 IX

INH Inherent
IMM Immediate
DIR Direct
EXT Extended
DD DIR to DIR
IX-.-D IX-.- to DIR

REL Relative SP1 Stack Poin er, 8-Bit Offset
IX Indexed, No Offset SP2 Stack Poin er, 16-Bit Offset
IX7 Indexed, 8-Bit Offset IX-.. Indexed, No Offset with
IX2 Indexed, 16-Bit Offset Post Increment
IMD IMM to DIR 1X1+ Indexed,1-Byte Offset with
DIX+ DIR to IX-,. Post Increment Opcode in

Hexadecimal

Number of Bytes

FO 3
SUB

1 IX

HCS08 Cycles
Instruction Mnemonic
Addressing Mode

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 185

Central Processor Unit (CPU)

Table 6-13. Opcode Map (Sheet 2 of 2)
Bit-Manipulation Branch Read-Modify-Write Control Register/Memory

9E60 6
NEG

3 SP1

9ED0 5
SUB

4 SP2

SEES 4
SUB

3 SP1
9E61 6

CBEO
4 SP1

9ED1 5
CMP

4 SP2

9EE1 4
CMP

3 SP1
9ED2 5

SBC
4 SP2

9EE2 4
SBC

3 SP1
9E63 6

COM
3 SP1

9603 5
CPX

4 SP2

SEES 4
CPX

3 SP1

9EF3 6
CPHX

3 SP1
9664 6

LSR
3 SP1

9ED4 5
AND

4 SP2

9EE4 4
AND

3 SP1
9ED5 5

BIT
4 SP2

9EE5 4
BIT

3 SP1
9E66 6

ROB
3 SP1

9ED6 5
LDA

4 SP2

9EE6 4
LDA

3 SP1
9E67 6

ASR
3 SP1

9ED7 5
STA

4 SP2

9EE7 4
STA

3 SP1
9666 6

LSL
3 SP1

9ED8 5
FOR

4 SP2

9EE8 4
FOR

3 SP1
9669 6

ROL
3 SP1

9ED9 5
ADC

4 SP2

9EE9 4
ADC

3 SP1
9E6A 6

DEC
3 SP1

9EDA 5
ORA

4 SP2

9EEA 4
ORA

3 SP1
9666 6

DBNZ
4 SP1

9EDB 5
ADD

4 SP2

9EEB 4
ADD

3 SP1

9660 6
INC

3 SP1
9660 5

TST
3 SP1

9EAE 5
LDHX

2 IS

9EBE 6
LDHX

4 IX2

9ECE 5
LDHX

3 151

9EDE 5
LDX

4 SP2

9EEE 4
LDX

3 SP1

9EFE 5
LDHX

3 SP1
9E6F 6

CLR
3 551

9EDF 5
SIX

4 SP2

9EEF 4
STX

3 SP1

9EFF 5
STHX

3 SP1

INH Inherent REL Relative SP1 Stack Pointer, 8-Bit Offset
IMM Immediate IX Indexed, No Offset SP2 Stack Pointer, 16-Bit Offset
DIR
EXT

Direct
Extended

IX7
IX2

Indexed, 8-Bit Offset
Indexed, 16-Wt Offset

IX, Indexed, No Offset with
Post Increment

DD DIR to DIR IMO IMM to DIR IX1+ Indexed, 1-Byte Offset with
IX+D IX+to DIR DIX+ DIR to IX+ Post Increment

Note: All Sheet 2 Opcodes are Preceded by the Page 2 Prebyte (9E) Prebyte (9E) and Opcode in
Hexadecimal

Number of Bytes

9E60 6
NEG

3 SP1

HCS08 Cycles
Instruction Mnemonic
Addressing Mode

6.7 Assembly Language Tutorial

While most readers of this book already have a basic understanding of
assembly language programming, assemblers written by different
third-party development tool vendors often have subtle differences in
syntax rules. This section describes the directives, conventions, and
syntax rules that apply to the code examples used in this book. If a
novice user uses the same Metrowerks assembler that we used, this
section provides enough basic information to start writing simple

Reference Manual — Volume I HCS08 — Revision 1

186 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Assembly Language Tutorial

programs. In all cases, the user should refer to the documentation that
came with their particular assembler for more detailed information.

Code examples in this book conform to the source forms shown in the
tables at the bottom of each instruction page in
Appendix A. Instruction Set Details. For readability and consistency
with the instruction documentation, all instruction mnemonics use
uppercase. Most assemblers ignore case for mnemonics, and many
programmers prefer to use lowercase to simplify the process of typing
long source files.

6.7.1 Parts of a Listing Line

The fields of the following example line from a Metrowerks CodeWarrior
code listing are numbered and explained in the text that follows. This
explanation is provided as a reference for the code examples used
throughout this manual.

34 C000 A4 7F upcase: and #$7F ;forces MSB to 0

1 2 3 4 5 6 7

This second code listing is from the P&E Microcomputer Systems
CASMS08Z assembler. P&E includes the same fields 1-7 as the
previous figure, but they are in slightly different order and there is an
optional field #8 that shows the number of CPU bus cycles for each
instruction.

C000 [02] A47F 34 upcase: and #$7F ;forces MOB to 0

2 8 3 1 4 5 6 7

Fields 1, 2, 3, and 8 are generated by the assembler while fields 4, 5, 6,
and 7 are part of the source file provided by the user:

• Field 1 (491) is a line number which the assembler added as a
reference. This line number is not used by the MCU, but it is a
useful reference when people are discussing the program listing.

• Field 2 (C000) is the address where this instruction starts in
memory.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 187

Central Processor Unit (CPU)

• Field 3 (A4 7F) is the object code for the instruction on this listing
line. $A4 is the opcode for the AND instruction, and $7F is the
immediate data value that will be compared to the accumulator
(A).

• Field 4 (upcase:) is a label which the assembler equates to the
address shown in field 1. Most assemblers require the colon at the
end of a label (where it is defined but not where it is used as an
operand in an instruction). This colon is not considered part of the
label. Some programmers prefer to put labels on a separate line
by themselves so they can use longer, more descriptive names
while keeping the instruction mnemonics in field 6 lined up along
a vertical line that isn't too far to the right in the listing.

• Field 5 (and) is the instruction mnemonic. Most assemblers ignore
the case of the mnemonic, but labels are usually case sensitive.

• Field 6 (#$7F) is the operand field. In this case, the immediate
value 7F is hexadecimal as indicated by the $ (dollar) symbol. The
(pound) symbol tells the assembler to use immediate addressing
mode.

• Field 7 is a comment. Comments should start with a semicolon
character. Everything else to the end of the line is a comment that
is not used by the assembler or the MCU. It is just for the benefit
of the programmer and others who need to understand the
program.

• Field 8 ([02]) is an optional field which tells how many bus cycles
this instruction takes. Not all assemblers provide this field. The
P&E assembler can provide this field. This field is usually left out
of listings, but it is included here because it can be helpful while a
programmer is learning the instruction set.

6.7.2 Assembler Directives

This section describes a minimum set of assembler directives to allow a
novice user to start writing basic assembly language programs. These
basic directives should be supported by any HCS08 assembler. Typical
assemblers also include other directives, some of which may be specific
to a particular vendor's assembler (especially in the areas of macros and

Reference Manual — Volume I HCS08 — Revision 1

188 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Assembly Language Tutorial

conditional assembly). Always refer to the documentation that came with
the assembler you are using for complete information.

P&E Microcomputer Systems makes a distinction between directives
and pseudo-ops, while some other vendors use the term directives to
describe all of these special operators. Pseudo-ops are reserved
command words which go in the instruction mnemonic field. Pseudo-ops
are used to set the starting location of a program, to equate a label to a
value, to define the location of program variables in memory, or to
reserve space for RAM variables. Directives are more general
commands to control printing and configuration options for the
assembler. In most assemblers, directives are placed in the same field
as the instruction mnemonics.

6.7.2.1 BASE - Set Default Number Base for Assembler

Most assemblers use decimal as the default base but P&E assemblers
default to treating operands with no prefix as hexadecimal numbers. For
all of the examples in this book, we want the default number base to be
decimal, so it is good practice to use the following directive at the
beginning of all of our source files.

base lot ;change default to decimal

6.7.2.2 INCLUDE — Specify Additional Source Files

It is often inconvenient to place all source code for a project into a single
file. This directive allows you to split the project into two or more separate
files. The main file would use INCLUDE directives in the main source file
to indicate where the other files should be incorporated into the project.
When the assembler encounters an INCLUDE directive, it switches its
input stream to the included file until an end-of-file is detected. This
effectively replaces the include directive line with the referenced file.

A common use for this directive is to include a chip definition file
(sometimes called an equate file). Motorola provides free equate files for
its MCUs, so you can use register and bit names in your programs rather
than addresses and bit numbers which are not as readable.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 189

Central Processor Unit (CPU)

This example just uses the file name but you can specify an explicit path
for the file if it isn't located in the main project directory.

include "9SO8GB60 vl.equ"

6.7.2.3 NOLIST/LIST — Turn Off or Turn On Listing

The assembler reads a source file and generates a composite listing file
while it assembles the source file into an object code file for a program.
The listing file is a plain text file which includes the object code and
generated line numbers in addition to the information from the original
source file. The NOLIST and LIST directives allow the programmer to
control the production of the listing file.

The most common use of these directives is to suppress the listing while

the assembler processes the MCU equate file. This is common because
the contents of the equate file are well understood and suppressing this
listing can easily save 15 to 20 pages of listing. The programmer may list
the equate file separately and keep it on hand for reference.

nolist ;turn off listing

include "9SO8GB60 vl.equ"

list ;turn listing back on

6.7.2.4 ORG - Set Program Starting Location

During assembly the assembler maintains a "location counter" which
keeps track of the next available memory location where code or
variables could be stored. The ORG directive sets this location counter
to a specific address value. This does not produce any actual code in the
object file. Rather, it tells the assembler where the next byte of code or
data should be located in memory.

Every program needs at least one ORG directive, and programs often
include several ORG directives. A typical program includes one ORG
directive to set the starting location for variables in RAM. After declaring
all RAM variables, a second ORG directive is used to establish the
starting location for the application program in ROM or FLASH memory.

Reference Manual — Volume I HCS08 — Revision 1

190 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Assembly Language Tutorial

A third ORG directive is often used to set the location counter to the start
of the interrupt vector space.

org RamStart ;start of RAM variables

ds.b directive doesn't produce any object code.
Just reserves uninitialized named locations for future use.

resrvBytes: ds.b 8 ;reserve space for 8 vars
;for move examples setup 2 10-byte blocks that overlap
moveBlkl: ds.b 10 ;reserve 10 bytes for block 1
blklend: equ * ;* means 'here'

org RomStart ;set program starting point

HCS08 — Revision 1

Startup:

Setup options for
lda
sta

Set stack pointer
ldhx
txs

;ex. label on separate line

COP and STOP in SIMOPT
#initSIMOPT ;settings for COP & STOP
SOFT ;SIM options (write once)
to last (highest) RAM location
#RamLast+1 ;point one past RAM

;SP<-(H:X-1)

org Vrti-2 ;2 before first vector
leave room for resetISR and defaultlSR

resetISR: dc.b illegalOp ;force ilop reset
defaultlSR: rti ;just return
even unused vectors should point at some handler

vecRti: dc.w defaultlSR ;handle unused interrupts
veclic: dc.w defaultlSR ;handle unused interrupts
vecAtd: dc.w defaultlSR ;handle unused interrupts
vecKeyboard: dc.w defaultlSR ;handle unused interrupts
vecSci2tx: dc.w defaultlSR ;handle unused interrupts
vecSci2rx: dc.w defaultlSR ;handle unused interrupts
vecSci2err: dc.w defaultlSR ;handle unused interrupts
vecSciltx: dc.w defaultlSR ;handle unused interrupts
vecScilrx: dc.w defaultISR ;handle unused interrupts
vecScilerr: dc.w defaultlSR ;handle unused interrupts
vecSpi: dc.w defaultlSR ;handle unused interrupts
vecTpm2ovf: dc.w defaultlSR ;handle unused interrupts
vecTpm2ch4: dc.w defaultlSR ;handle unused interrupts
vecTpm2ch3: dc.w defaultlSR ;handle unused interrupts
vecTpm2ch2: dc.w defaultISR ;handle unused interrupts
vecTpm2chl: dc.w defaultlSR ;handle unused interrupts
vecTpm2ch0: dc.w defaultlSR ;handle unused interrupts
vecTpmlovf: dc.w defaultlSR ;handle unused interrupts
vecTpmlch2: dc.w defaultlSR ;handle unused interrupts
vecTpmlchl: dc.w defaultlSR ;handle unused interrupts
vecTpmlcho: dc.w defaultlSR ;handle unused interrupts
vecicg: dc.w defaultlSR ;handle unused interrupts
vecLvd: dc.w resetISR ;force an ilop reset
veclrq: dc.w defaultlSR ;handle unused interrupts
vecSwi: dc.w defaultlSR ;handle unused interrupts
vecReset: dc.w Startup ;reset starting point

Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 191

Central Processor Unit (CPU)

6.7.2.5 EQU — Equate a Label to a Value

This directive tells the assembler what value or address should be
associated with a particular label. For example:

illegalOp: equ $8D ;$8D is an unused opcode

tells the assembler that the label illegalOp is equivalent to the
hexadecimal value $8D. The next example illustrates the more
interesting case where an asterisk (*) in the operand field is interpreted
by the assembler to mean "the current location counter value."

52

53

org RamStart ;start of RAM variables

54 ds.b directive doesn't produce any object code.

55 ; Just reserves uninitialized named locations for future use.

56 0080 resrv8ytes: ds.b 8 ;reserve space for 8 vars

57 ;for move examples setup 2 10-byte blocks that overlap

58 0088 moveBlkl: ds.b 10 ;reserve 10 bytes for block 1

59 0000 0092 blklend: equ * ;* means 'here'

In this example, the ds.b directive in line 58 set aside 10 (decimal)
locations from address $0088-$0091 so at the time the assembler read

the "blkl end: EQU *..... line, the location counter was equal to $0092.

6.7.2.6 dc.b — Define Byte-Sized Constants in Memory

dc.b is used to define 8-bit constant values in memory. This directive is
similar to the FCB directive used by some assemblers. In its simplest
form, the dc.b directive sets a single memory location equal to a
specified 8-bit value. The directive can (and usually does) have a label
which associates the address, where the constant is stored, to the label.

108

109

**

* Define ROM (flash) constants for use in examples
110 **

111
112 org RomStart ;set program starting point

113
114 1080 55 hexByte: dc.b $55 ;$ prefix means hexadecimal

Reference Manual — Volume I HCS08 — Revision 1

192 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Assembly Language Tutorial

In this example, the dc.b directive defined a constant with the value $55
at location $1080. The ORG directive set the location counter to $1080,
so this is the address that was used for the dc.b directive. Since the dc.b
used one byte of memory, the location counter is automatically
advanced by one, so it points at $1081 after the dc.b directive. The label
hexByte is set equal to the address $1080 which is the address where
the constant ($55) is located in memory.

115 1081 OC decimalByte: dc.b 12 ;no prefix means decimal

116 1082 5A binaryByte: dc.b %01011010 ;% prefix means binary

117 1083 35 asciiByte: dc.b 'S' ,' prefix means ASCII

118 1084 1122 33 multiBytes: dc.b $11,$22,$33 ;commas separate operands
119 0000 1087 moveBlk3: equ * ;3rd block for move examples

120 1087 4164 616D stringBytes: dc.b 'Adam apple' ;string makes ASCII bytes

1085 2061 7070

108F 6C65

121 1091 00 dc.b 0 ;null terminator

This example demonstrates various forms of the operand field in dc.b
directives.

• Line 115 shows a decimal constant (12) and the assembler stores
this in memory as $OC which is the hexadecimal equivalent of
decimal 12.

• Line 116 shows the % prefix which indicates a binary value.

• In line 117, the character 5 is surrounded by single quotes to
indicate an ASCII value. The assembler stores $35 which is the
hexadecimal equivalent of the ASCII character for the number 5.

• Line 118 shows that the operand field can consist of a list of
separate constants separated by commas. Notice three bytes
were stored in memory.

• Line 120 shows an ASCII string may be enclosed in single quotes.
The assembler will store the hexadecimal equivalent of each
ASCII character in successive memory locations (one byte per
character in the string). The quotes are not included in the
constants that are stored in memory. In the case of a string or
when more than four bytes of constants are defined on one source

code line, the listing will have multiple lines to allow the object

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 193

Central Processor Unit (CPU)

code field to line-wrap to list all of the constant values stored in
memory. (See the two extra lines between listing lines 140 and
141 which are considered part of line 140.)

6.7.2.7 dc. w — Define 16-Bit (Word) Constants in Memory

dc.w is used to define 16-bit constant values in memory. This directive
is similar to the FDB directive used by some assemblers. In its simplest
form, the dc.w directive sets a pair of memory locations to a specified
16-bit value (with the first high-order 8 bits going to the current address
pointed to by the location counter and the second low-order value going
to the next higher memory address location). The directive can (and
usually does) have a label which associates the address, where the
upper 8-bit half of the constant is stored, to the label.

123 1092 1234

124 1094 1092

125 1096 5678 9ABC

hexWord: dc.w $1234 ;takes up two bytes

addrWord: dc.w hexWord ;label used as 16-bit addr

multiWord: dc.w $5678,$9ABC ;dc.w with multiple operands

Line 123 is a simple case where the hexadecimal constant $1234 is
stored in memory, $12 at address $1092 and $34 at $1093. The label
hexWord is set equal to $1092 by the assembler because this is the
memory address where this constant is stored in memory. Line 124 uses
the label hexWord in the operand field of a dc.w directive and the
assembler stores the equivalent hexadecimal value $1092, $10 at
address $1094 and $92 at address $1095. Line 125 demonstrates that
the operand field of an dc.w directive can consist of a list of constants
separated by commas. The constants $5678 and $9ABC are shown in
the object code field of the listing line.

6.7.2.8 ds.b — Define Storage (Reserve) Memory Bytes

ds.b is used to set aside a specified number of 8-bit memory locations
for use as program variables. This directive is similar to the RMB

directive in some older assemblers. There is also a ds.w directive that is
used to set aside a specified number of 16-bit memory locations for use
as program variables. Unlike the dc.b and dc.w directives discussed in
the previous two sections, the ds.b and ds.w directives do not produce
any object code. ds.b tells the assembler to associate a label to the

Reference Manual — Volume I HCSO8 — Revision 1

194 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Assembly Language Tutorial

current address pointed to by the location counter and then to adjust the
location counter by the number of bytes set aside by the ds.b directive
so the location counter points at the next available memory location. The
ds.b directive can be used without a label to just move the location
counter, but this is rarely done. It is most often used to set aside memory
space for a single named program variable, but it can also be used to set
aside space for a larger data structure or table.

48

49

50

51

52

53

54

55

56 0080

57

58 0088

59 0000 0092

60

61 0000 000A

62 0092

63 0000 009O

64

65

66

67

68

69 009C

70 0000 0007

71 0000 0080

72 0000 0006

73 0000 0040

74

75 009D

+**+*+*****+********

* Define RAM variables for use in examples
**

org RamStart ;start of RAM variables

ds.b directive doesn't produce any object code.

Just reserves uninitialized named locations for future use.

resrvBytes: ds.b 8 ;reserve space for 8 vars

;for move examples setup 2 10-byte blocks that overlap

moveBlkl: ds.b 10 ;reserve 10 bytes for block 1

blklend: equ * ;* means 'here'

another way to define a RAM block

blk2size: equ 10 ;size in bytes

moveBlk2: ds.b blk2size ;reserve bytes for block 2

blk2end: equ (moveBlk2+blk2size) ;end tracks size

Setup a flag byte with multiple 1-bit flags

name prefixed by m is used to define a mask for logical

instructions like AND or ORA; the bit name without the m prefix

defines a bit number for BCLR, BSET, BRCLR, and BRSET

flags: ds.b 1 ;reserves a byte

SCIready: equ 7 ;bit number

mSCIready: equ X10000000 ;bit 7 mask

OneSecond: equ 6 ;bit number

mOneSecond: equ %01000000 ;bit 6 mask

directByte: ds.b 1 ;a variable in direct space

In this example, the ORG directive is used to establish the location
counter value for the assembler. Line 56 sets aside eight bytes of
memory (locations $0080 through $0087). The label resrvBytes is set
equal to the starting address for the block or $0080. Line 75 is a much
simpler and more common use of ds.b where memory location $009D is
set aside for a program variable named directByte. Lines 69 through 73
show an ds.b directive used to set aside an 8-bit location for the program

variable named "flags" and then the next four EQU directives are used
to identify specific bits within this flag byte.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 195

Central Processor Unit (CPU)

In the HCS08 architecture, the BCLR, BSET, BRCLR, and BRSET
instructions use the bit number (0-7) to choose a specific opcode that is
defined to work with the selected bit within a memory location. Other
instructions such as AND and ORA use bit masks to identify one or more
bit locations to be operated on.

For this reason, bits are defined in two slightly different ways:

• By convention, we use a normal label such as SClready to define
the bit number

• We use the same label preceded by a lowercase m to define the
bit mask

In a program, we would then use the plain bit name form whenever we
use it in a BCLR, BSET, BRCLR, or BRSET instruction. We use the bit
name with a prefix of lowercase m everywhere else. Following a
convention such as this helps the programmer avoid confusion and
errors. This convention is used in equate files provided by Motorola so it
is suggested that the same convention be followed in defining other bit
labels.

6.7.3 Labels

User-defined labels are used by the assembler to make the code more
readable and to simplify the task of writing programs. For example, it is
easier for a programmer to remember a text label like "Start" than a
4-digit hexadecimal address which may change as instructions are
added or removed from the program. These labels are significant to the
assembler, but not to the actual MCU. The source forms shown on the
instruction pages in Appendix A. Instruction Set Details never include
any labels. In fact, the source forms only show the instruction mnemonic
and a representative operand field. A real source program should
usually also include a comment field and sometimes a label field.

Some assemblers ignore case in labels so something like "RAM" would
be indistinguishable from "ram" or "Ram." Other assemblers let the
programmer set a control flag to decide whether case matters. Always
check the documentation for the assembler you are using to be sure you
understand how it treats uppercase and lowercase letters.

Reference Manual — Volume I HCSO8 — Revision 1

196 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Assembly Language Tutorial

Older assemblers limited the size of labels to six or eight characters, but
modern assemblers allow much longer labels. A few assemblers allow
very long names but only consider the first several characters as
significant. For example, an assembler that only considered the first
10 characters would not see any difference between the labels
LongLabel37 and LongLabel38 although it might consider
VeryVeryLongLabel to be acceptable. Again, you should consult the
documentation for your assembler. In most assemblers, labels may
contain any letters, numbers, or the symbols, underscore (_), or period
(.), but the label must start with a letter or underscore (_). Some
assemblers allow other characters, but it is safer to limit yourself to these
choices to assure easy portability to other assemblers. Notice that labels
must NOT contain any space characters because the assembler would
not be able to tell this from two separate labels. In this book, underscore
characters are not used because some people think they make
programs less readable. (This is a subjective opinion and other users
think underscore characters improve readability.) Instead, a combination
of uppercase and lowercase is used here to make multiword labels, for
example, RamLast where an underscore proponent might use ram_last.

A label can be defined only once, but it may be used any number of times
within a program. Where a label is defined, the label name must start in
the first column of the source line, and most assemblers require a colon
after the label where it is defined as in:

waitRDRF: brclr RDRF,SCI1S1,waitRDRF ;loop till RDRF set

Notice that where the label is used in the operand field, there is no colon.

Where longer labels are used, some programmers prefer to place the
label on a separate line above the line to which the label refers.

131

132

133

134 109A A6 00

Startup: ;ex. label on separate line

Setup options for COP and STOP in SIMOPT

lda #initSIMOPT ;settings for COP & STOP

HCS08 - Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 197

Central Processor Unit (CPU)

The label is defined on line 131 and in this case there is an optional
comment on the same line. Line 132 is a blank line which produces no
object code and is simply used to create a visual separation. Line 133 is
a whole-line comment which also does not produce any object code.
Line 134 is the first line after the label in line 131 that has any object
code, so this is the address assigned to the label by the assembler.

6.7.4 Expressions

The operand field of an instruction or directive can contain an explicit
value (using various number bases or conversions), an expression, or a
label. Trivial expressions such as RamStart+l do not require
parentheses or brackets. In the P&E assembler, complex expressions
must be enclosed in curly braces as in {moveBlkl—RamStart+3}. Most
assemblers use parentheses to enclose complex expressions.

Most assemblers allow complex mathematical and logical expressions
in any operand field, but practical application programs rarely use
complex nested expressions. The most common expressions are small
constant offsets to identify a location within a multibyte variable or data
structure or to identify the next location past some label (label+l).

137 109F 45 1080

138 10A2 94

ldhx #RamLast+1 ;point one past RAM

txs ;SP<-(H:X-1)

In this example, RamLast was equated to the address $107F. We know
the TXS instruction is going to automatically subtract one from the
address in H:X, so we compensate for this by loading H:X with the
address after RamLast (that is RamLast+1). This is an example of a
trivial expression that does not need to be enclosed in parentheses.

297 add 8-bit operand to 24-bit sum

298 1172 B6 AO lda oprA ;8-bit operand to A

299 1174 BB A8 add sum24+2 ;LS byte of 24-bit sum
300 1176 57 A8 sta sum24+2 ;update LS byte

301 1178 B6 A7 lda sum24+1 ;middle byte of 24-bit sum

302 117A A9 00 adc #0 ;propigate any carry

303 117C B7 A7 sta sum24+1 ;update middle byte

304 117E B6 A6 lda sum24 ;get MS byte of 24-bit sum

305 1180 A9 00 adc #0 ;propigate carry into MS byte

306 1182 57 A6 sta sum24 ;update MS byte

Reference Manual — Volume I HCS08 — Revision 1

198 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Assembly Language Tutorial

In this example, the label sum24 identifies a 24-bit variable located in
three successive bytes of memory. The most significant byte is located
at address sum24, the middle byte is at sum24+1 and the least
significant byte is located at sum24+2. This is another example of trivial
expressions not requiring enclosure in parentheses.

58 0088 moveBlkl: ds.b 10 ;reserve 10 bytes for block 1

59 0000 0092 blklend: equ * ;* means 'here'

120 1087 4164 616D stringBytes: dc.b 'Adam apple' ;string makes ASCII bytes

108B 2061 7070

108F 6065

121 1091 00 dc.b 0 ;null terminator

288 ; block move example to move a string to a RAM block

289 1165 45 0088 ldhx #moveBlkl ;point at destination block

290 1168 D6 OFFF movLoopl: lda (stringBytes-moveBlkl),x ;get source byte

291 116B 27 05 beq dunLoopl ;null terminator ends loop

292 116D E7 00 sta 0,x ;save to destination block

293 116F 5C incx ;next location (assumes DIR)

294 1170 20 F6 bra movLoopl ;continue loop

295 dunLoopl:

In line 290 the expression (stringBytes-moveBlkl) is enclosed in
parentheses because it involves two labels and the assembler considers
this a "complex" expression. The assembler computes the difference of

the two 16-bit addresses represented by stringBytes = $1087 and
moveBlkl = $0088 ($1087 - $0088 = $0FFF). The result of the
assembler's computation can be seen after the opcode (D6) in the object
code field of the listing in line 290.

mOR:

mNF:

mFE:

mPF:

415 11F3 A5 OF

equ %00001000 ;receiver over run

equ °%00000100 ;receiver noise flag

equ %00000010 ;receiver framing error

equ %00000001 ;received parity failed

bit #(mOR+mNF+mFE+mPF) ;mask of all error flags

In this example, we added the separate bit masks with the arithmetic
addition operator. Because each of the four bit masks is an 8-bit value
with a different single bit set to 1, this is equivalent to combining the
masks with logical OR operators, but the + (plus) is more universal
among different assemblers than the OR operator.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 199

Central Processor Unit (CPU)

6.7.5 Equate File Conventions

Most code for this book was assembled along with an included equate
file which defines all MCU registers and control bits by the names used
in the data sheet for a specific HCS08 derivative. In that equate file,
which is described in greater detail in Appendix B. Equate File
Conventions, register names use all uppercase letters to match the
data sheets. Program labels use a combination of uppercase and
lowercase letters. This is not a requirement of the assembler, but rather
a convention chosen to make these code listings more consistent with
chip documentation.

Bit names are defined in two ways:

• The bit name with no prefix is equated to the bit number (0-7).

• The name preceded by a lower-case m is equated to a bit position
mask.

This excerpt from the equate file for the MC9S08GB60 shows the SCI
status register with its bits defined according to this convention.

SCI1S1:

SCI2S1:

bit

TORE:

TC:

RDRF:

IDLE:

OR:

NF:

FE:

PF:

bit

mTDRE

mTC:

mRDRF:

mIDLE:

mOR:

mNF:

mFE:

mPF:

equ

equ

numbers for

equ

equ

equ

equ

equ

equ

equ

equ 0

position masks

equ %10000000

equ %01000000

equ %00100000

equ %00010000

equ %00001000

equ %00000100

equ %00000010

equ %00000001

sic
$24

use in BCLR,

7

6

5

4

3

2

1

;SCI1 status register 1

;SCI2 status register 1

BSET, BRCLR,

;(bit #7(

;(bit #6(

;(bit #5(

;(bit #4(

;(bit #3(

;(bit #2(

;(bit #l(

;(bit #0(

and BRSET

Tx data register empty

transmit complete

Rx data register full

idle line detected

Rx over run

Rx noise flag

Rx framing error

Rx parity failed

;transmit data register empty

;transmit complete

;receive data register full

;idle line detected

;receiver over run

;receiver noise flag
;receiver framing error

;received parity failed

Reference Manual — Volume I HCS08 — Revision 1

200 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Assembly Language Tutorial

The next example shows the use of the bit number variation of a bit
definition. The operand field of the BRCLR instruction includes three
items separated by commas. RDRF is converted to the number 5 which
tells the assembler to use the bit-5 variation of the BRCLR instruction
(opcode = $0B). The next item, SCI1 Si tells the assembler the operand
to be tested is located at the direct addressing mode address $001 C
(just 1 C in the object code). The last item, waitRDRF, tells the assembler
to branch back to the same BRCLR instruction if the RDRF status bit is
found to be still clear (0).

450 120A 0B 1C FD waitRDRF: brclr RDRF,SCI1S1,waitRDRF ;loop till RDRF set

The next example shows an expression combining the bit masks for the
OR, NF, FE, and PF status bits. In this example, we used the bit names
with a preceding m to get the bit position mask rather than the bit
number. We used a simple addition operator (+) to combine the bit
masks. Although a logical OR might have been more correct in this case,
not all assemblers use the same character to indicate the logical OR
operation, so the + is more portable among assemblers. We can use the
+ because we know the individual bit masks do not overlap.

413

414 11F1 56 lC

415 11F3 A5 OF

416 11F5 26 00

417

BIT example to check several error flags in SCI status reg

Ida SCIlSl ;read SCI status register

bit #(mOR+mNF+mFE+mPF) ;mask of all error flags

bne sciError ;branch if any flags set

A still contains undisturbed status register

6.7.6 Object Code (S19) Files

The ultimate goal of an assembler is to convert a source code file into
the object code that the MCU needs to execute a program. The
assembler optionally produces a listing file which acts as a form of
primary documentation for the program. In this section we briefly
describe the source and listing files and provide a more detailed
description of the object code file, which is sometimes called a
"dot S 1 9 file." This name comes from the .s19 filename extension and
the internal format of the file.

HCSOS — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 201

Central Processor Unit (CPU)

The whole programming process starts with a planning effort which may
involve flowcharts or other forms of documentation which describe what
is to be done and roughly how the programmer plans to do it. The first
item directly related to the final program is the source file which the
programmer types into a text file. The source file uses instruction
mnemonics and special syntax rules that are understood by the
assembler.

The source file should also include generous comments to help humans
who must understand and maintain the program. The following is an
example of a short source program.

Reference Manual — Volume I HCS08 — Revision 1

202 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Assembly Language Tutorial

+++++++**++++++**++++**+*+*+********************************
* Title: sl9example.asm Copyright (c) Motorola 2003
**

* Author: Jim Sibigtroth - Motorola
*

* Description: This is not a complete program, rather it is just

* enough code to demonstrate the relationship between the various

* files in a typical MCU programming project (especially .s19
* files)

*

++

org $C000
**

* upcase - convert ASCII character in A to upper case
* on entry A contains an unknown character
* first strip MSB (AND with $7F) to get 7-bit ASCII
* if A > or = "a" and < or = "z", subtract $20 (A=$41, a=$61)
* other values unchanged except MSB stripped off (forced to 0)
**

upcase: and #$7F ;forces MSB to 0
cmp #'a' ;check for c "a"
blt xupcase ;done if too small
cmp #'z' ;check for >
bgt xupcase ;done if too big
sub #$20 ;convert a-z to A-Z

xupcase: its ;done

**

* ishex - check character for valid hexadecimal (0-9 or A-F)

* on entry A contains an unknown upper-case character
* returns with original character in A and Z set or cleared
* if A was valid hexadecimal then Z=1, otherwise Z=0
**

ishex: psha ;save original character
cmp #'0' ;check for < ASCII zero
blo nothex ;branches if C=0 (Z also 0)
cmp #'9' ;check for 0-9
bls okhex ;branches if ASCII 0-9

cmp #'A' ;check for < ASCII A
blo nothex ;branches if C=0 (Z also 0)

cmp #'F' ;check for A-F
bhi nothex ;branches if > ASCII F

okhex: clra ;forces Z bit to 1
nothex: pula ;restore original character

its ;return Z=1 if char was hex

Figure 6-6. Demonstration Code

HCSO8 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 203

Central Processor Unit (CPU)

The assembler is a third-party development tool which is a computer
program that runs on a personal computer or workstation and translates
source code files into the hexadecimal numbers to be stored into the
memory of the target MCU. The assembler can be requested to produce
a listing file which includes both the original source program and a
representation of the machine code meaning of each source line. This
listing file is intended to act as documentation for the application
program. The listing includes more information than the source file, such
as the addresses of labels and the opcodes that each instruction
mnemonic translates to.

The following code example is the listing file generated by assembling
the source file shown in the previous example.

Reference Manual — Volume I HCS08 — Revision 1

204 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Assembly Language Tutorial

1

2
3

4

*****+***************+************* ++++++++++++++++++++++++++++++

* Title: sl9example.asm Copyright (c) Motorola 2003
+*++++++****+*+*****+*+**++****++**+++++++++++++++++++++++++++++++

* Author: Jim Sibigtroth - Motorola

5 *

6 * Description: This is not a complete program, rather it is just

7 * enough code to demonstrate the relationship between the various

8 * files in a typical MCU programming project (especially .s19
9 * files)

10 *

25 **

26 org $C000

27 *+++*+++*******+**+++*+*********+++*+*************+*+*+******+****

28 * upcase - convert ASCII character in A to upper case

29 * on entry A contains an unknown character

30 * first strip MSB (AND with $7F) to get 7-bit ASCII

31 * if A > or = "a" and < or = "z", subtract $20 (A=$41, a=$61)

32 * other values unchanged except MSB stripped off (forced to 0)

33 **

34 0000 A4 7F upcase: and #$7F ;forces MSB to 0
35 C002 Al 61 cmp #'a ;check for < "a"
36 C004 91 06 bit xupcase ;done if too small
37 C006 Al 7A cmp #'z' ;check for >
38 0008 92 02 bgt xupcase ;done if too big
39 CODA AO 20 sub #$20 ;convert a-z to A-Z
40 COOC 81 xupcase: its ;done

41 ***********+*+*+*****

42

43 **

44 * ishex - check character for valid hexadecimal (0-9 or A-F)

45 * on entry A contains an unknown upper-case character
46 * returns with original character in A and Z set or cleared
47 * if A was valid hexadecimal then Z=1, otherwise Z=0
48 **

49 COOD 87 ishex: psha ;save original character
50 COOE Al 30 cmp #'0' ;check for < ASCII zero
51 CO10 25 OD blo nothex ;branches if C=0 (Z also 0)

52 C012 Al 39 cmp #'9' ;check for 0-9
53 C014 23 08 bls okhex ;branches if ASCII 0-9
54 C016 Al 41 cmp #'A' ;check for < ASCII A

55 C018 25 05 blo nothex ;branches if C=0 (Z also 0)

56 COLA Al 46 cmp #'F' ;check for A-F

57 CO1C 22 01 bhi nothex ;branches if > ASCII F

58 COLE 4F okhex: clra ;forces Z bit to 1

59 COIF 86 nothex: pula ;restore original character

60 CO20 81 its ;return Z=1 if char was hex
61 *********************

HCS08 — Revision 1

Figure 6-7. Listing File

The fields of this listing are explained in 6.7.1 Parts of a Listing Line.

Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 205

Central Processor Unit (CPU)

The MCU expects the program to be a series of 8-bit values in memory.
So far, our program still looks as if it was written for people. The version
the computer needs to load into its memory is called an object code file.
For Motorola microcontrollers, the most common form of object code file
is the .s19 or S-record file. The assembler can be directed to optionally
produce a listing file and/or an object code file.

An S-record file is an ASCII text file that can be viewed by a text editor
or word processor. Do not edit these files because the structure and
content of the files are critical to their proper operation.

Each line of an S-record file is a record. Each record begins with a capital
letter S followed by a code number from 0 to 9. The only code numbers
that are important in this application are SO, Si, and S9 because other
S-number codes apply only to larger systems.

• SO is an optional header record that may contain the name of the
file for the benefit of humans that need to maintain these files.

• Si records are the main data records.

• An S9 record is used to mark the end of the S-record file.

For the work we are doing with 8-bit microcontrollers, the information in
the S9 record is not important, but an S9 record is required at the end of
the S-record file. Figure 6-8 shows the syntax of an Si record.

TYPE

LENGTH

ADDRESS OBJECTCODE DATA CHECKSUM

S1 13

CHECKSUM = ONE'S COMPLEMENT OF THE SUM OF ALL OF THESE BYTES

Figure 6-8. Syntax of an Si Record

Reference Manual — Volume I HCS08 — Revision 1

206 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Assembly Language Tutorial

All of the numbers in an S-record file are in hexadecimal. The type field
is S0, Si, or S9 for the S-record files used here. The length field is the
number of pairs of hexadecimal digits in the record excluding the type
and length fields. The address field is the 16-bit address where the first
data byte will be stored in memory. Each pair of hexadecimal digits in the
machine code data field represents an 8-bit data value to be stored in
successive locations in memory. The checksum field is an 8-bit value
that represents the one's complement of the sum of all bytes in the
S-record except the type and checksum fields. This checksum is used
during loading of the S-record file to verify that the data is complete and
correct for each record.

5123C000A47FA1619106A17A9202A0208187A130250DA1392308A1412505A14622014F
86F6

5104CO20819A
S9030000FC

Figure 6-9. S19 Example

You can compare the values in the S-record file with those in the object
code field of the listing in Figure 6-9. The ORG directive in line 49 of
Figure 6-7 established the starting address at $C000.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 207

Central Processor Unit (CPU)

Reference Manual — Volume I HCS08 — Revision 1

208 Central Processor Unit (CPU) MOTOROLA

HCS08 Family Reference Manual

Section 7. Development Support

7.1 Introduction

Development support systems in the HCS08 Family include the
background debug controller (BDC) and the on-chip debug module
(DBG). This architecture marks a major change in the way MCU systems
are developed due to advances in the processing technology used to
make these devices.

In the past, most development was based on an external tool having
access to the address and data buses of the target MCU. This allowed
the external tool to monitor cycle-by-cycle activity and intervene at
critical points to stop normal execution of the application program. This
style of debug has become increasingly difficult to support due to the
higher speeds and smaller packages of more modern MCUs. At the
same time, the cost of logic circuitry within the MCU has decreased as
process improvements and shrinks have allowed more circuitry per unit
of die area. Due to mechanical constraints, pads for wire-bond
connections have not shrunk as quickly as other circuitry. In today's
technology, a few extra pins cost more than a few thousand logic
transistors worth of internal circuitry. Moving the development circuitry
inside the MCU to avoid the need for external pins for the address and
data buses is now the most cost-effective method.

The BDC provides a single-wire debug interface to the target MCU. This
interface provides a convenient means for programming the on-chip
FLASH and other non-volatile memories. Also, the BDC is the primary
debug interface for development and allows non-intrusive access to
memory data and traditional debug features such as CPU register
modify, breakpoints, and single instruction trace commands.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 209

Development Support

In the HCS08 Family, address and data bus signals are not available on
external pins (not even in test modes). Debug is done through
commands fed into the target MCU via the single-wire background
debug interface. The debug module provides a means to selectively
trigger and capture bus information so an external development system
can reconstruct what happened inside the MCU on a cycle-by-cycle
basis without having external access to the address and data signals.

Most HCS08 devices provide two other features related to development.
The BDFR control bit in the SBDFR register (usually located at $1801)
is a write-only bit that allows a host development system to reset the
target MCU with a serial memory modify command through the
background debug interface. BDFR cannot be written by user software,
so the target MCU cannot be reset accidentally even if user code runs
away due to some programming bug. The second development feature
is a part identification number in the SDIDH:SDIDL register pair (usually
located at $1806, $1807). The upper four bits of SDIDH hold the silicon
mask set revision number (0—F), and the remaining 12 bits of the
SDIDH:SDIDL register pair hold a 12-bit code number that identifies the
device derivative. For example, the first revision of the MC9S08GB60
version of the HSC08 Family has a code number of
SDIDH:SDIDL = $0 002). This identification code allows an external
development host to associate a register definition file to a particular
target MCU so the debugger understands where registers and control
bits are located in the target MCU.

7.2 Features

Features of the background debug controller (BDC) include:

• Single dedicated pin for mode selection and background
communications

• BDC registers not located in memory map

• SYNC command to determine target communications rate

• Non-intrusive commands for memory access

• Active background mode commands for CPU register access

• GO and TRACEI commands

Reference Manual — Volume I HCS08 — Revision 1

210 Development Support MOTOROLA

Development Support
Features

• BACKGROUND command can wake CPU from stop or wait
modes

• One hardware address breakpoint built into BDC

• Oscillator runs in stop mode, if BDM enabled

Features of the debug module (DBG) include:

• Two trigger comparators:

— Two address + read/write (R/W) or

— One full address + data + R/W

• Flexible 8-word by 16-bit FIFO (first-in, first-out) for capture
information:

— Change-of-flow addresses or

— Event-only data

• Two types of breakpoints:

— Tag breakpoints for instruction opcodes

— Force breakpoints for any address access

• Nine trigger modes:

— A-only

— A OR B

— A then B

— A AND B data (full mode)

— A AND NOT B data (full mode)

— Event-only B (store data)

— A then event-only B (store data)

— Inside range (A ≤ address ≤ B)

— Outside range (address <A or address > B)

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 211

Development Support

7.3 Background Debug Controller (BDC)

All MCUs in the HCS08 Family contain a single-wire background debug
interface which supports in-circuit programming of on-chip non-volatile
memory and sophisticated non-intrusive debug capabilities. Unlike
debug interfaces on earlier 8-bit MCUs, this system does not interfere
with normal application resources. It does not use any user memory or
locations in the memory map and does not share any on-chip
peripherals. The single BKGD interface pin is a separate dedicated pin
which is not accessible to user programs.

BDM commands are divided into two groups:

• Active background mode commands require that the target MCU
is in active background mode (the user program is not running).
The BACKGROUND command causes the target MCU to enter
active background mode. Active background mode commands
allow the CPU registers to be read or written and allow the user to
trace one user instruction at a time or GO to the user program from
active background mode.

• Non-intrusive commands can be executed at any time even while
the user's program is running. Non-intrusive commands allow a
user to read or write MCU memory locations or access status and
control registers within the background debug controller (BDC).

Typically, a relatively simple interface pod is used to translate
commands from a host computer into commands for the custom serial
interface to the single-wire background debug system. Depending on
the development tool vendor, this interface pod may use a standard
RS232 serial port, a parallel printer port, or some other type of
communications such as Ethernet or a universal serial bus (USB) to
communicate between the host PC and the pod. The pod typically
connects to the target system with ground, the BKGD pin, RESET (if
there is a reset pin), and sometimes a VDD signal. An open-drain
connection to reset allows the host to force a target system reset which
is useful to regain control of a lost target system or to control startup of
a target system before the on-chip non-volatile memory has been
programmed. VDD can sometimes be used to allow the pod to take
power from the target system to avoid the need for a separate power
supply.

Reference Manual — Volume I HCS08 — Revision 1

212 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

7.3.1 BKGD Pin Description

All commands and bidirectional data for the background debug system
are communicated through the BKGD pin.

BKGD is the single-wire background debug interface pin. The primary
function of this pin is for bidirectional serial communication of
background debug commands and data. During reset, this pin selects
between starting in active background mode and starting the user's
application program. This pin is also used to request a timed sync
response pulse to allow a host development tool to determine the correct
clock frequency for background debug serial communications.

Figure 7-1 shows the standard header for connection of a BDM pod. A
pod is a small interface device that connects a host computer such as a
personal computer to a target HCS08 system. BKGD and GND are the
minimum connections required to communicate with a target MCU. The
open-drain RESET signal is included in the connector to allow a direct
way for the host to force a target system reset. By controlling both BKGD
and RESET, the host also can force the target system to reset into active
background mode rather than start the user application program. (This
is useful to gain control of a target MCU whose FLASH program memory
has not been programmed yet with a user application program.) The VDD
connection can sometimes allow a host debugger pod to take power
from the target system rather than using a separate power source for the
pod. However, if the pod is powered separately, it can be connected to
a running target system without forcing a target system reset or
otherwise disturbing the running application program.

BKGD 1
■ •

2 GND

NO CONNECT 3
• •

4 RESET

NO CONNECT 5
• •

6 VDD

Figure 7-1. Standard BDM Tool Connector

HCSO8 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 213

Development Support

In cases where there is no RESET pin on the MCU or no RESET
connection from the debug pod to the target MCU, there are other ways
to force a target system reset:

• Write a logic 1 to the BDM force reset (BDFR) bit in the SBDFR
register. This bit can only be written using a serial WRITE_BYTE
or WRITE_BYTE_WS command.

• Turn power off and back on to force a power-on reset.

• Point the PC at an illegal opcode and use GO or TRACE to force
an illegal opcode reset.

BKGD is a pseudo-open-drain pin with an on-chip pullup so no external
pullup resistor is required (although some users still use an external
pullup resistor to improve noise immunity). Unlike typical open-drain
pins, the external resistor capacitor (RC) time constant on this pin, which
is influenced by external capacitance, plays almost no role in signal rise
time. The custom protocol provides for brief, actively driven speedup
pulses to force rapid rise times on this pin without risking harmful drive
level conflicts. Refer to 7.3.2 Communication Details for more detail.

When no debugger pod is connected to the 6-pin BDM interface
connector, the internal pullup on BKGD chooses the normal operating
mode. When a pod is connected, it can pull both BKGD and RESET low,
release RESET to select active background mode rather than normal
operating mode, then release BKGD. Of course, it is not necessary to
force a reset to communicate with the target MCU through the
background debug interface. In fact, you can even connect a powered
debug pod onto a running target system without disturbing the running
application program.

Background debug controller (BDC) serial communications use a
custom serial protocol that was first introduced on the M68HC12 Family
of microcontrollers. This protocol assumes that the host knows the
communication clock rate which is determined by the target BDC clock
rate. The BDC clock rate may be the system bus clock frequency or an
alternate frequency source depending on the state of the CLKSW control
bit in the BDCSCR register. On the MC9S08GB60, the alternate
frequency source is a self-clocked local oscillator (ICGLCLK) in the BDC
that runs about 8 MHz independent of the bus frequency. On some other

Reference Manual — Volume I HCS08 — Revision 1

214 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

HCS08 derivatives, the alternate frequency source could be the
undivided crystal frequency. All communication is initiated and
controlled by the host which drives a high-to-low edge to signal the
beginning of each bit time. Commands and data are sent most
significant bit first (MSB-first).

If a host is attempting to communicate with a target MCU which has an
unknown BDC clock rate, a SYNC command may be sent to the target
MCU to request a timed sync response signal from which the host can
determine the correct communication speed. After establishing
communications, the host can read the BDC status and control register
and write to the clock switch (CLKSW) control bit to change the source
of the BDC clock for further BDC communications if necessary.

7.3.2 Communication Details

The BDC serial interface requires the external controller to generate a
falling edge on the BKGD pin to indicate the start of each bit time. The
external controller provides this falling edge whether data is transmitted
or received.

BKGD is a pseudo-open-drain pin that can be driven either by an
external controller or by the MCU. Data is transferred MSB first at
16 BDC clock cycles per bit (nominal speed). The interface times out if
512 BDC clock cycles occur between falling edges from the host. Any
BDC command that was in progress when this timeout occurs is aborted
without affecting the memory or operating mode of the target MCU
system. Refer to 7.3.2.1 BDC Communication Speed Considerations
for more detailed information about the source of the BDC
communications clock.

7.3.2.1 BDC Communication Speed Considerations

The custom serial protocol requires the debug pod to know the target
BDC communication clock speed. There are two possible sources for
this clock frequency (as selected by the CLKSW bit in the BDCSCR
register), the bus rate clock or a fixed-frequency alternate clock source
that may be different for different HCS08 derivatives. In an
MC9S08GB60, this alternate clock source is a self-clocked local

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 215

Development Support

oscillator in the BDC module that runs about 8 MHz (independent of the
CPU bus frequency). In other HCS08 devices this alternate clock source
is the undivided crystal frequency. Future derivatives may use some
other source for this alternate clock. Refer to the data sheet for each
HCS08 derivative for information about the alternate clock source in the
device you are using.

When the MCU is reset in normal user mode, CLKSW is reset to 0 which
selects the alternate clock source. This clock source is a fixed frequency
that is independent of the bus frequency so it will not change if a user
program modifies clock generator settings. This is the preferred clock
source for general debugging.

When the MCU is reset in active background mode, CLKSW is reset to
1 which selects the bus clock as the source of the BDC clock. This
CLKSW setting is most commonly used during FLASH memory
programming because the bus clock can usually be configured to
operate at the highest allowed bus frequency which will ensure the
fastest possible FLASH programming times. Since the host system is in
control of changes to clock generator settings, it can know when a
different BDC communication speed should be used. The host
programmer also knows that no unexpected change in bus frequency
could occur to disrupt BDC communications.

Normally, the CLKSW = 1 option should not be used for general
debugging because there is no way to be sure the user's application
program with not change the clock generator settings. This is especially
true in the case of application programs that are not yet fully debugged.

After any reset (or at any other time), the host system can issue a SYNC
command to determine the speed of the BDC clock. CLKSW may be
written using a serial WRITE_CONTROL command through the BDC
interface. CLKSW is located in the BDCSCR register in the BDC module
and it is not accessible in the normal memory map of the MCU. This
means that no user program can modify this register (intentionally or
unintentionally).

Reference Manual — Volume I HCS08 — Revision 1

216 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

7.3.2.2 Bit Timing Details

The BKGD pin can receive a high or low level or transmit a high or low
logic level. The following diagrams show timing for each of these cases.
Interface timing is synchronous to clocks in the target BDC, but
asynchronous to the external host. The internal BDC clock signal is
shown for reference in counting cycles.

Figure 7-2 shows an external host transmitting a logic 1 or 0 to the
BKGD pin of a target HCS08 MCU. The host is asynchronous to the
target so there is a 0-to-1 cycle delay from the host-generated falling
edge to where the target perceives the beginning of the bit time. Ten
target BDC clock cycles later, the target senses the bit level on the
BKGD pin. Typically, the host actively drives the pseudo-open-drain
BKGD pin during host-to-target transmissions to speed up rising edges.
Since the target does not drive the BKGD pin during this period, there is
no need to treat the line as an open-drain signal during host-to-target
transmissions.

BDC CLOCK
(TARGET MCU)

HOST
TRANSMIT 1

HOST
TRANSMIT 0

SYNCHRONIZATION
UNCERTAINTY

PERCEIVED START
OF BIT TIME

10 CYCLES

TARGET SENSES BIT LEVEL

EARLIEST START t
OF NEXT BIT

Figure 7-2. BDC Host-to-Target Serial Bit Timing

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 217

Development Support

Figure 7-3 shows the host receiving a logic 1 from the target MCU. Since
the host is asynchronous to the target MCU, there is a 0-to-1 cycle delay
from the host-generated falling edge on BKGD to the perceived start of
the bit time in the target MCU. The host holds the BKGD pin low long
enough for the target to recognize it (at least two target BDC cycles). The
host must release the low drive before the target MCU drives a brief
active-high speedup pulse seven cycles after the perceived start of the
bit time. The host should sample the bit level about 10 cycles after it
started the bit time.

BDC CLOCK
(TARGET MCU)

HOST DRIVE
TO BKGD PIN -

TARGET MCU
SPEEDUP PULSE

PERCEIVED START
OF BIT TIME

BKGD PIN

HIGH IMPEDANCE
I I I

RC RISE

I I I I I

 10 CYCLES

 10 CYCLES

HOST SAMPLES BKGD PIN

IGH IMPEDANCE

I

HIGH IMPEDANCE
I I I

'1
'1

I... A ... I ..

EARLIEST START
OF NEXT BIT

Figure 7-3. BDC Target-to-Host Serial Bit Timing (Logic 1)

Reference Manual — Volume I HCS08 — Revision 1

218 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

Figure 7-4 shows the host receiving a logic 0 from the target MCU. Since
the host is asynchronous to the target MCU, there is a 0-to-1 cycle delay
from the host-generated falling edge on BKGD to the start of the bit time
as perceived by the target MCU. The host initiates the bit time but the
target HCS08 finishes it. Since the target wants the host to receive a
logic 0, it drives the BKGD pin low for 13 BDC clock cycles, then briefly
drives it high to speed up the rising edge. The host samples the bit level
about 10 cycles after starting the bit time.

BDC CLOCK
(TARGET MCU)

HOST DRIVE
TO BKGD PIN _ 1

TARGET MCU
DRIVE AND

SPEEDUP PULSE

PERCEIVED START
OF BIT TIME

BKGD PIN

/ HIG IMPEDANCE

i

SPEEDUP
PULSE

i

10 CYCLES

10 CYCLES

HOST SAMPLES BKGD PIN 'f 1
i i A I

EARLIEST START
OF NEXT BIT

Figure 7-4. BDM Target-to-Host Serial Bit Timing (Logic 0)

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 219

Development Support

7.3.3 BDC Registers and Control Bits

The BDC has two registers:

• The BDC status and control register (BDCSCR) is an 8-bit register
containing control and status bits for the background debug
controller.

• The BDC breakpoint register (BDCBKPT) holds a 16-bit
breakpoint match address.

These registers are accessed with dedicated serial BDC commands and
are not located in the memory space of the target MCU (so they do not
have addresses and cannot be accessed by user programs).

Some of the bits in the BDCSCR have write limitations; otherwise, these
registers may be read or written at any time. For example, the ENBDM
control bit may not be written while the MCU is in active background
mode. (This prevents the ambiguous condition of the control bit
forbidding active background mode while the MCU is already in active
background mode.) Also, the four status bits (BDMACT, WS, WSF, and
DVF) are read-only status indicators and can never be written by the
WRITE_CONTROL serial BDC command. The clock switch (CLKSW)
control bit may be read or written at any time; however, this bit should
not be written to 1 if the target MCU has an FLL or PLL and user software
might change the FLL/PLL settings while debugging is taking place.
Changing FLUPLL settings while CLKSW = 1 causes BDC
communications to fail because the host cannot predict the correct
communications speed.

7.3.3.1 BDC Status and Control Register

This register can be read or written by serial BDC commands but is not
accessible to user programs because it is not located in the normal
memory map of the MCU.

Reference Manual — volume I HCS08 — Revision 1

220 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

Read:

Write:

Normal Reset:

Reset in active background
mode:

Bit 7 6 5 4 3 2 1 Bit 0

ENBDM
BDMACT

BKPTEN FTS CLKSW
WS WSF DVF

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

Figure 7-5. BDC Status and Control Register (BDCSCR)

ENBDM — Enable BDM (permit active background debug mode)
Typically, this bit is written to 1 by the debug host shortly after the
beginning of a debug session or whenever the debug host resets the
target and remains 1 until a normal reset clears it.

1 = BDM can be made active to allow active background mode
commands.

0 = BDM cannot be made active (non-intrusive commands still
allowed).

BDMACT — Background Mode Active Status
This is a read-only status bit.

1 = BDM active and waiting for serial commands
0 = BDM not active

BKPTEN — BDC Breakpoint Enable

If this bit is clear, the BDC breakpoint is disabled and the FTS control
bit and BDCBKPT match register are ignored.

1 = BDC breakpoint enabled
0 = BDC breakpoint disabled

FTS — Force/Tag Select
When FTS = 1, a breakpoint is requested whenever the CPU address
bus matches the BDCBKPT match register. When FTS = 0, a match
between the CPU address bus and the BDCBKPT register causes the
fetched opcode to be tagged. If this tagged opcode ever reaches the
end of the instruction queue, the CPU enters active background mode
rather than executing the tagged opcode.

1 = Breakpoint match forces active background mode at the next
instruction boundary (address need not be an opcode).

0= Tag opcode at breakpoint address and enter active background
mode if CPU attempts to execute that instruction.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 221

Development Support

CLKSW - Select Source for BDC Communications Clock
When the MCU is reset in normal user mode, CLKSW is forced to 0
which selects the fixed alternate frequency source as the BDC clock.
In the MC9S08GB60, the alternate frequency source is a local
oscillator in the BDC module that runs about 8 MHz. When the MCU
is reset in active background mode, CLKSW is forced to 1 which
selects the bus clock at the BDC clock. You should avoid using the
CLKSW = 1 option while running a user program that might change
the bus frequency unexpectedly because this could result in loss of
BDC communications.

1 = CPU bus clock
0 = Derivative-specific fixed alternate frequency source

WS — Wait or Stop Status
When the target CPU is in wait or stop mode, most BDC commands
cannot function. However, the BACKGROUND command can be
used to force the target CPU out of wait or stop mode and into active
background mode where all BDC commands work. Whenever the
host forces the target MCU into active background mode, the host
should issue a READ STATUS command to check that BDMACT = 1
before attempting other BDC commands.

1 = Target CPU is in wait or stop mode, or a BACKGROUND
command was used to change from wait or stop mode to active
background mode.

0 = Target CPU is running user application code or is in active
background mode (was not in wait or stop mode when
background became active).

WSF — Wait or Stop Failure Status
This status bit is set if a memory access command failed due to the
target CPU executing a WAIT or STOP instruction at or about the
same time. The usual recovery strategy is to issue a BACKGROUND
command to get out of wait or stop mode and into active background
mode, repeat the command that failed, then return to the user
program. (If desired, the host can restore CPU registers and stack
values and re-execute the WAIT or STOP instruction.)

1 = Memory access command failed because the CPU entered
wait or stop mode.

0 = Memory access did not conflict with a WAIT or STOP
instruction.

Reference Manual — Volume I HCSO8 — Revision 1

222 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

DVF — Data Valid Failure Status

This status bit is set if a memory access command failed due to the
target CPU executing a slow memory access at or about the same
time. The usual recovery strategy is to issue READ_LAST commands
until the returned status information indicated the original access
completed successfully. Since no current HCS08 devices have
memory modules that support slow accesses, this bit should always
read 0. Consult the data sheet for a specific HCS08 device if you are
uncertain about whether it includes any slow memory modules.

1 = Memory access command failed because the CPU was not
finished with a slow memory access.

0 = Memory access did not conflict with a slow memory access.

7.3.3.2 BDC Breakpoint Match Register

This 16-bit register holds the address for the hardware breakpoint in the
BDC. The BKPTEN and FTS control bits in BDCSCR are used to enable
and configure the breakpoint logic. Dedicated serial BDC commands
(READ_BKPT and WRITE_BKPT) are used to read and write the
BDCBKPT register. Breakpoints are normally set while the target MCU
is in active background mode before running the user application
program. However, since READ_BKPT and WRITE_BKPT are
non-intrusive commands, they could be executed even while the user
program is running. For additional information about setup and use of
the hardware breakpoint logic in the BDC, refer to 7.3.7 BDC Hardware
Breakpoint.

7.3.4 BDC Commands

BDC commands are sent serially from a host computer to the BKGD pin
of the target HCS08 MCU. All commands and data are sent MSB-first
using a custom BDC communications protocol. Active background mode
commands require that the target MCU is currently in the active
background mode while non-intrusive commands may be issued at any
time whether the target MCU is in active background mode or running a

user

application program.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 223

Development Support

Table 7-1 shows all HCSO8 BDC commands, a shorthand description of
their coding structure, and the meaning of each command. Subsequent
paragraphs describe each command in greater detail.

Table 7-1. BDC Command Summary

Command
Mnemonic

Active
Background

Mode/
Non-Intrusive

Coding
Structureti>

Description

SYNC Non-intrusive n/a~2)
Request a timed reference pulse to
determine target BDC communication
speed

ACK ENABLE
—

Non intrusive D5/d
Enable handshake. Issues an ACK pulse
after the command is executed.

ACK DISABLE — Non intrusive D6/d
Disable handshake. This command does
not issue an ACK pulse.

BACKGROUND Non intrusive 90/d
Enter active background mode if enabled
(ignore if ENBDM bit equals 0)

READ STATUS Non-intrusive E4/SS Read BDC status from BDCSCR

WRITE CONTROL Non-intrusive C4/CC Write BDC controls in BDCSCR

READ_BYTE Non-intrusive E0/AAAA/d/RD Read a byte from target memory

READ_BYTE_WS Non-intrusive E1/AAAA/d/SS/RD Read a byte and report status

READ LAST Non intrusive E8/SS/RD
Re-read byte from address just read and
report status

WRITE_BYTE Non-intrusive CO/AAAA/WD/d Write a byte to target memory

WRITE_BYTE_WS Non-intrusive C1/AAAA/WD/d/SS Write a byte and report status

READ_BKPT Non-intrusive E2/RBKP Read BDCBKPT breakpoint register

WRITE_BKPT Non-intrusive C2/WBKP Write BDCBKPT breakpoint register

GO
Active
Background Mode

08/d
Go to execute the user application
program starting at the address currently
in the PC

TRACEI Active
Background Mode 10/d

Trace 1 user instruction at the address in
the PC, then return to active background
mode

TAGGO
Active
Background Mode

18/d

Same as GO but enable external tagging
(HCS08 devices have no external tagging
pin, so TAGGO is just like GO in an
HCS08)

READ_A Active
Background Mode

681d/RD Read accumulator (A)

Reference Manual — Volume I HCS08 — Revision 1

224 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

Table 7-1. BDC Command Summary (Continued)

Command
Mnemonic

Active
Background

Mode/
Non-Intrusive

Coding
Structuret1

Description

READ_CCR Active
Background Mode

69/d/RD Read condition code register (CCR)

READ_PC Active
Background Mode

6B/d/RD16 Read program counter (PC)

READ_HX Active
Background Mode

6C/d/RD16 Read H and X register pair (H:X)

READ_SP
Active
Background Mode

6F/d/RD16 Read stack pointer (SP)

READ_NEXT
Active
Background Mode

701d/RD Increment H:X by one, then read memory
byte located at H:X

READ_NEXT_WS
Active
Background Mode 71/d/SS/RD

Increment H:X by one, then read memory
byte located at H:X. Report status and
data.

WRITE_A Active
Background Mode

48/WD/d Write accumulator (A)

WRITE_CCR Active
Background Mode

49/WD/d Write condition code register (CCR)

WRITE_PC
Active
Background Mode

4B/WD16/d Write program counter (PC)

WRITE_HX Active
Background Mode

4C/WD16/d Write H and X register pair (H:X)

WRITE_SP Active
Background Mode 4F/WD16/d Write stack pointer (SP)

WRITE_NEXT Active
Background Mode

50/WD/d Increment H:X by one, then write memory
byte located at H:X

WRITE_NEXT_WS Active
Background Mode

51/WD/d/SS
Increment H:X by one, then write memory
byte located at H:X. Also report status.

1. Key:
Commands begin with an 8-bit hexadecimal command code in the host-to-target direction (MSB first)
/ — separates parts of the command
d — delay 16 target BDC clock cycles (the CLKSW bit in BDCSCR controls the source of the BDC clock)
AAAA — a 16-bit address in the host-to-target direction
RD —8 bits of read data in the target-to-host direction
WD - 8 bits of write data in the host-to-target direction
RD16 — 16 bits of read data in the target-to-host direction
WD16 — 16 bits of write data in the host-to-target direction
SS — contents of BDCSCR in the target-to-host direction (STATUS)
CC — 8 bits of write data for BDCSCR in the host-to-target direction (CONTROL)
RBKP — 16 bits of read data in the target-to-host direction (from BDCBKPT breakpoint register)
WBKP — 16 bits of write data in the host-to-target direction (for BDCBKPT breakpoint register)

2. The SYNC command is a special operation which does not have a command code.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 225

Development Support

7.3.4.1 SYNC — Request Timed Reference Pulse

The SYNC command is unlike other BDC commands because the host
does not necessarily know the correct communications speed to use for
BDC communications until after it has analyzed the response to the
SYNC command.

To issue a SYNC command, the host:

• Drives the BKGD pin low for at least 128 cycles of the slowest
possible BDC clock (Bus rate clock or derivative-specific alternate
clock source)

• Drives BKGD high for a brief speedup pulse to get a fast rise time
(This speedup pulse is typically one cycle of the host clock which
is as fast as the fastest possible target BDC clock.)

• Removes all drive to the BKGD pin so it reverts to high impedance

• Listens to the BKGD pin for the sync response pulse

Upon detecting the sync request from the host (which is a much longer
low time than would ever occur during normal BDC communications),
the target:

• Waits for BKGD to return to a logic high

• Delays 16 cycles to allow the host to stop driving the high speedup
pulse

Drives BKGD low for 128 BDC clock cycles

• Drives a 1-cycle high speedup pulse to force a fast rise time on
BKGD

• Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse
and determines the correct speed for subsequent BDC communications.
Typically, the host can determine the correct communication speed
within a few percent of the actual target speed and the communication
protocol can easily tolerate speed errors of several percent.

Reference Manual — Volume I HCS08 — Revision 1

226 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

7.3.4.2 ACK ENABLE

Enable Host/Target handshake protocol Non-intrusive

$D5

host -> target
L
Y

Enables the hardware handshake protocol in the serial communication.
The hardware handshake is implemented by an acknowledge (ACK)
pulse issued by the target MCU in response to a host command. The
ACK_ENABLE command is interpreted and executed in the BDC block
without the need to interface with the CPU. However, an acknowledge
(ACK) pulse will be issued by the target device after this command is
executed. This feature could be used by the host in order to evaluate if
the target supports the hardware handshake protocol. If the target
supports the hardware handshake protocol the subsequent commands
are enabled to execute the hardware handshake protocol, otherwise this
command is ignored by the target.

For additional information about the hardware handshake protocol, refer
to 7.3.5 Serial Interface Hardware Handshake Protocol and 7.3.6
Hardware Handshake Abort Procedure.

7.3.4.3 ACK DISABLE

Disable HostlTarget handshake protocol Non-intrusive

$D6

host -> target D
L
Y

Disables the serial communication handshake protocol. The subsequent
commands, issued after the ACK_DISABLE command, will not execute
the hardware handshake protocol. This command will not be followed by
an ACK pulse.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 227

Development Support

7.3.4.4 BACKGROUND

Enter Active Background Mode (if Enabled) Non-intrusive

$90

pod - target D
L
Y

Provided the ENBDM control bit in the BDCSCR is 1 (BDM enabled), the
BACKGROUND command causes the target MCU to enter active
background mode as soon as the current CPU instruction finishes. If
ENBDM is 0 (its default value), the BACKGROUND command is
ignored.

A delay of 16 BDC clock cycles is required after the BACKGROUND
command to allow the target MCU to finish its current CPU instruction
and enter active background mode before a new BDC command can be
accepted.

After the target MCU is reset into a normal operating mode, the host
debugger would send a WRITE_CONTROL command to enable the
active background mode before attempting to send the BACKGROUND
command the first time. Normally, the development host would set
ENBDM once at the beginning of a debug session or after a target
system reset, and then leave the ENBDM bit set during debugging
operations. During debugging, the host would use GO and TRACEI
commands to move from active background mode to normal user
program execution and would use BACKGROUND commands or
breakpoints to return to active background mode.

7.3.4.5 READ_STATUS

Read Status from BDCSCR Non-intrusive

$E4 Read BDCSCR

pod - target target - pod

This command allows a host to read the contents of the BDC status and
control register (BDCSCR). This register is not in the memory map of the
target MCU, rather it is built into the BDC logic and is accessible only

Reference Manual — Volume I HCS08 — Revision 1

228 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

through READ_STATUS and WRITE_CONTROL serial BDC
commands.

The most common use for this command is to allow the host to
determine whether the target MCU is executing normal user program
instructions or if it is in active background mode. For example, during a
typical debug session, the host might set breakpoints in the user's
program and then use a GO command to begin normal user program
execution. The host would then periodically execute READ_STATUS
commands to tell when a breakpoint has been encountered and the
target processor has gone into active background mode. Once the target
has entered active background mode, the host would read the contents
of target CPU registers.

READ_STATUS is also used to tell when a BDC memory write
command completes after a DVF failure due to a slow memory access.
If a WRITE BYTE WS or WRITE NEXT WS command indicates a
failure due to a slow memory access (DVF = 1), the host should execute
READ_STATUS commands until the status response indicates the write
access has completed. The write request is latched during the
WRITE_BYTE_WS or WRITE_NEXT_WS so there is no need to repeat
the write command; just wait for status to indicate the latched request
has completed.

READ_STATUS might also be used to check whether the target MCU
has gone into wait or stop mode. During a debug session, the host or
user may decide it has taken too long to reach a breakpoint in the user
program. The host could then issue a READ_STATUS command and
check the WS status bit to see if the target MCU is still running user code
or if it has entered wait or stop mode. If WS = 0 and BDMACT = 0,
meaning it is running user code and is not in wait or stop, the host might
choose to issue a BACKGROUND command to stop the user program
and enter active background mode where the host can check the CPU
registers and find out what the target program is doing.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 229

Development Support

7.3.4.6 WRITE CONTROL

Write Control Bits in BDCSCR Non-intrusive

$C4 Write BDCSCR
pod —* target pod - target

This command is used to enable active background mode, choose the
clock source for BDC communications, and control the hardware
breakpoint logic in the BDC by writing to control bits in the BDC status
and control register (BDCSCR). This register is not in the memory map
of the target MCU, rather it is built into the BDC logic and is only
accessible through READ_STATUS and WRITE_CONTROL serial BDC
commands. Some bits in BDCSCR have write restrictions such as the
status bits BDMACT, WS, WSF, and DVF which are read-only status
indicators, and ENBDM which cannot be cleared while BDM is active.

The ENBDM control bit defaults to 0 (active background mode not
allowed) when the target MCU is reset in normal operating mode.
WRITE_CONTROL is used to enable the active background mode. This
is normally done once and ENBDM is left on throughout the debug
session. However, the debug system may want to change ENBDM to 0
measure true stop current in the target system (because ENBDM = 1
prevents the clock generation circuitry from disabling the internal clock
oscillator or crystal oscillator when the CPU executes a STOP
instruction).

The breakpoint enable (BKPTEN) and force/tag select (FTS) control bits
are used to control the hardware breakpoint logic in the BDC. This is a
single breakpoint that compares the current 16-bit CPU address against
the value in the BDCBKPT register. A WRITE_CONTROL command is
used to change BKPTEN and FTS, and a WRITE_BKPT command is
used to write the 16-bit BDCBKPT address match register.

The CLKSW bit in BDCSCR determines the source of the clock used for
BDC communications. If CLKSW = 0 (user mode default), the clock that
drives the BDC is the alternate fixed-frequency source. The details of the
exact clock source for the BDC in these cases depends on what clock
generation circuitry is present in the particular HCS08 derivative MCU.
For the MC9S08GB60, when CLKSW = 0, the BDC clock source is a
local oscillator in the BDC module (about 8 MHz).

Reference Manual — Volume I HCS08 — Revision 1

230 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

When CLKSW = 1, the CPU bus frequency is used as the clock source
to drive BDC communications logic. The CPU bus frequency may be a
crystal or an FLL or derived from a PLL. CLKSW should not be set to 1
if the application is using an FLL or PLL and is changing the bus
frequency in user programs, because BDC communications require that
the host knows the target BDC communications speed and the host has
no way to know if/when a user program might change the clock
generator settings.

7.3.4.7 READ_BYTE

Read Data from Target Memory Location Non-intrusive

$EO

pod - target

ADDRESS(16)

pod target

Read DATA(8)

D
L
Y

target - pod

This command is used to read the contents of a memory location in the
target MCU without checking the BDC status to be sure the data is valid.
In systems which have no slow memory accesses, and the target is
currently in active background mode or is known to be executing a
program which has no STOP or WAIT instructions, READ_BYTE is
faster than the more general READ_BYTE_WS which reports status in
addition to returning the requested read data. The most significant use
of the READ_BYTE command is during in-circuit FLASH programming
where the host downloads data to be programmed at the same time the
target CPU is executing the code that actually programs the FLASH
memory. Since the host provides the FLASH programming code, it can
guarantee that there are no STOP or WAIT instructions.

In general-purpose user programs and especially in programs that have
not been debugged, STOP or WAIT instructions and slow memory
accesses can occur at any time. To avoid the possibility of invalid read
operations, the host should use the READ_BYTE_WS command
instead of READ_BYTE to check the status to be sure the read has
returned valid data. If the status indicates the read was not valid, the host
can execute READ LAST commands until the status indicates the
returned data is valid.

HCSO8 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 231

Development Support

7.3.4.8 READ BYTE WS

Read Data from Target and Report Status Non-intrusive

pod - target pod - target D target —* pod
L
Y

target --* pod

This is the command normally used by a host debug system to perform
general-purpose memory read operations. In addition to returning the
data from the requested target memory location, this command returns
the contents of the BDC status and control register. The status
information can be used to determine whether the data that was returned
is valid or not. If a slow memory access was in progress at the time of
the read, the data valid failure (DVF) status bit will be 1. If the target MCU
was just entering wait or stop mode at the time of the read, the wait/stop
failure (WSF) status bit will be 1. If DVF and WSF are both 0, the data
that was returned is valid.

In the case of a DVF error, execute READ_LAST commands until the
status response indicates the data is correct. In the case of a WSF error,
first issue a BACKGROUND command to wake the target CPU from wait
or stop and enter active background mode. From there, issue a new
READ_BYTE or READ_BYTE_WS command, and if desired adjust the
program counter (PC) and stack and re-execute the WAIT or STOP
instruction to return the target to wait or stop mode.

If you are sure that the target system has no slow accesses and will not
execute a WAIT or STOP instruction during the memory access, use the
faster READ BYTE command instead of READ BYTE WS. In user
programs that have not been debugged, there is no guarantee that the
CPU will not run away and execute an unintended WAIT or STOP
instruction.

Reference Manual — Volume I HCS08 — Revision 1

232 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

7.3.4.9 READ_LAST

Re-Read from Last Address with Status Non-intrusive

$E8 Read BDCSCR Read DATA(8)

pod - target target - pod target -~ pod

This command is used only after a READ_BYTE_WS command where

the DVF status bit indicated an error. In that case, issue READ_LAST

commands until the status bits indicate a valid response. The
READ_LAST command uses the memory address from the previous
READ_BYTE_WS command so the command is shorter and faster than
other read commands.

7.3.4.10 WRITE_BYTE

Write Data to Target Memory Location Non-intrusive

$C0 ADDRESS(16)
pod - target pod -* target

Write DATA(8) I
pod - target D

L
Y

This command is used to write the contents of a memory location in the
target MCU without checking the BDC status to be sure the write was
completed successfully. In systems which have no slow memory
accesses, and the target is currently in active background mode or is

known to be executing a program which has no STOP or WAIT
instructions, WRITE_BYTE is faster than the more general
WRITE_BYTE_WS which reports status in addition to performing the
requested write operation. The most significant use of the WRITE_BYTE
command is during in-circuit FLASH programming where the host
downloads data to be programmed at the same time the target CPU is
executing the code that actually programs the FLASH memory. Since

the host provides the FLASH programming code, it can guarantee that

there are no STOP or WAIT instructions.

In general-purpose user programs and especially in programs that have

not been debugged, STOP or WAIT instructions and slow memory
accesses can occur at any time. To avoid the possibility of invalid write
operations, the host should use the WRITE_BYTE_WS command
instead of WRITE_BYTE to check the status to be sure the write was
completed successfully.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 233

Development Support

7.3.4.11 WRITE BYTE WS

Write Data to Target and Report Status

pod -~ target pod - target

Non-intrusive

pod - target D target - pod
L
Y

This is the command normally used by a host debug system to perform
general-purpose memory write operations. In addition to performing the
requested write to a target memory location, this command returns the
contents of the BDC status and control register. The status information
can be used to tell if the write operation was completed successfully. If
a slow memory access was in progress at the time of the write, the data
valid failure (DVF) status bit will be 1. If the target MCU was just entering
wait or stop mode at the time of the read, the wait/stop failure (WSF)
status bit will be 1 and the write command is cancelled. If DVF and WSF
are both 0, the write operation was completed successfully.

If DVF is set in the returned status value, the write was not completed
(although the address and data for the operation are latched). Do
READ STATUS commands until DVF is returned as a 1 to indicate that
the write operation was completed successfully. If the WSF bit indicated
a WAIT or STOP instruction caused the write operation to fail, do a
BACKGROUND command to force the target system out of wait or stop
mode and into active background mode. From there, repeat the failed
write operation, and if desired adjust the PC and stack and re-execute
the WAIT or STOP instruction to return the target to wait or stop mode.

If you are sure that the target system has no slow accesses and will not
execute a WAIT or STOP instruction during the memory access, you can
use the faster WRITE BYTE command instead of WRITE BYTE WS.
In user programs that have not been debugged, there is no guarantee
that the CPU will not run away and execute an unintended WAIT or

STOP instruction.

Reference Manual — Volume I HCSo8 — Revision 1

234 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

7.3.4.12 READ BKPT

Read 16-Bit BDC Breakpoint Register (BDCBKPT) Non-intrusive

$E2 Read data from BDCBKPT register

pod — target target —~ pod

This command is used to read the 16-bit BDCBKPT address match
register in the hardware breakpoint logic in the BDC.

7.3.4.13 WRITE BKPT

Write 16-Bit BDC Breakpoint Register (BDCBKPT) Non-intrusive

$C2 Write data to BDCBKPT register

pod —+ target pod - target

This command is used to write a 16-bit address value into the BDCBKPT
register in the BDC. This establishes the address of a breakpoint. The
BKPTEN bit in the BDCSCR determines whether the breakpoint is
enabled. If BKPTEN = 1 and the FTS control bit in the BDCSCR is set
(force), a successful match between the CPU address and the value in
the BDCBKPT register will force a transition to active background mode
at the next instruction boundary. If BKPTEN = 1 and FTS = 0, the
opcode at the address specified in the BDCBKPT register will be tagged
as it is fetched into the instruction queue. If and when a tagged opcode
reaches the top of the instruction queue and is about to be executed, the
MCU will enter active background mode rather than execute the tagged
instruction.

In normal debugging environments, breakpoints are established while
the target MCU is in active background mode before going to the user's
program. However, since this is a non-intrusive command, it could be
executed even when the MCU is running a user application program.
BDC serial communications are essentially asynchronous to a running
user program, so it is impractical to predict the exact time of a BDCBKPT
register value change relative to a particular bus cycle of the user's
program when the WRITE_BKPT instruction is executed while the user

application program is running.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 235

Development Support

7.3.4.14 GO

Start Execution of User Program Starting at Current PC

$08
pod —* target D

L
Y

7.3.4.15 TRACEI

Active Background
Mode

This command is used to exit the active background mode and begin
execution of user program instructions starting at the address in the PC.
Typically, the host debug monitor program modifies the PC value (using
a WRITE_PC command) before issuing a GO command to go to an
arbitrary point in the user program. This WRITE_PC command is not
needed if the host simply wants to continue the user program where it
left off when it entered active background mode.

Run One User Instruction Starting at the Current PC

$10
pod -i target

7.3.4.16 TAGGO

D
L
Y

Active Background
Mode

This command is used to run one user instruction and return to active
background mode. The address in the PC determines what user
instruction will be executed, and the PC value after TRACEI is
completed will reflect the results of the executed instruction.

Enable External Tagging and Start Execution of User Program

$18
pod - target

L
Y

Active Background
Mode

This instruction enables the external tagging function and goes to the
user program starting at the address currently in the PC. However, since
HCS08 devices do not have an external pin connected to the tagging
input of the BDC module, this command is essentially the same as the
GO command, so there is no need to use TAGGO commands in an
HCS08 system.

Reference Manual — Volume I HCS08 — Revision 1

236 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

7.3.4.17 READ_A

Read Accumulator A of the Target CPU

68 Accum. data(8)
pod - target D target -* pod

L
Y

7.3.4.18 READ CCR

Active Background
Mode

Read the contents of the accumulator (A) of the target CPU. Since the
CPU in the target MCU is effectively halted while the target is in active
background mode, there is no need to save the target CPU registers on
entry into active background mode and no need to restore them on exit
from active background to a user program.

Read the Condition Code Register of the Target CPU

$69]] CCR data(8)
pod - target D target --> pod

L
Y

Active Background
Mode

Read the contents of the condition code register (CCR) of the target
CPU. Since the CPU in the target MCU is effectively halted while the
target is in active background mode, there is no need to save the target
CPU registers on entry into active background mode and no need to
restore them on exit from active background mode to a user program.
The CCR value is not affected by BDC commands (except, of course,
the WRITE_CCR command).

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 237

Development Support

7.3.4.19 READ PC

Read the Program Counter of the Target CPU

$6B Program Counter data(16) I
pod —* target D target —* pod

L
Y

Active Background
Mode

Read the contents of the program counter (PC) of the target CPU. Since
the CPU in the target MCU is effectively halted while the target is in
active background mode, there is no need to save the target CPU
registers on entry into active background mode and no need to restore
them on exit from active background mode to a user program.

The value in the PC when the target MCU enters active background
mode is the address of the instruction that would have executed next if
the MCU had not entered active background mode. If the target CPU
was in wait or stop mode when a BACKGROUND command caused it to
go to active background mode, the PC will hold the address of the
instruction after the WAIT or STOP instruction that was responsible for
the target CPU being in wait or stop, and the WS bit will be set. In the
boundary case (where an interrupt and a BACKGROUND command
arrived at about the same time and the interrupt was responsible for the
target CPU leaving wait or stop and then the BACKGROUND command
took effect), the WS bit will be clear and the PC will be pointing at the first
instruction in the interrupt service routine. In the case of a software
breakpoint (where the host placed a BGND opcode at the desired
breakpoint address), the PC will be pointing at the address immediately
following the inserted BGND opcode, and the host monitor will adjust the
PC backward by one after removing the software breakpoint.

Reference Manual — Volume I HCS08 — Revision 1

238 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

7.3.4.20 READ_HX

Read the H:X Register Pair of the Target CPU

$6C H:X register pair data(16)

pod —* target D
L
Y

7.3.4.21 READ SP

target -> pod

Active Background
Mode

Read the contents of the H:X register pair (H:X) of the target CPU. Since
the CPU in the target MCU is effectively halted while the target is in
active background mode, there is no need to save the target CPU
registers on entry into active background mode and no need to restore
them on exit from active background mode to a user program. H and X
can be read only as a 16-bit register pair. (There are no BDC commands
to read H and X separately.)

Read the Stack Pointer of the Target CPU

Stack Pointer data(16)

pod —> target D target - pod
L
Y

Active Background
Mode

Read the contents of the stack pointer (SP) of the target CPU. Since the
CPU in the target MCU is effectively halted while the target is in active
background mode, there is no need to save the target CPU registers on
entry into active background mode and no need to restore them on exit
from active background mode to a user program.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 239

Development Support

7.3.4.22 READ_NEXT

Increment H:X, Then Read Memory Pointed to by H:X

$70 I I Memory data(8)

pod - target D target - pod
L
Y

Active Background
Mode

READ_NEXT increments the H:X register pair by one, then reads the
memory location pointed to by the incremented 16-bit H:X register pair.
This command is similar to the READ_BYTE command except that it
uses the value in the H:X index register pair as the address for the
operation. There is no address included in this command, so it is more
efficient than the READ BYTE command. Since READ_NEXT uses the
H:X register pair of the CPU, it is an active background mode command
while READ BYTE is a non-intrusive command.

Typically, the host debug system would save the contents of H:X, set
H:X to one less than the address of the first byte of a block to be read,
execute READ_NEXT commands to read a block of memory, then
restore the original contents of H:X (if necessary).

Since READ_NEXT is an active background mode command, there is
no concern about errors due to WAIT or STOP instructions and no
concern about unexpected slow memory accesses from user code.
There could still be slow memory accesses due to the READ_NEXT
command itself attempting to access a slow memory location; however,
this is completely predictable by the host debug system. In the unusual
case of a system that has slow memory and the READ_NEXT operation
needs to access memory locations that are slow, use the
READ_NEXT_WS command rather than READ_NEXT.

Reference Manual — Volume I HCSO8 — Revision 1

240 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

7.3.4.23 READ NEXT WS

Increment H:X, Then Read Memory @ H:X and Report Status

$71 Read BDCSCR Read DATA(8)

pod -* target D target - pod
L
Y

7.3.4.24 WRITE _A

target -* pod

Active Background
Mode

READ_NEXT_WS increments the H:X register pair by one, reads the
memory location pointed to by the incremented 16-bit H:X register pair,
and returns both the contents of the BDC status and control register
(BDCSCR) and the 8-bit data. This command is similar to the
READ_NEXT command except that it returns the status from BDCSCR
in addition to performing the requested read operation. This status
information can be used to tell if the requested read operation returned
valid data (DVF = 0). If the status indicates an access failed because it
is a slow memory location, execute READ_LAST_WS commands until
the status indicates the read data is valid. (Normally, this would require
only one READ_LAST_WS command since the BDC serial commands
are much slower than the target bus speed.)

Write Accumulator A of the Target CPU

$48 Accum. data(8)

pod - target pod —* target D
L
Y

Active Background
Mode

Write new data to the accumulator (A) of the target CPU. This command
can be used to change the value in the accumulator before returning to
the user application program via a GO or TRACEI command.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 241

Development Support

7.3.4.25 WRITE CCR

Write the Condition Code Register of the Target CPU

$49 CCR data(8) L
pod - target pod —* target D

7.3.4.26 WRITE PC

L
Y

Active Background
Mode

Write new data to the condition code register (CCR) of the target CPU.
This command can be used to change the condition codes before
returning to the user application program via a GO or TRACEI
command. Other BDC commands do not alter the states of any condition
code bits.

Write the Program Counter of the Target CPU

$4B

Active Background
Mode

Program Counter data(16)
pod -~ target pod - target

7.3.4.27 WRITE HX

L
Y

This command is used to change the contents of the program counter
(PC) of the target CPU before returning to the user application program
via a GO or TRACEI command.

Write the H:X Register Pair of the Target CPU

$4C H:X register pair data(16)
pod - target pod - target

L
Y

Active Background
Mode

Write new data to the H:X index register pair (H:X) of the target CPU.
This command can be used to change the value in the 16-bit index
register pair (H:X) before returning to the user application program via a
GO or TRACE command.

Reference Manual — Volume I HCS08 — Revision 1

242 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

7.3.4.28 WRITE SP

Write the Stack Pointer of the Target CPU

$4F Stack Pointer data(16)

pod -~ target pod - target D
L
Y

Active Background
Mode

Write new data to the stack pointer (SP) of the target CPU. This
command can be used to change the value in the stack pointer before
returning to the user application program via a GO or TRACEI
command.

7.3.4.29 WRITE_NEXT

Increment H:X, Then Write Memory Pointed to by H:X

$50 Memory data(8)

pod -~ target pod —~ target D
L
Y

Active Background
Mode

WRITE_NEXT increments the H:X register pair by one, then writes to the
memory location pointed to by the incremented 16-bit H:X register pair.
This command is similar to the WRITE_BYTE command except that it

uses the value in the H:X index register pair as the address for the
operation. Because no address is included in this command, it is more
efficient than the WRITE_BYTE command. Since WRITE_NEXT uses
the H:X register pair of the CPU, it is an active background mode
command while WRITE_BYTE is a non-intrusive command.

Typically, the host debug system would save the contents of H:X, set
H:X to one less than the address of the first byte of a block to be written,

execute WRITE_NEXT commands to write a block of memory, then
restore the original contents of H:X, if necessary.

Since WRITE_NEXT is an active background mode command, there is
no concern about errors due to WAIT or STOP instructions and no
concern about unexpected slow memory accesses from user code.

HCS08 — Revision 1 Reference Manual — volume I

MOTOROLA Development Support 243

Development Support

There could still be slow memory accesses due to the WRITE_NEXT
command itself attempting to access a slow memory location; however,
this is completely predictable by the host debug system. In the unusual
case of a system that has slow memory and the WRITE_NEXT
operation needs to access memory locations that are slow, use the
WRITE_NEXT_WS command rather than WRITE_NEXT.

7.3.4.30 WRITE_NEXT_ WS

Increment H:X, Then Write Memory @ H:X and Report Status

$51 Memory data(8)

pod —* target

Read BDCSCR

pod - target D target - pod
L
Y

Active Background
Mode

WRITE_NEXT_WS increments the H:X register pair by one, writes to the
memory location pointed to by the incremented 16-bit H:X register pair,
attempts to perform the requested write operation, and returns the
contents of the BDC status and control register (BDCSCR). This
command is similar to the WRITE_NEXT command except that it returns
the status from BDCSCR in addition to performing the requested write
operation. This status information can be used to tell if the requested
write operation was completed successfully (DVF=O). If the status
indicates an access failed because it is a slow memory location, the
address and data for the operation are latched and you should execute
READ STATUS commands until the status indicates the write was
completed successfully. (This would normally only require one
READ STATUS command since the BDC serial commands are much
slower than the target bus speed.)

Reference Manual — Volume I HCS08 — Revision 1

244 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

7.3.5 Serial Interface Hardware Handshake Protocol

BDC commands that require CPU execution are ultimately treated at the
MCU bus rate. Since the BDC clock source can be asynchronous
relative to the bus frequency, when CLKSW = 0, it is necessary to
provide a handshake protocol in which the host could determine when
an issued command is executed by the CPU. This sub-section will

describe the hardware handshake protocol.

The hardware handshake protocol signals to the host controller when an
issued command was successfully executed by the target. This protocol
is implemented by a low pulse (16 BDC clock cycles) followed by a brief
speedup pulse on the BKGD pin, generated by the target MCU when a
command, issued by the host, has been successfully executed. See
Figure 7-6. This pulse is referred to as the ACK pulse. After the ACK
pulse is finished, the host can start the data-read portion of the
command if the last issued command was a read command, or start a

new command if the last command was a write command or a control
command (BACKGROUND, GO, GO_UNTIL or TRACED. The ACK
pulse is not issued earlier than 32 BDC clock cycles after the BDC
command was issued. The end of the BDC command is assumed to be
the 16th BDC clock cycle of the last bit. This minimum delay assures
enough time for the host to recognize the ACK pulse. Note also that
there is no upper limit for the delay between the command and the
related ACK pulse, since the command execution depends on the CPU
bus frequency, which in some cases could be very slow compared to the
serial communication rate. This protocol allows great flexibility for pod
designers, since it does not rely on any accurate time measurement or
short response time to any event in the serial communication.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 245

Development Support

BDC CLOCK
(TARGET MCU)

TARGET
TRANSMITS
ACK PULSE

BKGD PIN

.rJ~~i
rr
r~nr7

uuul

HIGH-IMPEDANCE

32 CYCLES

16th CYCLE OF THE
LAST COMMAD BIT

16 CYCLES

MINIMUM DELAY

I
FROM THE BDC COMMAND

SPEED UP PULSE

\ HIGH-IMPEDANCE

Figure 7-6. Target Acknowledge Pulse (ACK)

EARLIEST
START OF
NEXT BIT

NOTE: If the ACK pulse was issued by the target, the host assumes the
previous command was executed. If the CPU enters WAIT or STOP
prior to executing a non-intrusive command, the ACK pulse will not be
issued, meaning that the BDC command was not executed. After
entering WAIT or STOP mode, the BDC command is no longer pending
and the DVF status bit is kept one until the next command is successfully
executed.

Figure 7-7 shows the ACK handshake protocol in a command level
timing diagram. The READ_BYTE command is used as an example.
First, the 8-bit command code is sent by the host, followed by the
address of the memory location to be read. The target BDC decodes the
command and sends it to the CPU. Upon receiving the BDC command
request, the CPU completes the current instruction being executed, the
CPU is temporarily halted, the BDC executes the READ_BYTE
command and then the CPU continues. This process is referred to as
cycle stealing. The READ_BYTE command takes two bus cycles in
order to be executed by the CPU. After that, the CPU notifies to the BDC
that the requested command was done and then resumes the normal
flow of the application program. After detecting the READ_BYTE
command is done, the BDC issues an ACK pulse to the host controller,
indicating that the addressed byte is ready to be retrieved. After

Reference Manual — Volume I HCSOB — Revision 1

246 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

detecting the ACK pulse, the host initiates the data-read portion of the

command.

TARGET- .HOST

BKGD PIN READ_BYTE BYTE ADDRESS

HOST TARGET

BDC DECODES
THE COMMAND

BYTE IS
RETRIEVED

:. • i

HOST -~ TARGET

BDC ISSUES THE
ACK PULSE (NOT TO SCALE)

CPU EXECUTES THE
READ_BYTE
COMMAND

Figure 7-7. Handshake Protocol at Command Level

Unlike a normal bit transfer, where the host initiates the transmission by
issuing a negative edge in the BKGD pin, the serial interface ACK
handshake pulse is initiated by the target MCU. The hardware
handshake protocol in Figure 7-6 specifies the timing when the BKGD
pin is being driven, so the host should follow these timing constraints in
order to avoid the risks of an electrical conflict at the BKGD pin.

The ACK handshake protocol does not support nested ACK pulses. If a
BDC command is not acknowledged by an ACK pulse, the host first
needs to abort the pending command before issuing a new BDC
command. When the CPU enters WAIT or STOP mode at about the
same time the host issues a command (such as WRITE_BYTE) that
requires CPU execution, the target discards the incoming command.
Therefore, the command is not acknowledged by the target, which
means that the ACK pulse will not be issued in this case. After a certain
time the host could decide to abort the ACK protocol in order allow a new
command. Therefore, the protocol provides a mechanism in which a
command, and therefore a pending ACK, could be aborted. Note that,
unlike a regular BDC command, the ACK pulse does not provide a
timeout. In the case of a WAIT or STOP instruction where the ACK is
prevented from being issued, the ACK would remain pending indefinitely
if not aborted. See the handshake abort procedure described in section
7.3.6 Hardware Handshake Abort Procedure below.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 247

Development Support

7.3.6 Hardware Handshake Abort Procedure

The abort procedure is based on the SYNC command. In order to abort
a command that has not responded with an ACK pulse, the host
controller should generate a sync request (by driving BKGD low for at
least 128 serial clock cycles and then driving it high for one serial clock
cycle as a speedup pulse). By detecting this long low pulse on the BKGD
pin, the target executes the sync protocol (see 7.3.4.1 SYNC —
Request Timed Reference Pulse), and assumes that the pending
command and therefore the related ACK pulse, are being aborted.
Therefore, after the sync protocol completes, the host is free to issue
new BDC commands.

Although it is not recommended, the host could abort a pending BDC
command by issuing a low pulse on the BKGD pin that is shorter than
128 BDC clock cycles, which will not be interpreted as the SYNC
command. The ACK is actually aborted when a negative edge is
perceived by the target on the BKGD pin. The short abort pulse should
be at least four BDC clock cycles long to allow the negative edge to be
detected by the target. In this case the target will not execute the sync
protocol but the pending command will be aborted along with the ACK
pulse. The potential problem with this abort procedure is when there is a
conflict between the ACK pulse and the short abort pulse. In this case
the target would not recognize the abort pulse. The worst case is when
the pending command is a read command, as for instance the
READ_BYTE. If the abort pulse is not perceived by the target, the host
will attempt to send a new command after the abort pulse was issued,
while the target expects the host to retrieve the accessed memory byte.
Host and target will run out of synchronization in this case. However, if
the command to be aborted is not a read command, the short abort pulse
could be used. After a command is aborted, the target assumes that the
next negative edge, after the abort pulse, is the first bit of a new BDC
command.

NOTE; The details about the short abort pulse are being provided only as a
reference for the reader to better understand the BDC internal behavior.
It is not recommended that this procedure be used in a real application.

Reference Manual — Volume I HCS08 — Revision 1

248 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

Note that, since the host knows the target BDC clock frequency, the
SYNC command does not need to consider the lowest possible target
frequency. In this case, the host could issue a SYNC very close to the
128 serial clock cycles length, just providing a small overhead on the
pulse length in order to assure the sync pulse will not be misinterpreted
by the target. See 7.3.4.1 SYNC — Request Timed Reference Pulse.

It is important to notice that any issued BDC command that requires
CPU execution will be executed at the next instruction boundary,
provided the CPU does not enter WAIT or STOP modes. If the host
aborts a command by sending the sync pulse, it should then read the
BDCSCR after the sync response is issued by the target, checking for
DVF = 0, before attempting to send any new command that requires
CPU execution. This prevents the new command from being discarded
at the BDC-CPU interface, due to the pending command being executed
by the CPU. Any new command should be issued only after DVF = 0.

There are two reasons that could cause a command to take too long to
be executed, measured in terms of the serial communication rate. Either
the BDC clock frequency is much faster than the CPU bus clock
frequency, or the CPU is accessing a slow memory, which would cause
suspend cycles to occur. The hardware handshake protocol is
appropriate for both situations, but the host could also decide to use the
software handshake protocol instead. In this case, if the DVF bit is at
logic 1, there is a BDC command pending at the BDC-CPU interface.
The host controller should monitor the DVF bit and wait until it is at logic
0 in order to be able to issue a new command that requires CPU
execution. Note that the WSF bit in the BDCSCR register should be at
logic 0 in this case. However, if the WSF bit was at logic 1, the host
should assume the last command failed due to a WAIT or STOP
instruction being executed by the CPU. In this case, the host controller
should enable background mode, using a WRITE_CONTROL
command, and then issue a BACKGROUND command in order to put
the CPU into active background mode. After that, new commands could
be issued, including those that require CPU execution.

Figure 7-8 shows a SYNC command aborting a READ_BYTE. Note that

after the command is aborted, a new command could be issued by the
host computer.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 249

Development Support

BKGD PIN

NOTE: Figure 7-8 signal timing

READ_BYTE CMD

IS ABORTED BY THE SYNC REQUEST

(NOT TO SCALE)

is not drawn to scale.

SYNC RESPONSE

/ FROM THE TARGET
(NOT TO SCALE)

READ_BYTE MEMORY ADDRESS

H

READ_STATUS NEW BDC COMMAND

HOST -► TARGET HOST -s TARGET HOST -► TARGET `

NEW BDC COMMAND
BDC DECODES
AND STARTS TO EXECUTE
THE READ_BYTE CMD

Figure 7-8. ACK Abort Procedure at the Command Level

Figure 7-9 shows a conflict between the ACK pulse and the sync
request pulse. This conflict could occur if a pod device is connected to
the target BKGD pin and the target is already executing a BDC
command. Consider that the target CPU is executing a pending BDC
command at the exact moment the pod is being connected to the BKGD
pin. In this case an ACK pulse is issued at the same time as the SYNC
command. In this case there is an electrical conflict between the ACK
speedup pulse and the sync pulse. Since this is not a probable situation,
the protocol does not prevent this conflict from happening.

Reference Manual — Volume I HCSO8 — Revision 1

250 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

AT LEAST 128 CYCLES

BDC CLOCK
(TARGET MCU)

TARGET MCU
DRIVES TO

BKGD PIN -

HOST
DRIVES SYNC
TO BKGD PIN -

BKGD PIN

N
ACK PULSE

1
HOST AND TARGET
DRIVE TO BKGD PIN

HOST SYNC REQUEST PULSE

. HIGH-IMPEDANCE

ELECTRICAL CONFLICT

16 CYCLES

JI

Figure 7-9. ACK Pulse and SYNC Request Conflict

SPEEDUP PULSE

The hardware handshake protocol is enabled by the ACK_ENABLE
command and disabled by the ACK_DISABLE command. It also allows
for pod devices to choose between the hardware handshake protocol or
the software protocol that monitors the BDC status register. The
ACK_ENABLE and ACK_DISABLE commands are:

• ACK_ENABLE — Enables the hardware handshake protocol. The
target will issue the ACK pulse when a CPU command is executed
by the CPU. The ACK_ENABLE command itself also has the ACK
pulse as a response.

• ACK_DISABLE — Disables the ACK pulse protocol. In this case
the host should verify the state of the DVF bit in the BDC Status
and Control register in order to evaluate if there are pending
commands and to check if the CPU changed to or from active
background mode.

The default state of the protocol, after reset, is hardware handshake
protocol disabled.

The commands that do not require CPU execution, or that have the
status register included in the retrieved bit stream, do not perform the

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 251

Development Support

hardware handshake protocol. Therefore, the target will not respond
with an ACK pulse for those commands even if the hardware protocol is
enabled. The commands are: READ_STATUS, WRITE_CONTROL,
WRITE_BYTE_WS, READ_BYTE_WS, READ_NEXT_WS,
WRITE_NEXT_WS, WRITE_BKPT, READ_BKPT, READ_LAST and
ACK DISABLE. See 7.3.4 BDC Commands for more information on the
BDC commands.

NOTE: The TAGGO command does not have the ACK pulse as a response.
Except for no ACK pulse, this command is equivalent to the GO
command. It was implemented for compatibility with previous BDC
versions. The HCS08 core does not provide support for external tag
using the BKGD pin.

Only commands that require CPU execution perform the hardware
handshake protocol. These commands are: WRITE_BYTE,
READ_BYTE, WRITE_NEXT, READ_NEXT, WRITE_A, READ_A,
WRITE_CCR, READ_CCR, WRITE_SP, READ_SP, WRITE_HX,
READ_HX, WRITE_PC, READ_PC. An exception is the ACK_ENABLE
command, which does not require CPU execution but responds with the
ACK pulse. This feature could be used by the host to evaluate if the
target supports the hardware handshake protocol. If an ACK pulse is
issued in response to this command, the host knows that the target
supports the hardware handshake protocol. If the target does not
support the hardware handshake protocol the ACK pulse is not issued.
In this case the ACK_ENABLE command is ignored by the target, since
it is not recognized as a valid command.

The BACKGROUND command will issue an ACK pulse when the CPU
changes from running user code to active background mode. The ACK
pulse related to this command could be aborted using the SYNC
command.

The GO command will issue an ACK pulse when the CPU exits from
active background mode. The ACK pulse related to this command could
be aborted using the SYNC command.

The TRACEI command has the related ACK pulse issued when the
CPU enters active background mode after one instruction of the

Reference Manual — Volume I HCS08 — Revision 1

252 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

application program is executed. The ACK pulse related to this
command could be aborted using the SYNC command.

The GO_UNTIL command is equivalent to a GO command with
exception that the ACK pulse, in this case, is issued when the CPU
enters into active background mode. This command is an alternative to
the GO command and should be used if the host wants to trace if a
breakpoint match had occurred which caused the CPU to enter active
background mode. Note that the ACK is issued whenever the CPU
enters BDM, which could be caused by a BDC breakpoint match, or an
external force/tag, or by a BGND instruction being executed. The ACK
pulse related to this command could be aborted using the SYNC
command.

The TAGGO command is equivalent to the GO command, but will not
have an ACK pulse as a response. This command is being kept for
backwards compatibility reasons. The GO command should be used
instead.

7.3.7 BDC Hardware Breakpoint

The BDC includes one relatively simple hardware breakpoint which
compares the CPU address bus to a 16-bit match value in the BDCBKPT
register. This breakpoint can generate a forced breakpoint or a tagged
breakpoint. A forced breakpoint causes the CPU to enter active
background mode at the first instruction boundary following any access
to the breakpoint address. The tagged breakpoint causes the instruction
opcode at the breakpoint address to be tagged so that the CPU will enter
active background mode rather than executing that instruction if and
when it reaches the end of the instruction queue. This implies that
tagged breakpoints can be placed only at the address of an instruction
opcode while forced breakpoints can be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and
control register (BDCSCR) is used to enable the breakpoint logic
(BKPTEN = 1). When BKPTEN = 0, its default value after reset, the
breakpoint logic is disabled and no BDC breakpoints are requested
regardless of the values in other BDC breakpoint registers and control

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 253

Development Support

bits. The force/tag select (FTS) control bit in BDCSCR is used to select
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The 8-bit BDCSCR and the 16-bit BDCBKPT address match register are
built directly into the BDC and are not accessible in the normal MCU
memory map. This means that the user application program cannot
access these registers. Dedicated BDC serial commands are the only
way to access these registers. READ_STATUS and WRITE_CONTROL
are used to read or write BDCSCR, respectively. READ_BKPT and
WRITE BKPT are used to read or write the 16-bit BDCBKPT address
match register. A host debug pod can read or write these registers at any
time even while a user application program is running. However, it is
more common to adjust breakpoint settings while the MCU is in active
background mode.

The BDC provides access to control and status signals, which allows
more complex breakpoints to be built outside the BDC logic but still on
the MCU chip. Some HCS08 derivatives may have additional, more
complex, hardware breakpoints. These additional breakpoints need any
associated registers and control bits to be accessible through reads and
writes to addresses in the normal MCU memory map.

7.3.8 Differences from M68HC12 BDM

Although the bit-level communication protocol is the same as the
background debug mode (BDM) interface in the M68HC12 Family, the
HCS08 has implemented the background debug controller (BDC)
differently than the M68HC12 to reduce the silicon area and to provide
new capabilities.

In the M68HC12, the BDM is implemented separately from the CPU and
uses a small firmware ROM to control active background mode
operations. The HCS08, on the other hand, incorporates background
functions directly into the logic of the core CPU, thus eliminating the
firmware ROM.

Reference Manual — Volume I HCS08 — Revision 1

254 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

In the HCS08, BDC registers are never in the memory map of the target
MCU, so there is no need for the READ_BD_BYTE, READ_BD_WORD,
WRITE_BD_BYTE, and WRITE_BD_WORD commands of the
M68HC12.

Since the HCS08 CPU has a different CPU register model, the BDC
commands that read and write CPU registers are different than those for
the M68HC12. In the M68HC12 BDM, the condition codes were stored
in a register in the BDM memory map so reading and writing the CCR
were done with READ_BD_BYTE and WRITE_BD_BYTE commands.
READ_BD_BYTE and WRITE_BD_BYTE were also used to read and
write the BDM status register. In the HCS08, however, there are
separate commands for reading and writing the status/control register
which is not in the memory map of the MCU.

7.3.8.1 8-Bit Architecture

Unlike the 16-bit M68HC12, the HCS08 is an 8-bit architecture. Because
of this, the HCS08 BDC does not have word-sized read and write
commands. Also, the READ_NEXT and WRITE_NEXT commands
operate on byte-sized data rather than word-sized data.

7.3.8.2 Command Formats

All data fields in the M68HC12 BDM are 16 bits even if the command
only requires eight bits of data. In contrast, in the HCS08, data fields
match the size of the data needed so a command like READ BYTE will
have an 8-bit data field while RD BYTE WS has a 16-bit data field to
hold the BDC system STATUS byte followed by the data byte.

In the M68HC12 Family, the BDM can wait up to 128 cycles for a free
bus cycle to appear to allow the BDM access without disturbing the
running user application program. If no free cycle is found, the BDM
temporarily freezes the CPU to allow the BDM to complete the requested
operation. In the HCS08, this has been simplified such that the BDC
always steals a cycle as soon as it can. This has little impact on real-time
operation of the user's code because a memory access command takes
8 bits for the command, 16 bits for the address, at least eight bits for the
data, and a 16-cycle delay within the command. Each bit time is at least

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 255

Development Support

16 BDC clock cycles so (32 x 16) +16 = 528 cycles, thus the worst case
impact is no more than 1/528 cycles, even if there are continuous
back-to-back memory access commands through the BDM (which
would be very unlikely).

Since the HCS08 BDC doesn't wait for free cycles, the delays between
address and data in read commands and the delay after the data portion
of a write command can be much shorter than the 150 cycles
recommended for the M68HC12 BDM. In the HCS08, the delay within a
memory access command is 16 target bus cycles. For accesses to
registers within the BDC (STATUS, and BDCBKPT address match
registers), no delay is needed.

7.3.8.3 Read and Write with Status

Because the memory access commands in the HCS08 BDC are actually
performed by the CPU circuitry, it is possible for a memory access to fail
to complete within the BDC command. The two cases where this can
occur are: When the memory access command coincides with the CPU
entering stop or wait, or if the CPU was performing a slow memory
access when the BDC command arrived. (In HCS08 versions that do not
include slow memory devices, this case cannot occur.)

Since there is normally no way to predict when the target CPU might
perform a slow access or a STOP or WAIT instruction, the DVF status
bit was added to indicate an access error due to a slow access, and the
WSF status bit was added to indicate an access failed because the CPU
was just entering wait or stop mode. Alternate variations of the
READ BYTE, WRITE BYTE, READ NEXT, and WRITE NEXT
commands have been added which automatically return the contents of
the BDC status register along with the data portion of the command. In
the case of the READ BYTE and READ_NEXT commands, the
READ_BYTE_WS and READ_NEXT_WS commands can be thought of
as returning 16 bits of data. In the case of the WRITE_BYTE and
WRITE_NEXT commands, the WRITE_BYTE_WS and
WRITE_NEXT_WS commands include the byte of status information in
the target-to-host direction after the write data byte (which is in the
host-to-target direction).

Reference Manual — Volume I HCS08 — Revision 1

256 Development Support MOTOROLA

Development Support
Background Debug Controller (BDC)

7.3.8.4 8DM Versus Stop and Wait Modes

In the M68HC12 Family, the BDM system is implemented independently
from the CPU so memory access commands can still be performed while
the target MCU is in wait mode. Stop mode in the M68HC12 causes the
oscillator, from which all system clocks are derived, to be stopped. The
BDM ceases to function because it has no clocks.

However, the clock architecture of the HCS08 permits the BDC to
prevent the oscillator from stopping during stop mode if the ENBDM
control bit is set. In such a system, the debug host can use
READ_STATUS commands to tell if the target is in wait or stop mode. If
the target is in wait or stop (WS bit equals 1), the BACKGROUND
command may be used to awaken the target and place it in active
background mode.

From active background mode, the debug host can read or write
memory or registers. The debug host can then choose to adjust the
stack and PC such that a GO command will return the target MCU to wait
or stop mode.

7.3.8.5 SYNC Command

The HCS08 has added a SYNC command to allow the host interface pod
to determine the correct speed for optimum communications with the
target MCU. This is especially useful when the BDC clock in the target
MCU is operating from an internal self-clocked local oscillator rather than
the CPU bus clock.

To use the SYNC command, the host drives the BKGD pin low for at
least 128 target BDC clock cycles then releases the low drive and drives
a brief speedup pulse to snap the BKGD pin back to a good logic high
level before reverting to high impedance. After a delay to allow the
BKGD pin to reach a good high level and to avoid possible interference
with the high-driven speedup pulse from the host, the target will drive the
BKGD pin low for 128 target BDC clock cycles followed by a 1-cycle
driven-high speedup pulse and then reverts to high impedance. The host
can measure the duration of this sync pulse to accurately determine the
speed of the target's BDC clock.

HCS08 - Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 257

Development Support

7.3.8.6 Hardware Breakpoint

The BDC in the HCS08 includes one 16-bit hardware breakpoint which
triggers on a match against the 16-bit address bus. Specific HCS08
derivatives may include additional on-chip hardware breakpoints outside
the BDC. The READ_BKPT and WRITE_BKPT commands allow
reading or writing the BDCBKPT (address match) register which is built
into the BDC logic.

There are also two control bits for the breakpoint in the BDCSCR:

• The BKPTEN bit enables the breakpoint to generate a trigger
event in response to a match between the BDCBKPT register and
the CPU address bus.

• The force/tag select (FTS) bit determines what a breakpoint
trigger event does.

If FTS = 1 (force), the trigger event causes the target MCU to enter
active background mode at the next instruction boundary. If FTS = 0
(tag), the trigger event causes the fetched data value to be tagged as it
enters the instruction queue. If and when this tagged opcode reaches
the top of the queue, the target MCU enters active background mode
rather than executing the tagged instruction. The address in the
BDCBKPT register must point to an instruction opcode for the tag type
breakpoints, but it can be set to any address for a force type breakpoint.

7.4 Part Identification and BDC Force Reset

HCS08 devices include two additional development support features
that are not part of the background debug controller (BDC) or debug
(DBG) modules. These registers are described in this section.

A 16-bit register pair in the system integration module (SDIDH:SDIDL)
provides a way for a development host to determine the derivative type
and mask set revision of a target MCU. This allows the development
system to associate a register definition file with the target MCU so
debug software in the host can know where various memory blocks start
and end in the target and the locations for registers and control bits.

Reference Manual — Volume I HCS08 — Revision 1

258 Development Support MOTOROLA

Development Support
Part Identification and BDC Force Reset

An 8-bit control register includes a BDM force reset (BDFR) control bit
that allows a host development system to reset the target MCU via a
serial command through the background debug communication
interface. The BDFR bit is not accessible by user application programs
in the target MCU so there is no possibility that a runaway program could
accidentally trigger this reset function.

7.4.1 System Device Identification Registers (SDIDH:SDIDL)

This 16-bit read-only register pair is hard-coded with the mask set
revision number and derivative identification code.

Read:

Bit 7 6 5 4 3 2 1 Bit 0

REV3 REV2 REV1 REVO ID11 ID10 ID9 I D8

Reset: The value of these bits depends on the device type and mask set revision.

Read: ID7 ID6 ID5 ID4 ID3 ID2 IDl I DO

Reset: The value of these bits depends on the device type and mask set revision.

Figure 7-10. System Device Identification Register

REV[3:0] — Mask set Revision Number

This 4-bit field is hard coded to reflect the mask set revision number
(0—F) for the MCU die. The initial release of a part is revision number
0:0:0:0.

ID[11:0] — Part Identification Code

This 12-bit field is hard coded with an identification number that
identifies the HSC08 derivative type. For example the code for the
MC9S08GB60 is $002. Refer to the technical data sheet for other
derivatives to find their codes.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 259

Development Support

7.4.2 System Background Debug Force Reset Register

This register is located in the system integration module, not in the BDC.
The system background debug force reset register (SBDFR) is an 8-bit
register containing a single control bit which is accessible only from the
background debug controller. A serial background command such as
WRITE_BYTE must be used to write to SBDFR and attempts to write
this register from a user program are ignored. Unlike the other registers
in the BDC, SBDFR is located in the normal address space of the MCU
(normally located at $1801).

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

0 0 0 0 0 0 0 0

BDFR

0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 7-11. System Background Debug Force Reset Register (SBDFR)

BDFR — Background Debug Force Reset

This write-only control bit provides a means for the background debug
host to reset the target MCU without having access to a reset pin.

1 = Force a target system reset.
0 = Writing 0 has no meaning or effect.

7.5 On-Chip Debug System (DBG)

Since HCS08 devices do not have external address and data buses, the
most important functions of an in-circuit emulator have been built onto
the chip with the MCU. The debug system consists of an 8-stage FIFO
which can store address or data bus information, and a flexible trigger
system to decide when to capture bus information and what information
to capture. This is a little like having a logic analyzer or bus state
analyzer built inside the MCU. The system does not use any MCU pins.
Rather, it relies on the background debug system (or the CPU) to access
debug control registers and to read results out of the 8-stage FIFO.

Reference Manual — Volume I HCS08 — Revision 1

260 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

Unlike the background debug controller, the debug module does include
control and status registers that are accessible in the user's memory
map. These registers are located in the high register space to avoid
using valuable direct page memory space.

Most of the debug module's functions are used during development, and
user programs rarely access any of the control and status registers for
the debug module. The two exceptions are a ROM-based debug monitor
program and ROM patching, a serial monitor program is discussed in
application note AN2140/D. ROM patching is discussed in greater detail
in 7.5.9 Hardware Breakpoints and ROM Patching.

7.5.1 Comparators A and B

Two 16-bit comparators (A and B) can optionally be qualified with the
R/W signal and an opcode tracking circuit. R/W can be used to detect
matches on only read cycles or only write cycles. Separate control bits
allow R/W to be ignored for each comparator. The opcode tracking
circuitry optionally allows you to specify that a trigger will occur only if the
opcode at the specified address is actually executed as opposed to just
being read from memory into the instruction queue. This feature allows
you to ignore fetches of instructions where a change of flow from a jump,
branch, or interrupt causes the CPU to re-fill the instruction queue rather
than execute the unused instructions in the queue. The comparators
also are capable of magnitude comparisons to support the inside range
and outside range trigger modes. Comparators are disabled temporarily
during all BDC accesses.

The A comparator is always associated with the 16-bit CPU address.
The B comparator compares to the 16-bit CPU address or the 8-bit CPU
data bus, depending on the trigger mode selected. Since the CPU data
bus is separated into a read data bus and a write data bus, the RWAEN
and RWA control bits are used to decide which of these buses to use in
comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU's
write data bus is used. Otherwise, the CPU's read data bus is used.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 261

Development Support

The currently selected trigger mode determines what the debugger logic
does when a comparator detects a qualified match condition. A match
can cause:

• Generation of a breakpoint to the CPU

• Storage of data bus values into the FIFO

• Starting to store change-of-flow addresses into the FIFO (begin
type trace)

• Stopping the storage of change-of-flow addresses into the FIFO
(end type trace)

7.5.2 Bus Capture Information and FIFO Operation

Although processing technology has made on-chip logic less expensive,
it still isn't free. Because of this, the number of words of bus capture
information that can be stored at a time is limited (eight words in the first
HCS08 devices).

To compensate for this limitation, the debugger uses two strategies:

• For tracking the sequence of program instructions, the FIFO only
captures addresses related to changes of flow. This allows an
external host development tool to reconstruct the flow through
dozens or even hundreds of instructions from the eight
change-of-flow events before or after a selected trigger point.

• The second strategy is to selectively capture event information.
This technique is used to capture only the data associated with
read and/or write accesses to a specific address or register.

The usual way to use the FIFO is to set up the trigger mode and other
control options, then arm the debugger. When the FIFO has filled or the
debugger has stopped storing data into the FIFO, read the information
out of it in the order it was stored into the FIFO. Status bits indicate the

number of words of valid information that are in the FIFO as data is
stored into it.

In most trigger modes, the information stored in the FIFO consists of
change-of-flow addresses (16-bit values). In these cases, read DBGFH
then DBGFL to get one word of information out of the FIFO. Reading

Reference Manual — Volume I HCS08 — Revision 1

262 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

DBGFL (the low-order half of the FIFO data port) causes the FIFO to
shift so the next word of information is available at the FIFO data port. In
the event-only trigger modes, 8-bit data information is stored into the
FIFO. In these cases, the high-order half of the FIFO (DBGFH) is not
used (always stores and reads Os) and data is read out of the FIFO by
simply reading DBGFL. Each time DBGFL is read, the FIFO is shifted so
the next data value is available through the FIFO data port at DBGFL.

In trigger modes where the FIFO is storing change-of-flow addresses,
there is a delay between CPU addresses and the input side of the FIFO.
One consequence of this delay is that if the trigger event itself is a
change-of-flow address or if a change-of-flow address appears during
the next two bus cycles after a trigger event starts the FIFO, it will not be
saved into the FIFO. In the case of an end-trace, if the trigger event is a
change-of-flow, it will be saved as the last change-of-flow entry for that
debug run.

In event-only trigger modes where the FIFO is storing data, the BEGIN
control bit is ignored and all event-only trigger modes are begin-type
traces. The event which triggers the start of FIFO data storage is
captured as the first data word in the FIFO.

The FIFO can also be used to generate a profile of executed instruction
addresses when the debugger is not armed. When ARM = 0, reading
DBGFL causes the address of the currently executing instruction to be
saved in the FIFO. To use the profiling feature, a host debugger would
read addresses out of the FIFO by reading DBGFH then DBGFL at
regular periodic intervals. The first eight values would be discarded
because they correspond to the eight DBGFL reads needed to initially fill
the FIFO. Additional periodic reads of DBGFH and DBGFL return
delayed information about executed instructions so the host debugger
can develop a profile of executed instruction addresses.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 263

Development Support

7.5.3 Change-of-Flow information

To minimize the amount of information stored in the FIFO, only
information related to instructions that cause a change to the normal
sequential execution of instructions is stored. With knowledge of the
source and object code program stored in the target system, an external
debugger system can reconstruct the path of execution through many
instructions from the change-of-flow information stored in the FIFO.

For conditional branch instructions where the branch is taken (branch
condition was true), the source address is stored (the address of the
conditional branch instruction). If the external debugger finds such an
address in the FIFO, it may assume that the branch was taken. Because
BRA and BRN instructions are predictable, these events do not cause
change-of-flow information to be stored in the FIFO.

Indirect JMP and JSR instructions use the current contents of the H:X
index register pair to determine the destination address, so the external
debugger cannot predict the destination address from only information
in the source and object code. For this reason, the debug system stores
the run-time destination address for any indirect JMP or JSR. However,
for other JMP and JSR instructions, the external debugger can
determine the destination from known source and object code, so no
information is stored in the debug FIFO.

For interrupts, return from interrupt (RTI), or return from subroutine
(RTS), the destination address is stored in the FIFO as change-of-flow
information. In the case of interrupts, the external debugger could tell
where the interrupt vector would take program execution, but the debug
module needs to store this destination address (address of the interrupt
service routine) so the external debugger knows that an interrupt has
taken place and execution continued at this address. The destination of
an RTI tells the external debugger where the interrupt was recognized in
the normal program sequence. RTI and RTS get their destination
address from the current values on the stack. The external debugger
cannot reliably predict this return address from only the information in
the source and object code. Program errors that cause stack problems
can be detected by analysis of the change-of-flow information.

Reference Manual — Volume I HCS08 - Revision 1

264 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

Since the FIFO in this debug module is only eight words deep, some
care is required when setting up debug runs. For example, if the FIFO is
set up to start capturing change-of-flow addresses just before a small
loop or a DBNZ instruction that branches to itself, the FIFO will fill very
quickly and the information captured will be of little help in debugging a
program. Instead, a debug run could be set for an end-trace to show the
execution leading to the first iteration of the loop. Another end-trace
could be set up to stop at an instruction just after the loop to monitor the
behavior of the program for the last iteration of the loop.

7.5.4 Tag vs. Force Breakpoints and Triggers

Tagging is a term that refers to identifying an instruction opcode as it is
fetched into the instruction queue, but not taking any other action until
and unless that instruction is actually executed by the CPU. This
distinction is important because any change-of-flow from a jump, branch,
subroutine call, or interrupt causes some instructions that have been
fetched into the instruction queue to be thrown away without being
executed. Usually, you are only interested in instructions if they are
actually executed so the tag mechanism allows you to selectively ignore
fetches that do not lead to execution.

A force-type breakpoint waits for the current instruction to finish and then
acts upon the breakpoint request. The usual action in response to a
breakpoint is to go to active background mode rather than continuing to
the next instruction in the user application program.

The tag vs. force terminology is used in two contexts within the debug
module. The first context refers to breakpoint requests from the debug
module to the CPU. The second refers to match signals from the
comparators to the debugger control logic. When a tag-type break
request is sent to the CPU, a signal is entered into the instruction queue
along with the opcode so that if/when this opcode ever executes, the
CPU will effectively replace the tagged opcode with a BGND opcode so
the CPU goes to active background mode rather than executing the
tagged instruction (or SWI if background mode is disabled
(ENBDM = 0)).

The second context is when the TRGSEL control bit in the DBGT
register is set to select tag-type operation. In this case, the output from

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 265

Development Support

comparator A or B is qualified by a block of logic in the debug module
that tracks opcodes and the debugger only produces a trigger if the

opcode at the compare address is actually executed. There is separate
opcode tracking logic for each comparator so more than one compare
event can be tracked through the rebuilt instruction queue at a time.
TRGSEL has no effect on breakpoint requests to the CPU.

7.5.5 CPU Breakpoint Requests

In end-trace debug runs (BEGIN = 0), for all trigger modes except

event-only modes, CPU breakpoint requests are generated when the
trigger event occurs. In begin-trace debug runs (BEGIN = 1), CPU
breakpoint requests are generated when the FIFO has been filled.
Event-only trigger modes are always begin trace debug runs, so CPU
breakpoint requests are generated when the FIFO has been filled.

BRKEN = TAG = 1 while TRGSEL = BEGIN = 0 is a special case that
should be avoided because the results could be confusing. When the

address match occurs, a tag-type breakpoint request is issued to the

CPU. If an exception occurs before this tag reaches the end of the pipe,

the intended opcode will be flushed from the pipe, but the tag request

from the DBG module remains active waiting for the CPU to
acknowledge that it has entered active background mode. The first
opcode for the interrupt service routine will end up getting tagged and
this is where the CPU will stop rather than at the intended opcode at the
match address. To avoid this case, TRGSEL should have been set to 1.

7.5.6 Trigger Modes

The trigger mode controls the overall behavior of a debug run. The 4-bit
TRG field in the DBGT register selects one of nine trigger modes. The
TRGSEL control bit in the DBGT register modifies the chosen mode by
setting whether comparator signals are qualified by opcode tracking
logic. The BEGIN bit in DBGT chooses whether the FIFO begins storing
data when the qualified trigger is detected (begin trace) or the FIFO
stores data in a circular fashion until the qualified trigger is detected (end
trigger).

Reference Manual — Volume I HCS08 — Revision 1

266 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

In all trigger modes except the two event-only modes, the FIFO stores
change-of-flow addresses. In event-only trigger modes, the FIFO stores
8-bit data values.

In all trigger modes, a match condition for comparator A and/or B is
optionally qualified by read/write (R/W) and pipe rebuild logic. R/W
comparison is enabled by the associated RWxEN control bit and can be
considered an additional input to the associated comparator. In full
trigger modes, RWAEN and RWA can be used to enable comparison of
R/W and to control whether data comparisons use the CPU read or write
data bus and RWBEN and RWB are ignored. When TAGS EL = 1, the
R/W qualified match condition is entered into instruction pipe rebuild
logic so the trigger is not produced until/unless the tagged opcode
reaches the end of the pipe rebuild logic. In event-only trigger modes,
TRGSEL is ignored and match signals are never qualified through the
pipe rebuild logic.

Begin-trace debug runs start filling the FIFO when the trigger conditions
are met and end when the FIFO becomes full (CNT[3:0] = 1:0:0:0).
End-trace debug runs start filling the FIFO in circular fashion when the
ARM bit is set to 1, and end when the trigger conditions are met.
End-trace debug runs can end before the FIFO is full. If more than eight
entries are stored into the FIFO during an end-trace debug run, new
entries overwrite the oldest entry in the FIFO so that when the debug run
ends, the information in the FIFO will be the eight most recent
change-of-flow addresses.

A debug run is started by setting up the DBGT register and then writing
a 1 to the ARM bit in the DBGC register which sets the ARMF flag and
clears the A and B flags and the CNT bits in DBGS. A begin-trace debug
run ends when the FIFO gets full. An end-trace run ends when the
selected trigger event occurs. Any debug run can be stopped manually
by writing a 0 to the ARM bit or the DBGEN bit in DBGC.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 267

Development Support

7.5.6.1 A-Only Trigger

In the A-only trigger mode, a qualified match on comparator A sets the
AF status flag and generates a trigger event. DBGCAH:DBGCAL is
compared against the 16-bit CPU address and triggers may be qualified
with R/W (by setting RWAEN = 1) and/or by pipe rebuild logic (by setting
TRGSEL = 1).

7.5.6.2 A OR B Trigger

In the A OR B trigger mode, a qualified match on comparator A or on
comparator B sets the corresponding AF or BF status flag and generates
a trigger event. DBGCAH:DBGCAL and DBGCBH:DBGCBL are
compared against the 16-bit CPU address and triggers may be qualified
with R/W (by setting RWAEN and/or RWBEN to 1) and/or by pipe rebuild
logic (by setting TRGSEL=1).

7.5.6.3 A Then B Trigger

In the A Then B trigger mode, a qualified match on comparator A
followed by a qualified match on comparator B generates a trigger event.
The AF status flag gets set when a qualified match occurs on
comparator A. After AF is set, a qualified match on comparator B sets
the BF status flag and generates the trigger. DBGCAH:DBGCAL and
DBGCBH:DBGCBL are compared against the 16-bit CPU address and
triggers may be qualified with R/W (by setting RWAEN and/or RWBEN
to 1) and/or by pipe rebuild logic (by setting TRGSEL = 1).

7.5.6.4 Event-Only B Trigger (Store Data)

In event-only trigger modes, data values are stored in the FIFO rather
than change-of-flow addresses. In the event-only B trigger mode, a
qualified match on comparator B sets the BF status flag and generates
a trigger event. DBGCBH:DBGCBL is compared to the 16-bit CPU
address. Triggers may be qualified with R/W by setting RWBEN to 1. Do
not use TRGSEL = 1 in an event-only trigger mode. DBGCAH:DBGCAL,
RWAEN, and RWA are not used in this mode.

Reference Manual — Volume I HCS08 — Revision 1

268 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

7.5.6.5 A Then Event-Only B Trigger (Store Data)

In event-only trigger modes, data values are stored in the FIFO rather
than change-of-flow addresses. In the A then event-only B trigger mode,
a qualified match on comparator A sets the AF status flag. After AF is
set, a qualified match on comparator B sets the BF status flag and
generates a trigger event. DBGCAH:DBGCAL and DBGCBH:DBGCBL
are compared to the 16-bit CPU address. Triggers may be qualified with
R/W by setting RWAEN and/or RWBEN to 1. Do not use TRGSEL = 1 in
an event-only trigger mode.

7.5.6.6 A AND B Data Trigger (Full Mode)

This is called a full mode because address, data, and optionally R/W
must all match within the same bus cycle to cause a trigger. In the A AND
B data trigger mode, a qualified match on comparator A and on
comparator B within the same bus cycle generates a trigger event. The
AF and BF status flags get set when a qualified match occurs on
comparator A and on comparator B in the same bus cycle.
DBGCAH:DBGCAL is compared to the 16-bit CPU address and
DBGCBL is compared against the 8-bit CPU data bus. If RWAEN = 1
and RWA = 0, DBGCBL is compared to the CPU write data bus;
otherwise, DBGCBL is compared to the CPU read data bus. Triggers
may be qualified with R/W (by setting RWAEN to 1) and/or by pipe
rebuild logic (by setting TRGSEL = 1). DBGCBH, RWBEN, and RWB
are not used in this mode.

7.5.6.7 A AND NOT B Data Trigger (Full Mode)

This is called a full mode because address, data, and optionally R/W are
all tested within the same bus cycle to cause a trigger. In the A AND NOT
B data trigger mode, a qualified match on comparator A, within a bus
cycle where data does not match comparator B, generates a trigger
event. The AF and BF status flags get set when a qualified match occurs
on comparator A and not on comparator B in the same bus cycle.
DBGCAH:DBGCAL is compared to the 16-bit CPU address and
DBGCBL is compared against the 8-bit CPU data bus. If RWAEN=1 and
RWA=0, DBGCBL is compared to the CPU write data bus, otherwise
DBGCBL is compared to the CPU read data bus. Triggers may be
qualified with R/W (by setting RWAEN to 1) and/or by pipe rebuild logic

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 269

Development Support

(by setting TRGSEL=1). DBGCBH, RWBEN, and RWB are not used in
this mode.

7.5.6.8 Inside Range Trigger: A ≤ Address ≤ B

In this trigger mode, the comparators are used in a magnitude
comparator mode. If the address is greater than or equal to the address
in comparator A in the same cycle when the address is less than or equal
to the address in comparator B, the AF and BF status flags are set and
a trigger event is generated. DBGCAH:DBGCAL and
DBGCBH:DBGCBL are compared against the 16-bit CPU address and
triggers may be qualified with R/W (by setting RWAEN and/or RWBEN
to 1) and/or by pipe rebuild logic (by setting TRGSEL = 1). Obviously,
the address in DBGCAH:DBGCAL should be less than the address in
DBGCBH:DBGCBL and if RWAEN = RWBEN = 1, RWA should be the
same as RWB.

7.5.6.9 Outside Range Trigger: Address <A or Address > B

In this trigger mode, the comparators are used in a magnitude
comparator mode. If the address is less than the address in comparator
A or greater than the address in comparator B, a trigger event is
generated. The AF status flag is set if the address is less than the
address in comparator A and the BF status flag is set if the address is
greater than the address in comparator B. DBGCAH:DBGCAL and
DBGCBH:DBGCBL are compared against the 16-bit CPU address and
triggers may be qualified with R/W (by setting RWAEN and/or RWBEN
to 1) and/or by pipe rebuild logic (by setting TRGSEL = 1). Obviously,
the address in DBGCAH:DBGCAL should be less than the address in
DBGCBH:DBGCBL.

7.5.7 DBG Registers and Control Bits

The debug module includes nine bytes of register space for three 16-bit
registers and three 8-bit control and status registers. These registers are
located in the high register space of the normal memory map so they are
accessible to normal application programs. These registers are rarely, if
ever, accessed by normal user application programs with the possible

Reference Manual — volume I HCS08 — Revision 1

270 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

exception of a ROM-based debug monitor or a ROM patching
mechanism that uses the breakpoint logic.

The modular methodology that is used for HCS08 MCUs implements the
fine address decode within each module, but decode logic at the chip
level is used to determine the base location for each module. For this
reason, always check the documentation for each derivative to
determine absolute address locations for registers. Generally, the user
will access registers by name and an equate or header file provided by
Motorola will translate the register name into the appropriate absolute
address for the specific HCS08 derivative. Since registers may not be
located at the same address for every derivative MCU, this book only
refers to registers and control bits by their names.

7.5.7.1 Debug Comparator A High Register (DBGCAH)

Compare value bits for the high-order eight bits of comparator A. This
register is forced to $00 at reset and can be read any time and written
only when the ARM bit in the DBGC register is not set.

7.5.7.2 Debug Comparator A Low Register (DBGCAL)

Compare value bits for the low-order eight bits of comparator A. This
register is forced to $00 at reset and can be read any time and written
only when the ARM bit in the DBGC register is not set.

7.5.7.3 Debug Comparator B High Register (DBGCBH)

Compare value bits for the high-order eight bits of comparator B. This
register is forced to $00 at reset and can be read any time and written
only when the ARM bit in the DBGC register is not set.

7.5.7.4 Debug Comparator B Low Register (DBGCBL)

Compare value bits for the low-order eight bits of comparator B. This
register is forced to $00 at reset and can be read any time and written
only when the ARM bit in the DBGC register is not set.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 271

Development Support

7.5.7.5 Debug FIFO High Register (DBGFH)

This register provides read-only access to the high-order eight bits of the
FIFO. Writes to this register have no meaning or effect. In the event-only
modes of operation, the FIFO only stores information into the low-order
half of each FIFO word, so this register is not used and will read $00.

Reading DBGFH does not cause the FIFO to shift to the next word.
When reading 16-bit words out of the FIFO, read DBGFH before reading
DBGFL because reading DBGFL causes the FIFO to advance to the
next word of information.

7.5.7.6 Debug FIFO Low Register (DBGFL)

This register provides read-only access to the low-order eight bits of the
FIFO. Writes to this register have no meaning or effect.

Reading DBGFL causes the FIFO to shift to the next available word of
information. When the debug module is operating in an event-only
mode, only 8-bit data is stored into the FIFO (high-order half of each
FIFO word is unused). When reading 8-bit words out of the FIFO, simply
read DBGFL repeatedly to get successive bytes of data from the FIFO.
It isn't necessary to read DBGFH in this case.

Do not attempt to read data from the FIFO while it is still armed (after
arming but before the FIFO is filled or ARMF is cleared) because the
FIFO is prevented from advancing during reads of DBGFL. This can
result in improper sequencing of information in the FIFO.

Reading DBGFL while the FIFO is not armed causes the current opcode
address to be stored to the last location in the FIFO. By reading DBGFH
then DBGFL periodically, external host software can develop a profile of
program execution. After eight reads from the FIFO, the ninth read will
return the information that was stored as a result of the first read. To use
the profiling feature, read the FIFO eight times without using the data to
prime the sequence and then begin using the data to get a delayed
picture of what addresses were executed.

The information stored into the FIFO on reads of DBGFL (while the FIFO
is not armed) is the address of the most recently executed opcode.
Storing instantaneous address bus values would be much less useful
since you wouldn't know whether these were data, operand, or
instruction accesses.

Reference Manual — volume I HCSOB — Revision 1

272 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

7.5.7.7 Debug Control Register

This register can be read at any time. The DBGEN and ARM bits can be
written at any time. The remaining bits in the register can be written only
while ARM = 0.

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

DBGEN ARM TAG BRKEN RWA RWAEN RWB RWBEN

0 0 0 0 0 0 0

Figure 7-12. Debug Control Register (DBGC)

0

DBGEN — Debug Module Enable Bit

Used to enable the debug module. DBGEN cannot be set to 1 if the
MCU is secure.

1 = DBG enabled
0 = DBG disabled

ARM — Arm Control Bit

Controls whether the debugger is comparing and storing information
in the FIFO. A write is used to set this bit (and the ARMF bit) and
completion of a debug run automatically clears it. Any debug run can
be stopped manually by writing 0 to ARM or to DBGEN.

1 = Debugger armed
0 = Debugger not armed

TAG — Tag/Force Select Bit

Controls whether break requests to the CPU will be tag or force type
requests. If BRKEN = 0, this bit has no meaning or effect.

1 = CPU breaks requested as tag type requests
0 = CPU breaks requested as force type requests

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 273

Development Support

BRKEN — Break Enable Bit

Controls whether a trigger event will generate a break request to the
CPU. Trigger events can cause information to be stored in the FIFO
without generating a break request to the CPU. CPU break requests
are issued to the CPU when the comparator(s) and R/W meet the
trigger requirements. CPU tag requests must coincide with an opcode
fetch so TRGSEL never affects when CPU break requests are issued.

1 = Triggers (before TRGSEL qualification) cause a break request
to the CPU

0 = Break requests not enabled

RWA — R/W Comparison Value for Comparator A Bit

When RWAEN = 1, this bit determines whether a read or a write
access qualifies comparator A. When RWAEN = 0, RWA and the
R/W signal do not affect comparator A.

1 = Comparator A can match only on a read cycle.
0 = Comparator A can match only on a write cycle.

RWAEN — Enable RAN for Comparator A Bit

Controls whether the level of RAN is considered for a comparator A
match

1 = RAN is used in comparison A.
0 = RAN is not used in comparison A.

RWB — RAN Comparison Value for Comparator B Bit

When RWBEN = 1, this bit determines whether a read or a write
access qualifies comparator B. When RWBEN = 0, RWB and the
RAN signal do not affect comparator B.

1 = Comparator B can match only on a read cycle.
0 = Comparator B can match only on a write cycle.

RWBEN — Enable RAN for Comparator B Bit

Controls whether the level of RAN is considered for a comparator B
match

1 = RAN is used in comparison B.
0 = RAN is not used in comparison B.

Reference Manual — Volume I HCS08 — Revision 1

274 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

7.5.7.8 Debug Trigger Register

This register can be read at any time, but it can be written only while
ARM = 0. Bits 4 and 5 are hardwired to Os.

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

0 0
TRGSEL BEGIN TRG

0 0 0

= Unimplemented or Reserved

0 0 0 0

Figure 7-13. Debug Trigger Register (DBGT)

0

TRGSEL — Trigger Type Bit

Controls whether the match outputs from comparators A and B are
qualified with the opcode tracking logic in the debug module. A
separate control bit (TAG) in DBGC controls whether CPU break
requests are qualified with separate opcode tracking logic in the CPU.

If TRGSEL is set, a match signal from comparator A or B must
propagate through the opcode tracking logic and a trigger event is
only signalled if the opcode at the match address is actually executed.
This trigger event stops (BEGIN = 0) or starts (BEGIN = 1) the
capture of information into the FIFO.

1 = Trigger if opcode at compare address is executed (tag)
0 = Trigger on access to compare address (force)

BEGIN — Begin/End Trigger Select Bit

Controls whether the FIFO starts filling at a trigger or fills in a circular
manner until a trigger ends the capture of information. In event-only
trigger modes, this bit is ignored and all debug runs are assumed to
be begin-type traces.

1 = Trigger initiates data storage (begin trace)
0 = Data stored in FIFO until trigger (end trace)

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 275

Development Support

TRG3:TRG2:TRGI:TRGO - Select Trigger Mode Bits

Selects one of nine triggering modes

Table 7-2. Trigger Mode Selection

TRG[3:0] Triggering Mode

0000 A-only

0001 A OR B

0010 A then B

0011 Event-only B (store data)

0100 A then event-only B (store data)

0101 A AND B data (full mode)

0110 A AND NOT B data (full mode)

0111 Inside range: A ≤ address ≤ B

1000 Outside range: address < A or address > B

1001-1111 No trigger

7.5.7.9 Debug Status Register

This is a read-only status register.

Read:

Write:

Reset:

Bit 7 6 5 4 3 2 1 Bit 0

AF BF ARMF 0 CNT

0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 7-14. Debug Status Register (DBGS)

AF — Trigger Match A Flag

AF is cleared at the start of a debug run and indicates whether a
trigger match A condition was met since arming.

1 = Comparator A match
0 = Comparator A has not matched.

Reference Manual — Volume I HCS08 — Revision 1

276 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

BF — Trigger Match B Flag

BF is cleared at the start of a debug run and indicates whether a
trigger match B condition was met since arming.

1 = Comparator B match
0 = Comparator B has not matched.

ARMF — Arm Flag

While DBGEN = 1, this status bit is a read-only image of the ARM bit
in DBGC. This bit is set by writing 1 to the ARM control bit in DBGC
(while DBGEN = 1) and is automatically cleared at the end of a debug
run. A debug run is completed when the FIFO is full (begin trace) or
when a trigger event is detected (end trace). A debug run can also be
ended manually by writing 0 to the ARM or DBGEN bits in DBGC.

1 = Debugger armed
0 = Debugger not armed

CNT3:CNT2:CNTI:CNTO — FIFO Valid Count

These bits are cleared at the start of a debug run and indicate the
number of words of valid data in the FIFO at the end of a debug run.
The value in CNT does not decrement as data is read out of the FIFO.
The external debug host is responsible for keeping track of the count
as information is read out of the FIFO.

Table 7-3. CNT Status Bits

CNT[3:0] Valid Words in FIFO

0000 No valid data

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 277

Development Support

7.5.8 Application Information and Examples

Assuming no debug run is already in progress (ARMF = 0), the usual
sequence used to setup a new debug run is:

1. Write address or address and data match values to
DBGCAH:DBGCAL and/or DBGCBH:DBGCBL.

2. Write to DBGT to:

— Select a begin/end type trace run (BEGIN = 1/0)

- Select address/opcode qualification (TRGSEL = 0/1)

- Select 1 of 9 basic trigger modes (TRG[3:0])

3. Write to DBGC to:

— Enable the DBG module (DBGEN = 1)

— Decide whether to request a CPU breakpoint (BRKEN = 1)

— If so, select a force/tag CPU breakpoint type (TAG = 0/1)

— Arm the debug run (ARM = 1)

— Setup and enable optional R/W qualifiers

4. Start the user application program with a GO command through
the background debug interface. Although it is technically possible
to setup a debug run while the application program is running, it is
much more common to stop the user application program so it is
in active background mode while the debug run is set up.

Depending on the type of debug run that was set up, the target MCU will
finish the debug run and enter active background mode, or the host
debugger can monitor the ARMF flag through active background mode
commands to determine when the run is finished. After the debug run is
finished, the host would:

1. Optionally read DBGS to see how many words of information were
captured into the debug FIFO. If the host was reading DBGS to
determine when the debug run was finished, it may not be
necessary to re-read DBGS to get the CNT[3:0] information. For
many debug runs, it is safe to assume the FIFO is full, so it is not
always necessary to check the CNT[3:0] bits to determine how
much information is in the FIFO.

Reference Manual — Volume I HCS08 — Revision 1

278 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

2. Read the FIFO information by repeatedly reading DBGFH then
DBGFL. For some debug runs, the information in the FIFO is not
important so it is not necessary to read it out. For event type debug
runs (TRG[3:0] = 0:0:1:1 or 0:1:0:0, the upper-half each of FIFO
word is unused so it is not necessary to read DBGFH.

The four control bits BEGIN and TRGSEL in DBGT, and BRKEN and
TAG in DBGC, determine the basic type of debug run as shown in
Table 7-4. Some of the 16 possible combinations are not used (refer to
the notes at the end of the table).

Table 7-4. Basic Types of Debug Runs

BEGIN TRGSEL BRKEN TAG Type of Debug Run

0 o 0
x(1) Fill FIFO until trigger address (No CPU breakpoint — keep

running)

0 o 1 0 Fill FIFO until trigger address, then force CPU breakpoint

o o

1 1 Don't use(2)

0 1 0 x(1) Fill FIFO until trigger opcode about to execute (No CPU
breakpoint — keep running)

o

1 1 0 Don't use(3>

0 1 1 1
Fill FIFO until trigger opcode about to execute (trigger causes

CPU breakpoint)(4)

1 0 0 x(t) Start FIFO at trigger address (No CPU breakpoint — keep
running)

1 0 1 0 Start FIFO at trigger address, force CPU breakpoint when
FIFO full

1 0 1 1 Don't use(4>

1 1 0 x(1) Start FIFO at trigger opcode, (No CPU breakpoint — keep
running)

1 1 1 0
Start FIFO at trigger opcode, force CPU breakpoint when FIFO
full

1 1 1 1 Don't use(5)

1. When DBGEN = 0, TAG is don't care (x in the table).
2. In end trace configurations (BEGIN = 0) where a CPU breakpoint is enabled (BRKEN = 1), TRGSEL should agree with

TAG. In this case, where TRGSEL = 0 to select no opcode tracking qualification and TAG = 1 to specify a tag-type CPU
breakpoint, the CPU breakpoint would not take effect until sometime after the FIFO stopped storing values. Depending on
program loops or interrupts, the delay could be very long.

3. In end trace configurations (BEGIN = 0) where a CPU breakpoint is enabled (BRKEN = 1), TRGSEL should agree with
TAG. In this case, where TRGSEL = 1 to select opcode tracking qualification and TAG = 0 to specify a force-type CPU
breakpoint, the CPU breakpoint would erroneously take effect before the FIFO stopped storing values and the debug run
would not complete normally.

4. In begin trace configurations (BEGIN = 1) where a CPU breakpoint is enabled (BRKEN = 1), TAG should not be set to 1.
In begin trace debug runs, the CPU breakpoint corresponds to the FIFO full condition which does not correspond to a
taggable instruction fetch.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 279

Development Support

7.5.8.1 Orientation to the Debugger Examples

The following sections describe how to setup debug runs for several
common situations. Each of these examples starts with a table similar to
the one shown here:

DBGCAH:DBGCAL RWAEN~1> RWA~1> DBGCBH:DBGCBL RWBEN~1> RWB~1 DBGT DBGC

Opcode address 0 x Not used x x $00 $D0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.

To set up and use a debug run like that described in each example, write
the values in the table to the registers named in the heading for each
column. The registers should be written in left-to-right order. The
RWAEN, RWA, RWBEN, and RWB values are shown in separate

columns of the table for convenience, but these are actually control bits

in the DBGC register. These bit values are already reflected in the value

for DBGC at the right end of the table and these bits get written when
DBGC is written.

Just below this table in each example section, the trigger mode is shown
and a description of the contents of the FIFO after the debug run is
shown. The trigger mode can be derived from the low-order four bits of

the DBGT value shown near the right of the table, but it is listed
separately for easier reference. After explaining the details and purpose
of each example case, variations are discussed.

Reference Manual — Volume I HCS08 — Revision 1

280 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

7.5.8.2 Example 1: Stop Execution at Address A

DBGCAH:DBGCAL RWAEN~1> RWAt1 DBGCBH:DBGCBL RWBENt1 RWB~1 DBGT DBGC

Trigger address A 0 x Not used x x $00 $DO

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.

Trigger mode: A-only
FIFO contents: Not used in this example

This is a simple hardware breakpoint where the CPU will stop executing
the application program and enter active background mode as soon as
the application program makes any access to the selected address. It
generates a force-type breakpoint to the CPU on the first access (R/W
is don't care) to the address stored in comparator A
(DBGCAH:DBGCAL). The FIFO, comparator B, and DBGS are not used
for this example.

An end trace is used because begin-type traces cause the breakpoint to
the CPU to be related to the FIFO full condition rather than the selected
trigger conditions.

Variation: To consider only read accesses or only write accesses,
change the DBGC value so RWAEN = 1 and use RWA to select reads
(1) or writes (0).

HCSO8 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 281

Development Support

7.5.8.3 Example 2: Stop Execution at the Instruction at Address A

DBGCAH:DBGCAL RWAENt1> RWA~1 DBGCBH:DBGCBL RWBENt1> RWBf1 DBGT DBGC

Trigger opcode A 0 x Not used x x $80 $F0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.

Trigger mode: A-only
FIFO contents: Not used in this example

This example uses a tag-type breakpoint to the CPU to set a single
instruction breakpoint at address A. The address stored to comparator A
(DBGCAH:DBGCAL) must be the address of an instruction opcode.
When the selected instruction is about to execute, the CPU will go to
active background mode rather than execute the tagged instruction. 0 is
written to RWAEN because in order for the instruction to be entered into
the CPU's instruction queue it has to be a read access, so there is no
need to check R/W. The FIFO, comparator B, and DBGS are not used
for this example.

An end trace is used because begin-type traces cause the breakpoint to
the CPU to be related to the FIFO full condition rather than the selected
trigger conditions. Since this is an end-type trace and we want a tag-type
breakpoint to the CPU, we must also specify a tag-type trigger
(TRGSEL = 1). If the specified address is not the address of an
instruction opcode, no breakpoint will occur.

Reference Manual — Volume I HCS08 — Revision 1

282 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

7.5.8.4 Example 3: Stop Execution at the Instruction at Address A or Address B

DBGCAH:DBGCAL RWAENt1> RWAt1 DBGCBH:DBGCBL RWBENf1 RWBt1 DBGT DBGC

Trigger opcode A 0 x Trigger opcode B 0 x $81 $FO

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.

Trigger mode: A or B
FIFO contents: Not used in this example

This example uses tag-type breakpoints to the CPU to set two instruction
breakpoints, one at address A and the other at address B. The
addresses stored to comparator A (DBGCAH:DBGCAL) and comparator
B (DBGCBH:DBGCBL) must be the addresses of instruction opcodes.
When either of the selected instructions is about to execute, the CPU will
go to active background mode rather than execute the tagged
instruction. 0 is written to RWAEN and RWBEN because in order for the
instruction to be entered into the CPU's instruction queue it has to be a
read access, so there is no need to check R/W. The FIFO and DBGS are
not used for this example.

An end trace is used because begin-type traces cause the breakpoint to
the CPU to be related to the FIFO full condition rather than the selected
trigger conditions. Since this is an end-type trace and we want a tag-type
breakpoint to the CPU, we must also specify a tag-type trigger
(TRGSEL = 1). If the specified addresses are not the addresses of
instruction opcodes, no breakpoint will occur.

HCSO8 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 283

Development Support

7.5.8.5 Example 4: Begin Trace at the Instruction at Address A

DBGCAH:DBGCAL RWAENt1> RWAf1> DBGCBH:DBGCBL RWBENt1 RWBfi > DBGT DBGC

Trigger opcode A 0 x Not used x x $C0 $D0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.

Trigger mode: A-only
FIFO contents: Information from the next eight changes of flow starting
from the third bus cycle after the instruction at address A began to
execute.

This is an example of a begin-trace debug run that starts filling the FIFO
when the instruction at address A is executed and ends when the FIFO
is full (has stored eight change-of-flow addresses). Because of a delay
in the debug logic, the first possible change-of-flow address that will be
captured into the FIFO is the third bus cycle after the trigger event that
starts the debug run. If the address when the instruction that caused the
trigger, or either of the next two bus cycles is a change-of-flow address,
it will not be captured as one of the eight change-of-flow addresses in
the FIFO for this debug run.

A force-type CPU breakpoint is specified because this breakpoint is
associated with the FIFO full condition and not a taggable opcode. The
CPU breakpoint causes the target MCU to go to active background
mode as soon as the FIFO is full. Typically, a host development system
would then read the contents of the FIFO in order to reconstruct what
happened during the debug run.

Reference Manual — Volume I HCS08 — Revision 1

284 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

7.5.8.6 Example 5: End Trace to Stop After A-Then-B Sequence

DBGCAH:DBGCAL RWAENf1> RWAf'> DBGCBH:DBGCBL RWBEN~1 RWBf1 DBGT DBGC

Trigger opcode A 0 x Trigger opcode B 0 x $82 $F0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.

Trigger mode: A Then B
FIFO contents: Information from the last eight changes of flow ending
when the instruction at address B begins to execute.

This is an example of an end-trace debug run that ends when the
instruction at B executes, but only after the instruction at A has executed
at least once. The sequential nature of the trigger ensures that the
trigger will occur only when you have followed a certain path through
your program. In the previous begin trace example, we may have missed
a change-of-flow address (counting the trigger event itself). This
example suggests a way to use the first two change-of-flow events from
that debug run to specify the A-then-B sequence that ends this debug
run. Any change-of-flow event missed during the earlier debug run
should be in the FIFO for this debug run.

Since change-of-flow addresses represent addresses where the CPU is
going to try to start executing instructions, they should always be the
address of an executable instruction. In the case of program runaway, if
a change-of-flow address points at an illegal opcode, the CPU will still
fetch it into its instruction pipe and try to execute it even though the illegal
opcode detect logic will intervene to force an exception.

An end trace is used because begin-type traces cause the breakpoint to
the CPU to be related to the FIFO full condition rather than the selected
trigger conditions. Since this is an end-type trace and we want a tag-type
breakpoint to the CPU, we must also specify a tag-type trigger
(TRGSEL = 1). In an end trace, if the instruction at the trigger address is
a change of flow, it will be captured as the last FIFO entry for that debug
run.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 285

Development Support

7.5.8.7 Example 6: Begin Trace On Write of Data B to Address A

DBGCAH:DBGCAL RWAENt1 RWAt1 DBGCBH:DBGCBL RWBENt1 RWB~1 DBGT DBGC

Trigger address A 1 0 xx:Trigger data B 0 x $45 $C4

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.

Trigger mode: A AND B Data (Full Mode)
FIFO contents: Information from the next eight changes of flow starting
three cycles after the trigger.

This example shows a begin trace debug run that starts when the
address in comparator A and the data in the low half of comparator B
both match in the same bus cycle. This is a force-type trigger so
address A can be the address of a control register or a program variable.
When the FIFO has captured the next eight change-of-flow addresses,
the debug run ends, but since no CPU breakpoint is specified
(BRKEN = 0), the MCU continues to execute the application program.
Typically, in this type of debug run, the host development system would
monitor the debug status register (DBGS) to determine when the debug
run was finished. The host would then read the results of the debug run
from the FIFO.

This demonstrates that debugging can be done without disturbing
real-time operation of an application program. The background debug
commands have a very small impact since the active background mode
commands steal a bus cycle whenever they need to access target
memory. This impact is never greater than one bus cycle per active
background mode command and background memory access
commands take at least 528 BDC clock cycles and usually have
significant gaps between adjacent commands.

Variation: The A AND NOT B Data trigger mode can be used for a
useful variation of this example. Suppose you are debugging a program
and you suspect some control register is being overwritten with an

unexpected value by some erroneous code. You can setup an end trace
where the comparator A is set to the address of the suspicious register
and comparator B is setup with the correct data you expect in the
register. When the debug run ends, the FIFO will show the last eight
changes of flow leading to the offending instruction.

Reference Manual — volume I HCS08 — Revision 1

286 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

7.5.8.8 Example 7: Capture the First Eight Values Read From Address B

DBGCAH:DBGCAL RWAENt1 RWAf1> DBGCBH:DBGCBL RWBENt1> RWB~1> DBGT DBGC

Not used x x Trigger address B 1 1 $43 $C3

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.

Trigger mode: Event-Only B (Store Data)
FIFO contents: The first eight data values read from address B are
stored into the low half of the FIFO data words. The high-order eight bits
of each FIFO word are unused and read as logic Os.

This is an event-only trigger mode so the BEGIN control bit is ignored
and all debug runs are treated as begin-type traces. This mode is used
to capture the data involved in a read or write access to a specific
address such as the address of a particular control register or program
variable.

It would be inappropriate to set TRGSEL = 1 with this trigger mode
because the trigger address is normally not the address of an executable
instruction.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 287

Development Support

7.5.8.9 Example 8: Capture Values Written to Address B After Address A Read

DBGCAH:DBGCAL RWAEN11 RWA11> DBGCBH:DBGCBL RWBENf1> RWB~1f DBGT DBGC

Qualifier address A 1 1 Trigger address B 1 0 $44 $CD

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.

Trigger mode: A Then Event-Only B Data (Store Data)
FIFO contents: The first eight data values written to address B after
address A was read. The high-order eight bits of each FIFO word are

unused and read as logic Os.

As in the previous example, this is an event-only trigger mode so the
BEGIN control bit is ignored and all debug runs are treated as
BEGIN-type traces. In this example, address A must be detected as a
qualifying condition before the FIFO begins to capture data values for
each write access to trigger address B.

Variation: If TRGSEL = 1, comparator A is qualified by opcode tracking

logic so that the A trigger will not occur until the instruction at address A
is about to execute. This debug example could be used to detect
erroneous writes to a control register after the reset initialization routine
was finished. To set up such a run, store the address of one of the last
instructions of the reset initialization routine in comparator A and store
the address of a selected control register in the low-order half of
comparator B. After running the application program, the host debug
system can read the DBGS status register to determine whether any
values have been written to the selected control register address.

Reference Manual — Volume I HCS08 — Revision 1

288 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

7.5.8.10 Example 9: Trigger On Any Execution Within a Routine

DBGCAH:DBGCAL RWAENf1> RWAft DBGCBH:DBGCBL RWBENt1 RWBft DBGT DBGC

Opcode address A 0 x Opcode address B 0 x $87 $F0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.

Trigger mode: Inside Range (A ≤ Address ≤ B)
FIFO contents: The last eight change of flow addresses before the CPU
executed an instruction between address A and address B (inclusive).

This debug run is an end trace that stops if the CPU attempts to execute
any instruction within the range specified by address A and address B.
Comparator A would be set to the address of the first instruction in the
routine to be monitored, and comparator B would be set to the address
of the last instruction in the routine. TRGSEL = 1, so comparisons are
qualified by opcode tracking logic. R/W is not used to qualify either
comparator. When the debug run ends, the CPU will breakpoint to active
background mode. An external debug host system can read out the
contents of the FIFO to reconstruct instructions leading to the trigger
condition.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 289

Development Support

7.5.8.11 Example 10: Trigger On Any Attempt To Execute Outside FLASH

DBGCAH:DBGCAL RWAEN~1 RWA~1 DBGCBH:DBGCBL RWBEN~1> RWB~1 DBGT DBGC

Opcode address A 0 x Opcode address B 0 x $88 $F0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.

Trigger mode: Outside Range (Address <A or Address > B)
FIFO contents: The last eight change of flow addresses before the CPU
executed an instruction that was not between address A and address B.

This example can be used to detect when a program goes outside the
expected range. For example, in a program runaway case, you could set
comparator A to the address of the first instruction in the FLASH memory
and comparator B to the address of the last instruction in the FLASH
memory. The debug run will end when the CPU attempts to execute an
instruction from any address outside the range of the user program in
FLASH memory. After the debug run, the FIFO can be read to
reconstruct the last eight changes of flow prior to the erroneous attempt
to execute from an address outside the FLASH.

Reference Manual — Volume I HCS08 — Revision 1

290 Development Support MOTOROLA

Development Support
On-Chip Debug System (DBG)

7.5.9 Hardware Breakpoints and ROM Patching

The BRKEN control bit in the DBGC register may be set to 1 to allow any
of the trigger conditions described in 7.5.6 Trigger Modes to be used to
generate a hardware breakpoint request to the CPU. In the case of ROM
patching, you would never use the FIFO and you should always specify
an end trace so the CPU break request coincides with the selected
trigger conditions rather than the FIFO full condition. The TAG bit in
DBGC controls whether the breakpoint request will be treated as a
tag-type breakpoint or a force-type breakpoint. A tag breakpoint causes
the current opcode to be marked as it enters the instruction queue. If a
tagged opcode reaches the end of the pipe, the CPU executes a BGND
instruction to go to active background mode rather than executing the
tagged opcode. A force-type breakpoint causes the CPU to finish the
current instruction and then go to active background mode.

If the background mode has not been enabled (ENBDM = 1) by a serial
WRITE_CONTROL command through the BKGD pin, the CPU will
execute an SWI instruction instead of going to active background mode.
If the user has taken appropriate steps to prepare for this case, it can be
used to implement a form of ROM patching.

ROM patching is a technique that allows program bugs in ROM or other
non-volatile memory to be replaced by different program instructions to
repair the bug. The mechanism is based on the MCU detecting it is about
to execute an instruction at the location of a bug. Instead of executing
that instruction, hardware breakpoint logic generates a breakpoint
request to the CPU. The CPU knows it is not connected to a
development system because the ENBDM control bit in BDCSCR
equals 0. So instead of going to active background mode, the CPU
executes an SWI instruction. The SWI service routine fetches the
address of the repair code from some non-volatile memory location and
executes that instead of the bug code. At the end of the repair code, the
stack pointer can be adjusted and an ordinary jump instruction can
return execution to a location past the original bug.

Alternatively, the repair code could alter the return address of the stack
and execute an RTI to return to a point after the original bug.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 291

Development Support

Reference Manual — Volume I HCS08 — Revision 1

292 Development Support MOTOROLA

HCS08 Family Reference Manual

Appendix A. Instruction Set Details

A.1 Introduction

This section contains detailed information for all HCS08 Family
instructions. The instructions are arranged in alphabetical order with the
instruction mnemonic set in larger type for easy reference.

A.2 Nomenclature

This nomenclature is used in the instruction descriptions throughout this
section.

Operators

() = Contents of register or memory location shown inside
parentheses

= Is loaded with (read: "gets")
& = Boolean AND

I = Boolean OR
O+ = Boolean exclusive-OR
x = Multiply

= Divide
= Concatenate

+ = Add
— = Negate (two's complement)

= Sign extend

CPU registers
A = Accumulator

CCR = Condition code register
H = Index register, higher order (most significant) eight bits
X = Index register, lower order (least significant) eight bits

PC = Program counter

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 293

Instruction Set Details

PCH =

PCL =

SP =

Program counter, higher order (most significant) eight
bits
Program counter, lower order (least significant) eight
bits
Stack pointer

Memory and addressing

M = A memory location or absolute data, depending on
addressing mode

M:M + $0001= A 16-bit value in two consecutive memory locations.
The higher-order (most significant) eight bits are
located at the address of M, and the lower-order (least
significant) eight bits are located at the next higher
sequential address.

rel = The relative offset, which is the two's complement
number stored in the last byte of machine code
corresponding to a branch instruction

Condition code register (CCR) bits

V = Two's complement overflow indicator, bit 7
H = Half carry, bit 4
I = Interrupt mask, bit 3

N = Negative indicator, bit 2
Z = Zero indicator, bit 1
C = Carry/borrow, bit 0 (carry out of bit 7)

Bit status BEFORE execution of an instruction (n = 7, 6, 5, ... 0)

For 2-byte operations such as LDHX, STHX, and CPHX, n =15 refers
to bit 15 of the 2-byte word or bit 7 of the most significant (first) byte.

Mn = Bit n of memory location used in operation
An = Bit n of accumulator
Hn = Bit n of index register H
Xn = Bit n of index register X
bn = Bit n of the source operand (M, A, or X)

Bit status AFTER execution of an instruction

For 2-byte operations such as LDHX, STHX, and CPHX, n =15 refers
to bit 15 of the 2-byte word or bit 7 of the most significant (first) byte.

Rn = Bit n of the result of an operation (n = 7, 6, 5, ... 0)

Reference Manual — Volume I HCS08 — Revision 1

294 Instruction Set Details MOTOROLA

Instruction Set Details
Nomenclature

CCR activity figure notation

— = Bit not affected
0 = Bit forced to 0
1 = Bit forced to 1
I = Bit set or cleared according to results of operation
U = Undefined after the operation

Machine coding notation

dd = Low-order eight bits of a direct address $0000-$00FF
(high byte assumed to be $00)

ee = Upper eight bits of 16-bit offset
ff = Lower eight bits of 16-bit offset or 8-bit offset
ii = One byte of immediate data
jj = High-order byte of a 16-bit immediate data value

kk = Low-order byte of a 16-bit immediate data value
hh = High-order byte of 16-bit extended address

II = Low-order byte of 16-bit extended address
rr = Relative offset

Source forms

The instruction detail pages provide only essential information about
assembler source forms. Assemblers generally support a number of
assembler directives, allow definition of program labels, and have
special conventions for comments. For complete information about
writing source files for a particular assembler, refer to the documentation
provided by the assembler vendor.

Typically, assemblers are flexible about the use of spaces and tabs.
Often, any number of spaces or tabs can be used where a single space
is shown on the glossary pages. Spaces and tabs are also normally
allowed before and after commas. When program labels are used, there
must also be at least one tab or space before all instruction mnemonics.
This required space is not apparent in the source forms.

Everything in the source forms columns, except expressions in italic

characters, is literal information which must appear in the assembly
source file exactly as shown. The initial 3-to 5-letter mnemonic is always

HCS08 — Revision 1 Reference Manual — volume I

MOTOROLA Instruction Set Details 295

Instruction Set Details

a literal expression. All commas, pound signs (#), parentheses, and plus
signs (+) are literal characters.

The definition of a legal label or expression varies from assembler to
assembler. Assemblers also vary in the way CPU registers are specified.
Refer to assembler documentation for detailed information.

Recommended register designators are a, A, h, H, x, X, sp, and SP.

n — Any label or expression that evaluates to a single
integer in the range 0-7

opr8i — Any label or expression that evaluates to an 8-bit
immediate value

oprl6i Any label or expression that evaluates to a 16-bit
immediate value

opr8a Any label or expression that evaluates to an 8-bit
value. The instruction treats this 8-bit value as the low
order eight bits of an address in the direct page of the
64-Kbyte address space ($00xx).

oprl6a — Any label or expression that evaluates to a 16-bit
value. The instruction treats this value as an address
in the 64-Kbyte address space.

oprx8 — Any label or expression that evaluates to an unsigned
8-bit value; used for indexed addressing

oprxl6 — Any label or expression that evaluates to a 16-bit
value. Since the HCS08 has a 16-bit address bus, this
can be either a signed or an unsigned value.

rel Any label or expression that refers to an address that
is within —128 to +127 locations from the next address
after the last byte of object code for the current
instruction. The assembler will calculate the 8-bit
signed offset and include it in the object code for this
instruction.

Reference Manual — Volume I HCS08 — Revision 1

296 Instruction Set Details MOTOROLA

Instruction Set Details
Nomenclature

Cycle-by-cycle execution

This information is found in the tables at the bottom of each instruction
glossary page. Entries show how many bytes of information are
accessed from different areas of memory during the course of instruction
execution. With this information and knowledge of the bus frequency, a
user can determine the execution time for any instruction in any system.

A single letter code in the column represents a single CPU cycle. There
are cycle codes for each addressing mode variation of each instruction.
Simply count code letters to determine the execution time of an
instruction.

This list explains the cycle-by-cycle code letters:

f — Free cycle. This indicates a cycle where the CPU does
not require use of the system buses. An f cycle is
always one cycle of the system bus clock.

p — Program byte access
r — 8-bit data read
s — Stack 8-bit data (push)
w — 8-bit data write
u — Unstack 8-bit data (pull)
v — Vector fetch. Vectors are always fetched as two

consecutive 8-bit accesses (v v) with the high byte
first.

Address modes

INH = Inherent (no operands)
IMM = 8-bit or 16-bit immediate
DIR = 8-bit direct
EXT = 16-bit extended

IX = 16-bit indexed no offset
IX+ = 16-bit indexed no offset, post increment (CBEQ and

MOV only)
IX1 = 16-bit indexed with 8-bit offset from H:X

IX1+ = 16-bit indexed with 8-bit offset, post increment
(CBEQ only)

IX2 = 16-bit indexed with 16-bit offset from H:X
REL = 8-bit relative offset
SP1 = Stack pointer relative with 8-bit offset
SP2 = Stack pointer relative with 16-bit offset

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 297

Instruction Set Details

A.3 Convention Definitions

Set refers specifically to establishing logic level 1 on a bit or bits.

Cleared refers specifically to establishing logic level 0 on a bit or bits.

A specific bit is referred to by mnemonic and bit number. A7 is bit 7 of
accumulator A. A range of bits is referred to by mnemonic and the bit
numbers that define the range. A [7:4] are bits 7 to 4 of the accumulator.

Parentheses indicate the contents of a register or memory location,
rather than the register or memory location itself. (A) is the contents of
the accumulator. In Boolean expressions, parentheses have the
traditional mathematical meaning.

A.4 Instruction Set

The following pages summarize each instruction, including operation
and description, condition codes and Boolean formulae, and a table with
source forms, addressing modes, machine code, and cycles.

Reference Manual — Volume I HCS08 — Revision 1

298 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

ADC Add with Carry

Operation A F-- (A) + (M) + (C)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

ADC

Adds the contents of the C bit to the sum of the contents of A and M and
places the result in A. This operation is useful for addition of operands
that are larger than eight bits.

V H I N z C

1 1

V: A7&M7&R7 I A7&M7&R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise

H: A3&M3 I M3&R3 I R3&A3
Set if there was a carry from bit 3; cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 I M7&R7 I R7&A7
Set if there was a carry from the most significant bit (MSB) of the
result; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

ADC #opr8i IMM A9 ii 2 pp

ADC opr8a DIR B9 dd 3 rpp

ADC oprl6a EXT C9 hh II 4 prpp

ADC oprxl6,X IX2 D9 ee if 4 prpp

ADC oprx8,X IX1 E9 if 3 rpp

ADC ,X IX F9 3 rfp

ADC oprxl6,SP SP2 9ED9 ee if 5 pprpp

ADC oprx8,SP SP1 9EE9 if 4 prpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 299

Instruction Set Details

ADD
Operation

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Add without Carry A D D

A - (A) + (M)

Adds the contents of M to the contents of A and places the result in A

V H I N z C

t t

V: A7&M7&R7 I A7&M7&R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise

H: A3&M3 I M3&R3 I R3&A3
Set if there was a carry from bit 3; cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 I M7&R7 I R7&A7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

ADD #opr8i IMM AB ii 2 pp

ADD opr8a DIR BB dd 3 rpp

ADD oprl6a EXT CB hh II 4 prpp

ADD oprxl6,X IX2 DB ee if 4 prpp

ADD oprx8,X IX1 EB ft 3 rpp

ADD ,X IX FB 3 rfp

ADD oprxl6,SP SP2 9EDB ee ft 5 pprpp

ADD oprx8,SP SP1 9EEB if 4 prpp

Reference Manual — Volume I HCS08 — Revision 1

300 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

AIS Add Immediate Value (Signed) to Stack Pointer

Operation SP - (SP) + (16 « M)

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycle, and Access
Detail

AIS

Adds the immediate operand to the stack pointer (SP). The immediate
value is an 8-bit two's complement signed operand. The 8-bit operand is
sign-extended to 16 bits prior to the addition. The AIS instruction can be
used to create and remove a stack frame buffer that is used to store
temporary variables.

This instruction does not affect any condition code bits so status
information can be passed to or from a subroutine or C function and
allocation or deallocation of space for local variables will not disturb that
status information.

None affected

V H 1 N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

AIS #opr8i IMM A7 ii 2 pp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 301

Instruction Set Details

AIX Add Immediate Value (Signed) to Index Register

Operation H:X f- (H:X) + (16 « M)

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

AIX

Adds an immediate operand to the 16-bit index register, formed by the
concatenation of the H and X registers. The immediate operand is an
8-bit two's complement signed offset. The 8-bit operand is sign-
extended to 16 bits prior to the addition.

This instruction does not affect any condition code bits so index register
pointer calculations do not disturb the surrounding code which may rely
on the state of CCR status bits.

None affected

V H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

AIX #opr8i IMM AF ii 2 pp

Reference Manual — Volume I HCS08 — Revision 1

302 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

AND
Operation A - (A) & (M)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Logical AND AND

Performs the logical AND between the contents of A and the contents of
M and places the result in A. Each bit of A after the operation will be the
logical AND of the corresponding bits of M and of A before the operation.

V H I N z C

0 1

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1 &R0
Set if result is $00; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCSOS
Cycles

Access
Detail Opcode Operand(s)

AND #opr8i IMM A4 ii 2 pp

AND opr8a DIR B4 dd 3 rpp

AND oprl6a EXT C4 hh II 4 prpp

AND oprxl6,X 1X2 D4 ee ff 4 prpp

AND oprx8,X IX1 E4 if 3 rpp

AND ,X IX F4 3 rfp

AND oprxi6,SP SP2 9E04 ee ff 5 pprpp

AND oprx8,SP SP1 9EE4 ff 4 prpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 303

Instruction Set Details

ASL

Operation

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Arithmetic Shift Left
(Same as LSL)

b7 b0

ASL

0

Shifts all bits of A, X, or M one place to the left. Bit 0 is loaded with a 0.

The C bit in the CCR is loaded from the most significant bit of A, X, or M.

This is mathematically equivalent to multiplication by two. The V bit

indicates whether the sign of the result has changed.

V H I N z C

1 1 2

V: R70+b7
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&RO
Set if result is $00; cleared otherwise

C: b7
Set if, before the shift, the MSB of A, X, or M was set; cleared
otherwise

Source
Form

Addr
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

ASL opr8a DIR 38 dd 5 rfwpp

ASLA INH (A) 48 1 p

ASLX INH (X) 58 1 p

ASL oprx8,X IX1 68 if 5 rfwpp

ASL ,X IX 78 4 rfwp

ASL oprx8,SP SP1 9E68 if 6 prfwpp

Reference Manual — Volume I HCS08 — Revision 1

304 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

ASR
Operation

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Arithmetic Shift Right

b0 C

ASR

Shifts all bits of A, X, or M one place to the right. Bit 7 is held constant.
Bit 0 is loaded into the C bit of the CCR. This operation effectively divides
a two's complement value by 2 without changing its sign. The carry bit
can be used to round the result.

V H I N Z C

1 t I

V: R70+b0
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b0
Set if, before the shift, the LSB of A, X, or M was set; cleared
otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

ASR opr8a DIR 37 dd 5 rfwpp

ASRA INH (A) 47 1 p

ASRX INH (X) 57 1 p

ASR oprx8,X IXi 67 ff 5 rfwpp

ASR ,X IX 77 4 rfwp
ASR oprx8,SP SP1 9E67 if 6 prfwpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 305

Instruction Set Details

BCC Branch if Carry Bit Clear
(Same as BHS)

Operation If (C) = 0, PC - (PC) + $0002 + rel

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Simple branch

BCC

Tests state of C bit in CCR and causes a branch if C is clear. BCC can
be used after shift or rotate instructions or to check for overflow after

operations on unsigned numbers. See the BRA instruction for further

details of the execution of the branch.

None affected

V H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCSOB
Cycles

Access
Detail Opcode Operand(s)

BCC rel REL 24 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I HCS08 — Revision 1

306 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BCLR n
Operation Mn.-0

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Clear Bit n in Memory BCLR n

Clear bit n (n = 7, 6, 5, .. . 0) in location M. All other bits in M are
unaffected. In other words, M can be any random-access memory
(RAM) or input/output (I/O) register address in the $0000 to $00FF area
of memory. (Direct addressing mode is used to specify the address of
the operand.) This instruction reads the specified 8-bit location, modifies
the specified bit, and then writes the modified 8-bit value back to the
memory location.

None affected

V H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BCLR O,opr8a DIR (b0) 11 dd 5 rfwpp

BCLR 1,opr8a DIR (b1) 13 dd 5 rfwpp

BCLR 2,opr8a DIR (b2) 15 dd 5 rfwpp

BCLR 3,opr8a DIR (b3) 17 dd 5 rfwpp

BCLR 4,opr8a DIR (b4) 19 dd 5 rfwpp

BCLR 5,opr8a DIR (b5) 16 dd 5 rfwpp

BCLR 6,opr8a DIR (b6) 1D dd 5 rfwpp

BCLR 7,opr8a DIR (b7) 1F dd 5 rfwpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 307

Instruction Set Details

BCS

Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Branch if Carry Bit Set
(Same as BLO)

If (C) = 1, PC - (PC) + $0002 + rel

Simple branch

BCS

Tests the state of the C bit in the OCR and causes a branch if C is set.
BCS can be used after shift or rotate instructions or to check for overflow
after operations on unsigned numbers. See the BRA instruction for
further details of the execution of the branch.

None affected

V H i N Z C
1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BCS rel REL 25 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I HCS08 — Revision 1

308 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BEQ Branch if Equal

Operation If (Z) = 1, PC F- (PC) + $0002 + rel

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

BEQ

Simple branch; may be used with signed or unsigned operations

Tests the state of the Z bit in the CCR and causes a branch if Z is set.
Compare instructions perform a subtraction with two operands and
produce an internal result without changing the original operands. If the
two operands were equal, the internal result of the subtraction for the
compare will be zero so the Z bit will be equal to one and the BEQ will
cause a branch.

This instruction can also be used after a load or store without having to
do a separate test or compare on the loaded value. See the BRA
instruction for further details of the execution of the branch.

None affected

V H I N z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BEQ rel REL 27 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 309

Instruction Set Details

BGE
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Branch if Greater Than or Equal To

If (N O+ V) = 0, PC - (PC) + $0002 + rel

BGE

For signed two's complement values
if (Accumulator) ≥ (Memory), then branch

If the BGE instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch occurs if and only if
the two's complement number in the A, X, or H:X register was greater
than or equal to the two's complement number in memory.

None affected
V H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BGE rel REL 90 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I HCS08 — Revision 1

310 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BGND
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

HCS08 — Revision 1

Background BGND
Enter active background debug mode (if allowed by ENBDM = 1)

This instruction is used to establish software breakpoints during debug
by replacing a user opcode with this opcode. BGND causes the user
program to stop and the CPU enters active background mode (provided
it has been enabled previously by a serial WRITE_CONTROL command
from a host debug pod). The CPU remains in active background mode
until the debug host sends a serial GO, TRACEI, or TAGGO command
to return to the user program. This instruction is never used in normal
user application programs. If the ENBDM control bit in the BDC
status/control register is clear, BGND is treated as an illegal opcode.

None affected

V H I N Z C
1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BGND INH 82 5+ fp...ppp

Reference Manual — Volume I

MOTOROLA Instruction Set Details 311

Instruction Set Details

BGT

Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Branch if Greater Than

If (Z) I (N O+ V) = 0, PC - (PC) + $0002 + rel

BGT

For signed two's complement values
if (Accumulator) > (Memory), then branch

If the BGT instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if and only
if the two's complement number in the A, X, or H:X register was greater
than the two's complement number in memory.

None affected

V H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BGT rel REL 92 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I HCS08 — Revision 1

312 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BHCC Branch if Half Carry Bit Clear

Operation If (H) = 0, PC - (PC) + $0002 + rel

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

BHCC

Tests the state of the H bit in the CCR and causes a branch if H is clear.
This instruction is used in algorithms involving BCD numbers that were
originally written for the M68HC05 or M68HC08 devices. The DAA
instruction in the HCS08 simplifies operations on BCD numbers so
BHCC and BHCS should not be needed in new programs. See the BRA
instruction for further details of the execution of the branch.

None affected

v H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BHCC rel REL 28 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 313

Instruction Set Details

BHCS Branch if Half Carry Bit Set

Operation If (H) = 1, PC - (PC) + $0002 + rel

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

BHCS

Tests the state of the H bit in the CCR and causes a branch if H is set.
This instruction is used in algorithms involving BCD numbers that were
originally written for the M68HC05 or M68HC08 devices. The DAA
instruction in the HCS08 simplifies operations on BCD numbers so

BHCC and BHCS should not be needed in new programs. See the BRA
instruction for further details of the execution of the branch.

None affected

V H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BHCS rel REL 29 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I HCS08 — Revision 1

314 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BHI
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

HCS08 — Revision 1

Branch if Higher

If (C) 1 (Z) = 0, PC - (PC) + $0002 + rel

For unsigned values, if (Accumulator) > (Memory), then branch

BHI

Causes a branch if both C and Z are cleared. If the BHI instruction is
executed immediately after execution of a CMP, CPHX, CPX, SBC, or
SUB instruction, the branch will occur if the unsigned binary number in
the A, X, or H:X register was greater than unsigned binary number in
memory. Generally not useful after CLR, COM, DEC, INC, LDA, LDHX,
LDX, STA, STHX, STX, or TST because these instructions do not affect
the carry bit in the CCR. See the BRA instruction for details of the
execution of the branch.

None affected

V H I N Z C

1 1

Source
Form

Addr.
Mode

Mach'ne Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BHI rel REL 22 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I

MOTOROLA Instruction Set Details 315

Instruction Set Details

BHS Branch if Higher or Same
(Same as BCC)

BHS

Operation If (C) = 0, PC - (PC) + $0002 + rel

For unsigned values, if (Accumulator) ≥ (Memory), then branch

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

If the BHS instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if the
unsigned binary number in the A, X, or H:X register was greater than or
equal to the unsigned binary number in memory. Generally not useful
after CLR, COM, DEC, INC, LDA, LDHX, LDX, STA, STHX, STX, or TST
because these instructions do not affect the carry bit in the CCR. See the
BRA instruction for further details of the execution of the branch.

None affected

V H I N Z c
1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BHS rel REL 24 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I HCS08 — Revision 1

316 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BIH Branch if IRQ Pin High

Operation If IRO pin = 1, PC F— (PC) + $0002 + rel

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

BIH

Tests the state of the external interrupt pin and causes a branch if the
pin is high. See the BRA instruction for further details of the execution of
the branch.

None affected

V H I N z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BIH rel REL 2F rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 317

Instruction Set Details

BIL Branch if IRQ Pin Low

Operation If IRO pin = 0, PC - (PC) + $0002 + rel

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

BIL

Tests the state of the external interrupt pin and causes a branch if the
pin is low. See the BRA instruction for further details of the execution of

the branch.

None affected

V H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BIL rel REL 2E rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I HCS08 — Revision 1

318 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BIT
Operation (A) & (M)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Bit Test BIT

Performs the logical AND comparison of the contents of A and the
contents of M and modifies the condition codes accordingly. Neither the
contents of A nor M are altered. (Each bit of the result of the AND would
be the logical AND of the corresponding bits of A and M.)

This instruction is typically used to see if a particular bit, or any of several
bits, in a byte are is. A mask value is prepared with is in any bit
positions that are to be checked. This mask may be in accumulator A or
memory and the unknown value to be checked will be in memory or the
accumulator A, respectively. After the BIT instruction, a BNE instruction
will branch if any bits in the tested location that correspond to is in the
mask were is.

v H I N Z C

0 1 1

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BIT #opr8i IMM A5 ii 2 pp

BIT opr8a DIR B5 dd 3 rpp

BIT oprl6a EXT C5 hh II 4 prpp

BIT oprxl6,X IX2 D5 ee ff 4 prpp

BIT oprx8,X IXi E5 ft 3 rpp

BIT ,X IX F5 3 rfp

BIT oprxl6,SP SP2 9ED5 ee ft 5 pprpp

BIT oprx8,SP SP1 9EE5 if 4 prpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 319

Instruction Set Details

BLE
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Branch if Less Than or Equal To

If (Z) I (N O+ V) = 1, PC - (PC) + $0002 + rel

For signed two's complement numbers
if (Accumulator) ≤ (Memory), then branch

BLE

If the BLE instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if and only
if the two's complement in the A, X, or H:X register was less than or
equal to the two's complement number in memory.

None affected
V H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BLE rd l REL 93 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I HCS08 — Revision 1

320 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BLO
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

HCS08 — Revision 1

Branch if Lower BLO
If (C) = 1, PC - (PC) + $0002 + rel

For unsigned values, if (Accumulator) < (Memory), then branch

If the BLO instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if the
unsigned binary number in the A, X, or H:X register was less than the
unsigned binary number in memory. Generally not useful after CLR,
COM, DEC, INC, LDA, LDHX, LDX, STA, STHX, STX, or TST because
these instructions do not affect the carry bit in the CCR. See the BRA
instruction for further details of the execution of the branch.

None affected
V H I N z c

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BLO rd l REL 25 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I

MOTOROLA Instruction Set Details 321

Instruction Set Details

BLS
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycle, and Access
Detail

Branch if Lower or Same BLS

If (C) 1 (Z) = 1, PC *- (PC) + $0002 + rel

For unsigned values, if (Accumulator) ≤ (Memory), then branch

Causes a branch if (C is set) or (Z is set). If the BLS instruction is
executed immediately after execution of a CMP, CPHX, CPX, SBC, or
SUB instruction, the branch will occur if and only if the unsigned binary
number in the A, X, or H:X register was less than or equal to the
unsigned binary number in memory. Generally not useful after CLR,
COM, DEC, INC, LDA, LDHX, LDX, STA, STHX, STX, or TST because
these instructions do not affect the carry bit in the CCR. See the BRA
instruction for further details of the execution of the branch.

None affected
V H I N z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BLS re/ REL 23 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I HCS08 — Revision 1

322 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BLT

Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

HCS08 — Revision 1

Branch if Less Than
(Signed Operands)

If (N O+ V) = 1, PC - (PC) + $0002 + rel

For signed two's complement numbers
if (Accumulator) < (Memory), then branch

BLT

If the BLT instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if and only
if the two's complement number in the A, X, or H:X register was less than
the two's complement number in memory. See the BRA instruction for
further details of the execution of the branch.

None affected
V H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BLT rel REL 91 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I

MOTOROLA Instruction Set Details 323

Instruction Set Details

BMC Branch if Interrupt Mask Clear

Operation If (I) = 0, PC F- (PC) + $0002 + rel

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

BMC

Tests the state of the I bit in the CCR and causes a branch if I is clear (if

interrupts are enabled). See the BRA instruction for further details of the
execution of the branch.

None affected

V H I N z C

1 1

Source
Form

Addr.
Mode

Machine Code HCSOS
Cycles

Access
Detail Opcode Operand(s)

BMC rel REL 2C rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I HCSO8 — Revision 1

324 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BMI Branch if Minus

Operation If (N) = 1, PC - (PC) + $0002 + rel

BMI

Simple branch; may be used with signed or unsigned operations

Description Tests the state of the N bit in the CCR and causes a branch if N is set.

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Simply loading or storing A, X, or H:X will cause the N condition code bit
to be set or cleared to match the most significant bit of the value loaded
or stored. The BMI instruction can be used after such a load or store
without having to do a separate test or compare instruction before the
conditional branch. See the BRA instruction for further details of the
execution of the branch.

None affected

V H I N Z c
1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BMI re/ REL 2B rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 325

Instruction Set Details

BMS Branch if Interrupt Mask Set

Operation If (I) = 1, PC - (PC) + $0002 + rel

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

BMS

Tests the state of the I bit in the CCR and causes a branch if I is set (if
interrupts are disabled). See BRA instruction for further details of the
execution of the branch.

None affected

V H i N z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BMS rd l REL 2D rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I HCS08 — Revision 1

326 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BNE
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

HCS08 — Revision 1

Branch if Not Equal

If (Z) = 0, PC E- (PC) + $0002 + rel

BNE

Simple branch, may be used with signed or unsigned operations

Tests the state of the Z bit in the OCR and causes a branch if Z is clear

Following a compare or subtract instruction, the branch will occur if the
arguments were not equal. This instruction can also be used after a load
or store without having to do a separate test or compare on the loaded
value. See the BRA instruction for further details of the execution of the
branch.

None affected

V H I N z c
1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BNE rel REL 26 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I

MOTOROLA Instruction Set Details 327

Instruction Set Details

BPL Branch if Plus BPL

Operation If (N) = 0, PC - (PC) + $0002 + rel

Simple branch

Description Tests the state of the N bit in the CCR and causes a branch if N is clear

Simply loading or storing A, X, or H:X will cause the N condition code bit
to be set or cleared to match the most significant bit of the value loaded
or stored. The BPL instruction can be used after such a load or store
without having to do a separate test or compare instruction before the
conditional branch. See the BRA instruction for further details of the
execution of the branch.

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

None affected

V H N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BPL ref REL 2A rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I HCS08 — Revision 1

328 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BRA
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

HCS08 — Revision 1

Branch Always

PC - (PC) + $0002 + rel

BRA

Performs an unconditional branch to the address given in the foregoing
formula. In this formula, re/is the two's-complement relative offset in the
last byte of machine code for the instruction and (PC) is the address of
the opcode for the branch instruction.

A source program specifies the destination of a branch instruction by its
absolute address, either as a numerical value or as a symbol or
expression which can be numerically evaluated by the assembler. The
assembler calculates the 8-bit relative offset re/from this absolute
address and the current value of the location counter.

None affected

v H I N Z C
1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BRA rel REL 20 rr 3 ppp

The table on the facing page is a summary of all branch instructions.

The BRA description continues next page.

Reference Manual — Volume I

MOTOROLA Instruction Set Details 329

Instruction Set Details

BRA Branch Always
(Continued)

Branch Instruction Table A-1 is a summary of all branch instructions.
Summary Table A-1. Branch Instruction Summary

BRA

Branch Complementary Branch
Type

Test Boolean Mnemonic Opcode Test Mnemonic Opcode

r>m (Z) I (NO+V)=0 BGT 92 r≤m BLE 93 Signed

r≥m (NV)=0 BGE 90 r<m BLT 91 Signed

r=m (Z)=1 BEQ 27 rsm BNE 26 Signed

r≤m (Z) I (NO+V)=1 BLE 93 r>m BGT 92 Signed

r<m (NV)=1 BLT 91 r≥m BGE 90 Signed

r>m (C) I (Z)=0 BHI 22 r≤m BLS 23 Unsigned

r≥m (C)=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r=m (Z)=1 BEQ 27 rxm BNE 26 Unsigned

r≤m (C) I (Z)=1 BLS 23 r>m BHI 22 Unsigned

r<m (C)=1 BLO/BCS 25 r≥m BHS/BCC 24 Unsigned

Carry (C)=1 BCS 25 No carry BCC 24 Simple

result=0 (Z)=1 BEQ 27 result~0 BNE 26 Simple

Negative (N)=1 BMI 2B Plus BPL 2A Simple

I mask (I)=1 BMS 2D I mask=0 BMC 2C Simple

H-Bit (H)=1 BHCS 29 H=0 BHCC 28 Simple

IRQ high — BIH 2F — BIL 2E Simple

Always — BRA 20 Never BRN 21 Uncond.

r = register: A, X, or H:X (for CPHX instruction) m = memory operand

During program execution, if the tested condition is true, the two's
complement offset is sign-extended to a 16-bit value which is added to
the current program counter. This causes program execution to continue
at the address specified as the branch destination. If the tested condition
is not true, the program simply continues to the next instruction after the
branch.

Reference Manual — Volume I HCS08 — Revision 1

330 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BRCLR n Branch if Bit n in Memory Clear

Operation If bit n of M = 0, PC - (PC) + $0003 + rel

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

BRCLR n

Tests bit n (n = 7, 6, 5, . . . 0) of location M and branches if the bit is clear.
M can be any RAM or I/O register address in the $0000 to $D0FF area
of memory because direct addressing mode is used to specify the
address of the operand.

The C bit is set to the state of the tested bit. When used with an
appropriate rotate instruction, BRCLR n provides an easy method for
performing serial-to-parallel conversions.

V H I N

t

C: Set if Mn = 1; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BRCLR O,opr8a,rel DIR (b0) 01 dd rr 5 rpppp

BRCLR 1,opr8a,re/ DIR (b1) 03 dd rr 5 rpppp

BRCLR 2,opr8a,rel DIR (b2) 05 dd rr 5 rpppp

BRCLR 3,opr8a,rel DIR (b3) 07 dd rr 5 rpppp

BRCLR 4,opr8a,rel DIR (b4) 09 dd rr 5 rpppp

BRCLR 5,opr8a,rel DIR (b5) 0B dd rr 5 rpppp

BRCLR 6,opr8a,rel DIR (b6) OD dd rr 5 rpppp

BRCLR 7,opr8a,rel DIR (b7) OF dd rr 5 rpppp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 331

Instruction Set Details

BRN Branch Never

Operation PC - (PC) + $0002

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

BRN

Never branches. In effect, this instruction can be considered a 2-byte no
operation (NOP) requiring three cycles for execution. Its inclusion in the
instruction set provides a complement for the BRA instruction. The BRN
instruction is useful during program debugging to negate the effect of
another branch instruction without disturbing the offset byte.

This instruction can be useful in instruction-based timing delays.
Instruction-based timing delays are usually discouraged because such
code is not portable to systems with different clock speeds.

V H N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BRN re/ REL 21 rr 3 ppp

See the BRA instruction for a summary of all branches and their
complements.

Reference Manual — Volume I HCS08 — Revision 1

332 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BRSET n Branch if Bit n in Memory Set

Operation If bit n of M = 1, PC <— (PC) + $0003 + rel

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

BRSET n

Tests bit n (n = 7, 6, 5, .. . 0) of location M and branches if the bit is set.
M can be any RAM or I/O register address in the $0000 to $D0FF area
of memory because direct addressing mode is used to specify the
address of the operand.

The C bit is set to the state of the tested bit. When used with an
appropriate rotate instruction, BRSET n provides an easy method for
performing serial-to-parallel conversions.

V H N Z C

1 1

C: Set if Mn = 1; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BRSET O,opr8a,rel DIR (b0) 00 dd rr 5 rpppp

BRSET 1,opr8a,re/ DIR (b1) 02 dd rr 5 rpppp

BRSET 2,opr8a,rel DIR (b2) 04 dd rr 5 rpppp

BRSET 3,opr8a,rel DIR (b3) 06 dd rr 5 rpppp

BRSET 4,opr8a,rel DIR (b4) 08 dd rr 5 rpppp

BRSET 5,opr8a,rel DIR (b5) OA dd rr 5 rpppp

BRSET 6,opr8a,re1 DIR (b6) 0C dd rr 5 rpppp

BRSET 7,opr8a,rel DIR (b7) OE dd rr 5 rpppp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 333

Instruction Set Details

BSET n
Operation Mn - 1

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Set Bit n in Memory BSET n

Set bit n (n = 7, 6, 5, .. . 0) in location M. All other bits in Mare unaffected.
M can be any RAM or I/O register address in the $0000 to $D0FF area

of memory because direct addressing mode is used to specify the

address of the operand. This instruction reads the specified 8-bit
location, modifies the specified bit, and then writes the modified 8-bit
value back to the memory location.

None affected

V H N z c
1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

BSET 0,opr8a DIR (b0) 10 dd 5 rfwpp

BSET i,opr8a DIR (b1) 12 dd 5 rfwpp

BSET 2,opr8a DIR (b2) 14 dd 5 rfwpp

BSET 3,opr8a DIR (b3) 16 dd 5 rfwpp

BSET 4,opr8a DIR (b4) 18 dd 5 rfwpp

BSET 5,opr8a DIR (b5) 1A dd 5 rfwpp
BSET 6,opr8a DIR (b6) 1C dd 5 rfwpp

BSET 7,opr8a DIR (b7) 1E dd 5 rfwpp

Reference Manual — Volume I HCS08 — Revision 1

334 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

BSR
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

HCS08 — Revision 1

Branch to Subroutine

PC F- (PC) + $0002
Push (PCL); SP F- (SP) - $0001
Push (PCH); SP - (SP) - $0001
PC E- (PC) + rel

BSR
Advance PC to return address
Push low half of return address
Push high half of return address
Load PC with start address of
requested subroutine

The program counter is incremented by 2 from the opcode address (so
it points to the opcode of the next instruction which will be the return
address). The least significant byte of the contents of the program
counter (low-order return address) is pushed onto the stack. The stack
pointer is then decremented by 1. The most significant byte of the
contents of the program counter (high-order return address) is pushed
onto the stack. The stack pointer is then decremented by 1. A branch
then occurs to the location specified by the branch offset. See the BRA
instruction for further details of the execution of the branch.

None affected

V H I N z C

1 1

Source
Form

Addr.
Mode

Machine Code HCSO8
Cycles

Access
Detail Opcode Operand(s)

BSR rel REL AD rr 5 ssppp

Reference Manual — Volume I

MOTOROLA Instruction Set Details 335

Instruction Set Details

CBEQ

Operation

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Compare and Branch if Equal

For DIR or IMM modes:
Or for IX+ mode:
Or for SP1 mode:
Or for CBEQX:

CBEQ
if (A) = (M), PC - (PC) + $0003 + re-
f (A) = (M); PC - (PC) + $0002 + rel
if (A) = (M); PC <— (PC) + $0004 + rel
if (X) = (M); PC - (PC) + $0003 + rel

CBEQ compares the operand with the accumulator (or index register for
CBEQX instruction) against the contents of a memory location and
causes a branch if the register (A or X) is equal to the memory contents.
The CBEQ instruction combines CMP and BEQ for faster table lookup
routines and condition codes are not changed.

The IX+ variation of the CBEQ instruction compares the operand
addressed by H:X to A and causes a branch if the operands are equal.
H:X is then incremented regardless of whether a branch is taken. The
IX1+ variation of CBEQ operates the same way except that an 8-bit
offset is added to H:X to form the effective address of the operand.

None affected

V H N z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

CBEQ opr8a,rel DIR 31 dd rr 5 rpppp

CBEQA #opr8i,rel IMM 41 ii rr 4 pppp

CBEQX #opr8i,rel IMM 51 ii rr 4 pppp

CBEQ oprx8,X+,rel IX1+ 61 if rr 5 rpppp

CBEQ ,X+,rel IX+ 71 rr 5 rfppp

CBEQ oprx8,SP,rel SP1 9E61 if rr 6 prpppp

Reference Manual — Volume I HCS08 — Revision 1

336 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

CLC
Operation C bit - 0

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Clear Carry Bit CLC

Clears the C bit in the CCR. CLC may be used to set up the C bit prior
to a shift or rotate instruction that involves the C bit. The C bit can also
be used to pass status information between a subroutine and the calling
program.

V H I N z C
1 1 0

C: 0
Cleared

Source
Form

Addr.
Mode

Machine Code HCSOB
Cycles

Access
Detail Opcode Operand(s)

CLC INH 98 1 p

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 337

Instruction Set Details

CLI
Operation I bit E- 0

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Clear Interrupt Mask Bit CLI

Clears the interrupt mask bit in the CCR. When the I bit is clear,
interrupts are enabled. The I bit actually changes to zero at the end of
the cycle where the CLI instruction executes. This is too late to recognize
an interrupt that arrived before or during the CLI instruction so if
interrupts were previously disabled, the next instruction after a CLI will
always be executed even if there was an interrupt pending prior to
execution of the CLI instruction.

V H I N z C

1 1 0

I: 0
Cleared

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

CLI INH 9A 1 p

Reference Manual — Volume I HCS08 — Revision 1

338 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

CLR
Operation AF-$00

OrM-$00
OrX-$00
Or H - $00

Clear CLR

Description The contents of memory (M), A, X, or H are replaced with zeros.

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N z C
0 t t 0 1

V: 0
Cleared

N: 0
Cleared

Z: 1
Set

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

CLR opr8a DIR 3F dd 5 rfwpp

CLRA INH (A) 4F 1 p

CLRX INH (X) 5F 1 p

CLRH INH (H) 8C 1 p

CLR oprx8,X IX1 6F ff 5 rfwpp

CLR ,X IX 7F 4 rfwp

CLR oprx8,SP SP1 9E6F ft 6 prfwpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 339

Instruction Set Details

CMP Compare Accumulator with Memory

Operation (A) - (M)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

CMP

Compares the contents of A to the contents of M and sets the condition
codes, which may then be used for arithmetic (signed or unsigned) and
logical conditional branching. The contents of both A and M are
unchanged.

V H N Z c
1 1

V: A7&M7&R7 I A7&M7&R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise. Literally read, an overflow condition occurs if
a positive number is subtracted from a negative number with a
positive result, or, if a negative number is subtracted from a
positive number with a negative result.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1 &RO
Set if result is $00; cleared otherwise

C: A7&M7 I M7&R7 I R7&A7
Set if the unsigned value of the contents of memory is larger than
the unsigned value of the accumulator; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

CMP #opr8i IMM Al ii 2 pp

CMP opr8a DIR B1 dd 3 rpp

CMP opr>6a EXT Cl hh II 4 prpp

CMP oprxl6,X 1X2 D1 ee ff 4 prpp

CMP oprx8,X IXl E1 ff 3 rpp

CMP ,X IX F1 3 rfp

CMP oprxl6,SP SP2 9ED1 ee ff 5 pprpp

CMP oprx8,SP SP1 9EE1 ff 4 prpp

Reference Manual — Volume I HCS08 — Revision 1

340 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

COM
Operation

Complement (One's Complement)

A-A=$FF-(A)
OrX-X=$FF-(X)
Or M F M = $FF - (M)

COM

Description Replaces the contents of A, X, or M with the one's complement. Each bit
of A, X, or M is replaced with the complement of that bit.

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 1

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: 1
Set

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

COM opr8a DIR 33 dd 5 rfwpp

COMA INH (A) 43 1 p

COMX INH (X) 53 1 p

COM oprx8,X IXi 63 ft 5 rfwpp

COM ,X IX 73 4 rfwp

COM oprx8,SP SP1 9E63 if 6 prfwpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 341

Instruction Set Details

CPHX Compare Index Register with Memory

Operation (H:X) - (M:M + $0001)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

CPHX

CPHX compares index register (H:X) with the 16-bit value in memory
and sets the condition codes, which may then be used for arithmetic
(signed or unsigned) and logical conditional branching. The contents of
both H:X and M:M + $0001 are unchanged.

V H I N Z C

1 1

V: H7&M15&R15 I H7&M15&R15
Set if a two's complement overflow resulted from the operation;
cleared otherwise

N: R15
Set if MSB of result is 1; cleared otherwise

Z: R15&R14&R13&R12&R11&R10&R9&R8
&R7&R6&R5&R4&R3&R2&R1&R0
Set if the result is $0000; cleared otherwise

C: H7&M15 I M15&R15 I R15&H7
Set if the absolute value of the contents of memory is larger than
the absolute value of the index register; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

CPHX oprl6a EXT 3E hh II 6 prrfpp
CPHX #oprl6i IMM 65 ii kk 3 ppp

CPHX opr8a DIR 75 dd 5 rrfpp

CPHX oprx8,SP SP1 9EF3 if 6 prrfpp

Reference Manual — Volume I HCS08 — Revision 1

342 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

CPX Compare X (Index Register Low) with Memory

Operation (X) - (M)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

CPX

Compares the contents of X to the contents of M and sets the condition
codes, which may then be used for arithmetic (signed or unsigned) and
logical conditional branching. The contents of both X and M are
unchanged.

V H I N z C

1 1

V: X7&M7&R7 I X7&M7&R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise

N: R7
Set if MSB of result of the subtraction is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: X7&M7 I M7&R7 I R7&X7
Set if the unsigned value of the contents of memory is
larger than the unsigned value in the index register;
cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

CPX #opr8i IMM A3 ii 2 pp

CPX opr8a DIR B3 dd 3 rpp

CPX oprl6a EXT C3 hh II 4 prpp

CPX oprxl6,X IX2 D3 ee ft 4 prpp

CPX oprx8,X IXi E3 if 3 rpp

CPX ,X IX F3 3 rfp

CPX oprxl6,SP SP2 9ED3 ee if 5 pprpp

CPX oprx8,SP SP1 9EE3 if 4 prpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 343

Instruction Set Details

DAA
Operation (A)10

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Decimal Adjust Accumulator DAA

Adjusts the contents of the accumulator and the state of the CCR carry
bit after an ADD or ADC operation involving binary-coded decimal (BCD)
values, so that there is a correct BCD sum and an accurate carry
indication. The state of the OCR half carry bit affects operation. Refer to

Table A-2 for details of operation.

V H I N Z C

U 1 1

V: U

Undefined

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: Set if the decimal adjusted result is greater than 99 (decimal);
refer to Table A-2

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

DAA INH 72 1 p

Reference Manual — Volume I

The DAA description continues next page.

HCS08 — Revision 1

344 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

DAA Decimal Adjust Accumulator (Continued) DAA

Table A-2 shows DAA operation for all legal combinations of input
operands. Columns 1-4 represent the results of ADC or ADD operations
on BCD operands. The correction factor in column 5 is added to the
accumulator to restore the result of an operation on two BCD operands
to a valid BCD value and to set or clear the C bit. All values in this table
are hexadecimal.

Table A-2. DAA Function Summary

1 2 3 4 5 6

Initial
C-Bit Value

Value
of A[7:4]

Initial
H-Bit Value

Value
of A[3:0]

Correction
Factor

Corrected
C-Bit Value

0 0-9 0 0-9 00 0

0 0-8 0 A-F 06 0

0 0-9 1 0-3 06 0

0 A-F 0 0-9 60 1

0 9-F 0 A-F 66 1

0 A-F 1 0-3 66 1

1 0-2 0 0-9 60 1

1 0-2 0 A-F 66 1

1 0-3 1 0-3 66 1

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 345

Instruction Set Details

DBNZ

Operation

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Decrement and Branch if Not Zero

Af-(A)-$01
Or M - (M) - $01
Or X F-- (X) - $01

For DIR or IX1 modes:
Or for INH or IX modes:
Or for SP1 mode:

DBNZ

PC — (PC) + $0003 + re/ if (result) ~ 0
PC F-- (PC) + $0002 + re/ if (result) ~ 0
PC - (PC) + $0004 + re/ if (result) ~ 0

Subtract 1 from the contents of A, M, or X; then branch using the relative
offset if the result of the subtraction is not $00. DBNZX only affects the
low order eight bits of the H:X index register pair; the high-order byte (H)
is not affected.

None affected

V H I N Z C
t 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

DBNZ opr8a,rel DIR 3B dd rr 7 rfwpppp

DBNZA re/ INH 4B rr 4 fppp

DBNZX re/ INH 5B rr 4 fppp

DBNZ oprx8,X,rel IX1 6B ft rr 7 rfwpppp

DBNZ ,X, ret IX 7B rr 6 rfwppp

DBNZ oprx8,SP,re/ SP1 9E6B ft rr 8 prfwpppp

Reference Manual — Volume I HCS08 — Revision 1

346 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

DEC
Operation

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Decrement

A f- (A) - $01
Or X E- (X) - $01
Or M -(M)-$01

DEC

Subtract 1 from the contents of A, X, or M. The V, N, and Z bits in the
CCR are set or cleared according to the results of this operation. The C
bit in the CCR is not affected; therefore, the BLS, BLO, BHS, and BHI
branch instructions are not useful following a DEC instruction.

DECX only affects the low-order byte of index register pair (H:X). To
decrement the full 16-bit index register pair (H:X), use AIX # —1.

V H I N Z C

1 1

V: R7 & A7
Set if there was a two's complement overflow as a result of the
operation; cleared otherwise. Two's complement overflow occurs
if and only if (A), (X), or (M) was $80 before the operation.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

DEC opr8a DIR 3A dd 5 rfwpp

DECA INH (A) 4A 1 p

DECX INH (X) 5A 1 p

DEC oprx8,X IX1 6A if 5 rfwpp

DEC ,X IX 7A 4 rfwp

DEC oprx8,SP SP1 9E6A if 6 prfwpp

DEX is recognized by assemblers as being equivalent to DECX.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 347

Instruction Set Details

DIV Divide

Operation A - (H:A) - (X); H E- Remainder

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

DIV

Divides a 16-bit unsigned dividend contained in the concatenated
registers H and A by an 8-bit divisor contained in X. The quotient is
placed in A, and the remainder is placed in H. The divisor is left
unchanged.

An overflow (quotient > $FF) or divide-by-0 sets the C bit, and the
quotient and remainder are indeterminate.

V H I N Z C

1 1

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result (quotient) is $00; cleared otherwise

C: Set if a divide-by-0 was attempted or if an overflow occurred;
cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Detail
Opcode Operand(s) Access

DIV INH 52 6 fffffp

Reference Manual — Volume I HCS08 — Revision 1

348 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

FOR Exclusive-OR Memory with Accumulator

Operation A - (A O+ M)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

FOR

Performs the logical exclusive-OR between the contents of A and the
contents of M and places the result in A. Each bit of A after the operation
will be the logical exclusive-OR of the corresponding bits of M and A
before the operation.

V H I N Z C

0 1 1

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

FOR #opr8i IMM A8 ii 2 pp

FOR opr8a DIR B8 dd 3 rpp

FOR oprl6a EXT C8 hh II 4 prpp

FOR oprxl6,X IX2 D8 ee ft 4 prpp

FOR oprx8,X IX1 E8 ff 3 rpp

FOR ,X IX F8 3 rfp

FOR oprxl6,SP SP2 9ED8 ee ft 5 pprpp

FOR oprx8,SP SP1 9EE8 ft 4 prpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 349

Instruction Set Details

INC
Operation

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Increment

A - (A) + $01
OrX-(X)+$01
Or M - (M) + $01

INC

Add 1 to the contents of A, X, or M. The V, N, and Z bits in the OCR are
set or cleared according to the results of this operation. The C bit in the
OCR is not affected; therefore, the BLS, BLO, BHS, and BHI branch
instructions are not useful following an INC instruction.

INCX only affects the low-order byte of index register pair (H:X). To
increment the full 16-bit index register pair (H:X), use AIX #1.

V H I N Z C

t 1

V: A7&R7
Set if there was a two's complement overflow as a result of the
operation; cleared otherwise. Two's complement overflow occurs
if and only if (A), (X), or (M) was $7F before the operation.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

INC opr8a DIR 30 dd 5 rfwpp

INCA INH (A) 4C 1 p

INCX INH (X) 5C 1 p

INC oprx8,X IX1 6C ff 5 rfwpp

INC ,X IX 7C 4 rfwp

INC oprx8,SP SP1 9E6C ff 6 prfwpp

INX is recognized by assemblers as being equivalent to INCX.

Reference Manual — Volume I HCS08 — Revision 1

350 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

JMP
Operation

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

HCS08 — Revision 1

Jump

PC - effective address

JMP

A jump occurs to the instruction stored at the effective address. The
effective address is obtained according to the rules for extended, direct,
or indexed addressing.

None affected

V H I N z C
1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

JMP opr8a DIR BC dd 3 ppp

JMP oprl6a EXT CC hh II 4 pppp

JMP oprxl6,X IX2 DC ee if 4 pppp

JMP oprx8,X IX1 EC ft 3 ppp

JMP ,X IX FC 3 ppp

Reference Manual — Volume I

MOTOROLA Instruction Set Details 351

Instruction Set Details

JSR

Operation

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Jump to Subroutine JSR

PC - (PC) + n;

n = 1, 2, or 3 depending on address mode
Push (PCL); SP - (SP) - $0001 Push low half of return address
Push (PCH); SP - (SP) - $0001 Push high half of return address
PC - effective address Load PC with start address of

requested subroutine

The program counter is incremented by n so that it points to the opcode
of the next instruction that follows the JSR instruction (n = 1, 2, or 3
depending on the addressing mode). The PC is then pushed onto the
stack, eight bits at a time, least significant byte first. The stack pointer
points to the next empty location on the stack. A jump occurs to the
instruction stored at the effective address. The effective address is
obtained according to the rules for extended, direct, or indexed
addressing.

None affected

V H I N z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

JSR opr8a DIR BD dd 5 ssppp

JSR oprl6a EXT CD hh II 6 pssppp

JSR oprxl6,X IX2 DD ee ft 6 pssppp
JSR oprx8,X IX1 ED ff 5 ssppp
JSR ,X IX FD 5 ssppp

Reference Manual — Volume I HCSO8 — Revision 1

352 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

LDA Load Accumulator from Memory

Operation A - (M)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

LDA

Loads the contents of the specified memory location into A. The N and
Z condition codes are set or cleared according to the loaded data; V is
cleared. This allows conditional branching after the load without having
to perform a separate test or compare.

V H I N z C

0 1 1

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

LDA #opr8i IMM A6 ii 2 pp

LDA opr8a DIR B6 dd 3 rpp

LDA oprl6a EXT C6 hh II 4 prpp

LDA oprxl6,X IX2 D6 ee if 4 prpp

LDA oprx8,X IX1 E6 if 3 rpp

LDA ,X IX F6 3 rfp

LDA oprxl6,SP SP2 9ED6 ee if 5 pprpp

LDA oprx8,SP SP1 9EE6 if 4 prpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 353

Instruction Set Details

LDHX Load Index Register from Memory

Operation H:X - (M:M + $0001)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

LDHX

Loads the contents of the specified memory location into the index
register (H:X). The N and Z condition codes are set according to the
data; V is cleared. This allows conditional branching after the load
without having to perform a separate test or compare.

V H I N z C

0 1 1

V: 0
Cleared

N: R15
Set if MSB of result is 1; cleared otherwise

Z: R15&R14&R13&R12&R11&R10&R9&R8
&R7&R6&R5&R4&R3&R2&R1&R0
Set if the result is $0000; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

LDHX #oprl6i IMM 45 ii kk 3 ppp

LDHX opr8a DIR 55 dd 4 rrpp

LDHX oprl6a EXT 32 hh II 5 prrpp

LDHX ,X IX 9EAE 5 prrfp

LDHX oprxl6,X 1X2 9EBE ee if 6 pprrpp

LDHX oprx8,X IX1 9ECE if 5 prrpp

LDHX oprx8,SP SP1 9EFE if 5 prrpp

Reference Manual — Volume I HCS08 — Revision 1

354 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

LDX Load X (Index Register Low) from Memory

Operation X — (M)

Description

LDX

Loads the contents of the specified memory location into X. The N and
Z condition codes are set or cleared according to the loaded data; V is
cleared. This allows conditional branching after the load without having
to perform a separate test or compare.

Condition Codes
and Boolean V

Formulae 0 1 1

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V: 0
Cleared

H I N z C

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&RO
Set if result is $00; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCSOS
Cycles

Access
Detail Opcode Operand(s)

LDX #opr8i IMM AE ii 2 pp

LDX opr8a DIR BE dd 3 rpp

LDX oprl6a EXT CE hh II 4 prpp

LDX oprxl6,X IX2 DE ee if 4 prpp

LDX oprx8,X IX1 EE ft 3 rpp

LDX ,X IX FE 3 rfp

LDX oprxl6,SP SP2 9EDE ee ft 5 pprpp

LDX oprx8,SP SP1 9EEE if 4 prpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 355

Instruction Set Details

LSL

Operation

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Logical Shift Left
(Same as ASL)

b7 b0 i

LSL

0

Shifts all bits of the A, X, or M one place to the left. Bit 0 is loaded with
a 0. The C bit in the CCR is loaded from the most significant bit of A, X,
or M.

V H I N Z C
1 1

V: R70+b7
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b7
Set if, before the shift, the MSB of A, X, or M was set; cleared
otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

LSL opr8a DIR 38 dd 5 rfwpp

LSLA INH (A) 48 1 p

LSLX INH (X) 58 1 p
LSL oprx8,X IXi 66 if 5 rfwpp

LSL ,X IX 78 4 rfwp
LSL oprx8,SP SP1 9E68 ft 6 prfwpp

Reference Manual — Volume I HCS08 — Revision 1

356 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

LSR
Operation

Logical Shift Right

0 —► b7 b0

LSR

C

Description Shifts all bits of A, X, or M one place to the right. Bit 7 is loaded with
a 0. Bit 0 is shifted into the C bit.

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H i N z C

1 1 0

V: OOb0 = b0
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise. Since N = 0, this simplifies to the value of bit 0
before the shift.

N: 0
Cleared

Z: R7&R6&R5&R4&R3&R2&R1 &R0
Set if result is $00; cleared otherwise

C: b0
Set if, before the shift, the LSB of A, X, or M, was set; cleared
otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

LSR opr8a DIR 34 dd 5 rfwpp

LSRA INH (A) 44 1 p

LSRX INH (X) 54 1 p

LSR oprx8,X IX1 64 ff 5 rfwpp

LSR ,X IX 74 4 rfwp

LSR oprx8,SP SP1 9E64 ff 6 prfwpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 357

Instruction Set Details

MOV Move

Operation (M)Destination 4 " (M)Source

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

MOV

Moves a byte of data from a source address to a destination address.
Data is examined as it is moved, and condition codes are set. Source
data is not changed. The accumulator is not affected.

The four addressing modes for the MOV instruction are:

1. IMM/DIR moves an immediate byte to a direct memory location.

2. DIR/DIR moves a direct location byte to another direct location.

3. IX+/DIR moves a byte from a location addressed by H:X to a direct
location. H:X is incremented after the move.

4. DIR/IX+ moves a byte from a direct location to one addressed by
H:X. H:X is incremented after the move.

V H I N Z C

0 1 1

V: 0
Cleared

N: R7
Set if MSB of result is set; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCSOS
Cycles

Access
Detail Opcode Operand(s)

MOV opr8a,opr8a DIR/DIR 4E dd dd 5 rpwpp
MOV opr8a,X+ DIR/IX+ 5E dd 5 rfwpp

MOV #opr8i,opr8a IMM/DIR 6E ii dd 4 pwpp

MOV ,X+,opr8a IX+/DIR 7E dd 5 rfwpp

Reference Manual — Volume I HCSO8 — Revision 1

358 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

MUL Unsigned Multiply

Operation X:A F- (X) x (A)

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

MUL

Multiplies the 8-bit value in X (index register low) by the 8-bit value in the
accumulator to obtain a 16-bit unsigned result in the concatenated index
register and accumulator. After the operation, X contains the upper eight
bits of the 16-bit result and A contains the lower eight bits of the result.

V H I N z C

1 1 0 0

H: 0
Cleared

C: 0
Cleared

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

MUL INH 42 5 ffffp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 359

Instruction Set Details

NEG

Operation

Negate (Two's Complement)

A - — (A)
OrX--(X)
Or M --(M);

this is equivalent to subtracting A, X, or M from $00

NEG

Description Replaces the contents of A, X, or M with its two's complement. Note that
the value $80 is left unchanged.

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

1 1

V: M7&R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise. Overflow will occur only if the operand is $80
before the operation.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: R7IR6IR5IR4IR3IR2IR1IR0
Set if there is a borrow in the implied subtraction from 0; cleared
otherwise. The C bit will be set in all cases except when the
contents of A, X, or M was $00 prior to the NEG operation.

Source
Form

Addr.
Mode

Machine Code HCSOS
Cycles

Access
Detail Opcode Operand(s)

NEG opr8a DIR 30 dd 5 rfwpp

NEGA INH (A) 40 1 p

NEGX INH (X) 50 1 p

NEG oprx8,X IXi 60 ft 5 rfwpp

NEG ,X IX 70 4 rfwp

NEG oprx8,SP SP1 9E60 ft 6 prfwpp

Reference Manual — Volume I HCSO8 — Revision 1

360 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

NOP No Operation

Operation Uses one bus cycle

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

NOP

This is a single-byte instruction that does nothing except to consume one
CPU clock cycle while the program counter is advanced to the next
instruction. No register or memory contents are affected by this
instruction.

None affected

V H I N z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

NOP INH 9D 1 p

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 361

Instruction Set Details

NSA Nibble Swap Accumulator

Operation A - (A[3:0]:A[7:4])

Description

Condition Codes

and Boolean

Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

NSA

Swaps upper and lower nibbles (4 bits) of the accumulator. The NSA
instruction is used for more efficient storage and use of binary-coded
decimal operands.

None affected

V H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

NSA INH 62 1 p

Reference Manual — Volume I HCS08 — Revision 1

362 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

ORA Inclusive-OR Accumulator and Memory

Operation A F- (A) I (M)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

ORA

Performs the logical inclusive-OR between the contents of A and the
contents of M and places the result in A. Each bit of A after the operation
will be the logical inclusive-OR of the corresponding bits of M and A
before the operation.

V H I N Z C

0 1 1

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

ORA #opr8i IMM AA ii 2 pp

ORA opr8a DIR BA dd 3 rpp

ORA oprl6a EXT CA hh II 4 prpp

ORA oprxl6,X IX2 DA ee ff 4 prpp

ORA oprx8,X IX1 EA ft 3 rpp

ORA ,X IX FA 3 rfp

ORA oprxl6,SP SP2 9EDA ee if 5 pprpp

ORA oprx8,SP SP1 9EEA ft 4 prpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 363

Instruction Set Details

PSHA
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Push Accumulator onto Stack

Push (A); SP - (SP) - $0001

PSHA

The contents of A are pushed onto the stack at the address contained in
the stack pointer. The stack pointer is then decremented to point to the
next available location in the stack. The contents of A remain

unchanged.

None affected

V H I N z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

PSHA INH 87 2 sp

Reference Manual — Volume I HCS08 — Revision 1

364 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

PSHH

Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

HCSO8 — Revision 1

Push H (Index Register High) onto Stack

Push (H); SP E- (SP) - $0001

PSHH

The contents of H are pushed onto the stack at the address contained in
the stack pointer. The stack pointer is then decremented to point to the
next available location in the stack. The contents of H remain
unchanged.

None affected

V H I N Z C

1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

PSHH INH 8B 2 sp

Reference Manual — Volume I

MOTOROLA Instruction Set Details 365

Instruction Set Details

PSHX Push X (Index Register Low) onto Stack

Operation Push (X); SP F- (SP) - $0001

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

PSHX

The contents of X are pushed onto the stack at the address contained in
the stack pointer (SP). SP is then decremented to point to the next
available location in the stack. The contents of X remain unchanged.

None affected

V H I N Z C
1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

PSHX INH 89 2 sp

Reference Manual — Volume I HCS08 — Revision 1

366 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

PULA Pull Accumulator from Stack

Operation SP - (SP + $0001); pull (A)

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

PULA

The stack pointer (SP) is incremented to address the last operand on the
stack. The accumulator is then loaded with the contents of the address
pointed to by SP.

None affected

V H I N z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

PULA INH 86 3 ufp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 367

Instruction Set Details

PULH Pull H (Index Register High) from Stack

Operation SP F- (SP + $0001); pull (H)

PULH

Description The stack pointer (SP) is incremented to address the last operand on the
stack. H is then loaded with the contents of the address pointed to by SP.

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

None affected

V H I N Z C
1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

PULH INH 8A 3 ufp

Reference Manual — Volume I HCS08 — Revision 1

368 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

PULX Pull X (Index Register Low) from Stack

Operation SF f- (SF + $0001); pull (X)

PULX

Description The stack pointer (SF) is incremented to address the last operand on the
stack. X is then loaded with the contents of the address pointed to by SF.

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

None affected

V H I N z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

PULX INH 88 3 ufp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 369

Instruction Set Details

ROL

Operation

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and

Access Details

Rotate Left through Carry ROL

b7 b0 ~—

Shifts all bits of A, X, or M one place to the left. Bit 0 is loaded from the
C bit. The C bit is loaded from the most significant bit of A, X, or M. The
rotate instructions include the carry bit to allow extension of the shift and
rotate instructions to multiple bytes. For example, to shift a 24-bit value
left one bit, the sequence (ASL LOW, ROL MID, ROL HIGH) could be
used, where LOW, MID, and HIGH refer to the low-order, middle, and
high-order bytes of the 24-bit value, respectively.

V H I N Z C
1 1

V: R7 O+ b7
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b7
Set if, before the rotate, the MSB of A, X, or M was set; cleared
otherwise

Source
Form

Addr.
Mode

Machine code HCS08
Cycles

Access
Detail Opcode Operand(s)

ROL opr8a DIR 39 dd 5 rfwpp

BOLA INH (A) 49 1 p

ROLX INH (X) 59 1 p

ROL oprx8,X IX1 69 ft 5 rfwpp

ROL ,X IX 79 4 rfwp

ROL oprxB,SP SP1 9E69 If 6 prfwpp

Reference Manual — Volume I HCS08 — Revision 1

370 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

ROR
Operation

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

Rotate Right through Carry ROR

b7 b0 C

Shifts all bits of A, X, or M one place to the right. Bit 7 is loaded from the
C bit. Bit 0 is shifted into the C bit. The rotate instructions include the
carry bit to allow extension of the shift and rotate instructions to multiple
bytes. For example, to shift a 24-bit value right one bit, the sequence
(LSR HIGH, ROR MID, ROR LOW) could be used, where LOW, MID,
and HIGH refer to the low-order, middle, and high-order bytes of the
24-bit value, respectively.

V H I N z C

Z 1 1

V: R7 O+ b0
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b0
Set if, before the shift, the LSB of A, X, or M was set; cleared
otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

ROR opr8a DIR 36 dd 5 rfwpp

RORA INH (A) 46 1 p

RORX INH (X) 56 1 p

ROR oprx8,X IX1 66 if 5 rfwpp

ROR ,X IX 76 4 rfwp

ROR oprx8,SP SP1 9E66 if 6 prfwpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 371

Instruction Set Details

RSP
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Reset Stack Pointer

SP - $FF

RSP

For M68HC08 compatibility, the HCS08 RSP instruction only sets the
least significant byte of SP to $FF. The most significant byte is
unaffected.

In most M68HC05 MCUs, RAM only goes to $00FF. In most HCS08s,
however, RAM extends beyond $00FF. Therefore, do not locate the
stack in direct address space which is more valuable for commonly
accessed variables. In new HCS08 programs, it is more appropriate to
initialize the stack pointer to the address of the last location (highest
address) in the on-chip RAM, shortly after reset. This code segment
demonstrates a typical method for initializing SP.

LDHX

TXS

None affected

V

#RamLast+1 ; Point at next addr past RAM

SP <-(H:X)-1

H I N z c
1 1

Source
Form

Addr.
Mode

Machine code HCSO8
Cycles

Access
Detail Opcode Operand(s)

RSP INH 9C 1 p

Reference Manual — Volume I HCS08 — Revision 1

372 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

RTI
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Return from Interrupt

SP - SP + $0001; pull (CCR) Restore CCR from stack
SP - SP + $0001; pull (A) Restore A from stack
SP E- SP + $0001; pull (X) Restore X from stack
SP - SP + $0001; pull (PCH) Restore PCH from stack
SP - SP + $0001; pull (PCL) Restore PCL from stack

RTI

The condition codes, the accumulator, X (index register low), and the
program counter are restored to the state previously saved on the stack.
The I bit will be cleared if the corresponding bit stored on the stack is 0,
the normal case. If this instruction causes the I bit to change from 1 to 0,
a one bus cycle delay is imposed before interrupts are allowed. This
ensures that the next instruction after an RTI instruction will always be
executed, even if an interrupt was pending before the RTI instruction
was executed and bit 3 of the CCR value on the stack cleared.

V H I N z c
i 2

Set or cleared according to the byte pulled from the stack into CCR.

Source
Form

Addr.
Mode

Machine Code HCSO8
Cycles

Access
Detail Opcode Operand(s)

RTI INH 80 9 uuuuufppp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 373

Instruction Set Details

RTS
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Return from Subroutine

SP F- SP + $0001; pull (PCH) Restore PCH from stack
SP - SP + $0001; pull (PCL) Restore PCL from stack

RTS

The stack pointer is incremented by 1. The contents of the byte of
memory that is pointed to by the stack pointer are loaded into the
high-order byte of the program counter. The stack pointer is again
incremented by 1. The contents of the byte of memory that are pointed
to by the stack pointer are loaded into the low-order eight bits of the
program counter. Program execution resumes at the address that was
just restored from the stack.

None affected

V H N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

RTS INH 81 6 uufppp

Reference Manual — Volume I HCS08 — Revision 1

374 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

SBC Subtract with Carry

Operation A 4- (A) - (M) - (C)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

SBC

Subtracts the contents of M and the contents of the C bit of the CCR from
the contents of A and places the result in A. This is useful for
multi-precision subtract algorithms involving operands with more than
eight bits.

V H I N z C

t t

V: A7&M7&R7 I A7&M7&R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise. Literally read, an overflow condition occurs if
a positive number is subtracted from a negative number with a
positive result, or, if a negative number is subtracted from a
positive number with a negative result.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 I M7&R7 I R7&A7
Set if the unsigned value of the contents of memory plus the
previous carry are larger than the unsigned value of the
accumulator; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

SBC #opr8i IMM A2 ii 2 pp

SBC opr8a DIR B2 dd 3 rpp

SBC oprl6a EXT C2 hh II 4 prpp

SBC oprxl6,X IX2 O2 ee ft 4 prpp

SBC oprx8,X IX1 E2 if 3 rpp

SBC ,X IX F2 3 rfp

SBC oprxl6,SP SP2 9ED2 ee ff 5 pprpp

SBC oprx8,SP SP1 9EE2 if 4 prpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 375

Instruction Set Details

SEC
Operation C bit - 1

Set Carry Bit SEC

Description Sets the C bit in the condition code register (CCR). SEC may be used to
set up the C bit prior to a shift or rotate instruction that involves the C bit.

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N z C

1 1 1

C: 1
Set

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

SEC INH 99 1 p

Reference Manual — Volume I HCS08 — Revision 1

376 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

SEI
Operation I bit - 1

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Set Interrupt Mask Bit SEI

Sets the interrupt mask bit in the condition code register (CCR). The
microprocessor is inhibited from responding to interrupts while the I bit
is set. The I bit actually changes at the end of the cycle where SEI
executed. This is too late to stop an interrupt that arrived during
execution of the SEI instruction so it is possible that an interrupt request
could be serviced after the SEI instruction before the next instruction
after SEI is executed. The global I-bit interrupt mask takes effect before
the next instruction can be completed.

V H I N z C

1 1 1

I: 1
Set

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

SEI INH 9B 1 p

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 377

Instruction Set Details

STA Store Accumulator in Memory

Operation M - (A)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

STA

Stores the contents of A in memory. The contents of A remain
unchanged. The N condition code is set if the most significant bit of A is
set, the Z bit is set if A was $00, and V is cleared. This allows conditional
branching after the store without having to do a separate test or
compare.

V H I N Z C

0 1 1

V: 0
Cleared

N: A7
Set if MSB of result is 1; cleared otherwise

Zr A7&A6&A5&A4&A3&A2&A1&A0
Set if result is $00; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

STA opr8a DIR B7 dd 3 wpp

STA oprl6a EXT O7 hh II 4 pwpp

STA oprxl6,X IX2 D7 ee if 4 pwpp

STA oprx8,X IX1 E7 ff 3 wpp

STA ,X IX F7 2 wp

STA oprxl6,SP SP2 9ED7 ee ff 5 ppwpp

STA oprx8,SP SP1 9EE7 ff 4 pwpp

Reference Manual — Volume I HCS08 — Revision 1

378 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

STHX Store Index Register

Operation (M:M + $0001) f- (H:X)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

STHX

Stores the contents of H in memory location M and then the contents of
X into the next memory location (M + $0001). The N condition code bit
is set if the most significant bit of H was set, the Z bit is set if the value
of H:X was $0000, and V is cleared. This allows conditional branching
after the store without having to do a separate test or compare.

V H I N z C
0 1 1 2

V: 0
Cleared

N: R15
Set if MSB of result is 1; cleared otherwise

Z: R15&R14&R13&R12&R11&R10&R9&R8
&R7&R6&R5&R4&R3&R2&R1&R0
Set if the result is $0000; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

STHX opr8a DIR 35 dd 4 wwpp

STHX oprl6a EXT 96 hh II 5 pwwpp

STHX oprx8,SP SP1 9E FF if 5 pwwpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 379

Instruction Set Details

STOP Enable IRQ Pin, Stop Processing

Operation I bit F- 0; stop processing

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

STOP

Reduces power consumption by eliminating all dynamic power
dissipation. Depending on system configuration, this instruction is used
to enter stops, stop2, or stop3 mode. (See module documentation for the
behavior of these modes and module reactions to the stop instruction.)

The external interrupt pin is enabled and the I bit in the condition code
register (CCR) is cleared to enable interrupts. Interrupts can be used to
exit stop3 only.

Finally, the oscillator is inhibited to put the MCU into the stop condition.
In stop or stop2 mode, when either the RESET pin or IRQ pin goes low,
the reset vector is fetched and the MCU operates as if a POR has
occurred. For stop3 mode, if an IRQ, KBI, or RTI interrupt occurs, the
associated service routine is executed. Upon stop recovery, normally the
MCU defaults to a self-clocked system clock source so there is little or
no startup delay.

Some HCS08 derivatives can be configured so the oscillator and
real-time interrupt (RTI) module continue to run in stop mode so no
external components are needed to make the MCU periodically wake up
from stop. Also, if the background debug system is enabled (ENBDM),
only stop3 mode is entered and the oscillator continues to run so a host
debug system can still force the target MCU into active background
mode.

V H I N Z C

1 1 0

I: 0
Cleared

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

STOP INH 8E 2+stop fp

Reference Manual — Volume I HCS08 — Revision 1

380 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

STX Store X (Index Register Low) in Memory

Operation M - (X)

Description

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

HCSO8 — Revision 1

STX

Stores the contents of X in memory. The contents of X remain
unchanged. The N condition code is set if the most significant bit of X
was set, the Z bit is set if X was $00, and V is cleared. This allows
conditional branching after the store without having to do a separate test
or compare.

V H I N Z C
0 t t

V: 0
Cleared

N: X7
Set if MSB of result is 1; cleared otherwise

Z: X7&X6&X5&X4&X3&X2&X1&X0
Set if X is $00; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

STX opr8a DIR BF dd 3 wpp

STX oprl6a EXT CF hh II 4 pwpp

STX oprxl6,X 1X2 DF ee if 4 pwpp

STX oprx8,X IXi EF if 3 wpp

STX ,X IX FF 2 wp

STX oprxl6,SP SP2 9EDF ee if 5 ppwpp

STX oprx8,SP SP1 9EEF if 4 pwpp

Reference Manual — Volume I

MOTOROLA Instruction Set Details 381

Instruction Set Details

SUB

Operation A - (A) - (M)

Subtract

Description Subtracts the contents of M from A and places the result in A

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N z

SUB

c
1 1

V: A7&M7&R7 I A7&M7&R7
Set if a two's complement overflow resulted from the operation;
cleared otherwise. Literally read, an overflow condition occurs if
a positive number is subtracted from a negative number with a
positive result, or, if a negative number is subtracted from a
positive number with a negative result.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1 &R0
Set if result is $00; cleared otherwise

C: A7&M7 I M7&R7 I R7&A7
Set if the unsigned value of the contents of memory is larger than
the unsigned value of the accumulator; cleared otherwise

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

SUB #opr81 IMM AO ii 2 pp

SUB opr8a DIR BO dd 3 rpp

SUB oprl6a EXT CO hh II 4 prpp

SUB oprxl6,X 1X2 DO ee ff 4 prpp

SUB oprx8,X 1X1 E0 ff 3 rpp

SUB X IX FO 3 rfp

SUB oprxl6,SP SP2 9ED0 ee ff 5 pprpp

SUB oprx8,SP SP1 9EE0 ff 4 prpp

Reference Manual — Volume I HCS08 — Revision 1

382 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

SWI
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

HCS08 — Revision 1

Software Interrupt

PC F- (PC) + $0001
Push (PCL); SP - (SP) - $0001
Push (PCH); SP +- (SP) - $0001
Push (X); SP *- (SP) -$0001
Push (A); SP - (SP) - $0001
Push (CCR); SP - (SP) - $0001
Push bit F- 1
PCH E- ($FFFC)
PCL - ($FFFD)

SWI
Increment PC to return address
Push low half of return address
Push high half of return address
Push index register on stack
Push A on stack
Push OCR on stack
Mask further interrupts
Vector fetch (high byte)
Vector fetch (low byte)

The program counter (PC) is incremented by 1 to point at the instruction
after the SWI. The PC, index register, and accumulator are pushed onto
the stack. The condition code register (OCR) bits are then pushed onto
the stack, with bits V, H, I, N, Z, and C going into bit positions 7 and 4—0.
Bit positions 6 and 5 contain is. The stack pointer is decremented by 1
after each byte of data is stored on the stack. The interrupt mask bit is
then set. The program counter is then loaded with the address stored in
the SWI vector located at memory locations $FFFC and $FFFD. This
instruction is not maskable by the I bit.

V H I N z C

1 1 1

I: 1
Set

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

SWI INH 83 11 sssssvvfppp

Reference Manual — Volume I

MOTOROLA Instruction Set Details 383

Instruction Set Details

TAP Transfer Accumulator to Processor Status Byte TAP
Operation CCR - (A)

bit 7 6 5 4 2 1 bit 0

A

1 I 1
V 1 1 H N Z CCR

Carry/Borrow

Zero

Negative

I Interrupt
Mask

Half Carry

Overflow
(Two's
Complement)

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Transfers the contents of A to the condition code register (CCR). The
contents of A are unchanged. If this instruction causes the I bit to change
from 1 to 0, a one bus cycle delay is imposed before interrupts are
allowed. This ensures that the next instruction after a TAP instruction will
always be executed even if an interrupt was pending before the TAP
instruction was executed with bit 3 of accumulator A cleared.

V H I N Z C

1 1

Set or cleared according to the value that was in the accumulator.

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Details Opcode Operand(s)

TAP INH 84 1 p

Reference Manual — Volume I HCS08 — Revision 1

384 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

TAX Transfer Accumulator to X (Index Register Low)

Operation X E— (A)

TAX

Description Loads X with the contents of the accumulator (A). The contents of A are
unchanged.

Condition Codes None affected
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

TAX INH 97 1 p

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 385

Instruction Set Details

TPA
Operation

Transfer Processor Status Byte to Accumulator TPA
A4-(CCR)

bit 7 6 5 2 1 bit 0
A

CCR

Carry/Borrow

T T T T T T T
V 1 1 N Z C

Zero
Negative
I Interrupt
Mask
Half Carry
Overflow
(Two's
Complement)

Description Transfers the contents of the condition code register (CCR) into the
accumulator (A)

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

None affected

V H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

TPA INH 85 1 p

Reference Manual — Volume I HCS08 — Revision 1

386 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

TST
Operation

Test for Negative or Zero

(A) - $00
Or (X) - $00
Or (M) - $00

TST

Description Sets the N and Z condition codes according to the contents of A, X, or
M. The contents of A, X, and M are not altered.

Condition Codes
and Boolean
Formulae

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N z

0 1 1

V: 0
Cleared

C

N: M7
Set if MSB of the tested value is 1; cleared otherwise

Z: M7&M6&M5&M4&M3&M2&M1&M0
Set if A, X, or M contains $00; cleared otherwise

Source
Form

Addr.
Modt:

Machine Code HCS08
Cycles

Access
Detail Opcode Operand(s)

TST opr8a DIR 3D dd 4 rfpp

TSTA INH (A) 4D 1 p

TSTX INH (X) 5D 1 p

TST oprx8,X IX1 6D ft 4 rfpp

TST ,X IX 7D 3 rfp

TST oprx8,SP SP1 9E6D ff 5 prfpp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 387

Instruction Set Details

TSX
Operation

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

Transfer Stack Pointer to Index Register

H:X - (SP) + $0001

TSX

Loads index register (H:X) with 1 plus the contents of the stack pointer
(SP). The contents of SP remain unchanged. After a TSX instruction,
H:X points to the last value that was stored on the stack.

None affected

V H I N z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Details Opcode Operand(s)

TSX INH 95 2 fp

Reference Manual — Volume I HCS08 — Revision 1

388 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

TXA Transfer X (Index Register Low) to Accumulator

Operation A - (X)

TXA

Description Loads the accumulator (A) with the contents of X. The contents of X are
not altered.

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

None affected

V H I N Z C
1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Details Opcode Operand(s)

TXA INH 9F 1 p

HCSO8 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 389

Instruction Set Details

TXS Transfer Index Register to Stack Pointer

Operation SF - (H:X) - $0001

TXS

Description Loads the stack pointer (SF) with the contents of the index register (H:X)
minus 1. The contents of H:X are not altered.

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

None affected

V H I N Z C

1 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Details Opcode Operand(s)

TXS INH 94 2 fp

Reference Manual — Volume I HCS08 — Revision 1

390 Instruction Set Details MOTOROLA

Instruction Set Details
Instruction Set

WAIT Enable Interrupts; Stop Processor

Operation I bit - 0; inhibit CPU clocking until interrupted

Description

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

WAIT

Reduces power consumption by eliminating dynamic power dissipation
in some portions of the MCU. The timer, the timer prescaler, and the
on-chip peripherals continue to operate (if enabled) because they are
potential sources of an interrupt. Wait causes enabling of interrupts by
clearing the I bit in the CCR and stops clocking of processor circuits.

Interrupts from on-chip peripherals may be enabled or disabled by local
control bits prior to execution of the WAIT instruction.

When either the RESET or IRQ pin goes low or when any on-chip
system requests interrupt service, the processor clocks are enabled, and
the reset, IRQ, or other interrupt service request is processed.

V H I N z C

1 1 0

I: 0
Cleared

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
Details Opcode Operand(s)

WAIT INH 8F 2+wait fp

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 391

Instruction Set Details

Reference Manual — Volume I HCS08 — Revision 1

392 Instruction Set Details MOTOROLA

HCS08 Family Reference Manual

Appendix B. Equate File Conventions

B.1 Introduction

This appendix describes the conventions used to create and use device
definition files, usually called equate files. The equate file for the first
device derivative in the HCS08 Family (9S08GB60_vl .equ) is used as
an example and the entire equate file is included in 8.5 Complete
Equate File for MC9S08GB60. Each new member of the HCS08 Family
will have a similar equate file available on the Motorola MCU Web site
http://www.motorola.com/semiconductors

Equate files do not produce object code, so including this file in an
application program does not affect program size. The equate file
defines all control register and bit names from the manufacturer's
documentation into a form that is understood by the assembler. The
equate file also defines some basic system attributes including the
beginning and ending addresses of on-chip memory blocks and the
name and location of all interrupt vectors. The file is comprised entirely
of EQU directives and comments.

All register names and bit names use uppercase characters so they
match the spelling and capitalization used in the data sheet and other
manuals. To help prevent conflicting register names as new device
derivatives are introduced, register names will start with a 2- or
3-character prefix that identifies the module they are located in. For
example, the KBI in KBISC indicates this register is located in the
keyboard interrupt module (KBI). When more than one copy of a module
is included in the MCU derivative, a digit immediately after this prefix
indicates which instance of the module the register is located in, such as
SCI Cl and SCl2C1, which refer to the control register number 1 in SCI
module 1 and 2, respectively.

Occasionally, two different control bits may have the same name. The
most common case occurs when two identical modules are included on

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 393

Equate File Conventions

the same MCU. In this situation, the matching bit names don't really
conflict because the definitions equate the bit name to its bit number and

its bit position which are the same for both registers. When two identical
modules are included, the register names must include the module
number in the name to make each register name unique, but the bit
numbers and bit positions can simply be defined once. These definitions
are valid regardless of which register is being referenced, so there is no
conflict.

In this example, the first two lines identify the status register number 2

for each of the SCI modules. The remaining lines define the bit position
and bit number once and these definitions may be used with either
register.

SCI1S2: equ $1D ;SCI1 status register 2

SCI2S2: equ $25 ;SCI2 status register 2

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

RAF: equ 0 ;(bit #0(Rx active flag

bit position masks

mRAF: equ %00000001 ;receiver active flag

As future modules are designed for the HCS08 Family, care will be taken
to avoid bit names that are the same in different registers but are not
located in the same bit position in all registers where the name appears.

B.2 Memory Map Definition

The first set of EQU directives defines the starting and ending addresses
for each on-chip memory block. The main program memory is called
"Rom" even if it is actually FLASH memory in the HCS08 Family. For
each memory, there is an xxxStart definition and an xxxLast definition.
This book uses a combination of uppercase and lowercase letters to
break up multiword labels so "RomStart" is the convention rather than
"rom start."

RomStart: equ $1080 ;start

HighRegs: equ $1800 ;start

RomlStart: equ $182C ;start

RomLast: equ $FFFF ;last

RamStart: equ $0080 ;start

RamLast: equ $107F ;last

of 60K flash

of high page registers

of flash after high regs

flash location

of 4096 byte RAM

RAM location

Reference Manual — Volume I HCS08 — Revision 1

394 Equate File Conventions MOTOROLA

Equate File Conventions
Vector Definitions

B.3 Vector Definitions

The next set of EQU directives defines the location of each interrupt
vector starting from the lowest vector address and continuing through
the reset vector location at the end of memory ($FFFE:FFFF). The
names for each of these vector definitions starts with an uppercase V.
Care should be taken to use the same name for these vectors in equate
files for other derivatives that reuse a module such as the TPM or SCI.

Vrti:

Viic:

Vatd:

Vkeyboard:

equ

equ

equ

equ

$FFCC

$FFCE

$FFDO

$FFD2

;RTI (periodic interrupt) vector

;IIC vector

;analog to digital conversion vector

;keyboard vector

Vsci2tx: equ $FFD4 ;SCI2 transmit vector

Vsci2rx: equ $FFD6 ;SCI2 receive vector

Vsci2err: equ $FFD8 ;SCI2 error vector

Vsciltx: equ $FFDA ;SCI1 transmit vector

Vscilrx: equ $FFDC ;SCI1 receive vector

Vscilerr: equ $FFDE ;SCI1 error vector

Vspi: equ $FFEO ;SPI vector

Vtpmlovf: equ $FFE2 ;TPM2 overflow vector

Vtpm2ch4: equ $FFE4 ;TPM2 channel 4 vector

Vtpm2ch3: equ $FFE6 ;TPM2 channel 3 vector

Vtpm2ch2: equ $FFE8 ;TPM2 channel 2 vector

Vtpm2chl: equ $FFEA ;TPM2 channel 1 vector

Vtpm2chO: equ $FFEC ;TPM2 channel 0 vector

Vtpmlovf: equ $FFEE ;TPMl overflow vector

Vtpmlch2: equ $FFFO ;TPM1 channel 2 vector

Vtpmlchl: equ $FFF2 ;TPM1 channel 1 vector

Vtpmlcho: equ $FFF4 ;TPM1 channel 0 vector

Vicg: equ $FFF6 ;ICG vector

Vlvd: equ $FFFB ;low voltage detect vector

Virq: equ $FFFA ;IRQ pin vector

Vswi: equ $FFFC ;SWI vector

Vreset: equ $FFFE ;reset vector

B.4 Bits Defined in Two Ways

Bit names in the equate files for HCS08 MCUs need to be defined in two
separate ways:

• With their bit number (0-7)

• A bit-position mask which is used in instructions such as AND,

ORA, BIT, etc.

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 395

Equate File Conventions

In the equate file, the bit name is first equated to its bit number (0-7), and

then its bit position mask is equated to the bit name with a prefix of

lowercase m, as in the next example.

SCIlSi: equ $1C

SCI2S1: equ $24

bit numbers for use in

TORE:

TC:

RDRF:

IDLE:

OR:

NF:

FE:

PF:

bit

mTDRE

mTC:

mRDRF

mIDLE

mOR:

mNF:

mFE:

mPF:

equ 7

equ 6

equ 5

equ 4

equ 3

equ 2

equ 1

equ 0

position masks

equ #10000000

equ %01000000

equ %00100000

equ %00010000

equ %00001000

equ %00000100

equ %00000010

equ %00000001

;SCI1 status register 1

;SCI2 status register 1

BCLR, BSET, BRCLR,

;(bit #7)

;(bit #6)

;(bit #5)

;(bit #4)

;(bit #3)

;(bit #2)

;(bit #1)

;(bit #0)

and BRSET

Tx data register empty

transmit complete

Rx data register full

idle line detected

Rx

Rx

Rx

Rx

over run

noise flag

framing error

parity failed

;transmit data register empty

;transmit complete

;receive data register full

;idle line detected

;receiver over run

;receiver noise flag

;receiver framing error

;received parity failed

The next example shows the bit number variation of a bit definition. The
operand field of the BRCLR instruction includes three items separated
by commas. RDRF is converted to the number 5 which tells the
assembler to use the bit-5 variation of the BRCLR instruction

(opcode = $0B). The next item, SC11 S1, tells the assembler the operand

to be tested is located at the direct addressing mode address $001 C

(just 1O in the object code). The last item, waitRDRF, tells the assembler

to branch back to the same BRCLR instruction if the RDRF status bit is
found to be still clear (0).

450 120A 0B 1C FD waitRDRF: brclr RDRF,SCI1Sl,waitRDRF ;loop till RDRF set

Reference Manual — Volume I HCS08 — Revision 1

396 Equate File Conventions MOTOROLA

Equate File Conventions
Complete Equate File for MC9S08GB60

The next example shows an expression combining the bit masks for the
OR, NF, FE, and PF status bits. In this example, the bit names are used
with a preceding m to get the bit position mask rather than the bit
number. A simple addition operator (+) combines the bit masks.
Although a logical OR might have been more correct in this case, not all
assemblers use the same character to indicate the logical OR operation
so the + is more portable among assemblers. The plus operator can be
used in this case because the individual bit masks do not have any
overlapping logic 1 bits.

413

414 11F1 56 1C

415 11F3 A5 OF

416 11F5 26 00

417

mOR:

mNF:

mFE:

mPF:

equ %00001000 ;receiver over run

equ %00000100 ;receiver noise flag

equ %00000010 ;receiver framing error

equ X00000001 ;received parity failed

BIT example to check several error flags in SCI status reg

lda SCI1S1 ;read SCI status register

bit #(mOR+mNF+mFE+mPF) ;mask of all error flags

bne sciError ;branch if any flags set

A still contains undisturbed status register

The OF in the object code field of line 415 shows the assembler
evaluated (mOR+mNF+mFE+mFF) to $0F. The A5 in the object code
field of the same line is the opcode for the immediate addressing mode
variation of the BIT instruction.

B.5 Complete Equate File for MC9S08GB60

The following listing is a complete equate file for the MC9S08GB60 MCU
and is a complete example of an equate file for an HCS08 MCU. Each
derivative in the HCS08 Family has a similar equate file posted on the
Motorola Web site for free downloading.

;* Title: 9S08GB60 vl.EQU (c) MOTOROLA Inc. 2003 All rights reserved.

;* Author: Jim Sibigtroth - Motorola TSPG

;* Description: Register and bit name definitions for 9S08GB60

,* Documentation: 9S08GB60 family Data Sheet for register and bit explanations

;* HCS08 Family Reference Manual (HCS08RM1/D) appendix B for explanation of equate files

;* Include Files: none

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 397

Equate File Conventions

;* Assembler: Metrowerks Code Warrior 3.0 (pre-release)

or P&E Microcomputer Systems - CASMS08 (beta v4.02)

;*

;*

;*

;*

;*

Revision History: not yet released

Rev # Date Who Comments

1.2 24-Apr-03 J-Sib correct

1.1 21-Apr-03 J-Sib comments

1.0 15-Apr-03 J-Sib Release

minor typos in comments

and modify for CW 3.0 project

version for 9S09GB60
+*+******+****************+*+*******+**********+*+*******************************+******

;**** Memory Map and Interrupt Vectors **

RomStart: equ $1080 ;start of 60K flash

HighRegs: equ $1800 ;start of high page registers

RomiStart: equ $182C ;start of flash after high regs

RomLast: equ $FFFF ;last flash location

RamStart: equ $0080 ;start of 4096 byte RAM

RamLast: equ $107F ;last RAM location

Vrti: equ $FFCC ;RTI (periodic interrupt) vector

Viic: equ $FFCE ;IIC vector

Vatd: equ $FFD0 ;analog to digital conversion vector

Vkeyboard: equ $FFD2 ;keyboard vector

Vsci2tx: equ $FFD4 ;SCI2 transmit vector

Vsci2rx: equ $FFD6 ;SCI2 receive vector

Vsci2err: equ $FFDB ;SCI2 error vector

Vsciltx: equ $FFDA ;SCI1 transmit vector

Vscilrx: equ $FFDC ;SCI1 receive vector

Vscilerr: equ $FFDE ;SCI1 error vector

Vspi: equ $FFE0 ;SPI vector

Vtpm2ovf: equ $FFE2 ;TPM2 overflow vector

Vtpm2ch4: equ $FFE4 ;TPM2 channel 4 vector

Vtpm2ch3: equ $FFE6 ;TPM2 channel 3 vector

Vtpm2ch2: equ $FFEB ;TPM2 channel 2 vector

Vtpm2chl: equ $FFEA ;TPM2 channel 1 vector

Vtpm2ch0: equ $FFEC ;TPM2 channel 0 vector

Vtpmlovf: equ $FFEE ;TPM1 overflow vector

Vtpmlch2: equ $FFF0 ;TPM1 channel 2 vector

Vtpmlchl: equ $FFF2 ;TPM1 channel 1 vector

Vtpmlch0: equ $FFF4 ;TPM1 channel 0 vector

Vicg: equ $FFF6 ;ICG vector

Vlvd: equ $FFF8 ;low voltage detect vector

Virq: equ $FFFA ;IRQ pin vector

Vswi: equ $FFFC ;SWI vector

Vreset: equ $FFFE ;reset vector

Input/Output (I/O) Ports **

PTAD:

bit

equ $00

numbers for use in BCLR,

;I/O port A data register

BSET, BRCLR, and BRSET

PTAD7: equ 7 ;bit #7

PTAD6: equ 6 ;bit #6

PTAD5: equ 5 ;bit #5

Reference Manual — Volume I HCS08 — Revision 1

398 Equate File Conventions MOTOROLA

Equate File Conventions
Complete Equate File for MC9S08GB60

PTAD4: equ 4 ;bit #4

PTAD3: equ 3 ;bit #3

PTAD2: equ 2 ;bit #2

PTAD1: equ 1 ;bit #1

PTADO: equ 0 ;bit #0

bit position masks

mPTAD7: equ %10000000 ;port A bit 7

mPTAD6: equ %01000000 ;port A bit 6

mPTAD5: equ %00100000 ;port A bit 5

mPTAD4: equ %00010000 ;port A bit 4

mPTAD3: equ %00001000 ;port A bit 3

mPTAD2: equ %00000100 ;port A bit 2

mPTAD1: equ %00000010 ;port A bit 1

mPTADO: equ %00000001 ;port A bit 0

PTAPE: equ $01 ;I/O port A pullup enable controls

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

PTAPE7: equ 7 ;bit #7

PTAPE6: equ 6 ;bit #6

PTAPE5: equ 5 ;bit #5

PTAPE4: equ 4 ;bit #4

PTAPE3: equ 3 ;bit #3

PTAPE2: equ 2 ;bit #2

PTAPEI: equ 1 ;bit #1

PTAPEO: equ 0 ;bit #0

bit position masks

mPTAPE7: equ %10000000 ;port A bit 7

mPTAPE6: equ $01000000 ;port A bit 6

mPTAPE5: equ %00100000 ;port A bit 5

mPTAPE4: equ %00010000 ;port A bit 4

mPTAPE3: equ %00001000 ;port A bit 3

mPTAPE2: equ %00000100 ;port A bit 2

mPTAPE1: equ %00000010 ;port A bit 1

mPTAPEO: equ %00000001 ;port A bit 0

PTASE: equ $02 ;I/O port A slew rate control register

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

PTASE7: equ 7 ;bit #7

PTASE6: equ 6 ;bit #6

PTASE5: equ 5 ;bit #5

PTASE4: equ 4 ;bit #4

PTASE3: equ 3 ;bit #3

PTASE2: equ 2 ;bit #2

PTASEI: equ 1 ;bit #1

PTASEO: equ 0 ;bit #0

bit position masks

mPTASE7: equ %10000000 ;port A bit 7

mPTASE6: equ %01000000 ;port A bit 6

mPTASE5: equ %00100000 ;port A bit 5

mPTASE4: equ %00010000 ;port A bit 4

mPTASE3: equ %00001000 ;port A bit 3

mPTASE2: equ %00000100 ;port A bit 2

mPTASE1: equ %00000010 ;port A bit 1

mPTASEO: equ %00000001 ;port A bit 0

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 399

Equate File Conventions

PTADD:

bit numbers

equ $03

for use in BCLR,

;I/O port A data direction register

BSET, BRCLR, and BRSET

PTADD7: equ 7 ;bit #7

PTADD6: equ 6 ;bit #6

PTADDS: equ 5 ;bit #5

PTADD4: equ 4 ;bit #4

PTADD3: equ 3 ;bit #3

PTADD2: equ 2 ;bit #2

PTADDI: equ 1 ;bit #1

PTADDO: equ 0 ;bit #0

bit position masks

mPTADD7: equ %10000000 ;port A bit 7

mPTADD6: equ 601000000 ;port A bit 6

mPTADDS: equ %00100000 ;port A bit 5

mPTADD4: equ %00010000 ;port A bit 4

mPTADD3: equ %00001000 ;port A bit 3

mPTADD2: equ %00000100 ;port A bit 2

mPTADD1: equ 600000010 ;port A bit 1

mPTADDO: equ 600000001 ;port A bit 0

PTBD: equ $04 ;I/O port B data register

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

PTBD7: equ 7 ;bit #7

PTBD6: equ 6 ;bit #6

PTBDS: equ 5 ;bit #5

PTBD4: equ 4 ;bit #4

PTBD3: equ 3 ;bit #3

PTBD2: equ 2 ;bit #2

PTBD1: equ 1 ;bit #1

PTBDO: equ 0 ;bit #0

bit position masks

mPTBD7: equ %10000000 ;port B bit 7

mPTBD6: equ %01000000 ;port B bit 6

mPTBDS: equ %00100000 ;port B bit 5

mPTBD4: equ %00010000 ;port B bit 4

mPTBD3: equ %00001000 ;port B bit 3

mPTBD2: equ %00000100 ;port B bit 2

mPTBD1: equ %00000010 ;port B bit 1

mPTBDO: equ 600000001 ;port B bit 0

PTBPE: equ $05

bit numbers for use in BCLR,

;I/O port B pullup enable controls

BSET, BRCLR, and BRSET

PTBPE7: equ 7 ;bit #7

PTBPE6: equ 6 ;bit #6

PTBPES: equ 5 ;bit #5

PTBPE4: equ 4 ;bit #4

PTBPE3: equ 3 ;bit #3

PTBPE2: equ 2 ;bit #2

PTBPEI: equ 1 ;bit #1

PTBPEO: equ 0 ;bit #0

bit position masks

mPTBPE7: equ %10000000 ;port B bit 7

mPTBPE6: equ %01000000 ;port B bit 6

mPTBPES: equ %00100000 ;port B bit 5

mPTBPE4: equ %00010000 ;port B bit 4

Reference Manual — Volume I HCS08 — Revision 1

400 Equate File Conventions MOTOROLA

Equate File Conventions
Complete Equate File for MC9S08GB60

mPTBPE3: equ %00001000 ;port B bit 3

mPTBPE2: equ %00000100 ;port B bit 2

mPTBPE1: equ %00000010 ;port B bit 1

mPTBPEO: equ %00000001 ;port B bit 0

PTBSE: equ $06

bit numbers for use in BCLR,

;I/O port B slew rate control register

BSET, BRCLR, and BRSET

PTBSE7: equ 7 ;bit #7

PTBSE6: equ 6 ;bit #6

PTBSE5: equ 5 ;bit #5

PTBSE4: equ 4 ;bit #4

PTBSE3: equ 3 ;bit #3

PTBSE2: equ 2 ;bit #2

PTBSEI: equ 1 ;bit #1

PTBSEO: equ 0 ;bit #0

bit position masks

mPTBSE7: equ %10000000 ;port B bit 7

mPTBSE6: equ %01000000 ;port B bit 6

mPTBSE5: equ %00100000 ;port B bit 5

mPTBSE4: equ %00010000 ;port B bit 4

mPTBSE3: equ %00001000 ;port B bit 3
mPTBSE2: equ %00000100 ;port B bit 2

mPTBSE1: equ %00000010 ;port B bit 1

mPTBSEO: equ %00000001 ;port B bit 0

PTBDD: equ $07

bit numbers for use in BCLR,

;I/O port B data direction register

BSET, BRCLR, and BRSET

PTBDD7: equ 7 ;bit #7

PTBDD6: equ 6 ;bit #6

PTBDD5: equ 5 ;bit #5

PTBDD4: equ 4 ;bit #4

PTBDD3: equ 3 ;bit #3

PTBDD2: equ 2 ;bit #2

PTBDDI: equ 1 ;bit #1

PTBDDO: equ 0 ;bit #0

bit position masks

mPTBDD7: equ %10000000 ;port B bit 7

mPTBDD6: equ %01000000 ;port B bit 6

mPTBDD5: equ %00100000 ;port B bit 5

mPTBDD4: equ %00010000 ;port B bit 4

mPTBDD3: equ %00001000 ;port B bit 3

mPTBDD2: equ %00000100 ;port B bit 2

mPTBDD1: equ %00000010 ;port B bit 1

mPTBDDO: equ %00000001 ;port B bit 0

PTCD: equ $08 ;I/O port C data register

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

PTCD7: equ 7 ;bit #7

PTCD6: equ 6 ;bit #6

PTCDS: equ 5 ;bit #5

PTCD4: equ 4 ;bit #4
PTCD3: equ 3 ;bit #3

PTCD2: equ 2 ;bit #2

PTCD1: equ 1 ;bit #1

PTCDO: equ 0 ;bit #0

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 401

Equate File Conventions

bit position masks

mPTCD7: equ %10000000 ;port C bit 7

mPTCD6: equ %01000000 ;port C bit 6

mPTCD5: equ %00100000 ;port C bit 5

mPTCD4: equ $00010000 ;port C bit 4

mPTCD3: equ %00001000 ;port C bit 3

mPTCD2: equ %00000100 ;port C bit 2

mPTCD1: equ %00000010 ;port C bit 1

mPTCDO: equ %00000001 ;port C bit 0

PTCPE: equ $09

bit numbers for use in BCLR,

;I/O port C pullup enable controls

BSET, BRCLR, and BRSET

PTCPE7: equ 7 ;bit #7

PTCPE6: equ 6 ;bit #6

PTCPE5: equ 5 ;bit #5

PTCPE4: equ 4 ;bit #4

PTCPE3: equ 3 ;bit #3

PTCPE2: equ 2 ;bit #2

PTCPEI: equ 1 ;bit #1

PTCPEO: equ 0 ;bit #0

bit position masks

mPTCPE7: equ %10000000 ;port C bit 7

mPTCPE6: equ %01000000 ;port C bit 6

mPTCPE5: equ %00100000 ;port C bit 5

mPTCPE4: equ %00010000 ;port C bit 4

mPTCPE3: equ %00001000 ;port C bit 3

mPTCPE2: equ %00000100 ;port C bit 2

mPTCPE1: equ %00000010 ;port C bit 1

mPTCPEO: equ %00000001 ;port C bit 0

PTCSE: equ $OA

bit numbers for use in BCLR,

;I/O port C slew rate control register

BSET, BRCLR, and BRSET

PTCSE7: equ 7 ;bit #7

PTCSE6: equ 6 ;bit #6

PTCSE5: equ 5 ;bit #5

PTCSE4: equ 4 ;bit #4

PTCSE3: equ 3 ;bit #3

PTCSE2: equ 2 ;bit #2

PTCSEI: equ 1 ;bit #1

PTCSEO: equ 0 ;bit #0

bit position masks

mPTCSE7: equ %10000000 ;port C bit 7

mPTCSE6: equ %01000000 ;port C bit 6

mPTCSES: equ %00100000 ;port C bit 5

mPTCSE4: equ %00010000 ;port C bit 4

mPTCSE3: equ %00001000 ;port C bit 3
mPTCSE2: equ %00000100 ;port c bit 2

mPTCSEl: equ %00000010 ;port C bit 1

mPTCSEO: equ %00000001 ;port C bit 0

PTCDD: equ $05 ;I/O port C data direction register

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

PTCDD7: equ 7 ;bit #7

PTCDD6: equ 6 ;bit #6

PTCDD5: equ 5 ;bit #5

Reference Manual — Volume I HCS08 — Revision 1

402 Equate File Conventions MOTOROLA

Equate File Conventions
Complete Equate File for MC9S08GB60

PTCDD4: equ 4 ;bit #4

PTCDD3: equ 3 ;bit #3

PTCDD2: equ 2 ;bit #2

PTCDD1: equ 1 ;bit #1

PTCDDO: equ 0 ;bit #0

bit position masks

mPTCDD7: equ %10000000 ;port C bit 7

mPTCDD6: equ %01000000 ;port C bit 6

mPTCDD5: equ %00100000 ;port C bit 5

mPTCDD4: equ %00010000 ;port C bit 4

mPTCDD3: equ %00001000 ;port C bit 3

mPTCDD2: equ %00000100 ;port C bit 2

mPTCDD1: equ %00000010 ;port C bit 1

mPTCDDO: equ %00000001 ;port C bit 0

PTDD: equ $OC

bit numbers for use in BCLR,

;I/O port D data register

BSET, BRCLR, and BRSET

PTDD7: equ 7 ;bit #7

PTDD6: equ 6 ;bit #6

PTDD5: equ 5 ;bit #5

PTDD4: equ 4 ;bit #4

PTDD3: equ 3 ;bit #3

PTDD2: equ 2 ;bit #2

PTDD1: equ 1 ;bit #1

PTDDO: equ 0 ;bit #0

bit position masks

mPTDD7: equ %10000000 ;port D bit 7

mPTDD6: equ %01000000 ;port D bit 6

mPTDD5: equ %00100000 ;port D bit 5

mPTDD4: equ %00010000 ;port D bit 4

mPTDD3: equ %00001000 ;port D bit 3

mPTDD2: equ %00000100 ;port D bit 2

mPTDD1: equ %00000010 ;port D bit 1

mPTDDO: equ %00000001 ;port D bit 0

PTDPE: equ $OD

bit numbers for use in BCLR,

;I/O port D pullup enable controls

BSET, BRCLR, and BRSET

PTDPE7: equ 7 ;bit #7

PTDPE6: equ 6 ;bit #6

PTDPES: equ 5 ;bit #5

PTDPE4: equ 4 ;bit #4

PTDPE3: equ 3 ;bit #3

PTDPE2: equ 2 ;bit #2

PTDPEI: equ 1 ;bit #1

PTDPEO: equ 0 ;bit #0

bit position masks

mPTDPE7: equ %10000000 ;port D bit 7

mPTDPE6: equ %01000000 ;port D bit 6

mPTDPE5: equ %00100000 ;port D bit 5

mPTDPE4: equ %00010000 ;port D bit 4

mPTDPE3: equ %00001000 ;port D bit 3
mPTDPE2: equ %00000100 ;port D bit 2

mPTDPEl: equ %00000010 ;port D bit 1

mPTDPEO: equ %00000001 ;port D bit 0

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 403

Equate File Conventions

PTDSE: equ $OE

bit numbers for use in BCLR,

;I/O port D slew rate control register

BSET, BRCLR, and BRSET

PTDSE7: equ 7 ;bit #7

PTDSE6: equ 6 ;bit #6

PTDSES: equ 5 ;bit #5

PTDSE4: equ 4 ;bit #4

PTDSE3: equ 3 ;bit #3

PTDSE2: equ 2 ;bit #2

PTDSEI: equ 1 ;bit #1

PTDSEO: equ 0 ;bit #0

bit position masks

mPTDSE7: equ %10000000 ;port D bit 7

mPTDSE6: equ %01000000 ;port D bit 6

mPTDSE5: equ %00100000 ;port D bit 5

mPTDSE4: equ %00010000 ;port D bit 4

mPTDSE3: equ %00001000 ;port D bit 3

mPTDSE2: equ %00000100 ;port D bit 2

mPTDSE1: equ %00000010 ;port D bit 1

mPTDSEO: equ %00000001 ;port D bit 0

PTDDD: equ $OF

fo bit numbers r use in BCLR,

;I/O port D data direction register

BSET, BRCLR, and BRSET

PTDDD7: equ 7 ;bit #7

PTDDD6: equ 6 ;bit #6

PTDDDS: equ 5 ;bit #5

PTDDD4: equ 4 ;bit #4

PTDDD3: equ 3 ;bit #3

PTDDD2: equ 2 ;bit #2

PTDDDI: equ 1 ;bit #1

PTDDDO: equ 0 ;bit #0

bit position masks

mPTDDD7: equ %10000000 ;port D bit 7

mPTDDD6: equ %01000000 ;port D bit 6

mPTDDDS: equ %00100000 ;port D bit 5

mPTDDD4: equ %00010000 ;port D bit 4

mPTDDD3: equ %00001000 ;port D bit 3

mPTDDD2: equ %00000100 ;port D bit 2

mPTDDD1: equ %00000010 ;port D bit 1

mPTDDDO: equ %00000001 ;port D bit 0

PTED: equ $10 ;I/O port E data register

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

PTED7: equ 7 ;bit #7

PTED6: equ 6 ;bit #6

PTEDS: equ 5 ;bit #5

PTED4: equ 4 ;bit #4

PTED3: equ 3 ;bit #3
PTED2: equ 2 ;bit #2

PTED1: equ 1 ;bit #1

PTEDO: equ 0 ;bit #0

bit position masks

mPTED7: equ %10000000 ;port E bit 7
mPTED6: equ %01000000 ;port E bit 6

mPTEDS: equ %00100000 ;port E bit 5
mPTED4: equ %00010000 ;port E bit 4

Reference Manual — Volume I HCS08 — Revision 1

404 Equate File Conventions MOTOROLA

Equate File Conventions
Complete Equate File for MC9S08GB60

mPTED3: equ 100001000 ;port E bit 3

mPTED2: equ 100000100 ;port E bit 2

mPTEDl: equ 100000010 ;port E bit 1

mPTEDO: equ 100000001 ;port E bit 0

PTEPE: equ $11

bit numbers for use in BCLR,

;I/O port E pullup enable controls

BSET, BRCLR, and BRSET
PTEPE7: equ 7 ;bit #7

PTEPE6: equ 6 ;bit #6

PTEPES: equ 5 ;bit #5
PTEPE4: equ 4 ;bit #4

PTEPE3: equ 3 ;bit #3

PTEPE2: equ 2 ;bit #2

PTEPEI: equ 1 ;bit #1

PTEPEO: equ 0 ;bit #0

bit position masks

mPTEPE7: equ $10000000 ;port E bit 7

mPTEPE6: equ %01000000 ;port E bit 6

mPTEPE5: equ $00100000 ;port E bit 5

mPTEPE4: equ 100010000 ;port E bit 4

mPTEPE3: equ 100001000 ;port E bit 3

mPTEPE2: equ 100000100 ;port E bit 2

mPTEPE1: equ 100000010 ;port E bit 1

mPTEPEO: equ 100000001 ;port E bit 0

PTESE: equ $12

bit numbers for use in BCLR,

;I/O port E slew rate control register

BSET, BRCLR, and BRSET

PTESE7: equ 7 ;bit #7

PTESE6: equ 6 ;bit #6

PTESE5: equ 5 ;bit #5

PTESE4: equ 4 ;bit #4

PTESE3: equ 3 ;bit #3

PTESE2: equ 2 ;bit #2

PTESEI: equ 1 ;bit #1

PTESEO: equ 0 ;bit #0

bit position masks

mPTESE7: equ 110000000 ;port E bit 7

mPTESE6: equ 101000000 ;port E bit 6

mPTESE5: equ 100100000 ;port E bit 5

mPTESE4: equ 100010000 ;port E bit 4

mPTESE3: equ 100001000 ;port E bit 3

mPTESE2: equ 100000100 ;port E bit 2

mPTESEI: equ 100000010 ;port E bit 1

mPTESEO: equ 100000001 ;port E bit 0

PTEDD: equ $13

bit numbers for use in BCLR,

;I/O port E data direction register

BSET, BRCLR, and BRSET

PTEDD7: equ 7 ;bit #7

PTEDD6: equ 6 ;bit #6

PTEDD5: equ 5 ;bit #5

PTEDD4: equ 4 ;bit #4
PTEDD3: equ 3 ;bit #3

PTEDD2: equ 2 ;bit #2

PTEDDI: equ 1 ;bit #1

PTEDDO: equ 0 ;bit #0

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 405

Equate File Conventions

bit position masks

mPTEDD7: equ %10000000 ;port E bit 7

mPTEDD6: equ %01000000 ;port E bit 6

mPTEDD5: equ %00100000 ;port E bit 5
mPTEDD4: equ %00010000 ;port E bit 4
mPTEDD3: equ %00001000 ;port E bit 3
mPTEDD2: equ %00000100 ;port E bit 2

mPTEDDl: equ %00000010 ;port E bit 1

mPTEDDO: equ %00000001 ;port E bit 0

PTFD: equ $40

bit numbers for use in BCLR,

;I/O port F data register

BSET, BRCLR, and BRSET

PTFD7: equ 7 ;bit #7

PTFD6: equ 6 ;bit #6

PTFD5: equ 5 ;bit #5

PTFD4: equ 4 ;bit #4

PTFD3: equ 3 ;bit #3

PTFD2: equ 2 ;bit #2

PTFD1: equ 1 ;bit #1

PTFDO: equ 0 ;bit #0

bit position masks

mPTFD7: equ %10000000 ;port F bit 7

mPTFD6: equ %01000000 ;port F bit 6

mPTFD5: equ %00100000 ;port F bit 5

mPTFD4: equ %00010000 ;port F bit 4

mPTFD3: equ %00001000 ;port F bit 3

mPTFD2: equ %00000100 ;port F bit 2

mPTFD1: equ %00000010 ;port F bit 1

mPTFDO: equ %00000001 ;port F bit 0

PTFPE: equ $41

bit numbers for use in BCLR,

;I/O port F pullup enable controls

BSET, BRCLR, and BRSET

PTFPE7: equ 7 ;bit #7

PTFPE6: equ 6 ;bit #6

PTFPE5: equ 5 ;bit #5

PTFPE4: equ 4 ;bit #4

PTFPE3: equ 3 ;bit #3

PTFPE2: equ 2 ;bit #2

PTFPEI: equ 1 ;bit #1

PTFPEO: equ 0 ;bit #0

bit position masks

mPTFPE7: equ %10000000 ;port F bit 7

mPTFPE6: equ %01000000 ;port F bit 6

mPTFPE5: equ %00100000 ;port F bit 5

mPTFPE4: equ %00010000 ;port F bit 4

mPTFPE3: equ %00001000 ;port F bit 3
mPTFPE2: equ %00000100 ;port F bit 2

mPTFPE1: equ %00000010 ;port F bit 1

mPTFPEO: equ %00000001 ;port F bit 0

PTFSE: equ $42 ;I/O port F slew rate control register
bit numbers for use in BCLR, BSET, BRCLR, and BRSET

PTFSE7: equ 7 ;bit #7

PTFSE6: equ 6 ;bit #6
PTFSES: equ 5 ;bit #5

Reference Manual — Volume I HCS08 — Revision 1

406 Equate File Conventions MOTOROLA

Equate File Conventions
Complete Equate File for MC9S08GB60

PTFSE4: equ 4 ;bit #4

PTFSE3: equ 3 ;bit #3

PTFSE2: equ 2 ;bit #2

PTFSEI: equ 1 ;bit #1

PTFSEO: equ 0 ;bit #0

bit position masks

mPTFSE7: equ °%10000000 ;port F bit 7

mPTFSE6: equ %01000000 ;port F bit 6

mPTFSE5: equ %00100000 ;port F bit 5

mPTFSE4: equ 500010000 ;port F bit 4

mPTFSE3: equ 500001000 ;port F bit 3

mPTFSE2: equ 500000100 ;port F bit 2

mPTFSEI: equ 500000010 ;port F bit 1

mPTFSEO: equ $00000001 ;port F bit 0

PTFDD: equ $43

bit numbers for use in BCLR,

;I/O port F data direction register

BSET, BRCLR, and BRSET

PTFDD7: equ 7 ;bit #7

PTFDD6: equ 6 ;bit #6

PTFDD5: equ 5 ;bit #5

PTFDD4: equ 4 ;bit #4

PTFDD3: equ 3 ;bit #3

PTFDD2: equ 2 ;bit #2

PTFDDI: equ 1 ;bit #1

PTFDDO: equ 0 ;bit #0

bit position masks

mPTFDD7: equ 510000000 ;port F bit 7

mPTFDD6: equ 501000000 ;port F bit 6

mPTFDD5: equ 500100000 ;port F bit 5

mPTFDD4: equ 500010000 ;port F bit 4

mPTFDD3: equ 500001000 ;port F bit 3

mPTFDD2: equ 500000100 ;port F bit 2

mPTFDD1: equ 500000010 ;port F bit 1

mPTFDDO: equ 500000001 ;port F bit 0

PTGD: equ $44

bit numbers for use in BCLR,

;I/O port G data register

BSET, BRCLR, and BRSET

PTGD7: equ 7 ;bit #7

PTGD6: equ 6 ;bit #6

PTGD5: equ 5 ;bit #5

PTGD4: equ 4 ;bit #4

PTGD3: equ 3 ;bit #3

PTGD2: equ 2 ;bit #2

PTGD1: equ 1 ;bit #1

PTGDO: equ 0 ;bit #0

bit position masks

mPTGD7: equ 510000000 ;port G bit 7

mPTGD6: equ 501000000 ;port G bit 6

mPTGD5: equ 500100000 ;port G bit 5

mPTGD4: equ 500010000 ;port G bit 4
mPTGD3: equ 500001000 ;port G bit 3

mPTGD2: equ °%00000100 ;port G bit 2

mPTGD1: equ 500000010 ;port G bit 1

mPTGDO: equ 500000001 ;port G bit 0

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 407

Equate File Conventions

PTGPE: equ $45

bit numbers for use in BCLR,

;I/O port G pullup enable controls

BSET, BRCLR, and BRSET
PTGPE7: equ 7 ;bit #7

PTGPE6: equ 6 ;bit #6

PTGPE5: equ 5 ;bit #5

PTGPE4: equ 4 ;bit #4

PTGPE3: equ 3 ;bit #3

PTGPE2: equ 2 ;bit #2

PTGPEI: equ 1 ;bit #1

PTGPEO: equ 0 ;bit #0

bit position masks

mPTGPE7: equ %10000000 ;port G bit 7

mPTGPE6: equ 601000000 ;port G bit 6

mPTGPE5: equ %00100000 ;port G bit 5

mPTGPE4: equ 600010000 ;port G bit 4

mPTGPE3: equ 600001000 ;port G.bit 3

mPTGPE2: equ %00000100 ;port G bit 2

mPTGPE1: equ %00000010 ;port G bit 1

mPTGPEO: equ %00000001 ;port G bit 0

PTGSE: equ $46

bit numbers for use in BCLR,

;I/O port G slew rate control register

BSET, BRCLR, and BRSET

PTGSE7: equ 7 ;bit #7

PTGSE6: equ 6 ;bit #6

PTGSE5: equ 5 ;bit #5

PTGSE4: equ 4 ;bit #4

PTGSE3: equ 3 ;bit #3

PTGSE2: equ 2 ;bit #2

PTGSEI: equ 1 ;bit #1

PTGSEO: equ 0 ;bit #0

bit position masks

mPTGSE7: equ %10000000 ;port G bit 7

mPTGSE6: equ %01000000 ;port G bit 6

mPTGSES: equ %00100000 ;port G bit 5

mPTGSE4: equ %00010000 ;port G bit 4

mPTGSE3: equ %00001000 ;port G bit 3

mPTGSE2: equ 600000100 ;port G bit 2

mPTGSE1: equ %00000010 ;port G bit 1

mPTGSEO: equ %00000001 ;port G bit 0

PTGDD: equ $47

bit numbers for use in BCLR,

;I/O port G data direction register

BSET, BRCLR, and BRSET
PTGDD7: equ 7 ;bit #7

PTGDD6: equ 6 ;bit #6

PTGDD5: equ 5 ;bit #5

PTGDD4: equ 4 ;bit #4
PTGDD3: equ 3 ;bit #3
PTGDD2: equ 2 ;bit #2

PTGDDI: equ 1 ;bit #1

PTGDDO: equ 0 ;bit #0
bit position masks

mPTGDD7: equ %10000000 ;port G bit 7
mPTGDD6: equ %01000000 ;port G bit 6
mPTGDD5: equ %00100000 ;port G bit 5

Reference Manual — Volume 1 HCS08 — Revision 1

408 Equate File Conventions MOTOROLA

Equate File Conventions
Complete Equate File for MC9S08GB60

mPTGDD4: equ $00010000 ;port G bit 4

mPTGDD3: equ %00001000 ;port G bit 3

mPTGDD2: equ %00000100 ;port G bit 2

mPTGDDl: equ $00000010 ;port G bit 1

mPTGDDO: equ %00000001 ;port G bit 0

Interrupt Request Module

IRQSC: equ $14

(IRQ) **

;IRQ status and control register

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

IRQEDG: equ 5 ;(bit #5) IRQ pin edge sensitivity

IRQPE: equ 4 ;(bit #4) IRQ pin enable (PTB5)

IRQF: equ 3 ;(bit #3) IRQ flag

IRQACK: equ 2 ;(bit #2) acknowledge IRQ flag

IRQIE: equ 1 ;(bit #1) IRQ pin interrupt enable

IRQMOD: equ 0 ;(bit #0) IRQ mode

bit position masks

mIRQEDG: equ %00100000 ;IRQ pin edge sensitivity

mIRQPE: equ ;x00010000 ;IRQ pin enable (PTB5)

mIRQF: equ %00001000 ;IRQ flag

mIRQACK: equ %00000100 ;acknowledge IRQ flag

mIRQIE: equ %00000010 ;IRQ pin interrupt enable

mIRQMOD: equ %00000001 ;IRQ mode

;**** Keyboard Interrupt Module (KBI) ***

KBISC: equ $16 ;KBI status and control register

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

KBEDG7: equ 7 ;rise-hi/fall-low for KBIP7 pin

KBEDG6: equ 6 ;rise-hi/fall-low for KBIP6 pin

KBEDGS: equ 5 ;rise-hi/fall-low for KBIP5 pin

KBEDG4: equ 4 ;rise-hi/fall-low for KBIP4 pin

KBF: equ 3 ;KBI flag

KBACK: equ 2 ;acknowledge

KBIE: equ 1 ;KBI interrupt enable

KBIMOD: equ 0 ;KBI mode select

bit position masks

mKBEDG7: equ $10000000 ;rise-hi/fall-low for KBIP7 pin

mKBEDG6: equ %O1000000 ;rise-hi/fall-low for KBIP6 pin

mKBEDG5: equ %00100000 ;rise-hi/fall-low for KBIPS pin

mKBEDG4: equ %00010000 ;rise-hi/fall-low for KBIP4 pin

mKBF: equ %00001000 ;KBI flag

mKBACK: equ %00000100 ;acknowledge

mKBIE: equ %00000010 ;KBI interrupt enable

mKBIMOD: equ %00000001 ;KBI mode select

KBIPE: equ $17 ;KBI pin enable controls

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

KBIPE7: equ 7 ;bit #7

KBIPE6: equ 6 ;bit #6

KBIPE5: equ 5 ;bit #5
KBIPE4: equ 4 ;bit #4

KBIPE3: equ 3 ;bit #3

KBIPE2: equ 2 ;bit #2

KBIPEI: equ 1 ;bit #1

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 409

Equate File Conventions

KBIPEO: equ 0

bit position masks

mKBIPE7: equ 810000000 ;port A bit 7

mKBIPE6: equ 801000000 ;port A bit 6

mKBIPE5: equ 800100000 ;port A bit 5

mKBIPE4: equ 800010000 ;port A bit 4

mKBIPE3: equ $00001000 ;port A bit 3

mKBIPE2: equ $00000100 ;port A bit 2

mKBIPE1: equ 800000010 ;port A bit 1

mKBIPEO: equ %00000001 ;port A bit 0

;bit #0

;**** Serial Communications Interface 1&2 (SCI1 & SCI2) ***********************************

SCIIBDH: equ $18 ;SCI1 baud rate register (high)

SCI2BDH: equ $20 ;SCI2 baud rate register (high)

bit numbers for use in BCLR,

SBR12: equ 4

SBR11: equ 3

SBR10: equ 2

SBR9: equ 1

SBR8: equ 0

bit position masks

mSBR12: equ 800010000 ;high bits of baud rate divider

mSBRll: equ 800001000 "

800000100 " mSBR10: equ

mSBR9: equ 800000010

mSBR8: equ 800000001

SCIIBDL: equ $19

SCI2BDL: equ $21

bit numbers for use in BCLR,

SBR7: equ 7

SBR6: equ 6

SBR5: equ 5

SBR4: equ 4

SBR3: equ 3

SBR2: equ 2

SBR1: equ 1

SBRO: equ 0

bit position masks

mSBR7: equ 810000000 ;low byte of baud rate divider

mSBR6: equ 801000000 "

mSBR5: equ 800100000 "

mSBR4: equ 800010000 "

mSBR3: equ 800001000 "

mSBR2: equ 800000100 "

mSBR1: equ 800000010 "

mSBRO: equ 800000001 "

BSET, BRCLR, and BRSET

;(bit #4) baud divide (high)

;(bit #3) "

;(bit #2) "

;(bit #1) "

;(bit #0) "

"

"

;SCI1 baud rate register (low byte)

;SCI2 baud rate register (low byte)

BSET, BRCLR, and BRSET

;(bit #7) baud divide (low)

;(bit #6) "

;(bit #5) "

;(bit #4) "

;(bit #3) "

;(bit #2) "

;(bit #1) "

;(bit #0) "

SCI1C1: equ $1A ;SCI1 control register 1

SCI2C1: equ $22 ;SCI2 control register 1

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

LOOPS: equ 7 ;(bit #7) loopback mode

SCISWAI: equ 6 ;(bit #6) SCI stop in wait

RSRC: equ 5 ;(bit #5) receiver source

Reference Manual — Volume I HCS08 — Revision 1

410 Equate File Conventions MOTOROLA

Equate File Conventions
Complete Equate File for MC9S08GB60

M: equ 4

WAKE: equ 3

ILT: equ 2

PE: equ 1

PT: equ 0

bit position masks

mL00PS: equ %10000000

mSCISWAI: equ %01000000

mRSRC: equ %00100000

mM: equ %00010000

mWAKE: equ %00001000

mILT: equ %00000100

mPE: equ %00000010

mPT: equ %00000001

SCIlC2:

SCI2C2:

bit

TIE:

TCIE:

RIE:

ILIE:

TE:

RE:

RWU:

SBK:

bit

mTIE:

mTCIE:

mEIE:

mILIE:

mTE:

mRE:

mRWU:

mSBK:

equ $15

equ $23

numbers for use in BCLR,

equ 7

equ 6

equ 5

equ 4

equ 3

equ 2

equ 1

equ 0

position masks

equ %l0000000

equ %01000000

equ %00100000

equ %00010000

equ %00001000

equ %00000100

equ %00000010

equ %00000001

SCI1S1: equ

SCI2S1: equ

bit numbers for

TDRE: equ

TC: equ

RDRF: equ

IDLE: equ

OR: equ

NF: equ

FE: equ

PF: equ

bit position masks

mTDRE: equ

mTC: equ

mRDRF: equ
mIDLE: equ

mOR: equ

mNF: equ

mFE: equ

HCS08 — Revision 1

$1C

$24

use in BCLR,

7

6

5

4

3

2

1

0

%l0000000

%01000000

%00100000
%00010000

%00001000

%00000100
%00000010

;(bit #4) 9/8 bit data

;(bit #3) wake by addr mark/idle

;(bit #2) idle line type; stop/start

;(bit #1) parity enable

;(bit #0) parity type

;loopback mode select

;SCI stops in wait mode

;receiver source

;9/8 bit data

;wakeup by addr mark/idle

;idle line type; after stop/start

;parity enable

;parity type even/odd

;SCI1 control register 2

;SCl2 control register 2

BSET, BRCLR, and BRSET

;(bit #7) .transmit interrupt enable

;(bit #6) TC interrupt enable

;(bit #5) receive interrupt enable

;(bit #4) idle line interrupt enable

;(bit #3) transmitter enable

;(bit #2) receiver enable

;(bit #1) receiver wakeup engage

;(bit #0) send break

;transmit interrupt (TORE) enable

;transmit complete interrupt enable

;receive interrupt (RDRF) enable

;idle line interrupt (ILIE) enable

;transmitter enable

;receiver enable

;receiver wakeup engage

;send break characters

;SCI1 status register 1

;SCI2 status register 1

BSET, BRCLR, and BRSET

;(bit #7)

;(bit #6)

;(bit #5)

;(bit #4)

;(bit #3)

;(bit #2)

(bit #1)

(bit #0)

Tx data register empty

transmit complete

Rx data register full

idle line detected

Rx over run

Rx noise flag

Rx framing error

Rx parity failed

;transmit data register empty

;transmit complete

;receive data register full
;idle line detected

;receiver over run

;receiver noise flag

;receiver framing error

Reference Manual — Volume I

MOTOROLA Equate File Conventions 411

mR7:

mR6:

mR5:

mR4:

Equate File Conventions

mPF: equ %00000001

SCI1S2: equ $1D

SCI2S2: equ $25

bit numbers for use in BCLR,

RAF: equ 0

bit position masks

mRAF: equ %00000001

SCI1C3: equ

SCI2C3: equ

bit numbers for

RB: equ

T8: equ

TXDIR: equ

ORIE: equ

NEIE: equ

FEIE: equ 1

PEIE: equ 0

bit position masks

mR8: equ

mT8: equ

mTXDIR: equ

mORIE: equ

mNEIE: equ

mFEIE: equ

mPEIE: equ

$1E

$26

use in BCLR,

7

6

5

3

2

%10000000

%01000000

%00100000

%00001000

%00000100

%00000010

%00000001

SCI1D: equ $1F

SCI2D: equ $27

bit numbers for use in BCLR,

read-only Rx data buffer

R7: equ 7

R6: equ 6

R5: equ 5

R4: equ 4

R3: equ 3

R2: equ 2

R1: equ 1

R0: equ 0

write-only Tx data buffer

T7:

T6:

T5:

T4:

T3:

T2:
Ti:

T0:

equ 7

equ 6

equ 5

equ 4

equ 3

equ 2
equ 1

equ 0

bit position masks

read-only Rx data buffer

equ %l0000000

equ %01000000

equ %00100000

equ %00010000

Reference Manual — Volume I

;received parity failed

;SCI1 status register 2

;SCI2 status register 2

BSET, BRCLR, and BRSET

;(bit #0) Rx active flag

;receiver active flag

;SCI1 control

;SCI2 control

BSET, BRCLR, and

register 3

register 3

BRSET

;(bit #7) 9th Rx bit

;(bit #6) 9th Tx bit

;(bit #5) TxD pin direction?

;(bit #3) Rx over run int. enable

;(bit #2) Rx noise flag int. enable

;(bit #1) Rx framing error int. enable

;(bit #0) Rx parity error int. enable

;9th receive data bit

;9th transmit data bit

;transmit pin direction?

;receiver over run int. enable

;receiver noise flag int. enable

;receiver framing error int. enable

;received parity error int. enable

;SCI1 data register (low byte)

;SCI2 data register (low byte)

BSET, BRCLR, and BRSET

;(bit

;(bit

;(bit

;(bit

;(bit

;(bit

;(bit

;(bit

receive data bits

;(bit #7) transmit data bits

;(bit #6)

;(bit #5)

;(bit #4)

;(bit #3)

;(bit #2)

;(bit #1)

;(bit #0)

;receive data bits

HCS08 — Revision 1

412 Equate File Conventions MOTOROLA

MODFEN:

BIDIROE:

SPISWAI:

SPCO:

bit position masks

mMODFEN: equ 100010000

mBIDIROE: equ 100001000

mSPISWAI: equ 100000010

mSPCO: equ 100000001

mR3:

mR2:

mill:

mRO:

write-only

mT7:

mT6:

mTS:

mT4:

mT3:

mT2:

mTl:

mTO:

equ

equ

equ

equ

100001000

100000100

100000010

100000001

Equate File Conventions
Complete Equate File for MC9S08GB60

Tx data buffer

equ 110000000 ;transmit data bits

equ 101000000

equ 100100000 n

equ 100010000

equ 100001000

equ 100000100

equ 100000010

equ 100000001

;**** Serial Peripheral
*

SPIC1: equ

bit numbers for

SPIE: equ 7

SPE: equ 6

SPTIE: equ 5

MSTR: equ 4

CPOL: equ 3

CPHA: equ 2

SSOE: equ 1

LSBFE: equ 0

bit position masks

mSPIE: equ 110000000

mSPE:

mSPTIE:

mMSTR:

mCPOL:

mCPHA:

mSSOE:

mLSBFE:

equ 101000000

equ 100100000

equ 100010000

equ 100001000

equ 100000100

equ 100000010

equ 100000001

$28

use in BCLR, BSET, BRCLR,

;(bit #7)

;(bit #6)

;(bit #5)

;(bit #4)

;(bit #3)

;(bit #2)

;(bit #1)

(bit #0)

Interface (SPI)

;SPI control register 1

and BRSET

SPI interrupt enable

SPI enable

Tx error interrupt enable

master/slave

clock polarity

clock phase

SS output enable

LSB-first enable

;SPI interrupt enable

;SPI enable

;SPI Tx error interrupt enable

;master/slave

;clock polarity

;clock phase

;slave select output enable

;LSB-first enable

SPIC2: equ $29 ;SPI control register 2

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

equ 4 ;(bit #4) mode fault enable

equ 3 ;(bit #3) bi-directional enable

equ 1 ;(bit #1) SPI stops in wait

equ 0 ;(bit #0) SPI pin control

SPIBR: equ $2A

bit numbers for use in BCLR,

SPPR2: equ 6
SPPR1: equ 5

SPPRO: equ 4

SPR2: equ 2

SPR1: equ 1

HCS08 — Revision 1

;mode fault enable

;bi-directional operation enable

;SPI stops in wait mode

;SPI pin control

;SPI baud rate select

BSET, BRCLR, and BRSET

;(bit #6) SPI baud rate prescale
;(bit #5) "

(bit #4)

;(bit #2) SPI rate selact

;(bit #1)

Reference Manual — Volume I

MOTOROLA Equate File Conventions 413

Equate File Conventions

SPRO: equ 0

bit position masks

mSPPR2:

mSPPRl:

mSPPRO:

mSPR2:

mSPRl:

mSPRO:

equ

equ

equ

equ

equ

equ

%01000000

%00100000

%00010000

%00000100

%00000010

%00000001

SPIS: equ $2B

bit numbers for use in BCLR,

SPRF: equ 7

SPTEF: equ 5

MODF: equ 4

bit position masks

mSPRF: equ %10000000

mSPTEF: equ %00100000

mNODF: equ %00010000

SPID: equ $2D

;**** Analog-to-Digital

ATDC: equ

bit numbers for

ATDPU:

DJM:

REDS:

SGN:

PRS3:

PRS2:

PRS1:

equ

equ

equ

equ

equ

equ

equ

PRSO: equ

bit position masks

mATDPU: equ

mDJM: equ

mRES8: equ

mSGN: equ

mPRS3: equ

mPRS2: equ

mPRSl: equ

mPRSO: equ

;(bit #0) "

;SPI baud rate prescale

;SPI rate select

;SPI status register

BSET, BRCLR, and BRSET

;(bit #7) SPI Rx full flag

;(bit #5) SPI Tx error flag

;(bit #4) mode fault flag

;SPI receive buffer full flag

;SPI Tx error flag?

;mode fault flag

;SPI data register

Converter Module (ATD) **

$50

use in BCLR,

7

6

5

4

3

2

1

0

%10000000

%01000000

%00100000

%00010000

%00001000

%00000100

%00000010

%00000001

ATDSC: equ $51

bit numbers for use in

CCF: equ 7

ATDIE: equ 6

ATDCO: equ 5

ATDCH4: equ 4

ATDCH3: equ 3

ATDCH2: equ 2

ATDCHI: equ 1

ATDCHO: equ 0

Reference Manual — Volume I

BCLR,

BSET, BRCLR,

;(bit #7)

;(bit #6)

;(bit #5)

;(bit #4)

;(bit #3)

;(bit #2)

;(bit #1)

;(bit #0)

;atd control tegister

and BRSET

ATD power up

justification mode; rt/left

ATD resolution select

signed result select

prescaler rate select (high)

prescaler rate select

prescaler rate select

prescaler rate select (low)

;ATD power up

;data justification mode; right/left

;ATD resolution select

;signed result select

;prescaler rate select (high)

;prescaler rate select

;prescaler rate select

;prescaler rate select (low)

;atd status and control register

BSET, BRCLR, and BRSET

;(bit #7) conversion complete flag
;(bit #6) ATD interrupt enable

;(bit #5) ATD continuous conversion

;(bit #4) ATD input channel select (high)

;(bit #3) ATD input channel select

;(bit #2) ATD input channel select

;(bit #1) ATD input channel select

;(bit #0) ATD input channel select (low)

HCS08 — Revision 1

414 Equate File Conventions MOTOROLA

Equate File Conventions
Complete Equate File for MC9S08GB60

bit position masks

mCCF: equ

mATDIE: equ

mATDCO: equ

mATDCH4: equ

mATDCH3: equ

mATDCH2: equ

mATDCHl: equ

mATDCHO: equ

ATDPE: equ

bit numbers for

ATDPE7: equ

ATDPE6: equ

ATDPES: equ

ATDPE4: equ

ATDPE3: equ

ATDPE2: equ

ATDPEI: equ

ATDPEO: equ

%10000000

%01000000

%00100000

%00010000

%00001000

%00000100

%00000010

%00000001

;conversion complete flag

;ATD interrupt enable

;ATD continuous conversion

;ATD input channel select (high)

;prescaler rate select

;prescaler rate select

;prescaler rate select

;prescaler rate select (low)

$54 ;ATD pin

use in BCLR, BSET, BRCLR,

7 ;(bit #7)

6 (bit #6)

5 (bit #5)

4 ;(bit #4)

3 ;(bit #3)

2 ;(bit #2)

1 ;(bit #1)

0 ; (bit #0)

bit position masks

mATDPE7:

mATDPE6:

mATDPE5:

mATDPE4:

mATDPE3:

mATDPE2:

mATDPEl:

mATDPEO:

ATDRH:

ATDRL:

equ %l0000000

equ %01000000

equ %00100000

equ %00010000

equ %00001000

equ %00000100

equ %00000010

equ %00000001

equ $52

equ $53

;ATDPE

;ATDPE

;ATDPE

;ATDPE

;ATDPE

;ATDPE

;ATDPE

;ATDPE

bit

bit

bit

bit

bit

bit

bit

bit

enable register

and BRSET

7

6

5

4

3

2

1

0

;ATD result register (high)

;ATD result register (low)

;**** Inter-Integrated Circuit Module (IIC) **

IICA: equ $58 ;IIC address register

IICF: equ $59

bit numbers for use in BCLR,

MULTI: equ 7

MULTO: equ 6

ICR5: equ 5

ICR4: equ 4

ICR3: equ 3

ICR2: equ 2

ICR1: equ 1

ICRO: equ 0

bit position masks

mMULTl:

mNULTO:

mICRS:
mICR4:

mICR3:

mICR2:

mICRl:

equ

equ

equ

equ

equ

equ

equ

HCS08 — Revision 1

%10000000

%01000000

%00100000
%00010000

%00001000

%00000100

%00000010

;IIC frequency divider register

BSET, BRCLR, and BRSET

;(bit #7) IIC multiply factor (high)

;(bit #6) IIC multiply factor (low)

(bit #5) IIC Divider and Hold bit-5

(bit #4) IIC Divider and Hold bit-4

;(bit #3) IIC Divider and Hold bit-3

;(bit #2) IIC Divider and Hold bit-2

;(bit #1) IIC Divider and Hold bit-1

(bit #0) IIC Divider and Hold bit-0

;IIC multiply factor (high)

;IIC multiply factor (low)

;IIC Divider and Hold bit-5

;IIC Divider and Hold bit-4

;IIC Divider and Hold bit-3

;IIC Divider and Hold bit-2

;IIC Divider and Hold bit-1

Reference Manual — Volume I

MOTOROLA Equate File Conventions 415

Equate File Conventions

mICRO: equ %00000001 ;IIC Divider and Hold bit-0

IICC: equ $5A ;IIC control register

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

IICEN: equ 7 ;(bit #7) IIC enable bit

IICIE: equ 6 ;(bit #6) IIC interrupt enable bit

MST: equ 5 ;(bit #5) IIC master mode select bit

TX: equ 4 ;(bit #4) IIC transmit mode select bit

TXAK: equ 3 ;(bit #3) IIC transmit acknowledge bit

RSTA: equ 2 ;(bit #2) IIC repeat start bit

bit position masks

mIICEN: equ %10000000 ;IIC enable

mIICIE: equ %01000000 ;IIC interrupt enable bit

mMST: equ %00100000 ;IIC master mode select bit

mTX: equ %00010000 ;IIC transmit mode select bit

mTXAK: equ %00001000 ;IIC transmit acknowledge bit

mRSTA: equ %00000100 ;IIC repeat start bit

IICS: equ $55 ;IIC status register

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

TCF: equ 7 ;(bit #7) IIC transfer complete flag bit

IIAS: equ 6 ;(bit #6) IIC addressed as slave bit

BUSY: equ 5 ;(bit #5) IIC bus busy bit

ARBL: equ 4 ;(bit #4) IIC arbitration lost bit

SRW: equ 2 ;(bit #2) IIC slave read/write bit

IICIF: equ 1 ;(bit #1) IIC interrupt flag bit

RXAK: equ 0 ;(bit #0) IIC receive acknowledge bit

bit position masks

mTCF: equ °%10000000 ;IIC transfer complete flag bit

mIIAS: equ °s 01000000 ;IIC addressed as slave bit

mBUSY: equ %00100000 ;IIC bus busy bit

mARBL: equ %00010000 ;IIC arbitration lost bit

mSRW: equ %00000100 ;IIC slave read/write bit

mIICIF: equ %00000010 ;IIC interrupt flag bit

mRXAK: equ %00000001 ;IIC receive acknowledge bit

IICD: equ $5C ;IIC data I/O register bits 7:0

**** Timer/PWM Module 1 (TPM1)

**** Timer/PWM Module 2 (TPM2)

TPMISC: equ $30

TPM2SC: equ $60

bit numbers for use in BCLR,

TOF: equ 7

TOIE: equ 6

CPWMS: equ 5
CLKSB: equ 4

CLKSA: equ 3

PS2: equ 2

PS1: equ 1

PSO: equ 0

bit position masks

mTOF: equ %l0000000

mTOIE: equ %01000000

Reference Manual — Volume I

***** TPM1 has 3 channels

***** TPM2 has 5 channels

;TPM1 status and control register

;TPM2 status and control register

BSET, BRCLR, and BRSET

;(bit #7) tomer overflow flag

;(bit #6) TOF interrupt enable

;(bit #5) centered PWM select

;(bit #4) clock select bits

;(bit #3)

;(bit #2) prescaler bits

;(bit #1)

(bit #0)

;timer overflow flag

;timer overflow interrupt enable

HCS08 — Revision 1

416 Equate File Conventions MOTOROLA

Equate File Conventions
Complete Equate File for MC9S08GB60

mCPWMS:

mCLKSB:

mCLKSA:

mPS2:

mPS1:

mPSO:

TPMICNTH:

TPMICNTL:

TPMIMODH:

TPMIMODL:

TPM2CNTH:

TPM2CNTL:

TPM2MODH:

TPM2MODL:

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

$00100000

%00010000

%00001000

%00000100

%00000010

%00000001

$31

$32

$33

$34

$61

$62

$63

$64

TPMICOSC: equ $35

TPM2COSC: equ $65

bit numbers for use in BCLR,

CHOF: equ 7

CHOIE: equ 6

MSOB: equ 5

MSOA: equ 4

ELSOB: equ 3

ELSOA: equ 2

bit position masks

mCHOF: equ %10000000

mCHOIE: equ %01000000

mMSOB: equ %00100000

mMSOA: equ %00010000

mELSOB: equ %00001000

mELSOA: equ %00000100

TPMICOVH: equ

TPMICOVL: equ

TPM2COVH: equ

TPM2COVL: equ

;center-aligned PWM select

;clock source select bits

;prescaler bits

;TPM1

;TPM1

;TPM1

;TPM1

;TPM2

;TPM2

;TPM2

;TPM2

counter (high half)

counter (low half)

modulo register (high half)

modulo register(low half)

counter (high half)

counter (low half)

modulo register (high half)

modulo register(low half)

;TPM1 channel 0 status and control

;TPM2 channel 0 status and control

BSET, BRCLR, and BRSET

;(bit #7) channel 0 flag

;(bit #6) ch 0 interrupt enable

;(bit #5) mode select B

;(bit #4) mode select A

;(bit #3) edge/level select B

;(bit #2) edge/level select A

;channel 0 flag

;ch 0 interrupt enable

;mode select B

;mode select A

;edge/level select B

;edge/level select A

$36 ;TPM1 channel 0 value register (high)

$37 ;TPM1 channel 0 value register (low)

$66 ;TPM2 channel 0 value register (high)

$67 ;TPM2 channel 0 value register (low)

TPMICISC: equ $38

TPM2CISC: equ $68

bit numbers for use in BCLR,

CH1F:

CH1IE:

MS1B:

MS1A:

ELS1B:

ELS1A:

equ 7

equ 6

equ 5

equ 4

equ 3

equ 2

bit position

mCH1F:
mCH1IE:

mMS1B:

mMS1A:

mELS1B:

masks

equ
equ

equ

equ

equ

HCS08 — Revision 1

%10000000
%01000000

%00100000

%00010000

%00001000

;TPM1 channel 1 status and control

;TPM2 channel 1 status and control

BSET, BRCLR,

#7)

#6)

#5)

#4)

#3)

#2)

;(bit

;(bit

;(bit

;(bit

;(bit

(bit

and BRSET

channel 1 flag

ch 1 interrupt enable

mode select B

mode select A

edge/level select B

edge/level select A

;channel 1 flag
;ch 1 interrupt enable

;mode select B

;mode select A

;edge/level select B

Reference Manual — Volume I

MOTOROLA Equate File Conventions 417

Equate File Conventions

mELSlA: equ %00000100 ;edge/level select A

TPMICIVH: equ $39 ;TPM1 channel 1 value register (high)

TPMICIVL: equ $3A ;TPM1 channel 1 value register (low)

TPM2CIVH: equ $69 ;TPM2 channel 1 value register (high)

TPM2CIVL: equ $6A ;TPM2 channel 1 value register (low)

TPMIC2SC: equ $3B

TPM2C2SC: equ $6B

bit numbers for use in BCLR,

CH2F: equ 7

CH2IE: equ 6

MS2B: equ 5

MS2A: equ 4

ELS2B: equ 3

ELS2A: equ 2

bit position masks

mCH2F:

mCH2IE:

mMS2B:

mMS2A:

mELS2B:

mELS2A:

equ

equ

equ

equ

equ

equ

%10000000

$01000000

$00100000

%00010000

%00001000

%00000100

TPMIC2VH: equ $3C

TPMIC2VL: equ $3D

TPM2C2VH: equ $6C

TPM2C2VL: equ $6D

TPM2C3SC: equ $6E

bit numbers for use in BCLR,

CH3F:

CH3IE:

MS3B:

MS3A:

equ

equ

equ

equ

7

6

5

4

ELS3B: equ 3

ELS3A: equ 2

bit position masks

mCH3F: equ %10000000

mCH3IE: equ %01000000

mMS3B: equ %00100000

mMS3A: equ %00010000

mELS3B: equ %00001000

mELS3A: equ %00000100

TPM2C3VH: equ

TPM2C3VL: equ

;TPM1 channel 2 status and control

;TPM2 channel 2 status and control

BSET, BRCLR, and BRSET

;(bit #7)

;(bit #6)

;(bit #5)

;(bit #4)

;(bit #3)

;(bit #2)

channel 2 flag

ch 2 interrupt enable

mode select B

mode select A

edge/level select B

edge/level select A

;channel 2 flag

;ch 2 interrupt enable

;mode select B

;mode select A

;edge/level select B

;edge/level select A

;TPM1 channel 2 value register (high)

;TPMl channel 2 value register (low)

;TPM2 channel 1 value register (high)

;TPM2 channel 1 value register (low)

;TPM2

BSET,

channel 3 status and control

BRCLR, and BRSET

;(bit #7)

;(bit #6)

;(bit #5)

;(bit #4)

;(bit #3)

;(bit #2)

channel 3 flag

ch 3 interrupt enable

mode select B

mode select A

edge/level select B

edge/level select A

;channel 3 flag

;ch 3 interrupt enable

;mode select B

;mode select A

;edge/level select B

;edge/level select A

$6F ;TPM2 channel 1 value register

$70 ;TPM2 channel 1 value register

TPM2C4SC: equ $71

bit numbers for use in BCLR,

CH4F:

CH4IE:

MS4B:

equ

equ

equ

7

6

5

Reference Manual — Volume I

(high)

(low)

;TPM2 channel 4 status and control

BSET, BRCLR, and BRSET

;(bit #7) channel 4 flag

;(bit #6) ch 4 interrupt enable

;(bit #5) mode select B

HCS08 — Revision 1

418 Equate File Conventions MOTOROLA

MS4A: equ

ELS4B: equ

ELS4A: equ

bit position masks

mCH4F: equ

mCH4IE: equ

mMS4B: equ

mMS4A: equ

mELS4B: equ

mELS4A: equ

TPM2C4VH: equ

TPM2C4VL: equ

4

3

2

Equate File Conventions
Complete Equate File for MC9S08GB60

;(bit #4) mode select A

;(bit #3) edge/level select B

;(bit #2) edge/level select A

%l0000000 ;channel 4 flag

%01000000 ;ch 4 interrupt enable

400100000 ;mode select B

400010000 ;mode select A

400001000 ;edge/level select B

400000100 ;edge/level select A

$72 ;TPM2 channel 1 value register (high)

$73 ;TPM2 channel 1 value register (low)

**** Internal Clock Generator

ICGC1: equ $48

bit numbers for use in BCLR,

RANGE: equ 6

REFS: equ 5

CLKS1: equ 4

CLKSO: equ 3

OSCSTEN: equ 2

bit position masks

mRANGE: equ 401000000

mREFS: equ $00100000

mCLKSl: equ 400010000

mCLKSO: equ 400001000

mOSCSTEN: equ 400000100

ICGC2: equ $49

bit numbers for use in BCLR,

LOLRE: equ 7

MFD2: equ 6

MFD1: equ 5

MFDO: equ 4

LOCRE: equ 3

RFD2: equ 2

RFD1: equ 1

RFDO: equ 0

bit position masks

mLOLRE: equ 410000000

mMFD2: equ $01000000

mMFDl: equ 400100000

mMFDO: equ 400010000

mLOCRE: equ 400001000

mRFD2: equ 400000100

mRFDl: equ 400000010

mRFDO: equ 400000001

Module (ICG) **

;ICG control register 1

BSET, BRCLR, and BRSET

;(bit #6) frequency range select

;(bit #5) reference select

;(bit #4) clock select bit 1

;(bit #3) clock select bit 0

;(bit #2) oscillator runs in stop

;frequency range select

;reference select

;clock mode select (bit-1)

;clock mode select (bit 0)

;enable oscillator in stop mode

;ICG control register 2

BSET, BRCLR, and BRSET

;(bit #7) loss of lock reset enable

;(bit #6) multiplication factor div

;(bit #5)

(bit #4)

;(bit #3) loss of clock reset enable

;(bit #2) reference divider

;(bit #1)

;(bit #0)

;loss of lock reset enable

;multiplication factor divider

;loss of clock reset enable

;reference divider bits

ICGS1: equ $4A ;ICG status register 1

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

CLKSTI: equ 7 ;(bit #7) clock mode status 1

CLKSTO: equ 6 ;(bit #6) clock mode status 0

REFST: equ 5 ;(bit #5) reference clock status

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 419

mCOPE:

mCOPT:

mSTOPE:

mBKGDPE:

SDIDH:

SDIDL:

4

3

2

1

0

DCOS: equ 0

bit position masks

mDCOS: equ %00000001

ICGFLTU:

ICGFLTL:

ICGTRM:

SRS:

bit

mPOR:

mPIN:

mCOP:

mILOP:

mICG:

mLVD:

equ $4C

equ $4D

equ $4E

System Integration Module

equ $1800

position masks

equ %10000000

equ %01000000

equ %00100000

equ %00010000

equ %00000100

equ 800000010

SBDFR: equ $1801

bit position masks

mBDFR: equ %00000001

SOPT: equ $1802

bit position masks

equ 810000000

equ %01000000

equ %00100000

equ %00000010

equ $1806

equ $1807

bit position masks within SDIDH

mREV3: equ 810000000

equ 801000000

equ %00100000

equ %00010000

mREV2:

mREV1:

mREVO:

Reference Manual — Volume I

mCLKST1:

mCLKSTO:

mREFST:

mLOLS:

mLOCK:

mLOCS:

mERCS:

mICGIF:

Equate File Conventions

LOLS:

LOCK:

LOOS:

EROS:

ICGIF:

equ

equ

equ

equ

equ

bit position masks

equ %10000000

equ %01000000

equ %00100000

equ %00010000

equ %00001000

equ %00000100

equ %00000010

equ %00000001

;(bit #4) loss of lock status

;(bit #3) FLL lock status

;(bit #2) loss of clock status

;(bit #1) ext ref clk status

;(bit #0) ICG interrupt flag

;clock mode status 1

;clock mode status 0

;reference clock status

;loss of lock status

;FLL lock status

;loss of clock status

;ext ref clk status

;ICG interrupt flag

ICGS2: equ $45 ;ICG status register 2

bit numbers for use in BCLR, BSET, BRCLR, and BRSET

;(bit #0) DCO Clock Stable

;DCO Clock Stable

;ICG filter register (upper 4 bits in bits 3:0)

;ICG filter register (lower 8 bits)

;ICG trim register

(SIM) *** ****** *f

;SIM reset status register

;power-on reset

;external reset pin

;COP watchdog timed out

;illegal opcode

;illegal address access

;low-voltage detect

;system BDM reset register

;BDM force reset

;SIM options register (write once)

;COP watchdog enable

;COP time-out select

;stop enable

;BDM pin enable

;system device identification 1 register (read-only)

;rev3,2,1,0 + 12-bit ID. GB60 ID = $002

;device revision identification (high)

;device revision identification

;device revision identification

;device revision identification (low)

HCS08 — Revision 1

420 Equate File Conventions MOTOROLA

Equate File Conventions
Complete Equate File for MC9S08GB60

;**** Power Management and Control

SRTISC: equ $1808

bit position masks

mRTIF: equ %10000000

mRTIACK: equ %01000000

mRTICLKS: equ %00100000

mRTIE: equ %00010000

mRTIS2: equ %00000100

mRTIS1: equ %00000010

mRTISO: equ %00000001

SPMSCI: equ $1809

bit position masks

mLVDF: equ %l0000000

mLVDACK: equ %01000000

mLVDIE: equ %00100000

mLVDRE: equ %00010000

mLVDSE: equ %00001000

mLVDE: equ %00000100

SPMSC2: equ $180A

bit position

mLVWF:

mLVWACK:

mLVDV:

mLVWV:

mPPDF:

mPPDACK:

mPDC:

mPPDC:

masks

equ

equ

equ

equ

equ

equ

equ

equ

**** Debug Module

DBGCAH: equ

DBGCAL: equ

DBGCBH: equ

DBGCBL: equ

DBGFH: equ

DBGFL: equ

%10000000

%01000000

%00100000

%00010000

%00001000

%00000100

%00000010

%00000001

(DBG)

Module (PMC) ***■***************************************

;System RTI status and control register

;real-time interrupt flag

;real-time interrupt acknowledge

;real-time interrupt clock select

;real-time interrupt enable

;real-time interrupt delay select

;real-time interrupt delay select

;real-time interrupt delay select

(high)

(low)

;System power management status and

;low

;LVD

;LVD

;LVD

;LDV

;LVD

voltage detect flag

interrupt acknowledge

interrupt enable

reset enable (write once bit)

stop enable (write once bit)

enable (write once bit)

control 1 register

;System power management status and control 2 register

;low voltage warning flag

;low voltage warning acknowledge

;low voltage detect voltage select

;low voltage warning voltage select

;partial power down flag

;partial power down acknowledge

;power down control

;partial power down control

**

$1810 ;DBG comparator register A

$1811 ;DBG comparator register A

$1812 ;DBG comparator register B

$1813 ;DBG comparator register B

$1814 ;DBG FIFO register (high)

$1815 ;DBG FIFO register (low)

DBGC: equ $1816

bit position masks

mDBGEN: equ

mARM: equ

mTAG: equ

mBRKEN: equ

mRWA: equ

mRWAEN: equ

mRWB: equ

mRWBEN: equ

DBGT:

%10000000

%01000000

%00100000

%00010000

%00001000

%00000100
%00000010

%00000001

equ $1817

HCS08 — Revision 1

;DBG control register

;debug module enable

;arm control

;tag/force select

;break enable

;R/W compare A value

;R/W compare A enable
;R/W compare B value

;R/W compare B enable

;DBG trigger register

(high)

(low)

(high)

(low)

Reference Manual — Volume I

MOTOROLA Equate File Conventions 421

Equate File Conventions

bit position masks

mTRGSEL: equ %10000000

mBEGIN: equ %01000000

mTRG3: equ %00001000

mTRG2: equ %00000100

mTRG1: equ %00000010

mTRG0: equ %00000001

DBGS: equ $1818

bit position masks

mAF: equ %10000000

mBF: equ %01000000

mARMF:

mCNT3:

mCNT2:

mCNTl:

mCNT0:

equ

equ

equ

equ

equ

%00100000

%00001000

%00000100

°%00000010

%00000001

;trigger on opcode/access

;begin/end trigger

;trigger mode bits

;DBG status register

;trigger A match flag

;trigger B match flag

;arm flag

;count of items in FIFO (high)

;count of items in FIFO (low)

;**** Flash Module (FLASH) •:*********r*r+*****+**** *:+:+*:x*w:::+max+rte++++**+++*+**sa*+++■

FCDIV: equ $1820

bit position masks

mDIVLD: equ

mPRDIV8: equ

mDIV5: equ

mDIV4: equ

mDIV3: equ

mDIV2: equ

mDIVl: equ

mDIV0: equ

%l0000000

%01000000

%00100000

%00010000

%00001000

%00000100

%00000010

%00000001

FOPT: equ $1821

bit position masks

mKEYEN: equ

mFNORED equ

mSEC01: equ

mSEC00: equ

%10000000

%01000000

%00000010

%00000001

FCNFG: equ $1823

bit position masks

mKEYACC: equ %00100000

FPROT: equ $1824

bit position masks

mFPOPEN: equ

mFPDIS: equ

mFPS2: equ

mFPSl: equ

mFPS0: equ

%10000000

%01000000

%00100000

%00010000

%00001000

FSTAT: equ $1825

bit position masks

mFCBEF: equ %10000000

mFCCF: equ %01000000

mFPVIOL: equ %00100000

Reference Manual — Volume I

;Flash clock divider register

;clock divider loaded

;enable prescale by 8

;flash clock divider bits (high)

;flash clock divider bits (low)

;Flash options register

;enable backdoor key to security

;Vector redirection enable

;security state code (high)

;security state code (low)

;Flash configuration register

;enable security key writing

;Flash protection register

;open unprotected flash for program/erase

;flash protection disable

;flash protect size select (high)

;flash protect size select

;flash protect size select (low)

;Flash status register

;flash command buffer empty flag

;flash command complete flag

;flash protection violation

HCS08 — Revision 1

422 Equate File Conventions MOTOROLA

Equate File Conventions
Complete Equate File for MC9S08GB60

mFACCERR: equ %00010000 ;flash access error

mFBLANK: equ &00000100 ;flash verified as all blank (erased =$ff) flag

FCMD: equ $1826

bit position masks

mFCMD7: equ %10000000

mFCMD6: equ %01000000

mFCMD5: equ %00100000

mFCMD4: equ %00010000

mFCMD3: equ %00001000

mFCMD2: equ %00000100

mFCMD1: equ %00000010

mFCMDO: equ %00000001

command codes

mBlank: equ $05

mByteProg: equ $20

mBurstProg: equ $25

mPageErase: equ $40

mMassErase: equ $41

;Flash command register

;Flash command (high)

;Flash command (low)

;Blank Check command

;Byte Program command

;Burst Program command

;Page Erase command

;Mass Erase command

;**** Flash non-volatile register images **

NVBACKKEY: equ $FFBO ;8-byte backdoor comparison key

comparison key in $FFBO through $FFB7

following 2 registers transfered from flash to working regs at reset

NVPROT: equ $FFBD ;NV flash protection byte

NVPROT transfers to FPROT on reset

NVICGTRIM: equ $FFBE ;NV ICG Trim Setting

ICG trim value measured during factory test. User software optionally

copies to ICGTRM during initialization.

NVOPT: equ $FFBF ;NV flash options byte

NVFEOPT transfers to FOPT on reset

.**** END ******r**

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 423

Equate File Conventions

Reference Manual — Volume I HCS08 — Revision 1

424 Equate File Conventions MOTOROLA

1ATX47118-0 Printed in USA 5/03 BANTA CO. MOTON258 2,500 LITCSGI

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 1-480-768-2130

JAPAN:

Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

HOME PAGE:

motorola.com/semiconductors

Information in this document is provided solely to enable system and software

implementers to use Motorola products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products

herein. Motorola makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Motorola assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. ̀ Typical' parameters which may be provided in Motorola data sheets and/

or specifications can and do vary in different applications and actual performance

may vary overtime. All operating parameters, including'Typicals" must be validated

for each customer application by customers technical experts. Motorola does not

convey any license under its patent rights nor the rights of others. Motorola products

are not designed, intended, or authorized for use as components in systems

intended for surgical implant into the body, or other applications intended to support

or sustain life, or for any other application in which the failure of the Motorola product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Motorola products for any such unintended or unauthorized

application, Buyer shall indemnity and hold Motorola and its officers, employees,

subsidiaries, affiliates, and distributors harmless against all claims, costs, damages,

and expenses, and reasonable attorney fees arising out of, directly or indirectly, any

claim of personal injury or death associated with such unintended or unauthorized

use, even if such claim alleges that Motorola was negligent regarding the design or

manufacture of the part.

© MOTOROLA

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
© Motorola, Inc. 2003

HCS08RMv1/D
Rev. 1
6/2003

