
MO6809 - MC6809E
Microprocessor Programming Manual

Manudax your
partner in high

quality

and service

Mafluilax Neilerlaflil h1v.
5473 ZG Heeswijk-Dinther - Holland - P.B. 25- Meerstraat 7- Telefoon 04139-2901 * - Telex 74810

M6809PM (AD)

MC6809-MC6809E
8•BIT MICROPROCESSOR

PROGRAMMING MANUAL

Original Issue: March 1, 1981

s'MOTOROLA INC., 1981

TABLE OF CONTENTS

Paragraph No. Title Page No.

SECTION 1
GENERAL DESCRIPTION

1.1 Introduction 1-1
1.2 Features 1-1
1.3 Software Features 1-2
1.4 Programming Model 1-3
1.5 Index Registers (X, Y) 1-3
1.6 Stack Pointer Registers (U, S) 1-3
1.7 Program Counter (PC) 1-4
1.8 Accumulator Registers (A, B, D) 1-4
1.9 Direct Page Register (DP) 1-4
1.10 Condition Code Register (CC) 1-4
1.10.1 Condition Code Bits 1-5
1.10.1.1 Half Carry (H), Bit 5 1-5
1.10.1.2 Negative (N), Bit 3 1-5
1.10.1.3 Zero (Z), Bit 2 1-5
1.10.1.4 Overflow (V), Bit 1 1-5
1.10.1.5 Carry (C), Bit 0 1-5
1.10.2 Interrupt Mask Bits and Stacking Indicator 1-5
1.10.2.1 Fast Interrupt Request Mask (F), Bit 6 1-5
1.10.2.2 Interrupt Request Mask (I), Bit 4 1-5
1.10.2.3 Entire Flag (E), Bit 7 1-6
1.11 Pin Assignments and Signal Description 1-6
1.11.1 MC6809 Clocks 1-6
1.11.1.1 Oscillator (EXTAL, XTAL) 1-6
1.11.1.2 Enable (E) 1-7
1.11.1.3 Quadrature (Q) 1-7
1.11.2 MC6809E Clocks (E and Q) 1-7
1.11.3 Three State Control (TSC) (MC6809E) 1-7
1.11.4 Last Instruction Cycle (LIC) (MC6809E) 1-7
1.11.5 Address Bus (AO-A15) 1-7
1.11.6 Data Bus (DO-D7) 1-7
1.11.7 Read/Write (R/W) 1-8
1.11.8 Processor State Indicators (BA, BS) 1-8
1.11.8.1 Normal 1-8
1.11.8.2 Interrupt or Reset Acknowledge 1-8
1.11.8.3 Sync Acknowledge 1-8

iii

TABLE OF CONTENTS
(CONTINUED)

Paragraph No. Title Page No.

1.11.8.4 Halt/Bus Grant 1-8
1.11.9 Reset (RESET) 1-9
1.11.10 Interrupts 1-9
1.11.10.1 Non-Maskable Interrupt (NMI) 1-9
1.11.10.2 Fast Interrupt Request (FIRQ) 1-9
1.11.10.3 Interrupt Request (IRQ) 1-9
1.11.11 Memory Ready (MRDY) (MC6809) 1-9
1.11.12 Advanced Valid Memory Address (AVMA) (MC6809E) 1-10
1.11.13 Halt (HALT) 1-10
1.11.14 Direct Memory Access/Bus Request (DMA/BREQ) (MC6809) 1-10
1.11.15 Busy (MC6809E) 1-10
1.11.16 Power 1-11

SECTION 2
ADDRESSING MODES

2.1 Introduction 2-1
2.2 Addressing Modes 2-1
2.2.1 Inherent 2-1
2.2.2 Immediate 2-1
2.2.3 Extended 2-2
2.2.4 Direct 2-2
2.2.5 Indexed 2-2
2.2.5.1 Constant Offset from Register 2-2
2.2.5.2 Accumulator Offset from Register 2-3
2.2.5.3 Autoincrement/Decrement from Register 2-3
2.2.5.4 Indirection 2-4
2.2.5.5 Extended Indirect 2-4
2.2.5.6 Program Counter Relative 2-4
2.2.6 Branch Relative 2-4

SECTION 3
INTERRUPT CAPABILITIES

3.1 Introduction 3-1
3.2 Non-Maskable Interrupt (NMI) 3-1
3.3 Fast Maskable Interrupt Request (FIRQ) 3-2
3.4 Normal Maskable Interrupt Request (IRQ) 3-2
3.5 Software Interrupts (SWI, SWI2, SWI3) 3-2

iv

TABLE OF CONTENTS
(CONCLUDED)

Paragraph No. Title Page No.

SECTION 4
PROGRAMMING

4.1 Introduction 4-1
4.1.1 Position-Independence 4-1
4.1.2 Modular Programming 4-1
4.1.2.1 Local Storage 4-1
4.1.2.2 Global Storage 4-2
4.1.3 Reentrancy/Recursion 4-2
4.2 M6809 Capabilities 4-2
4.2.1 Module Construction 4-2
4.2.1.1 Parameters 4-3
4.2.1.2 Local Storage 4-3
4.2.1.3 Global Storage 4-3
4.2.2 Position-Independent Code 4-4
4.2.3 Reentrant Programs 4-5
4.2.4 Recursive Programs 4-5
4.2.5 Loops 4-5
4.2.6 Stack Programming 4-6
4.2.6.1 M6809 Stacking Operations 4-6
4.2.6.2 Subroutine Linkage 4-7
4.2.6.3 Software Stacks 4-8
4.2.7 Real Time Programming 4-8
4.3 Program Documentation 4-8
4.4 Instruction Set 4-9

APPENDIX A
INSTRUCTION SET DETAILS

A.1 Introduction A-1
A.2 Notation A-1

Instructions (listed in alphabetical order) A-3

APPENDIX B
ASSIST09 MONITOR PROGRAM

B.1 General Description B-1
B.2 Implementation Requirements B-1
B.3 Interrupt Control B-2
B.4 Initialization B-3

TABLE OF CONTENTS
(CONTINUED)

Paragraph No. Title Page No.

B.5 Input/Output Control B-4
B.6 Command Format B-4
B.7 Command List B-5
B.8 Commands B-5

Breakpoint B-6
Call B-6
Display B-7
Encode B-7
Go B-8
Load B-8
Memory B-9
Null B-10
Offset B-10
Punch B-11
Register B-11
Stlevel B-12
Trace B-12
Verify B-13
Window B-13

B.9 Services B-14
BKPT B-15
INCHP B-15
MONITR B-16
OUTCH B-17
OUT2HS B-17
OUT4HS B-18
PAUSE B-18
PCRLF B-19
PDATA B-19
PDATAI B-20
SPACE B-21
VTRSW B-21

6.10 Vector Swap Service B-22
.ACIA B-23
.AVTBL B-23
. BSDTA B-24
BSOFF B-24

.BSON B-25

.CI DTA B-25

.CIOFF B-26

. C I O N B-26

.CMDL1 B-27

.CM DL2 B-28

vi

TABLE OF CONTENTS
(CONTINUED)

Paragraph No. Title Page No.

.CODTA B-28

.COOFF B-29

.COON B-29

.ECHO B-30

. F I RQ B-30

.HSDATA B-31

.I RQ B-31

.NMI B-32

.PAD B-32

.PAUSE B-33

. PTM B-33

.RESET B-34

.RSVD B-34

.SW I B-35

.SWI2 B-35

. S W 13 B-36
B.11 Monitor Listing B-37

C.1

D.1

APPENDIX C
MACHINE CODE TO INSTRUCTION CROSS REFERENCE

Introduction C-1

APPENDIX D
PROGRAMMING AID

Introduction D-1

APPENDIX E
ASCII CHARACTER SET

E.1 Introduction E-1
E.2 Character Representation and Code Identification E-1
E.3 Control Characters E-2
E.4 Graphic Characters E-2

vii

TABLE OF CONTENTS
(CONTINUED)

Paragraph No. Title Page No.

APPENDIX F
OPCODE MAP

F.1 Introduction F-1
F.2 Opcode Map F-1

APPENDIX G
PIN ASSIGNMENTS

G.1 Introduction G-1

APPENDIX H
CONVERSION TABLES

H.1 Introduction H-1
H.2 Powers of 2; Powers of 16 H-1
H.3 Hexadecimal and Decimal Conversion H-2
H.3.1 Converting Hexadecimal to Decimal H-2
H.3.2 Converting Decimal to Hexadecimal H-2

LIST OF ILLUSTRATIONS

Figure No. Title Page No.

1-1 Programming Model 1-3
1-2 Condition Code Register 1-4
1-3 Processor Pin Assignments 1-6

2-1 Postbyte Usage for EXG/TFR, PSH/PUL Instructions 2-2

3-1 Interrupt Processing Flowchart 3-5

4-1 Stacking Order 4-7

B-1 Memory Map B-2

E-1 ASCII Character Set E-1

G-1 Pin Assignments G-1

LIST OF TABLES

Table No. Title Page No.

1-1 BA/BS Signal Encoding 1-8

2-1 Post byte Usage for Indexed Addressing Modes 2-3

3-1 Interrupt Vector Locations 3-1

4-1 Instruction Set 4-9
4-2 8-Bit Accumulator and Memory Instructions 4-11
4-3 16-Bit Accumulator and Memory Instructions 4-12
4-4 Index/Stack Pointer Instructions 4-12
4-5 Branch Instructions 4-13
4-6 Miscellaneous Instructions 4-13

A-1 Operation Notation A-1
A-2 Register Notation A-2

B-1 Command List B-5
B-2 Services B-14
B-3 Vector Table Entries B-22

C-1 Machine Code to Instruction Cross Reference C-2

D-1 Programming Aid D-1

E-1 Control Characters E-2
E-2 Graphic Characters E-3

F-1 Opcode Map F-2
F-2 Indexed Addressing Mode Data F-3

H-1 Powers of 2; Powers of 16 H-1
H-2 Hexadecimal and Decimal Conversion Chart H-2

SECTION 1
GENERAL DESCRIPTION

1.1 INTRODUCTION

This section contains a general description of the Motorola MC6809 and MC6809E
Microprocessor Units (MPU). Pin assignments and a brief description of each input/out-
put signal are also given. The term MPU, processor, or M6809 will be used throughout this
manual to refer to both the MC6809 and MC6809E processors. When a topic relates to
only one of the processors, that specific designator (MC6809 or MC6809E) will be used.

1.2 FEATURES

The MC6809 and MC6809E microprocessors are greatly enhanced, upward compatible,
computationally faster extensions of the MC6800 microprocessor.

Enhancements such as additional registers (a Y index register, a U stack pointer, and a
direct page register) and instructions (such as MUL) simplify software design. Improved
addressing modes have also been implemented.

Upward compatibility is guaranteed as MC6800 assembly language programs may be
assembled using the Motorola MC6809 Macro Assembler. This code, while not as com-
pact as native M6809 code, is, in most cases, 100% functional.

Both address and data are available from the processor earlier in an instruction cycle
than from the MC6800 which simplifies hardware design. Two clock signals, E (the
MC6800 2) and a new quadrature clock Q (which leads E by one-quarter cycle) also
simplify hardware design.

A memory ready (MRDY) input is provided on the MC6809 for working with slow
memories. This input stretches both the processor internal cycle and direct memory ac-
cess bus cycle times but allows internal operations to continue at full speed. A direct
memory access request (DMA/BREQ) input is provided for immediate memory access or
dynamic memory refresh operations; this input halts the internal MC6809 clocks.
Because the processor's registers are dynamic, an internal counter periodically recovers
the bus from direct memory access operations and performs a true processor refresh
cycle to allow unlimited length direct memory access operation. An interrupt
acknowledge signal is available to allow development of vectoring by interrupt device
hardware or detection of operating system calls.

1-1

Three prioritized, vectored, hardware interrupt levels are available: non-maskable, fast,
and normal. The highest and lowest priority interrupts, non-maskable and interrupt re-
quest respectively, are the normal interrupts used in the M6800 family. A new interrupt on
this processor is the fast interrupt request which provides faster service to its interrupt
input by only stacking the program counter and condition code register and then servic-
ing the interrupt.

Modern programming techniques such as position-independent, system independent,
and reentrant programming are readily supported by these processors.

A Memory Management Unit (MMU), the MC6829, allows a M6809 based system to ad-
dress a two megabyte memory space. Note: An arbitrary number of tasks may be sup-
ported — slower — with software.

This advanced family of processors is compatible with all M6800 peripheral parts.

1.3 SOFTWARE FEATURES

Some of the software features of these processors are itemized in the following
paragraphs. Programs developed for the MC6800 can be easily converted for use with the
MC6809 or MC6809E by running the source code through a M6809 Macro Assembler or
any one of the many cross assemblers that are available.

The addressing modes of any microprocessor provide it with the capability to efficiently
address memory to obtain data and instructions. The MC6809 and MC6809E have a ver-
satile set of addressing modes which allow them to function using modern programming
techniques.

The addressing modes and instructions of the MC6809 and MC6809E are upward com-
patible with the MC6800. The old addressing modes have been retained and many new
ones have been added.

A direct page register has been added which allows a 256 byte "direct" page anywhere in
the 64K logical address space. The direct page register is used to hold the most-
significant byte of the address used in direct addressing and decrease the time required
for address calculation.

Branch relative addressing to anywhere in the memory map (— 32768 to + 32767) is
available.

Program counter relative addressing is also available for data access as well as branch
instructions.

The indexed addressing modes have been expanded to include:
0-, 5-, 8-, 16-bit constant offsets,

8- or 16-bit accumulator offsets,

autoincrement/decrement (stack operation).

1.2

In addition, most indexed addressing modes may have an additional level of indirection
added.

Any or all registers may be pushed on to or pulled from either stack with a single instruc-
tion.

A multiply instruction is included which multiplies unsigned binary numbers in ac-
cumulators A and B and places the unsigned result in the 16-bit accumulator D. This un-
signed multiply instruction also allows signed or unsigned multiple precision multiplica-
tion.

1.4 PROGRAMMING MODEL

The programming model (Figure 1-1) for these processors contains five 16-bit and four
8-bit registers that are available to the programmer.

15 0

X — Index Register

Y — Index Register

U — User Stack Pointer

S — Hardware Stack Pointer

PC

A 8

1.5 INDEX REGISTERS (X, Y)

V
D

I 0

DP

7 0

E F H N Z V C

Pointer Registers

Program Counter

Accumulators

Direct Page Register

Condition Code Register

Figure 1.1. Programming Model

The index registers are used during the indexed addressing modes. The address informa-
tion in an index register is used in the calculation of an effective address. This address
may be used to point directly to data or may be modified by an optional constant or
register offset to produce the effective address.

1.6 STACK POINTER REGISTERS (U, S)

Two stack pointer registers are available in these processors. They are: a user stack
pointer register (U) controlled exclusively by the programmer, and a hardware stack
pointer register (S) which is used automatically by the processor during subroutine calls

1-3

and interrupts, but may also be used by the programmer. Both stack pointers always
point to the top of the stack.

These registers have the same indexed addressing mode capabilities as the index
registers, and also support push and pull instructions. All four indexable registers (X, Y,
U, S) are referred to as pointer registers.

1.7 PROGRAM COUNTER (PC)

The program counter register is used by these processors to store the address of the
next instruction to be executed. It may also be used as an index register in certain ad-
dressing modes.

1.8 ACCUMULATOR REGISTERS (A, B, D)

The accumulator registers (A, B) are general-purpose 8-bit registers used for arithmetic
calculations and data manipulation.

Certain instructions concatenate these registers into one 16-bit accumulator with
register A positioned as the most-significant byte. When concatenated, this register is
referred to as accumulator D.

1.9 DIRECT PAGE REGISTER (DP)

This 8-bit register contains the most-significant byte of the address to be used in the
direct addressing mode. The contents of this register are concatenated with the byte
following the direct addressing mode operation code to form the 16-bit effective address.
The direct page register contents appear as bits A15 through A8 of the address. This
register is automatically cleared by a hardware reset to ensure M6800 compatiblity.

1.10 CONDITION CODE REGISTER (CC)

The condition code register contains the condition codes and the interrupt masks as
shown in Figure 1-2.

7 6 5 4 3 2 1 0

Carry

Overflow
Zero
Negative
IRQ Mask
Half Carry
FIRQ Mask
Entire Flag

Figure 1.2. Condition Code Register

1-4

1.10.1 CONDITION CODE BITS. Five bits in the condition code register are used to in-
dicate the results of instructions that manipulate data. They are: half carry (H), negative
(N), zero (Z), overflow (V), and carry (C). The effect each instruction has on these bits is
given in the detail information for each instruction (see Appendix A).

1.10.1.1 Half Carry (H), Bit 5. This bit is used to indicate that a carry was generated from
bit three in the arithmetic logic unit as a result of an 8-bit addition. This bit is undefined in
all subtract-like instructions. The decimal addition adjust (DAA) instruction uses the
state of this bit to perform the adjust operation.

1.10.1.2 Negative (N), Bit 3. This bit contains the value of the most-significant bit of the
result of the previous data operation.

1.10.1.3 Zero (Z), Bit 2. This bit is used to indicate that the result of the previous opera-
tion was zero.

1.10.1.4 Overflow (V), Bit 1. This bit is used to indicate that the previous operation caused
a signed arithmetic overflow.

1.10.1.5 Carry (C), Bit 0. This bit is used to indicate that a carry or a borrow was generated
from bit seven in the arithmetic logic unit as a result of an 8-bit mathematical operation.

1.10.2 INTERRUPT MASK BITS AND STACKING INDICATOR. Two bits (I and F) are used
as mask bits for the interrupt request and the fast interrupt request inputs. When either
or both of these bits are set, their associated input will not be recognized.

One bit (E) is used to indicate how many registers (all, or only the program counter and
condition code) were stacked during the last interrupt.

1.10.2.1 Fast interrupt Request Mask (F), Bit 6. This bit is used to mask (disable) any fast
interrupt request line (FIRQ). This bit is set automatically by a hardware reset or after
recognition of another interrupt. Execution of certain instructions such as SWi will also
inhibit recognition of a FIRQ input.

1.10.2.2 Interrupt Request Mask (I), Bit 4. This bit is used to mask (disable) any interrupt
request input (IRQ). This bit is set automatically by a hardware reset or after recognition
of another interrupt. Execution of certain instructions such as SWI will also inhibit
recognition of an IRQ input.

1-5

1.10.2.3 Entire Flag (E), Bit 7. This bit is used to indicate how many registers were stack-
ed. When set, all the registers were stacked during the last interrupt stacking operation.
When clear, only the program counter and condition code registers were stacked during
the last interrupt.

The state of the E bit in the stacked condition code register is used by the return from in-
terrupt (RTI) instruction to determine the number of registers to be unstacked.

1.11 PIN ASSIGNMENTS AND SIGNAL DESCRIPTION

Figure 1-3 shows the pin assignments for the processors. The following paragraphs pro-
vide a short description of each of the input and output signals.

MC6809 M C6809E

V S L 1 40] HALT VS [1t ~~o] HALT

NMI (2 39] XTAL NM! (2 39) TSC
RQ (3 38] EXTAL J9(3 38] LIC

FIRQ C 4 37 J RESET FIRQ (4 37] RESET
BS C 5 36] MRDY BS(5 36) AVMA

BA(6 35)O BAC6 357 0
VCC(7 34)E VCC[7 34)E

AO C 8 33] DMA i BRED AO C 8 33] BUSY
AlC 9 32)RW AlC 9 32]81W
A2 (10 31] DO A2 C 10 31) DO

A3(it 30)D1 A3C 1 1 30)D1
A4 (12 29 J D2 A4 (12 29] D2

A5 C 13 28) D3 A5 C 13 28] D3

A6 C 14 27] D4 A6 C 14 27)D4
A7 (15 26) D5 A7 (15 26) D5
A8C16 25]O6 A8C16 25)D6
A9C17 24)D7 A9C 17 24]D7

A10C 18 23]A15 A1OC18 23]A15
A11C19 22)A14 A11(19 22]A14
Al2 C 20 21)A13 Al2 C 20 21)A13

Figure 1.3. Processor Pin Assignments

1.11.1 MC6809 CLOCKS. The MC6809 has four pins committed to developing the clock
signals needed for internal and system operation. They are: the oscillator pins EXTAL
and XTAL; the standard M6800 enable (E) clock; and a new, quadrature (Q) clock.

1.11.1.1 Oscillator (EXTAL, XTAL). These pins are used to connect the processor's inter-
nal oscillator to an external, parallel-resonant crystal. These pins can also be used for in-
put of an external TTL timing signal by grounding the XTAL pin and applying the input to
the EXTAL pin. The crystal or the external timing source is four times the resulting bus
frequency.

1-6

1.11.1.2 Enable (E). The E clock is similar to the phase 2 (~2) MC6800 bus timing clock.
The leading edge indicates to memory and peripherals that the data is stable and to
begin write operations. Data movement occurs after the Q clock is high and is latched on
the trailing edge of E. Data is valid from the processor (during a write operation) by the
rising edge of E.

1.11.1.3 Quadrature (Q). The Q clock leads the E clock by approximately one half of the E
clock time. Address information from the processor is valid with the leading edge of the
Q clock. The Q clock is a new signal in these processors and does not have an equivalent
clock within the MC6800 bus timing.

1.11.2 MC6809E CLOCKS (E and O). The MC6809E has two pins provided for the TTL
clock signal inputs required for internal operation. They are the standard M6800 enable
(E) clock and the quadrature (Q) clock. The Q input must lead the E input.

Addresses will be valid from the processor (on address delay time after the falling edge
of E) and data will be latched from the bus by the falling edge of E. The Q input is fully TTL
compatible. The E input is used to drive the internal MOS circuitry directly and therefore
requires input levels above the normal TTL levels.

1.11.3 THREE STATE CONTROLS (TSC) (MC6809E). This input is used to place the ad-
dress and data l ines and the R/W l ine in the high-impedance state and allows the address
bus to be shared with other bus masters.

1.11.4 LAST INSTRUCTION CYCLE (LIC) (MC6809E). This output goes high during the last
cycle of every instruction and its high-to-low transition indicates that the first byte of an
opcode will be latched at the end of the present bus cycle.

1.11.5 ADDRESS BUS (AO-A15). This 16-bit, unidirectional, three-state bus is used by the
processor to provide address information to the address bus. Address information is
valid on the rising edge of the Q clock. All 16 outputs are in the high-impedance state
when the bus available (BA) signal is high, and for one bus cycle thereafter.

When the processor does not require the address bus for a data transfer, it outputs ad-
dress FFFF16, and read/write (RAN) high. This is a "dummy access" of the least-
significant byte of the reset vector which replaces the valid memory address (VMA) func-
tions of the MC6800. For the MC6809, the memory read signal internal circuitry inhibits
stretching of the clocks during non-access cycles.

1.11.6 DATA BUS (DO-D7). This 8-bit, bidirectional, three-state bus is the general purpose
data path. Al l eight outputs are in the high-impedance state when the bus available (BA)
output is high.

1-7

1.11.7 READJWRITE (R/W). This output indicates the direction of data transfer on the data
bus. A low indicates that the processor is writing onto the data bus; a high indicates that
the processor is reading data from the data bus. The signal at the R/W output is valid at
the leading edge of the Q clock. The R/W output is in the high-impedance state when the
bus available (BA) output is high.

1.11.8 PROCESSOR STATE INDICATORS (BA, BS). The processor uses these two output
lines to indicate the present processor state. These pins are valid with the leading edge
of the Q clock.

The bus available (BA) output is used to indicate that the buses (address and data) and
the read/write output are in the high-impedance state. This signal can be used to indicate
to bus-sharing or direct memory access systems that the buses are available. When BA
goes low, an additional dead cycle will elapse before the processor regains control of the
buses.

The bus status (BS) output is used in conjunction with the BA output to indicate the pre-
sent state of the processor. Table 1-1 is a listing of the BA and BS outputs and the pro-
cessor states that they indicate. The following paragraphs briefly explain each processor
state.

Table 1.1. BA/BS Signal Encoding

BA Processor State
0 0 Normal IRunningl
0 1 Interrupt or Reset Acknowledge
1 0 Sync Acknowledge
1 1 Halt/Bus Grant Acknowledged

1.11.8.1 Normal. The processor is running and executing instructions.

1.11.8.2 Interrupt or Reset Acknowledge. This processor state is indicated during both
cycles of a hardware vector fetch which occurs when any of the following interrupts have
occurred: RESET, NMI, FIRQ, IRQ, SWI, SW12, and SWi3.

This output, plus decoding of address lines A3 through Al provides the user with an
indication of which interrupt is being serviced.

1.11.8.3 Sync Acknowledge. The processor is waiting for an external synchronization in-
put on an interrupt line. See SYNC instruction in Appendix A.

1.11.8.4 Halt/Bus Grant. The processor is halted or bus control has been granted to some
other device.

1-8

1.11.9 RESET (RESET). This input is used to reset the processor. A low input lasting
longer than one bus cycle will reset the processor.

The reset vector is fetched from locations $FFFE and $FFFF when the processor enters
the reset acknolwedge state as indicated by the BA output being low and the BS output
being high.

During initial power-on, the reset input should be held low until the clock oscillator is ful-
ly operational.

1.11.10 INTERRUPTS. The processor has three separate interrupt input pins: non-
maskable interrupt (NMI), fast interrupt request (FIRQ), and interrupt request (IRQ). These
interrupt inputs are latched by the falling edge of every Q clock except during cycle steal-
ing operations where only the NMI input is latched. Using this point as a reference, a
delay of at least one bus cycle will occur before the interrupt is recognized by the pro-
cessor.

1.11.10.1 Non-Maskable Interrupt (NMI). A negative edge on this input requests that a
non-maskable interrupt sequence be generated. This input, as the name indicates, can-
not be masked by software and has the highest priority of the three interrupt inputs. After
a reset has occurred, a NMI input will not be recognized by the processor until the first
program load of the hardware stack pointer. The entire machine state is saved on the
hardware stack during the processing of a non-maskable interrupt. This interrupt is inter-
nally blocked after a hardware reset until the stack pointer is initialized.

1.11.10.2 Fast Interrupt Request (RAG). This input is used to initiate a fast interrupt re-
quest sequence. Initiation depends on the F (fast interrupt request mask) bit in the condi-
tion code register being clear. This bit is set during reset. During the interrupt, only the
contents of the condition code register and the program counter are stacked resulting in
a short amount of time required to service this interrupt. This interrupt has a higher priori-
ty than the normal interrupt request (IRQ).

1.11.10.3 Interrupt Request (IRG). This input is used to initiate what might be considered
the "normal" interrupt request sequence. Initiation depends on the I (interrupt mask) bit
in the condition code register being clear. This bit is set during reset. The entire machine
state is saved on the hardware stack during processing of an IRQ input. This input has
the lowest priority of the three hardware interrupts.

1.11.11 MEMORY READ (MRDY) (MC6809). This input allows extension of the E and Q
clocks to allow a longer data access time. A low on this input allows extension of the E
and Q clocks (E high and Q low) in integral multiples of quarter bus cycles (up to 10
cycles) to allow interface with slow memory devices.

1-9

Memory ready does not extend the E and Q clocks during non-valid memory access
cycles and therefore the processor does not slow down for "don't care" bus accesses.
Memory ready may also be used to extend the E and Q clocks when an external device is
using the halt and direct memory access/bus request inputs.

1.11.12 ADVANCED VALID MEMORY ADDRESS (AVMA) (MC6809E). This output signal in-
dicates that the MC6809E will use the bus in the following bus cycle. This output is low
when the MC6809E is in either a halt or sync state.

1.11.13 HALT. This input is used to halt the processor. A low input halts the processor at
the end of the present instruction execution cycle and the processor remains halted in-
definitely without loss of data.

When the processor is halted, the BA output is high to indicate that the buses are in the
high-impedance state and the BS output is also high to indicate that the processor is in
the halt/bus grant state.

During the halt/bus grant state, the processor will not respond to external real-time re-
quests such as FIRQ or IRQ. However, a direct memory access/bus request input will be
accepted. A non-maskable interrupt or a reset input will be latched for processing later.
The E and Q clocks continue to run during the halt/bus grant state.

1.11.14 DIRECT MEMORY ACCESS/BUS REQUEST (DMA/BREQ) (MC8809). This input is
used to suspend program execution and make the buses available for another use such
as a direct memory access or a dynamic memory refresh.

A low level on this input occurring during the Q clock high time suspends instruction ex-
ecution at the end of the current cycle. The processor acknowledges acceptance of this
input by setting the BA and BS outputs high to signify the bus grant state. The requesting
device now has up to 15 bus cycles before the processor retrieves the bus for self-refresh.

Typically, a direct memory access controller will request to use the bus by setting the
DMA/BREQ input low when E goes high. When the processor acknowledges this input by
setting the BA and BS outputs high, that cycle will be a dead cycle used to transfer bus
mastership to the direct memory access controller. False memory access during any
dead cycle should be prevented by externally developing a system DMAVMA signal
which is low in any cycle when the BA output changes.

When the BA output goes low, either as a result of a direct memory access/bus request or
a processor self-refresh, the direct memory access device should be removed from the
bus. Another dead cycle will elapse before the processor accesses memory, to allow
transfer of bus mastership without contention.

1.11.15 BUSY (MC6809E). This output indicates that bus re-arbitration should be deferred
and provides the indivisable memory operation required for a "test-and-set" primitive.

1-10

This output will be high for the first two cycles of any Read-Modify-Write instruction, high
during the first byte of a double-byte access, and high during the first byte of any indirect
access or vector-fetch operation.

1.11.16 POWER. Two inputs are used to supply power to the processor: VCC is +5.0
t 5%, while VSS is ground or 0 volts.

1-1111-12

SECTION 2
ADDRESSING MODES

2.1 INTRODUCTION

This section contains a description of each of the addressing modes available on these
processors.

2.2 ADDRESSING MODES

The addressing modes available on the MC6809 and MC6809E are: Inherent, Immediate,
Extended, Direct, Indexed (with various offsets and autoincrementing/decrementing),
and Branch Relative. Some of these addressing modes require an additional byte after
the opcode to provide additional addressing interpretation. This byte is called a postbyte.

The following paragraphs provide a description of each addressing mode. In these
descriptions the term effective address is used to indicate the address in memory from
which the argument for an instruction is fetched or stored, or from which instruction pro-
cessing is to proceed.

2.2.1 INHERENT. The information necessary to execute the instruction is contained in
the opcode. Some operations specifying only the index registers or the accumulators,
and no other arguments, are also included in this addressing mode.

Example: MUL

2.2.2 IMMEDIATE. The operand is contained in one or two bytes immediately fol lowing
the opcode. This addressing mode is used to provide constant data values that do not
change during program execution. Both 8- bit and 16-bit operands are used depending on
the size of the argument specified in the opcode.

Example: LDA #CR
LDB #7
LDA #$F0
LDB #%1110000
LDX #$8004

Another form of immediate addressing uses a postbyte to determine the registers to be
manipulated. The exchange (EXG) and transfer (TFR) instructions use the postbyte as
shown in Figure 2-1(A). The push and pull instructions use the postbyte to designate the
registers to be pushed or pulled as shown in Figure 2-1(B).

2-1

b7 b6 b5 b4 b3 b2 b1 b0
SOURCE (R1) DESTINATION (R2)

Code'

0000
0001
0010
0011
0100

Register Code'

D A:B)
X Index
Y Index

U Stack Pointer
S Stack Pointer

0101
1000
1001
1010
1011

Register

Program Counter
A Accumulator
B Accumulator
Condition Code

Direct Page

'All other combinations of bits produce undefined results.

(A) Exchange IEXG) or Transfer (TFR) Instruction Postbyte

b7 b6 b5 b4 b3 b2 bl b0

PC S/U Y X DP B A CC

PC
S/U
Y
X
DP
B
A
CC

= Program Counter
= Hardware/User Stack Pointer
= Y Index Register
= U Index Register
= Direct Page Register
= B Accumulator
= A Accumulator
= Condition Code Register

(B) Push (PSH) or Pull (PUL) Instruction Postbyte

Figure 2.1. Postbyte Usage for EXGITFR, PSHIPUL Instructions

2.2.3 EXTENDED. The effective address of the argument is contained in the two bytes
following the opcode. Instructions using the extended addressing mode can reference
arguments anywhere in the 64K addressing space. Extended addressing is generally not
used in position independent programs because it supplies an absolute address.

Example: LDA > CAT

2.2.4 DIRECT. The effective address is developed by concatenation of the contents of the
direct page register with the byte immediately following the opcode. The direct page
register contents are the most-significant byte of the address. This allows accessing 256
locations within any one of 256 pages. Therefore, the entire addressing range is available
for access using a single two-byte instruction.

Example: LDA > CAT

2.2.5 INDEXED. In these addressing modes, one of the pointer registers (X, Y, U, or S), and
sometimes the program counter (PC) is used in the calculation of the effective address of
the instruction operand. The basic types (and their variations) of indexed addressing
available are shown in Table 2-1 along with the postbyte configuration used.

2.2.5.1 Constant Offset from Register. The contents of the register designated in the
postbyte are added to a twos complement offset value to form the effective address of

2-2

the instruction operand. The contents of the designated register are not affected by this
addition. The offset sizes available are:

No
offset — designated register contains the effective

address

5-bit — 16 to +15

8-bit — 128 to +127

16-bit — 32768 to +32767

Table 2.1. Postbyte Usage for Indexed Addressing Modes

Mode Type Variation Direct Indirect
Constant Offset from Register

(twos Complement Offset)
No Offset
5-Bit Offset
8-Bit Offset
16-Bit Offset

1RR00100
0RRnnnnn
1RR01100
1RR01001

1RR10100
Defaults to 8-bit
1RR11000
1RR11001

Accumulator Offset from Register
(twos Complement Offset)

A Accumulator Offset
B Accumulator Offset
D Accumulator Offset

1RR00110
1RR00101
1RR01011

1RR10110
1RR10101
1RR11011

Auto Increment/Decrement from
Register

Increment by 1
Increment by 2
Decrement by 1
Decrement by 2

1RR00000
1RR00001
1RR00010
1 R R00011

Not Allowed
1RR10001
Not Allowed
1 R R 10011

Constant Offset from Program
Counter

8-Bit Offset
16-Bit Offset

1XX01100
1XX01101

1XX11100
1XX11101

Extended Indirect 16-Bit Address 10011111

The 5-bit offset value is contained in the postbyte. The 8- and 16-bit offset values are con-
tained in the byte or bytes immediately following the postbyte. If the Motorola assembler
is used, it will automatically determine the most efficient offset; thus, the programmer
need not be concerned about the offset size.

Examples: LDA ,X LDY —64000,U
LDB 0,Y LDA 17,PC
LOX 64,000,S LDA There,PCR

2.2.5.2 Accumulator Offset from Register. The contents of the index or pointer register
designed in the postbyte are temporarily added to the twos complement offset value con-
tained in an accumulator (A, B, or D) also designated in the postbyte. Neither the
designated register nor the accumulator contents are affected by this addition.

Example: LDA A,X LDA D,U
LDA B,Y

2.2.5.3 Autoincrement/Decrement from Register. This addressing mode works in a
postincrementing or predecrementing manner. The amount of increment or decrement,
one or two positions, is designated in the postbyte.

2-3

in the autoincrement mode, the contents of the effective address contained in the
pointer register, designated in the postbyte, and then the pointer register is automatical-
ly incremented; thus, the pointer register is postincremented.

In the autodecrement mode, the pointer register, designated in the postbyte, is
automatically decremented first and then the contents of the new address are used;
thus, the pointer register is predecremented.

Examples: Autoincrement Autodecrement
LDA ,X+ LDY ,X+ + LDA , — X LDY , — —X
LDA ,Y+ LDX ,Y+ + LDA , — Y LDX , — —Y
LDA ,S+ LDX ,U++ LDA , — S LDX ,--U
LDA ,U+ LDX ,S++ LDA , — U LDX ,---S

2.2.5.4 Indirection. When using indirection, the effective address of the base indexed ad-
dressing mode is used to fetch two bytes which contain the final effective address of the
operand. It can be used with all the indexed addressing modes and the program counter
relative addressing mode.

2.2.5.5 Extended Indirect. The effective address of the argument is located at the ad-
dress specified by the two bytes following the postbyte. The postbyte is used to indicate
indirection.

Example: LDA [$F000]

2.2.5.6 Program Counter Relative. The program counter can also be used as a pointer
with either an 8-or 16-bit signed constant offset. The offset value is added to the program
counter to develop an effective address. Part of the postbyte is used to indicate whether
the offset is 8 or 16 bits.

2.2.6 BRANCH RELATIVE. This addressing mode is used when branches from the current
instruction location to some other location relative to the current program counter are
desired. If the test condition of the branch instruction is true, then the effective address
is calculated (program counter plus twos complement offset) and the branch is taken. If
the test condition is false, the processor proceeds to the next in-line instruction. Note
that the program counter is always pointing to the next instruction when the offset is ad-
ded. Branch relative addressing is always used in position independent programs for all
control transfers.

For short branches, the byte following the branch instruction opcode is treated as an
8-bit signed offset to be used to calculate the effective address of the next instruction if
the branch is taken. This is called a short relative branch and the range is limited to plus
127 or minus 128 bytes from the following opcode.

For long branches, the two bytes after the opcode are used to calculate the effective ad-
dress. This is called a long relative branch and the range is plus 32,767 or minus 32,768

2-4

bytes from the following opcode or the full 64K address space of memory that the pro-
cessor can address at one time.

Examples: Short Branch Long Branch
BRA POLE LBRA CAT

2-5/2-6
i

SECTION 3
INTERRUPT CAPABILITIES

3.1 INTRODUCTION

The MC6809 and MC6809E microprocessors have six vectored interrupts (three hardware
and three software). The hardware interrupts are the non-maskable interrupt (NMI), the
fast maskable interrupt request (FIRQ), and the normal maskable interrupt request (IRQ).
The software interrupts consist of SWI, SW12, and SWI3. When an interrupt request is
acknowledged, all the processor registers are pushed onto the hardware stack, except in
the case of FIRQ where only the program counter and the condition code register is sav-
ed, and control is transferred to the address in the interrupt vector. The priority of these
interrupts is, highest to lowest, NMI, SWI, FIRQ, IRO, SWi2, and SWI3. Figure 3-1 is a
detailed flowchart of interrupt processing in these processors. The interrupt vector loca-
tions are given in Table 3-1. The vector locations contain the address for the interrupt
routine.

Additional information on the SWI, SW12, and SWI3 interrupts is given in Appendix A. The
hardware interrupts, NMI, FIRQ, and IRO are listed alphabetically at the end of Appendix
A.

Table 3.1. Interrupt Vector Locations

Interrupt
Description

Vector Location
MS Byte LS Byte

Reset (RESET) FFFE FFFF

Non-Maskable Interrupt (NM)) FFFC FFFD

Software Interrupt (SWI) FFFA FFFB

Interrupt Request ((RO) FFF8 FFFR
Fast Interrupt Request)FIRQ) FFF6 FFF7
Software Interrupt 2)SWI21 FFF4 FFF5
Software Interrupt 3 ISW13) FFF2 FFF3

Reserved FFFO FFF1

3.2 NON-MASKABLE INTERRUPT (NMI)

The non-maskable interrupt is edge-sensitive in the sense that if it is sampled low one cy-
cle after it has been sampled high, a non-maskable interrupt will be triggered. Because
the non-maskable interrupt cannot be masked by execution of the non-maskable inter-
rupt handler routine, it is possible to accept another non-maskable interrupt before ex-
ecuting the first instruction of the interrupt routine. A fatal error will exist if a non-
maskable interrupt is repeatedly allowed to occur before completing the return from in-
terrupt (RTI) instruction of the previous non-maskable interrupt request, since the stack

3-1

will eventually overflow. This interrupt is especially applicable to gaining immediate pro-
cessor response for powerfail, software dynamic memory refresh, or other non-delayable
events.

3.3 FAST MASKABLE INTERRUPT REQUEST (FIRQ)

A low level on the FIRQ input with the F (fast interrupt request mask) bit in the condition
code register clear triggers this interrupt sequence. The fast interrupt request provides
fast interrupt response by stacking only the program counter and condition code
register. This allows fast context switching with minimal overhead. If any registers are
used by the interrupt routine then they can be saved by a single push instruction.

After accepting a fast interrupt request, the processor clears the E flag, saves the pro-
gram counter and condition code register, and then sets both the I and F bits to mask any
further IRQ and FIRQ interrupts. After servicing the original interrupt, the user may selec-
tively clear the I and F bits to allow multiple-level interrupts if so desired.

3.4 NORMAL MASKABLE INTERRUPT REQUEST (IRQ)

A low level on the IRQ input with the I (interrupt request mask) bit in the condition code
register clear triggers this interrupt sequence. The normal maskable interrupt request
provides a slower hardware response to interrupts because it causes the entire machine
state to be stacked. However, this means that interrupting software routines can use all
processor resources without fear of damaging the interrupted routine. A normal interrupt
request, having lower priority than the fast interrupt request, is prevented from interrup-
ting the fast interrupt handler by the automatic setting of the I bit by the fast interrupt re-
quest handler.

After accepting a normal interrupt request, the processor sets the E flag, saves the entire
machine state, and then sets the I bit to mask any further interrupt request inputs. After
servicing the original interrupt, the user may clear the I bit to allow multiple-level normal
interrupts.

All interrupt handling routines should return to the formerly executing tasks using a
return from interrupt (RTI) instruction. This instruction recovers the saved machine state
from the hardware stack and control is returned to the interrupted program. If the
recovered E bit is clear, it indicates that a fast interrupt request occurred and only the
program counter address and condition code register are to be recovered.

3.5 SOFTWARE INTERRUPTS (SWI, SWI2, SWI3)

The software interrupts cause the processor to go through the normal interrupt request
sequence of stacking the complete machine state even though the interrupting source is
the processor itself. These interrupts are commonly used for program debugging and for
calls to an operating system.

3-2

Normal processing of the SWI input sets the I and F bits to prevent either of these inter-
rupt requests from affecting the completion of a software interrupt request. The remain-
ing software interrupt request inputs (SWI2 and SWI3) do not have the priority of the SWI
input and therefore do not mask the two hardware interrupt request inputs (FIRQ and
I RQ).

3-3

I
I
I
I
I

~I
I
I
I
I
C

L

n
O=

I9 JI

I
I

I
I
I

U)
m O

Q
m 0 O

a

c

Q

a
V

0

Q

C

an

a

0
Y

Q

2

y
po
in
t

in
 t
he
 h
o
w
c
h
a
n

W
r
0
Z

In
te

rr
u

p
t

P
ro

ce
ss

in
g
 F

lo
w

ch
a

rt

3-4

SECTION 4
PROGRAMMING

4.1 INTRODUCTION

These processors are designed to be source-code compatible with the M6800 to make
use of the substantial existing base of M6800 software and training. However, this asset
should not overshadow the capabilities built into these processors that allow more
modern programming techniques such as position-independence, modular programm-
ing, and reentrancy/recursion to be used on a microprocessor-based system. A brief
review of these methods is given in the following paragraphs.

4.1.1 POSITION INDEPENDENCE. A program is said to be "position-independent" if it
will run correctly when the same machine code is positioned arbitrarily in memory. Such
a program is useful in many different hardware configurations, and might be copied from
a disk into RAM when the operating system first sees a request to use a system utility.
Position-independent programs never use absolute (extended or direct) addressing: in-
stead, inherent immediate, register, indexed and relative modes are used. In particular,
there should be no jump (absolute) or jump to subroutine instructions nor should ab-
solute addresses be used. A position-independent program is almost always preferable
to a position-dependent program (although position-independent code is usually 5 to
10% slower than normal code).

4.1.2 MODULAR PROGRAMMING. Modular programming is another indication of quality
code. A module is a program element which can be easily disconnected from the rest of
the program either for re-use in a new environment or for replacement. A module is usual-
ly a subroutine (although a subroutine is not necessarily a module); frequently, the pro-
grammer isolates register changes internal to the module by pushing these registers
onto the stack upon entry, and pulling them off the stack before the return. Isolating
register changes in the called module, to that module alone, allows the code in the call-
ing program to be more easily analyzed since it can be assumed that all registers (except
those specifically used for parameter transfer are unchanged by each called module.
This leaves the processor's registers free at each level for loop counts, address com-
parisons, etc.

4.1.2.1 Local Storage. A clean method for allocating "local" storage is required both by
position-independent programs as well as modular programs. Local or temporary storage
is used to hold values only during execution of a module (or called modules) and is releas-
ed upon return. One way to allocate local storage is to decrement the hardware stack

4-1

pointer(s) by the number of bytes needed. Interrupts will then leave this area intact and it
can be de-allocated on exiting the module. A module will almost always need more tem-
porary storage than just the MPU registers.

4.1.2.2 Global Storage. Even in a modular environment there may be a need for "global"
values which are accessible by many modules within a given system. These provide a
convenient means for storing values from one invocation to another invocation of the
same routine. Global storage may be created as local storage at some level, and a
pointer register (usually U) used to point at this area. This register is passed unchanged
in all subroutines, and may be used to index into the global area.

4.1.3 REENTRANCYIRECURSION. Many programs will eventually involve execution in an
interrupt-driven environment. If the interrupt handlers are complex, they might well call
the same routine which has just been interrupted. Therefore, to protect present programs
against certain obsolescence, all programs should be written to be reentrant. A reentrant
routine allocates different local variable storage upon each entry. Thus, a later entry
does not destroy the processing associated with an earlier entry.

The same technique which was implemented to allow reentrancy also allows recursion.
A recursive routine is defined as a routine that calls itself. A recursive routine might be
written to simplify the solution of certain types of problems, especially those which have
a data structure whose elements may themselves be a structure. For example, a paren-
thetical equation represents a case where the expression in parenthesis may be con-
sidered to be a value which is operated on by the rest of the equation. A programmer
might choose to write an expression evaluator passing the parenthetical expression
(which might also contain parenthetical expressions) in the call, and receive back the
returned value of the expression within the parenthesis.

4.2 M6809 CAPABILITIES

The following paragraphs briefly explain how the MC6809 is used with the programming
techniques mentioned earlier.

4.2.1 MODULE CONSTRUCTION. A module can be defined as a logically self-contained
and discrete part of a larger program. A properly constructed module accepts well defin-
ed inputs, carries out a set of processing actions, and produces a specified output. The
use of parameters, local storage, and global storage by a program module is given in the
following paragraphs. Since registers will be used inside the module (essentially a form
of local storage), the first thing that is usually done at entry to a module is to push (save)
them on to the stack. This can be done with one instruction (e.g., PSHS Y, X, B, A). After
the body of the module is executed, the saved registers are collected, and a subroutine
return is performed, at one time, by pulling the program counter from the stack (e.g.,
PULS A,B,X,Y,PC).

4-2

4.2.1.1 Parameters. Parameters may be passed to or from modules either in registers, if
they will provide sufficient storage for parameter passage, or on the stack, If parameters
are passed on the stack, they are placed there before calling the lower level module. The
called module is then written to use local storage inside the stack as needed (e.g., ADDA
offset,S). Notice that the required offset consists of the number of bytes pushed (upon
entry), plus two from the stacked return address, plus the data offset at the time of the
call. This value may be calculated, by hand, by drawing a "stack picture" diagram
representing module entry, and assigning convenient mnemonics to these offsets with
the assembler. Returned parameters replace those sent to the routine. If more
parameters are to be returned on the stack than would normally be sent, space for their
return is allocated by the calling routine before the actual call (if four additional bytes are
to be returned, the caller would execute LEAS —4,S to acquire the additional storage).

4.2.1.2 Local Storage. Local storage space Is acquired from the stack while the present
routine is executing and then returned to the stack prior to exit. The act of pushing
registers which will be used in later calculations essentially saves those registers in tem-
porary local storage. Additional local storage can easily be acquired from the stack e.g.,
executing LEAS - 2048,S acquires a buffer area running from the 0,S to 2047,S inclusive.
Any byte in this area may be accessed directly by any instruction which has an indexed
addresing mode. At the end of the routine, the area acquired for local storage is released
(e.g., LEAS 2048,S) prior to the final pull. For cleaner programs, local storage should be
allocated at entry to the module and released at the exit of the module.

4.2.1.3 Global Storage. The area required for global storage is also most effectively ac-
quired from the stack, probably by the highest level routine In the standard package.
Although this is local storage to the highest level routine, it becomes "global" by posi-
tioning a register to point at this storage, (sometimes referred to as a stack mark) then
establishing the convention that all modules pass that same pointer value when calling
lower level modules. In practice, it is convenient to leave this stack mark register un-
changed in all modules, especially if global accesses are common. The highest level
routine in the standard package would execute the following sequence upon entry (to in-
itialize the global area):

PSHS U higher level mark, if any

TFR S,U new stack mark

LEAS —17,U allocate global storage

Note that the U register now defines 17-bytes of locally allocated (permanent) giobals
(which are —1,U through —17,U) as well as other external globais (2,U and above) which
have been passed on the stack by the routine which called the standard package. Any
global may be accessed by any module using exactly the same offset value at any level
(e.g., ROL, RAT,U; where RAT EQU — 11 has been defined). Furthermore, the values stack-
ed prior to invoking the standard package may include pointers to data or I/O peripherals.
Any indexed operation may be performed indexed indirect through those pointers, which
means, for example, that the module need know nothing about the actual hardware con-
figuration, except that (upon entry) the pointer to an i/O register has been placed at a
given location on the stack.

4-3

4.2.2 POSITION-INDEPENDENT CODE. Position-independent code means that the same
machine language code can be placed anywhere in memory and still function correctly.
The M6809 has a long relative (16-bit offset) branch mode along with the common
MC6800 branches, plus program-counter relative addressing. Program-counter relative
addressing uses the program counter like an indexable register, which allows all instruc-
tions that reference memory to also reference data relative to the program counter. The
M6809 also has load effective address (LEA) instructions which allow the user to point to
data in a ROM in a position-independent manner.

An important rule for generating position-independent code is: NEVER USE ABSOLUTE
ADDRESSING.

Program-counter relative addressing on the M6809 is a form of indexed addressing that
uses the program counter as the base register for a constant-offset indexing operation.
However, the M6809 assembler treats the PCR address field differently from that used in
other indexed instructions. In PCR addressing, the assembly time location value is sub-
tracted from the (constant) value of the PCR offset. The resulting distance to the desired
symbol is the value placed into the machine language object code. During execution, the
processor adds the value of the run time PC to the distance to get a position-independent
absolute address.

The PCR indexed addressing form can be used to point at any location relative to the pro-
gram regardless of position in memory. The PCR form of indexed addressing allows ac-
cess to tables within the program space in a position-independent manner via use of the
load effective address instruction.

In a program which is completely position-independent, some absolute locations are
usually required, particularly for I/O. If the locations of I/O devices are placed on the
stack (as globals) by a small setup routine before the standard package is invoked, all in-
ternal modules can do their I/O through that pointer (e.g., STA [ACIAD, U]), allowing the
hardware to be easily changed, if desired. Only the single, small, and obvious setup
routine need be rewritten for each different hardware configuration.

Global, permanent, and temporary values need to be easily available in a position-
independent manner. Use the stack for this data since the stacked data is directly ac-
cessible. Stack the absolute address of I/O devices before calling any standard software
package since the package can use the stacked addresses for I/O in any system.

The LEA instructions allow access to tables, data, or immediate values in the text of the
program in a position-independent manner as shown in the following example:

LEAX MSGI,PCR
LBSR PDATA

MSG1 FCC

4-4

/PRINT THIS!/

Here we wish to point at a message to be printed from the body of the program. By
writing "MSG1, PCR" we signal the assembler to compute the distance between the pre-
sent address (the address of the LBSR) and MSG1. This result is inserted as a constant
into the LEA instruction which wil l be indexed from the program counter value at the time
of execution. Now, no matter where the code is located, when it is executed the com-
puter offset from the program counter will point at MSG1. This code is position-
independent.

It is common to use space in the hardware stack for temporary storage. Space is made
for temporary variables from 0,S through TEMP-1, S by decrementing the stack pointer
equal to the length of required storage. We could use:

LEAS -TEMP,S.

Not only does this facilitate position-independent code but it is structured and helps
reentrancy and recursion.

4.2.3 REENTRANT PROGRAMS. A program that can be executed by several different
users sharing the same copy of it in memory is called reentrant. This is important for in-
terrupt driven systems. This method saves considerable memory space, especially with
large interrupt routines. Stacks are required for reentrant programs, and the M6809 can
support up to four stacks by using the X and Y index registers as stack pointers.

Stacks are simple and convenient mechanisms for generating reentrant programs.
Subroutines which use stacks for passing parameters and results can be easily made to
be reentrant. Stack accesses use the indexed addressing mode for fast, efficient execu-
tion. Stack addressing is quick.

Pure code, or code that is not self -modifying, is mandatory to produce reentrant code. No
internal information within the code is subject to modification. Reentrant code never has
internal temporary storage, is simpler to debug, can be placed in ROM, and must be inter-
ruptable.

4.2.4 RECURSIVE PROGRAMS. A recursive program is one that can call itself. They are
quite convenient for parsing mechanisms and certain arithmetic functions such as com-
puting factorials. As with reentrant programming, stacks are very useful for this techni-
que.

4.2.5 LOOPS. The usual structured loops (i.e., REPEAT...UNTIL, WHILE...DO, FOR..., etc.)
are available in assembly language in exactly the same way a high-level language com-
piler could translate the construct for execution on the target machine. Using a
FOR...NEXT loop as an example, it is possible to push the loop count, increment value,
and termination value on the stack as variables local to that loop. On each pass through
the loop, the working register is saved, the loop count picked up, the increment added in,
and the result compared to the termination value. Based on this comparison, the loop
counter might be updated, the working register recovered and the loop resumed, or the
working register recovered and the loop variables de-allocated. Reasonable macros

4-5

could make the source form for loop trivial, even in assembly language. Such macros
might reduce errors resulting from the use of multiple instructions simply to implement a
standard control structure.

4.2.6 STACK PROGRAMMING. Many microprocessor applications require data stored as
continguous pieces of information in memory. The data may be temporary, that is, sub-
ject to change or it may be permanent. Temporary data will most likely be stored in RAM.
Permanent data will most likely be stored in ROM.

It is important to allow the main program as well as subroutines access to this block of
data, especially if arguments are to be passed from the main program to the subroutines
and vice versa.

4.2.6.1 M6809 Stacking Operations. Stack pointers are markers which point to the stack
and its internal contents. Although all four index registers may be used as stack
registers, the S (hardware stack pointer) and the U (user stack pointer) are generally
preferred because the push and pull instructions apply to these registers. Both are 16-bit
indexable registers. The processor uses the S register automatically during interrupts
and subroutine calls. The U register is free for any purpose needed. It is not affected by
interrupts or subroutine calls implemented by the hardware.

Either stack pointer can be specified as the base address in indexed addressing. One use
of the indirect addressing mode uses stack pointers to allow addresses of data to be
passed to a subroutine on a stack as arguments to a subroutine. The subroutine can now
reference the data with one instruction. High-level language calls that pass arguments
by reference are now more efficiently coded. Also, each stack push or pull operation in a
program uses a postbyte which specifies any register or set of registers to be pushed or
pulled from either stack. With this option, the overhead associated with subroutine calls
in both assembly and high-level language programs is greatly decreased. In fact, with the
large number of instructions that use autoincrement and autodecrement, the M6809 can
emulate a true stack computer architecture.

Using the S or U stack pointer, the order in which the registers are pushed or pulled is
shown in Figure 4-1. Notice that we push "onto" the stack towards decreasing memory
locations. The program counter is pushed first. Then the stack pointer is decremented
and the "other" stack pointer is pushed onto the stack. Decrementing and storing con-
tinues until all the registers requested by the postbyte are pushed onto the stack. The
stack pointer points to the top of the stack after the push operation.

The stacking order is specified by the processor. The stacking order is identical to the
order used for all hardware and software interrupts. The same order is used even If a
subset of the registers is pushed.

Without stacks, most modern block-structured high-level languages would be cumber-
some to implement. Subroutine linkage is very important in high-level language genera-
tion. Paragraph 4.2.6.2 describes how to use a stack mark pointer for this important task.

4-6

Good programming practice dictates the use of the hardware stack for temporary
storage. To reserve space, decrement the stack pointer by the amount of storage re-
quired with the instruction LEAS -TEMPS, S. This instruction makes space for tem-
porary variables from O,S through TEMPS -1,S.

Memory

A

1

Stack Pointer
After Stacking

Stack Pointer
Before Stacking

-i

FFFF

CC

A

B

DP

X.H

XL

Y.H

Y.L

U.H or S.H

U.L or S.L.

PC.H

~ PC.L
—

Condition Code Register Contents

A Accumulator Contents

B Accumulator Contents

Direct Page Register Contents

X Contents

Y Contents

Other Stack Pointer Contents

Program Counter Contents

Figure 4.1. Stacking Order

4.2.6.2 Subroutine Linkage. In the highest level routine, global variables are sometimes
considered to be local. Therefore, global storage is allocated at this point, but access to
these same variables requires different offset values depending on subroutine depth.
Because subroutine depth changes dynamically, the length may not be known
beforehand. This problem is solved by assigning one pointer (U will be used in the follow-
ing description, but X or Y could also be used) to "mark" a location on the hardware stack
by using the instruction TFR S,U. If the programmer does this immediately prior to
allocating global storage, then all variables will then be available at a constant negative
offset location from this stack mark. If the stack is marked after the global variables are

4.7

allocated, then the global variables are available at a constant positive offset from U.
Register U is then called the stack mark pointer. Recall that the hardware stack pointer
may be modified by hardware interrupts. For this reason, it is fatal to use data referred to
by a negative offset with respect to the hardware stack pointer, S.

4.2.6.3 Software Stacks. If more than two stacks are needed, autoincrement and
autodecrement mode of addressing can be used to generate additional software stack
pointers.

The X, Y, and U index registers are quite useful in loops for incrementing and decremen-
ting purposes. The pointer is used for searching tables and also to move data from one
area of memory to another (block moves). This autoincrement and autodecrement
feature is available in the indexed addressing mode of the M6809 to facilitate such opera-
tions.

In autoincrement, the value contained in the index register (X or Y, U or S) is used as the
effective address and then the register is incremented (postincremented). In autodecre-
ment, the index register is first decremented and then used to obtain the effective ad-
dress (predecremented). Postincrement or predecrement is always performed in this ad-
dressing mode. This is equivalent in operation to the push and pull from a stack. This
equivalence allows the X and Y index registers to be used as software stack pointers. The
indexed addressing mode can also implement an extra level of post indirection. This
feature supports parameter and pointer operations.

4.2.7 REAL TIME PROGRAMMING. Real time programming requires special care.
Sometimes a peripheral or task demands an immediate response from the processor,
other times it can wait. Most real time applications are demanding in terms of processor
response.

A common solution is to use the interrupt capability of the processor in solving real time
problems. Interrupts mean just that; they request a break in the current sequence of
events to solve an asynchronous service request. The system designer must consider all
variations of the conditions to be encountered by the system including software interac-
tion with interrupts. As a result, problems due to software design are more common in in-
terrupt implementation code for real time programming than most other situations. Soft-
ware timeouts, hardware interrupts, and program control interrupts are typically used in
solving real time programming problems.

4.3 PROGRAM DOCUMENTATION

Common sense dictates that a well documented program is mandatory. Comments are
needed to explain each group of instructions since their use is not always obvious from
looking at the code. Program boundaries and branch instructions need full clarification.
Consider the following points when writing comments: up-to-date, accuracy, com-
pleteness, conciseness, and understandability.

4-8

Accurate documentation enables you and others to maintain and adapt programs for up-
dating and/or additional use with other programs.

The following program documentation standards are suggested.

A) Each subroutine should have an associated header block containing at least the
following elements:

1) A full specification for this subroutine — including associated data struc-
tures — such that replacement code could be generated from this description
alone.

2) All usage of memory resources must be defined, including:
a) All RAM needed from temorary (local) storage used during execution of

this subroutine or called subroutines.
b) All RAM needed for permanent storage (used to transfer values from one

execution of the subroutine to future executions).
c) All RAM accessed as global storage (used to transfer values from or to

higher-level subroutines).
d) All possible exit-state conditions, if these are to be used by calling

routines to test occurrences internal to the subroutine.
B) Code internal to each subroutine should have sufficient associated line com-

ments to help in understanding the code.
C) All code must be non-self -modifying and position-independent.
D) Each subroutine which includes a loop must be separately documented by a

flowchart or pseudo high-level language algorithm.
E) Any module or subroutine should be executable starting at the first location and

exit at the last location.

4.4 INSTRUCTION SET

The complete instruction set for the M6809 is given in Table 4-1.

Table 4.1. Instruction Set

Instruction Description
ABX Add Accumulator B into Index Register X

ADC Add with Carry into Register

ADD Add Memory into Register

AND Logical AND Memory into Register

ASL Arithmetic Shift Left

ASR Arithmetic Shift Right

BCC Branch on Carry Clear

BCS Branch on Carry Set
BEQ Branch on Equal

BGE Branch on Greater Than or Equal to Zero
BGT Branch on Greater

BHI Branch if Higher

BHS Branch if Higher or Same

BIT Bit Test
BLE Branch if Less than or Equal to Zero

4-9

Table 4.1. Instruction Set (Continued)

Instruction Description

BLO Branch on Lower

BLS Branch on Lower or Same
BLT Branch on Less than Zero
BMI Branch on Minus
BNE Branch Not Equal
BPL Branch on Plus
BRA Branch Always

BRN Branch Never

BSR Branch to Subroutine

BVC Branch on Overflow Clear

BVS Branch on Overflow Set
CLR Clear
CMP Compare Memory from a Register
COM Complement
CWAI Clear CC bits and Wait for Interrupt
DAA Decimal Addition Adjust

DEC Decrement
FOR Exclusive OR

EXG Exchange Registers
INC Increment
JMP Jump
JSR Jump to Subroutine
LD Load Register from Memory
LEA Load Effective Address
LSL Logical Shift Left
LSR Logical Shift Right
MUL Multiply

NEG Negate
NOP No Operation
OR Inclusive OR Memory into Register
PSN Push Registers
PUL Pull Registers
ROL Rotate Left
ROR Rotate Right
RTI Return from Interrupt
RTS Return from Subroutine

SBC Subtract with Borrow

SEX Sign Extend
ST Store Register into Memory

SUB Subtract Memory from Register
SWI Software Interrupt
SYNC Synchronize to External Event
TFR Transfer Register to Register
TST Test

4-10

The instruction set can be functionally divided into five categories. They are:
8-Bit Accumulator and Memory Instructions

16-Bit Accumulator and Memory Instructions

Index Register/Stack Pointer Instructions

Branch Instructions

Miscellaneous Instructions

Tables 4-2 through 4-6 are listings of the M6809 instructions and their variations grouped
into the five categories listed.

Table 4.2. 8-Bit Accumulator and Memory Instructions

Instruction Description

ADCA, ADCB Add memory to accumulator with carry

ADDA, ADDB Add memory to accumulator
ANDA, ANDB And memory with accumulator

ASL, ASLA, ASLB Arithmetic shift of accumulator or memory left
ASR, ASRA, ASRB Arithmetic shift of accumulator or memory right
BITA, BITB Bit test memory with accumulator
CLR, CLRA, CLRB Clear accumulator or memory location

CMPA, CMPB Compare memory from accumulator

COM, COMA, COMB Complement accumulator or memory location

DAA Decimal adjust A accumulator

DEC, DECA, DECB Decrement accumulator or memory location

EORA, EORB Exclusive or memory with accumulator

EXG R1, R2 Exchange Rt with R2IR1, R2=A, 8, CC, DPI

INC, INCA, INCB Increment accumulator or memory location
LDA, LDB Load accumulator from memory
LSL, LSLA, LSLB Logical shift left accumulator or memory location

LSR, LSRA, LSRB Logical shift right accumulator or memory location

MUL Unsigned multiply IAx B —D1

NEG, NEGA, NEGB Negate accumulator or memory

ORA, ORB Or memory with accumulator

ROL, BOLA, ROLB Rotate accumulator or memory left

ROR, RORA, RORB Rotate accumulator or memory right
SBCA, SBCB Subtract memory from accumulator with borrow
STA, STB Store accumulator to memroy
SUBA, SUBB Subtract memory from accumulator

TST, TSTA, TSTB Test accumulator or memory location

TFR R1, R2 Transfer Al to R2 (Rt, R2=A, B, CC, DPI

NOTE A, B, CC, or DP may be pushed to (pulled from) either stack with PSHS, PSHU
(PULS, PULU) instructions.

4-11

Table 4-3. 16-Bit Accumulator and Memory Instructions

Instruction Description

ADDD Add memory to D accumulator

CMPD Compare memory from D accumulator

EXG D, R Exchange D with X, Y, S, U, or PC

LDD Load D accumulator from memory

SEX Sign Extend B accumulator into A accumulator

STD Store D accumulator to memory

SUBD Subtract memory from D accumulator

TFR D, R Transfer D to X, Y, S, U, or PC

TFR R, D Transfer X, Y, S. U, or PC to D

NOTE: D may be pushed Ipulledl to either stack with PSHS, PSHU IPULS, PULUI
instructions.

Table 4.4. IndexIStack Pointer Instructions

Instruction Description

CMPS, CMPU Compare memory from stack pointer

CMPX, CMPY Compare memory from index register

EXG Al, R2 Exchange D, X, Y, S, U or PC with D, X, Y, S, U or PC

LEAS, LEAU Load effective address into stack pointer
LEAX, LEAY Load effective address into index register

LDS, LDU Load stack pointer from memory

LDX, LDY Load index register from memory

PSHS Push A, B, CC, DP, D, X, Y, U, or PC onto hardware stack

PSHU Push A, B, CC, DP, D, X, Y, X, or PC onto user stack

PULS Pull A, B, CC, DP, D, X, Y, U, or PC from hardware stack

PULU Pull A, B, CC, DP, D, X, Y, S, or PC from hardware stack

STS, STU Store stack pointer to memory
STX, STY Store index register to memory
TFR R1, R2 Transfer D, X, Y, S, U, or PC to D, X, Y, S. U, or PC
ABX Add B accumulator to X lunsignedl

4-12

Table 4-5. Branch Instructions

Instruction Description
SIMPLE BRANCHES

BEQ, LBEO Branch if equal
BNE, LBNE Branch if not equal
BMI, LBMI Branch if minus
BPL, LBPL Branch if plus

BCS, LBCS Branch if carry set

BCC, LBCC Branch if carry clear

BVS, LBVS Branch if overflow set

BVC, LBVC Branch if overflow clear

SIGNED BRANCHES
BGT, LBGT Branch if greater Isignedl
BVS, LBVS Branch if invalid twos complement result
BGE, LBGE Branch if greater than or equal (signed)
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal

BLE, LBLE Branch if less than or equal (signed)

BVC, LBVC Branch if valid twos complement result

BLT, LBLT Branch if less than (signed)

UNSIGNED BRANCHES
BHI, LBHI Branch if higher (unsigned)
8CC, LBCC Branch if higher or same lunsignedl
BHS, LBHS Branch if higher or same lunsignedl
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal

BLS, LBLS Branch if lower or same lunsignedl

BCS, LBCS Branch if lower (unsigned)

BLO, LBLO Branch if lower (unsigned)

OTHER BRANCHES

BSR, LBSR Branch to subroutine
BRA, LBRA Branch always
BRN, LBRN Branch never

Table 4.6. Miscellaneous Instructions

Instruction Description

ANDCC AND condition code register
CWAI AND condition code register, then wait for interrupt
NOP No operation
ORCC OR condition code register
JMP Jump
JSR Jump to subroutine
RTI Return from interrupt
RTS Return from subroutine
SWI, SWl2, SWl3 Software interrupt (absolute indirect)

SYNC Synchronize with interrupt line

4-13/4-14

APPENDIX A
INSTRUCTION SET DETAILS

A.1 INTRODUCTION

This appendix contains detailed information about each instruction in the MC6809 in-
struction set. They are arranged in an alphabetical order with the mnemonic heading set
in larger type for easy reference.

A.2 NOTATION

In the operation description for each instruction, symbols are used to indicate the opera-
tion. Table A-1 lists these symbols and their meanings. Abbreviations for the various
registers, bits, and bytes are also used. Table A-2 lists these abbreviations and their
meanings.

Table A-1. Operation Notation

Symbol Meaning

-- Is transferred to

A Boolean AND

V Boolean OR

® Boolean exclusive OR

Overline) Boolean NOT

Concatenation
+ Arithmetic plus
— Arithmetic minus
X Arithmetic multiply

A-1

Table A•2. Register Notation

Abbreviation Meaning
ACCA or A Accumulator A
ACCB or B Accumulator B
ACCA:ACCB or D Double accumulator D
ACCX Either accumulator A or 8
CCR or CC Condition code register
DPR or DP Direct page register

EA Effective address

IFF If and only if

IX or X Index register X
IY or Y Index register Y
LSN Least significant nibble
M Memory location
MI Memory immediate
MSN Most significant nibble
PC Program counter
R A register before the operation
R' A register after the operation

TEMP Temporary storage location
xxH Most signifcant byte of any 16-bit register

xxL Least significant byte of any 16-bit register
Sp or S Hardware Stack pointer
Us or U User Stack pointer
P A memory argument with Immediate, Di-

rect, Extended, and Indexed addressing
modes

Q A read-modify-write argument with Direct,
Indexed, and Extended addressing modes

(I The data pointed to by the enclosed
116-bit address)

dd 8-bit branch offset
DDDD 16-bit branch offset

Immediate value follows
$ Hexadecimal value follows

] Indirection
Indicates indexed addressing

A-2

AB X Add Accumulator B into Index Register X A B X

Source Form: ABX

Operation: IX'-- IX + ACCB

Condition Codes: Not affected.

Description: Add the 8-bit unsigned value in accumulator B into index register X.

Addressing Mode: Inherent

A-3

A DC Add with Carry into Register A D C

Source Forms: ADCA P; ADCB P

Operation: R' -- R + M + C

Condition Codes: H — Set if a half-carry is generated; cleared otherwise.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Description: Adds the contents of the C (carry) bit and the memory byte into an
8-bit accumulator.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-4

ADD (8•Bit) Add Memory into Register

Source Forms: ADDA P; ADDB P

Operation: R' R + M

ADD (8•Bit)

Condition Codes: H — Set if a half -carry is generated; cleared otherwise.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Description: Adds the memory byte into an 8-bit accumulator.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-5

ADD (16-Bit) Add Memory into Register ADD (16-Bit)

Source Forms: ADDD P

Operation: R'-- R + M:M + 1

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Description: Adds the 16-bit memory value into the 16-bit accumulator

Addressing Modes: Immediate
Extended
Direct
Indexed

A-6

A N D Logical AND Memory into Register AN D

Source Forms: ANDA P; ANDB P

Operation: R' -- R A M

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Performs the logical AND operation between the contents of an ac-
cumulator and the contents of memory location M and the result is
stored in the accumulator.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-7

A N D Logical AND Immediate Memory into Condition Code Register AN D
Source Form: ANDCC #xx

Operation: R' -- R A Ml

Condition Codes: Affected according to the operation.

Description: Performs a logical AND between the condition code register and the
immediate byte specified in the instruction and places the result in
the condition code register.

Addressing Mode: Immediate

A-8

AS L Arithmetic Shift Left AS L

Source Forms: ASL Q; ASLA; ASLB

Operation: C.— 0

b7 ~---- b0

Condition Codes: H — Undefined
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Loaded with the result of the exclusive OR of bits six and

seven of the original operand.
C — Loaded with bit seven of the original operand.

Description: Shifts all bits of the operand one place to the left. Bit zero is loaded
with a zero. Bit seven is shifted into the C (carry) bit.

Addressing Modes: Inherent
Extended
Direct
Indexed

A-9

AS R Arithmetic Shift Right AS R

Source Forms: ASR Q; ASRA; ASRB

Operation:

b7 b0

Condition Codes: H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Not affected.
C — Loaded with bit zero of the original operand.

Description: Shifts all bits of the operand one place to the right. Bit seven is held
constant. Bit zero is shifted into the C (carry) bit.

Addressing Modes: Inherent
Extended
Direct
Indexed

A-10

BCC Branch on Carry Clear B CC
Source Forms: BCC dd; LBCC DDDD

Operation: TEMP —MI
IFF C=0 then PC`--PC+TEMP

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a branch if it is clear.

Addressing Mode: Relative

Comments: Equivalent to BHS dd; LBHS DDDD

A-11

BCS Branch on Carry Set BCS

Source Forms: BCS dd; LBCS DDDD

Operation: TEMP —MI
IFF C=1 then PC'--PC+TEMP

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a branch if it is set.

Addressing Mode: Relative

Comments: Equivalent to BLO dd; LBLO DDDD

A-12

BEQ Branch on Equal B EQ

Source Forms:

Operation:

Condition Codes:

Description:

BEQ dd; LBEQ DDDD

TEMP --MI
IFFZ=1 then PC's-PC+TEMP

Not affected.

Tests the state of the Z (zero) bit and causes a branch if it is set.
When used after a subtract or compare operation, this instruction
will branch if the compared values, signed or unsigned, were exactly
the same.

Addressing Mode: Relative

A-13

BG E Branch on Greater than or Equal to Zero B G E
Source Forms: BGE dd; LBGE DDDD

Operation: TEMP- MI
IFF [N®VJ=0 then PC'--PC+TEMP

Condition Codes: Not affected.

Description: Causes a branch if the N (negative) bit and the V (overflow) bit are
either both set or both clear. That is, branch if the sign of a valid
twos complement result is, or would be, positive. When used after a
subtract or compare operation on twos complement values, this in-
struction will branch if the register was greater than or equal to the
memory operand.

Addressing Mode: Relative

BG T Branch on Greater B G T

Source Forms: BGT dd; LBGT DDDD

Operation: TEMP--MI
I FF Z A [N ® V] = 0 then PC' -- PC + TEM P

Condition Codes: Not affected.

Description: Causes a branch if the N (negative) bit and V (overflow) bit are either
both set or both clear and the Z (zero) bit is clear. In other words,
branch if the sign of a valid twos complement result is, or would be,
positive and not zero. When used after a subtract or compare opera-
tion on twos complement values, this instruction will branch if the
register was greater than the memory operand.

Addressing Mode: Relative

A-15

B H' Branch if Higher B H)

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

BHI dd; LBHI DDDD

TEMP —MI
IFF [C v Z]=0 then PC'--PC+TEMP

Not affected.

Causes a branch if the previous operation caused neither a carry nor
a zero result. When used after a subtract or compare operation on
unsigned binary values, this instruction will branch if the register
was higher than the memory operand.

Relative

Generally not useful after INC/DEC, LDITST, and TSTICLR/COM in-
structions.

A-16

BH S Branch if Higher or Same B H S

Source Forms:

Operation:

Condition Codes:

Description:

BHS dd; LBHS DDDD

TEMP-MI
IFF C = 0 then PC'-- PC + Mi

Not affected.

Tests the state of the C (carry) bit and causes a. branch if it is clear.
When used after a subtract or compare on unsigned binary values,
this instruction will branch if the register was higher than or the
same as the memory operand.

Addressing Mode: Relative

Comments: This is a duplicate assembly-language mnemonic for the single
machine instruction BCC. Generally not useful after INC/DEC,
LDIST, and TST/CLR/COM instructions. „

A-17

BIT Bit Test B I T

Source Form: Bit P

Operation: TEMP-- R A M

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Performs the logical AND of the contents of accumulator A or B and
the contents of memory location M and modifies the condition
codes accordingly. The contents of accumulator A or B and memory
location M are not affected.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-18

BL E Branch on Less than or Equal to Zero B L E

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

BLE dd; LBLE DDDD

TEMP--MI
IFF Z v [N ® V]= 1 then PC'— PC+TEMP

Not affected.

Causes a branch if the exclusive OR of the N (negative) and V
(overflow) bits is 1 or if the Z (zero) bit is set. That is, branch if the
sign of a valid twos complement result is, or would be, negative.
When used after a subtract or compare operation on twos comple-
ment values, this instruction will branch if the register was less than
or equal to the memory operand.

Relative

A-19

BLO Branch on Lower B LO
Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

BLO dd; LBLO DDDD

TEMP-MI
IFF C=1 then PC'—PC+TEMP

Not affected.

Tests the state of the C (carry) bit and causes a branch if it is set.
When used after a subtract or compare on unsigned binary values,
this instruction will branch if the register was lower than the
memory operand.

Relative

This is a dupl icate assembly-language mnemonic for the single
machine instruction BCS. Generally not useful after INC/DEC,
LD/ST, and TST/CLR/COM instructions.

BLS Branch on Lower or Same B LS
Source Forms: BLS dd; LBLS DDDD

Operation: TEMP MI
IFF (C v Z)- 1 then PC'--PC+TEMP

Condition Codes: Not affected.

Description: Causes a branch if the previous operation caused either a carry or a
zero result. When used after a subtract or compare operation on un-
signed binary values, this instruction will branch if the register was
lower than or the same as the memory operand.

Addressing Mode: Relative

Comments: Generally not useful after INC/DEC, LD/ST, and TST/CLR/COM in-
structions.

A-21

BLT Branch on Less than Zero B LT

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

BLT dd; LBLT DDDD

TEMP MI
IFF [N®V]=1 then PC' --PC+TEMP

Not affected.

Causes a branch if either, but not both, of the N (negative) or V
(overflow) bits is set. That is, branch if the sign of a valid twos com-
plement result is, or would be, negative. When used after a subtract
or compare operation on twos complement binary values, this in-
struction will branch if the register was less than the memory
operand.

Relative

A-22

B M I Branch on Minus B IVI)

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

BMI dd; LBMI DDDD

TEMP--MI
IFF N=1 then PC'•—PC+TEMP

Not affected.

Tests the state of the N (negative) bit and causes a branch if set.
That is, branch if the sign of the twos complement result is negative.

Relative

When used after an operation on signed binary values, this instruc-
tion will branch if the result is minus. It is generally preferred to use
the LBLT instruction after signed operations.

A-23

B N E Branch Not Equal B N E

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

BNE dd; LBNE DDDD

TEMP —MI
IFF Z=0 then PC'—PC+TEMP

Not affected.

Tests the state of the Z (zero) bit and causes a branch if it is clear.
When used after a subtract or compare operation on any binary
values, this instruction will branch if the register is, or would be, not
equal to the memory operand.

Relative

A-24

B P L Branch on Plus B P L

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

BPL dd; LBPL DDDD

TEMP--MI
IFF N=O then PC`--PC+TEMP

Not affected.

Tests the state of the N (negative) bit and causes a branch if it is
clear. That is, branch if the sign of the twos complement result is
positive.

Relative

When used after an operation on signed binary values, this instruc-
tion will branch if the result (possibly invalid) is positive. It is general-
ly preferred to use the BGE instruction after signed operations.

A-25

B RA Branch Always B RA

Source Forms: BRA dd; LBRA DDDD

Operation: TEMP —MI
PC'—PC+TEMP

Condition Codes: Not affected.

Description: Causes an unconditional branch.

Addressing Mode: Relative

A-26

B RN Branch Never B RN

Source Forms: BRN dd; LBRN DDDD

Operation: TEMP--MI

Condition Codes: Not affected.

Description: Does not cause a branch. This instruction is essentially a no opera-
tion, but has a bit pattern logically related to branch always.

Addressing Mode: Relative

A-27

BSR Branch to Subroutine B S R

Source Forms: BSR dd; LBSR DDDD

Operation: TEMP-MI
SP' -SP -1, (SP)-- PCL
SP'--SP-1, (SP).-PCH
PC'--PC+TEMP

Condition Codes: Not affected.

Description: The program counter is pushed onto the stack. The program counter
is then loaded with the sum of the program counter and the offset.

Addressing Mode: Relative

Comments: A return from subroutine (RTS) instruction is used to reverse this pro-
cess and must be the last instruction executed in a subroutine.

A-28

BVC Branch on Overflow Clear B V C

Source Forms: BVC dd; LBVC DDDD

Operation: TEMP Ml
IFF V-0 then PC'---PC+TEMP

Condition Codes: Not affected.

Description: Tests the state of the V (overflow) bit and causes a branch if it is
clear. That is, branch if the twos complement result was valid. When
used after an operation on twos complement binary values, this in-
struction will branch if there was no overflow.

Addressing Mode: Relative

A-29

BVS

Source Forms:

Operation:

Condition Codes:

Description:

Branch on Overflow Set

BVS dd; LBVS DDDD

TEMP--MI
IFF V=1 then PC'-- PC+TEMP

Not affected.

BVS

Tests the state of the V (overflow) bit and causes a branch if it is set.
That is, branch if the twos complement result was invalid. When us-
ed after an operation on twos complement binary values, this in-
struction will branch if there was an overflow.

Addressing Mode: Relative

A-30

CLR Clear CLR
Source Form:

Operation:

CLR Q

TEMP--M
M-0016

Condition Codes: H — Not affected.
N — Always cleared.
Z — Always set.
V — Always cleared.
C — Always cleared.

Description: Accumulator A or B or memory location M is loaded with 00000000.
Note that the EA is read during this operation.

Addressing Modes: Inherent
Extended
Direct
Indexed

A31

CM P (8-Bit) Compare Memory from Register CM P (8-Bit)

Source Forms: CMPA P; CMPB P

Operation: TEMP-- R — M

Condition Codes: H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Compares the contents of memory location to the contents of the
specified register and sets the appropriate condition codes. Neither
memory location M nor the specified register is modified. The carry
flag represents a borrow and is set to the inverse of the resulting
binary carry.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-32

CM P (16' B i t) Compare Memory from Register CM P (16-Bit)

Source Forms: CMPD P; CMPX P; CMPY P; CMPU P; CMPS P

Operation: TEMP--R — M:M + 1

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Compares the 16-bit contents of the concatenated memory locations
M:M + 1 to the contents of the specified register and sets the ap-
propriate condition codes. Neither the memory locations nor the
specified register is modified unless autoincrement or autodecre-
ment are used. The carry flag represents a borrow and is set to the
inverse of the resulting binary carry.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-33

CO M Complement CO M
Source Forms: COM Q; COMA; COMB

Operation: M' — O + M

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Always set.

Description: Replaces the contents of memory location M or accumulator A or B
with its logical complement. When operating on unsigned values,
only BEQ and BNE branches can be expected to behave properly
following a COM instruction. When operating on twos complement
values, all signed branches are available.

Addressing Modes: Inherent
Extended
Direct
Indexed

A-34

CWAI

Source Form:

Operation:

Clear CC bits and Wait for Interrupt

CWAI #$XX E F H I I N Z V

OCR--OCR A MI (Possibly clear masks)
Set E (entire state saved)
SP'--SP-1, (SP).-PCL
SP'--SP-1, (SP)--PCH
SP'-SP-1, (SP)-- USL
SP'--SP-1, (SP)-USH
SP'-SP-1, (SP)--IYL
SP'--SP-1, (SP)--IYH
SP'-SP-1, (SP)-- IXL
SP'-SP-1, (SP)-- IXH
SP' -SP-1, (SP)--DPR
SP'--SP-1, (SP)--ACCB
SP'--SP-1, (SP)--ACCA
SP'--SP- 1, (SP)--CCR

Condition Codes: Affected according to the operation.

C

CWAI

Description: This instruction ANDs an immediate byte with the condition code
register which may clear the interrupt mask bits I and F, stacks the
entire machine state on the hardware stack and then looks for an in-
terrupt. When a non-masked interrupt occurs, no further machine
state information need be saved before vectoring to the interrupt
handling routine. This instruction replaced the MC6800 CLI WAI se-
quence, but does not place the buses in a high-impedance state. A
FIRQ (fast interrupt request) may enter its interrupt handler with its
entire machine state saved. The RTI (return from interrupt) instruc-
tion will automatically return the entire machine state after testing
the E (entire) bit of the recovered condition code register.

Addressing Mode: Immediate

Comments: The following immediate values will have the following results:
FF = enable neither
EF = enable IRS
BF = enable FIRQ
AF = enable both

A-35

1

DAA Decimal Addition Adjust DAA

Source Form: DAA

Operation: ACCA'--ACCA + CF (MSN):CF(LSN)
where CF is a Correction Factor, as follows: the CF for each nibble
(BCD) digit is determined separately, and is either 6 or 0.

Least Significant Nibble
CF(LSN)=61FF 1) C=1

or 2) LSN>9

Most Significant Nibble
CF(MSN)=61FF 1) C=1

or 2) MSN>9
or 3) MSN>8 and LSN>9

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Undefined.
C — Set if a carry is generated or if the carry bit was set before the

operation; cleared otherwise.

Description: The sequence of a single-byte add instruction on accumulator A
(either ADDA or ADCA) and a following decimal addition adjust in-
struction results in a BCD addition with an appropriate carry bit.
Both values to be added must be in proper BCD form (each nibble
such that: 0≤nibble≤9). Multiple-precision addition must add the
carry generated by this decimal addition adjust into the next higher
digit during the add operation (ADCA) immediately prior to the next
decimal addition adjust.

Addressing Mode: Inherent

A-36

DEC Decrement DEC

Source Forms: DEC Q; DECA; DECE3

Operation: M'-- M — 1

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the original operand was 10000000; cleared otherwise.
C — Not affected.

Description: Subtract one from the operand. The carry bit is not affected, thus
allowing this instruction to be used as a loop counter in multiple-
precision computations. When operating on unsigned values, only
BEQ and BNE branches can be expected to behave consistently.
When operating on twos complement values, all signed branches
are available.

Addressing Modes: Inherent
Extended
Direct
Indexed

A.37

E R Exclusive OR EO R

Source Forms: FORA P; EORB P

Operation: R' -- R ® M

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: The contents of memory location M is exclusive ORed into an 8-bit
register.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-38

EXG Exchange Registers EXG

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

EXG R1,R2

R1--R2

Not affected (unless one of the registers is the condition code
register).

Exchanges data between two designated registers. Bits 3-0 of the
postbyte define one register, while bits 7-4 define the other, as
follows:

0000 = A: B
0001 =X
0010=Y
0011= US
0100 = SP
0101 = PC
0110 = Undefined
0111 = Undefined

1000=A
1001 = B
1010 = CCR
1011 = DPR
1100 = Undefined
1101 = Undefined
1110= Undefined
1111 = Undefined

Only like size registers may be exchanged. (8-bit with 8-bit or 16-bit
with 16-bit.)

Immediate

A-39

N C Increment I N C
Source Forms: INC Q; INCA; INCB

Operation: M' -- M + 1

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the original operand was 01111111; cleared otherwise.
C — Not affected.

Description: Adds to the operand. The carry bit is not affected, thus allowing this
instruction to be used as a loop counter in multiple-precision com-
putations. When operating on unsigned values, only the BEQ and
BNE branches can be expected to behave consistently. When
operating on twos complement values, all signed branches are cor-
rectly available.

Addressing Modes: Inherent
Extended
Direct
Indexed

A-40

JMP Jump JMP

Source Form: JMP EA

Operation: PC'-- EA

Condition Codes: Not affected.

Description: Program control is transferred to the effective address.

Addressing Modes: Extended
Direct
Indexed

A-41

J SR Jump to Subroutine J S R
Source Form:

Operation:

Condition Codes:

Description:

JSR EA

SP'-SP-1, (SP)-PCL
SP'--SP-1, (SP)—PCH
PC' —EA

Not affected.

Program control is transferred to the effective address after storing
the return address on the hardware stack. A RTS instruction should
be the last executed instruction of the subroutine.

Addressing Modes: Extended
Direct
Indexed

A-42

LD (8-Bit) Load Register from Memory

Source Forms: LDA P; LDB P

Operation: R' — M

LD (8-Bit)

Condition Codes: H — Not affected.
N — Set if the loaded data is negative; cleared otherwise.
Z — Set if the loaded data is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Loads the contents of memory location M into the designated
register.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-43

LD (16-Bit)

Source Forms:

Operation:

Condition Codes:

Description:

Load Register from Memory

LDD P; LDX P: LDY P; LDS P; LDU P

R'—M:M+1

LD (16-Bit)

H — Not affected.
N — Set if the loaded data is negative; cleared otheriwse.
Z — Set if the loaded data is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Load the contents of the memory location M:M + 1 into the
designated 16-bit register.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-44

L EA Load Effective Address L EA

Source Forms: LEAX, LEAY, LEAS, LEAU

Operation: R' -- EA

Condition Codes: H — Not affected.
N — Not affected.
Z — LEAX, LEAY: Set if the result is zero; cleared otherwise.

LEAS, LEAU: Not affected.
V — Not affected.
C — Not affected.

Description: Calculates the effective address from the indexed addressing mode
and places the address in an indexable register.

LEAX and LEAY affect the Z (zero) bit to allow use of these registers
as counters and for MC6800 INXIDEX compatibility.

LEAU and LEAS do not affect the Z bit to allow cleaning up the stack
while returning the Z bit as a parameter to a calling routine, and also
for MC6800 INSIDES compatibility.

Addressing Mode: Indexed

Comments: Due to the order in which effective addresses are calculated inter-
nally, the LEAX, X + + and LEAX, X + do not add 2 and 1 (respective-
ly) to the X register; but instead leave the X register unchanged. This
also applies to the Y, U, and S registers. For the expected results,
use the faster instruction LEAX 2, X and LEAX 1, X.

Some examples of LEA instruction uses are given in the following
table.

Instruction Operation Comment
LEAX 10, X X + 10 - X Adds 5-bit constant 10 to X
LEAX 500,X X + 500 - X Adds 16-bit constant 500 to X
LEAY A,Y Y+A-Y Adds 8-bit accumulator to Y
LEAY D, Y Y + D - Y Adds 16-bit D accumulator to Y
LEAU -10,U U-10-U Subtracts 10 from U
LEAS -10,S S-10-S Used to reserve area on stack
LEAS 10, S S + 10 - S Used to clean up' stack
LEAX 5,S S -1-5--X Transfers as well as adds

A-45

LS L Logical Shift Left LS L

Source Forms: LSL Q; LSLA; LSLB

Operation: C~-

b7 b0

Condition Codes: H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Loaded with the result of the exclusive OR of bits six and

seven of the original operand.
C — Loaded with bit seven of the original operand.

Description: Shifts all bits of accumulator A or B or memory location M one place
to the left. Bit zero is loaded with a zero. Bit seven of accumulator A
or B or memory location M is shifted into the C (carry) bit.

Addressing Modes: Inherent
Extended
Direct
Indexed

Comments: This is a duplicate assembly-language mnemonic for the single
machine instruction ASL.

A-46

LS R Logical Shift Right LS R

Source Forms: LSR Q; LSRA; LSRB

Operation: 0-+

b7 b0

Condition Codes: H — Not affected.
N — Always cleared.
Z — Set if the result is zero; cleared otherwise.
V — Not affected.
C — Loaded with bit zero of the original operand.

Description: Performs a logical shift right on the operand. Shifts a zero into bit
seven and bit zero into the C (carry) bit.

Addressing Modes: Inherent
Extended
Direct
Indexed

A-47

M UL Multiply M U L
Source Form: MUL

Operation: ACCA':ACCB' — ACCA x ACCB

Condition Codes: H — Not affected.
N — Not affected.
Z — Set if the result is zero; cleared otherwise.
V — Not affected.
C — Set if ACCB bit 7 of result is set; cleared otherwise.

Description: Multiply the unsigned binary numbers in the accumulators and
place the result in both accumulators (ACCA contains the most-
significant byte of the result). Unsigned multiply allows multiple-
precision operations.

Addressing Mode: Inherent

Comments: The C (carry) bit allows rounding the most-significant byte through
the sequence: MUL, ADCA #0.

A-48

N EG Negate N EG

Source Forms: NEG
a;

NEGA; NEGB

Operation: M' — 0 — M

Condition Codes: H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the original operand was 10000000.
C — Set if a borrow is generated; cleared otherwise.

Description: Replaces the operand with its twos complement. The C (carry) bit
represents a borrow and is set to the inverse of the resulting binary
carry. Note that 8016 is replaced by itself and only in this case is the
V (overflow) bit set. The value 0016 is also replaced by itself, and only
in this case is the C (carry) bit cleared.

Addressing Modes: Inherent
Extended
Direct

A-49

N O P No Operation N O P

Source Form: NOP

Operation: Not affected.

Condition Codes: This instruction causes only the program counter to be incremented.
No other registers or memory locations are affected.

Addressing Mode: Inherent

A-50

0 R Inclusive OR Memory into Register 0 R

Source Forms: ORA P; ORB P

Operation: R' -- R v M

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Performs an inclusive OR operation between the contents of ac-
cumulator A or B and the contents of memory location M and the
result is stored in accumulator A or B.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-51

0 R Inclusive OR Memory Immediate into Condition Code Register 0 R

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

ORCC #XX

R' -- R v MI

Affected according to the operation.

Performs an inclusive OR operation between the contents of the
condition code registers and the immediate value, and the result is
placed in the condition code register. This instruction may be used
to set interrupt masks (disable interrupts) or any other bit(s).

immediate

A-52

I
PSHS Push Registers on the Hardware Stack PSHS

Source Form:

Operation:

PSHS register list
PSHS #LABEL
Postbyte:

b7 b6 b5 b4 b3 b2 b1 b0
PC U Y X DP B A CC

push order------

IFF b7 of postbyte set, then:

IFF b6 of postbyte set, then:

IFF b5 of postbyte set, then:

IFF b4 of postbyte set, then:

IFF b3 of postbyte set, then:
IFF b2 of postbyte set, then:
IFF b1 of postbyte set, then:
IFF b0 of postbyte set, then:

Condition Codes: Not affected.

Description:

SP's--SP-1, (SP)•-PCL
SP'--SP-1, (SP)-PCH
SP'-SP-1, (SP)--USL
SP'-SP-1, (SP)--USH
SP'--SP-1, (SP).-IYL
SP'--SP-1, (SP)-IYH
SP'-SP-1, (SP)-- IXL
SP'-SP-1, (SP)-IXH
SP'-SP-1, (SP)- DPR
SP'--SP-1, (SP)--ACCB
SP'--SP-1, (SP)-ACCA
SP'--SP-1, (SP)--CCR

All, some, or none of the processor registers are pushed onto the
hardware stack (with the exception of the hardware stack pointer
itself).

Addressing Mode: Immediate

Comments: A single register may be placed on the stack with the condition
codes set by doing an autodecrement store onto the stack (example:
STX , - -S).

A-53

P S H U Push Registers on the User Stack P S H U

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

PSHU register list
PSHU #LABEL
Postbyte:

b7 b6 b5 b4 b3 b2 b1 b0
PC U Y X DP B A CC

push order

IFF b7 of postbyte set, then:

IFF b6 of postbyte set, then:

IFF b5 of postbyte set, then:

IFF b4 of postbyte set, then:

IFF b3 of postbyte set, then:
IFF b2 of postbyte set, then:
IFF b1 of postbyte set, then:
IFF b0 of postbyte set, then:

Not affected.

US'--US-1, (US)•-PCL
US'-US-1, (US)--PCH
US'--US-1, (US)--SPL
US'-US-1, (US)--SPH
US'--US-1, (US)-IYL
US'--US-1, (US)--IYH
US's-US-1, (US)-IXL
US' -US-1, (US) - IXH
US'--US-1, (US)a-DPR
US'--US-1, (US)--ACCB
US's-US-1, (US)--ACCA
US'--US-1, (US)--CCR

All, some, or none of the processor registers are pushed onto the
user stack (with the exception of the user stack pointer itself).

Immediate

A single register may be placed on the stack with the condition
codes set by doing an autodecrement store onto the stack (example:
STX , - - U).

A-54

P U LS Pull Registers from the Hardware Stack P U LS

Source Form:

Operation:

PULS register list
PULS #LABEL
Postbyte:

b7 b6 b5 b4 b3 b2 b1 b0
PC U Y X DP B A CC

pull order

IFF b0 of postbyte set, then:
IFF b1 of postbyte set, then:
IFF b2 of postbyte set, then:
IFF b3 of postbyte set, then:
IFF b4 of postbyte set, then:

IFF b5 of postbyte set, then:

IFF b6 of postbyte set, then:

IFF b7 of postbyte set, then:

CCR' --(SP), SP's-SP+1
ACCA' -(SP), SP'--SP+ 1
ACCB'--(SP), SP' --SP+1
DPR' --(SP), SP'--SP+1
IXH' --(SP), SP'-SP+1
IXL' -- (SP), SP' - SP +1
IYH' --(SP), SP'--SP+1
IYL' --(SP), SP'--SP+1
USH' --(SP), SP'--SP+1
USL' -(SP), SP's-SP+1
PCH' --(SP), SP' --SP+ 1
PCL' --(SP), SP's--SP+1

Condition Codes: May be pulled from stack; not affected otherwise.

Description: All, some, or none of the processor registers are pulled from the
hardware stack (with the exception of the hardware stack pointer
itself).

Addressing Mode: Immediate

Comments: A single register may be pulled from the stack with condition codes
set by doing an autoincrement load from the stack (example:
LDX ,S+ +).

A-55

4

P U L U Pull Registers from the User Stack P U L U
Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

PULU register list
PULU #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 b1 b0
PC U Y X DP B A CC

pull order

IFF b0 of postbyte set, then:
IFF b1 of postbyte set, then:
IFF b2 of postbyte set, then:
IFF b3 of postbyte set, then:
IFF b4 of postbyte set, then:

IFF b5 of postbyte set, then:

IFF b6 of postbyte set, then:

IFF b7 of postbyte set, then:

CCR' '--(US), US"-US+1
ACCA' -- (US), US' - US +1
ACCB' -- (US), US' US +1
DPR'
IXH'
IXL'
IYH'
IYL'
SPH'
SPL'
PCH
PCL'

-(US), US' -- US + 1
--(US), US'-US+1
-(US), US' - US + 1
-(US), US' - US + 1
-(US), US'-US+1

--(US), US'-US+1
--(US), US'--US+1
-(US), US' -- US + 1
-(US), US'--US+1

May be pulled from stack; not affected otherwise.

All, some, or none of the processor registers are pulled from the user
stack (with the exception of the user stack pointer itself).

Immediate

A single register may be pulled from the stack with condition codes
set by doing an autoincrement load from the stack (example:
LDX ,U+ +).

A-56

R O L Rotate Left R O L

Source Forms: ROL O; ROLA; ROLB

Operation:

Condition Codes:

Description:

b7 b0

H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Loaded with the result of the exclusive OR of bits six and

seven of the original operand.
C — Loaded with bit seven of the original operand.

Rotates all bits of the operand one place left through the C (carry)
bit. This is a 9-bit rotation.

Addressing Mode: Inherent
Extended
Direct
Indexed

A-57

R R Rotate Right RO R

Source Forms: ROR Q; RORA; RORB

Operation:

Condition Codes:

Description:

b7 b0

H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Not affected.
C — Loaded with bit zero of the previous operand.

Rotates all bits of the operand one place right through the C (carry)
bit. This is a 9-bit rotation.

Addressing Modes: Inherent
Extended
Direct
Indexed

4-58

RTI Return from Interrupt RT

Source Form: RTI

Operation: CCR' — (SP), SP' -- SP + 1, then

IFF OCR bit E is set, then: ACCA' —(SP), SP' SP + 1
ACCB'-(SP), SP'--SP+1
DPR' --(SP), SP'•-SP+ 1
IXH' --(SP), SP'--SP+1
IXL' --(SP), SP'--SP+1
IYH' --(SP), SP's-SP+1
IYL' --(SP), SP'-SP+1
USH' --(SP), SP'--SP+ 1
USL' --(SP), SP'-SP+1
PCH' -(SP), SP"-SP+1
PCL' -(SP), SP'•-SP+1

IFF OCR bit E is clear, then: PCH' --(SP), SP'--SP+1
PCL' --(SP), SP'--SP+ 1

Condition Codes: Recovered from the stack.

Description: The saved machine state is recovered from the hardware stack and
control is returned to the interrupted program. If the recovered E (en-
tire) bit is clear, it indicates that only a subset of the machine state
was saved (return address and condition codes) and only that subset
is recovered.

Addressing Mode: Inherent

A-59

RTS

Source Form: RTS

Return from Subroutine

Operation: PCH' (SP), SP' -- SP + 1
PCL'-(SP), SP'--SP+ 1

Condition Codes: Not affected.

RTS

Description: Program control is returned from the subroutine to the calling pro-
gram. The return address is pulled from the stack.

Addressing Mode: Inherent

A-60

S B C Subtract with Borrow S B C

Source Forms: SBCA P; SBCB P

Operation: R' -- R — M — C

Condition Codes: H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Subtracts the contents of memory location M and the borrow (in the
C (carry) bit) from the contents of the designated 8-bit register, and
places the result in that register. The C bit represents a borrow and
is set to the inverse of the resulting binary carry.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-61

S EX Sign Extended S EX
Source Form: SEX

Operation: If bit seven of ACCB is set then ACCA' — FF16
else ACCA'--0016

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Not affected.
C — Not affected.

Description: This instruction transforms a twos complement 8-bit value in ac-
cumulator B into a twos complement 16-bit value in the D ac-
cumulator.

Addressing Mode: Inherent

A-62

ST (8-Bit) Store Register Into Memory

Source Forms: STA P; STB P

Operation: M' — R

ST (8-Bit)

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Writes the contents of an 8-bit register into a memory location.

Addressing Modes: Extended
Direct
Indexed

A-63

ST (16-Bit)

Source Forms:

Operation:

Condition Codes:

Description:

Store Register into Memory

STD P; STX P; STY P; STS P; STU P

M':M+1'—R

ST (16-Bit)

H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Writes the contents of a 16-bit register into two consecutive memory
locations.

Addressing Modes: Extended
Direct
Indexed

A-64

S U B (8-Bit) Subtract Memory from Register S U B (8-Bit)

Source Forms: SUBA P; SUBB P

Operation: R' R — M

Condition Codes: H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Subtracts the value in memory location M from the contents of a
designated 8-bit register. The C (carry) bit represents a borrow and is
set to the inverse of the resulting binary carry.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-65

SUB (16-Bit) Subtract Memory from Register SUB (16-Bit)

Source Forms: SUBD P

Operation: R'-- R — M:M + 1

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Subtracts the value in memory location M:M + 1 from the contents of
a designated 16-bit register. The C (carry) bit represents a borrow
and is set to the inverse of the resulting binary carry.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-66

SWI Software interrupt SW
Source Form: SWI

Operation: Set E (entire state will be saved)
SP' '—SP— 1, (SP).- PCL
SP' '-SP-1, (SP)'- PCH
SP'--SP-1, (SP).-USL
SP'-SP-1, (SP)-USH
SP'--SP-1, (SP)-IYL
SP"-SP-1, (SP)--IYH
SP'--SP-1, (SP)--IXL
SP'--SP-1, (SP)--IXH
SP'--SP-1, (SP)--DPR
SP'--SP-1, (SP)'-ACCB
SP'--SP-1, (SP)--ACCA
SP'--SP-1, (SP)-CCR
Set I, F (mask interrupts)
PC' --(FFFA):(FFFB)

Condition Codes: Not affected.

Description: All of the processor registers are pushed onto the hardware stack
(with the exception of the hardware stack pointer itself), and control
is transferred through the software interrupt vector. Both the normal
and fast interrupts are masked (disabled).

Addressing Mode: Inherent

A-67

SWI2 Software Interrupt 2 SWI2

Source Form: SWI2

Operation: Set E (entire state saved)
SP'--SP-1, (SP)--PCL
SP'-SP-1, (SP)-PCH
SP'--SP-1, (SP)-USL
SP'-SP-1, (SP)-USH
SP'--SP-1, (SP(--IYL
SP'--SP-1, (SP)-IYH
SP'-SP-1, (SP)'-IXL
SP'--SP-1, (SP) -iXH
SP'--SP-1, (SP)~-DPR
SP'--SP-1, (SP)--ACCB
SP'-SP-1, (SP)--ACCA
SP'-SP-1, (SP)--CCR
PC' -- (FFF4):(FFF5)

Condition Codes: Not affected.

Description: All of the processor registers are pushed onto the hardware stack
(with the exception of the hardware stack pointer itself), and control
is transferred through the software interrupt 2 vector. This interrupt
is available to the end user and must not be used in packaged soft-
ware. This interrupt does not mask (disable) the normal and fast in-
terrupts.

Addressing Mode: Inherent

A-68

S dV 13 Software Interrupt 3 S VV 13

Source Form: SWI 3

Operation: Set E (entire state will be saved)
SP'-SP-1, (SP)--PCL
SP' -SP-1, (SP)--PCH
SP' -SP-1, (SP)-USL
SP'--SP-1, (SP)--USH
SP'-SP-1, (SP)- IYL
SP'-SP-1, (SP)-- IYH
SP'--SP-1, (SP)--IXL
SP'--SP-1, (SP)-IXH
SP'-SP-1, (SP).-DPR
SP'--SP-1, (SP)--ACCB
SP'--SP-1, (SP)-ACCA
SP'--SP-1, (SP)—CCR
PC'--(FFF2):(FFF3)

Condition Codes: Not affected.

Description: All of the processor registers are pushed onto the hardware stack
(with the exception of the hardware stack pointer itself), and control
is transferred through the software interrupt 3 vector. This interrupt
does not mask (disable) the normal and fast interrupts.

Addressing Mode: Inherent

A-69

S N C Synchronize to External Event SY N C

Source Form:

Operation:

Condition Codes:

Description:

SYNC

Stop processing instructions

Not affected.

When a SYNC instruction is excuted, the processor enters a syn-
chronizing state, stops processing instructions, and waits for an in-
terrupt. When an interrupt occurs, the synchronizing state is cleared
and processing continues. If the interrupt is enabled, and it lasts
three cycles or more, the processor will perform the interrupt
routine, if the interrupt is masked or is shorter than three cycles, the
processor simply continues to the next instruction. While in the syn-
chronizing state, the address and data buses are in the high-
impedance state.

This instruction provides software synchronization with a hardware
process. Consider the following example for high-speed acquisition
of data:

FAST SYNC
Interrup !
LDA
STA
DECB
BNE

WAIT FOR DATA

DISC DATA FROM DISC AND CLEAR INTERRUPT
,X+ PUT IN BUFFER

COUNT IT, DONE?
FAST GO AGAIN IF NOT.

The synchronizing state is cleared by any interrupt. Of course, enabl-
ed interrupts at this point may destroy the data transfer and, as
such, should represent only emergency conditions.

The same connection used for interrupt-driven I/O service may also
be used for high-speed data transfers by setting the interrupt mask
and using the SYNC instruction as the above example
demonstrates.

Addressing Mode: Inherent

A-70

TF R Transfer Register to Register T F R

Source Form: TFR R1, R2

Operation: R1-- R2

Condition Code: Not affected unless R2 is the condition code register.

Description: Transfers data between two designated registers. Bits 7-d of the
postbyte define the source register, while bits 3-0 define the destina-
tion register, as follows:

0000 = A: B
0001 =X
0010=Y
0011= US
0100=SP
0101 = PC
0110 = Undefined
0111 = Undefined

1000 = A
1001= B
1010 = CCR
1011 = DPR
1100 = Undefined
1101 = Undefined
1110 = Undefined
1111 = Undefined

Only like size registers may be transferred. (8-bit to 8-bit, or 16-bit to
16-bit.)

Addressing Mode: Immediate

A-71

TST Test TST

Source Forms: TST O; TSTA; TSTB

Operation: TEMP--M —0

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Set the N (negative) and Z (zero) bits according to the contents of
memory location M, and clear the V (overflow) bit. The TST instruc-
tion provides only minimum information when testing unsigned
values; since no unsigned value is less than zero, BLO and BLS have
no utility. While BHI could be used after TST, it provides exactly the
same control as BNE, which is preferred. The signed branches are
available.

Addressing Modes: Inherent
Extended
Direct
Indexed

Comments: The MC6800 processor clears the C (carry) bit.

A-72

FIRQ

Operation:

Fast Interrupt Request (Hardware Interrupt)

IFF F bit clear, then: SP'--SP-1, (SP)--PCL
SP'-SP-1, (SP)—PCH
Clear E (subset state is saved)
SP"—SP —1, (SP)'- CCR
Set F, I (mask further interrupts)
PC' --(FFF6):(FFF7)

Condition Codes: Not affected.

FIRQ

Description: A FIRQ (fast interrupt request) with the F (fast interrupt request
mask) bit clear causes this interrupt sequence to occur at the end of
the current instruction. The program counter and condition code
register are pushed onto the hardware stack. Program control is
transferred through the fast interrupt request vector. An RTI (return
from interrupt) instruction returns the processor to the original task.
It is possible to enter the fast interrupt request routine with the en-
tire machine state saved if the fast interrupt request occurs after a
clear and wait for interrupt instruction. A normal interrupt request
has lower priority than the fast interrupt request and is prevented
from interrupting the fast interrupt request routine by automatic set-
ting of the I (interrupt request mask) bit. This mask bit could then be
reset during the interrupt routine if priority was not desired. The fast
interrupt request allows operations on memory, TST, INC, DEC, etc.
instructions without the overhead of saving the entire machine state
on the stack.

Addressing Mode: Inherent

A-73

1

RQ Interrupt Request (Hardware Interrupt) ' R Q

Operation: IFF I bit clear, then: SP"—SP —1, (SP)-- PCL
SP'--SP-1, (SP)-PCH
SP'--SP-1, (SP)•-USL
SP'--SP-1, (SP)--USH
SP' '-SP-1, (SP)-- IYL
SP'-SP-1, (SP)-IYH
SP'--SP-1, (SP)-IXL
SP'-SP-1, (SP)--IXH
SP'--SP-1, (SP)-DPR
SP'--SP-1, (SP)-ACCB
SP'--SP-1, (SP)--ACCA
Set E (entire state saved)
SP'--SP-1, (SP)--CCR
Set I (mask further IRQ interrupts)
PC' --(FFF8):(FFF9)

Condition Codes: Not affected.

Description: If the I (interrupt request mask) bit is clear, a low level on the IRQ in-
put causes this interrupt sequence to occur at the end of the current
instruction. Control is returned to the interrupted program using a
RTI (return from interrupt) instruction. A FIRQ (fast interrupt request)
may interrupt a normal IRQ (interrupt request) routine and be
recognized anytime after the interrupt vector is taken.

Addressing Mode: Inherent

A-74

N M I Non-Maskable Interrupt (Hardware Interrupt) N M

Operation: SP'--SP-1, (SP)--PCL
SP'--SP-1, (SP)-PCH
SP'--SP-1, (SP)---USL
SP'--SP- 1, (SP)---USH
SP'-SP-1, (SP)-IYL
SP'-SP-1, (SP)-IYH
SP'--SP-1, (SP) -IXL
SP'--SP-1, (SP)-IXH
SP' -SP-1, (SP)-DPR
SP'-SP-1, (SP)-ACCB
SP'-SP-1, (SP)---ACCA
Set E (entire state save)
SP'-SP-1, (SP)--CCR
Set I, F (mask interrupts)
PC'—(FFFC):(FFFD)

Condition Codes: Not affected.

Description: A negative edge on the NMI (non-maskable interrupt) input causes
all of the processor's registers (except the hardware stack pointer)
to be pushed onto the hardware stack, starting at the end of the cur-
rent instruction. Program control is transferred through the NMI vec-
tor. Successive negative edges on the NMI input will cause suc-
cessive NMI operations. Non-maskable interrupt operation can be
internally blocked by a RESET operation and any non-maskable in-
terrupt that occurs will be latched. If this happens, the non-
maskable interrupt operation will occur after the first load into the
stack pointer (LDS; TFR r,s; EXG r,s; etc.) after RESET.

Addressing Mode: Inherent

A-75

RESTART Restart (Hardware Interrupt) R ESTA RT

Operation: OCR'—X1XIXXXX
D P R' —0016
PC'--(FFFE):(FFFF)

Condition Codes: Not affected.

Description: The processor is initialized (required after power-on) to start pro-
gram execution. The starting address is fetched from the restart vec-
tor.

Addressing Mode: Extended Indirect

A-76

APPENDIX B
ASSIST09 MONITOR PROGRAM

B.1 GENERAL DESCRIPTION

The M6809 is a high-performance microprocessor which supports modern programming
techniques such as position-independent, reentrancy, and modular programming. For a
software monitor to take advantage of such capabilities demands a more refined and
sophisticated user interface than that provided by previous monitors. ASSIST09 is a
monitor which supports the advanced features that the M6809 makes possible.
ASSIST09 features include the following:

• Coded in a position (address) independent manner. Will execute anywhere in the
64K address space.

• Multiple means available for installing user modifications and extensions.

• Full complement of commands for program development including breakpoint and
trace.

• Sophisticated monitor calls for completely address-independent user program ser-
vices.

• RAM work area is located relative to the ASSIST09 ROM, not at a fixed address as
with other monitors.

• Easily adapted to real-time environments.

• Hooks for user command tables, I/O handlers, and default specifications.

• A complete user interface with services normally only seen in full disk operating
systems.

The concise instruction set of the M6809 allows all of these functions and more to be
contained in only 2048 bytes.

The ASSIST09 monitor is easily adapted to run under control of a real-time operating
system. A special function is available which allows voluntary time-slicing, as well as
forced time-slicing upon the use of several service routines by a user program.

B.2 IMPLEMENTATION REQUIREMENTS

Since ASSIST09 was coded in an address-independent manner, it will properly execute
anywhere in the 64K address space of the M6809. However, an assumption must be made
regarding the location of a work area needed to hold miscellaneous variables and the
default stack location. This work area is called the page work area and it is addressed
within ASSIST09 by use of the direct page register. It is located relative to the start of the

B-1

ASSIST09 ROM by an offset of —1900 hexadecimal. Assuming ASSIST09 resides at the
top of the memory address space for direct control of the hardware interrupt vectors, the
memory map would appear as shown in Figure B-1.

FFFF

F800

F000

E8X

E000

ASSIST09
Base ROM

User
Extension ROM

(Unused)

PTM/ACIA

Work Page/Stack

V

ASSIST09 at Top of
Memory Map

Extension ROM or Other Use

Unused 2K

Default PTM and ACIA
Locations

Work Page and Default
Stack (DFFF and Down)

Figure B-1. Memory Map

If F800 is not the start of the monitor ROM the addresses would change, but the relative
locations would remain the same except for the programmable timer module (PTM) and
asynchronous communications interface adapter (ACIA) default addresses which are fix-
ed.

The default console input/output handlers access an ACIA located at E008. For trace
commands, a PTM with default address E000 is used to force an NMI so that single in-
structions may be executed. These default addresses may easily be changed using one
of several methods. The console I/O handlers may also be replaced by user routines. The
PTM is initialized during the MONITR service call (see Paragraph B.9 SERVICES) to fireup
the monitor unless its default address has been changed to zero, in which case no PTM
references will occur.

B.3 INTERRUPT CONTROL

Upon reset, a vector table is created which contains, among other things, default inter-
rupt vector handler appendage addresses. These routines may easily be replaced by user
appendages with the vector swap service described later. The default actions taken by
the appendages are as follows:

RESET — Build the ASSIST09 vector table and setup monitor defaults, then invoke
the monitor startup routine.

SWI — Request a service from ASSIST09.

FIRQ — An immediate RTI is done.

SWl2, SWI3, IRQ, Reserved, NMI — Force a breakpoint and enter the command
processor.

B-2

The use of IRQ is recommended as an abort function during program debugging ses-
sions, as breakpoints and other ASSIST09 defaults are reinitialized upon RESET. Only the
primary software interrupt instruction (SWI) is used, not the SWI2 or SWI3. This avoids
page fault problems which would otherwise occur with a memory management unit as
the SW12 and SW13 instructions do not disable interrupts.

Counter number one of the PTM is used to cause an NMI interrupt for the trace and break-
point commands. At RESET the control register for timer one is initialized for tracing pur-
poses. If no tracing or breakpointing is done then the entire PTM is available to the user.
Otherwise, only counters two and three are available. Although control register two must
be used to initialize control register one, ASSIST09 returns control register two to the
same value it has after a RESET occurs. Therefore, the only condition imposed on a user
program is that if the "operate/preset" bit in control register one must be turned on, $A7
should be stored, $A6 should be stored if it must be turned off.

B.4 INITIALIZATION

During ASSIST09 execution, a vector table is used to address certain service routines
and default values. This table is generated to provide easily changed control information
for user modifications. The first byte of the ASSIST09 ROM contains the start of a
subroutine which initializes the vector table along with setting up certain default values
before returning to the caller.

If the ASSIST09 RESET vector receives control, it does three things:

1. Assigns a default stack in the work space,

2. Calls the aforementioned subroutine to initialize the vector table, and

3. Fires up the ASSIST09 monitor proper with a MONITR SWI service request.
However, a user routine can perform the same functions with a bonus. After calling the
vector intitialization subroutine, it may examine or alter any of the vector table values
before starting normal ASSIST09 processing. Thus, a user routine may "bootstrap"
ASSIST09 and alter the default standard values.

Another method of inserting user modifications is to have a user routine reside at an ex-
tension ROM location 2K below the start of the ASSIST09 ROM. The vector table in-
itialization routine mentioned above, looks for a "BRA"" flag ($20FE) at this address, and
if found calls the location following the flag as a subroutine with the U register pointing
to the vector table. Since this is done after vector table initialization, any or all defaults
may be altered at this time. A big advantage to using this method is that the modifica-
tions are "automatic" in that upon a RESET condition the changes are made without
overt action required such as the execution of a memory change command.

No special stack is used during ASSIST09 processing. This means that the stack pointer
must be valid at all interruptable times and should contain enough room for the stacking
of at least 21 bytes of information. The stack in use during the initial MONITR service call
to start up ASSIST09 processing becomes the "official" stack. If any later stack validity
checks occur, this same stack will be re-based before entering the command handler.

B-3

ASSIST09 uses a work area which is addressed at an offset from the start of the
ASSIST09 ROM. The offset value is —1900 hexadecimal. This points to the base page us-
ed during monitor execution and contains the vector table as well as the start of the
default stack. If the default stack is used and it exceeds 81 bytes in size, then contiguous
RAM must exist below this base work page for proper extension of the stack.

B5. INPUT/OUTPUT CONTROL

Output generated by use of the ASSIST09 services may be halted by pressing any key,
causing a `FREEZE' mode to be entered. The next keyboard entry will release this condi-
tion allowing normal output to continue. Commands which generate large amounts of
output may be aborted by entering CANCEL (CONTROL-X). User programs may also
monitor for CANCEL along with the 'FREEZE' condition even when not performing con-
sole I/O (PAUSE service).

B.6 COMMAND FORMAT

There are three possible formats for a command:
<Command> CR

<Command> <Expressionl> CR

< Command> < Expressionl > < Expression2> CR

The space character is used as the delimiter between the command and all arguments.
Two special quick commands need no carriage return, "." and "I". To re-enter a command
once a mistake is made, type the CANCEL (CONTROL-X) key.

Each "expression" above consists of one or more values separated by an operator.
Values can be hex strings, the letters "P", "M", and "W", or the result of a function. Each
hexadecimal string is converted internally to a 16-bit binary number. The letter "P"
stands for the current program counter, "M" for the last memory examine/change ad-
dress, and "W" for the window value. The window value is set by using the WINDOW
command.

One function exists and it is the INDIRECT function. The character "@" following a value
replaces that value with the 16-bit number obtained by using that value as an address.

Two operators are allowed, " + " and " which cause addition and subtraction. Values
are operated on in a left-to-right order.

Examples:

480 — hexadecimal 480

W + 3 — value of window plus three

P-200 — current program counter min~:s 200 hexadecimal
M — W — current memory pointer minus window value

100@ — value of word addressed by the two bytes at 100 hexadecimal

P + 1 Q — value addressed by the word located one byte up from the current program
counter

B-4

B.7 COMMAND LIST

Table B-1 lists the commands available in the ASSIST09 monitor.

Table B-1. Command List

Command Name Description Commend Entry
Breakpoint Set, clear, display, or delete breakpoints 8
Call Call program as subroutine C
Display Display memory block in hex and ASCII D
Encode Return indexed postbyte value E

Go Start or resume program execution G

Load Load memory from tape L
Memory Examine or alter memory M

Memory change or examine last referenced /
Memory change or examine hex/

Null Set new character and new line padding N
Offset Compute branch offsets 0
Punch Punch memory on tape P
Registers Display or alter registers R
Stlevel Alter stack trace level value S
Trace Trace number of instructions T

Trace one instruction

Verify Verify tape to memory load V
Window Set a window value W

B.8 COMMANDS

Each of the commands are explained on the following pages. They are arranged in
alphabetical order by the command name used in the command list. The command name
appears at each margin and in slightly larger type for easy reference.

B-5

BREAKPOINT BREAKPOINT
Format: Breakpoint

Breakpoint —
Breakpoint <Address>
Breakpoint — <Address>

Operation: Set or change the breakpoint table. The first format displays all breakpoints.
The second clears the breakpoint table. The third enters an address into the
table. The fourth deletes an address from the table. At reset, all breakpoints
are deleted. Only instructions in RAM may be breakpointed.

CALL CALL

Format: Call
Call < Address >

Operation: Call and execute a user routine as a subroutine. The current program counter
will be used unless the address is specified. The user routine should eventual-
ly terminate with a "RTS" instruction. When this occurs, a breakpoint will en-
sue and the program counter will point into the monitor.

B-6

DISPLAY DISPLAY
Format: Display <From>

Display <From> <Length>
Display <From> <To>

Operation: Display contents of memory in hexadecimal and ASCII characters. The se-
cond argument, when entered, is taken to be a length if it is less than the first,
otherwise it is the ending address. A default length of 16 decimal is assumed
for the first format. The addresses are adjusted to iriclucie all bytes within the
surrounding modulo 16 address byte boundary. The CANCEL (CONTROL-X)
key may be entered to abort the display. Care must be exercised when the last
15 bytes of memory are to be displayed. The < Length> option should always
be used in this case to assure proper termination: D FFEO 40
Examples:

D M 10 — Display 16 bytes surrounding the last memory
location examined.

D E000 F000 — Display memory from E000 to F000 hex.

ENCODE ENCODE

Format: Encode <Indexed operand>

Operation: The encode command will return the indexing instruction mode postbyte
value from the entered assembler-like syntax operand. This is useful when
hand coding instructions. The letter "H" is used to indicate the number of hex
digits needed in the expression as shown in the following examples:

E ,Y — Return zero offset to Y register postbyte.
E [HHHH,PCR] — Return two byte PCR offset using indirection.

E [,S + +] — Return autoincrement S by two indirect.

E H,X — Return 5-bit offset from X.

Note that one "H" specifies a 5-bit offset, and that the result given will have
zeros in the offset value position. This comand does not detect all incorrectly
specified syntax or illegal indexing modes.

B-7

GO GO

Format: Go
Go < Address >

Operation: Execute starting from the address given. The first format will continue from
the current program counter setting. If it is a breakpoint no break will be
taken. This allows continuation from a breakpoint. The second format will
breakpoint if the address specified is in the breakpoint list.

LOAD LOAD

Format: Load
Load <Offset>

Operation: Load a tape file created using the S1-S9 format. The offset option, if used, is
added to the address on the tape to specify the actual load address. All off-
sets are positive, but wrap around memory modulo 64K. Depending on the
equipment involved, after the load is complete a few spurious characters may
still be sent by the input device and interpreted as command characters. If
this happens, a CANCEL (CONTROL-X) should be entered to cause such
characters to be ignored. If the load was not successful a "?" is displayed.

B-8

MEMORY MEMORY

Format: MEMORY <Address>/
< Address> /

1

Operation: Initiate the memory examine/change function. The second format will not ac-
cept an expression for the address, only a hex string. The third format
defaults to the address displayed during the last memory change/examine
function. (The same value is obtained in expressions by use of the letter "M".)
After activation, the following actions may be taken until a carriage return is
entered:

< Expr> Replaces the byte with the specified value. The value may
be an expression.

SPACE Go to next address and print the byte value.

(Comma) Go to next address without printing the byte
value.

LF (Line feed) Go to next address and print it along with the
byte value on the next line.

A (Circumflex or Up arrow) Go the previous address and print
it along with the byte value on the next line.

/ Print the current address with the byte value on the next
line.

CR (Carriage return) Terminate the command.

'<Text>' Replace succeeding bytes with ASCII characters until the
second apostrophe is entered.

If a change attempt fails (i.e., the location is not valid RAM) then a question
mark will appear and the next location displayed.

B-9

NULL NULL

Format: Null <Specification>

Operation: Set the new line and character padding count values. The expression value is
treated as two values. The upper two hex represent the character pad count,
and the lower two the new line pad count (triggered by a carriage return). An
expression of less than three hex digits will set the character pad count to
zero. The values must range from zero to 7F hexadecimal (127 decimal).

Example:

N 3 — Set the character count to zero and new line count
to three.

N 207 - Set character padding count to two and new line
count to seven.

Settings for TI Silent 700 terminals are:

Baud Setting
100 0
300 4

1200 317
2400 72F

OFFSET OFFSET

Format: Offset <Offset addr> <To instruction>

Operation: Print the one and two byte offsets needed to perform a branch from the first
expression to the instruction. Thus, offsets for branches as well as indexed
mode instructions which use offsets may be obtained. If only a four byte
value is printed, then a short branch count cannot be done between the two
addresses.

Example:

0 P + 2 A000 — Compute offsets needed from the current pro-
gram counter plus two to A000.

B-10

PUNCH PUNCH

Format: Punch < From> <To>

Operation: Punch or record formatted binary object tape in S1-S9 (MIKBUG) format.

REGISTER REGISTER

Format: Register

Operation: Print the register set and prompt for a change. At each prompt the following
may be entered.

SPACE Skip to the next register prompt
< Expr> SPACE Replace with the specified value and prompt for the next

register.

< Expr> CR (carriage return) Replace with the specified value and ter-
minate the command.

CR Terminate the command.

MIKBUG is a trademark of Motorola Inc.

B-11

STLEVEL STLEVEL

Format: Stlevel
Stlevel <Address>

Operation: Set the stack trace level for inhibiting tracing information. As long as the
stack is at or above the stack level address, the trace display will continue.
However, when lower than the address it is inhibited. This allows tracing of a
routine without including all subroutine and lower level calls in the trace in-
formation. Note that tracing through a ASSIST09 "SWl" service request may
also temporarily supress trace output as explained in the description of the
trace command. The first format sets the stack trace level to the current pro-
gram stack value.

TRACE TRACE

Format: Trace <Count>
(period)

Operation: Trace the specified number of instructions. At each trace, the opcode just ex-
ecuted will be shown along with the register set. The program counter in the
register display points to the NEXT instruction to be executed. A CANCEL
(CONTROL-X) will prematurely halt tracing. The second format (period) will
cause a single trace to occur. Breakpoints have no effect during the trace.
Selected portions of a trace may be disabled using the STLEVEL command.
Instructions in ROM and RAM may be traced, whereas breakpoints may be
done only in RAM. When tracing through a ASSIST09 service request, the
trace display will be supressed starting two instructions into the monitor until
shortly before control is returned to the user program. This is done to avoid an
inordinate amount of displaying because ASSIST09, at times, performs a
sizeable amount of processing to provide the requested services.

B-12

VERIFY VERIFY

Format: Verify
Verify <Offset>

Operation: Verify or compare the contents of memory to the tape file. This command has
the same format and operation as a LOAD command except the file is com-
pared to memory. If the verify fails for any reasor. a ?" is displayed.

WINDOW WINDOW

Format: Window <Value>

Operation: Set the window to a value. This value may be referred to when entering ex-
pressions by use of the letter "W". The window may be set to any 16-bit value.

B-13

B.9 SERVICES

The following describes services provided by the ASSIST09 monitor. These services are
invoked by using the "SWI" instruction followed by a one byte function code. All services
are designed to allow complete address independence both in invocation and operation.
Unless specified otherwise, all registers are transparent over the "SWI" call. In the
following descriptions, the terms "input handler" and "output handler" are used to refer
to appendage routines which may be replaced by the user. The default routines perform
standard I/O through an ACIA for console operations to a terminal. The ASCII CANCEL
code can be entered on most terminals by depressing the CONTROL and X keys
simultaneously. A list of services is given in Table B-2.

Table B-2. Services

Service Entry Code Description

Obtain input character INCHP 0 Obtain the input character in register A from the input handler

Output a character OUTCH 1 Send the character in the register A to the output handler

Send string PDATAI 2 Send a string of characters to the output handler

Send new line and string PDATA 3 Send a carriage return, line feed, and string of characters to the
output handler

Convert byte to hex OUT2HS 4 Display the byte pointed to by the X register in hex

Convert word to hex OUT4HS 5 Display the word pointed to by the X register in hex

Output to next line PCRLF 6 Send a carriage return and line feed to the output handler

Send space SPACE 7 Send a blank to the output handler

Fireup ASSISTo9 MONITR 8 Enter the ASSIST09 monitor

Vector swap VCTRSW 9 Examine or exchange a vector table entry

User breakpoint BRKPT 10 Display registers and enter the command handler

Program break and check PAUSE 11 Stop processing and check for a freeze or cancel condition

B-14

B R K PT User Breakpoint B R K PT

Code: 10

Arguments: None

Result: A disabled breakpoint is taken. The registers are displayed and the com-
mand handler of ASSIST09 is entered.

Description: Establishes user breakpoints. Both SW12 and SW13 default appendages
cause a breakpoint as well, but do not set the I and F mask bits. However,
since they may both be replaced by user routines the breakpoint service
always ensures breakpoint availability. These user breakpoints have
nothing to do with system breakpoints which are handled differently by the
ASSIST09 monitor.

Example: BRKPT EQU 10 INPUT CODE FOR BRKPT

INCHP

SWI
FCB BRKPT

REQUEST SERVICE
FUNCTION CODE BYTE

Obtain Input Character INCHP

Code: 0

Arguments: None

Result: Register A contains a character obtained from the input handler.

Description: Control is not returned until a valid input character is received from the in-
put handler. The input character will have its parity bit (bit 7) stripped and
forced to a zero. All NULL ($00) and RUBOUT ($7F) characters are ignored
and not returned to the caller. The ECHO flag, which may be changed by
the vector SWAP service, determines whether or not the input character is
echoed to the output handler (full duplex operation). The default at reset is
to echo input. When a carriage return ($0D) is received, line feed ($A0) is
automatically sent back to the output handler.

Example: INCHNP EQU 0 INPUT CODE FOR INCHP

SWI PERFORM SERVICE CALL
FCB INCHNP FUNCTION FOR INCHNP

A REGISTER NOW CONTAINS NEXT CHARACTER

B-15

MONITR

Code: 8

Startup ASSIST09 MONITR

Arguments: S - Stack to become the "official" stack
DP-- Direct page default for executed user programs
A = 0 Call input and output console initialization handlers and give the

"ASSIST09" startup message
A#0 Go directly to the command handler

Result: ASSIST09 is entered and the comand handler given control

Description: The purpose for this function is to enter ASSIST09, either after a system
reset, or when a user program desires to terminate. Control is not returned
unless a "GO" or "CALL" command is done without altering the program
counter. ASSIST09 runs on the passed stack, and if a stack error is
detected during user program execution this is the stack that is rebased.
The direct page register value in use remains the default for user program
execution.

The ASSIST09 restart vector routine uses this function to startup monitor
processing after calling the vector build subroutine as explained in IN-
ITIALIZATION.

If indicated by the A register, the input and output initialization handlers
are called followed by the sending of the string "ASSIST09" to the output
handler. The programmable timer (PTM) is initialized, if its address is not
zero, such that register 1 can be used for causing an NMI during trace com-
mands. The command handler is then entered to perform the command re-
quest prompt.

Example: MONITR EQU 8

LOOP CLRA

TFR A,DP
LEAS STACK, PCR
SWI
FCB MONITR
BRA LOOP

B-16

INPUT CODE FOR MONITR

PREPARE ZERO PAGE REGISTER AND
INITIALIZATION PARAMETER
SET DEFAULT PAGE VALUE
SETUP DEFAULT STACK VALUE
REQUEST SERVICE
FUNCTION CODE BYTE
REENTER IF FALLOUT OCCURS

OUTCH Output a Character DUTCH

Code: 1

Arguments: Register A contains the byte to transmit.

Result: The character is sent to the output handler

The character is set as follows ONLY if a LINEFEED was the character to
transmit:

CC = 0 if normal output occurred.
CC = 1 if CANCEL was entered during output.

Description: If a FREEZE Occurs (any input character is received) then control is not
returned to the user routine until the condition is released. The FREEZE
condition is checked for only when a linefeed is being sent. Padding null
characters ($00) may be sent following the outputted character depending
on the current setting of the NULLS command. For DLE (Data Link Escape),
character nulls are never sent. Otherwise, carriage returns ($00) receive the
new line count of nulls, all other characters the character count of nulls.

Example: OUTCH EQU 1 INPUT CODE FOR OUTCH

OUT2HS

LDA #'0 LOAD CHARACTER "0"
SWI SEND OUT WITH MONITOR CODE
FCB OUTCH SERVICE CODE BYTE

Convert Byte to Hex OUT2HS

Code: 4

Arguments: Register X points to a byte to display in hex.

Result: The byte is converted to two hex digits and sent to the output handler
followed by a blank.

Example: OUT2HS EQU 4 INPUT CODE FOR OUT2HS

LEAX DATA, PCR POINT TO `DATA' TO DECODE
SWI REQUEST SERVICE
FCB OUT2HS SERVICE CODE BYTE

B-17

OUT4HS Convert Word to Hex OUT4HS

Code: 5

Arguments: Register X points to a word (two bytes) to display in hex.

Result: The word is converted to four hex digits and sent to the output handler
followed by a blank.

Example: OUT4HS EQU 5 INPUT CODE FOR OUT4HS

PAUSE

Code:

Arguments:

Result:

LEAX DATA, PCR
SWI
FOB OUT4HS

LOAD 'DATA' ADDRESS TO DECODE
REQUEST ASSIST09 SERVICE
SERVICE CODE BYTE

Program Break and Check

11

None

CC = 0 For a normal return.
CC =1 If a CANCEL was entered during the interim.

PAUSE

Description: The PAUSE service should be used whenever a significant amount of pro-
cessing is done by a program without any external interaction (such as con-
sole I/O). Another use of the PAUSE service is for the monitoring of FREEZE
or CANCEL requests from the input handler. This allows multi-tasking
operating systems to receive control and possibly re-dispatch other pro-
grams in a timeslice-like fashion. Testing for FREEZE and CANCEL condi-
tions is performed before return. Return may be after other tasks have had
a chance to execute, or after a FREEZE condition is lifted. In a one task
system, return is always immediate unless a FREEZE occurs.

B-18

P C R L F Output to Next Line PCRLF

Code:

Arguments:

Result:

s

None

A carriage return and line feed are sent to the output handler.
C = 1 if normal output occurred.
C = 1 if CONTROL-X was entered during output.

Description: If a FREEZE occurs (any input character is received), then control is not
returned to the user routine until the condition is released. The string is
completely sent regardless of any FREEZE or CANCEL events occurring.
Padding characters may be sent as described under the OUTCH service.

Example: PCRLF EQU 6 INPUT CODE PCRLF

PDATA

Code:

Arguments:

Result:

Description:

3

SWI REQUEST SERVICE
FCB PCRLF SERVICE CODE BYTE

Send New Line and String PDATA

Register X points to an output string terminated with an ASCII EOT ($04).

The string is sent to the output handler following a carriage return and line
feed.

CC = 0 if normal output occurred.
CC = 1 if CONTROL-X was entered during output.

The output string may contain embedded carriage returns and line feeds
thus allowing several lines of data to be sent with one function call. If a
FREEZE occurs (any input character is received), then control is not return-
ed to the user routine until the condition is released. The string is complete-
ly sent regardless of any FREEZE or CANCEL events occurring. Padding
characters may be sent as described by the OUTCH function.

B-19

4

PDATA Send New Line and String
(Continued) PDATA

Example: PDATA EQU 3 INPUT CODE FOR PDATA

MSGOUT FCC 'THIS IS A MULTIPLE LINE MESSAGE.'
FCB $OA, SOD LINE FEED, CARRIAGE RETURN
FCC 'THIS IS THE SECOND LINE.'
FCB $04 STRING TERMINATOR

LEAX MSGOUT, PCR LOAD MESSAGE ADDRESS
SWI REQUEST A SERVICE
FCB PDATA SERVICE CODE BYTE

P DATA1 Send String P DATA1

Code: 2

Arguments: Register X points to an output string terminated with an ASCII EOT ($04).

Result: The string is sent to the output handler.
CC = 0 if normal output occurred.
CC =1 if CONTROL-X was entered during output.

Description: The output string may contain embedded carriage returns and line feeds
thus allowing several lines cf data to be sent with one function call. If a
FREEZE occurs (any input character is received), then control is not return-
ed to the user routine until the condition is released. The string is complete-
ly sent regardless of any FREEZE or CANCEL events occurring. Padding
characters may be sent as described by the OUTCH function.

Example: PDATA EQU 2 INPUT CODE FOR PDATAI

MSG FCC 'THIS IS AN OUTPUT STRING'
FCB $04 STRING TERMINATOR

LEAX MSG, PCR LOAD `MSG' STRING ADDRESS
SWI REQUEST A SERVICE
FCB PDATAI SERVICE CODE BYTE

B-20

SPACE Single Space Output SPACE

Code: 7

Arguments: None

Result: A space is sent to the output handler.

Description: Padding characters may be sent as described under the OUTCH service.

Example: SPACE EQU 7 INPUT CODE SPACE
SWI REQUEST ASSIST09 SERVICE
FCB SPACE SERVICE CODE BYTE

VCTRSW Vector Swap VCTRSW

Code: 9

Arguments: Register A contains the vector swap input code.
Register X contains zero or a replacement value.

Result: Register X contains the previous value for the vector.

Description: The vector swap service examines/alters a word entry in the ASSIST09 vec-
tor table. This table contains pointers and default values used during
monitor processing. The entry is replaced with the value contained in the X
register unless it is zero. The codes available are listed in Table B-3.

Example: VCTRSW EQU 9 INPUT CODE VCTRSW
.IRQ EQU 12 IRQ APPENDAGE SWAP FUNCTION

CODE

LEAX MYIRQH,PCR LOAD NEW IRQ HANDLER ADDRESS
LDA #.IRQ LOAD SUBCODE FOR VECTOR SWAP
SWI REQUEST SERVICE
FCB VCTRSW SERVICE CODE BYTE

X NOW HAS THE PREVIOUS APPENDAGE ADDRESS

B-21

B.10 VECTOR SWAP SERVICE

The vector swap service allows user modifications of the vector table to be easily install-
ed. Each vector handler, including the one for SWI, performs a validity check on the stack
before any other processing. If the stack is not pointing to valid RAM, it is reset to the in-
itial value passed to the MONITR request which fired-up ASSIST09 after RESET. Also, the
current register set is printed following a "?" (question mark) and then the command
handler is entered. A list of each entry in the vector table is given in Table B-3.

Table B-3. Vector Table Entries

Entry Code Description

AVTBL 0 Returns address of vector table

.CMDL1 2 Primary command list

.RSVD 4 Reserved MC6809 interrupt vector appendage

.SWl3 6 Software interrupt 3 interrupt vector appendage

.SWI2 8 Software interrupt 2 interrupt vector appendage

.FIRQ 10 Fast interrupt request vector appendage

.IRO 12 Interrupt request vector appendage

.SWI 14 Software interrupt vector appendage

.NMI 16 Non-maskable interrupt vector appendage

RESET 18 Reset interrupt vector appendage

LION 20 Input console intiialization routine

.CIDTA 22 Input data byte from console routine

CIOFF 24 Input console shutdown routine
COON 26 Output console initialization routine

.CODTA 28 Output/data byte to console routine
COOFF 30 Output console shutdown routine

.HSDTA 32 High speed display handler routine

.BSON 34 Punch/load initialization routine

.BSDTA 36 Punch/load handler routine

BSOFF 38 Punch/load shutdown routine

PAUSE 40 Processing pause routine

.CMDL2 44 Secondary command list

ACIA 46 Address of ACIA

PAD 48 Character and new line pad counts
ECHO 50 Echo flag
PTM 52 Programmable timer module address

The following pages describe the purpose of each entry and the requirements which
must be met for a user replaceable value or routine to be successfully substituted.

B-22

ACIA ACIA Address .ACIA

Code: 46

Description: This entry contains the address of the ACIA used by the default console in-
put and output device handlers. Standard ASSIST09 initialization sets this
value to hexadecimal E008. If this must be altered, then it must be done
before the MONITR startup service is invoked, since that service calls the
.COON and .COIN input and output device initialization routines which in-
itialize the ACIA pointed to by this vector slot.

.AVT B L Return Address of Vector Table .AVT B L

Code: 0

Description: The address of the vector table is returned with this code. This allows mass
changes to the table without individual calls to the vector swap service.
The code values are identical to the offsets in the vector table. This entry
should never be changed, only examined.

B-23

. BS DTA Punch/Load Handler Routine . BS DTA

Code:

Description:

36

This entry contains the address of a routine which performs punch, load,
and verify operations. The .BSON routine is always executed before the
routine is given control. This routine is given the same parameter list
documented for .BSON. The default handler uses the .CODTA routine to
punch or the .CIDTA routine to read data in S1/S9 (MIKBUG) format. The
function code byte must be examined to determine the type request being
handled.

A return code must be given which reflects the final processing disposition:

Z=1 Successful completion

Z = 0 Unsuccessful completion.

The .BSOFF routine will be called after this routine is completed.

or

. BSO F F Punch/Load Shutdown Routine . BSO F F

Code:

Description:

38

This entry points to a subroutine which is designated to terminate device
processing for the punch, load, and verify handler .BSDTA. The stack con-
tains a parameter list as documented for the .BSON entry. The default
ASSIST09 routine issues DC4 ($14 or stop) and DC3 ($13 or x-off) followed
by a one second delay to give the reader/punch time to stop. Also, an inter-
nally used flag by the INCHP service routine is cleared to reverse the ef-
fect caused by its setting in the .BSON handler. See that description for an
explanation of the proper use of this flag.

B-24

. BSO N Punch!Load Initialization Routine . BSO N

Code: 34

Description: This entry points to a subroutine with the assigned task of turning on the
device used for punch, load, and verify processing. The stack contains a
parameter list describing which function is requested. The default routine
sends an ASCII "reader on" or "punch on" code of DC1 ($11) or DC2 ($12)
respectively to the output handler (.CODTA). A flag is also set which
disables test for FREEZE conditions during INCHNP processing. This is
done so characters are not lost by being interpreted as FREEZE mode in-
dicators. If a user replacement routine also uses the INCHNP service, then
it also should set this same byte non-zero and clear it in the .BSOFF
routine. The ASSIST09 source listing should be consulted for the location
of this byte.

The stack is setup as follows:

S + 6 = Code byte, VERIFY (—1), PUNCH (0), LOAD (1)

S + 4 = Start address for punch only

S +2= End address for punch, or offset for READ/LOAD

S +0= Return address

. C I DTA Input Data Byte from Console Routine . C I DTA

Code: 22

Description: This entry determines the console input handler appendage. The respon-
sibility of this routine is to furnish the requested next input character in the
A register, if available, and return with a condition code. The INCHP ser-
vice routine calls this appendage to supply the next character. Also, a
"FREEZE" mode routine calls at various times to test for a FREEZE condi-
tion or determine if the CANCEL key has been entered. Processing for this
appendage must abide by the following conventions:

Input: PC--ASSIST09 work page
S-- Return address

Output: C=0, A = input character
C = 1 if no input character is yet available

Volatile Registers: U, B

The handler should always pass control back immediately even if no
character is yet available. This enables other tasks to do productive work
while input is unavailable. The default routine reads an ACIA as explained
in Paragraph B.2 Implementation Requirements.

B-25

. C I O F F Input Console Shutdown Routine . C' O F F
Code: 24

Description: This entry points to a routine which is called to terminate input processing.
It is not called by ASSIST09 at any time, but is included for consistency.
The default routine merely does an "RTS". The environment is as follows:

Input: None
Output: Input device terminated
Volatile Registers: None

. C I O N Input Console Initialization Routine . C I O N

Code: 20

Description: This entry is called to initiate the input device. It is called once during the
MONITR service which initializes the monitor so the command processor
may obtain commands to process. The default handler resets the ACIA
used for standard input and output and sets up the following default condi-
tions: 8-bit word length, no parity checking, 2 stop bits, divide-by-16 counter
ratio. The effect of an 8-bit word with no parity checking is to accept 7-bit
ASCII and ignore the parity bit.

Input: .ACIA Memory address of the ACIA
Output: The output device is initialized
Volatile Registers: A, X

B-26

. C M D L 1 Primary Command List . C M D L 1

Code: 2

Description: User supplied command tables may either substitute or replace the
ASSIST09 standard tables. The command handler scans two lists, the
primary table first followed by the secondary table. The primary table is
pointed to by this entry and contains, as a default, the ASSIST09 command
table. The secondary table defaults to a null list. A user may insert their own
table into either position. If a user list is installed in the secondary table
position, then the ASSIST09 list will be searched first. The default
ASSIST09 list contains all one character command names. Thus, a user
command "PRINT" would be matched if the letters "PR" are typed, but not
just a "P" since the system command list would match first. A user may
replace the primary system list if desired. A command is chosen on a first
match basis comparing only the character(s) entered. This means that two
or more commands may have the same initial characters and that if only
that much is entered then the first one in the list(s) is chosen.

Each entry in the users command list must have the following format:

+0 FCB L Where "L" is the size of the entry in-
cluding this byte

+1 FCC `<string>' Where "<string>" is the command
name

+ N FDB EP — * Where "EP" represents the symbol de-
fining the start of the command rou-
tine

The first byte is an entry length byte and is always three more than the
length of the command string (one for the length itself plus two for the
routine offset). The command string must contain only ASCII alphanumeric
characters, no special characters. An offset to the start of the command
routine is used instead of an absolute address so that position-
independent programs may ;ontain command tables. The end of the com-
mand table is a one byte flag. A — 1 ($FF) specifies that the secondary table
is to be searched, or a —2 (aFE) that command list searching is to be ter-
minated. The table represented as the secondary command list must end
with —2. The first list must end with a —l it both lists are to be searched, or
a — 2 if only one list is to be used.

A command routine is entered with the following registers set:

DPR-- ASSIST09 page work area.

S-• A return address to the command processor.

Z= 1 A carriage return terminated the command name.

Z=0 A space delimiter followed the command name.

8-27

.CMDL1 Primary Command List
(Continued) .CMDL1

A command routine is entered after the delimiter following the command
name is typed in. This means that a carriage return may be the delimiter
entered with the input device resting on the next line. For this reason the Z
bit in the condition code is set so the command routine may determine the
current position of the input device. The command routine should ensure
that the console device is left on a new line before returning to the com-
mand handler.

.CM D L2 Secondary Command List .CM D L2

Code: 44

Description: This entry points to the second list table. The default is a null list followed
by a byte of — 2. A complete explanation of the use for this entry is provided
under the description of the .CMDL1 entry.

.CO DTA Output Data Byte to Console Routine .CO DTA

Code: 28

Description: The responsibility of this handler is to send the character in the A register
to the output device. The default routine also follows with padding
characters as explained in the description of the OUTCH service. If the out-
put device is not ready to accept a character, then the "pause" subroutine
should be called repeatedly while this condition lasts. The address of the
pause routine is obtained from the .PAUSE entry in the vector table. The
character counts for padding are obtained from the .PAD entry in the table.
All ASSIST09 output is done with a call to this appendage. This includes
punch processing as well. The default routine sends the character to an
ACIA as explained in Paragraph B.2 Implementation Requirements. The
operating environment is as follows:

Input: A = Character to send
DP = ASSIST09 work page
.PAD = Character and new line padding counts

(in vector table)
.PAUSE = Pause routine (in vector table)

Output: Character sent to the output device
Volatile Registers: None. All work registers must be restored

B-28

.COO F F Output Console Shutdown Routine .COO F F

Code: 30

Description: This entry addresses the routine to terminate output device processing.
ASSIST09 does not call this routine. It is included for completeness. The
default routine is an "RTS".

Input: DP---ASSIST09 work page
Output: The output device is terminated
Volatile Registers: None

.COON Output Console Initialization Routine . COON

Code: 26

Description: This entry points to a routine to initialize the standard output device. The
default routine initializes an ACIA and is the very same one described
under the .CION vector swap definition.

Input: ACIA vector entry for the ACIA address
Output: The output device is initialized
Volatile Registers: A, X

B-29

.ECHO Echo Flag .ECHO
Code: 50

Description: The first byte of this word is used as a flag for the INCH P service routine
to determine the requirement of echoing input received from the input
handler. A non-zero value means to echo the input; zero not to echo. The
echoing will take place even if user handlers are substituted for the default
.CIDTA handler as the INCH? service routine performs the echo.

.FIRQ

Code: 10

Fast Interrupt Request Vector Appendage .FIRQ

Description: The fast interrupt request routine is located via this pointer. The MC6809
addresses hexadecimal FFF6 to locate the handler when processing a
FIRQ. The stack and machine status is as defined for the FIRQ interrupt
upon entry to this appendage. It should be noted that this routine is
"jumped" to with an indirect jump instruction which adds eleven cycles to
the interrupt time before the handler actually receives control. The default
handler does an immediate "RTI" which, in essence, ignores the interrupt.

B-30

. H S DTA High Speed Display Handler Routine . H S DTA

Code: 32

Description: This entry is invoked as a subroutine by the DISPLAY command and passed
a parameter list containing the "TO" and "FROM" addresses. The from
value is rounded down to a 16 byte address boundary. The default routine
displays memory in both hexadecimal and ASCII representations, with a
title produced on every 128 byte boundary. The purpose for this vector table
entry is for easy implementation of a user routine for special purpose
handling of a block of data. (The data could, for example, be sent to a high
speed printer for later analysis.) The parameters are all passed on the
stack. The environment is as follows:

Input: S +4= Start address
S +2= Stop address
S +0= Return Address
DP--►ASSIST09 work page

Output: Any purpose desired
Volatile Registers: X, D

.' R Q Interrupt Request Vector Appendage .' R Q

Code: 12

Description: All interrupt requests are passed to the routine pointed to by this vector.
Hexadecimal FFF8 is the MC6809 location where this interrupt vector is
fetched. The stack and processor status is that defined for the IRQ inter-
rupt upon entry to the handler. Since the routine's address is in the vector
table, an indirect jump must be done to invoke it. This adds eleven cycles to
the interrupt time before the IR~.1 handler receives control. The default IR
handler prints the registers and enters the ASSIST09 command handler.

E3-31

. N M I Non•Maskable Interrupt Vector Appendage . N M

Code: 16

Description: This entry points to the non-maskable interrupt handler to receive control
whenever the processor branches to the address at hexadecimal FFFC.
Since ASSIST09 uses the NMI interrupt during trace and breakpoint pro-
cessing, such commands should not be used if a user handler is in control.
This is true unless the user handler has the intelligence to forward control
to the default handler if the NMI interrupt has not been generated due to
user facilities. The NMI handler given control will have an eleven cycle
overhead as its address must be fetched from the vector table.

.PAD Character and New Line Pad Count .PAD

Code: 48

Description: This entry contains the pad count for characters and new lines. The first of
the two bytes is the count of nulls for other characters, and the second is
the number of nulls ($00) to send out after any line feed is transmitted. The
ASCII Escape character ($10) never has nulls sent following it. The default
.CODTA handler is responsible for transmitting these nulls. A user handler
may or may not use these counts as required.

The "NULLS" command also sets these two bytes with user specified
values.

B-32

. PAUSE Processing Pause Routine . PAUSE

Code: 40

Description: In order to support real-time (also known as multi-tasking) environments
ASSIST09 calls a dead-time routine whenever processing must wait for
some external change of state. An example would be when the OUTCH ser-
vice routine attempts the sending of a character to the ACIA through the
default .CODTA handler and the ACIA status registers shows that it cannot
yet be accepted. The default dead-time routine resides in a reserved four
byte area which contains the single instruction, "RTS". The .PAUSE vector
entry points to this routine after standard initialization. This pointer may be
changed to point to a user routine which dispatches other programs so that
the MC6809 may be utilized more efficiently. Another example of use would
be to increment a counter so that dead-time cycle counts may be ac-
cumulated for statistical or debugging purposes. The reason for the four
byte reserved area (which exists in the ASSIST09 work page) is so other
code may be overlayed without the need for another space in the address
map to be assigned. For example, a master monitor may be using a memory
management unit to assign a complete 64K block of memory to ASSIST09
and the programs being executed/tested under ASSIST09 control. The
master monitor wishes, or course, to be reentered when any "dead time"
occurs, so it overlays the default routine ("RTS") with its own "SWI". Since
the master monitor would be "front ending" all "SWI's" anyway, it knows
when a "pause" call is being performed and can redispatch other systems
on a time-slice basis.

All registers must be transparent across the pause handler. Along with
selected points in ASSIST09 user service processing, there is a special ser-
vice call specifically for user programs to invoke the pause routine. It may
be suggested that if no services are being requested for a given time period
(say 10 ms) user programs should call the .PAUSE service routine so that
fair-task dispatching can be guaranteed.

. PT M Programmable Timer Module Address . PT M

Code: 53

Description: This entry contains the address of the MC6840 programmable timer module
(PTM). Alteration of this slot should occur before the MONITR startup ser-
vice is called as explained in Paragraph B.4 Initialization. If no PTM is
available, then the address should be changed to a zero so that no in-
itialization attempt will take place. Note that if a zero is supplied, ASSIST09
Breakpoint and Trace commands should not be issued.

B-33

. R ES ET Reset Interrupt Vector Appendage . RESET

Code: 18

Description: This entry returns the address of the RESET routine which initializes
ASSIST09. Changing it has no effect, but it is included in the vector table in
case a user program wishes to determine where the ASSIST09 restart code
resides. For example, if ASSIST09 resides in the memory map such that it
does not control the MC6809 hardware vectors, a user routine may wish to
start it up and thus need to obtain the standard RESET vector code ad-
dress. The ASSIST09 reset code assigns the default in the work page, calls
the vector build subroutine, and then starts ASSIST09 proper with the
MONITR service call.

. RSV D Reserved MC6809 Interrupt Vector Appendage . RSV D

Code: 4

Description: This is a pointer to the reserved interrupt vector routine addressed at hex-
adecimal FFFO. This MC6809 hardware vector is not defined as yet. The
default routine setup by ASSIST09 will cause a register display and en-
trance to the command handler.

B-34

.SWI .SWI
Softare Interrupt Vector Appendage

Code: 14

Description: This vector entry contains the address of the Software interrupt routine.
Normally, ASSIST09 handles these interrupts to provide services for user
programs. If a user handler is in place, however, these facilities cannot be
used unless the user routine "passes on" such requests to the ASSIST09
default handler. This is easy to do, since the vector swap function passes
back the address of the default handler when the switch is made by the
user. This "front ending" allows a user routine to examine all serivice calls,
or alter/replace/extend them to his requirements. Of course, the registers
must be transparent across the transfer of control from the user to the
standard handler. A "JMP" instruction branches directly to the routine
pointed to by this vector entry when a SWI occurs. Therefore, the environ-
ment is that as defined for the "SWI" interrupt.

. S Yr 12 Software Interrupt 2 Vector Appendage . SW' 2

Code: 8

Description: This entry contains a pointer to the SW12 handler entered whenever that in-
struction is executed. The status of the stack and machine are those defin-
ed for the SWI2 interrupt which has its interrupt vector address at FFF4
hexadecimal. The default handler prints the registers and enters the
ASSIST09 command handler.

B-35

.SWI3 Software Interrupt 3 Vector Appendage .SWI3

Code: 6

Description: This entry contains a pointer to the SWI3 handler entered whenever that in-
struction is executed. The status of the stack and machine are those defin-
ed for the SWI3 interurpt which has its interrupt vector address located at
hexadecimal FFF2. The default handler prints the registers and enters the
ASSIST09 command handler.

B-36

B.11 MONITOR LISTING

The following pages contain a listing of the ASSIST09 monitor.

PAGE 001 ASSIST09.SA:0 ASSISTO9 - MC6809 MONITOR

00001 TTL ASSISTO9 - MC6809 MONITOR
00002 OPT ABS,LLE=85,S,CRE

00004
00005
00006

00008
00009
00010
00011
00012
00013
00014
00015

* COPYRIGHT (C) MOTOROLA, INC. 1979 *

* THIS IS THE BASE ASSISTO9 ROM.
* IT MAY RUN WITH OR WITHOUT THE
* EXTENSION ROM WHICH
* WHEN PRESENT WILL BE AUTOMATICALLY
* INCORPORATED BY THE BLDVTR
* SUBROUTINE. .

00017 ***

00018 * GLOBAL MODULE EQUATES
00019 **

00020 F800 A ROMBEG EQU $F800 ROM START ASSEMBLY ADDRESS
00021 £700 A RAMOFS EQU -$1900 ROM OFFSET TO RAM WORK PAGE
00022 0800 A ROMSIZ EQU 2048 ROM SIZE
00023 F000 A ROM20F' EQU ROMBEG-ROMSIZ START OF EXTENSION ROM
00024 E008 A ACIA EQU SE008 DEFAULT ACIA ADDRESS
00025 E000 A PTM EQU $E000 DEFAULT PTM ADDRESS
00026 0000 A DFTCHP EQU 0 DEFAULT CHARACTER PAD COUNT
00027 0005 A DFTNLP EQU 5 DEFAULT NEW LINE PAD COUNT
00028 003E A PROMPT EQU '> PROMPT CHARACTER
00029 0008 A NUMBKP EQU 8 NUMBER OF BREAKPOINTS
00030 ***

00032 ***
00033 * MISCELANEOUS EQUATES
00034
00035 0004 A EOT EQU $04 END OF TRANSMISSION
00036 0007 A BELL EQU $07 BELL CHARACTER
00037 000A A LF EQU $OA LINE FEED
00038 0000 A CR EQU $00 CARRIAGE RETURN
00039 0010 A DLE EQU $10 DATA LINK ESCAPE
00040 0018 A CAN EQU $18 CANCEL (CTL-X)
00041 * PTM ACCESS DEFINITIONS
00042 E001 A PTMSTA EQU PTM+1 READ STATUS REGISTER
00043 £000 A PTMC13 EQU PTM CONTROL REGISTERS 1 AND 3
00044 £001 A PTMC2 EQU PTM+1 CONTROL REGISTER 2
00045 E002 A PTMTMI EQU PTM+2 LATCH 1
00046 £004 A PTMTM2 EQU PTM+4 LATCH 2
00047 E006 A PTMTM3 EQU PTM+6 LATCH 3

00049 008C A SKIP2 EQU $8C "CMPX #" OPCODE - SKIPS TWO BYTES

00051
00052 * ASSISTO9 MONITOR SWI FUNCTIONS

B-37

PAGE 002 ASSISTO9.SA:0 ASSISTO9 - MC6809 MONITOR

00053 * THE FOLLOWING EQUATES DEFINE FUNCTIONS PROVIDED
00054 * BY THE ASSISTO9 MONITOR VIA THE SWI INSTRUCTION.
00055
00056 0000 A INCHNP EQU 0 INPUT CHAR IN A REG - NO PARITY
00057 0001 A OUTCH EQU 1 OUTPUT CHAR FROM A REG
00058 0002 A PDATAI EQU 2 OUTPUT STRING
00059 0003 A PDATA EQU 3 OUTPUT CR/LF THEN STRING
00060 0004 A OUT2HS EQU 4 OUTPUT TWO HEX AND SPACE
00061 0005 A OUT4HS EQU 5 OUTPUT FOUR HEX AND SPACE
00062 0006 A PCRLF EQU 6 OUTPUT CR/LF
00063 0007 A SPACE EQU 7 OUTPUT A SPACE
00064 0008 A MONITR EQU 8 ENTER ASSISTO9 MONITOR
00065 0009 A VCTRSW EQU 9 VECTOR EXAMINE/SWITCH
00066 000A A BRKPT EQU 10 USER PROGRAM BREAKPOINT
00067 0008 A PAUSE EQU 11 TASK PAUSE FUNCTION
00068 0008 A NUMFUN EQU 11 NUMBER OF AVAILABLE FUNCTIONS
00069 * NEXT SUB-CODES FOR ACCESSING THE VECTOR TABLE.
00070 * THEY ARE EQUIVALENT TO OFFSETS IN THE TABLE.
00071 * RELATIVE POSITIONING MUST BE MAINTAINED.
00072 0000 A .AVTBL EQU 0 ADDRESS OF VECTOR TABLE
00073 0002 A .CMDL1 EQU 2 FIRST COMMAND LIST
00074 0004 A .RSVD EQU 4 RESERVED HARDWARE VECTOR
00075 0006 A .SWI3 EQU 6 SWI3 ROUTINE
00076 0008 A .SWI2 EQU 8 SWI2 ROUTINE
00077 COCA A .FIRQ EQU 10 FIRQ ROUTINE
00078 OOOC A . IRQ EQU 12 IRQ ROUTINE
00079 000E A .SWI EQU 14 SWI ROUTINE
00080 0010 A .NMI EQU 16 NMI ROUTINE
00081 0012 A .RESET EQU 18 RESET ROUTINE
00082 0014 A .CION EQU 20 CONSOLE ON
00083 0016 A .CIDTA EQU 22 CONSOLE INPUT DATA
00084 0018 A .CIOFF EQU 24 CONSOLE INPUT OFF
00085 OOlA A .COON EQU 26 CONSOLE OUTPUT ON
00086 OOIC A .CODTA EQU 28 CONSOLE OUTPUT DATA
00087 001E A .000FF EQU 30 CONSOLE OUTPUT OFF
00088 0020 A .HSDTA EQU 32 HIGH SPEED PRINTDATA
00089 0022 A .BSON EQU 34 PUNCH/LOAD ON
00090 0024 A .BSDTA EQU 36 PUNCH/LOAD DATA
00091 0026 A .BSOFF EQU 38 PUNCH/LOAD OFF
00092 0028 A .PAUSE EQU 40 TASK PAUSE ROUTINE
00093 002A A .EXPAN EQU 42 EXPRESSION ANALYZER
00094 002C A .CMDL2 EQU 44 SECOND COMMAND LIST
00095 002E A .ACIA EQU 46 ACIA ADDRESS
00096 0030 A .PAD EQU 48 CHARACTER PAD AND NEW LINE PAD
00097 0032 A .ECHO EQU 50 ECHO/LOAD AND NULL BKPT FLAG
00098 0034 A .PTM EQU 52 PTM ADDRESS
00099 001B A NUMVTR EQU 52/2+1 NUMBER OF VECTORS
00100 0034 A HIVTR EQU 52 HIGHEST VECTOR OFFSET

B-38

PAGE 003 ASSISTO9.SA:0

00102
00103
00104

ASSISTO9 - MC6809 MONITOR

**

* WORK AREA

* THIS WORK AREA IS ASSIGNED TO THE PAGE ADDRESSED BY

00105 * -S1800,PCR FROM THE BASE ADDRESS OF THE ASSIST09

00106 * ROM. THE DIRECT PAGE REGISTER DURING MOST ROUTINE

00107 * OPERATIONS WILL POINT TO THIS WORK AREA. THE STACK

00108 * INITIALLY STARTS UNDER THE RESERVED WORK AREAS AS

00109 * DEFINED HEREIN.

00110 **

00111 DF00 A WORKPG EQU ROMBEG+RAMOFS SETUP DIRECT PAGE ADDRESS

00112 OODF A SETDP WORKPG!>8 NOTIFY ASSEMBLER

00113A E000 ORG WORKPG+256 READY PAGE DEFINITIONS

00114 * THE FOLLOWING THRU BKPTOP MUST RESIDE IN THIS ORDER

00115 * FOR PROPER INITIALIZATION

00116A DFFC ORG *-4
00117 DFFC A PAUSER EQU * PAUSE ROUTINE

00118A DFFB ORG *-1

00119 DFFB A SWIBFL EQU * BYPASS SWI AS BREAKPOINT FLAG
00120A DFFA ORG *-1

00121 DFFA A BKPTCT EQU * BREAKPOINT COUNT

00122A DFF8 ORG *-2
00123 DFFB A SLEVEL EQU * STACK TRACE LEVEL

00124A DFC2 ORG *-NUMVTR*2

00125 DFC2 A VECTAB EQU * VECTOR TABLE
00126A DFB2 ORG *-2*NUMBKP

00127 DFB2 A BKPTBL EQU * BREAKPOINT TABLE

00128A DFA2 ORG *-2*NUMBKP

00129 DFA2 A BKPTOP EQU * BREAKPOINT OPCODE TABLE

00130A DFAO ORG *-2
00131 DFAO A WINDOW EQU * WINDOW
00132A DF9E ORG *-2

00133 DF9E A ADDR EQU * ADDRESS POINTER VALUE
00134A DF9D ORG *-1
00135 DF9D A BASEPG EQU * BASE PAGE VALUE
00136A DF9B ORG *-2

00137 DF9B A NUMBER EQU * BINARY BUILD AREA
00138A DF99 ORG *-2
00139 DF99 A LASTOP EQU * LAST OPCODE TRACED

00140A DF97 ORG *-2
00141 DF97 A RSTACK EQU * RESET STACK POINTER

00142A DF95 ORG *-2

00143 DF95 A PSTACK EQU * COMMAND RECOVERY STACK
00144A DF93 ORG *-2
00145 DF93 A PCNTER EQU * LAST PROGRAM COUNTER
00146A DF91 ORG *-2
00147 DF91 A TRACEC EQU * TRACE COUNT

00148A DF90 ORG *-1

00149 DF90 A SWICNT EQU * TRACE "SWI" NEST LEVEL COUNT

00150A DF8F ORG *-1 (MISFLG MUST FOLLOW SWICNT)

00151 DF8F A MISFLG EQU * LOAD CMD/THRU BREAKPOINT FLAG

00152A DF8E ORG *-1
00153 DF8E A DELIM EQU * EXPRESSION DELIMITER/WORK BYTE

00154A DF66 ORG *-40

00155 DF66 A ROM2WK EQU * EXTENSION ROM RESERVED AREA
00156A DF51 ORG *-21

00157 DF51 A TSTACK EQU * TEMPORARY STACK HOLD

00158 DF51 A STACK EQU * START OF INITIAL STACK

B-39

PAGE

00160

00161

004 ASSISTO9.SA:0

*

ASSISTO9 - MC6809 MONITOR

DEFAULT THE ROM BEGINNING ADDRESS TO 'ROMBEG'
00162 * ASSISTO9 IS POSITION ADDRESS INDEPENDENT, HOWEVER
00163 * WE ASSEMBLE ASSUMING CONTROL OF THE HARDWARE VECTORS.
00164 * NOTE THAT THE WORK RAM PAGE MUST BE 'RAMOFS'
00165 * FROM THE ROM BEGINNING ADDRESS.
00166
00167A F800 ORG ROMBEG ROM ASSEMBLY/DEFAULT ADDRESS

00169
00170 * BLDVTR - BUILD ASSIS'P09 VECTOR TABLE
00171 * HARDWARE RESET CALLS THIS SUBROUTINE TO BUILD THE
00172 * ASSISTO9 VECTOR TABLE. THIS SUBROUTINE RESIDES AT
00173 * THE FIRST BYTE OF THE ASSISTO9 ROM, AND CAN BE
00174 * CALLED VIA EXTERNAL CONTROL CODE FOR REMOTE
00175 * ASSISTO9 EXECUTION.
00176 * INPUT: S->VALID STACK RAM

00177 * OUTPUT: U->VECTOR TABLE ADDRESS
00178 * DPR->ASSISTO9 WORK AREA PAGE
00179 * THE VECTOR TABLE AND DEFAULTS ARE INITIALIZED

00180 * ALL REGISTERS VOLATILE

00181

00183A P800 30 8D E7BE BLDVTR LEAX VECTAB,PCR ADDRESS VECTOR TABLE

00184A P804 1F 10 A TFR X,D OBTAIN BASE PAGE ADDRESS
00185A F806 1F 8B A TFR A,DP SETUP DPR
00186A F808 97 9D A STA BASEPG STORE FOR QUICK REFERENCE

00187A F8OA 33 84 A LEAU ,X RETURN TABLE TO CALLER
00188A F8OC 31 8C 35 LEA? <INITVT,PCR LOAD FROM ADDR

00189A F8OF EF 81 A STU ,X++ INIT VECTOR TABLE ADDRESS

00190A P811 C6 16 A LDB #NUMVTR-5 NUMBER RELOCATABLE VECTORS
00191A F813 34 04 A PSHS B STORE INDEX ON STACK

00192A F815 1F 20 A BLD2 TFR Y,D PREPARE ADDRESS RESOLVE

00193A P817 E3 Al A ADDD TO ABSOLUTE ADDRESS
00194A P819 ED 81 A STD ,X++ INTO VECTOR TABLE

00195A F81B 6A E4 A DEC ,S COUNT DOWN

00196A F81D 26 F6 F815 BNE BLD2 BRANCH IF MORE TO INSERT
00197A F81F C6 OD A LOB #INTVE-INTVS STATIC VALUE INIT LENGTH
00198A P821 A6 AO A BLD3 LDA ,y+ LOAD NEXT BYTE
00199A F823 A7 80 A STA ,X+ STORE INTO POSITION
00200A P825 5A DECB COUNT DOWN

00201A P826 26 F9 P821 BNE BLD3 LOOP UNTIL DONE
00202A F828 31 8D P7D4 LEAY ROM2OF,PCR TES'P POSSIBLE EXTENSION ROM
00203A F82C 8E 2OFE A LOX #$20FE LOAD "BRA *" FLAG PATTERN

00204A F82F AC Al A CMPX ,Y++ ? EXTENDED ROM HERE
00205A P831 26 02 P835 BNE BLDRTN BRANCH NOT OUR ROM TO RETURN
00206A P833 AD A4 A ASR ,Y CALL EXTENDED ROM INITIALIZE

00207A P835 35 84 A BLDRTN PULS PC,B RETURN TO INITIALIZER

00209
00210 RESET ENTRY POINT

00211 * HARDWARE RESET ENTERS HERE IF ASSISTO9 IS ENABLED

00212 * TO RECEIVE THE MC6809 HARDWARE VECTORS. WE CALL
00213 * THE HLDVTR SUBROUTINE TO INITIALIZE THE VECTOR

B-40

PAGE 005

00214
00215
00216

ASSIST09.SA:0 ASSIS'P09 - 106809 MONITOR

* TABLE, STACK, AND THEN FIREUP THE MONITOR VIA SWI
* CALL.

00217A P837 32 8D E716 RESET LEAS STACK,PCR SETUP INITIAL STACK
00218A F83B 8D C3 P800 BSR BLDVTR BUILD VECTOR TABLE
00219A F83D 4F RESET2 CLRA ISSUE STARTUP MESSAGE
00220A F83E IF SB A TFR A,DP DEFAULT TO PAGE ZERO

00221A P840 3F SWI PERFORM MONITOR FIREUP
00222A P841 08 A FCB MONITR TO ENTER COMMAND PROCESSING
00223A P842 20 F9 F83D BRA RESET2 REENTER MONITOR IF 'CONTINUE'

00225 **

00226 * INITVT - INITIAL VECTOR TABLE
00227 * THIS TABLE IS RELOCATED TO RAM AND REPRESENTS THE
00228 * INITIAL STATE OF THE VECTOR TABLE. ALL ADDRESSES

00229 * ARE CONVERTED TO ABSOLUTE FORM. THIS TABLE STARTS
00230 * WITH THE SECOND ENTRY, ENDS WITH STATIC CONSTANT

00231 * INITIALIZATION DATA WHICH CARRIES BEYOND THE TABLE.

00232 **

00233A P844 0158 A INITVT PUB CMDTBL-* DEFAULT FIRST COMMAND TABLE
00234A P846 0292 A PUB RSRVDR-* DEFAULT UNDEFINED HARDWARE VECTOR
00235A P848 0290 A PUB SW13R-* DEFAULT SWI3
00236A F84A 028E A FDB SWI 2R_* DEFAULT SWI2
00237A F84C 0270 A FDB FIRQR-* DEFAULT FIRQ
00238A F84E 028A A FDB IRQR-* DEFAULT IRQ ROUTINE
00239A P850 0045 A FDB SWIR-* DEFAULT SWI ROUTINE
00240A P852 022B A FDB NMIR-* DEFAULT NMI ROUTINE

00241A P854 FFE3 A FDB RESET-* RESTART VECTOR
00242A P856 0290 A PUB CI ON- * DEFAULT CION

00243A P858 0284 A FDB C I DTA-* DEFAULT CIDTA
00244A F85A 0296 A FDB CIOFF-* DEFAULT CIOFF
00245A F85C 028A A FDB COON-* DEFAULT COON
00246A F85E 0293 A FDB CODTA-* DEFAULT CODTA
00247A P860 0290 A FDB COOP F-* DEFAULT COO F' F
00248A F862 039A A FDB HSDTA-* DEFAULT USDTA

00249A F864 02B7 A FDB BSON-* DEFAULT BSON

00250A ['866 02D2 A FDB BSDTA-* DEFAULT BSDTA
00251A P868 02BF A FDB BSOFF-* DEFAULT BSOFF
00252A F86A P792 A PUB PAUSER-* DEFAULT PAUSE ROUTINE

00253A F86C 047D A FDB EXPi-* DEFAULT EXPRESSION ANALYZER
00254A F86E 012 1) A FDB CMDTB2-* DEFAULT SECOND COMMAND TABLE

00255 * CONSTANTS

002S6A P870 P008 A INTVS FDB ACIA DEFAULT ACIA
00257A P872 00 A FCB DFTCHP,DFTNLP DEFAULT NULL PADDS
00258A P874 0000 A FDB 0 DEFAULT ECHO

00259A P876 P000 A FDB PTM DEFAULT PTM
00260A F878 0000 A FDB 0 INITIAL STACK TRACE LEVEL

00261A F87A 00 A FCB 0 INITIAL BREAKPOINT COUNT

00262A F878 00 A FCB 0 SWI BREAKPOINT LEVEL
00263A F87C 39 A FCB $39 DEFAULT PAUSE ROUTINE (RTS)

00264 F87D A * INTVE EQU
00265 *8

00267

B-41

PAGE

00268

00269

006 ASSIS'r09.SA:0

*
*

ASSISTO9 - MC6809 MONITOR

ASSISTO9 SWI HAIJDLER
THE SWI HANDLER PROVIDES ALL INTERFACING NECESSARY

00270 * FOR A USER PROGRAM. A FUNCTION BYTE IS ASSUMED TO
00271 * FOLLOW THE SWI INSTRUCTION. IT IS BOUND CHECKED
00272 * AND THE PROPER ROUTINE IS GIVEN CONTROL. THIS
00273 * INVOCATION MAY ALSO BE A BREAKPOINT INTERRUPT.
00274 * IF SO, THE BREAKPOINT HANDLER IS ENTERED.
00275 * INPUT: MACHINE STATE DEFINED FOR SWI
00276 * OUTPUT: VARIES ACCORDING TO FUNCTION CALLED. PC ON
00277 * CALLERS STACK INCREMENTED BY ONE IF VALID CALL.
00278 * VOLATILE REGISTERS: SEE FUNCTIONS CALLED
00279 * STATE: RUNS DISABLED UNLESS FUNCTION CLEARS I FLAG.
00280

00282 * SWI FUNCTION VECTOR TABLE
00283A F87D 0194 A SWIVTB FOB ZINCH-SWIVTB INCHNP
00284A F87F 0131 A FOB ZOTCHI-SWIVTB DUTCH
00285A F881 O1CB A FDB ZPD'rAl-SWIVTB PDATAI
00286A P883 01C3 A FDB ZPDATA-SWIVTB PDATA
00287A F885 0175 A FDB ZOT2HS-SWIVTB OUT2HS
00288A F887 0173 A FDB ZOT4HS-SWIVTB OUT4HS
00289A P889 O1CO A FDB ZPCRLF-SWIVTB PCRLF
00290A F88B 0179 A FDB ZSPACE-SWIVTB SPACE
00291A F88D 0055 A FDB ZMONTR-SWIVTB MONITR
00292A F88F 017D A FDB ZVSWTH-SWIVTB VCTRSW
00293A F891 0256 A FDB ZBKPNT-SWIVTB BREAKPOINT

00294A F893 O1D1 A FDB ZPAUSE-SWIVTB TASK PAUSE

00296A P895 6A 8D E6F7 SWIR DEC SWICNT,PCR UP "SWI" LEVEL FOR TRACE
00297A P899 17 0225 FAC1 LBSR LDDP SETUP PAGE AND VERIFY STACK
00298 * CHECK FOR BREAKPOINT TRAP
00299A F89C EE 6A A LDU 10,S LOAD PROGRAM COUNTER
00300A F89E 33 5F A LEAU -1,U BACK TO SWI ADDRESS
00301A F8AO OD FB A TST SWIBFL ? THIS "SWI" BREAKPOINT

00302A F8A2 26 11 F8BS BNE SWIDNE BRANCH IF SO TO LET THROUGH
00303A F8A4 17 069B FF42 LBSR CBKLDR OBTAIN BREAKPOINT POINTERS
00304A F8A7 50 NEGB OBTAIN POSITIVE COUNT

00305A F8A8 5A SWILP DECB COUNT DOWN
00306A F8A9 2B OA F8B5 BM I SWIDNE BRANCH WHEN DONE
00307A F8AB 11A3 Al A CMPU ? WAS THIS A BREAKPOINT
00308A F8AE 26 F8 F8A8 BNE SWILP BRANCH IF NOT
00309A F8BO EF 6A A STU 10,S SET PROGRAM COUNTER BACK
00310A F8B2 16 021E FAD3 LBRA ZBKPNT GO DO BREAKPOINT
00311A F8B5 OF FB A SWIDNE CLR SWIBFL CLEAR IN CASE SET
00312A F8B7 37 06 A PU LU D OBTAIN FUNCTION BYTE, UP PC
00313A F8B9 Cl OB A CMPB #NUMFUN ? TOO HIGH
00314A F8BB 1022 020F FACE LBHI ERROR YES, DO BREAKPOINT
00315A F8BF EF 6A A STU 10,S BUMP PROGRAM COUNTER PAST SWI
00316A FBC1 58 ASLB FUNCTION CODE TIMES TWO
00317A FSC2 33 8C B8 LEAU SWIVTB,PCR OBTAIN VECTOR BRANCH ADDRESS
00318A F8C5 EC CS A LDU 8,0 LOAD OFFSET
00319A F8C7 6E CB A JMP D,U JUMP TO ROUTINE

00321 **

00322 * REGISTERS TO FUNCTION ROUTINES:
00323 * DP-) WORK AREA PAGE
00324 * D,Y,U=UNRELIABLE X=AS CALLED FROM USER

B-42

PAGE 007 ASSIS'T09.SA:0

00325
00326

00328

*

ASSIST09 - MC6809 MONITOR

S=AS FROM SWI INTERRUPT

00329 * (SWI FUNCTION 8)
00330 * MONITOR ENTRY

00331 * FIREUP THE ASSIST09 MONITOR.
00332 * THE STACK WITH ITS VALUES FOR THE DIRECT PAGE

00333 * REGISTER AND CONDI'rIJN CODE FLAGS ARE USED .AS IS.

00334 * 1) INITIALIZE CONSOLE I/O
00335 * 2) OPTIONALLY PRINT SIGNON

00336 * 3) INITIALIZE PTM FOR SINGLE STEPPING

00337 * 4) ENTER COMMAND PROCESSOR
00338 * INPUT: A=0 INIT CONSOLE AND PRINT STARTUP MESSAGE

00339 * A#0 OMIT CONSOLE INIT AND STARTUP MESSAGE

00340

00342A F8C9 41 A SIGNON FCC /ASSIST09/SIGNON EYE-CATCHER

00343A F8DI 04 A FCH COT

00345A F8D2 10OF 97 A ZMONTR STS RSTACK SAVE FOR BAD STACK RECOVERY

00346A F8D5 6O 61 A TST 1,S ? INIT CONSOLE AND SEND MSG

00347A F8D7 26 OD F8E6 BNE ZMONT2 BRANCH IF NOT

00348A F8D9 AD 9D E6F9 JSR [VECTAB+.CION,PCR] READY CONSOLE INPUT

00349A F8DD AD 9D E6FB JSR (VECTAB+.0OON,PCR) READY CONSOLE OUTPUT
00350A F8E1 30 8C E5 LFAX SIGNON,PCR READY SIGNON EYE-CATCHER
00351A F8E4 3F SW' PERFORM

00352A F8E5 03 A FCB PDATA PRINT STRING
00353A F8E6 9E F6 A ZMONT2 LDX VECTAB+.PTM LOAD PTM ADDRESS

00354A F8E8 27 OD F8F7 BEQ CMD BRANCH IF NOT TO USE A PTM

00355A F8EA 6F 02 A CLR PTMTMI-PTM,X SET LATCH TO CLEAR RESET

00356A F8EC 6F 03 A CLR PTMTMI+1-PTM,X AND SET GATE HIGH

00357A F8EE CC 01A6 A LDD *S01A6 SETUP TIMER 1 MODE

00358A F8F1 A7 01 A STA PTMC2-PTM,X SETUP FOR CONTROL REGISTERI

00359A F8F3 E7 84 A STB PTMC13-PTM,X SET OUTPUT ENABLED/

00360 * SINGLE SFIOT/ DUAL 8 BIT/INTERNAL MODE/OPERATE

00361A F8F5 6F 01 A CLR PTMC2-PTM,X SET CR2 BACK TO RESET FORM
00362 * FALL INTO COMMAND PROCESSOR

00364

00365 * COMMAND HANDLER
00366 * BREAKPOINTS ARE REMOVED AT THIS TIME.

00367 * PROMPT FOR A COMMAND, AND STORE ALL CHARACTERS

00368 * UNTIL A SEPARATOR ON THE STACK.

00369 * SEARCH FOR FIRST MATCHING COMMAND SUBSET,

00370 * CALL IT OR GIVE 'V RESPONSE.
00371 * DURING COMMAND SEARCH:
00372 * B=OFFSET TO NEXT ENTRY ON X

00373 * U=SAVED S
00374 * U-1=ENTRY SIZE+2
00375 * U-2=VALID NUMBER FLAG (>=0 VALID)/COMPARE CNT

00376 * U-3=CARRIAGE RETURN FLAG (0=CR HAS BEEN DONE)

00377 * U-4=START OF COMMAND STORE
00378 * S+0=END OF COMMAND STORE

B-43

1'AGE UO8

00379

ASSIS'C09.SA:0 ASSIS'P09 - MC6809 +1ONIT:~N

00380A F8F7 3F CMD SWI To NEW LINE
00381A F8F8 06 A FCB PCRLF FUNCTION
00382 * DISARM Till OREAKPOIiJTS
00383A F8F9 17 0646 FF42 CMDNEP LHSR CHKLDR OBTAIN BREAKPOINT POINTERS

UO384A F8FC 2A OC F9OA BPL CMDNOL BRANCH Ir NOT ARMED OR NONE
00385A FBFE 5O NEGB MAKE POSITIVE

00386A F8FF U7 FA A STN BKPTCT FLAG AS DISARMED

00387A F901 5A CMDDDL DECO ? FINISHED
00388A F902 2B 06 F9OA BMI CMDNOL BRANCH It SO
00389A F904 A6 30 A LDA -NUMBKP*2,Y LOAD OPCODE STORED

00390A F906 A7 BI A STA [,Y++J STORE SACK OVER "SWI"
00391A F908 20 F7 F901 BRA CMDDDL LOOP UNTIL DONE

00392A F9OA AE 6A A CMDNOL LOX 10,S LOAD USERS PROGRAM COUNTER

00393A F9OC 9F 93 A STX PCNTER SAVE FOR EXPRESSION ANALYZER

00394A F9OE 86 3E A LDA *PROMPT LOAD PROMPT CHARACTER

00395A F910 3F SWI SEND TO OUTPUT HANDLER

00396A F911 01 A FCB OUTCH FUNCTION

00397A F912 33 E4 A LEAU ,S REMEMBER STACK RESTORE ADDRESS

00398A F914 OF 95 A STU PSTACK REMEMBER STACK FOR ERROR USE

00399A F916 4F CLRA PREPARE ZERO
00400A F917 SF CLRB PREPARE ZERO

00401A F918 DD 9B A STD NUMBER CLEAR NUMBER BUILD AREA

00402A F91A DD 8F A STD MISFLG CLEAR MISCEL. AND SWICNT FLAGS
00403A F91C DD 91 A STD TRACEC CLEAR TRACE COUNT

00404A F91E C6 02 A LDA{i #2 SET D TO TWO
00405A F920 34 07 A PSHS D,CC PLACE DEFAULTS ONTO STACK
00406 * CHECK FOR "QUICK" COMMANDS.
00407A F922 17 0454 FD79 LBSR READ OBTAIN FIRST CHARACTER

00408A F925 30 8D 0581 LEAX CDOT+2,PCR PRESET FOR SINGLE TRACE

00409A F929 81 2E A CMPA #'. ? QUICK TRACE

00410A F92B 27 5A F987 BEQ CMDXQT BRANCH EQUAL FOR TRACE ONE

00411A F92D 30 8D 04E9 LEAX CMPADP+2,PCR READY MEMORY ENTRY POINT
00412A F931 81 2F A CMPA #'/ ? OPEN LAST USED MEMORY

00413A F933 27 52 F987 BEQ CMDXQT BRANCH TO DO IT IF SO

00414 * PROCESS NEXT CHARACTER
00415A F935 81 20 A CMD2 CMPA ? BLANK OR DELIMITER

00416A F937 23 14 F94D BLS CMDGOT BRANCH YES, WE HAVE IT

00417A F939 34 02 A PSHS A BUILD ONTO STACK
00418A F93B 6C 5F A INC -1,U COUNT THIS CHARACTER

00419A F93D 81 2F A CMPA #'/ ? MEMORY COMMAND

00420A F93F 27 4F F990 BEQ CMDMEM BRANCH IF SO
00421A F941 17 0408 FD4F LHSR BLDHXC TREAT AS HEX VALUE

00422A F944 27 02 F948 BEQ CMD3 BRANCH IF STILL VALID NUMBER

00423A F946 6A SE A DEC -2,U FLAG AS INVALID NUMBER
00424A F948 17 042E FD79 CMD3 LBSR READ OBTAIN NEXT CHARACTER
00425A F94B 20 E8 F935 BRA CMD2 TEST NEXT CHARACTER

00426 * GOT COMMAND, NOW SEARCH TABLES
00427A F94D 80 OD A CMDGOT SUBA #CR SET ZERO IF CARRIAGE RETURN

00428A F94F A7 SD A STA -3,U SETUP FLAG

00429A F951 9E C4 A LOX VECTAB+.CMDL1 START WITH FIRST CMD LIST

00430A F953 E6 80 A CMDSCH LDB ,X+ LOAD ENTRY LENGTH

00431A F955 2A 10 P967 BPL CMDMME BRANCH IF NOT LIST END

00432A F957 9E EE A LOX VECTAB+.CMDL2 NOW TO SECOND CMD LIST
00433A F959 5C INCB ? TO CONTINUE TO DEFAULT LIST

00434A F95A 27 F7 P953 BEQ CMDSCH BRANCH IF SO
00435A F95C lODE 95 A CMDBAD LDS PSTACK RESTORE STACK
00436A F95F 30 8D 015A LEAX ERRMSG,PCR POINT TO ERROR STRING

8-44

PAGE 009 ASSIST09.SA:0 ASSIST09 - MC6809 MONITOR

00437A F963 3F SW' SEND OUT
00438A F964 02 A FCB PDATAI TO CONSOLE
00439A F965 20 90 F8F7 BRA CMD AND TRY AGAIN
00440 * SEARCH NEXT ENTRY
00441A P967 5A CMDSME DECB TAKE ACCOUNT OF LENGTH BYTE
00442A P968 E1 5F A CMPB -1,U ? ENTERED LONGER THAN ENTRY
00443A F96A 24 03 F96F BHS CMDSIZ BRANCH IF NOT TOO LONG
00444A F96C 3A CMDFLS ABX SKIP TO NEXT ENTRY
00445A F96D 20 E4 F953 BRA CMDSCH AND TRY NEXT
00446A F96F 31 5D A CMDSIZ LEAY -3,U PREPARE TO COMPARE
00447A F971 A6 5F A LDA -1,U LOAD SIZE+2
00448A F973 80 02 A SUBA #2 TO ACTUAL SIZE ENTERED
00449A P975 A7 SE A STA -2,U SAVE SIZE FOR COUNTDOWN

00450A F977 5A CMDCMP DECB DOWN ONE BYTE
00451A P978 A6 80 A LDA ,X+ NEXT COMMAND CHARACTER
00452A F97A Al A2 A CMPA ,-Y ? SAME AS THAT ENTERED
00453A F97C 26 EE F96C BNE CMDFLS BRANCH TO FLUSH IF NOT
00454A F97E 6A SE A DEC -2,U COUNT DOWN LENGTH OF ENTRY
00455A P980 26 FS F977 BNE CMDCMP BRANCH IF MORE TO TEST
00456A F982 3A ABX TO NEXT ENTRY
00457A F983 EC lE A LDD -2,X LOAD OFFSET
00458A F985 30 8B A LEAX D,X COMPUTE ROUTINE ADDRESS+2
00459A F987 6D 5D A CMDXQT TST -3,U SET CC FOR CARRIAGE RETURN TEST

00460A F989 32 C4 A LEAS ,U DELETE STACK WORK AREA
00461A F98B AD lE A JSR -2,X CALL COMMAND

00462A F98D 16 FF7A F90A LBRA CMDNOL GO GET NEXT COMMAND
00463A P990 6O 5E A CMDMEM TS'T -2,U ? VALID HEX NUMBER ENTERED
00464A P992 2B C8 F95C BMI CMDBAD BRANCH ERROR IF NOT
00465A P994 30 88 AE A LEAX <CMEMN-CMPADP,X TO DIFFERENT ENTRY
00466A P997 DC 9B A LDD NUMBER LOAD NUMBER ENTERED
00467A F999 20 EC F987 BRA CMDXQT AND ENTER MEMORY COMMAND

00469 ** COMMANDS ARE ENTERED AS A SUBROUTINE WITH:
00470 ** DPR->ASSIST09 DIRECT PAGE WORK AREA
00471 ** Z=1 CARRIAGE RETURN ENTERED

00472 ** 2=0 NON CARRIAGE RETURN DELIMITER
00473 ** S=NORMAL RETURN ADDRESS
00474 ** THE LABEL "CMDBAD" MAY BE ENTERED TO ISSUE AN

00475 ** AN ERROR FLAG (*).

00477
00478
00479
00480
00481
00482
00483
00484
00485
00486
00487
00488
00489
00490
00491
00492

* ASSIST09 COMMAND TABLES
* THESE ARE THE DEFAULT COMMAND TABLES. EXTERNAL
* TABLES OF THE SAME FORMAT MAY EXTEND/REPLACE
* THESE BY USING THE VECTOR SWAP FUNCTION.
*

* ENTRY FORMAT:
* +0.. .TOTAL SIZE OF ENTRY (INCLUDING THIS BYTE)

* +1.. .COMMAND STRING
* +N...TWO BYTE OFFSET TO COMMAND (ENTRYADDR-*)

*

* THE TABLES TERMINATE WITH A ONE BYTE -1 OR -2.
* THE -1 CONTINUES THE COMMAND SEARCH WITH THE
* SECOND COMMAND TABLE.

* THE -2 TERMINATES COMMAND SEARCHES.

B-45

PAGE 010 ASSIST09.SA:0

00494
00495

ASSIST09

* THIS IS THE
* LIST ENTRY.

- MC6809 MONITOR

DEFAULT LIST FOR THE SECOND COMMAND

00496A F99B FE A CMDTB2 FCB -2 STOP COMMAND SEARCHES

00498
00499

* THIS IS THE
* LIST ENTRY.

DEFAULT LIST FOR THE FIRST COMMAND

00500 F99C A CMDTBL EQU * MONITOR COMMAND TABLE
00501A F99C 04 A FCB 4

00502A F99D 42 A FCC /B/ 'BREAKPOIN'P' COMMAND
00503A F99E 054D A FDB CFIKPT-*
00504A F9A0 04 A FCB 4

00505A F9A1 43 A FCC /C/ 'CALL' COMMAND
00506A F9A2 0417 A FDB CCALL-*
00507A F9A4 04 A FCB 4
00508A F9A5 44 A FCC /D/ 'DISPLAY' COMMAND
00509A F9A6 049D A FDB CDISP-*
00510A F9A8 04 A FCB 4
00511A F9A9 45 A FCC /E/ 'ENCODE' COMMAND
0051,2A F9AA 059F A FDB CENCDE-*
00513A F9AC 04 A FCB 4
00514A F9AD 47 A FCC /G/ 'GO' COMMAND
00515A F9AE 03D2 A FDB CGO-*
00516A F9B0 04 A FCB 4
00517A F9B1 4C A FCC /L/ 'LOAD' COMMAND
00518A F9B2 04DD A FDB CLOAD-*
00519A F9B4 04 A FCB 4
00520A F9B5 4O A FCC /M/ 'MEMORY' COMMAND
00521A F9B6 040O A FDB CMEM-*
00522A F9B8 04 A FCH 4
00523A F9B9 4E A FCC /N/ 'NULLS' COMMAND
00524A F9BA 04FD A FDB CNULLS-*
00525A F9BC 04 A FCB 4
00526A F9BD 4F A FCC /O/ 'OFFSET' COMMAND
00527A F9BE 050A A FDB COFFS-*
00528A F9C0 04 A FCB 4
00529A F9C1 50 A FCC /P/ 'PUNCH' COMMAND
00530A F9C2 04AF A FDB CPUNCH-*
00531A F9C4 04 A FCB 4
00532A F9C5 52 A FCC /R/ 'REGISTERS' COMMAND
00533A F9C6 0284 A FDB CREG-*
00534A F9C8 04 A FCB 4
00535A F9C9 53 A FCC /S/ 'STLEVEL' COMMAND
00536A F9CA 04F2 A FDB CSTLEV-*
00537A F9CC 04 A FCB 4
00538A F9CD 54 A FCC /T/ 'TRACE' COMMAND
00539A F9CE 04O6 A FDB CTRACE-*
00540A F9D0 04 A FCB 4
00541A F9D1 56 A FCC /V/ 'VERIFY' COMMAND
00542A F9D2 04CF A FDB CVER-*
00543A P9D4 04 A FCB 4
00544A F9D5 57 A FCC /W/ 'WINDOW' COMMAND
00545A F9D6 0468 A FDB CWINDO-*
00546A P9D8 FF A FCB -1 END, CONTINUE WITH THE SECOND

00548
00549

* [SWI FUNCTIONS 4 AND 5]

B-46

PAGE 011 ASSISTO9.SA:0

00550
00551
00552
00553
00554

00555

ASSISTO9 -.MC6809 MONITOR

* 4 - OUT2HS - DECODE BYTE TO HEX AND ADD SPACE

* 5 - OUT4HS - DECODE WORD TO HEX AND ADD SPACE

* INPUT: X->BYTE OR WORD TO DECODE
* OUTPUT: CHARACTERS SENT TO OUTPUT HANDLER

* X->NEXT BYTE OR WORD
**

00557A F9D9 A6 80 A ZOUT2H LDA ,X+ LOAD NEXT BYTE

00558A F9DB 34 06 A PSHS D SAVE - DO NOT REREAD
00559A F9DD C6 10 A LDB #16 SHIFT BY 4 BITS
00560A F9DF 3D MUL WITH MULTIPLY

00561A F9EO 8D 04 F9E6 BSR ZOUTHX SEND OUT AS HEX
00562A F9E2 35 06 A PULS D RESTORE BYTES
00563A F9E4 84 OF A ANDA #SOF ISOLATE RIGHT HEX

00564A F9E6 86 90 A ZOUTHX ADDA #S90 PREPARE A-F ADJUST

00565A F9E8 19 DAA ADJUST

00566A F9E9 89 40 A ADCA #$40 PREPARE CHARACTER BITS

00567A F9EB 19 DAA ADJUST
00568A F9EC 6E 9D E5EE SEND JMP [VECTAB+.CODTA,PCRJ SEND TO OUT HANDLER

00570A F9FO 8D E7 F9D9 ZOT4HS BSR ZOUT2H CONVERT FIRST BYTE
00571A F9F2 8D ES F9D9 ZOT2HS BSR ZOUT2H CONVERT BYTE TO HEX
00572A F9F4 AF 64 A STX 4,S UPDATE USERS X REGISTER

00573 * FALL INTO SPACE ROUTINE

00575

00576 * [SWI FUNCTION 7J

00577 * SPACE - SEND BLANK TO OUTPUT HANDLER

00578 * INPUT: NONE

00579 * OUTPUT: BLANK SEND 20 CONSOLE t1ANDLER

00580
00581A F9F6 86 20 A ZSPACE LDA # 1 LOAD BLANK

00582A F9F8 20 3D FA37 BRA ZOTCH2 SEND AND RETURN

00584
00585 * [SWI FUNCTION 9J

00586 * SWAP VECTOR TABLE ENTRY

00587 * INPUT: A=VECTOR TABLE CODE (OFFSET)
00588 * X=0 OR REPLACEMENT VALUE

00589 * OUTPUT: X= PREVIOUS VALUE
00590
0059IA F9FA A6 61 A ZVSWTH LDA 1,S LOAD REQUESTERS A
00592A F9FC 81 34 A CMPA #HIVTR ? SUB-CODE TOO HIGH

00593A F9FE 22 39 FA39 BHI ZOTCH3 IGNORE CALL IF SO
00594A FAQ 109E C2 A LDY VECTAB+.AVTBL LOAD VECTOR TABLE ADDRESS

00595A FAO3 EE A6 A LDU A,Y U=OLD ENTRY

00596A FAO EF 64 A STU 4,S RETURN OLD VALUE TO CALLERS X

00597A FAO7 AF 7E A STX -2,S ? X=0

00598A FAO9 27 2E FA39 BEQ ZOTCH3 YES, DO NOT CHANGE ENTRY

00599A FAOB AF A6 A STX A,Y REPLACE ENTRY

00600A FAO D 20 2A FA39 BRA ZOTCH3 RETURN FROM SWI

00601 *D

B-47

PAGE

00603
00604
00605
00606
00607
00608
00609

012 ASSISTO9.SA:0 ASSISTO9 - MC6809 MONITOR

**

* [SWI FUNCTION 0]
* INCHNP - OBTAIN INPUT CHAR IN A (NO PARITY)
* NULLS AND RUBOUTS ARE IGNORED.
* AUTOMATIC LINE FEED IS SENT UPON RECIEVING A
* CARRIAGE RETURN.
* UNLESS WE ARE LOADING FROM TAPE.

00610 **

00611A FAOF 8D 5D FA6E ZINCHP BSR XQPAUS RELEASE PROCESSOR
00612A FA11 8D 5F FA72 ZINCH BSR XQCIDT CALL INPUT DATA APPENDAGE
00613A FA13 24 FA FAOF BCC ZINCHP LOOP IF NONE AVAILABLE
00614A FA15 4D TSTA ? TEST FOR NULL
00615A FA16 27 F9 FA11 BEQ ZINCH IGNORC NULL
00616A FA18 81 7F A CMPA #$7F ? RUBOUT
00617A FA1A 27 F5 FA11 BEQ ZINCH BRANCH YES TO IGNORE
00618A FA1C A7 61 A STA 1,S STORE INTO CALLERS A
00619A FATE OD 8F A TST MISFLG ? LOAD IN PROGRESS
00620A FA20 26 17 FA39 BNE ZOTCH3 BRANCH IF SO TO NOT ECHO
00621A FA22 81 OD A CMPA #CR ? CARRIAGE RETURN
00622A FA24 26 04 FA2A BNE ZIN2 NO, TEST ECHO BYTE
00623A FA26 86 OA A LDA #LF LOAD LINE FEED
00624A FA28 8D C2 F9EC BSR SEND ALWAYS ECHO LINE FEED
00625A FA2A OD F4 A ZIN2 TST VEC'PAB+.ECHO ? ECHO DESIRED
00626A FA2C 26 OB FA39 BNE ZOTCH3 NO, RETURN
00627 * FALL THRO UGH TO OUTCH

00629 **

00630 * [SWI FUNCTION 1]
00631 * OUTCH - OUTPUT CHARACTER FROM A
00632 * INPUT: NONE
00633 * OUTPUT: IF LINEFEED IS THE OUTPUT CHARACTER THEN
00634 * C=0 NO CTL-X RECIEVED, C=1 CTL-X RECIEVED
00635 **

00636A FA2E A6 61 A ZOTCHI LDA 1,S LOAD CHARACTER TO SEND
00637A FA30 30 8C 09 LEAX <ZPCRLS,PCR DEFAULT FOR LINE FEED

00638A FA33 81 OA A CMPA #LF ? LINE FEED
00639A FA35 27 OF FA46 BEQ ZPDTLP BRANCH TO CHECK PAUSE IF SO
00640A FA37 8D B3 F9EC ZOTCH2 BSR SEND SEND TO OUTPUT ROUTINE
00641A FA39 OC 90 A ZOTCH3 INC SWICNT BUMP UP "SWI" TRACE NEST LEVEL
00642A FA3B 3B RTI RETURN FROM "SWI" FUNCTION

00644 **

00645 * [SWI FUNCTION 6]
00646 * PCRLF - SEND CR/LF TO CONSOLE HANDLER
00647 * INPUT: NONE
00648 * OUTPUT: CR AND LF SENT TO HANDLER
00649 * C=0 NO CTL-X, C=1 CTL-X RECIEVED
00650 **

00652A FA3C 04 A ZPCRLS FCB EOT NULL STRING

00654A FA3D 30 8C FC ZPCRLE' LEAX ZPCRLS,PCR READY CR,LF STRING
00655 * FALL INTO CR/LF CODE

B-48

PAGE 013 ASSIS'r09.SA:0

00657
00658
00659
00660
00661
00662
00663
00664
00665
00666
00667A
00668A
00669A
00670

FA40
FA42
FA44

86
8D
86

00672
00673

00674
00675
00676
00677
00678
00679
00680
00681
00682A FA46 8D
00683A FA48 A6
00684A FA4A 81
00685A FA4C 26
00686

00688
00689
00690
00691
00692
00693
00694
00695
00696
00697
00698
00699
00700A
00701A
00702A
00703A
00704A

FA4E
FA50
FA52
FA54
FA56

OD

A8
OA

ASSIST09 - .v106809 MONITOR

(SWI FUNCTION 3J
* PDATA - OUTPUT CR/LF AND STRING
* INPUT: X->STRING
* OUTPUT: CR/LF AND STRING SENT TO OUTPUT CONSOLE
* HANDLER.
* C-0 NO CTL-X, C=1 CTL-X RECIEVEI)
* NOTE: LINE FEED MUST FOLLOW CARRIAGE RETURN FOR
* PROPCR PUNCH DATA.

o

urinm

n

sr

rarnin

uun

F9EC HSR
#CH LOAD CARRIAGE RETURN
SEND SEND IT

A LDA #LF LOAD LINE FEET)
* FALL INTO PDATAI

* (SWI FUNCTION 21
* PDATAI - OUTPUT STRING TILL EOT ($04)
* THIS ROUTINE PAUSES IF AN INPUT BYTE BECOMES
* AVAILABLE DURING OUTPUT TRANSMISSION UNTIL A
* SECOND IS RECIEVED.
* INPUT: X->STRING
* OUTPUT: STRING SENT TO OUTPUT CONSOLE DRIVER
* C=0 NO CTL-X, C=1 CTL-X RECIEVED

A4 F9EC ZPDTLP BSR SEND SEND CHARACTER TO DRIVER
80 A ZPDTAI LDA ,X+ LOAD NEXT CHARACTER
04 A CMPA MEOT 1 EOT
F8 FA46 BNE ZPDTLP LOOP IF NOT

* FALL INTO PAUSE CHECK FUNCTION

**

* [SWI FUNCTION 12)
* PAUSE - RETURN TO TASK DISPATCHING AND CHECK
* FOR FREEZE CONDITION OR CTL-X BREAK
* THIS FUNCTION ENTERS THE TASK PAUSE HANDLER SO
* OPTIONALLY OTHER 6809 PROCESSES MAY GAIN CONTROL.
* UPON RETURN, CHECK FOR A 'FREEZE' CONDITION
* WITH A RESULTING WAIT LOOP, OR CONDITION CODE
* RETURN IF A CONTROL-X IS ENTERED FROM THE INPUT
* HANDLER.
* OUTPUT: C=1 IF CTL-X HAS ENTERED, C=0 OTHERWISE

8O 1E FA6E ZPAUSE BSR
8D 06 FA58 BSR
IF A9 A TFR
E7 E4 A STB
20 Cl FA39 BRA

00706
00707
00708
00709A FA58 8D
00710A FA5A 24

XQPAUS
CHKABT
CC,B
,S
ZOTCH3

RELEASE CONTROL AT EVERY LINE
CHECK FOR FREEZE OR ABORT
PREPARE TO REPLACE CC
OVERLAY OLD ONE ON STACK
RETURN FROM "SWI"

* CHKABT - SCAN FOR INPUT PAUSE/ABORT DURING OUTPUT
* OUTPUT: C=0 OK, C=1 ABORT (CTL-X ISSUED)
* VOLATILE: U,X,D

18 FA72 CHKABT BSR XQCIDT ATTEMPT INPUT
05 FA61 BCC CHKRTN BRANCH NO TO RETURN

B-49

PAGE 014 ASSISTO9.SA:0 ASSISTO9 - MC6809 MONITOR

00711A FASC 81 18 A CMPA #CAN ? CTL-X FOR ABORT
00712A FA5E 26 02 FA62 BNE CHKWT BRANCH NO TO PAUSE
00713A FA60 53 CHKSEC COMB SET CARRY
00714A FA61 39 CHKRTN RTS RETURN TO CALLER WITH CC SET
00715A FA62 8D OA FA6E CHKWT BSR XQPAUS PAUSE FOR A MOMENT
00716A FA64 8D OC FA72 BSR XQCIDT ? KEY FOR START
00717A FA66 24 FA FA62 BCC CHKWT LOOP UNTIL RECIEVED
00718A FA68 81 18 A CMPA #CAN ? ABORT SIGNALED FROM WAIT
00719A FA6A 27 F4 FA60 BEQ CHKSEC BRANCH YES
00720A FA6C 4F CLRA SET C=0 FOR NO ABORT
00721A FA6D 39 RTS AND RETURN

00723 * SAVE MEMORY WITH JUMPS
00724A FA6E 6E 90 E578 XQPAUS JMP [VECTAB+.PAUSE,PCR] TO PAUSE ROUTINE
00725A FA72 AD 90 E562 XQCIDT JSR [VECTAB+.CIDTA,PCR] TO INPUT ROUTINE
00726A FA76 84 7F A ANDA #$7F STRIP PARITY
00727A FA78 39 RTS RETURN TO CALLER

00729
00730 * NMI DEFAULT INTERRUPT HANDLER
00731 * THE NMI HANDLER IS USED FOR TRACING INSTRUCTIONS.
00732 * TRACE PRINTOUTS OCCUR ONLY AS LONG AS THE STACK
00733 * TRACE LEVEL IS NOT BREACHED BY FALLING BELOW IT.
00734 * TRACING CONTINUES UNTIL THE COUNT TURNS ZERO OR
00735 * A CTL-X IS ENTERED FROM THE INPUT CONSOLE DEVICE.
00736

00738A FA79 4F A MSHOWP FCB 'O,'P,'-,EOT OPCODE PREP

00740A FA7D 80 42 FAC1 NMIR BSR LOOP LOAD PAGE AND VERIFY STACK
00741A FA7F OD 8F A TST MISFLG ? THRU A BREAKPOINT
00742A FA81 26 34 FAB7 BNE NMICON BRANCH IF SO TO CONTINUE
00743A FA83 OD 90 A TST SWICNT ? INHIBIT "SWI" DURING TRACE
00744A FA85 28 29 FABO BMI NMITRC BRANCH YES
00745A FA87 30 6C A LEAX 12,S OBTAIN USERS STACK POINTER
00746A FA89 9C F8 A CMPX SLEVEL ? TO TRACE HERE
00747A FA8B 25 23 FABO BLO NMITRC BRANCH IF TOO I.OW TO DISPLAY
00748A FA8D 30 8C E9 LEAX MSHOWP,PCR LOAD OP PREP
00749A FA90 3F SWI SEND TO CONSOLE
00750A FA91 02 A FCB PDATAI FUNCTION
00751A FA92 09 8E A ROL DELIM SAVE CARRY BIT
00752A FA94 30 80 E501 LEAX LASTOP,PCR POINT TO LAST OP
00753A FA 98 3F SWI SEND OUT AS HEX
00754A FA99 05 A FCB OUT4HS FUNCTION
00755A FA9A 8D 17 FAB3 BSR REGPRS FOLLOW MEMORY WITH REGISTERS
00756A FA9C 25 37 FADS BCS ZBKCMD BRANCH IF "CANCEL"
00757A FA9E 06 SE A ROR DELIM RESTORE CARRY BIT
00758A FAAO 25 33 FADS BCS ZBKCMD BRANCH IF "CANCEL"
00759A FAA2 9E 91 A LDX TRACEC LOAD TRACE COUNT
00760A FAA4 27 2F FADS BEQ ZBKCMD IF ZERO TO COMMAND HANDLER
00761A FAA6 30 1F A LEAX -1,X MINUS ONE
00762A FAA8 9F 91 A STX TRACEC REFRESH
00763A FAAA 27 29 FAD5 BEQ ZBKCMD STOP TRACE WHEN ZERO
00764A FAAC 8D AA FA58 BSR CHKABT ? ABORT THE TRACE
00765A FAAE 25 25 FADS BCS ZBKCMD BRANCft YES TO COMMAND HANDLER

B-50

PAGE 015 ASSISTO9.SA:0 ASSISTO9 - MC6809 MONITOR

00766A FABO 16 03F7 FEAA NMITRC LBRA CTRCE3 NO, TRACE ANOTHER INSTRUCTION

00768A FAB3 17 01B9 FC6F REGPRS LBSR REGPRT PRINT REGISTERS AS FROM COMMAND
00769A FAB6 39 RTS RETURN TO CALLER

00771 * JUST EXECUTED THRU A BRKPNT. NOW CONTINUE NORMALLY
00772A FAB7 OF 8F A NMICON CLR MISFLG CLEAR THRU FLAG
00773A FAB9 17 02EB FDA7 LB.SR ARMBK2 ARM BREAKPOINTS
00774A FABC 3B RTI RTI AND CONTINUE USERS PROGRAM

00776 * LDDP - SETUP DIRECT PAGE REGISTER, VERIFY STACK.

00777 * AN INVALID STACK CAUSES A RETURN TO THE COMMAND

00778 * HANDLER.
00779 * INPUT: FULLY STACKED REGISTERS FROM AN INTERRUPT
00780 * OUTPUT: DPR LOADED TO WORK PAGE

00782A FABD 3F A ERRMSG FCB '7,BELL,$20,EOT ERROR RESPONSE

00784A FAC1 E6 8D E4D8 LDDP LDB BASEPG,PCR LOAD DIRECT PAGE HIGH BYTE
00785A FAC5 iF 9B A TER B,DP SETUP DIRECT PAGE REGISTER
00786A FACT Al 63 A CMPA 3,S 7 IS STACK VALID
00787A FAC9 27 25 FAFO BEQ RTS YES, RETURN
00788A FACB lODE 97 A LDS RSTACK RESET TO INITIAL STACK POINTER

00789A FACE 30 8C EC ERROR LEAX ERRMSG,PCR LOAD ERROR REPORT
00790A FAD1 3F SWI SEND OUT BEFORE REGISTERS
00791A FAD2 03 A FCB PDATA ON NEXT LINE
00792 * FALL INTO BREAKPOINT HANDLER

00794
00795 * (SWI FUNCTION 10)

00796 * BREAKPOINT PROGRAM FUNCTION
00797 * PRINT REGISTERS AND GO TO COMMAND HANLER

00798

00799A FAD3 8D DE FAB3 ZBKPNT BSR REGPRS PRINT OUT REGISTERS
00800A FAD5 16 FE21 F8F9 ZBKCMD LBRA CMDNEP NOW ENTER COMMAND HANDLER

00802 ***.******•******.

00803 * IRQ, RESERVED, SWI2 AND SWI3 INTERRUPT HANDLERS
00804 * THE DEFAULT HF.NDLING IS TO CAUSE A BREAKPOINT.

00805
00806 FADS A SWI2R EQU * SWI2 ENTRY
00807 FAD8 A SWI3R EQU * SWI3 ENTRY

00808 FAD8 A IRQR EQU * IRQ ENTRY

00809A FAD8 8D E7 FAC1 RSRVDR BSR LDDP SET BASE PAGE, VALIDATE STACK

00810A FADA 20 F7 FAD3 BRA ZBKPNT FORCE A BREAKPOINT

00812
00813 * FIRQ HANDLER
00814 * JUST RETURN FOR THE FIRQ INTERRUPT

00815
00816 FABC A FIRQR EQU RTI IMMEDIATE RETURN

B-51

PAGE 016

00818
00819
00820

00822
00823

ASSISTO9.SA:0 ASSISTO9 - MC6809 MONITOR

**

* DEFAULT I/O DRIVERS
****k***

* CIDTA - RETURN CONSOLE INPUT CHARACTER
* OUTPUT: C=0 IF NO DATA READY, C=1 A=CHARACTER

00824 * U VOLATILE
00825A FADC DE FO A CIDTA LOU VECTAB+.ACIA LOAD ACIA ADDRESS
00826A FADE A6 C4 A LDA ,U LOAD STATUS REGISTER
00827A FAEO 44 LS RA TEST RECIEVER REGISTER FLAG

00828A FAE1 24 02 FAES BCC CIRTN RETURN IF NOTHING
00829A FAE3 A6 41 A LDA 1,U LOAD DATA BYTE
00830A FAES 39 CIRTN RTS RETURN TO CALLER

00832 * CION - INPUT CONSOLE INITIALIZATION

00833 * COON - OUTPUT CONSOLE INITIALIZATION
00834 * A,X VOLATILE
00835 FAE6 A CION EQU *
00836A FAE6 86 03 A COON LDA #3 RESET ACIA CODE
00837A FAE8 9E FO A LDX VECTAB+.ACIA LOAD ACIA ADDRESS
00838A FAEA A7 84 A STA ,X STORE INTO STATUS REGISTER

00839A FAEC 86 51 A LDA #S51 SET CONTROL
00840A FAEE A7 84 A STA ,X REGISTER UP
00841A FAFO 39 RTS RTS RETURN TO CALLER

00843 * THE FOLLOWING HAVE NO DUTIES TO PERFORM

00844 FAFO A CIOFF EQU RTS CONSOLE INPUT OFF

00845 FAFO A COOFF EQU RTS CONSOLE OUTPUT OFF

00847 * CODTA - OUTPUT CHARACTER TO CONSOLE DEVICE

00848 * INPUT: A=CHARACTER TO SEND

00849 * OUTPUT: CHAR SENT TO TERMINAL WITH PROPER PADDING
00850 * ALL REGISTERS TRANSPARENT

00852A FAF1 34 47 A COD'PA PSHS U,D,CC SAVE REGIS'PERS,WORK BYTE
00853A FAF3 DE FO A LDU VECTAB+.ACIA ADDRESS ACIA
00854A FAF5 8D 1B FB12 BS CODTAO CALL OUTPUT CHAR SUBROTINE

00855A FAF7 81 10 A CMPA #DLE ? DATA LINE ESCAPE
00856A FAF9 27 12 FBOD BEQ CODTRT YES, RETURN
00857A FAFB 06 F2 A LDB VECTAB+.PAD DEFAULT TO CHAR PAD COUNT

00858A FAFD 81 OD A CMPA #CR ? CR
00859A FAFF 26 02 P803 BNE CODTPD BRANCH NO
00860A FBO1 D6 F3 A LOB VECTAB+.PAD+1 LOAD NEW LINE PAD COUNT
00861A F203 4F CODTPD CLRA CREATE NULL
00862A F804 E7 E4 A STB ,S SAVE COUNT
00863A P806 8C A PCB SKIP2 ENTER LOOP
00864A P807 8D 09 P812 CODTLP BSR CODTAO SEND NULL
00865A FB09 6A E4 A DEC ,S ? FINISHED
00866A FBOB 2A FA F807 BPL CODTLP NO, CONTINUE WITH MORE
00867A FBOD 35 C7 A CODTRT PULS PC,U,D,CC RESTORE HEGIS'PERS AND RETURN

00869A FBOF 17 FF5C FA6E CODTAD LBSR XQPAUS TEMPORARY GIVE UP CONTROL

00870A FB12 E6 C4 A CODTAO LOB ,U LOAD ACIA CONTROL REGISTER
00871A FBI4 CS 02 A BITB #802 ? TX REGISTER CLEAR

B-52

PAGE 017

00872A
00873A
00874A

ASSIST09.SA:0 ASSISTO9 - MC6809 MONITOR

FB16 27 F7 FBOF BEQ CODTAD RELEASE CONTROL IF NOT

F818 A7 41 A SPA 1,U STORE INTO DATA REGISTER
FB1A 39 RTS RETURN TO CALLER

00875 *E

00877 * BSON - TURN ON READ/VERIFY/PUNCH MECHANISM
00878 * A IS VOLATILE

00880A FB1B 86 11 A BSON LDA #$11 SET READ CODE

00881A FB1D 6D 66 A TST 6,S ? READ OR VERIFY
00882A FBIF 26 01 FB22 BNE BSON2 BRANCH YES
00883A FB21 4C INCA SET TO WRITE
00884A FB22 3F BSON2 SWI PERFORM OUTPUT
00885A FB23 01 A FCB OUTCH FUNCTION
00886A F824 OC 8F A INC MISFLG SET LOAD IN PROGRESS FLAG

00887A FB26 39 RT S RETURN TO CALLER

00889 * BSOFF - TURN OFF READ/VERIFY/PUNCH MECHANISM
00890 * A,X VOLATILE
00891A F827 86 14 A BSOFF LDA #$14 TO DC4 - STOP
00892A FB29 3F SWI SEND OUT
00893A FB2A 01 A FCB OUTCH FUNCTION
00894A FB2B 4A DECA CHANGE TO DC3 (X-OFF)
00895A FB2C 3F SWI SEND OUT
00896A FB2D 01 A FCB OUTCH FUNCTION

00897A FB2E OA 8F A DEC MISFLG CLEAR LOAD IN PROGRESS FLAG
00898A FB30 8E 61A8 A LDX #25000 DELAY 1 SECOND (2MHZ CLOCK)
00899A FB33 30 IF A BSOFLP LEAX -1,X COUNT DOWN
00900A FB35 26 FC FB33 BNE BSOFLP LOOP TILL DONE
00901A FB37 39 RT S RETURN TO CALLER

00903 * BSDTA - READ/VERIFY/PUNCH HANDLER

00904 * INPUT: S+6-CODE BYTE, VERIFY(-1),PUNCH(0),LOAD(1)

00905 * S+4-START ADDRESS
00906 * S+2-STOP ADDRESS
00907 * S+0-RETURN ADDRESS
00908 * OUTPUT: Z-1 NORMAL COMPLETION, Z-0 INVALID LOAD/VER
00909 * REGISTERS ARE VOLATILE

00911A FB38 EE 62 A BSDTA LDU 2,S U-TO ADDRESS OR OFFSET
00912A FB3A 6D 66 A TST 6,S ? PUNCH
00913A FB3C 27 54 P892 BEQ BSDPUN BRANCH YES
00914 * DURING READ/VERIFY: S+2-MSt3 ADDRESS SAVE BYTE

00915 * S+1-BYTE COUNTER

00916 * S+0-CHECKSUM
00917 * U HOLDS OFFSET

00918A FB3E 32 7D A LEAS -3,S ROOM FOR WORK/COUNTER/CHECKSUM

00919A F840 3F I3SDLD1 SWI GET NEXT CHARACTER
00920A P841 00 A FCB INCHNP FUNCTION
00921A FA42 81 53 A RSDLD2 CMPA #'S ? START OF S1/S9
00922A F844 26 FA P840 BNE BSDLD1 BRANCH NOT
00923A F846 3F SWI GET NEXT CHARACTER

B-53

PAGE 018 ASSIST09.SA:0 ASSIST09 - MC6809 MONITOR

00924A F847 00 A FCB INCHNP FUNCTION
00925A FB48 81 39 A CMPA #' 9 ? HAVE S9
00926A FB4A 27 22 FB6E BEQ BSDSRT YES, RETURN GOOD CODE
00927A FB4C 81 31 A CMPA #'1 ? HAVE NEW RECORD
00928A FB4E 26 F2 FB42 BNE BSDLD2 BRANCH IF NOT
00929A FB50 6F E4 A CLR ,S CLEAR CHECKSUM
00930A FB52 8D 21 F137 BSR BYTE OBTAIN BYTE COUNT
00931A FB54 E7 61 A STB 1,S SAVE FOR DECREMENT
00932 * READ ADDRESS
00933A FB56 80 10 FB75 BSR BYTE OBTAIN HIGH VALUE
00934A FB58 E7 62 A STB 2,S SAVE IT
00935A FB5A 80 19 FB75 BSR BYTE OBTAIN LOW VALUE
00936A FBSC A6 62 A LDA 2,S MAKE D=VALUE.
00937A FBSE 31 CB A LEAY D,U Y=ADDRESS+OFFSET
00938 * STORE TEXT
00939A FB60 8D 13 FB75 BSDNXT BSR BYTE NEXT BYTE
00940A FB62 27 0C P870 BEQ BSDEOL BRANCH IF CHECKSUM
00941A FB64 60 69 A TST 9,S ? VERIFY ONLY
00942A FB66 2B 02 FB6A EMI BSDCMP YES, ONLY COMPARE
00943A F868 E7 A4 A STB rY STORE INTO MEMORY
00944A F86A E1 AO A BSDCMP CMPB ,Y+ ? VALID RAM
00945A FB6C 27 F2 FB60 BEQ BSDNXT YES, CONTINUE READING
00946A FB6E 35 92 A BSDSRT PULS PC,X,A RETURN WITH Z SET PROPER

00948A FB70 4C BSDEOL INCA ? VALID CHECKSUM
00949A FB71 27 CD FB40 BEQ BSDLDI BRANCH YES
00950A F873 20 F9 FB6E BRA BSDSRT RETURN Z=0 INVALID

00952 * BYTE BUILDS 8 BIT VALUE FROM TWO HEX DIGITS IN

00953A FB75 8D 12 FB89 BYTE BSR BYTHEX OBTAIN FIRST HEX
00954A FB77 C6 10 A LOB #16 PREPARE SHIFT
00955A FB79 3D MUL OVER 'r0 A
00956A FB7A 80 OD FB89 BSR BYTHCX OBTAIN SECOND HCX
00957A FB7C 34 04 A PSHS B SAVE HIGH HEX

00958A FB7E AB E0 A ADDA ,S+ COMBINE BOTH SIDES
00959A FB80 1F 89 A TFR A,B SEND BACK IN B
00960A F882 AB 62 A ADDA 2,S COMPUTE NEW CHECKSUM
00961A FE 84 A7 62 A STA 2,S STORE BACK
00962A FB86 6A 63 A DEC 3,S DECREMENT BYTE COUNT
00963A FB88 39 BYTRTS RTS RETURN TO CALLER

00965A FB89 3F BYTHEX SWI GET NEXT HEX
00966A FB8A 00 A FCB INCHNP CHARACTER
00967A FB8B 17 01D4 FD62 LBSR CNVHEX CONVERT TO HEX

00968A FB8E 27 F8 F888 BEQ BYTRTS RETURN IF VALID HEX
00969A FB90 35 F2 A PULS PC,U,Y,X,A RETURN TO CALLER WITH Z=0

00971 * PUNCH STACK USE: S+8=T0 ADDRESS
00972 * S+6=RETURN ADDRESS
00973 * S+4=SAVED PADDING VALUES
00974 * S+2 FROM ADDRESS
00975 * S+1=FRAME COUNT/CHECKSUM
00976 * S+O=BYTE COUNT
00977A FB92 DE F2 A BSDPUN LOU VECTAB+,PAD LOAD PADDING VALUES
00978A P894 AE 64 A LOX 4,S X=FROM ADDRESS
00979A FB96 34 56 A PSFIS U,X,D CREATE STACK WORK AREA
00980A P098 CC 0018 A LDD #24 SET A=0, B=24

B-54

PAGE 019 ASSISTO9.SA:0 ASSISTO9 - MC6809 MONITOR

00981A FB9B D7 F2 A STB VECTAB+.PAD SETUP 24 CHARACTER PADS
00982A FB9D 3F SWI SEND NULLS OUT
00983A FB9E 01 A FCB DUTCH FUNCTION
00984A FB9F C6 04 A LDB #4 SETUP NEW LINE PAD TO 4

00985A FBA1 DD F2 A STD VECTAB+.PAD SETUP PUNCH PADDING
00986 * CALCULATE SIZE
00987A FBA3 EC 68 A BSPGO LDD 8,S LOAD TO
00988A FBAS A3 62 A SUBD 2,S MINUS FROM=LENGTH
00989A FBA7 1083 0018 A CMPD #24 ? MORE TH~{N 23
00990A FBAB 25 02 FBAF 8W BSPOK NO, OK
00991A FBAD C6 17 A LDB #23 FORCE TO 23 MAX
00992A FBAF 5C BSPOK INCB PREPARE COUNTER
00993A FBBO E7 E4 A STB ,S STORE BYTE COUNT
00994A FBB2 CB 03 A ADDB #3 ADJUST TO FRAME COUNT
00995A FBB4 E7 61 A STB i,S SAVE
00996 *PUNCH CR,LF,NULS,S,1
00997A FBB6 30 8C 33 LEAX <BSPSTR,PCR LOAD START RECORD HEADER
00998A FBB9 3F SWI SEND OUT
00999A FBBA 03 A FCB PDATA FUNCTION
01000 * SEND FRAME COUNT
01001A FBBB SF CLRB INITIALIZE CHECKSUM
01002A FBBC 30 61 A LEAX 1,S POINT TO FRAME COUNT AND ADDR
01003A FBBE 8D 27 FBE7 BSR BSPUN2 SEND FRAME COUNT
01004 *DATA ADDRESS
01005A FBCO 8D 25 FBE7 BSR BSPUN2 SEND ADDRESS HI
01006A FBC2 8D 23 F8E7 BSR BSPUN2 SEND ADDRESS LOW
01007 *PUNCH DATA
01008A FBC4 AE 62 A LDX 2,S LOAD START DATA ADDRESS
01009A FBC6 8D 1F FBE7 BSPMRE BSR BSPUN2 SEND OUT NEXT BYTE
01010A FBC8 6A E4 A DEC ,S ? FINAL BYTE
O1O1IA FBCA 26 FA FBC6 BNE BSPMRE LOOP IF NOT DONE
01012A FBCC AF 62 A STX 2,S UPDATE FROM ADDRESS VALUE
01013 *PUNCH CHECKSUM
01014A FBCE 53 COMB COMPLEMENT
01015A FBCE E7 61 A STB 1,S STORE FOR SENDOUT
01016A FBD1 30 61 A LEAX 1,S POINT TO IT
01017A FBD3 8D 14 FBE9 BSR BSPUNC SEND OUT AS HEX
01018A FBDS AE 68 A LDX 8,S LOAD TOP ADDRESS
01019A FBD7 AC 62 A CMPX 2,S ? DONE
01020A FBD9 24 C8 FBA3 BUS BSPGO BRANCH NOT
01021A FBDB 30 8C 11 LEAX <BSPEOF,PCR PREPARE END OF FILE
01022A FBDE 3F SWI SEND OUT STRING
01023A Fi3DF 03 A FCB PDATA FUNCTION
01024A FBEO EC 64 A LDD 4,S RECOVER PAD COUNTS
01025A FBE2 DD F2 A STD VECTAB+.PAD RESTORE
01026A FBE4 4F CLRA SET Z=1 FOR OK RETURN
01027A FBE5 35 D6 A PULS PC,U,X,D RETURN WITH OK CODE

01029A FBE7 EB 84 A BSPUN2 ADDB ,X ADD TO CHECKSUM
01030A FBE9 16 FDED F9D9 BSPUNC LBRA ZOUT2H SEND OUT AS HEX AND RETURN

01032A FBEC 53 A BSPSTR FCB 'S,'l,EOT CR,LF,NULLS,S,1
01033A FBEF 53 A BSPEOF FCC /S9030000FC/EOF STRING
01034A FBF9 OD A FCB CR,LF,EOT

01036 * HSDTA - HIGH SPEED PRINT MEMORY

B-55

PAGE

01037
01038
01039
01040

020 ASSISTO9.SA:0 ASSISTO9 - MC6809 MONITOR

* INPUT: S+4-START ADDRESS
* S+2=STOP ADDRESS
* S+0=RETURN ADDRESS
* X,D VOLATILE

01042 * SEND TITLE
01043A FBFC 3F HSDTA SWI SEND NEW LINE
01044A FBFD 06 A FCB PCRLF FUNCTION
01045A FBFE C6 06 A LOB #6 PREPARE 6 SPACES
01046A FC00 3F HSBLNK SWI SEND BLANK
01047A FC01 07 A FCB SPACE FUNCTION
01048A FCO2 SA DECB COUNT DOWN
01049A FCO3 26 FB FC00 BNE HSBLNK LOOP IF MORE
01050A FCO5 5F CLRB SETUP BYTE COUNT
01051A FCO6 iF 98 A HSHTTL TFR B,A PREPARE FOR CONVERT
01052A FCOS 17 FDDB F9E6 LBSR 20UTHX CONVERT TO A HEX DIGIT

01053A FCOB 3F SWI SEND BLANK
01054A FCOC 07 A FCB SPACE FUNCTION
01055A FCOD 3F SWI SEND ANOTHER
01056A FCOE 07 A FCB SPACE BLANK
01057A FCOF 5C INCB UP ANOTHER
01058A FC10 C1 10 A CMPB #$10 ? PAST F'
01059A FC12 25 F2 FCO6 BLO HSHTTL LOOP UNTIL SO
01060A FC14 3F HSIILNE SWI TO NEXT LINE
01061A FC15 06 A FCB PCRLF FUNCTION

01062A FC16 25 2F FC47 BCS HSDRTN RETURN IF USER ENTERED CTL-X

01063A FC18 30 64 A LEAX 4,S POINT AT ADDRESS TO CONVERT
01064A FC1A 3F SWI PRINT OUT ADDRESS
01065A FCIB 05 A FCB OUT4HS FUNCTION

01066A FC1C AE 64 A LOX 4,S LOAD ADDRESS PROPER
01067A FC1E C6 10 A LOB #16 NEXT SIXTEEN
01068A FC20 3F HSHNXT SWI CONVERT BYTE TO HEX AND SEND

01069A FC21 04 A FCB OUT2HS FUNCTION
01070A FC22 SA DECB COUNT DOWN
01071A FC23 26 FB FC20 BNE HSHNXT LOOP IF NOT SIXTEENTH

01072A FC25 3F SWI SEND BLANK
01073A FC26 07 A FCB SPACE FUNCTION
01074A FC27 AE 64 A LOX 4,S RELOAD FROM ADDRESS

01075A FC29 C6 10 A LOB #16 COUNT
01076A FC2B A6 80 A HSHCHR LDA ,X+ NEXT BYTE
01077A FC2D 2B 04 FC33 BMI HSHDOT TOO LARGE, TO A DOT

01078A FC2F 81 20 A CMPA M' ? LOWER THAN A BLANK
01079A FC31 24 02 FC35 BHS HSHCOK NO, BRANCH OK
01080A FC33 86 2E A HSH DOT LDA #'. CONVERT INVALID PO A BLANK
01081A FC35 3F HSHCOK SWI SEND CHARACTER
01082A FC36 01 A FCB OUTCH FUNCTION
01083A FC37 5A DECB ? DONE
01084A FC38 26 F1 FC2B BNE HSHCHR BRANCH NO
01085A FC3A AC 62 A CPX 2,S ? PAST LAST ADDRESS
01086A FC3C 24 09 FC47 BHS HSDRTN QUIT IF SO
01087A FC3E AF 64 A STX 4,S UPDATE FROM ADDRESS
01088A FC40 A6 65 A LDA 5,S LOAD LOW BYTE ADDRESS
01089A FC42 48 AS LA ? TO SECTION BOUNDRY
01090A FC43 26 CF FC14 BNE HSHLNE BRANCH IF NOT
01091A FC45 20 B5 FBFC BRA HSDTA BRANCH IF SO
01092A FC47 3F HSDRTN SWI SEND NEW LINE
01093A FC48 06 A FCB PCRLF FUNCTION
01094A FC49 39 RTS RETURN TO CALLER

B-56

PAGE 021

01095

01097
01098
01099

ASSIST09.SA:0 ASSIST09 - MC6809 MONITOR

*F

* A S S I S T 0 9 COMMANDS

01101 *************REGISTERS - DISPLAY AND CHANGE REGISTERS
01102A FC4A 8D 23 FC6F CREG BSR REGPRT PRINT REGISTERS
01103A FC4C 4C INCA SET FOR CHANGE FUNCTION
01104A FC4D 8D 21 FC70 BSR REGCHG GO CHANGE, DISPLAY REGIS'ERS
01105A FC4F 39 RTS RETURN TO COMMAND PROCESSOR

01107 **

01108 * REGPRT - PRINT/CHANGE REGISTERS SUBROUTINE
01109 * WILL ABORT TO 'CMDBAD' IF OVERFLOW DETECTED DURING
01110 * A CHANGE OPERATION. CHANGE DISPLAYS REGISTERS WHEN
01111 * DONE.
01112 * REGISTER MASK LIST CONSISTS OF:
01113 * A) CHARACTERS DENOTING REGISTER
01114 * B) ZERO FOR ONE BYTE, -1 FOR TWO
01115 * C) OFFSET ON STACK TO REGISTER POSITION
01116 * INPUT: SP+4=STACKED REGISTERS
01117 * A=0 PRINT, A#0 PRINT AND CHANGE
01118 * OUTPUT: (ONLY FOR REGISTER DISPLAY)
01119 * C=1 CONTROL-X ENTERED, C=0 OTHERWISE
01120 * VOLATILE: D,X (CHANGE)
01121 * B,X (DISPLAY)
01122 ***

01123A FC 50 50 A REGMSK FCB 'P,'C,-1,19 PC REG
01124A FC54 41 A FCB 'A,0,10 A REG
01125A FC57 42 A FCB '3,0,11 B REG
01126A FC5A 58 A FCB 'X,-1,13 X REG
01127A FCSD 59 A FCB 'Y,-1,15 Y REG
01128A FC60 55 A FCB 'U,-1,17 U REG
01129A FC63 53 A FCB 'S,-1,1 S REG
01130A FC66 43 A FCB 'C,'C,0,9 CC REG
01131A FC6A 44 A FCB 'D,'P,0,12 DP REG
01132A FC6E 00 A FCB 0 END OF LIST

01134A FC6F 4F REGPRT CLRA SETUP PRINT ONLY FLAG

01135A FC70 30 E8 10 A REGCHG LEAX 4+12,S READY STACK VALUE
01136A FC73 34 32 A PSHS Y,X,A SAVE ON STACK WITH OPTION
01137A FC75 31 8C 08 LEAY REGMSK,PCR LOAD REGISTER MASK
01138A FC78 EC AU A REGP1 LOU ,Y+ LOAD NEXT CHAR OR <.0
01139A FC7A 4D TSTA ? END OF CHARACTERS
01140A FC7B 2F 04 FC81 BLE REGP2 BRANCH NOT CHARACTER
01141A FC7D 3F SW' SEND TO CONSOLE
01142A FC7E 01 A FCB OUTCH FUNCTION BYTE
01143A FC7F 20 F7 FC78 BRA REGP1 CHECK NEXT
01144A FC81 86 2D A REGP2 LDA #'- READY '-'
01145A FC83 3F SWI SEND OUT
U1146A FC84 01 A FCB OUTCH WITH OUTCH
01147A FC85 30 E5 A LEAX B,S X->REGISTER TO PRINT
01148A FC87 6D E4 A TST ,S ? CHANGE OPTION

B-57

PAGE 022 ASSIST09.SA:0 ASSIST09 - MC6809 MONITOR

01149A FC89 26 12 FC9D BNE REGCNG BRANCH YES
01150A FC8B 60 3F A TST -1,Y ? ONE OR TWO BYTES
01151A FC8D 27 03 FC92 BEQ REGP3 BRANCH ZERO MEANS ONE
01152A FC8F 3F SW' PERFORM WORD HEX
01153A FC90 05 A FCB OUT4US FUNCTION

01154A FC91 8C A FCB SKIP2 SKIP BYTE PRINT
01155A FC92 3F REGP3 SW' PERFORM BYTE HEX
01156A FC93 04 A FCB OUT2HS FUNCTION
01157A FC94 EC AO A REG4 LDD ,Y+ TO FRONT OF NEXT ENTRY
01158A FC96 SD TSTB ? END OF ENTRIES
01159A FC97 26 DF FC78 BNE REGP1 LOOP IF MORE
01160A FC99 3F SW' FORCE NEW LINE
01161A FC9A 06 A FCB PCRLF FUNCTION
01162A FC9B 35 B2 A REGRTN PULS PC,Y,X,A RESTORE STACK AND RETURN

01164A FC9D 80 40 FCDF REGCNG BSR BLDNNB INPUT BINARY NUMBER

01165A FC9F 27 10 FCB1 BEQ REGNXC IF CHANGE THEN JUMP

01166A FCA1 81 00 A CMPA #CR ? NO MORE DESIRED
01167A FCA3 27 lE FCC3 BEQ REGAGN BRANCH NOPE

01168A FCAS E6 3F A LOB -1,Y LOAD SIZE FLAG
01169A FCA7 5A DECB MINUS ONE
01170A FCA8 50 NEGB MAKE POSITIVE
01171A FCA9 58 ASLB TIMES TWO (=2 OR =4)

01172A FCAA 3F REGSKP SW' PERFORM SPACES
01173A FCAB 07 A FCB SPACE FUNCTION
01174A FCAC 5A DECB

01175A FCAD 26 FB FCAA BNE REGSKP LOOP IF MORE
01176A FCAF 20 E3 FC94 BRA REG4 CONTINUE WITH NEXT REGISTER

01177A FCB1 A7 E4 A REGNXC STA ,S SAVE DELIMITER IN OPTION

01178 * (ALWAYS > 0)
01179A FCB3 DC 9B A LDD NUMBER OBTAIN BINARY RESULT

01180A FC85 6D 3F A TST -1,Y ? TWO BYTES WORTH
01181A FCB7 26 02 FCBB BNE REGTWO BRANCH YES
01182A FCB9 A6 82 A LDA -X SETUP FOR TWO
01183A FCBB ED 84 A REGTWO STD ,X STORE IN NEW VALUE
01184A FCBD A6 E4 A LDA ,S RECOVER DELIMITER
01185A FCBF 81 00 A CMPA #CR ? END OF CHANGES
01186A FCC1 26 D1 FC94 BNE REG4 NO, KEEP ON TRUCK'N

01187 * MOVE STACKED DATA TO NEW STACK IN CASE STACK
01188 * POINTER HAS CHANGED
01189A FCC3 30 8D E28A REGAGN LEAK TSTACK,PCR LOAD TEMP AREA
01190A FCC7 C6 15 A LDB #21 WAD COUNT
01191A FCC9 35 02 A REGTFI PULS A NEXT BYTE
01192A FCCB A7 80 A STA ,X+ STORE INTO TEMP
01193A FCC D SA DECB COUNT DOWN
01194A FCCE 26 E9 FCC9 BNE REGTFI LOOP IF MORE
01195A FC DO 10EE 88 EC A LOS -20,X LOAD NEW STACK POINTER
01196A FCD4 C6 15 A LDB #21 LOAD COUNT AGAIN
01197A FCD6 A6 82 A REGTF2 LDA ,-X NEXT TO STORE
01198A F C 08 34 02 A PSHS A BACK ONTO NEW STACK
01199A F C DA 5A DECB COUNT DOWN
01200A FC DB 26 F9 FCD6 ONE REGTF2 LOOP IF MORE
01201A FC DD 20 BC FC9B BRA REGRTN GO RESTART COMMAND

01203 ***

01204 * BLDNUM - BUILDS BINARY VALUE FROM INPUT HEX
01205 * THE ACTIVE EXPRESSION HANDLER IS USED.

B-58

PAGE 023 ASSIST09.SA:0

01206

01207
01208
01209
01210
01211
01212

ASSIST09 - MC6809 MONITOR

* INPUT: S= RETURN ADDRESS
* OUTPUT: A=DELIMITER WHICH TERMINATED VALUE

* (IF DELM NOT ZERO)
* "NUMBER"=WORD BINARY RESULT

* Z=1 IF INPUT RECIEVED, Z=0 IF NO HEX RECIEVED
* REGISTERS ARE TRANSPARENT
**

01214 * EXECUTE SINGLE OR EXTENDED ROM EXPRESSION HANDLER
01215 *

01216 * THE FLAG "DELIM" IS USED AS FOLLOWS:
01217 * DELIM=O NO LEADING BLANKS, NO FORCED PERMINATOR
01218 * DELIM=CHR ACCEPT LEADING 'CUR'S, FORCED TERMINATOR
01219A FCDF 4F BLDNNB CLRA NO DYNAMIC DELIMITER
01220A FCEO 8C A FCB SKIP2 SKIP NEXT INSTRUC'PIGu
01221 * BUILD WITH LEADING BLANKS
01222A FCE1 86 20 A BLDNUM LDA #' ALLOW LEADING BLANKS
01223A FCE3 97 8E A STA DELIM STORE AS DELIMITER
01224A FCES 6E 9D E303 JMP [VECTAB+.EXPAN,PCR) TO EXP ANALYZER

01226 * THIS IS THE DEFAULT SINGLE ROM ANALYZER. WE ACCEPT:
01227 * 1) HEX INPUT
01228 * 2) 'M' FOR LAST MEMORY EXAMINE ADDRESS
01229 * 3) 'P' FOR PROGRAM COUNTER ADDRESS
01230 * 4) 'W' FOR WINDOW VALUE
01231 * 5) '9' FOR INDIRECT VALUE
01232A FCE9 34 14 A EXP1 PSHS X,B SAVE REGISTERS
01233A FCES 8D SC FD49 EXPDLM BSR BLDHXI CLEAR NUMBER, CHECK FIRST CHAR
01234A FCED 27 18 FD07 BEQ EXP2 IF HEX DIGIT CONTINUE BUILDING
01235 * SKIP BLANKS IF DESIRED
01236A FCEF 91 8E A CMPA DELIM ? CORRECT DELIMITER
01237A FCF1 27 F8 FCEB BEQ EXPDLM YES, IGNORE IT
01238 * TEST FOR M OR P
01239A FCF3 9E 9E A LDX ADDR DEFAULT FOR 'M'
01240A FCFS 81 40 A CMPA #'M ? MEMORY EXAMINE ADDR WANTED
01241A FCF7 27 16 FDOF BEQ EXPTDL BRANCH IF SO
01242A FCF9 9E 93 A LOX PCNTER DEFAULT FOR 'P'

01243A FCFB 81 50 A CMPA #'P ? LAST PROGRAM COUNTER WANTED
01244A FCFD 27 10 FDOF BEQ EXPTDL BRANCH IF SO
01245A FCFF 9E AO A LOX WINDOW DEFAULT TO WINDOW
01246A FDO1 81 57 A CMPA #'W ? WINDOW WANTED
01247A FD03 27 OA FDOF BEQ EXPTDL
01248A FD05 35 94 A EXPRTN PULS PC,X,B RETURN AND RESTORE REGISTERS
01249 * GOT HEX, NOW CONTINUE BUILDING
01250A FD07 80 44 FD4D EXP2 BSR BLDHEX COMPUTE NEXT DIGIT
01251A FD09 27 FC FD07 BEQ EXP2 CONTINUE IF MORE
01252A FDOB 20 OA FD17 BRA EXPCDL SEARCH FOR +/-
01253 * STORE VALUE AND CHECK IF NEED DELIMITER
01254A FDOD AE 84 A EXPTDI LOX ,X INDIRECTION DESIRED
01255A FDOF 9F 9B A EXPTDL STX NUMBER STORE RESULT
01256A FD11 OD 8E A TST DELIM ? TO FORCE A DELIMITER
01257A FD13 27 FO FD05 BEQ EXPRTN RETURN IF NOT WITH VALUE
01258A FD15 80 62 FD79 BSR READ OBTAIN NEXT CHARACTER
01259 * TEST FOR + OR -
01260A FD17 9E 9B A EXPCDL LOX NUMBER LOAD LAST VALUE
01261A FD19 81 2B A CMPA #'+ ? ADD OPERATOR
01262A FD1B 26 OE FD2B BNE EXPCHM BRANCH NOT
01263A FD1D 80 23 FD42 BSR EXPTRM COMPUTE NEXT TERM

B-59

PAGE 024 ASSISTO9.SA:0 ASSISTO9 - MC6809 MONITOR

01264A FDIF 34 02 A PSI-IS A SAVE DELIMITER
01265A P021 DC 9B A LDD NUMBER LOAD NEW TERM
01266A FD23 30 8B A EXPADD LEAX D,X ADD TO X
01267A FD25 9F 9B A STX NUMBER STORE AS NEW RESULT
01268A FD27 35 02 A PULS A RESTORE DELIMITER
01269A FD29 20 EC FD17 BRA EXPCDL NOW TEST IT
01270A FD2B 81 2D A EXPCHM CMPA #'- ? SUBTRACT OPERATOR
01271A FD2D 27 07 FD36 BEQ EXPSUB BRANCH IF SO

01272A FD2F 81 40 A CMPA #'@ ? INDIRECTION DESIRED
01273A FD31 27 DA FOOD BEQ EXPTDI BRANCH IF SO
01274A P033 5F CLRB SET DELIMITER RETURN

01275A FD34 20 CF FD05 BRA EXPRTN AND RETURN TO CALLER
01276A FD36 8D OA FD42 EXPSUB BSR EXPTRM OBTAIN NEXT TERM
01277A FD38 34 02 A PSHS A SAVE DELIMITER
01278A FD3A DC 9B A LDD NUMBER LOAD UP NEXT TERM
01279A FD3C 40 NEGA NEGATE A
01280A FD3D 50 NEGB NEGATE B

01281A FD3E 82 00 A SBCA #0 CORRECT FOR A
01282A P040 20 E1 FD23 BRA EXPADD GO ADD TO EXPRESION

01283 * COMPUTE NEXT EXPRESSION TERM
01284 * OUTPUT: X=OLD VALUE
01285 * 'NUMBER'=NEXT TERM
01286A FD42 8D 9D FCEI EXPTRM BSR BLDNUM OBTAIN NEXT VALUE

01287A FD44 27 32 FD78 BEQ CNVRTS RETURN IF VALID NUMBER
01288A P046 16 FC13 F95C BLDBAD LBRA CMDBAD ABORT COMMAND IF INVALID

01290
01291 * BUILD BINARY VALUE USING INPUT CHARACTERS.

01292 * INPUT: A=ASCII HEX VALUE OR DELIMITER
01293 * SP+O=RETURN ADDRESS

01294 * SP+2=16 BIT RESULT AREA

01295 * OUTPUT: Z=1 M BINARY VALUE
01296 * Z=0 IF INVALID HEX CHARACTER (A UNCHANGED)

01297 * VOLATILE: D

01298 **

01299A FD49 OF 9B A BLDHXI CLR NUMBER CLEAR NUMBER

01300A FD4B OF 9C A CLR NUMBER+1 CLEAR NUMBER
01301A FD4D 8D 2A FD79 BLDHEX BSR READ GET INPUT CHARACTER
01302A FD4F 80 11 FD62 3LDHXC BSR CNVHEX CONVERT AND TEST CHARACTER

01303A FD51 26 25 FD78 BNE CNVRTS RETURN IF NOT A NUMBER

01304A P053 C6 10 A LDB #16 PREPARE SHIFT
01305A P055 3D MUL BY FOUR PLACES

01306A P056 86 04 A LDA #4 ROTATE BINARY INTO VALUE

01307A FD58 58 BLDSHF ASLB OBTAIN NEXT BIT
01308A FD59 09 9C A RO L NUMBER+1 INTO LOW BYTE
01309A FDSB 09 9B A RO L NUMBER INTO HI BYTE
01310A FDSD 4A DECA COUNT DOWN
01311A POSE 26 F8 FD58 BNE BLDSIiF BRANCH IF MORE TO DO
01312A FD60 20 14 P076 BRA CNVOK SET GOOD RETURN CODE

01314

01315 * CONVERT ASCII CHARACTER TO BINARY BYTE
01316 * INPUT: A=ASCII
01317 * OUTPUT: Z=1 A=BINARY VALUE
01318 * Z=0 IF INVALID
01319 * ALL REGISTERS TRANSPARENT

B-60

PAGE 025 ASSISTO9.SA:0 ASSISTO9 - MC6809 MONITOR

01320
01321
013221
013231
013241
013251
013261
013271
013281
013291
013301
013311
013321
013331

P062
FD64
FD66
F 06
FD6A
FD6C
FD6E
P070
P07 2
FD74
P076
FD78

81
25
81
2F
81
25
81
22
80
84
lA
39

01335
01336A P079 3F
01337A P071
01338A FD78 81
013391 FD7D 27
01340A FD7F 39
01341

01343
013441 P080 8D
013451 FD82 313

01347
01348
013491
013501
013511
01352
01353
01354A
013551
013561
013571
01358A
013591
013601
013611
013621
013631
01364A
013651
01366
01367A
01368A
013691
013701
013711
013721
013731
01374A

FD83 35
P085 34
P087 26

P089
FD8C
FD8E
FD8F
F D91
FD93
P095
FD97
FD99
F09
FD9D
FD9F

F DA2
FDA5
FDA7
F OAA
FDAC
FDAD
FDAF
F L)B1

17
AE
51
2B
A6
AC
26
81
26
97
OC
16

17
ED
17
00
51
28
16
17

30
12
39
OA
41
OA
46
06
07
OF
04

A
FD78

A
FD74

A
FD78

A
FD78

A
A
A

* (A UNALTERED IF INVALID HEX)

CNVHEX CMPA
BLO
CMPA
BLE
CMPA
BLO
CMPA
BHI
SUBA

CNVGOT ANDA
CNVOK ORCC
CNVRTS RTS

* GET
READ

00 A
18 A
C7 P046

*G

#'0 ? LOWER THAN A ZERO
CNVRTS
#'9
CNVGOT
#'A
CNVRTS
#'F
CNVRTS
#7
#$OF
#4

INPUT CHAR,
SWI
FCB
CMPA
BEQ
RTS

BRANCH NOT VALUE
? POSSIBLE A-F
BRANCH NO TO ACCEPT
? LESS THEN TEN
RETURN IF,MINUS (INVALID)
? NOT TOO LARGE
NO, RETURN TOO LARGE
DOWN TO BINARY
CLEAR HIGH HEX
FORCE ZERO ON FOR VALID HEX
RETURN TO CALLER

ABORT COMMAND IF CONTROL-X (CANCEL)
GET NEXT CHARACTER

INCHNP FUNCTION
#CAN ? ABORT COMMAND
BLDBAD BRANCH TO ABORT IF SO

RETURN TO CALLER

***************GO - START PROGRAM EXECUTION
01 FD83 CGO BSR GOADDR BUILD ADDRESS IF NEEDED

RTI START EXECUTING

* FIND OPTIONAL NEW PROGRAM COUNTER. ALSO ARM THE
* BREAKPOINTS.

30 A GOADDR PULS Y,X RECOVER RETURN ADDRESS
10 A PSHS X STORE RETURN BACK
19 P012 BNE GONDFT IF NO CARRIAGE RETURN THEN NEW PC

* DEFAULT PROGRAM COUNTER, SO FALL THROUGH IF
* IMMEDIATE BREAKPOINT.

0186 FF42
6C A

16
30
Al
F7
3F
02
FB
8F
0106

OOBB
6C
0198
FA

C9
84
30

FDA7
A
A

FD8E
A

FD9D
A
A

FEA8

FE60
A

FF42
A

FD78
A
A

LBSR
LDX

ARMBLP DECH
BMI
LDA
CMPX
BNE
CMPA
BNE
STA

ARMNSW INC
LBRA

* OBTAIN NEW PROGRAM
GONDFT LBSR CDNUM

STD 12,S
ARMBK2 LBSR CHKLDR

NEG BKPTCT
ARMLOP DECK

BMI
LDA
STA

CBKLDR SEARCH BREAKPOINTS
12,S LOAD PROGRAM COUNTER

COUNT DOWN
ARMBK2 DONE, NONE TO SINGLE TRACE
-NUMBKP*2,Y PRE-FETCH OPCODE
,Y++ ? IS THIS A BREAKPOINT
ARMBLP LOOP IF NOT
#S3F ? SWI BREAKPOINTED
ARMNSW NO, SKIP SETTING OF PASS FLAG
SWIBFL SHOW UPCOMMING SWI NOT BRKPNT
MISFLG FLAG THRU A BREAKPOINT
COOT DO SINGLE TRACE W/O BREAKPOINTS

COUNTER
OBTAIN NEW PROGRAM COUNTER
STORE INTO STACK
OBTAIN TABLE
COMPLEMENT TO SHOW ARMED
? DONE

CNVRTS RETURN WHEN DONE
(,Y) LOAD OPCODE
NUMBKP*2,Y STORE INTO OPCODE TABLE

B-61

PAGE

01375A
01376A
01377A

01379

026

FDB3
FDB5
FDB7

ASSISTO9.SA:0

86 3F A
A7 81 A
20 F3 FDAC

ASSISTO9

LDA
STA
BRA

- MC6809 MONITOR

#$3F READY "SWI" OPCODE
[,Y++] STORE AND MOVE UP TABLE
ARMLOP AND CONTINUE

CALL - CALL ADDRESS AS SUBROUTINE
01380A FDB9 8O C8 P083 CCALL BSR GOADDR FETCH ADDRESS IF NEEDED
01381A FDBB 35 7F A PU LS U,Y,X,DP,D,CC RESTORE USERS REGISTERS
01382A FORD AD F1 A JSR [,S++] CALL USER SUBROUTINE
01383A FDBF 3F CGOBRK SWI PERFORM BREAKPOINT
01384A FDCO OA A FCB BRKPT FUNCTION
01385A FDC1 20 FC FDBF BRA CGOBRK LOOP UNTIL USER CHANGES PC

01387 ****************MEMORY - DISPLAY/CHANGE MEMORY
01388 * CMEMN AND CMPADP ARE DIRECT ENTRY POINTS FROM
01389 * THE COMMAND HANDLER FOR QUICK COMMANDS
01390A FDC3 17 009A FE60 CMEM LBSR CDNUM OBTAIN ADDRESS
01391A FDC6 DD 9E A CMEMN STD ADDR STORE DEFAULT
01392A FDC8 9E 9E A CMEM2 LDX ADDR LOAD POINTER
01393A FDCA 17 FCOC F9 D9 LBSR ZOUT2H SEND OUT HEX VALUE OF BYTE
01394A FDCD 86 2D A LDA #'- LOAD DELIMITER
01395A FDCF 3F SWI SEND OUT
01396A FUDO 01 A FCB OUTCH FUNCTION
01397A FDD1 17 FFOB FCDF CMEM4 LBSR BLDNNB OBTAIN NEW BYTE VALUE
01398A FDD4 27 OA FDEO BEQ CMENUM BRANCH IF NUMBER
01399 * COMA - SKIP BYTE
01400A FDD6 81 2C A CMPA M', ? COMMA
01401A F008 26 OE FDE8 BNE CMNOTC BRANCH NOT
01402A FDDA 9F 9E A STX ADDR UPDATE POINTER
01403A FDDC 30 01 A LEAX 1,X TO NEXT BYTE
01404A FDDE 20 F1 FDU1 BRA CMEM4 AND INPUT IT
01405A FDEO D6 9C A CMENUM LDB NUMBER+1 LOAD LOW BYTE VALUE
01406A FDE2 8D 47 FE2B BSR MUPDAT GO OVERLAY MEMORY BYTE
01407A FDE4 81 2C A CMPA U, ? CONTINUE WITH NO DISPLAY
01408A FDE6 27 E9 FDD1 BEQ CMEM4 BRANCH YES
01409 * QUOTED STRING
01410A FDE8 81 27 A CMNOTC CMPA U' ? QUOTED STRING
01411A FDEA 26 OC FDF8 BNE CMNOTQ BRANCH NO
01412A FDEC 8D 8B FU79 CMESTR BSR READ OBTAIN NEXT CHARACTER
01413A FUEE 81 27 A CMPA U' ? END OF QUOTED STRING
01414A FDFO 27 OC FDFE BEQ CMSPCE YES, QUIT STRING MODE
01415A FDF2 1F 89 A TFR A,B TO B FOR SUBROUTINE
01416A FDF4 8D 35 FE2B BSR MUPDAT GO UPDATE BYTE
01417A FDF6 20 F4 FDEC BRA CMESTR GET NEXT CHARACTER
01418 * BLANK - NEXT BYTE
01419A FDF8 81 20 A CMNOTQ CMPA *$20 ? BLANK FOR NEXT BYTE
01420A FDFA 26 06 FE02 BNE CMNOTB BRANCH NOT
01421A FUFC 9F 9E A STX ADDR UPDATE POINTER
01422A FDFE 3F CMSPCE SWI GIVE SPACE
01423A FOFF 07 A FCB SPACE FUNCTION
01424A FE00 20 C6 FDC8 BRA CMEM2 NOW PROMPT FOR NEXT
01425 * LINE FEED NEXT BYTE WITH ADDRESS
01426A FE02 81 OA A CMNOTB CMPA MLF ? LINE FEED FOR NEXT BYTE
01427A FEO4 26 08 FEOC BNE CMNOTL BRANCH NO
01428A FEO6 86 OD A LDA ICR GIVE CARRIAGE RETURN

B-62

PAGE 027 ASSISTO9.SA:0 ASSIS'P09 - MC6809 MONITOR

01429A FEO8 3F SWI TO CONSOLE
01430A FEO9 01 A FCB OUTCH HANDLER
01431A FEOA 9F 9E A STX ADDR STORE NEXT ADDRESS
01432A FEOC 20 OA FE18 BRA CMPADP BRANCH TO SHOW
01433 * UP ARROW -PREVIOUS BYTE AND ADDRESS
01434A FEOE 81 5E A CMNOTL CMPA ? UP ARROW FOR PREVIOUS BYTE
01435A FE10 26 OA FE1C BNE CMNOTU BRANCH NOT
01436A FE12 30 16 A LEAX -2,X DOWN TO PREVIOUS BYTE
01437A FE14 9F 9E A STX ADDR STORE NEW POINTER
01438A FE16 3F CMPADS SWI FORCE NEW LINE

01439A FE17 06 A FCB PCRLF FUNCTION
01440A FE18 8D 07 FE21 CMPF.DP PSR PRTADR GO PRINT ITS VALUE
01441A FE1A 20 AC FDC8 BRA CMEM2 THEN PROMPT FOR INPUT
01442 * SLASH - NEXT BYTE WITH ADDRESS
01443A FEIC 81 2F A CMNOTU CMPA #'/ ? SLASH FOR CURRENT DISPLAY
01444A FETE 27 F6 FE16 BEQ CMPADS YES, SEND ADDRESS
01445A FE20 39 RTS RETURN FROM COMMAND

01447 * PRINT CURRENT ADDRESS

01448A FE21 9E 9E A PRTADR LDX ADDR LOAD POINTER VALUE

01449A FE23 34 10 A PSHS X SAVE X ON STACK
01450A FE25 30 E4 A LEAX ,S POINT TO IT FOR DISPLAY

01451A FE27 3F SWI DISPLAY POINTER IN HEX

01452A FE28 05 A FCB OUT4HS FUNCTION
01453A F629 35 90 A PULS PC,X RECOVER POINTER AND RETURN

01455 * UPDATE HYTr
01456A FE2B 9E 9E A MUPDAT LDX ADDR LOAD NEXT BYTE POINTER

01457A FE2D E7 80 A STB ,X+ STORE AND INCREMENT X

01458A FE2F E1 1F A CMPB -1,X ? SUCCESFULL STORE
01459A FE31 26 03 FE36 BNE MUPBAD BRANCH FOR '?' IF NOT

01460A FE33 9F 9E A STX ADDR STORE NEW POINTER VALUE

01461A FE35 39 RTS BACK TO CALLER
01462A FE36 34 02 A MUPBAD PSHS A SAVE A REGISTER

01463A F638 86 3F A LDA #'? SHOW INVALID

01464A FE3A 3F SWI SEND OUT
01465A FE3B 01 A FCB OUTCH FUNCTION
01466A FE3C 35 82 A PULS PC,A RETURN TO CALLER

01468 ********************WINDOW - SET WINDOW VALUE
01469A FE3E 80 20 FE60 CWINDO BSR CDNUM OBTAIN WINDOW VALUE

01470A FE40 DD AO A STD WINDOW STORE IT IN

01471A FE42 39 RTS END COMMAND

01473 ******************llISPLAY - HIGH SPEED DISPLAY MEMORY

01474A F643 8D 18 F660 CDISP BSR CDNUM FETCH ADDRESS
01475A FE45 C4 FO A ANDB #$FO FORCE TO 16 BOUNDRY
01476A F647 1F 02 A TFR D,Y SAVE IN Y

01477A F649 30 2F A LEAX 15,Y DEFAULT LENGTH

01478A FE4B 25 04 FE51 BCS CDISPS BRANCH IF END OF INPUT
01479A FE4D 8D 11 FE60 BSR CDNUM OBTAIN COUNT

01480A FE4F 30 AB A LEAX D,Y ASSUME COUNT, COMPUTE END ADDR

01481A F651 34 30 A CDISPS PSHS Y,X SETUP PARAMETERS FOR HSDATA
01482A F653 10A3 62 A CMPD 2,S ? WAS IT COUNT

B-63

PAGE

01483A
01484A
01485A
01486A

028

FE56
FE58
FESA
FE5E

ASSIST09.SA:0

23 02 FESA
ED E4 A
AD 9D E184 CDCNT
35 E0 A

ASSIST09

BLS
STD
JSR
PULS

- MC6809 MONITOR

CDCNT BRANCH YES
,S STORE HIGH ADDRESS
[VECTAB+,HSDTA,PCR] CALL PRINT ROUTINE
PC,U,Y CLEAN STACK AND END COMMAND

01488 * OBTAIN NUMBER - ABORT IF NONE
01489 * ONLY DELIMITERS OF CR, BLANK, OR '/' ARE ACCEPTED
01490 * OUTPUT: D= VALUE, C=1 IF CARRIAGE RETURN DELMITER,
01491 * ELSE C=0
01492A FE60 17 FETE FCE1 CDNUM LBSR BLDNUM OBTAIN NUMBER
01493A FE63 26 09 FE6E BNE CDBADN BRANCH IF INVALID
01494A FE65 81 2F A CMPA #'/ ? VALID DELIMITER
01495A FE67 22 05 FE6E BHI CDBADN BRANCH IF NOT FOR ERROR
01496A FE69 81 OE A CMPA #CR+1 LEAVE COMPARE FOR CARRIAGE RET
01497A FE6B DC 9B A LDD NUMBER LOAD NUMBER
01498A FE6D 39 RTS RETURN WITH COMPARE

01499A FE6E 16 FAEB F95C CDBADN LBRA CMDBAD RETURN TO ERROR MECHANISM

01501 *****************PUNCH - PUNCH MEMORY IN S1-S9 FORMAT
01502A FE71 8D ED FE60 CPUNCH BSR CDNUM OBTAIN START ADDRESS
01503A FE73 1F 02 A TFR D,Y SAVE IN Y
01504A FE75 8D E9 FE60 BSR CDNUM OBTAIN END ADDRESS
01505A FE77 6F E2 A CLR ,-S SETUP PUNCH FUNCTION CODE
01506A FE79 34 26 A PSUS Y,D STORE VALUES ON STACK
01507A FE7B AD 9D E165 CCALBS JSR [VECTAB+,BSON,PCR] INITIALIZE HANDLER
01508A FE7F AD 9D E163 JSR [VECTAB+,BSDTA,PCR] PERFORM FUNCTION

01509A FE83 34 01 A PSUS CC SAVE RETURN CODE
01510A FE85 AD 9D E15F JSR [VECTAB+,BSOFF,PCR] TURN OFF HANDLER
01511A FE89 35 01 A PULS CC OBTAIN CONDITION CODE SAVED

01512A FE8B 26 E1 FE6E BNE CDBADN BRANCH IF ERROR
01513A FE8D 35 B2 A PULS PC,Y,X,A RETURN FROM COMMAND

01515 *****************LOAD - LOAD MEMORY FROM SI-S9 FORMAT
01516A FE8F 8D 01 FE92 CLOAD BSR CLVOFS CALL SETUP AND PASS CODE
01517A FE91 01 A FCB 1 LOAD FUNCTION CODE FOR PACKET

01519A FE92 33 F1 A CLVOFS LEAU [,S++] LOAD CODE IN HIGH BYTE OF U

01520A FE94 33 D4 A LEAU [,U] NOT CHANGING CC AND RESTORE S
01521A FE96 27 03 FE9B BEQ CLVDFT BRANCH IF CARRIAGE RETURN NEXT

01522A FE98 8D C6 FE60 BSR CDNUM OBTAIN OFFSET
01523A FE9A 8C A FCB SKIP2 SKIP DEFAULT OFFSET
01524A FE9B 4F CLVDFT CLRA CREATE ZERO OFFSET
01525A FE9C 5F CLRB AS DEFAULT
01526A FE9D 34 4E A PSUS U,DP,D SETUP CODE, NULL WORD, OFFSET
01527A FE9F 20 DA FE7B BRA CCALBS ENTER CALL TO BS ROUTINES

01529 ******************VERIFY - COMPARE MEMORY WITH FILES

01530A FEA1 8D EF FE92 CVER BSR CLVOFS COMPUTE OFFSET IF ANY
01531A FEA3 FT A FCB -1 VERIFY FNCTN CODE FOR PACKET

8-64

PAGE

01533

01534

029 ASSISTO9.SA:0 ASSIS'r09 - MC6809 MONITOR

*******************TRACE - TRACE INSTRUCTIONS

******************* - SINGLE STEP TRACE

0153 SA FEA4 80 BA FE60 CTRACE BSR CDNUM OBTAIN TRACE COUNT
01536A FEA6 DD 91 A STD TRACEC STORE COUNT

01537A FEA8 32 62 A CDOT LEAS 2,S RID COMMAND RETURN FROM STACK
01538A FEAA EE F8 OA A CTRCE3 LDU (10,S) LOAD OPCODE TO EXECUTE
01539A FEAD DF 99 A STU LASTOP STORE FOR TRACE INTERRUPT
01540A FEAF DE F6 A LDU VECTAB+.PTM LOAD PTM ADDRESS
01541A FEB1 CC 0701 A LDD #7!<8+1 CYCLES DOWN+CYCLES UP
01542A FEB4 ED 42 A STD PTMTMI-PTM,U START NMI TIMEOUT
01543A FEB6 3B RTI RETURN FOR ONE INSTRUCTION

01545
01546A
01547A

FEB7
FEB9

8D
DD

A7
F2

FE60 CNULLS
A

BSR
STD

NULLS - SET NEW LINE AND CHAR PADDING
CDNUM OBTAIN NEW LINE PAD
VECTAB+.PAD RESET VALUES

01548A FEBB 39 RT S END COMMAND

01550 STLEVEL - SET STACK TRACE LEVEL
01551A FEBC 27 05 FEC3 CSTLEV BEQ STLDFT TAKE DEFAULT
01552A FEBE 80 AO FE60 BSR CDNtJM OBTAIN NEW STACK LEVEL
01553A FECO DD F8 A STD SLEVEL STORE NEW ENTRY
01554A FEC2 39 RTS TO COMMAND HANDLER
01555A FEC3 30 6E A STLDFT LEAX 14,S COMPUTE NMI COMPARE
01556A FEC5 9F F8 A STX SLEVEL AND STORE IT
01557A FEC7 39 RTS END COMMAND

01559 OFFSET - COMPUTE SHORT AND LONG
01560 BRANCH OFFSETS
01561A FEC 8 8D 96 FE60 COFFS BSR CDNUM OBTAIN INSTRUCTION ADDRESS
01562A FECA 1F 01 A TFR D,X USE AS FROM ADDRESS
01563A FECC 80 92 FE60 BSR CDNUM OBTAIN TO ADDRESS

01564 * D=TO INSTRUCTION, X=FROM INSTRUCTION OFFSET BYTE(S)
01565A FECE 30 01 A LEAX 1,X ADJUST FOR *+2 SHORT BRANCH
01566A FEDO 34 30 A PSHS Y,X STORE WORK WORD AND VALUE ON S
01567A FED2 A3 E4 A SUBD ,S FIND OFFSET
01568A FED4 ED E4 A STD ,S SAVE OVER STACK
01569A FED6 30 61 A LEAX 1,S POINT FOR ONE BYTE DISPLAY
01570A FED8 1D SEX SIGN EXTEND LOW BYTE
01571A FED9 Al E4 A CMPA ,S ? VALID ONE BYTE OFFSET
01572A FEDB 26 02 FEDF BNE COFNOI BRANCH IF NOT
01573A FEDD 3F SWI SHOW ONE BYTE OFFSET
01574A FEDE 04 A FCH OUT2HS FUNCTION
01575A FEDF EE E4 A COFNOI LDU ,S RELOAD OFFSET
01576A FEE1 33 SF A LEAU -1,U CONVERT TO LONG BRANCH OFFSET
01577A FEE3 CF 84 A STU ,X STORE BACK WHERE X POINTS NOW
01578A FEES 3F SWI SHOW TWO BYTE OFFSET
01579A FEE6 05 A FCB OUT4HS FUNCTION
01580A FEE7 3F SWI FORCE NEW LINE
01581A FEES 06 A FCB PCRLF FUNCTION
01582A FEE9 35 96 A PU LS PC,X,D RESTORE STACK AND END COMMAND
01583 *H

B-65

PAGE 030

01585
01586

ASSISTO9.SA:0 ASSISTO9 - MC6809 MONITOR

 BREAKPOINT - DISPLAY/ENTER/DELETE/CLEAR
BREAKPOINTS

01587A FEEB 27 23 FF10 CBKPT BEQ CBKDSP BRANCH DISPLAY OF JUST 'B'

01588A FEED 17 FDF1 FCE1 LBSR BLDNUM ATTEMPT VALUE ENTRY
01589A FEFO 27 2C FF1E BEQ CBKADD BRANCH TO ADD IF SO

01590A FEF2 81 2D A CMPA *'- ? CORRECT DELIMITER
01591A FEF4 26 3F FF35 BNE CBKERR NO, BRANCH FOR ERROR

01592A FEF6 17 FDE8 FCE1 LBSR BLDNUM ATTEMPT DELETE VALUE

01593A FEF9 27 03 FEFE BEQ CBKDLE GOT ONE, GO DELETE IT

01594A FEFB OF FA A CLR BKPTCT WAS 'B -', SO ZERO COUNT

01595A FEFD 39 CBKRTS RTS END COMMAND

01596 * DELETE THE ENTRY
01597A FEFE 8D 40 FF40 CBKDLE BSR CBKSET SETUP REGISTERS AND VALUE

01598A FF00 SA CBKDLP DECB ? ANY ENTRIES IN TABLE

01599A FFO1 2B 32 FF35 BMI CBKERR BRANCH NO, ERROR
01600A FF03 AC Al A CMPX ,Y++ ? IS THIS THE ENTRY

01601A FF05 26 F9 FF00 BNE CBKDLP NO, TRY NEXT

01602 * FOUND, NOW MOVE OTHERS UP IN ITS PLACE

01603A FF07 AE Al A CBKDLM LOX ,Y++ LOAD NEXT ONE UP

01604A FF09 AF 3C A STX -4,Y MOVE DOWN BY ONE

01605A FFO8 5A DECH ? DONE

01606A FFOC 2A F9 FF07 BPL CBKDLM NO, CONTINUE MOVE

01607A FFOE OA FA A DEC HKPTCT DECREMENT BREAKPOINT COUNT

01608A FF10 8D 2E FF40 CBKDSP BSR CBKSET SETUP REGISTERS AND LOAD VALUE

01609A FF12 27 E9 FEFD BEQ CBKRTS RETURN IF NONE TO DISPLY

01610A FF14 30 Al A CBKDSL LEAX ,Y++ POINT TO NEXT ENTRY

01611A FF16 3F SWI DISPLAY IN HEX
01612A FF17 05 A FCB OUT4HS FUNCTION

01613A FF18 5A DECB COUNT DOWN
01614A FF19 26 F9 FF14 DNE CBKDSL LOOP IF MORE TO DO

01615A FF1B 3F SWI SKIP TO NEW LINE

01616A FF1C 06 A FCB PCRLF FUNCTION

01617A FF1D 39 RTS RETURN TO END COMMAND

01618 * ADD NEW ENTRY

01619A FFIE 8D 20 FF40 CBKADD BSR CBKSET SETUP REGISTERS

01620A FF20 Cl 08 A CMPB #NUMBKP ? ALREADY FULL

01621A FF22 27 11 FF35 BEQ CBKERR BRANCH ERROR IF SO

01622A FF24 A6 84 A LDA ,X LOAD BYTE TO TRAP

01623A FF26 E7 84 A STB ,X TRY TO CHANGE
01624A FF28 E1 84 A CMPB ,X ? CHANGABLE RAM

01625A FF2A 26 09 FF35 BNE CBKERR BRANCH ERROR IF NOT

01626A FF2C A7 84 A STA ,X RESTORE BYTE

01627A FF2E 5A CBKADL DECB COUNT DOWN

01628A FF2F 2B 07 FF38 BMI CBKADT BRANCH IF DONE TO ADD IT

01629A FF31 AC Al A CMPX ,Y++ ? ENTRY ALREADY HERE

01630A FF33 26 F9 FF2E BNE CBKADL LOOP IF NOT

01631A FF35 16 FA24 F95C CBKERR LBRA CMDBAD RETURN TO ERROR PRODUCE

01632A FF38 AF A4 A CBKADT STX ,Y ADD THIS ENTRY

01633A FF3A 6F 31 A CLR -NUMBKP*2+1,Y CLEAR OPTIONAL BYTE

01634A FF3C OC FA A INC BKPTCT ADD ONE TO COUNT

01635A FF3E 20 DO FF10 BRA CBKDSP AND NOW DISPLAY ALL OF 'EM
01636 * SETUP REGISTERS FOR SCAN
01637A FF40 9E 98 A CBKSET LOX NUMBER LOAD VALUE DESIRED

01638A FF42 31 8D EO6C CBKLDR LEAY BKPTBL,PCR LOAD START OF TABLE
01639A FF46 D6 FA A LDB BKPTCT LOAD ENTRY COUNT

01640A FF48 39 RTS RETURN

B-66

PAGE 031 ASSISTO9.SA:0 ASSISTO9

01642

- MC6809 MONITOR

ENCODE - ENCODE A POSTBYTE
01643A FF49 6F E2 A CENCDE CLR -S DEFAULT TO NOT INDIRECT
01644A FF48 5F CLRB ZERO POSTBYTE VALUE
01645A FF4C 30 8C 3F LEAX <CONVI,PCR START TABLE SEARCH

01646A FF4F 3F SW' OBTAIN FIRST CHARACTER

01647A FF50 00 A FCB INCHNP FUNCTION
01648A FF51 81 5B A CMPA N'(? INDIRECT HERE
01649A FF53 26 06 FF58 BNE CEN2 BRANCH IF. NOT

01650A FF55 86 10 A LDA *$10 SET INDIRECT BIT ON
01651A FF57 A7 E4 A S'PA ,S SAVE FOR LATFR
01652A FF59 3F CENGET SWI OBTAIN NEXT CHARACTER

01653A FF5A 00 A FCB INCHNP FUNCTION

01654A FF58 81 OD A CEN2 CMPA *CR ? END OF ENTRY
01655A FF5D 27 OC FF6B BEQ CEND1 BRANCH YES
01656A FFSF 60 84 A CENLPI TS'P ,X ? END OF TABLE
01657A FF61 2B D2 FF35 BMI CBKERR BRANCH ERROR IF SO

01658A FF63 Al 81 A CMPA ,X++ ? THIS THE CHARACTER
01659A FF65 26 F8 FF5F BNE CENLPI BRANCH IF NOT
01660A FF67 EB 1F A ADDB -1,X ADD THIS VALUE
01661A FF69 20 EE FF59 BRA CENGE'P GET NEXT INPUT
01662A FF6B 30 8C 49 CEND1 LEAX <CONV2,PCR POINT AT TABLE 2
01663A FF6E 1F 98 A TFR B,A SAVE COPY IN A
01664A FF70 84 60 A ANDA #$60 ISOLATE REGISTER MASK
01665A FF72 AA E4 A ORA ,S ADD IN INDIRECTION BIT
01666A FF74 A7 E4 A STA ,S SAVE BACK AS POSTBYTE SKELETON
01667A FF76 C4 9F A ANDB t$9F CLEAR REGISTER BITS
01668A FF78 60 84 A CENLP2 TST ,X ? END OF TABLE
01669A FF7A 27 B9 FF35 BEQ CBKERR BRANCH ERROR IF SO
01670A FF7C E1 81 A CMPB ,X++ ? SAME VALUE

01671A FF7E 26 F8 FF78 BNE CENLP2 LOOP IF NOT
01672A FF80 £6 1F A LDB -1,X LOAD RESULT VALUE
01673A FF82 EA E4 A ORB ,S ADD TO BASE SKELETON

01674A FF84 E7 E4 A STB ,S SAVE POSTBYTE ON STACK
01675A FF86 30 E4 A LEAX ,S POINT TO IT
01676A FF88 3F SW' SEND OUT AS HEX
01677A FF89 04 A FCB OUT2HS FUNCTION
01678A FF8A 3F SW' TO NEXT LINE
01679A FF8B 06 A FCB PCRLF FUNCTION
01680A FF8C 35 84 A PULS PC,B END OF COMMAND

01682 * TABLE ONE DEFINES VALID INPUT IN SEQUENCE

01683A FF8E 41 A CONVI FCB 'A,$04,'B,$05,'D,$06,'H,$O1
01684A FF96 48 A FCH 'H,$01,'H,$01,'H,$00,' „$00
01685A FF9E 2D A FCB '-,$09,'-,$O1,'S,$70,'Y,$30

01686A FFA6 55 A FCB 'U,$50,'X,$10,'+,$07,'+,$O1
01687A FFAE 50 A FCB 'P,$80,'C,$00,'R,$00,'),$00
01688A FFB6 FF A FCB $FF END OF TABLE
01689 *CONV2 USES ABOVE CONVERSION TO SET POSTBYTE
01690 * BIT SKELETON

01691A FFB7 1084 A CONV2 FDB $1084,$1100 R, H,R

01692A FFBB 1288 A FDB $1288,$1389 HH,R HHHH,R
01693A FFBF 1486 A FDB $1486,$1585 A,R B,R

01694A FFC3 168B A FDB $168B,$1780 D,R ,R+

01695A FFC7 1881 A FDB $1881,$1982 ,R++ ,-P.
01696A FFCB 1A83 A FDB $1A83,$828C ,--R HH,PCR
01697A FFCF 838D A FDB $8380,$039F HHHH,PCR (HHHH]
01698A FFD3 00 A FCB 0 END OF 'PABLC

B-67

PAGE 032 ASSISTO9.SA:0

01700
01701
01702

ASSISTO9 - MC6809 MONITOR

* DEFAULT INTERRUPT 'rRANSFERS *
**

01703A FFD4 6E 9D DFEE RSRVD JMP [VECTAB+.RSVD,PCR] RESERVED VECTOR
01704A FFD8 6E 9D DFEC SWI3 JMP (VECTAB+.SWI3,PCR] SWI3 VECTOR
01705A FFDC 6E 9D DFEA SWI2 JMP [VECTAB+.SWI2,PCR] SWI2 VECTOR
01706A FFEO 6E 9D DFE8 FIRQ JMP [VECTAB+.FIRQ,PCR] FIRQ VECTOR
01707A FFE4 6E 9D DFE6 IRQ JMP [VECTAB+.IRQ,PCRJ IRO VECTOR
01708A FFE8 6E 9D DFE4 SWI JMP [VECTAB+.SWI,PCRJ SWI VECTOR
01709A FFEC 6E 9D DFE2 NMI JMP [VECTAB+.NMI,PCRJ NMI VECTOR

01711 **

01712 * ASSIS'r09 HARDWARE VECTOR TABLE
01713 * THIS TABLE IS USED IF THE ASSISTO9 ROM ADDRESSES
01714 * THE MC6809 HARDWARE VECTORS.
01715 **

01716A FFFO ORG ROMBEG+ROMSIZ-16 SETUP HARDWARE VECTORS
01717A FFFO FFD4 A FDB RSRVD RESERVED SLOT
01718A FFF2 FFD8 A FDB SWI3 SOFTWARE INTERRUPT 3
01719A FFF4 F F DC A FDB SWI2 SOFTWARE INTERRUPT 2
01720A FFF6 FFEO A FDB FIRQ FAST INTERRUPT REQUEST
01721A FFF8 FFE4 A FDB IRQ INTERRUPT REQUEST
01722A FFFA FFE8 A FDB SWI SOFTWARE INTERRUPT
01723A FFFC FFFC A FDB NMI NON-MASKABLE INTERRUPT
01724A FFFE F837 A FDB RESET RESTART

01726 F837 A END RESET
TOTAL ERRORS 00000--00000
TOTAL WARNINGS 00000--00000

002E .ACIA 00095*00825 00837 00853
0000 .AVTBL 00072*00594
0024 .BSDTA 00090*01508
0026 .BSOFF 00091*01510
0022 .BSON 00089*01507
0016 .CIDTA 00083*00725
0018 .CIOFF 00084*
0014 .CION 00082*00348
0002 .CMDLI 00073*00429
002C .CMDL2 00094*00432
OO1C .CODTA 00086*00568
001E .COOFF 00087*
OOlA . COOt1 00085*00349
0032 .ECHO 00097*00625
002A .EXPAN 00093*01224
OOOA .FIrW 00077*01706
0020 . 1IS DTA 00088*01485
OOOC .IRQ 00078*01707
0010 .NMI 00080*01709
0030 .PAD 00096*OOc"7 00860 00977 00981 00985 01025 01547
0028 PAUSO 00092*00.24
0034 .PTi 00098*00353 01540

B-68

PAGE 033 ASSIST09.SA:0 ASSIST09 - MC6809 MONITOR

0012 .RESET 00081*
0004 .RSVD 00074*01703
000E .SWI 00079*01708
0008 .SWI2 00076*01705
0006 .SWI3 00075*01704
E008 ACIA 00024*00256
DF9E ADDR 00133*01239 01391 01392 01402 01421 01431 01437 01448 01456 01460
FDA7 ARMBK2 00773 01357 01369*
FD8E ARMBLP 01356*01360
FDAC ARMLOP 01371*01377
FD9D ARMNSW 01362 01364*
DF9D BASEPG 00135*00186 00784
0007 BELL 00036*00782
DFB2 BKPTBL 00127*01638
DFFA BKPTCT 00121*00386 01370 01594 01607 01634 01639
DFA2 BKPTOP 00129*
F815 BLD2 00192*00196
F821 BLD3 00198*00201
FD46 BLDBAD 01288*01339
FD4D BLDHEX 01250 01301*
FD4F BLDHXC 00421 01302*
FD49 BLDHXI 01233 01299*
FCDF BLDNNB 01164 01219*01397
FCE1 BLDNUM 01222*01286 01492 01588 01592
F835 BLDRTN 00205 00207*
FD58 BLDSHF 01307*01311
F800 BLDVTR 00183*00218
000A BRKPT 00066*01384
FB6A BSDCMP 00942 00944*
FB70 BSDEOL 00940 00948*
FB40 BSDLDI 00919*00922 00949
FB42 BSDLD2 00921*00928
FB60 BSDNXT 00939*00945
FB92 BSDPUN 00913 00977*
FB6E BSDSRT 00926 00946*00950
FB38 BSDTA 00250 00911*
FB27 BSOFF 00251 00891*
FB33 BSOFLP 00899*00900
FB1B BSON 00249 00880*
FB22 BSON2 00882 00884*
FBEF BSPEOF 01021 01033*
FBA3 BSPGO 00987*01020
FBC6 BSPMRE 01009*01011
FBAF BSPOK 00990 00992*
FBEC BSPSTR 00997 01032*
FBE7 BSPUN2 01003 01005 0100.6 01009 01029*
FBE9 BSPUNC 01017 01030*
FB7S BYTE 00930 00933 00935 00939 00953*
FB89 BYTHEX 00953 00956 00965*
FB88 BYTRTS 00963*00968
0018 CAN 00040*00711 00718 01338
FF1E CBKADD 01589 01619*
FF2E CBKADL 01627*01630
FF38 CBKADT 01628 01632*
FEFE CBKDLE 01593 01597*
FF07 CBKDLM 01603*01606
FF00 CBKDLP 01598*01601
FF14 CBKDSL 01610*01614

B-69

PAGE 034 ASSISTO9.SA:0 ASSISTO9 - MC6809 MONITOR

FF10 CBKDSP 01587 01608*01635
FF35 CBKERR 01591 01599 01621 01625 01631*01657 01669
FF42 CBKLDR 00303 00383 01354 01369 01638*
FEEB CBKPT 00503 01587*
FEFD CBKRTS 01595*01609
FF40 CBKSET 01597 01608 01619 01637*
FE7B CCALBS 01507*01527
FD89 CCALL 00506 01380*
FE6E CDBADN 01493 01495 01499*01512
FE5A CDCNT 01483 01485*
FE43 CRISP 00509 01474*
FE51 CDISPS 01478 01481*
FE60 CDNUM 01367 01390 01469 01474 01479 01492*01502 01504 01522 01535 01546

01552 01561 01563
FEA8 CDOT 00408 01365 01537*
FF5B CEN2 01649 01654*
FF49 CENCDE 00512 01643*
FF68 CEND1 01655 01662*
FF59 CENGET 01652*01661
FFSF CENLPI 01656*01659
FF78 CENLP2 01668*01671
FD80 CGO 00515 01344*
FDBF CGOBRK 01383*01385
FA58 CHKABT 00701 00709*00764
FA61 CHKRTN 00710 00714*
FA60 CHKSEC 00713*00719
FA62 CHKNJT 00712 00715*00717
FADC CIDTA 00243 00825*
FAFO CIOFF 00244 00844*

FAE6 CION 00242 00835*
FAES CIRTN 00828 00830*
FE8F CLOAD 00518 01516*
FE9B CLVDFT 01521 01524*
FE92 CLVOFS 01516 01519*01530
F8F7 CMD 00354 00380*00439
F935 CMD2 00415*00425
F948 CMD3 00422 00424*
F95C CMDBAD 00435*00464 01288 01499 01631
F977 CMDCMP 00450*00455
F901 CMDDDL 00387*00391
F96C CMDFLS 00444*00453
F94D CMDGOT 00416 00427*
F990 CMDMEM 00420 00463*
F8F9 CMDNEP 00383*00800
F9OA CMDNOL 00384 00388 00392*00462
F953 CMDSCH 00430*00434 00445
F96F CMDSIZ 00443 00446*
F967 CMDSME 00431 00441*
F99B CMDTB2 00254 00496*
F99C CMDTBL 00233 00500*
F987 CMDXQT 00410 00413 00459*00467
FDC3 CMEM 00521 01390*
FDCS CMEM2 01392*01424 01441
FDD1 CMEM4 01397*01404 01408
FDC6 CMEMN 00465 01391*
FDEO CMENUM 01398 01405*
FDEC CMESTR 01412*01417
FE02 CMNOTB 01420 01426*

B-70

PAGE 035 ASSISTO9.SAt0 ASSISTO9 - MC6809 MONITOR

FDE8 CMNOTC 01401 01410*

FEOE CMNOTL 01427 01434*
FDF8 CMNOTQ 01411 01419*
FE1C CMNOTU 01435 01443*
FE18 CMPADP 00411 00465 01432 01440*
FE16 CMPADS 01438*01444
FDFE CMSPCE 01414 01422*
FEB7 CNULLS 00524 01546*
FD74 CNVGOT 01325 01331*
FD62 CNVHEX 00967 01302 01322*
FD76 CNVOK 01312 01332*
FD78 CNVRTS 01287 01303 01323 01327 01329 01333*01372
FAF1 CODTA 00246 00852*
FBOF CODTAD 00869*00872
FB12 CODTAO 00854 00864 00870*
FBO7 CODTLP 00864*00866
FBO3 CODTPD 00859 00861*
FBOD CODTRT 00856 00867*
FEC8 COFFS 00527 01561*
FEDF COFNOI 01572 01575*
FF8E CONV1 01645 01683*
FF67 CONV2 01662 01691*
FAFO COOFF 00247 00845*
FAE6 COON 00245 00836*
FE71 CPUNCH 00530 01502*
000D CR 00038*00427 00621 00667 00858 01034 01166 01185 01428 01496 01654
FC4A CREG 00533 01102*
FEBC CSTLEV 00536 01551*
FEA4 CTRACE 00539 01535*
FEAA CTRCE3 00766 01538*
FEA1 CVER 00542 01530*
FE3E CWINDO 00545 01469*
DF8E DELIM 00153*00751 00757 01223 01236 01256
0000 DFTCHP 00026*00257
0005 DFTNLP 00027*00257
0010 DLE 00039*00855
0004 EOT 00035*00343 00652 00684 00738 00782 01032 01034
FABD ERRMSG 00436 00782*00789
FACE ERROR 00314 00789*
FCE9 EXP1 00253 01232*
FD07 EXP2 01234 01250*01251
FD23 EXPADD 01266*01282
FD17 EXPCDL 01252 01260*01269
FD2B EXPCHM 01262 01270*
FCEB EXPCLM 01233*01237
FDOS EXPRTN 01248*01257 01275
FD36 EXPSUB 01271 01276*
FDOD EXPTDI 01254*01273
FDOF EXPTDL 01241 01244 01247 01255*
FD42 EXPTRM 01263 01276 01286*
FFEO FIRQ 01706*01720
FABC FIRQR 00237 00816*
FD83 GOADDR 01344 01349*01380
FDA2 GONDFT 01351 01367*
0034 HIVTR 00100*00592
FC00 HSBLNK 01046*01049
FC47 HSDRTN 01062 01086 01092*
FBFC HSDTA 00248 01043*01091

B-71

PAGE 036 A35IST09.SAi0 ASSISTO9 - MC6809 MONITOR

FC2f3 HSHCHR 01076*01084
FC35 HSHCOK 01079 01081*
FC33 HSEIDVT 01077 01080*
FCI4 HSHLNE 01060*01090
FC20 HSHNXT 01068*01071
FCO6 HSHTTL 01051*01059
0000 INCHNP 00056*00920 00924 00966 01337 01647 01653
F844 INITVT 00188 00233*
F87D INTVE 00197 00264*
F870 INTVS 00197 00256*
FFE4 IRQ 01707*01721
FAD8 IRQR 00238 00808*
DF99 LASTOP 00139*00752 01539
FAC1 LDDP 00297 00740 00784*00809
000A LF 00037*00623 00638 00669 01034 01426
DF8F MISFLG 00151*00402 00619 00741 00772 00886 00897 01364
0008 MONITR 00064*00222
FA79 MSHOWP 00738*00748
FE36 MUPBAD 01459 01462*
FE2B MUPUAT 01406 01416 01456*
FFEC NMI 01709*01723
FAB7 NMICON 00742 00772*
FA7D NMIR 00240 00740*
FABO NMI'PRC 00744 00747 00766*
DF9B NUMBER 00137*00401 00466 01179 01255 01260 01265 01267 01278 01299 01300

01308 01309 01405 01497 01637
0008 NUMBKP 00029*00126 00128 00389 01358 01374 01620 01633
000B NUMFUN 00068*00313
OOIB NUMVTR 00099*00124 00190
0004 OUT2HS 00060*01069 01156 01574 01677
0005 OUT4HS 00061*00754 01065 01153 01452 01579 01612
0001 OUTCH 00057*00396 00885 00893 00896 00983 01082 01142 01146 01396 01430

01465
000B PAUSE 00067*
DFFC PAUSER 00117*00252
DF93 PCNTER 00145*00393 01242
0006 PCRLF 00062*00381 01044 01061 01093 01161 01439 01581 01616 01679
0003 PDATA 00059*00352 00791 00999 01023
0002 PDATAI 00058*00438 00750
003E PROMPT 00028*00394
FE21 PRTADR 01440 01448*
DF95 PSTACK 00143*00398 00435
£000 PTM 00025*00042 00043 00044 00045 00046 00047 00259 00355 00356 00358

00359 00361 01542
£000 PTMC13 00043*00359
£001 PTMC2 00044*00358 00361
£001 PTMSTA 00042*
£002 PTMTMI 00045*00355 00356 01542
£004 PTMTM2 00046*
£006 PTMTM3 00047*
£700 RAMOFS 00021*00111
FD79 READ 00407 00424 01258 01301 01336*01412
FC94 REG4 01157*01176 01186
FCC3 REGAGN 01167 01189*
FC70 REGCH3 01104 01135*
FC9D REGCNG 01149 01164*
FC50 REGMSK 01123*01137
FCB1 REGNXC 01165 01177*

B-72

PAGE 037 ASSISTO9.SA:0 ASSISTO9 - MC6809 MONITOR

FC78 REGP1 01138*01143 01159
FC81 REGP2 01140 01144*
FC92 REGP3 01151 01155*
FAB3 REGPRS 00755 00768*00799
FC6F REGPRT 00768 01102 01134*
FC9B REGRTN 01162*01201
FCAA REGSKP 01172*01175
FCC9 REGTFI 01191*01194
FCD6 REGTF2 01197*01200
FCBB REGTWO 01181 01183*
F837 RESET 00217*00241 01724 01726
F83D RESET2 00219*00223
F000 ROM2OF 00023*00202
DF66 ROM2WK 00155*
F800 ROMBEG 00020*00023 00111 00167 01716
0800 ROMSIZ 00022*00023 01716
FFD4 RSRVD 01703*01717
FAD8 RSRVDR 00234 00809*
DF97 RSTACK 00141*00345 00788
FABC RTI 00774*00816
FAFO RTS 00787 00841*00844 00845
F9EC SEND 00568*00624 00640 00668 00682
F8C9 SIGNON 00342*00350
008C SKIP2 00049*00863 01154 01220 01523
DFF8 SLEVEL 00123*00746 01553 01556
0007 SPACE 00063*01047 01054 01056 01073 01173 01423
DF51 STACK 00158*00217
FEC3 STLDFT 01551 01555*
FFE8 SWI 01708*01722
FFDC SWI2 01705*01719
FAD8 SWI2R 00236 00806*
FFD8 SWI3 01704*01718
FAD8 SWI3R 00235 00807*
DFFB SWIBFL 00119*00301 00311 01363
DF90 SWICNT 00149*00296 00641 00743
F8B5 SWIDNE 00302 00306 00311*
F8A8 SWILP 00305*00308
F895 SWIR 00239 00296*
F87D SWIVTB 00283*00283 00284 00285 00286 00287 00288 00289 00290 00291 00292

00293 00294 00317
DF91 TRACEC 00147*00403 00759 00762 01536
DF51 TSTACK 00157*01189
0009 VCTRSW 00065*
DFC2 VECTAB 00125*00183 00348 00349 00353 00429 00432 00568 00594 00625 00724

00725 00825 00837 00853 00857 00860 00977 00981 00985 01025 01224
01485 01507 01508 01510 01540 01547 01703 01704 01705 01706 01707
01708 01709

DFAO WINDOW 00131*01245 01470
DF00 WORKPG 00111*00112 00113
FA72 XQCIDT 00612 00709 00716 00725*
FA6E XQPAUS 00611 00700 00715 00724*00869
FADS ZBKCMD 00756 00758 00760 00763 00765 00800*
FAD3 ZBKPNT 00293 00310 00799*00810
FA2A ZIN2 00622 00625*
FA11 ZINCH 00283 00612*00615 00617
FAOF ZINCHP 00611*00613
F8E6 ZMONT2 00347 00353*
F8D2 ZMONTR 00291 00345*

B-73

PAGE 038 ASSIST09.SA:0 ASSIST09 - MC6809 MONITOR

F9F2 ZOT2HS 00287 00571*
F9F0 ZOT4HS 00288 00570*
FA2E ZOTCHI 00284 00636*
FA37 ZOTCH2 00582 00640*
FA39 ZOTCH3 00593 00598 00600 00620 00626 00641*00704
F9D9 ZOUT2H 00557*00570 00571 01030 01393
F9E6 ZOUTHX 00561 00564*01052
FA4E ZPAUSE 00294 00700*
FA3D ZPCRLF 00289 00654*
FA3C ZPCRLS 00637 00652*00654
FA40 ZPDATA 00286 00667*
FA48 ZPDTAI 00285 00683*
FA46 ZPDTLP 00639 00682*00685
F9F6 ZSPACE 00290 00581*
F9FA ZVSWTH 00292 00591*

APPENDIX C
MACHINE CODE TO INSTRUCTION CROSS REFERENCE

C.1 INTRODUCTION

This appendix contains a cross reference between the machine code, represented in hex-
adecimal and the instruction and addressing mode that it represents. The number of
MPU cycles and the number of program bytes is also given. Refer to Table C-1.

C-1

Table C•1. Machine Code to Instruction Cross Reference

OP Mnem Mode — # OP Mnem Mode — rI OP Mnem Mode — I
00 NEG Dir ct 6 2 30 LEAX Ind xed 4+ 2+ 60 NEG Indexed 6+ 2+
01 • 31 LEAY 4+ 2+ 61
02 32 LEAS 4+ 2+ 62
03 COM 6 2 33 LEAU Indexed 4+ 2+ 63 COM 6+ 2+
04 LSR 6 2 34 PSHS Immed 5+ 2 64 LSR 6+ 2+
05 • 35 PULS 5+ 2 65
06 ROR 6 2 36 PSHU 5+ 2 66 ROR 6+ 2+
07 ASR 6 2 37 PULU Immed 5+ 2 67 ASR 6+ 2+
08 ASL, LSL 6 2 38 Inherent 68 ASL, LSL 6+ 2+
09 ROL 6 2 39 RTS 5 1 69 ROL 6+ 2+
OA DEC 6 2 3A ABX 3 1 6A DEC 6+ 2+
08 • 38 RTI 6/15 1 6B
0C INC 6 2 3C CWAI 20 2 6C INC 6+ 2+
OD TST 6 2 3D MUL 11 1 6D TST 6+ 2+
OE JMP 3 2 3E 6E JMP 3+ 2+
OF CLR Direct 6 2 3F SWI Inherent 19 1 6F CLR Indexed 6+ 2+

10 Page 2 — — — 40 NEGA Inherent 2 1 70 NEG Extended 7 3
11 Page 3 — — — 41 71 • A
12 NOP Inherent 2 1 42 72
13 SYNC Inherent 4 1 43 COMA 2 1 73 COM 7 3
14 • 44 LSRA 2 1 74 LSR 7 3
15 45 75
16 LBRA Relative 5 3 46 RORA 2 1 76 ROR 7 3
17 LBSR Relative 9 3 47 ASRA 2 1 77 ASR 7 3
18 • 48 ASLA, LSLA 2 1 78 ASL, LSL 7 3
19 DAA Inherent 2 1 49 ROLA 2 1 79 ROL 7 3
1A ORCC Immed 3 2 4A DECA 2 1 7A DEC 7 3
1 B — 48 7B
1C ANDCC Immed 3 2 4C INCA 2 1 7C INC 7 3
1D SEX Inherent 2 1 4D TSTA 2 1 7D TST 7 3
1E EXG Immed 8 2 4E 7E JMP r 4 3
1F TFR Immed 6 2 4F CLRA Inherent 2 1 7F CLR Extended 7 3

20 BRA Relative 3 2 50 NEGB Inherent 2 1 80 SUBA Immed 2 2
21 BRN 3 2 51 • 81 CMPA 1 2 2
22 BHI 3 2 52 82 SBCA 2 2
23 BLS 3 2 53 COMB 2 1 83 SUBD 4 3
24 BHS, BCC 3 2 54 LSRB 2 1 84 ANDA 2 2
25 BLO, BCS 3 2 55 85 BITA 2 2
26 BNE 3 2 56 RORB 2 1 86 LDA 2 2
27 BEQ 3 2 57 ASRB 2 1 87
28 BVC 3 2 58 ASLB, LSLB 2 1 88 EORA 2 2
29 BVS 3 2 59 ROLB 2 1 89 ADCA 2 2
2A BPL 3 2 5A DECB 2 1 8A ORA 2 2
2B BMI 3 2 5B 8B ADDA rr 2 2
2C BGE 3 2 5C INCB 2 1 8C CMPX Immed 4 3
2D BLT 3 2 5D TSTB 2 1 8D BSR Relative 7 2
2E BGT 3 2 5E 8E LDX Immed 3 3
2F BLE Relative 3 2 5F CLRB Inherent 2 1 8F

LEGEND:
—Number of MPU cycles (less possible push pull o indexed-mode cycles!

x Number of program bytes
• Denotes unused opcode

C•2

Table C•1. Machine Code to Instruction Cross Reference (Continued)
OP Mnem Mode S OP Mnem Mode — S OP
90 SUBA Direct 4 2 CO SUBB Immed 2 2
91 CMPA 4 2 Cl CMPB 2 2
92 SBCA 4 2 C2 SBCB 2 2
93 SUBD 6 2 C3 ADDD 4 3
94 ANDA 4 2 C4 ANDB 2 2 1021
95 BITA 4 2 C5 BITB Immed 2 2 1022
96 LDA 4 2 C6 LDB Immed 2 2 1023
97 STA 4 2 C7 1024
98 EORA 4 2 C8 EORB 2 2 1025
99 ADCA 4 2 C9 ADCB 2 2 1026
9A ORA 4 2 CA ORB 2 2 1027
98 ADDA 4 Cd ADF

s 2 2 1028
9C CMPX 6 2 CC LDD 3 3 1029
9D JSR 7 2 CD 102A
9E LDX 5 2 CE LOU Immed 3 3 1028
9F STX Direct 5 2 CF 102C

AO
Al

SUBA
CMPA

Indexed 4+
4+

2+
2+

DO
D1

SUBB
CMPB

Direct 4
4

2
2

102D
102E

A2 SBCA 4+ 2+ D2 SBCB 4 2 102F

A3 SUBD 6+ 2+ 03 ADDD 6 2 103F

A4 ANDA 4+ 2+ 04 ANDB 4 2 1083

A5 BITA 4+ 2+ 05 BITB 4 2 108C

A6 LDA 4+ 2+ D6 LOB 4 2 108E

A7 STA 4+ 2+ 07 STB 4 2 1093

A8 EORA 4+ 2+ D8 EORB 4 2 109C

A9 ADCA 4+ 2+ D9 ADCB 4 2 109E

AA
AB
AC
AD
AE
AF

ORA
ADDA
CMPX
JSR
LDX
STX Indexed

4+
4+
6+
7+
5+
5+

2+
2+
2+
2+
2+
2+

DA
DB
DC
DD
DE
OF

ORB
ADDB
LDD
STD
LOU
STU Direct

4
4
5
5
5
5

2
2
2
2
2
2

109F
10A3
10AC
10AE
LOAF
1083
IOBC

EO SUBB Indexed 4+ 2+ 10BE
BO
81

SUBA
CMPA

Extended
A

5
5 3

3 E1
E2

CMPB
SBCB

4+
4+

2+
2+

10BF
IOCE

82 SBCA 5 3 E3 ADDD 6+ 2+ 100E
B3 SUBD 7 3 E4 ANDB 4+ 2+ 10DF
B4 ANDA 5 3 E5 BITB 4+ 2+ 1OEE
85 BITA 5 3 E6 LOB 4+ 2+ 10EF
B6 LDA 5 3 E7 STB 4+ 2+ 1OFE
B7 STA 5 3 E8 EORB 4+ 2+ 10FF
B8 EORA 5 3 E9 ADCB 4+ 2+ 113F
B9 ADCA 5 3 EA ORB 4+ 2+ 1183
BA ORA 5 3 EB ADDB 4+ 2+ 118C
BB ADDA 5 3 EC LDD 5+ 2+ 1193
BC CMPX 7 3 ED STD 5+ 2+ 119C
BD JSR 8 3 EE LDU 5+ 2+ 1?A3
BE LDX

w

6 3 EF STU Indexed 5+ 2+ 11AC
BF STX Extended 6 3

FO SUBB Extended 5 3 1183

F1 CMPB 5 3 11BC

F2 SBCB 5 3
F3 ADDD 7 3
F4 ANDB 5 3
F5 BITB 5 3
E6 LOB 5 3
F7 STB 5 3

NOTE: All unused opcodes are both undefined F8 EORB 5 3

and illegal F9 ADCB 5 3
FA ORB 5 3
FB ADDB Extended 5 3
EC LDD Extended 6 3
FD STD 6 3
FE LOU 6 3
FE STU Extended 6 3

C-3/C-4

Mnem Mode — /

Page 2 and 3 Machine
Codes

LBRN Relative 5 4
LBHI A 5(6) 4
LBLS 5(6) 4
LBHS, LBCC 5(6) 4
LBCS, LBLO 5(6) 4
LBNE 5(6) 4
LBEO 5(6) 4
LBVC 5(6) 4
LBVS 5(6) 4
LBPL 5(6) 4
LBMI 5(6) 4
LBGE 5(6) 4
LBLT 5)6) 4
LBGT r' 5(6) 4
LBLE Relative 5(6) 4
SWI2 Inherent 20 2
CMPD Immed 5 4
CMPY I 5 4
LDY Immed 4 4
CMPD Direct 7 3
CMPY 4 7 3
LDY 6 3
STY Direct 6 3
CMPD Indexed 7+ 3+
CMPY 4 7+ 3+
LDY 6+ 3+
STY Indexed 6+ 3+
CMPD Extended 8 4
CMPY 8 4
LDY 7 4
STY Extended 7 4
LDS Immed 4 4
LDS Direct 6 3
STS Direct 6 3
LDS Indexed 6+ 3+
STS Indexed 6+ 3+
LDS Extended 7 4
STS Extended 7 4
SWI3 Inherent 20 2
CMPU Immed 5 4
CMPS Immed 5 4
CMPU Direct 7 3
CMPS Direct 7 3
CMPU Indexed 7+ 3+
CMPS Indexed 7+ 3+
CMPU Extended 8 4
CMPS Extended 8 4

~~

APPENDIX D
PROGRAMMING AID

D.1 INTRODUCTION

This appendix contains a compilation of data that will assist you in programming the
M6809 processor. Refer to Table D-1.

Table D•1. Programming Aid

Branch Instructions

Instruction Forms

Addressing
Mode

Description
5 3 2 1 0 Relative

OP — t H N Z V C

8CC BCC 24 3 2 Branch C=0 • •
LBCC 10 5(6) 4 Long Branch • • • • •

24 C=0

BCS BCS 25 3 2 Branch C=1 • • • • •
LBCS 10 5(6) 4 Long Branch • • •

25 C = 1

BEQ BED 27 3 2 Branch Z=0
LBEQ 10 5(6) 4 Long Branch • •

27 Z=0

BGE BGE 2C 3 2 8ranchaZero • •
LBGE 10 5(6) 4 Long Branch≥Zero • • • • •

2C
BGT BGT 2E 3 2 Branch>Zero • • •

LBGT 10 5(6) 4 Long Branch>Zero •
2E

BH(BHI 22 3 2
_

Brancf, nigher • •
LBH(10 5)6) 4 Long Branch Higher • • •

22
BHS BHS 24 3 2 Branch Higher

or Same
• • • • •

LBHS 10 5(6) 4 Long Branch Higher
24 or Same

BLE BLE 2F 3 2 BranchwZero
LBLE 10 5)6) 4 Long BranchSZero • • • • •

2F

BLO BLO 25 3 2 Branch lower • • •
LBLO 10 5(6) 4 Long Branch Lower • • • • •

25

Instruction Forms

Addressing
Mode

Description
5 3 2 1 0 Palau

OP / H N Z V C

BLS BLS 23 3 2 Branch Lower
or Same

LBLS 10 5)6) 4 Long Branch Lower
23 or Same

BLT BLT 2D 3 2 Branch<Zero
LBLT 10 516(4 Long Branch<Zero • • • • •

2O
BMI BM) 2B 3 2 Branch Minus • • • • •

LBM) 10 5)6) 4 Long Branch Minus • • • • •
2B

BNE BNE 26 3 2 Branch Zs0
LBNE 10 5(6) 4 Long Branch

26 Zm0

BPL BPL 2A ' 1 Branch Plus • • • • •
LBPL 10 56) 4 Long Branch Plus • • •

2A

BRA BRA 20 3 2 Branch Always
LBRA 16 5 3 Long Branch Always

BRN BRN 21 3 2 Branch Never
LBRN 10 5 4 Long Branch Never • • •

21
BSR BSR 8O 7 2 Branch to Subroutine

LBSR 17 9 3 Long Branch to •
Subroutine

BVC BVC 28 3 2 Branch V=0
LBVC 10 5(61 4 Long Branch

28 V=0

BVS BVS 29 3 2 Branch V= 1 • • • •
LBVS 10 5)6) 4 Long Branch • • •

29 V=1

D-1

Table D•l. Programming Aid (Continued)

BRA

SIMPLE BRANCHES
OP - I SIMPLE CONDITIONAL BRANCHES (Notes 1-4)

Test True OP False OP 20 3 2
LBRA 16 5 3 N=1 BMI 2B BPL 2A
BAN 21 3 2 Z=1 BEQ 27 BNE 26
LBRN 1021 5 4 V=1 BVS 29 BVC 28
BSR 8D 7 2 C=1 BCS 25 BCC 24
LBSR 17 9 3

SIGNED CONDITIONAL BRANCHES (Notes 1-4) UNSIGNED CONDITIONAL BRANCHES (Notes 1-4)

Test True OP False OP Test True OP False OP

r>m BGT 2E BLE 2F r>m BHI 22 BLS 23
rzm BGE 2C BLT 2D rZm BHS 24 BLO 25
r=m BEQ 27 BNE 26 r=m BEQ 27 BNE 26
rsm BLE 2F BGT 2E rsm BLS 23 BHI 22
r<m BLT 20 BGE 2C r<m BLO 25 BHS 24

Notes:
1. All conditional branches have both short and long variations.

2. All short branches are 2 bytes and require 3 cycles.

3. All conditional long branches are formed by prefixing the short branch opcode with 810 and using a 16-bit destination offset.
4. All conditional long branches require 4 bytes and 6 cycles if the branch is taken or 5 cycles if the branch is not taken.

D-2

Table D-1. Programming Aid (Continued)
Addressing Modes

Immediate Direct Indexed Extended Inherent 5 3 2 1 0
Instruction Forms Op — / Op — N Op — / Op — ! Op — S Description H N Z V C

ABX 3A 3 1 B+X—X (Unsigned) • • • • •
ADC ADCA

_
89 J 2 2 99 4 2 A9 4+ 2+ 89 5 3 A+M+C—A t I I I I

ADCB C9 2 2 D9 4 2 E9 4+ 2+ F9 5 3 B+M+C—B 1 1 t t 1
ADD ADDA 88 2 2 9B 4 2 AB 4+ 2+ BB 5 3 A+M—A t 1 t I 1

ADDB CB 2 2 DB 4 2 EB 4+ 2+ FB 5 3 B+M—B 1 I t I 1
ADDD C3 4 3 D3 6 2 E3 6+ 2+ F3 7 3 D+M M+1—D • I I I I

AND ANDA 84 2 2 94 4 2 A4 4+ 2+ 84 5 3 A A M —A • I 1 0 •
ANDB C4 2 2 D4 4 2 E4 4+ 2+ F4 5 3 B A M —B • I 1 0 •
ANDCC (C 3 2 CC A)MM —CC 7

ASL ASLA 48 2 1 A ~— 8 I I I I
ASLB 58 2 1 8 ~U _ E 0 8 I I I 1
ASL 08 6 2 68 6+ 2+ 78 7 3 M c b7 bo 8 I 1 1 1

ASR ASRB 47 2 1 A 1 8 I I • I
ASR 57 2 1 B y —fir 8 I I • I
ASR 07 6 2 67 6+ 2+ 77 7 3 M o7 o B b 8 t • t

BIT BITA 85 2 2 95 4 2 A5 4+ 2* 85 5 3 Bit Test AIM A AI • t I 0 •
BITB C5 2 2 DE 4 2 E5 4. 7 F5 5 3 Bit Te B iM A Bi • I I 0 •

CLR CLRA 4F 2 1 0-A • 0 1 0 0
CLRB 5F 2 1 0-B • 0 1 0 0
CLR OF 6 2 6F 6• 2+ 7F 7 3 0-M • 0 1 0 0

CMP CMPA 81 2 2 91 4

I 'N

(N

N

(N

C
')

'N

C
')

Al 4+ 2+ 81 5 3 Compare M from A 8 I I I I
CMPB Cl 2 2 D1 4 E1 4+ 2+ F1 5 3 Compare M from B 8 I I I i
CMPD 10 5 4 10 7 10 7+ 3+ 10 8 4 Compare M M+1 from D • I I I t

83 93 A3 83
CMPS 11 5 4 11 7 11 7+ 3+ 11 8 4 Compare M M+1 from S • I 1 I I

8C 9C AC BC
CMPU 11 5 4 11 7 1 7+ 3+ 11 8 4 Compare M M+1 from U • t I i I

83 93 43 B3
CMPX 8C 4 3 9C 6 AC 6+ 2+ BC 7 3 Compare M M+ 1 from X • I t t I
CMPY 10 5 4 10 7 10 7+ 3+ 10 8 4 Compare M:M+1 from Y • t I I I

8C 9C AC BC

COM COMA 43 2 1 A—A • I 1 0 1
COMB 53 2 1 B -B • I 1 0 1
COM 03 6 2 63 6- 2* 73 7 3 M-M • l { 0 1

CWAI 3C ≥2d 2 CC A IMM-CC Walt for Interrupt 7

DAA 19 2 1 Decimal Adjust A • I 1 0 I
DEC DECA 4A 2 1 A -1-A • t t I •

DECB 5A 2 1 B -t -B • t t l •
DEC OA 6 2 6A 6+ 2+ 7A 7 3 M -1-M • I 1 I •

FOR EORA 88 2 2 98 4 2 A8 4+ 2+ 88 5 3 A4-M-A • I 1 0 •
EORB C8 2 2 08 4 2 E8 4+ 2+ F8 5 3 B-.'-M-B • t 1 0 •

EXG 81. R2 1E 8 2 R1 -R22 • • • • •

INC INCA 4C 2 1 A+ 1 -A • t { { •
)NCB 5C 2 1 8+1-B • t t I •
INC OC 6 2 6C 6+ 2+ 7C 7 3 M+1-.M • 1 I I '

JMP OE 3 2 6E 3+ 2+ 7E 4 3 EA3 -PC • • • • •
JSR 90 7 2 AD 7- 2 BD 8 3 Jump to Subroutine • • • • •

LD LDA 86 2 2 96 4 2 A6 4+ 2+ 86 5 3 M —A • 1 1 0 •
LDB C6 2 2 D6 4 2 E6 4+ 2+ F6 5 3 M -B • I 1 0 •
LDD CC 3 3 DC 5 2 EC 5+ 2+ FC 6 3 M M+1-D • { 1 0 •
LDS 10 4 4 10 6 3 tO 6+ 3+ 10 7 4 M M+1-S • I 1 0 •

CE DE EE FE
LDU CE 3 3 DE 5 2 EE 5+ 2+ FE 6 3 M:M+1—U • I 1 0 •
LDX 8E 3 3 9E 5 2 AE 5+ 2+ BE 6 3 M:M+1—X • I 1 0 •
LDY 10 4 4 10 6 3 10 6+ 3+ 10 7 4 M M+ 1—Y • I I 0 •

8E 9E AE 8E

LEA LEAS 32 4+ 2+ EA3 —S • • • • •
LEAU 33 4+ 2+ EA3 —U • • • • •
LEAX 30 4+ 2+ EA3 —X • • l • •
LEAP 31 4+ 2+ EA3 —Y • • 1 • •

Legend' 11v Comp ement of M I Test and set if true, cleared o herwise
OP Operation Code (Hexadecimal) — Transfer Into • Not Affected

— Number of MPU Cycles H Half-carry (from bit 3) CC Condition Code Register
S Number of Program Bytes N Negative (sign bit) Concatenation

+ Arithmetic Plus Z Zero (Reset) V Logical or

-- Arithmetic Minus V Overflow, 2's complement A Logical and

• Multiply C Carry from ALU
D-3 'ix'- Logical Exclusive or

Table Dl. Programming Aid (Continued)
Addressing Modes

Immediate Direct Indexed) Extended Inherent 5 3 2 1 0
Instruction Forms Op — t Op —~ ! Op — N Op — / Op — / Description H N Z V C

LSL LSLA 48 2 1 A E • I I I I
L S L B 58 2 1 B f 0 • t t I t
LSL 08 6 2 68 6+ 2+ 78 7 3 M c b7 b0 • I I I I

LSR LSRA 44 2
_

1 A • 0 I • I

M~ 0 f -~ •
LSRB 54 2 1 0 I • I
LSR 04 6 2 64 6+ 2+ 74 3 b7 b0 c • 0 I • t

MUL 3D 11 1 AxB—DlUnsigned) • • I • 9

NEG NEGA 40 2 1 A+1-A 8 I I I I
NEGB 50 2 1 6+1-B 8 t I I I
NEG 00 6 2 60 6+ 2+ 70 7 3 M+1-M 8 I I I I

NOP 12 2 1 No Operation • • • • •
OR ORA 8A 2 2 9A 4 2 AA 4+ 2+ BA 5 3 AVM-.A • I I 0 •

ORB CA 2 2 DA 4 2 EA + + FA 5 3 B V M-B • I i 0 •
ORCC 1A 3 2 CC V IMM-CC 7

PSH f SHS 34 5+ 4 2 J — Push Registers on S Stack • • • • •
PSHU 36 5+ 4 2 Push Registers on U Stack • • • • •

PUL PULS 35 5+ 4 2 Pull Registers from S Stack • • • •
PULU 37 5+ 4 2 Pull Registers from U Stack • • • • •

ROL ROLA 49 2 1 A • t I I I
B I ROLB 59 2 1 • t I I I

ROL 09 6 2 69 6+ 2+ 79 7 3 M c b7 b0 • I I I I

ROR RORA 46 2 1 A I • I I • t
R O R B 56 2 1 M~ • I ' I • 1 1
ROB 06 6 2 66 6+ 2+ 76 7 3 c b7 b0 • t t • t

RTI 38 6/15 1 Return From Interrupt 7

RTS 39 5 1 Return from Subrout ne • • • • •

SBC SBCA 82 2 2 92 4 2 42 4+ 2+ B2 5 3 A -M -C-A 8 t t t I
SBCB C2 2 2 O2 4 2 E2 4+ 2+ F2 5 3 B -M -C-B 8 t 1 t 1

SEX 1O 2 1 Sign Extend B into A • I 1 0 •

ST STA 97 4 2 47 4+ 2+ B7 5 3 A-M • t 1 0 •
STB O7 4 2 E7 4+ 2+ F7 5 3 B-M • t t 0 •
STD DD 5 2 ED 5+ 2+ FD 6 3 D-M M+1 • t 1 0 •
STS 10 6 3 10 6+ 3+ 10 7 4 S-M M r 1 • 1. 1 0 •

OF EF FF

STU OF 5 2 EF 5+ 2+ FF 6 3 U-M M+1 • I 1 0 •
STX 9F 5 2 AF 5+ 2+ BF 6 3 X-M M+1 • I 1 0 •
STY 10 6 3 10 10 7 4 Y-M M+1 • t 1 0 •

9F AF 6+ 3+ BF

SUB SUBA 80 2 2 90 4 2 AO 4+ 2+ BO 5 3 A- M-A 8 I I I i
SUBB CO 2 2 DO 4 2 E0 4+ 2~ FO 5 3 B -M-B 8 I t I I
SUBD 83 4 3 93 6 2 43 6+ 2+ B3 7 3 D-M.M+1-D • (I I I

SW) SW)6 3F 19 1 Software Interrupt 1 • • • • •
SW126 10 20 2 Software Interrupt 2 • • • • •

3F

SW136 11 20 1 Software Interrupt 3 • • • • •
3F

SYNC 13 L4 1 Synchronize to Interrupt • • • • •

TFR R1, R2 iF 6 2 R1—R22 • • • • •

1ST TSTA 4O 2 1 Test A • I 1 0 •
TSTB 5O 2 1 Test B • I I 0 •
TST OD 6 2 6D 6+ 2+ 7D 7 3 Test M • I t 0 •

Notes:

1. This column gives a base cycle and byte count. To obtain total count, add the values obtained from the INDEXED ADDRESSING MODE table,
in Appendix F.

2. R1 and R2 may be any pair of 8 bit or any pair of 16 bit registers.
The 8 bit registers are: A, B, CC, DP
The 16 bit registers are: X, Y, U, S, D, PC

3. EA is the effective address.
4. The PSH and PUL instructions require 5 cycles plus 1 cycle for each byte pushed or pulled.

5. 5(6) means: 5 cycles if branch not taken, 6 cycles if taken (Branch instructions).
6. SW) sets I and F bits. SWI2 and SWf3 do not affect I and F.

7. Conditions Codes set as a direct result of the instruction.

8. Value of half-carry flag is undefined.

9 Special Case — Carry set if b7 is SET.

0-4

APPENDIX E
ASCII CHARACTER SET

E.1 INTRODUCTION

This appendix contains the standard 112 character ASCII character set (7-bit code).

E.2 CHARACTER REPRESENTATION AND CODE IDENTIFICATION

The ASCII character set is given in Figure E-1.

b7
b6

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1
b4
1

b3
1

b2
!

b1
1 Row

Column 0 1 2 3 4 5 6 7
Hex 0 1 2 3 4 5 6 7

0 0 0 0 0 0 NUL DLE SP 0 @ P p
0 0 0 1 1 1 SOH DC1 1 A 0 a q
0 0 1 0 2 2 STX DC2 2 B R b r
0 0 1 1 3 3 ETX DC3 f 3 C S c s
0 1 0 0 4 4 EOT DC4 $ 4 D T d 1
0 1 0 1 5 5 END NAK % 5 E U e u
0 1 1 0 6 6 ACK SYN 8 6 F V f v
0 1 1 1 7 7 BEL ETB 7 G W g w
1 0 0 0 8 8 BS CAN (8 H X h x
1 0 0 1 9 9 HT EM 1 9 I Y y
1 0 1 0 10 A LF SUB J Z z
1 0 1 1 11 B VI ESC + K (k
1 1 0 0 12 C FE FS < L \ i
1 1 0 1 13 D CR GS - = M] m
1 1 1 0 14 E SO RS > N A n —
1 1 1 1 15 F SI US ! ? 0 _ o DEL

Figure E•1. ASCII Character Set

E-1

Each 7-bit character is represented with bit seven as the high-order bit and bit one as the
low-order bit as shown in the following example:

b7 b6 b5 b4 b3 b2 b1 b0
1 0 0 0 0 0 0 1

The bit representation for the character "A" is developed from the bit pattern for bits
seven through five found above the column designated 4 and the bit pattern for bits four
through one found to the left of the row designated 1.

A hexadecimal notation is commonly used to indicate the code for each character. This
is easily developed by assuming a logic zero in the non-existant bit eight position for the
column numbers and using the hexadecimal number for the row numbers.

E.3 CONTROL CHARACTERS

The characters located in columns zero and one of Figure E-1 are considered control
characters. By definition, these are characters whose occurrance in a particular context
initiates, modifies, or stops an action that affects the recording, processing, transmis-
sion, or interpretation of data. Table E-1 provides the meanings of the control characters.

Table E-1. Control Characters

Mnemonic Meaning Mnemonic Meaning

NUL Null DLE Data Link Escape

SOH Start of Heading DC1 Device Control 1

STX Start of Text DC2 Device Control 2

ETX End of Text DC3 Device Control 3

EOT End of Transmission DC4 Device Control 4

ENO Enquiry NAK Negative Acknowledge

ACK Acknowledge SYN Synchronous Idle
BEL Bell ETB End of Transmission Block

BS Backspace CAN Cancel

HT Horizontal Tabulation EM End of Medium

LF Line Feed SUB Substitute

VT Vertical Tabulation ESC Escape

FF Form Feed FS File Separator

CR Carriage Return GS Group Separator

SO Shift Out RS Record Separator
SI Shift In US Unit Separator

DEL Delete

E.4 GRAPHIC CHARACTERS

The characters in columns two through seven are considered graphic characters. These
characters have a visual representation which is normally displayed or printed. These
characters and their names are given in Table E-2.

E-2

Table E•2. Graphic Characters

Symbol Name
SP Space (Normally Nonprintingl
I Exclamation Point

Quotation Marks (Diaeresis)
I Number Sign

S Dollar Sign
% Percent Sign
Er Ampersand

Apostrophe IClosing Single Quotation Mark; Acute Accent)
(Opening Parenthesis
1 Closing Parenthesis

Asterisk
+ Plus

Comma (Cedilla)
— Hyphen (Minus)
• Period (Decimal Point)
/ Slant

0...9 Digits 0 Through 9
Colon
Semicolon

< Less Than
= Equals
> Greater Than

7 Question Mark

Commercial At
A.. .Z Uppercase Latin Letters A Through Z

[Opening Bracket
\ Reverse Slant
1 Closing Bracket
A Circumflex

Underline
Opening Single Quotation Mark (Grave Accent)

a.. .z Lowercase Latin Letters a Through z
Opening Brace
Vertical Line

I Closing Brace
— Tilde

E-31E-4

APPENDIX F
OPCODE MAP

F.1 INTRODUCTION

This appendix contains the opcode map and additional information for calculating re-
quired mchine cycles.

F.2 OPCODE MAP

Table F-1 is the opcode map for M6809 processors. The number(s) by each instruction in-
dicates the number of machine cycles required to execute that instruction. When the
number contains an "I" (e.g., 4+ I), it indicates that the indexed addressing mode is being
used and that an additional number of machine cycles may be required. Refer to Table
F-2 to determine the additional machine cycles to be added.

Some instructions in the opcode map have two numbers, the second one in parenthesis.
This indicates that the instruction involves a branch. The parenthetical number applies if
the branch is taken.

The "page 2, page 3" notation in column one means that all page 2 instructions are
preceded by a hexadecimal 10 opcode and all page 3 instructions are preceded by a hex-
adecimal 11 opcode.

F-1

O
p
c
o
d
e
 M
a
p

M
o
s
t
-S

ig
ni

fi
ca

nt
 F
o
u
r
 B
it

s
0
z

O r - N ('7 O to tD N- m) Q m p O W LL

2

4

4
+
1

5

S
U

B
B

2

4

4
+
1

5

C
M

P
B

2

4

4
+
1

5

S
B

C
B

4

6

6
+
1

7

A
D

D
D

2

4

4
+
1

5

A
N

D
B

2

4

4
+
1

5

B
IT

B

2

4

4
+
1

5

LD
B

4

4
+
1

5

S
T

B

2

4

4
+
1

5

E
O

R
B

2

4

4
+
1

5

A
D

C
B

2

4

4
+
1

5

O
R

B

2

4

4
+
1

5

A
D

D
B

3

5

5
+
1

6

L
D

D

5

5
+
1

6

S
T

D

t

N

~ J
Ki

\

f0

t
m O

to
J

M

N

N
t

t0

\

LU
+ H

tD N

to

^

2

4

4
+
1

5

S
U

B
A

2

4

4
+
1

5

C
M

P
A

LU

t
a
Q
U
m
cn

V

N

4,
6,

6
+
 1
,7

5,
7,
7
+
 1
,8

5,
7,
7
+
 1
,8

S
U

B
D

/

C
M

P
D

C

M
P

U

1n

t
v
Q
O
Z
Q

V

N 2

4

4
+
1

5

B
IT

A

2

4

4
+
1

5

LD
A

4

4
+
1

5

S
T

A

2

4

4
+
1

5

E
O

R
A

2

4

4
+
1

5

A
D

C
A

2

4

4
+
1

5

O
R

A

U

t
e
Q
O
O
Q

V

N

4
,
6
,
6
+
 1
,7

5,
7,
7+
1,
8

5,
7,
7
+
 1
,8

C
M

P
X

C

M
P

Y

C
M

P
S

asr
8

l+
L

L

3,
5,

5+
 1
,6

4
,
6
,
6
+
 1
,7

LD
X

/

LD
Y

N
}

O N

LU

\

- X
+H
to N
LU

(7

B
S

R

N-

2
2

6
+

1

7
C

O
M

2
2

6
+

1

7
LS

R

2

2

6
+
1

7

R
O

R

2

6
+
1

7

A
S

R

2

2

6
+
1

7

A
S

L
 (

LS
L)

2

2

6
+
1

7

R
O

L
2

2

6
+
1

7
D

E
C

n

t
cD

U

?

N

N 2
2

-

6
+
1

7

T
S

T

3
+
1

4

JM
P

N-

+
L

¢

p

N

N

+
t0

C7

z

N

—~

N

4
+
1

LE
A

X

4
+
1

LE
A

Y

4
+
1

LE
A

S

4
+
1

LE
A

U
 >

_

+N
tD d

>
. N

J

+p
uU d

T
. 7

_

+(/)
to d

>-
.0

.- J

+O
to 11 5

R

T
S

3

A
B

X

LU
H

CD OC 20

C
W

A
(

-
p I

\ N

COV

rn 3
(n

3
 B

R
A

 _ Z

Z¢
Q m
m-
C.) tD 3
 B

H
I/

5)
6)
 L

B
H

I

J

n m
J
m cp

r) to

U
U

m
S
m(p

.) t[)

NU

O m
J
m(O

c.) to 3
 B

N
E

/
5(
6)
 L

B
N

E

_ OW

p m
W
m {D

c.) to 3
 B

V
C

/
5(

6)
 L

B
V

C

3
 B

V
S

/
5(
6)
 L

B
V

S

B
P

L/

(6
)

LB
P

L

B
M

(/

(6
)
L
B

M
I

B
G

E
/

(6
)
LB

G
E

J

r m
J —
m!0

c') (U

B
G

T
/

5(
6)
 L

B
G

T

J

w m
J
m iD
.) in

w
(0

d

w
C7

d

a

N Z

U
Z

N /)

I

I

Q
¢

to -

¢
cn

O
m

I

Q

N 0

U
U

.) O_

(
U
O

C.) Q

X

N V)

C7

CO W

¢
 LL

!~ H

C7

(D Z

(

(0 pU
¢

f0 -

I ¢

LU m

¢

cD Q

J _

N N

cD

J
0

c0 ¢

p
LU

L O
I p

t0 ?

H

cD H

0

C.))

¢

fD U

~QC

O
8

.—

O

(N

H
c.

)

O

p

v

8

O

to

O O

tD

O

O

r~

O

pp

m

O

Q)

H

Q

O

m

O

p

U

8

O to

O

LL

sam•g rfOj aU 34j Udg a99

W

Q

O

8 U

O

O
z

O

0 Q

2

O 8 O)

N

0
z

O

O
LU

m
U
U
Q

O

0
I1)

Q
U
U
Q

8
O

8

J
W
S

O

8 N

S

0
O

F-2

Table F-2. Indexed Addressing Mode Data

Type Forms

Non Indirect Indirect
Assembler

Form
Postbyte
OP Code

x
—

+

Assembler
Form

Postbyte
OP Code

+

—

+

Constant Offset From R
(twos complement offset)

No Offset ,R 1 RRO0100 0 0 [,R] 1 RR 10100 3 0
5 Bit Offset n, R ORRnnnnn 1 0 defaults to 8-bit
8 Bit Offset n, R 1 RRO1000 1 1 [n, R] 1 RR 1 1000 4 1
16 Bit Offset n, R 1RR01001 4 2 [n, R] 1RR11001 7 2

Accumulator Offset From R
(twos complement offset)

A — Register Offset A, R 1RR00110 1 0 [A, R] 1RR1O110 4 0
B — Register Offset B, R 1 RR00101 1 0 [B, R] 1 RR 10101 4 0
D— Register Offset D, R 1 RR01011 4 0 [D, R] 1 RR1 1011 7 0

Auto Increment/Decrement R Increment By 1 ,R+ 1RR00000 2 0 not al owed
Increment By 2 ,R++ 1RR00001 3 0 [,R++] 1RR10001 6 0
Decrement By 1 -R 1RR00010 2 0 not allowed
Decrement By 2 ,-•R 1RR00011 3 0 (,--R] 1RR10011 6 0

Constant Offset From PC
(twos complement offset)

8 Bit Offset n, PCR 1 XX01100 1 1 [n, PCR] 1 XX11100 4 1
16 Bit Offset n, PCR 1 XX01 101 5 2 [n, PCR] 1 XX1 1 101 8 2

Extended Indirect 16 Bit Address — — — — (n] 10011111 5 2
R=X, Y,UorS
X = Don't Care

X=00 Y=01
U=10 5=11

+ and

Indicate the number of additional cycles and bytes for the particular variation

F-3/F-4

APPENDIX G
PIN ASSIGNMENTS

G.1 INTRODUCTION

This appendix is provided for a quick reference of the pin assignments for the MC6809
and MC6809E processors. Refer to Figure G-1. Descriptions of these pin assignments are
given in Section 1.

M C6809 M C6809E

VSS (_I HALT VSS [V1 40) HALT
NMI (2 39 XTAL NMI [2 39 3 TSC
IRO C 3 38 EXTAL ROE 3 38 3 LIC

FIRO C 4 37 RESET FIRO C 4 37 3 RESET
BS C 5 36 3 MRDY BS(5 36 3 AVMA
BAC 6 353O BAC 6 353O

VC C(7 343E VCCC 7 343E
AO C 8 33 3 DMA/BRED AO C 8 33) BUSY
Alt 9 323R/W Alt 9 323R/W
A2C 10 313D0 A2C 10 51 3D0
A3C 11 303D1 A3(11 303D1
A4 C 12 29 3D2 A4 (12 2g 3 D2
A5 C 13 28 3 D3 A5 C 13 28 3 D3
A6 C 14 27 3 D4 A6 C 14 27 3 D4
A7 (15 26 3 D5 A7 C 15 26 3 D5
A8 C 16 25 3 D6 A8 C 16 25 3 D6
A9 C 1; 24 3D7 A9 C 17 24 3D7

A10 (18 23 3 A15 A10 (18 23 3 A15
A11 C 19 22 3A14 A11 C 19 22 3A14
Al2 20 21 3A13 Al2 20 21 3A13

Figure G-1. Pin Assignments

G-1/G-2

APPENDIX H
CONVERSION TABLES

H.1 INTRODUCTION

This appendix provides some conversion tables for your convenience.

H.2 POWERS OF 2, POWERS OF 16

Refer to Table H-1.

Table H-1. Powers of 2; Powers of 16

16m
m =

2n
n = Value

16m
m =

2n
n = Value

0 0 1 4 16 65,536
— 1 2 — 17 131,072
— 2 4 — 18 262,144
— 3 8 — 19 524,288
1 4 16 5 20 1,048,576
— 5 32 — 21 2,097,152
— 6 64 — 22 4,194,304
— 7 128 — 23 8,388,608
2 8 256 6 24 16,777,216
— 9 512 — 25 33,554,432
— 10 1,024 — 26 67,108,864
— 11 2,048 — 27 134,217,728
3 12 4,096 7 28 268,435,456
— 13 8,192 — 29 536,870,912
— 14 16,384 — 30 1,073,741,824
— 15 32,768 — 31 2,147,483,648

H.3 HEXADECIMAL AND DECIMAL CONVERSION

Table H-2 is a chart that can be used for converting numbers from either hexadecimal to
decimal or decimal to hexadecimal.

H.3.1 CONVERTING HEXADECIMAL TO DECIMAL. Find the decimal weights for cor-
responding hexadecimal characters beginning with the least-significant character. The
sum of the decimal weights is the decimal value of the hexadecimal number.

H.3.2 CONVERTING DECIMAL TO HEXADECIMAL. Find the highest decimal value in the
table which is lower than or equal to the decimal number to be converted. The correspon-
ding hexadecimal character is the most-significant digit of the final number. Subtract the
decimal value found from the decimal number to be converted. Repeat the above step to
determine the hexadecimal character. Repeat this process to find the subsequent hex-
adecimal numbers.

Table H-2, Hexadecimal and Decimal Conversion Chart

15 Byte 8 7 Byte 0

15 Char 12 11 Char 8 7 Char 4 3 Char 0

Hex Dec Hex Dec Hex Dec Hex Dec

0 0 0 0 0 0 0 0

1 4,096 1 256 1 16 1 1

2 8,192 2 512 3 32 2 2

3 12,288 3 768 3 48 3 3

4 16,384 4 1,024 4 64 4 4

5 20,480 5 1,280 5 80 5 5

6 24,576 6 1,536 6 96 6 6

7 28,672 7 1,792 7 112 7 7

8 32,768 8 2,098 8 128 8 8

9 36,864 9 2,3)4 9 144 9 9

A 40,960 A 2,530 A 160 A 10

B 45,056 B 2,816 B 176 B 11

C 49,152 C 3,072 C 192 C 12

D 53,248 D 3,3?8 D 208 D 13

E 57,344 E 3,534 E 224 E 14

F 61,440 F 3,890 F 240 F 15

I

H-2

