MC6809 — MC6809E

Microprocessor Programmmg Manual

Manudax your
partner in high
quality

and service

2. Mamidax Nederland by,

5473ZG Heeswijk-Dinther - Holland - P.B. 25 - Meerstraat 7 - Telefoon 04139-2901* - Telex 74810

M680SPM (AD)

MC6809-MC6809E
8-BIT MICROPROCESSOR

PROGRAMMING MANUAL

Original Issue: March 1, 1981

TABLE OF CONTENTS

Paragraph No. Title Page No.
SECTION 1
GENERAL DESCRIPTION
1.1 oY € o To [V Lo 4 TR 11
1.2 F AU ...ttt ettt e et ee e et e e et e e esbe e e sabe e s esbeessas e e s abe e et e e s ba e e e aa e s e abneenaes 1-1
1.3 SOftWEAIE FEALUIEScciiiiieiieecteeete et ea e s e s sas e san s an e e aa e eaes 1-2
1.4 Programming Model ... uussmssummumammmmmnsamamams oo 1-3
1.5 INdeX ReGIStOrS (X, Y) coiieiii et s 1-3
1.6 Stack Pointer Begisters (U, 8) cassessanmmmmmsmarmosmsnonmmnressmsspsiesy 1-3
1.7 Program Counter (PC) ...t 1-4
1.8 Accumulator Ragisters (A, B, D)ocussnasssmmsmmmmsmmsmmsmossmammamsssesons 1-4
1.9 Direct Page Registor {DP)cssmmiumasesmassonmmmsmaammmsmssmsesmmmsss 1-4
1.10 Condition Code Registar (CO) .. .csanossammmsansmsmsmommsnmmmssssmssmsons 14
1.10.1 70 3 To Rt a1 0 o i RO ——————— 1-5
1.10.1.1 Hall Carpy{H), BR 5.....ccomumammssmasmssammsassmmssssemsmmmsmsmmmmporserees 1-5
1.10.1.2 2 ST AL) B T O —— 1-5
1.10.1.3 ZATD [N, B 2. e e annmnam s amm o 555585 46 S R A5 R SR ER S KPR SR NSRS 1-5
1.10.1.4 OVEIrFIOW (V), Bit 1 ettt st e ss s a e sae s s eae e 1-5
1.10.1.5 CATTY{O), BH D .o cmremamcccm i sessmmons s i85 SRS GRS A P NSRS 1-5
1.10.2 Interrupt Mask Bits and Stacking Indicator.........cccoeeviniinininiiniininicnens 1-5
1.10.2.1 Fast Intertupt Request Mask (F), Bit B.....commuasnamammsmmmsmssmeommsans 1-5
1.10.2.2 Interrupt Request Mask (), Bit 4cocsmanmmmmmmamssssmmmmsussemmns 1-5
1.10.2.3 ENRIrE FIAG (E), BIL T 1o oo comreucumnnnonmsco nvmsmes s snsa o o i5isii6h 555550 00558 3555 43 85 589555488 1-6
1.1 Pin Assignments and Signal Description.........ccccoiiiiiinininnnnces 1-6
1.11.1 KACEBO0 CHRTERT ... 0w s s i s R S S ey 1-6
1.11.1.1 OsCillator (EXTAL, XTAL) ioviiiiiiieeieniesceeesee e snessassssscssnaesanaesaeassneensees 1-6
1.11.1.2 ENDIE () vvoeeeeeseeeeeeeeeeeeeetesaeeeeenasaessasssas s sassesasasssssesessesesesaesess et sensesees 1-7
1.11.1.3 [T 7: (5 =iy 1) T S —— 1-7
1.11.2 MCB809E CloCKS (E anNd Q) ..ocvvecieeeieiciriesiesieesiee e s sieesnnesracsnnessanesrna e seenaeas 1-7
1.11.3 Three State Control (TSC) (MCB80GE)ccccervmeriiniiiiiiiiiniecteeeeesiee s 1-7
1.11.4 Last Instruction Cycle (LIC) (MCBBO9E)cccovniviniiiininiiiniesiensiesceanne 1-7
1.11.5 Address BUS (AD-AT5).........ooiiiiiiieitesie e s 1-7
1.11.6 DAL BUS (D07). cccunrinommosemsmmmmmmnnsmen sossn mmnsnsssss 55855585060 8 S8 985 2P A SRS 1-7
1.11.7 REAAIWIITE (RIW) .. .ot cereeeiteeete s e s ssee st s st e see s n e s st e ssaassnessassneseasa e snennes 1-8
1.11.8 Processor State Indicators (BA, BS) ..ottt 1-8
1.11.81 [N ToY 41 1 - | S PP PPPOURRRS 1-8
1.11.8.2 Interrupt or Reset Acknowledge........cccuvveiiiiiiiiiiiiciie e 1-8
1.11.8.3 SYNE ACKAOWISOGE surssosunsnssmsnmmwmmmmsessss snssssssss s i mussssasyems sroseysss syasssoassnsse o sn soms 1-8

Paragraph No.

1.11.8.4
1.11.9
1.11.10
1.11.10.1
1.11.10.2
1.11.10.3
111011
1.11.12
1.11.13
1.11.14
1.11.15
1.11.16

2.1

2.2
221
222
223
2.2.4
2.2.5
2.25.1
2.25.2
2253
2254
2255
2.2.5.6
2.2.6

3.1
3.2
3.3
3.4
3.5

TABLE OF CONTENTS

(CONTINUED)
Title Page No
HAI/BUS Grantcooeiiecie ettt eseareeen 1-8
RESEt (RESET) ..ottt e e e et erae e e 1-9
L = (U] o €=U 19
Non-Maskable Interrupt (NMI) ... 19
Fast Interrupt Request (FIRQ).......ccouiiiiiiiiieicciecccieee et e e saare e senes 19
Interrupt Request (IRQ) ..ottt ssae e sreeens 19
Memory Ready (MRDY) (MCB809)cceeirrerriiriiiiireciecreesie e ssressnesnsensesneas 19
Advanced Valid Memory Address (AVMA) (MCB809E).........ccceovvvvvenrnns 1-10
HAIE (HALT) et sre e sas b esaesanesr e s b e sanaeanesrnsans 1-10
Direct Memory Access/Bus Request (DMA/BREQ) (MC6809)..................... 1-10
BUSY (MCBBOOGE) ...ttt ettt csaree s e aae e s e e sess e s essans e s s sennnseesens 1-10
POWET .ttt ettt e et e e e e e saa e e e ae e e s ae e s esseeesae e e s ae e ssaesenneeenneeeannrens 1-11
SECTION 2
ADDRESSING MODES
IERTOAUCHION ssnsis 5550 iniims0m Sommiamressonssnmuimsanssess s nnakasss ssiesmemn s ass swsnnssmsn fan sass sammmn s nsnes 2-1
AdAresSing MOAES.cooiiiiiiiiiiiie et see st s ere e s ers e saae e s eaaeeessse e sabeessansessneesnns 2-1
o] o T=T =T o} SRR 2-1
UIPIVOII B o s nomamonosonssaa. oot 04 5 AR A5 RSP A T 6 241
o S (=T g Lo L= o F R 2-2
=T o TP 2-2
NIRRT wcnnmosns om0 5 5 i B A5 S 53 S e mrmamm i 2-2
Constant Offset from RegiSter.......cccvevuereeeieieieciesececresrere e 2-2
Accumulator Offsel from RegISter. coosmsmsmmsimsmssmmmmmimismsassismiis 2-3
Autoincrement/Decrement from Register.......ccovviriinieenerncnieeeneeseneenn 2-3
L aTo 1T €=Tod 410 o IR PR 2-4
Sz igie(=0o B Eats (1027 ST —. 2-4
Program Counter RElAtiVeueeeiviiiiieiciiiiec ettt cccnne e e erae e arae e 2-4
BranCh ReIAIVEcooiieei et ane e ba e s snaeeenns 2-4
SECTION 3
INTERRUPT CAPABILITIES
(o} {eTo [UTo1 {11 o PO STURTR 3-1
Non-Maskable Interrupt (NMI) ..o 3-1
Fast Maskable Interrupt Request (FIRQ).....ccooviiriimiiiiiiecceeeeeereeee v 3-2
Normal Maskable Interrupt Request (IRQ).......ccceevrereeveecreneeseececre e 3-2
Software Interrupts (SWI, SWI2, SWI3) ... sesereseesesesaessenas 3-2

Paragraph No.

4.1
411
4.1.2
4.1.21
4122
41.3
4.2
421
4211
4212
4213
422
4.2.3
424
425
426
4.2.6.1
42.6.2
4.2.6.3
427
4.3

4.4

Al
A2

B.1
B.2
B.3
B.4

TABLE OF CONTENTS

(CONCLUDED)
Title Page No.
SECTION 4
PROGRAMMING
Ul D IO IO ... co om0 585025555 A A A S S R S A SRR RS A SR NP 41
POSItioN-INAEPENAENCE......ccccviiiiie ettt 4-1
Modular Programmingc.ceeeceiiiieeniieieeeceses s ssse s sssessssssssssaaessssasessnes 4-1
L OB SUOTEIE .. .en e i 8555 0050855555505 05 A S A S S AR S A A S 4-1
[C1To] o=] (o] - Vo L= TSR 4-2
ReeNtraNCY/REBOUISIONccvveseamrcscmcnccmmenermsssesansassnnssinansns ss54885 S5EE TS SSRTRSS SETIOAERS 4-2
I B BB G BT IO v oo s momesionsli s 5 505 5 R SRR AR R USSR DS 4-2
BAGHUTE COMSITUBEIOI ..o s rensions i s s c55555 5655764 E 0RHS SRS RS RV R AR S B ER SR RSN IS 4-2
=TT (o = g S PR —— 4-3
T VRS (6 6 U L= J R — 4-3
[C1T0] o= 1] (o] - To =T U SRRPORRPP 4-3
Position-Independent COAecccuuiiiiiiiieiiieireecee e 4-4
REENTFANE PIOTTAINNS isuss s ssnmsomsmsssssssysas s s yss s (s s ssessmssasssamss srpayenaasas 4-5
RECUISIVE PrOgramiS .. .cciuiii ittt sae e st s e s saae e s s 4-5
LOIGDE wunsnismmermmmressrssmuesvmmmmsae s s s s G G R AR S ESSREAE 4-5
STACK PTOGIAIMIIIIG ...n.ccemrs mmem o s snsn o nm s 5550555 5555045 SRR ASTRRAS TSRS H 4-6
MBB09 Stacking OPErationNS.......ccccseesmsmsesnnmnnssniss sossimmansssssisarensssvssamsssmsnss 4-6
<10 o7 go1d1ulgT=10 I [, 4- T L SO — 4-7
SOMNATE BUATKS ceensrmsmnam emmmwmmarmm s s sk 55535 58 RS BBV AL S SR AN OB AANORS 4-8
Raal Time Proguarmiming sos e asmsssomsismomm e mmamesmosss s warsrervsm: 4-8
Program DocumMentationcccceeiieeiiiiiiiricniies et 4-8
g iRg ot oo = QU ——— 4-9
APPENDIX A
INSTRUCTION SET DETAILS
INEFOAUCTION oinsnssssrsmsmimessmsusmessssssmummssmorasssesus srmons vons vosssnsr nmnsns soonsdn o it SHEHTRTORSAFTIHS A-1
NEO LA IO v s s smmm e s smm o 5555554555455 53 S AN RV A AN SR g sl A-1
Instructions (listed in alphabetical Order).......oociiinniiiies A-3
APPENDIX B
ASSIST09 MONITOR PROGRAM
General DeSCriPHiON. ...t e B-1
Impléementation REQUITEMENTS ...t ey s sveeses B-1
ITEETTUDE ICONIION Lvwsevssrserssmmonomemsummmmssamunne smonsannnmnssss 6855 45 545EF 54845V SRSRAERRS SHTHH S SR RRS RS B-2
IO R T TR Z BTN oo s 406558 S5 R SN S R B S 8 M S SR EE CRE i i e wn e B-3

Paragraph No.

B.5
B.6
B.7
B.8

B.9

B.10

TABLE OF CONTENTS

(CONTINUED)

Title Page No.

INPUL/OULPUL CONIOL .ottt asensene e B-4
(©7eTaala = TaTo Il oY d o o F- X GRS TRORRTRRRRO B-4
(@010 01 o F=UaTo [N IS PR B-5
(70T 0210 0 F- 1o Vo £ B-5
(ST ¢=T= 1 4o To 1 1 | SRS B-6
L0711 TR B-6
DT E=] o1 = SRR B-7

= aTeTo o [T B-7

[Lo J RPN B-8
0 - o TSRS B-8

1Y =T 0 T o USROS B-9
N RPN B-10

1O 5 11 ST B-10
U o o o O B-11

R T=To TS (=] OSSR B-11
IOV 5 55,0 mismamsnmmssimv s s e s o s i e e S e i R B-12

T I v s s b sin s s A A S S A R A RS A S B-12
WBITIY ccsinininmnsnrnsnmsomsmmmmmmnanssommmmmssmmn momanmeomm s s s s smememe s e e e s e mess B-13
174 L Le (o 1 R B-13

I T=T 8V LT R B-14
=1 o B-15

L1 L o SRR B-15
17 I B-16

(O 10 I O R B-17
OUT ZHS .ttt st e s ettt s et e s s est e s e s eeesnaesesseeasseeasssnessnaassnsnaenn B-17
OUTAHSttt e s saeseae s sbesse e s saesestessressseesnnesnseesane B-18

o] R B-18
O o T B-19

P DB T A st 7 i S 1 R R 10 i A A B-19

L 2 1N B-20
BIPAICE i sinssssssssansto nmivsmmmmmemmmannmms sansomssssssmssampassons st aatssssmeanmes memesas st e s ss B-21
VT RSEW e e e e e e e e s e e e e e e s e s s e e enaeeeesenassnnmnnnneenes B-21
NL=Tod (o] T Yo BT =Y VT o] T B-22
BT i srsitnss 5555 mnmmrnencs smansmemumesmmn e TS SR S T B-23
Tl 1 B-23

B O DT A et r e e sae e rae s ereenaneeeaesereesaneeeareans B-24

B O O F et e et e e e et e e e e e —e e e e e e aeaeaanreaeaeannnaeean B-24

B O OIN et e e ettt e e e s e e e eenneeeeeanneeaeaans B-25

LG 1 B PR B-25
O s e nn B-26

L0 1@ N O RORRRRRRRPRIRN B-26

B 11 | N B-27
CMDLLZ... ettt et e et e e e e e s aaeesae s e aesnneesaeaeseaenseaannesaneans B-28

Vi

TABLE OF CONTENTS
(CONTINUED)

Paragraph No. Title Page No.

B.11
APPENDIX C
MACHINE CODE TO INSTRUCTION CROSS REFERENCE
CA Ty 00508 1Ter 2 ot SR P —— C-1
APPENDIX D
PROGRAMMING AID
DA (137 oo 10T e i 0] g [UUNNERR S AR oo D-1
APPENDIX E
ASCIl CHARACTER SET
E.1 IO AU CTION csissmsmmissysssnssssnsarprssmms ersssmussnsesssasssennsnseds s s THE SRS RS SRR NGRS E-1
E.2 Character Representation and Code Identificationccccvvivinvieninniinncnnns E-1
Ed COMIOl CHATACIBTS ...ooneomamecemsmnsnmnsnsoniss HA5 R REsa AR SRS S SRS R SRS A S s E-2
E.4 GrAPHIE CHATAGIETS ... oecn oo s TR TR PSS T AR RSB S oV RS E-2

vii

Paragraph No.

F.A
F.2

G.1

H.1
H.2
H.3
H.3.1
H.3.2

Figure No.

—h e amd

A
2
3
2-1
3-1
4-1
B-1
E-1

G-1

TABLE OF CONTENTS

(CONTINUED)
Title Page No.
APPENDIX F
OPCODE MAP
INEPOTUCTION 1ooxrrmrsermmmsrmmnssnmensagssrasssseserssescessmmssaans senssssss snsasssnsacnssnessssi s dsssF 3 FRFRERAEITS F-1
(875 o167 1,7, - | o R SNSRI — F-1
APPENDIX G
PIN ASSIGNMENTS
([aR (Yo [VTo3 4 Lo 2 1O G-1
APPENDIX H
CONVERSION TABLES
i (o e L1101 ¢] 1 OSSRt e S —— H-1
POWETS Of 22 POWBIS B TB.....comrecnesmananemensnsiss snssisinss 54t sams i s s sasss aeassmes s s eas H-1
Hexadecimal and Decimal CONVErSioN........cccccceiirieeiiiiinnecenssnnnessesseneesennnns H-2
Converting Hexadecimal 10 Decimal i cusmsmmssmssssssmaniessesisnssssnmsass H-2
Converting Decimal to Hexadecimalcccooiiiiiiiiiiiiiiinicicnnineeneen H-2

LIST OF ILLUSTRATIONS

Title Page No.
Programming MOGEL. ..o srmmoscesmsamsnsnsenanasensasssssssss sesssesssssmianssissoamssn ssass 1-3
Condition Cotle BegiSter ausssmmemssmasomsmsssssss i essyepsspemass 1-4
Processor Pin ASSIGNMENtS ...ttt ssaasae s ana s s e s s ana s 1-6
Postbyte Usage for EXG/TFR, PSH/PUL Instructions.........ccccuviiiecicnnicninnnnnee, 2-2
Interrupt Processing FIOWCRHAT..........ccnirnisscssesssisssissasemsasssnasssssessassssnnes 3-5
BRACKING OIIBE ..o voevsnnrmmmmamesmmemm samcmeammnomsmmtos nasis s i 5 55 G584 S SR TR RS S AN SRR RS 4-7
M G OTY, INVBID i s msmasmssmsmisssisss s s S S Sy SO e S RO NG SN A A s B-2
ASCH Charastor 5ol .cesmussnsmsanmmsmumsmasmmmm s omas e e E-1
PIN ABBIGNITIEIEScrnreomnmmcnnnsmonsnanmsnnonssnsmine 5455 50685 58 R A TSR TSRS TR ARAR ARSI BAB AR G-1

Table No.
1-1
2-1
3-1
4-1
4-2
4-3
4-4
4.5
4-6

A-1
A-2

B-1
B-2
B-3
CA1
D-1

E-1
E-2

LIST OF TABLES

Title Page No.
BAIBS SiQN8] ERGOTIIN cooroes susmmscsmeanenncnnanmnsnensiot 4 5 5083 46 5504 S4BT AR SRS 1-8
Postbyte Usage for Indexed Addressing Modesccccevveiniiniiiiniiccnnnnnnans 2-3
INEErrUDE VR CIOT LOCARIONS.. .. c.mmmerenmnonmensnssnnnnsnnslhinsshss iEHH6m 6457556 SR ss S 730v8 5FweRS 3-1
INSUTUCHION IGBL ..o vrecrnerrssmarmenmcsmmmmsmnsmmsummasm s sasmmonosislnsssshis s o5 5854 95555545 A RRB SRR 4-9
8-Bit Accumulator and Memory INStruCtions......ccceccevveiiiieiininecciieen 4-11
16:-Bit Accumulator and Memory InStructions. ... ssusssrammssomm o 4-12
IndexiSkatk Polntar IneAru OIS, o asmsmmwaussummisssnmmmmssasss omas s s sas s 4-12
BrANCE INBATIGIIOINS oo o i siowsthisn 5 5505585856465 ERRAR W AR SR R NSRRI 4-13
Miscellaneous INSITUCTIONS . ..uviiiiiiieeieiiee e e e crrr e e e s e raree e s e snaneeeseanes 4-13
O DO T AR IO I OV ION e e o 4 SRR GBI ETR AA A S A-1
32 To 10Tl T -1 4L o o R ——— A-2
COMIMATIA LIScourercrmsmmmmrmsssssrummsassrseramessssnnsesnasssessannnnnssammmsnsesnn nsssansnsbsss 4 5555565 50545 B-5
B BIVIOOE, o ersorsessmsrmrmmmressaessyrossressven evsosrarsamrsesnesnmmenmnsmsa i ot s RN R AR S B-14
VeCtor TAbIE ENtIIEScoovviiicieeccieie ettt et e e s saae e e e snae e s s e s s snneeaas B-22
Machine Code to Instruction Cross Reference.........coocceeeivieiniiiicniciniecciinnnnns C-2
ProgramiMing ALocomosssmeersommsssms s mmmm s s eos o sy sy s s 15 S5 s sy oo D-1
CONIIOl CRAFACIONS ..viesmriprsscemmwomenmsosamssssssmssnsnsssssssmanesissnaibs SR 54 18 5RH TR SRS E-2
e T Tolpl LR @) 171 r- o (- ¢ SO p PR R—— E-3
DGO WD . o s i o5 055555 S S S 555 SR A A S F-2
indexed Addressing Mode Data . .uessmmsasinsmimmasmssenaoermmysssssonares F-3
PowWers Of 2;: POWETS Of 16.......coveeemmmerennsnennnsasannsiosinesssiisssassstsissssssesss s s sssasmas H-1
Hexadecimal and Decimal Conversion Chart.........ccccoevieeeinniiieininieeininnecns H-2

ix/x

SECTION 1
GENERAL DESCRIPTION

1.1 INTRODUCTION

This section contains a general description of the Motorola MC6809 and MC6809E
Microprocessor Units (MPU). Pin assignments and a brief description of each input/out-
put signal are also given. The term MPU, processor, or M6809 will be used throughout this
manual to refer to both the MC6809 and MC6809E processors. When a topic relates to
only one of the processors, that specific designator (MC6809 or MC6809E) will be used.

1.2 FEATURES

The MC6809 and MC6809E microprocessors are greatly enhanced, upward compatible,
computationally faster extensions of the MC6800 microprocessor.

Enhancements such as additional registers (a Y index register, a U stack pointer, and a
direct page register) and instructions (such as MUL) simplify software design. Improved
addressing modes have also been implemented.

Upward compatibility is guaranteed as MC6800 assembly language programs may be
assembled using the Motorola MC6809 Macro Assembler. This code, while not as com-
pact as native M6809 code, is, in most cases, 100% functional.

Both address and data are available from the processor earlier in an instruction cycle
than from the MC6800 which simplifies hardware design. Two clock signals, E (the
MC6800 ¢2) and a new quadrature clock Q (which leads E by one-quarter cycle) also
simplify hardware design.

A memory ready (MRDY) input is provided on the MC6809 for working with slow
memories. This input stretches both the processor internal cycle and direct memory ac-
cess bus cycle times but allows internal operations to continue at full speed. A direct
memory access request (DOMA/BREQ) input is provided for immediate memory access or
dynamic memory refresh operations; this input halts the internal MC6809 clocks.
Because the processor’s registers are dynamic, an internal counter periodically recovers
the bus from direct memory access operations and performs a true processor refresh
cycle to allow unlimited length direct memory access operation. An interrupt
acknowledge signal is available to allow development of vectoring by interrupt device
hardware or detection of operating system calls.

1-1

Three prioritized, vectored, hardware interrupt levels are available: non-maskable, fast,
and normal. The highest and lowest priority interrupts, non-maskable and interrupt re-
quest respectively, are the normal interrupts used in the M6800 family. A new interrupt on
this processor is the fast interrupt request which provides faster service to its interrupt
input by only stacking the program counter and condition code register and then servic-
ing the interrupt.

Modern programming techniques such as position-independent, system independent,
and reentrant programming are readily supported by these processors.

A Memory Management Unit (MMU), the MC6829, allows a M6809 based system to ad-
dress a two megabyte memory space. Note: An arbitrary number of tasks may be sup-
ported — slower — with software.

This advanced family of processors is compatible with all M6800 peripheral parts.

1.3 SOFTWARE FEATURES

Some of the software features of these processors are itemized in the following
paragraphs. Programs developed for the MC6800 can be easily converted for use with the
MC6809 or MC6B09E by running the source code through a M6809 Macro Assembler or
any one of the many cross assemblers that are available.

The addressing modes of any microprocessor provide it with the capability to efficiently
address memory to obtain data and instructions. The MC6809 and MC6809E have a ver-
satile set of addressing modes which allow them to function using modern programming
techniques.

The addressing modes and instructions of the MC6809 and MC6809E are upward com-
patible with the MC6800. The old addressing modes have been retained and many new
ones have been added.

A direct page register has been added which allows a 256 byte ‘‘direct” page anywhere in
the 64K logical address space. The direct page register is used to hold the most-
significant byte of the address used in direct addressing and decrease the time required
for address calculation.

Branch relative addressing to anywhere in the memory map (- 32768 to + 32767) is
available.

Program counter relative addressing is also available for data access as well as branch
instructions.

The indexed addressing modes have been expanded to include:
0-, 5-, 8-, 16-bit constant offsets,
8- or 16-bit accumulator offsets,
autoincrement/decrement (stack operation).

1-2

In addition, most indexed addressing modes may have an additional level of indirection
added.

Any or all registers may be pushed on to or pulled from either stack with a single instruc-
tion.

A multiply instruction is included which multiplies unsigned binary numbers in ac-
cumulators A and B and places the unsigned result in the 16-bit accumulator D. This un-
signed multiply instruction also allows signed or unsigned multiple precision multiplica-
tion.

1.4 PROGRAMMING MODEL

The programming model (Figure 1-1) for these processors contains five 16-bit and four
8-bit registers that are available to the programmer.

X — Index Register

Y — Index Register

Pointer Registers
U — User Stack Pointer

S — Hardware Stack Pointer

PC Program Counter
A J B Accumulators
~ /
e

Direct Page Register

0
L DP]
7 0
m F l H l | I N IZ [Vv IC] Condition Code Register

Figure 1-1. Programming Model

1.5 INDEX REGISTERS (X, Y)

The index registers are used during the indexed addressing modes. The address informa-
tion in an index register is used in the calculation of an effective address. This address
may be used to point directly to data or may be modified by an optional constant or
register offset to produce the effective address.

1.6 STACK POINTER REGISTERS (U, S)

Two stack pointer registers are available in these processors. They are: a user stack
pointer register (U) controlled exclusively by the programmer, and a hardware stack
pointer register (S) which is used automatically by the processor during subroutine calls

1-3

and interrupts, but may also be used by the programmer. Both stack pointers always
point to the top of the stack.

These registers have the same indexed addressing mode capabilities as the index
registers, and also support push and pull instructions. All four indexable registers (X, Y,
U, S) are referred to as pointer registers.

1.7 PROGRAM COUNTER (PC)

The program counter register is used by these processors to store the address of the
next instruction to be executed. It may also be used as an index register in certain ad-

dressing modes.

1.8 ACCUMULATOR REGISTERS (A, B, D)

The accumulator registers (A, B) are general-purpose 8-bit registers used for arithmetic
calculations and data manipulation.

Certain instructions concatenate these registers into one 16-bit accumulator with
register A positioned as the most-significant byte. When concatenated, this register is
referred to as accumulator D.

1.9 DIRECT PAGE REGISTER (DP)

This 8-bit register contains the most-significant byte of the address to be used in the
direct addressing mode. The contents of this register are concatenated with the byte
following the direct addressing mode operation code to form the 16-bit effective address.
The direct page register contents appear as bits A15 through A8 of the address. This
register is automatically cleared by a hardware reset to ensure M6800 compatiblity.

1.10 CONDITION CODE REGISTER (CC)

The condition code register contains the condition codes and the interrupt masks as
shown in Figure 1-2.

Q:Li]?]ifi [\I/I?:JL -

Overflow
Zero
Negative
—_— |RQ Mask
Half Carry
FIRQ Mask
Entire Flag

Figure 1-2. Condition Code Register

1-4

1.10.1 CONDITION CODE BITS. Five bits in the condition code register are used to in-
dicate the results of instructions that manipulate data. They are: half carry (H), negative
(N), zero (2), overflow (V), and carry (C). The effect each instruction has on these bits is
given in the detail information for each instruction (see Appendix A).

1.10.1.1 Half Carry (H), Bit 5. This bit is used to indicate that a carry was generated from
bit three in the arithmetic logic unit as a result of an 8-bit addition. This bit is undefined in
all subtract-like instructions. The decimal addition adjust (DAA) instruction uses the
state of this bit to perform the adjust operation.

1.10.1.2 Negative (N), Bit 3. This bit contains the value of the most-significant bit of the
result of the previous data operation.

1.10.1.3 Zero (2), Bit 2. This bit is used to indicate that the result of the previous opera-
tion was zero.

1.10.1.4 Overflow (V), Bit 1. This bit is used to indicate that the previous operation caused
a signed arithmetic overflow.

1.10.1.5 Carry (C), Bit 0. This bit is used to indicate that a carry or a borrow was generated
from bit seven in the arithmetic logic unit as a result of an 8-bit mathematical operation.

1.10.2 INTERRUPT MASK BITS AND STACKING INDICATOR. Two bits (I and F) are used
as mask bits for the interrupt request and the fast interrupt request inputs. When either
or both of these bits are set, their associated input will not be recognized.

One bit (E) is used to indicate how many registers (all, or only the program counter and
condition code) were stacked during the last interrupt.

1.10.2.1 Fast Interrupt Request Mask (F), Bit 6. This bit is used to mask (disable) any fast
interrupt request line (FIRQ). This bit is set automatically by a hardware reset or after
recognition of another interrupt. Execution of certain instructions such as SWI will also
inhibit recognition of a FIRQ input.

1.10.2.2 Interrupt Request Mask (), Bit 4. This bit is used to mask (disable) any interrupt
request input (IRQ). This bit is set automatically by a hardware reset or after recognition
of another interrupt. Execution of certain instructions such as SWI will also inhibit
recognition of an IRQ input.

1-5

1.10.2.3 Entire Flag (E), Bit 7. This bit is used to indicate how many registers were stack-
ed. When set, all the registers were stacked during the last interrupt stacking operation.
When clear, only the program counter and condition code registers were stacked during

the last interrupt.

The state of the E bit in the stacked condition code register is used by the return from in-
terrupt (RTI) instruction to determine the number of registers to be unstacked.

1.11 PIN ASSIGNMENTS AND SIGNAL DESCRIPTION

Figure 1-3 shows the pin assignments for the processors. The following paragraphs pro-
vide a short description of each of the input and output signals.

MCB809 MC6809E
VssQie 7 4spRALT Vssfie ~ 4pHALT
NMIg 2 39 XTAL NMI g 2 apTsc
IRQ Q3 38 P EXTAL RQ Q3 3gpLIC
FIRQQ 4 37 DRESET FIRQ g 4 37 P RESET
BSOs5 36 MRDY BSOs 36 P AVMA
BAQ6 35pQ BAOs 3pQ
veeqy 34pE Veed upE
A0d s 33 h DMA/BREQ A0l 8 33 BUSY

A1 9 2 PR/W A109 P PR/W
A2010 31 p DO A2Q10 51p D0
A3Q 11 30p DI A3d 11 30p D1
A4l 12 29 b D2 a2 29pD2
A5013 28 p D3 A5[13 28 p D3
A6 Q14 27 p D4 A6 014 27 pD4
A7d1s 26 D5 a7d15 26 P D5
A8 Q16 25 p D6 A8 Q16 25p D6
A9d17 24 b D7 Agg7 24 hD7
al0d1s 23p A5 Alod8 23pA15
A11g19 22 QA4 A11d19 2 hAl4
A12d 20 21§ A13 A12 420 21 pAI13

Figure 1-3. Processor Pin Assignments

1.11.1 MC6809 CLOCKS. The MC6809 has four pins committed to developing the clock
signals needed for internal and system operation. They are: the oscillator pins EXTAL
and XTAL; the standard M6800 enable (E) clock; and a new, quadrature (Q) clock.

1.11.1.1 Oscillator (EXTAL, XTAL). These pins are used to connect the processor’s inter-
nal oscillator to an external, parallel-resonant crystal. These pins can also be used for in-
put of an external TTL timing signal by grounding the XTAL pin and applying the input to
the EXTAL pin. The crystal or the external timing source is four times the resulting bus
frequency.

1-6

1.11.1.2 Enable (E). The E clock is similar to the phase 2 (¢2) MC6800 bus timing clock.
The leading edge indicates to memory and peripherals that the data is stable and to
begin write operations. Data movement occurs after the Q clock is high and is latched on
the trailing edge of E. Data is valid from the processor (during a write operation) by the
rising edge of E.

1.11.1.3 Quadrature (Q). The Q clock leads the E clock by approximately one half of the E
clock time. Address information from the processor is valid with the leading edge of the
Q clock. The Q clock is a new signal in these processors and does not have an equivalent
clock within the MC6800 bus timing.

1.11.2 MC6809E CLOCKS (E and Q). The MC6809E has two pins provided for the TTL
clock signal inputs required for internal operation. They are the standard M6800 enable
(E) clock and the quadrature (Q) clock. The Q input must lead the E input.

Addresses will be valid from the processor (on address delay time after the falling edge
of E) and data will be latched from the bus by the falling edge of E. The Q input is fully TTL
compatible. The E input is used to drive the internal MOS circuitry directly and therefore
requires input levels above the normal TTL levels.

1.11.3 THREE STATE CONTROLS (TSC) (MC6809E). This input is used to place the ad-
dress and data lines and the R/W line in the high-impedance state and allows the address
bus to be shared with other bus masters.

1.11.4 LAST INSTRUCTION CYCLE (LIC) (MC6809E). This output goes high during the last
cycle of every instruction and its high-to-low transition indicates that the first byte of an
opcode will be latched at the end of the present bus cycle.

1.11.5 ADDRESS BUS (A0-A15). This 16-bit, unidirectional, three-state bus is used by the
processor to provide address information to the address bus. Address information is
valid on the rising edge of the Q clock. All 16 outputs are in the high-impedance state
when the bus available (BA) signal is high, and for one bus cycle thereafter.

When the processor does not require the address bus for a data transfer, it outputs ad-
dress FFFF1g, and read/write (R/W) high. This is a “dummy access” of the least-
significant byte of the reset vector which replaces the valid memory address (VMA) func-
tions of the MC6800. For the MC6809, the memory read signal internal circuitry inhibits
stretching of the clocks during non-access cycles.

1.11.6 DATA BUS (D0-D7). This 8-bit, bidirectional, three-state bus is the general purpose
data path. All eight outputs are in the high-impedance state when the bus available (BA)
output is high.

1-7

1.11.7 READ/WRITE (R/W). This output indicates the direction of data transfer on the data
bus. A low indicates that the processor is writing onto the data bus; a high indicates that
the processor is reading data from the data bus. The signal at the R/W output is valid at
the leading edge of the Q clock. The R/W output is in the high-impedance state when the
bus availabie (BA) output is high.

1.11.8 PROCESSOR STATE INDICATORS (BA, BS). The processor uses these two output
lines to indicate the present processor state. These pins are valid with the leading edge

of the Q clock.

The bus available (BA) output is used to indicate that the buses (addiess and data) and
the read/write output are in the high-impedance state. This signal can be used to indicate
to bus-sharing or direct memory access systems that the buses are available. When BA
goes low, an additional dead cycle will elapse before the processor regains control of the
buses.

The bus status (BS) output is used in conjunction with the BA output to indicate the pre-
sent state of the processor. Table 1-1 is a listing of the BA and BS outputs and the pro-
cessor states that they indicate. The following paragraphs briefly explain each processor
state.

Table 1-1. BA/BS Signal Encoding

Normal (Running)
Interrupt or Reset Acknowledge
Sync Acknowledge

BA BS Pri r
0
1
0
1 Halt/Bus Grant Acknowledged

1.11.8.1 Normal. The processor is running and executing instructions.

1.11.8.2 Interrupt or Reset Acknowledge. This processor state is indicated during both
cycles of a hardware vector fetch which occurs when any of the following interrupts have
occurred: RESET, NMI, FIRQ, IRQ, SWI, SWI2, and SWI3.

This output, plus decoding of address lines A3 through A1 provides the user with an
indication of which interrupt is being serviced.

1.11.8.3 Sync Acknowledge. The processor is waiting for an external synchronization in-
put on an interrupt line. See SYNC instruction in Appendix A.

1.11.8.4 Halt/Bus Grant. The processor is halted or bus control has been granted to some
other device.

1-8

1.11.9 RESET (RESET). This input is used to reset the processor. A low input lasting
longer than one bus cycle will reset the processor.

The reset vector is fetched from locations $FFFE and $FFFF when the processor enters
the reset acknolwedge state as indicated by the BA output being low and the BS output
being high.

During initial power-on, the reset input should be held low until the clock oscillator is ful-
ly operational.

1.11.10 INTERRUPTS. The processor has three separate interrupt input_pins: non-
maskable interrupt (NMI), fast interrupt request (FIRQ), and interrupt request (IRQ). These
interrupt inputs are latched by the falling edge of every Q clock except during cycle steal-
ing operations where only the NMI input is latched. Using this point as a reference, a
delay of at least one bus cycle will occur before the interrupt is recognized by the pro-
cessor.

1.11.10.1 Non-Maskable Interrupt (NMI). A negative edge on this input requests that a
non-maskable interrupt sequence be generated. This input, as the name indicates, can-
not be masked by software and has the highest priority of the three interrupt inputs. After
a reset has occurred, a NMI input will not be recognized by the processor until the first
program load of the hardware stack pointer. The entire machine state is saved on the
hardware stack during the processing of a non-maskable interrupt. This interrupt is inter-
nally blocked after a hardware reset until the stack pointer is initialized.

1.11.10.2 Fast Interrupt Request (FIRQ). This input is used to initiate a fast interrupt re-
quest sequence. Initiation depends on the F (fast interrupt request mask) bit in the condi-
tion code register being clear. This bit is set during reset. During the interrupt, only the
contents of the condition code register and the program counter are stacked resuiting in
a short amount of time required to service this interrupt. This interrupt has a higher priori-
ty than the normal interrupt request (IRQ).

1.11.10.3 Interrupt Request (IRQ). This input is used to initiate what might be considered
the “normal” interrupt request sequence. Initiation depends on the | (interrupt mask) bit
in the condition code register being clear. This bit is set during reset. The entire machine
state is saved on the hardware stack during processing of an IRQ input. This input has
the lowest priority of the three hardware interrupts.

1.11.11 MEMORY READ (MRDY) (MC6809). This input allows extension of the E and Q
clocks to allow a longer data access time. A low on this input allows extension of the E
and Q clocks (E high and Q low) in integral multiples of quarter bus cycles (up to 10
cycles) to allow interface with slow memory devices.

1-9

Memory ready does not extend the E and Q clocks during non-valid memory access
cycles and therefore the processor does not slow down for ‘“‘don’t care” bus accesses.
Memory ready may also be used to extend the E and Q clocks when an external device is
using the halt and direct memory access/bus request inputs.

1.11.12 ADVANCED VALID MEMORY ADDRESS (AVMA) (MCB809E). This output signal in-
dicates that the MCB809E will use the bus in the following bus cycle. This output is low
when the MCB809E is in either a halt or sync state.

1.11.13 HALT. This input is used to halt the processor. A low input halts the processor at
the end of the present instruction execution cycle and the processor remains halted in-
definitely without loss of data.

When the processor is halted, the BA output is high to indicate that the buses are in the
high-impedance state and the BS output is also high to indicate that the processor is in
the halt/bus grant state.

During the halt/bus grant state, the processor will not respond to external real-time re-
quests such as FIRQ or IRQ. However, a direct memory access/bus request input will be
accepted. A non-maskable interrupt or a reset input will be latched for processing later.
The E and Q clocks continue to run during the halt/bus grant state.

1.11.14 DIRECT MEMORY ACCESS/BUS REQUEST (DMA/BREQ) (MC8809). This input is
used to suspend program execution and make the buses available for another use such
as a direct memory access or a dynamic memory refresh.

A low level on this input occurring during the Q clock high time suspends instruction ex-
ecution at the end of the current cycle. The processor acknowledges acceptance of this
input by setting the BA and BS outputs high to signify the bus grant state. The requesting
device now has up to 15 bus cycles before the processor retrieves the bus for self-refresh.

ically, a direct memory access controller will request to use the bus by setting the
DMA/BREQ input low when E goes high. When the processor acknowledges this input by
setting the BA and BS outputs high, that cycle will be a dead cycle used to transfer bus
mastership to the direct memory access controlier. False memory access during any
dead cycle should be prevented by externally developing a system DMAVMA signal
which is low in any cycle when the BA output changes.

When the BA output goes low, either as a result of a direct memory access/bus request or
a processor self-refresh, the direct memory access device should be removed from the
bus. Another dead cycle will elapse before the processor accesses memory, to allow
transfer of bus mastership without contention.

1.11.15 BUSY (MC6808E). This output indicates that bus re-arbitration should be deferred
and provides the indivisable memory operation required for a “‘test-and-set” primitive.

1-10

This output will be high for the first two cycles of any Read-Modify-Write instruction, high
during the first byte of a double-byte access, and high during the first byte of any indirect
access or vector-fetch operation.

1.11.16 POWER. Two inputs are used to supply power to the processor: VCC is +5.0
+ 5%, while Vgs is ground or 0 volts.

1-11/1-12

SECTION 2
ADDRESSING MODES

2.1 INTRODUCTION

This section contains a description of each of the addressing modes available on these
processors.

2.2 ADDRESSING MODES

The addressing modes available on the MC6809 and MC6809E are: Inherent, Immediate,
Extended, Direct, Indexed (with various offsets and autoincrementing/decrementing),
and Branch Relative. Some of these addressing modes require an additional byte after
the opcode to provide additional addressing interpretation. This byte is called a postbyte.

The following paragraphs provide a description of each addressing mode. In these
descriptions the term effective address is used to indicate the address in memory from
which the argument for an instruction is fetched or stored, or from which instruction pro-
cessing is to proceed.

2.2.1 INHERENT. The information necessary to execute the instruction is contained in
the opcode. Some operations specifying only the index registers or the accumulators,
and no other arguments, are also included in this addressing mode.

Example: MUL

2.2.2 IMMEDIATE. The operand is contained in one or two bytes immediately following
the opcode. This addressing mode is used to provide constant data values that do not
change during program execution. Both 8- bit and 16-bit operands are used depending on
the size of the argument specified in the opcode.

Example: LDA #CR
LDB #7
LDA #$F0
LDB #% 1110000
LDX #$8004

Another form of immediate addressing uses a postbyte to determine the registers to be
manipulated. The exchange (EXG) and transfer (TFR) instructions use the postbyte as
shown in Figure 2-1(A). The push and pull instructions use the postbyte to designate the
registers to be pushed or pulled as shown in Figure 2-1(B).

21

b7 b6 bb b4 b3 b2 bl b0

[SOURCE (R1) | DESTINATION (R2) |
Code* Register Code* Register

0000 D (A:B) 0101 Program Counter

0001 X Index 1000 A Accumulator

0010 Y Index 1001 B Accumulator

0011 U Stack Pointer 1010 Condition Code

0100 S Stack Pointer 1011 Direct Page

* All other combinations of bits produce undefined results.
(A) Exchange (EXG) or Transfer (TFR) Instruction Postbyte

b7 b6 b5 b4 b3 b2 bl b
lrcls/uly | x Jor] B | A Jcc]

PC = Program Counter

S/U = Hardware/User Stack Pointer
Y = Y Index Register

X = U Index Register

DP = Direct Page Register

B = B Accumulator

A = A Accumulator

cc = Condition Code Register

(B) Push (PSH) or Pull (PUL) Instruction Postbyte

Figure 2-1. Postbyte Usage for EXG/TFR, PSH/PUL Instructions

2.2.3 EXTENDED. The effective address of the argument is contained in the two bytes
following the opcode. Instructions using the extended addressing mode can reference
arguments anywhere in the 64K addressing space. Extended addressing is generally not
used in position independent programs because it supplies an absolute address.

Example: LDA >CAT

2.2.4 DIRECT. The effective address is developed by concatenation of the contents of the
direct page register with the byte immediately following the opcode. The direct page
register contents are the most-significant byte of the address. This allows accessing 256
locations within any one of 256 pages. Therefore, the entire addressing range is available
for access using a single two-byte instruction.

Example: LDA >CAT

2.2.5 INDEXED. In these addressing modes, one of the pointer registers (X, Y, U, or S), and
sometimes the program counter (PC) is used in the calculation of the effective address of
the instruction operand. The basic types (and their variations) of indexed addressing
available are shown in Table 2-1 along with the postbyte configuration used.

2.2.5.1 Constant Offset from Register. The contents of the register designated in the
postbyte are added to a twos complement offset value to form the effective address of

2-2

the instruction operand. The contents of the designated register are not affected by this
addition. The offset sizes available are:

No
offset — designated register contains the effective
address

5-bit — 16to +15
8-bit — 128 to +127
16-bit — 32768 to + 32767

Table 2-1. Postbyte Usage for Indexed Addressing Modes

Mode Type Variation Direct Indirect
Constant Offset from Register No Offset 1RR00100 | 1RR10100
(twos Complement Offset) 5-Bit Offset ORRnnnnn | Defaults to 8-bit
8-Bit Offset 1RR0O1100 | 1RR11000
16-Bit Offset 1RR01001 1RR11001
Accumulator Offset from Register | A Accumulator Offset 1RR00110 | 1RR10110
(twos Complement Offset) B Accumulator Offset 1TRR0O0101 1RR10101
D Accumulator Offset 1RR0O1011 1RR11011
Auto Increment/Decrement from Increment by 1 1RR0O0000 Not Allowed
Register Increment by 2 1RR0O0001 1RR 10001
Decrement by 1 1RR00010 | Not Allowed
Decrement by 2 1RR0O0011 1RR10011
Constant Offset from Program 8-Bit Offset 1XX01100 | 1XX11100
Counter 16-Bit Offset 1XX01101 1XX11101
Extended Indirect 16-Bit Address | -------- 10011111

The 5-bit offset value is contained in the postbyte. The 8- and 16-bit offset values are con-
tained in the byte or bytes immediately following the postbyte. If the Motorola assembler
is used, it will automatically determine the most efficient offset; thus, the programmer
need not be concerned about the offset size.

Examples: LDA X LDY -64000,U
LDB 0,Y LDA 17,PC
LDX 64,000,S LDA There,PCR

2.2.5.2 Accumulator Offset from Register. The contents of the index or pointer register
designed in the postbyte are temporarily added to the twos complement offset value con-
tained in an accumulator (A, B, or D) also designated in the postbyte. Neither the
designated register nor the accumulator contents are affected by this addition.

Example: LDA AX LDA DU
LDA B,Y

2.2.5.3 Autoincrement/Decrement from Register. This addressing mode works in a
postincrementing or predecrementing manner. The amount of increment or decrement,
one or two positions, is designated in the postbyte.

2-3

In the autoincrement mode, the contents of the effective address contained in the
pointer register, designated in the postbyte, and then the pointer register is automatical-
ly incremented; thus, the pointer register is postincremented.

In the autodecrement mode, the pointer register, designated in the postbyte, is
automatically decremented first and then the contents of the new address are used;
thus, the pointer register is predecremented.

Examples: Autoincrement Autodecrement
LDA X+ LDY X+ + LDA ,-X LDY ,--X
LDA Y+ LDX)Y+ + LDA ,-Y LDX ,--=-Y
LDA S+ LDX U+ + LDA ,-S LDX ,--U
,—U LDX ,--S

LDA U+ LDX S+ + LDA

2.2.5.4 Indirection. When using indirection, the effective address of the base indexed ad-
dressing mode is used to fetch two bytes which contain the final effective address of the
operand. It can be used with all the indexed addressing modes and the program counter
relative addressing mode.

2.2.5.5 Extended Indirect. The effective address of the argument is located at the ad-
dress specified by the two bytes following the postbyte. The postbyte is used to indicate
indirection.

Example: LDA [$F000]

2.2.5.6 Program Counter Relative. The program counter can also be used as a pointer
with either an 8- or 16-bit signed constant offset. The offset value is added to the program
counter to develop an effective address. Part of the postbyte is used to indicate whether
the offset is 8 or 16 bits.

2.2.6 BRANCH RELATIVE. This addressing mode is used when branches from the current
instruction location to some other location relative to the current program counter are
desired. If the test condition of the branch instruction is true, then the effective address
is calculated (program counter plus twos complement offset) and the branch is taken. If
the test condition is false, the processor proceeds to the next in-line instruction. Note
that the program counter is always pointing to the next instruction when the offset is ad-
ded. Branch relative addressing is always used in position independent programs for all
control transfers.

For short branches, the byte following the branch instruction opcode is treated as an
8-bit signed offset to be used to calculate the effective address of the next instruction if
the branch is taken. This is called a short relative branch and the range is limited to plus
127 or minus 128 bytes from the following opcode.

For long branches, the two bytes after the opcode are used to calculate the effective ad-
dress. This is called a long relative branch and the range is plus 32,767 or minus 32,768

2-4

bytes from the following opcode or the full 64K address space of memory that the pro-
cessor can address at one time.

Examples: Short Branch Long Branch
BRA POLE LBRA CAT

2-5/2-6

SECTION 3
INTERRUPT CAPABILITIES

3.1 INTRODUCTION

The MC6809 and MC680SE microprocessors have six vectored interrupts (three hardware
and three software). The hardware interrupts are the non-maskable interrupt (NMLe
fast maskable interrupt request (FIRQ), and the normal maskable interrupt request (IRQ).
The software interrupts consist of SWI, SWI2, and SWI3. When an interrupt request is
acknowledged, all the processor registers are pushed onto the hardware stack, except in
the case of FIRQ where only the program counter and the condition code register is sav-
ed, and control is transferred to the address_in the interrupt vector. The priority of these
interrupts is, highest to lowest, NMI, SWI, FIRQ, IRQ, SWI2, and SWI3. Figure 3-1 is a
detailed flowchart of interrupt processing in these processors. The interrupt vector loca-
tions are given in Table 3-1. The vector locations contain the address for the interrupt
routine.

Additional information ol th SWI, SWI2, and SWI3 interrupts is given in Appendix A. The
hardware interrupts, N FIRQ, and IRQ are listed alphabetically at the end of Appendix
A.

Table 3-1. Interrupt Vector Locations

Interrupt Vector Location
Description MS Byte LS Byte
[Reset (RESET) FFFE FFFF
Non-Maskable Interrupt (NMI) FFFC FFFD
Software Interrupt (SWI) FFFA FFFB
Interrupt Request (IRQ) FFF8 FFF9
Fast Interrupt Request (FIRQ) FFF6 FFF7
Software Interrupt 2 (SWI2) FFF4 FFF5
Software Interrupt 3 (SWI3) FFF2 FFF3
Reserved FFFO FFF1

3.2 NON-MASKABLE INTERRUPT (NMI)

The non-maskable interrupt is edge-sensitive in the sense that if it is sampled low one cy-
cle after it has been sampled high, a non-maskable interrupt will be triggered. Because
the non-maskable interrupt cannot be masked by execution of the non-maskable inter-
rupt handler routine, it is possible to accept another non-maskable interrupt before ex-
ecuting the first instruction of the interrupt routine. A fatal error will exist if a non-
maskable interrupt is repeatedly allowed to occur before completing the return from in-
terrupt (RTI) instruction of the previous non-maskable interrupt request, since the stack

3-1

will eventually overflow. This interrupt is especially applicable to gaining immediate pro-
cessor response for powerfail, software dynamic memory refresh, or other non-delayable
events.

3.3 FAST MASKABLE INTERRUPT REQUEST (FIRQ)

A low level on the FIRQ input with the F (fast interrupt request mask) bit in the condition
code register clear triggers this interrupt sequence. The fast interrupt request provides
fast interrupt response by stacking only the program counter and condition code
register. This allows fast context switching with minimal overhead. If any registers are
used by the interrupt routine then they can be saved by a single push instruction.

After accepting a fast interrupt request, the processor clears the E flag, saves the pro-
gram counter and condition code register, and then sets both the | and F bits to mask any
further IRQ and FIRQ interrupts. After servicing the original interrupt, the user may selec-
tively clear the | and F bits to allow multiple-level interrupts if so desired.

3.4 NORMAL MASKABLE INTERRUPT REQUEST (IRQ)

A low level on the IRQ input with the | (interrupt request mask) bit in the condition code
register clear triggers this interrupt sequence. The normal maskable interrupt request
provides a slower hardware response to interrupts because it causes the entire machine
state to be stacked. However, this means that interrupting software routines can use all
processor resources without fear of damaging the interrupted routine. A normal interrupt
request, having lower priority than the fast interrupt request, is prevented from interrup-
ting the fast interrupt handler by the automatic setting of the | bit by the fast interrupt re-
quest handler.

After accepting a normal interrupt request, the processor sets the E flag, saves the entire
machine state, and then sets the | bit to mask any further interrupt request inputs. After
servicing the original interrupt, the user may clear the | bit to allow multiple-level normal
interrupts.

All interrupt handling routines should return to the formerly executing tasks using a
return from interrupt (RTI) instruction. This instruction recovers the saved machine state
from the hardware stack and control is returned to the interrupted program. If the
recovered E bit is clear, it indicates that a fast interrupt request occurred and only the

program counter address and condition code register are to be recovered.

3.5 SOFTWARE INTERRUPTS (SWI, SWI2, SWI3)

The software interrupts cause the processor to go through the normal interrupt request
sequence of stacking the complete machine state even though the interrupting source is
the processor itself. These interrupts are commonly used for program debugging and for
calls to an operating system.

3-2

Normal processing of the SWI input sets the | and F bits to prevent either of these inter-
rupt requests from affecting the completion of a software interrupt request. The remain-
ing software interrupt request inputs (SWI2 and SWI3) do not have the priority of the SWI
input and therefore do not mask the two hardware interrupt request inputs (FIRQ and

IRQ).

3-3

Heyomoj4 Buissesoid idnueju) “L-¢ einbidg

(360B9DW) @10AD UdIay i0193A 1831y Buunp ybiy s AsNg 7
VEUIMOY Byl Ut 1uiod Aup wosy 8ouanbas 1353 3yl Bunajua ur ynsas M 1353y Buniessy | SILON

i i abpajmoundy 1eH
0 | abpaimouydy JUAS
1 0 abpajmounoy 19say J0 1dNLBlU|
0 0 Buiuuny
[va |81e1g sng

 F= am, g TEES ST R R A mmm—— M
I |
| |
_ |
! |
| v |
_ |
_ |
_ |
I !
“ _
! |
_ |
_ I
_ _
! |
_ |
| |
_ NdW Buaadsng

| |
. _
! |
| SH wH anec _
! [
_ !
_ (o) |
Lo s s it i e o) B s

S8-0
2434 | EIMS
[
vidd | OMS
9433 | OM4
8434 | On

Vid4 | IMS

D444 IWN
9d = Lo
z mon
-

D

¢

A RO IRE

ot

1N s
FEICH!

N

>

2d N A x 40
8 v weisun

©

U0 360890 W 2=

XoRisSUN

&*;iri

Jd = i0108A

MG A NF=D,

1ansaid;
uaie

WARD

22'v 8 40 X
A N D4 0eIS

powiy
IWN

s8-"
v8-—0

ﬂ S100 1810

4 0"y

3-4

SECTION 4
PROGRAMMING

4.1 INTRODUCTION

These processors are designed to be source-code compatible with the M6800 to make
use of the substantial existing base of M6800 software and training. However, this asset
should not overshadow the capabilities built into these processors that allow more
modern programming techniques such as position-independence, modular programm-
ing, and reentrancy/recursion to be used on a microprocessor-based system. A brief
review of these methods is given in the following paragraphs.

4.1.1 POSITION INDEPENDENCE. A program is said to be “position-independent” if it
will run correctly when the same machine code is positioned arbitrarily in memory. Such
a program is useful in many different hardware configurations, and might be copied from
a disk into RAM when the operating system first sees a request to use a system utility.
Position-independent programs never use absolute (extended or direct) addressing: in-
stead, inherent immediate, register, indexed and relative modes are used. In particular,
there should be no jump (absolute) or jump to subroutine instructions nor should ab-
solute addresses be used. A position-independent program is almost always preferable
to a position-dependent program (although position-independent code is usually 5 to
10% slower than normal code).

4.1.2 MODULAR PROGRAMMING. Modular programming is another indication of quality
code. A module is a program element which can be easily disconnected from the rest of
the program either for re-use in a new environment or for replacement. A module is usual-
ly a subroutine (although a subroutine is not necessarily a moduie); frequently, the pro-
grammer isolates register changes internal to the module by pushing these registers
onto the stack upon entry, and pulling them off the stack before the return. Isolating
register changes in the called module, to that module alone, allows the code in the call-
ing program to be more easily analyzed since it can be assumed that all registers (except
those specifically used for parameter transfer are unchanged by each called module.
This leaves the processor’s registers free at each level for loop counts, address com-
parisons, etc.

4.1.2.1 Local Storage. A clean method for allocating “local” storage is required both by
position-independent programs as well as modular programs. Local or temporary storage

is used to hold values only during execution of a module (or called modules) and is releas-
ed upon return. One way to allocate local storage is to decrement the hardware stack

41

pointer(s) by the number of bytes needed. Interrupts will then leave this area intact and it
can be de-allocated on exiting the module. A module will almost always need more tem-
porary storage than just the MPU registers.

4.1.2.2 Global Storage. Even in a modular environment there may be a need for “global”
values which are accessible by many modules within a given system. These provide a
convenient means for storing values from one invocation to another invocation of the
same routine. Global storage may be created as local storage at some level, and a
pointer register (usually U) used to point at this area. This register is passed unchanged
in all subroutines, and may be used to index into the global area.

4.1.3 REENTRANCY/RECURSION. Many programs will eventually involve execution in an
interrupt-driven environment. If the interrupt handlers are complex, they might well call
the same routine which has just been interrupted. Therefore, to protect present programs
against certain obsolescence, all programs should be written to be reentrant. A reentrant
routine allocates different local variable storage upon each entry. Thus, a later entry
does not destroy the processing associated with an earlier entry.

The same technique which was implemented to allow reentrancy also allows recursion.
A recursive routine is defined as a routine that calls itself. A recursive routine might be
written to simplify the solution of certain types of problems, especially those which have
a data structure whose elements may themselves be a structure. For example, a paren-
thetical equation represents a case where the expression in parenthesis may be con-
sidered to be a value which is operated on by the rest of the equation. A programmer
might choose to write an expression evaluator passing the parenthetical expression
(which might also contain parenthetical expressions) in the call, and receive back the
returned value of the expression within the parenthesis.

4.2 M6809 CAPABILITIES

The following paragraphs briefly explain how the MC6809 is used with the programming
techniques mentioned earlier.

4.2.1 MODULE CONSTRUCTION. A module can be defined as a logically self-contained
and discrete part of a larger program. A properly constructed module accepts well defin-
ed inputs, carries out a set of processing actions, and produces a specified output. The
use of parameters, local storage, and global storage by a program module is given in the
following paragraphs. Since registers will be used inside the module (essentially a form
of local storage), the first thing that is usually done at entry to a module is to push (save)
them on to the stack. This can be done with one instruction (e.g., PSHS Y, X, B, A). After
the body of the module is executed, the saved registers are collected, and a subroutine
return is performed, at one time, by pulling the program counter from the stack (e.g.,
PULS A,B,X,Y,PC).

4-2

4.2.1.1 Parameters. Parameters may be passed to or from modules either in registers, if
they will provide sufficient storage for parameter passage, or on the stack. If parameters
are passed on the stack, they are placed there before calling the lower level module. The
called module is then written to use local storage inside the stack as needed (e.g., ADDA
offset,S). Notice that the required offset consists of the number of bytes pushed (upon
entry), plus two from the stacked return address, plus the data offset at the time of the
call. This value may be calculated, by hand, by drawing a “stack picture” diagram
representing module entry, and assigning convenient mnemonics to these offsets with
the assembler. Returned parameters replace those sent to the routine. If more
parameters are to be returned on the stack than would normally be sent, space for their
return is allocated by the calling routine before the actual call (if four additional bytes are
to be returned, the caller would execute LEAS —4,S to acquire the additional storage).

4.2.1.2 Local Storage. Local storage space Is acquired from the stack while the present
routine is executing and then returned to the stack prior to exit. The act of pushing
registers which will be used in later calculations essentially saves those registers in tem-
porary local storage. Additional local storage can easily be acquired from the stack e.g.,
executing LEAS —2048,S acquires a buffer area running from the 0,S to 2047,S inclusive.
Any byte in this area may be accessed directly by any instruction which has an indexed
addresing mode. At the end of the routine, the area acquired for local storage is released
(e.g., LEAS 2048,S) prior to the final pull. For cleaner programs, local storage should be
allocated at entry to the module and released at the exit of the module.

4.2.1.3 Global Storage. The area required for global storage is also most effectively ac-
quired from the stack, probably by the highest level routine in the standard package.
Although this is local storage to the highest level routine, it becomes ‘““global” by posi-
tioning a register to point at this storage, (sometimes referred to as a stack mark) then
establishing the convention that all modules pass that same pointer value when calling
lower level modules. In practice, it is convenient to leave this stack mark register un-
changed in all modules, especially if global accesses are common. The highest level
routine in the standard package would execute the following sequence upon entry (to in-
itialize the global area):

PSHS U higher level mark, if any
TFR S,uU new stack mark
LEAS -17,U allocate global storage

Note that the U register now defines 17-bytes of locally allocated (permanent) globals
(which are —1,U through — 17,U) as well as other external globals (2,U and above) which
have been passed on the stack by the routine which called the standard package. Any
global may be accessed by any module using exactly the same offset value at any level
(e.g., ROL, RAT,U; where RAT EQU — 11 has been defined). Furthermore, the values stack-
ed prior to invoking the standard package may include pointers to data or |/O peripherals.
Any indexed operation may be performed indexed indirect through those pointers, which
means, for example, that the module need know nothing about the actual hardware con-
figuration, except that (upon entry) the pointer to an 1/O register has been placed at a
given location on the stack.

4-3

4.2.2 POSITION-INDEPENDENT CODE. Position-independent code means that the same
machine language code can be placed anywhere in memory and still function correctly.
The M6809 has a long relative (16-bit offset) branch mode along with the common
MC6800 branches, plus program-counter relative addressing. Program-counter relative
addressing uses the program counter like an indexable register, which allows all instruc-
tions that reference memory to also reference data relative to the program counter. The
M6809 also has load effective address (LEA) instructions which allow the user to point to
data in a ROM in a position-independent manner.

An important rule for generating position-independent code is: NEVER USE ABSOLUTE
ADDRESSING.

Program-counter relative addressing on the M6809 is a form of indexed addressing that
uses the program counter as the base register for a constant-offset indexing operation.
However, the M6809 assembler treats the PCR address field differently from that used in
other indexed instructions. In PCR addressing, the assembly time location value is sub-
tracted from the (constant) value of the PCR offset. The resulting distance to the desired
symbol is the value placed into the machine language object code. During execution, the
processor adds the value of the run time PC to the distance to get a position-independent

absolute address.

The PCR indexed addressing form can be used to point at any location relative to the pro-
gram regardless of position in memory. The PCR form of indexed addressing allows ac-
cess to tables within the program space in a position-independent manner via use of the
load effective address instruction.

In a program which is completely position-independent, some absolute locations are
usually required, particularly for 1/0. If the locations of I1/O devices are placed on the
stack (as globals) by a small setup routine before the standard package is invoked, all in-
ternal modules can do their I/O through that pointer (e.g., STA [ACIAD, U)), allowing the
hardware to be easily changed, if desired. Only the single, small, and obvious setup
routine need be rewritten for each different hardware configuration.

Global, permanent, and temporary values need to be easily available in a position-
independent manner. Use the stack for this data since the stacked data is directly ac-
cessible. Stack the absolute address of 1/0 devices before calling any standard software
package since the package can use the stacked addresses for I/O in any system.

The LEA instructions allow access to tables, data, or immediate values in the text of the
program in a position-independent manner as shown in the following example:

LEAX " MSG1,PCR
LBSR PDATA
MSG1 FCC " IPRINT THISY/

4-4

Here we wish to point at a message to be printed from the body of the program. By
writing “MSG1, PCR” we signal the assembler to compute the distance between the pre-
sent address (the address of the LBSR) and MSG1. This result is inserted as a constant
into the LEA instruction which will be indexed from the program counter value at the time
of execution. Now, no matter where the code is located, when it is executed the com-
puter offset from the program counter will point at MSG1. This code is position-
independent.

It is common to use space in the hardware stack for temporary storage. Space is made
for temporary variables from 0,S through TEMP-1, S by decrementing the stack pointer
equal to the length of required storage. We could use:

LEAS - TEMP,S.

Not only does this facilitate position-independent code but it is structured and helps
reentrancy and recursion.

4.2.3 REENTRANT PROGRAMS. A program that can be executed by several different
users sharing the same copy of it in memory is called reentrant. This is important for in-
terrupt driven systems. This method saves considerable memory space, especially with
large interrupt routines. Stacks are required for reentrant programs, and the M6809 can
support up to four stacks by using the X and Y index registers as stack pointers.

Stacks are simple and convenient mechanisms for generating reentrant programs.
Subroutines which use stacks for passing parameters and results can be easily made to
be reentrant. Stack accesses use the indexed addressing mode for fast, efficient execu-
tion. Stack addressing is quick.

Pure code, or code that is not self-modifying, is mandatory to produce reentrant code. No
internal information within the code is subject to modification. Reentrant code never has
internal temporary storage, is simpler to debug, can be placed in ROM, and must be inter-
ruptable.

4.2.4 RECURSIVE PROGRAMS. A recursive program is one that can call itself. They are
quite convenient for parsing mechanisms and certain arithmetic functions such as com-
puting factorials. As with reentrant programming, stacks are very useful for this techni-
que.

4.2.5 LOOPS. The usual structured loops (i.e., REPEAT...UNTIL, WHILE...DO, FOR..,, etc.)
are available in assembly language in exactly the same way a high-level language com-
piler could translate the construct for execution on the target machine. Using a
FOR...NEXT loop as an example, it is possible to push the loop count, increment value,
and termination value on the stack as variables local to that ioop. On each pass through
the loop, the working register is saved, the loop count picked up, the increment added in,
and the result compared to the termination value. Based on this comparison, the loop
counter might be updated, the working register recovered and the loop resumed, or the
working register recovered and the loop variables de-allocated. Reasonable macros

45

could make the source form for loop trivial, even in assembly language. Such macros
might reduce errors resulting from the use of multiple instructions simply to implement a
standard control structure.

4.2.6 STACK PROGRAMMING. Many microprocessor applications require data stored as
continguous pieces of information in memory. The data may be temporary, that is, sub-
ject to change or it may be permanent. Temporary data will most likely be stored in RAM.
Permanent data will most likely be stored in ROM.

It is important to allow the main program as well as subroutines access to this block of
data, especially if arguments are to be passed from the main program to the subroutines
and vice versa.

4.2.6.1 M6809 Stacking Operations. Stack pointers are markers which point to the stack
and its internal contents. Although all four index registers may be used as stack
registers, the S (hardware stack pointer) and the U (user stack pointer) are generally
preferred because the push and pull instructions apply to these registers. Both are 16-bit
indexable registers. The processor uses the S register automatically during interrupts
and subroutine calls. The U register is free for any purpose needed. It is not affected by
interrupts or subroutine calls implemented by the hardware.

Either stack pointer can be specified as the base address in indexed addressing. One use
of the indirect addressing mode uses stack pointers to allow addresses of data to be
passed to a subroutine on a stack as arguments to a subroutine. The subroutine can now
reference the data with one instruction. High-level language calls that pass arguments
by reference are now more efficiently coded. Also, each stack push or pull operation in a
program uses a postbyte which specifies any register or set of registers to be pushed or
pulled from either stack. With this option, the overhead associated with subroutine calls
in both assembly and high-level language programs is greatly decreased. In fact, with the
large number of instructions that use autoincrement and autodecrement, the M6809 can
emulate a true stack computer architecture.

Using the S or U stack pointer, the order in which the registers are pushed or pulled is
shown in Figure 4-1. Notice that we push “onto” the stack towards decreasing memory
locations. The program counter is pushed first. Then the stack pointer is decremented
and the “other” stack pointer is pushed onto the stack. Decrementing and storing con-
tinues until all the registers requested by the postbyte are pushed onto the stack. The
stack pointer points to the top of the stack after the push operation.

The stacking order is specified by the processor. The stacking order is identical to the
order used for all hardware and software interrupts. The same order is used even if a
subset of the registers is pushed.

Without stacks, most modern block-structured high-level languages would be cumber-
some to implement. Subroutine linkage is very important in high-level language genera-
tion. Paragraph 4.2.6.2 describes how to use a stack mark pointer for this important task.

46

Good programming practice dictates the use of the hardware stack for temporary
storage. To reserve space, decrement the stack pointer by the amount of storage re-
quired with the instruction LEAS - TEMPS, S. This instruction makes space for tem-
porary variables from 0,S through TEMPS —-1,S.

Memory
0000
- =L
Stack Pointer
After Stacking — cc } Condition Code Register Contents
A } A Accumulator Contents
B } B Accumulator Contents
DP } Direct Page Register Contents
X.H
- s =
5 3 X L X Contents
3 g Y.H
a a 5
— — Y Contents
Y.L
UHor S H
— — { Other Stack Pointer Contents
' U.L or S.L.
PC.H
— -ﬂ Program Counter Contents
PC.L
Stack Pointer
Before Stacking_‘"
- ety
~ -+
FFFF

Figure 4-1. Stacking Order

4.2.6.2 Subroutine Linkage. In the highest level routine, global variables are sometimes
considered to be local. Therefore, global storage is allocated at this point, but access to
these same variables requires different offset values depending on subroutine depth.
Because subroutine depth changes dynamically, the length may not be known
beforehand. This problem is solved by assigning one pointer (U will be used in the follow-
ing description, but X or Y could also be used) to “mark” a location on the hardware stack
by using the instruction TFR S,U. If the programmer does this immediately prior to
allocating global storage, then all variables will then be available at a constant negative
offset location from this stack mark. If the stack is marked after the global variables are

47

allocated, then the global variables are available at a constant positive offset from U.
Register U is then called the stack mark pointer. Recall that the hardware stack pointer
may be modified by hardware interrupts. For this reason, it is fatal to use data referred to
by a negative offset with respect to the hardware stack pointer, S.

4.2.6.3 Software Stacks. If more than two stacks are needed, autoincrement and
autodecrement mode of addressing can be used to generate additional software stack
pointers.

The X, Y, and U index registers are quite useful in loops for incrementing and decremen-
ting purposes. The pointer is used for searching tables and also to move data from one
area of memory to another (block moves). This autoincrement and autodecrement
feature is available in the indexed addressing mode of the M6809 to facilitate such opera-

tions.

In autoincrement, the value contained in the index register (X or Y, U or S) is used as the
effective address and then the register is incremented (postincremented). In autodecre-
ment, the index register is first decremented and then used to obtain the effective ad-
dress (predecremented). Postincrement or predecrement is always performed in this ad-
dressing mode. This is equivalent in operation to the push and pull from a stack. This
equivalence allows the X and Y index registers to be used as software stack pointers. The
indexed addressing mode can also implement an extra level of post indirection. This
feature supports parameter and pointer operations.

4.2.7 REAL TIME PROGRAMMING. Real time programming requires special care.
Sometimes a peripheral or task demands an immediate response from the processor,
other times it can wait. Most real time applications are demanding in terms of processor
response.

A common solution is to use the interrupt capability of the processor in solving real time
problems. Interrupts mean just that; they request a break in the current sequence of
events to solve an asynchronous service request. The system designer must consider all
variations of the conditions to be encountered by the system including software interac-
tion with interrupts. As a result, problems due to software design are more common in in-
terrupt implementation code for real time programming than most other situations. Soft-
ware timeouts, hardware interrupts, and program control interrupts are typically used in
solving real time programming problems.

4.3 PROGRAM DOCUMENTATION

Common sense dictates that a well documented program is mandatory. Comments are
needed to explain each group of instructions since their use is not always obvious from
looking at the code. Program boundaries and branch instructions need full clarification.
Consider the following points when writing comments: up-to-date, accuracy, com-
pleteness, conciseness, and understandability.

4-8

Accurate documentation enables you and others to maintain and adapt programs for up-
dating and/or additional use with other programs.

The following program documentation standards are suggested.

A) Each subroutine should have an associated header block containing at least the
following elements:

1) A full specification for this subroutine — including associated data struc-
tures — such that replacement code could be generated from this description
alone.

2) All usage of memory resources must be defined, including:

a) All RAM needed from temorary (local) storage used during execution of
this subroutine or called subroutines.
b) All RAM needed for permanent storage (used to transfer values from one
execution of the subroutine to future executions).
c) All RAM accessed as global storage (used to transfer values from or to
higher-level subroutines).
d) All possible exit-state conditions, if these are to be used by calling
routines to test occurrences internal to the subroutine.
B) Code internal to each subroutine should have sufficient associated line com-
ments to help in understanding the code.
C) All code must be non-self-modifying and position-independent.
D) Each subroutine which includes a loop must be separately documented by a
flowchart or pseudo high-level language algorithm.
E) Any module or subroutine should be executable starting at the first location and
exit at the last location.

4.4 INSTRUCTION SET

The complete instruction set for the M6809 is given in Table 4-1.

Table 4-1. Instruction Set

Instruction Description
ABX Add Accumulator B into Index Register X
ADC Add with Carry into Register
ADD Add Memory into Register
AND Logical AND Memory into Register
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right
BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Equal
BGE Branch on Greater Than or Equal to Zero
BGT Branch on Greater
BHI Branch if Higher
BHS Branch if Higher or Same
BIT Bit Test
BLE Branch if Less than or Equal to Zero

49

Table 4-1. Instruction Set (Continued)

Instruction Description
BLO Branch on Lower
BLS Branch on Lower or Same
BLT Branch on Less than Zero
BMI Branch on Minus
BNE Branch Not Equal
BPL Branch on Plus
BRA Branch Always
BRN Branch Never
BSR Branch to Subroutine
BVC Branch on Overflow Clear
BVS Branch on Overflow Set
CLR Clear
CMP Compare Memory from a Register
COM Complement
CWAI Clear CC bits and Wait for Interrupt
DAA Decimal Addition Adjust
DEC Decrement
EOR Exclusive OR
EXG Exchange Registers
INC Increment
JMP Jump
JSR Jump to Subroutine
LD Load Register from Memory
LEA Load Effective Address
LSL Logical Shift Left
LSR Logical Shift Right
MUL Multiply
NEG Negate
NOP No Operation
OR Inclusive OR Memory into Register
PSH Push Registers
PUL Pull Registers
ROL Rotate Left
ROR Rotate Right
RTI Return from Interrupt
RTS Return from Subroutine
SBC Subtract with Borrow
SEX Sign Extend
ST Store Register into Memory
SUB Subtract Memory from Register
SWI Software Interrupt
SYNC Synchronize to External Event
TFR Transfer Register to Register
ST Test

The instruction set can be functionally divided into five categories. They are:

8-Bit Accumulator and Memory Instructions
16-Bit Accumulator and Memory Instructions
Index Register/Stack Pointer Instructions

Branch Instructions
Miscellaneous Instructions

Tables 4-2 through 4-6 are listings of the M6809 instructions and their variations grouped

into the five categories listed.

Table 4-2. 8-Bit Accumulator and Memory Instructions

Instruction

Description

ADCA, ADCB

Add memory to accumulator with carry

ADDA, ADDB

Add memory to accumulator

ANDA, ANDB

And memory with accumulator

ASL, ASLA, ASLB

Arithmetic shift of accumulator or memory left

ASR, ASRA, ASRB

Arithmetic shift of accumulator or memory right

BITA, BITB

Bit test memory with accumulator

CLR, CLRA, CLRB

Clear accumulator or memory location

CMPA, CMPB

Compare memory from accumulator

COM, COMA, COMB

Complement accumulator or memory location

DAA

Decimal adjust A accumulator

DEC, DECA, DECB

Decrement accumulator or memory location

EORA, EORB

Exclusive or memory with accumulator

EXG R1, R2

Exchange R1 with R2 (R1, R2=A, B, CC, DP)

INC, INCA, INCB

Increment accumulator or memory location

LDA, LDB

Load accumulator from memory

LSL, LSLA, LSLB

Logical shift left accumuiator or memory location

LSR, LSRA, LSRB

Logical shift right accumulator or memory location

MUL

Unsigned multiply (A x B— D)

NEG, NEGA, NEGB

Negate accumulator or memory

ORA, ORB

Or memory with accumulator

ROL, ROLA, ROLB

Rotate accumulator or memory left

ROR, RORA, RORB

Rotate accumulator or memory right

SBCA, SBCB

Subtract memory from accumulator with borrow

STA, STB

Store accumulator to memroy

SUBA, SUBB

Subtract memory from accumulator

TST, TSTA, TSTB

Test accumulator or memory location

TFR R1, R2

Transfer R1 to R2 (R1, R2=A, B, CC, DP)

NOTE: A, B, CC, or DP may be pushed to (pulled from) either stack with PSHS, PSHU
(PULS, PULU) instructions

Table 4-3. 16-Bit Accumulator and Memory Instructions

Instruction Description
ADDD Add memory to D accumulator
CMPD Compare memory from D accumulator
EXG D, R Exchange D with X, Y, S, U, or PC
LDD Load D accumulator from memory
SEX Sign Extend B accumulator into A accumulator
STD Store D accumulator to memory
suBD Subtract memory from D accumulator
TFRD, R Transfer Dto X, Y, S, U, or PC
TFRR, D Transfer X, Y, S, U, or PCto D

NOTE: D may be pushed (pulled) to either stack with PSHS, PSHU (PULS, PULU)

instructions.

Table 4-4. Index/Stack Pointer Instructions

Instruction Description
CMPS, CMPU Compare memory from stack pointer
CMPX, CMPY Compare memory from index register
EXG R1, R2 Exchange D, X, Y, S, Uor PCwith D, X, Y, S, U or PC
LEAS, LEAU Load effective address into stack pointer
LEAX, LEAY Load effective address into index register
LDS, LDU Load stack pointer from memory
LDX, LDY Load index register from memory
PSHS Push A, B, CC, DP, D, X, Y, U, or PC onto hardware stack
PSHU Push A, B, CC, DP, D, X, Y, X, or PC onto user stack
PULS Pull A, B, CC, DP, D, X, Y, U, or PC from hardware stack
PULU Pull A, B, CC, DP, D, X, Y, S, or PC from hardware stack
STS, STU Store stack pointer to memory
STX, STY Store index register to memory
TFR R1, R2 Transfer D, X, Y, S,U,orPCto D, X, Y, S, U, or PC
ABX Add B accumulator to X (unsigned)

4-12

Table 4-5. Branch Instructions

Instruction] Description
SIMPLE BRANCHES
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BMI, LBMI Branch if minus
BPL, LBPL Branch if plus
BCS, LBCS Branch if carry set
BCC, LBCC Branch if carry clear
BVS, LBVS Branch if overflow set
BVC, LBVC Branch if overflow clear
SIGNED BRANCHES
BGT, LBGT Branch if greater (signed)
BVS, LBVS Branch if invalid twos complement result
BGE, LBGE Branch if greater than or equal (signed)
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BLE, LBLE Branch if less than or equal (signed)
BVC, LBVC Branch if valid twos complement result
BLT, LBLT Branch if less than (signed)
UNSIGNED BRANCHES
BHI, LBHI Branch if higher (unsigned)
BCC, LBCC Branch if higher or same (unsigned)
BHS, LBHS Branch if higher or same (unsigned)
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BLS, LBLS Branch if lower or same (unsigned)
BCS, LBCS Branch if lower (unsigned)
BLO, LBLO Branch if lower (unsigned)
OTHER BRANCHES
BSR, LBSR Branch to subroutine
BRA, LBRA Branch always
BRN, LBRN Branch never

Table 4-6. Miscellaneous Instructions

Instruction Description
ANDCC AND condition code register
CWAI AND condition code register, then wait for interrupt
NOP No operation
ORCC OR condition code register
JMP Jump
JSR Jump to subroutine
RTI Return from interrupt
RTS Return from subroutine
SWI, SWI2, SWI3 Software interrupt (absolute indirect)
SYNC Synchronize with interrupt line

4-13/4-14

APPENDIX A
INSTRUCTION SET DETAILS

A.1 INTRODUCTION

This appendix contains detailed information about each instruction in the MC6809 in-
struction set. They are arranged in an alphabetical order with the mnemonic heading set
in larger type for easy reference.

A.2 NOTATION

In the operation description for each instruction, symbols are used to indicate the opera-
tion. Table A-1 lists these symbols and their meanings. Abbreviations for the various
registers, bits, and bytes are also used. Table A-2 lists these abbreviations and their
meanings.

Table A-1. Operation Notation

Symbol Meaning
- Is transferred to
A Boolean AND
\ Boolean OR
® Boolean exclusive OR

~ (Overline) Boolean NOT
3 Concatenation
+ Arithmetic plus
- Arithmetic minus
Arithmetic multiply

A-1

Table A-2.

Abbreviation
ACCA or A
ACCBorB
ACCA:ACCB or D
ACCX
CCR or CC
DPR or DP
EA
IFF
IX or X
1Y or Y
LSN

Mi
MSN
PC

TEMP
xxH
xxL
SporS
Us or U

dd
DDDD

!

Register Notation

Meaning
Accumulator A
Accumulator B
Double accumulator D
Either accumulator A or B
Condition code register
Direct page register
Effective address
If and only if
Index register X
Index register Y
Least significant nibble
Memory location
Memory immediate
Most significant nibble
Program counter
A register before the operation
A register after the operation
Temporary storage location
Most signifcant byte of any 16-bit register
Least significant byte of any 16-bit register
Hardware Stack pointer
User Stack pointer

A memory argument with Immediate, Di-
rect, Extended, and Indexed addressing
modes

A read-modify-write argument with Direct,
Indexed, and Extended addressing modes
The data pointed to by the enclosed
(16-bit address)

8-bit branch offset

16-bit branch offset

Immediate value follows

Hexadecimal value follows

Indirection

Indicates indexed addressing

A-2

ABX Add Accumulator B into Index Register X ABX

Source Form: ABX

Operation: IX'—IX+ACCB

Condition Codes: Not affected.

Description: Add the 8-bit unsigned value in accumulator B into index register X.

Addressing Mode: Inherent

A-3

A DC Add with Carry into Register A DC

Source Forms: ADCA P; ADCB P

Operation: R—~R + M+C

Condition Codes: H — Set if a half-carry is generated; cleared otherwise.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Description: Adds the contents of the C (carry) bit and the memory byte into an
8-bit accumulator.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-4

A D D (8' B it) Add Memory into Register A D D (8' B it)

Source Forms: ADDA P; ADDB P
Operation: R—R+M

Condition Codes: H — Set if a half-carry is generated; cleared otherwise.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Description: Adds the memory byte into an 8-bit accumulator.
Addressing Modes: Immediate
Extended

Direct
Indexed

A-5

AD D (1 6' Bit) Add Memory into Register AD D (1 6' Bit)

Source Forms: ADDD P
Operation: R—~R + MMM +1

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Description: Adds the 16-bit memory value into the 16-bit accumulator
Addressing Modes: Immediate

Extended

Direct

Indexed

A-6

AN D Logical AND Memory into Register AN D

Source Forms: ANDA P; ANDB P
Operation: R—~RAM

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Performs the logical AND operation between the contents of an ac-
cumulator and the contents of memory location M and the result is
stored in the accumulator.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-7

AN D Logical AND Immediate Memory into Condition Code Register AN D

Source Form: ANDCC #xx

Operation: R'—R A MI

Condition Codes: Affected according to the operation.

Description: Performs a logical AND between the condition code register and the
immediate byte specified in the instruction and places the result in

the condition code register.

Addressing Mode: Immediate

A-8

ASL

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Modes:

Arithmetic Shift Left ASL

ASL Q; ASLA; ASLB

C = — 0

b7 <*— b0

H — Undefined

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits six and
seven of the original operand.

C — Loaded with bit seven of the original operand.

Shifts all bits of the operand one place to the left. Bit zero is loaded
with a zero. Bit seven is shifted into the C (carry) bit.

Inherent
Extended
Direct
Indexed

A-9

ASR

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Modes:

Arithmetic Shift Right AS R

ASR Q; ASRA; ASRB

]
- | [[[Il]]J—=cC
b7 b0

H — Undefined.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Not affected.

C — Loaded with bit zero of the original operand.

Shifts all bits of the operand one place to the right. Bit seven is held
constant. Bit zero is shifted into the C (carry) bit.

Inherent
Extended
Direct
Indexed

A-10

B C C Branch on Carry Clear B C C

Source Forms: BCC dd; LBCC DDDD

Operation: TEMP — M
IFF C=0 then PC'—PC + TEMP

Condition Codes: Not affected.
Description: Tests the state of the C (carry) bit and causes a branch if it is clear.

Addressing Mode: Relative

Comments: Equivalent to BHS dd; LBHS DDDD

A-11

BCS Branch on Carry Set BCS

Source Forms: BCS dd; LBCS DDDD

Operation: TEMP —MI
IFF C=1 then PC'—PC + TEMP

Condition Codes: Not affected.
Description: Tests the state of the C (carry) bit and causes a branch if it is set.

Addressing Mode: Relative

Comments: Equivalent to BLO dd; LBLO DDDD

A-12

B EQ Branch on Equal B EQ

Source Forms: BEQ dd; LBEQ DDDD

Operation: TEMP—MI
IFF Z=1 then PC'—PC + TEMP

Condition Codes: Not affected.

Tests the state of the Z (zero) bit and causes a branch if it is set.
When used after a subtract or compare operation, this instruction
will branch if the compared values, signed or unsigned, were exactly

the same.

Description:

Addressing Mode: Relative

A-13

BGE

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Branch on Greater than or Equal to Zero BG E

BGE dd; LBGE DDDD

TEMP —MI
IFF [Ne V]=0 then PC'—PC + TEMP

Not affected.

Causes a branch if the N (negative) bit and the V (overflow) bit are
either both set or both clear. That is, branch if the sign of a valid
twos complement result is, or would be, positive. When used after a
subtract or compare operation on twos complement values, this in-
struction will branch if the register was greater than or equal to the

memory operand.

Relative

A-14

BGT

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Branch on Greater B GT

BGT dd; LBGT DDDD

TEMP—MI
IFF ZA [NeV]=0 then PC'—PC + TEMP

Not affected.

Causes a branch if the N (negative) bit and V (overflow) bit are either
both set or both clear and the Z (zero) bit is clear. In other words,
branch if the sign of a valid twos complement result is, or would be,
positive and not zero. When used after a subtract or compare opera-
tion on twos complement values, this instruction will branch if the
register was greater than the memory operand.

Relative

A-15

BHI

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Branch if Higher B H l

BHI dd; LBHI DDDD

TEMP—MI
IFF [C v Z] =0 then PC'—PC + TEMP

Not affected.

Causes a branch if the previous operation caused neither a carry nor
a zero result. When used after a subtract or compare operation on
unsigned binary values, this instruction will branch if the register
was higher than the memory operand.

Relative

Generally not useful after INC/DEC, LD/TST, and TST/CLR/COM in-
structions.

A-16

BHS

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Branch if Higher or Same B H S

BHS dd; LBHS DDDD

TEMP —MI
IFF C=0 then PC'—PC + Mi

Not affected.

Tests the state of the C (carry) bit and causes a branch if it is clear.
When used after a subtract or compare on unsigned binary values,
this instruction will branch if the register was higher than or the
same as the memory operand.

Relative

This is a duplicate assembly-language mnemonic for the single
machine instruction BCC. Generally not useful after INC/DEC,
LD/ST, and TST/CLR/COM instructions.

A-17

BIT

Source Form:
Operation:

Condition Codes:

Description:

Addressing Modes:

Bit Test B IT

Bit P
TEMP—RAM

H — Not affected.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.

Performs the logical AND of the contents of accumulator A or B and
the contents of memory location M and modifies the condition
codes accordingly. The contents of accumulator A or B and memory
location M are not affected.

Immediate
Extended
Direct
Indexed

A-18

BLE

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Branch on Less than or Equal to Zero B LE

BLE dd; LBLE DDDD

TEMP—MI
IFF Zv [NeV]=1 then PC'—PC + TEMP

Not affected.

Causes a branch if the exclusive OR of the N (negative) and V
(overflow) bits is 1 or if the Z (zero) bit is set. That is, branch if the
sign of a valid twos complement result is, or would be, negative.
When used after a subtract or compare operation on twos comple-
ment values, this instruction will branch if the register was less than
or equal to the memory operand.

Relative

A-19

BLO

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Branch on Lower B LO

BLO dd; LBLO DDDD

TEMP — M|
IFF C=1then PC'—PC + TEMP

Not affected.

Tests the state of the C (carry) bit and causes a branch if it is set.
When used after a subtract or compare on unsigned binary values,
this instruction will branch if the register was lower than the
memory operand.

Relative

This is a duplicate assembly-language mnemonic for the single
machine instruction BCS. Generally not useful after INC/DEC,
LD/ST, and TST/CLR/COM instructions.

A-20

BLS

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Branch on Lower or Same B LS

BLS dd; LBLS DDDD

TEMP —MI
IFF (Cv Z2)=1 then PC'—PC + TEMP

Not affected.
Causes a branch if the previous operation caused either a carry or a
zero result. When used after a subtract or compare operation on un-

signed binary values, this instruction will branch if the register was
lower than or the same as the memory operand.

Relative

Generally not useful after INC/DEC, LD/ST, and TST/CLR/COM in-
structions.

A-21

BLT

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Branch on Less than Zero B LT

BLT dd; LBLT DDDD

TEMP— MI
IFF [N e V]=1 then PC'— PC + TEMP

Not affected.

Causes a branch if either, but not both, of the N (negative) or V
(overflow) bits is set. That is, branch if the sign of a valid twos com-
plement result is, or would be, negative. When used after a subtract
or compare operation on twos complement binary values, this in-
struction will branch if the register was less than the memory

operand.

Relative

A-22

B M l Branch on Minus B M I

Source Forms: BMI dd; LBMI DDDD

Operation: TEMP —MI
IFF N =1 then PC'—PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the N (negative) bit and causes a branch if set.
That is, branch if the sign of the twos complement result is negative.

Addressing Mode: Relative
Comments: When used after an operation on signed binary values, this instruc-

tion will branch if the result is minus. It is generally preferred to use
the LBLT instruction after signed operations.

A-23

B N E Branch Not Equal B N E

Source Forms: BNE dd; LBNE DDDD

Operation: TEMP —MI
IFF Z=0 then PC'—PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the Z (zero) bit and causes a branch if it is clear.
When used after a subtract or compare operation on any binary
values, this instruction will branch if the register is, or would be, not

equal to the memory operand.

Addressing Mode: Relative

A-24

BPL

Source Forms:

Operation:
Condition Codes:

Description:

Addressing Mode:

Comments:

Branch on Plus B P L

BPL dd; LBPL DDDD

TEMP —MI
IFF N =0 then PC'—PC + TEMP

Not affected.

Tests the state of the N (negative) bit and causes a branch if it is
clear. That is, branch if the sign of the twos complement result is
positive.

Relative

When used after an operation on signed binary values, this instruc-
tion will branch if the result (possibly invalid) is positive. It is general-
ly preferred to use the BGE instruction after signed operations.

A-25

BRA

Source Forms:

Operation:

Condition Codes:
Description:

Addressing Mode:

Branch Always

BRA dd; LBRA DDDD

TEMP — M|
PC'—PC + TEMP

Not affected.

Causes an unconditional branch.

Relative

A-26

BRA

B R N Branch Never B R N

Source Forms: BRN dd; LBRN DDDD
Operation: TEMP—MI

Condition Codes: Not affected.

Description: Does not cause a branch. This instruction is essentially a no opera-
tion, but has a bit pattern logically related to branch always.

Addressing Mode: Relative

A-27

BSR

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Bra_nch to Subroutine BS R

BSR dd; LBSR DDDD
TEMP —MI

SP'—SP -1, (SP)—PCL
SP'—SP -1, (SP)~—PCH
PC'—PC +TEMP

Not affected.

The program counter is pushed onto the stack. The program counter
is then loaded with the sum of the program counter and the offset.

Relative

A return from subroutine (RTS) instruction is used to reverse this pro-
cess and must be the last instruction executed in a subroutine.

A-28

BVC Branch on Overflow Clear BVC

Source Forms: BVC dd; LBVC DDDD

Operation: TEMP — MI
IFF V=0 then PC'—PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the V (overflow) bit and causes a branch if it is
clear. That is, branch if the twos complement result was valid. When
used after an operation on twos complement binary values, this in-
struction will branch if there was no overflow.

Addressing Mode: Relative

A-29

BVS

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Branch on Overflow Set BVS

BVS dd; LBVS DDDD

TEMP — M|
IFF V=1 then PC'—PC + TEMP

Not affected.

Tests the state of the V (overflow) bit and causes a branch if it is set.
That is, branch if the twos complement result was invalid. When us-
ed after an operation on twos complement binary values, this in-
struction will branch if there was an overflow.

Relative

A-30

CLR Clear CLR

Source Form: CLRQ
Operation: TEMP—M
M+—0016

Condition Codes: H — Not affected.
N — Always cleared.
Z — Always set.
V — Always cleared.
C — Always cleared.

Description: Accumulator A or B or memory location M is loaded with 00000000.
Note that the EA is read during this operation.

Addressing Modes: Inherent
Extended
Direct
Indexed

A-31

C M P (8" Bit) Compare Memory from Register C M P (8' Bit)

Source Forms:
Operation:

Condition Codes:

Description:

Addressing Modes:

CMPA P, CMPB P
TEMP—R-M

H — Undefined.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Compares the contents of memory location to the contents of the
specified register and sets the appropriate condition codes. Neither
memory location M nor the specified register is modified. The carry
flag represents a borrow and is set to the inverse of the resulting
binary carry.

Immediate
Extended
Direct
Indexed

A-32

CM P (1 6'Bit) Compare Memory from Register CM P (1 6'Bit)

Source Forms:
Operation:

Condition Codes:

Description:

Addressing Modes:

CMPD P; CMPX P; CMPY P; CMPU P; CMPS P
TEMP—R — M:M +1

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Compares the 16-bit contents of the concatenated memory locations
M:M + 1 to the contents of the specified register and sets the ap-
propriate condition codes. Neither the memory locations nor the
specified register is modified unless autoincrement or autodecre-
ment are used. The carry flag represents a borrow and is set to the
inverse of the resulting binary carry.

Immediate
Extended
Direct
Indexed

A-33

COM

Source Forms:
Operation:

Condition Codes:

Description:

Addressing Modes:

Complement CO M

COM Q; COMA; COMB
M~—0+M

H — Not affected.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Always set.

Replaces the contents of memory location M or accumulator A or B
with its logical complement. When operating on unsigned values,
only BEQ and BNE branches can be expected to behave properly
following a COM instruction. When operating on twos complement
values, all signed branches are available.

Inherent
Extended
Direct
Indexed

A-34

CWAI

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Clear CC bits and Wait for Interrupt

CWAI #$XX E|IF|IH|I|N]JZ|V]|C

CCR+~—CCR A MI (Possibly clear masks)
Set E (entire state saved)
SP'—SP -1, (SP)—PCL
SP'—SP -1, (SP)—PCH
SP'—SP -1, (SP)—USL
SP'—SP -1, (SP)—USH
SP'—SP -1, (SP)~—IYL
SP'—SP -1, (SP)~—IYH
SP'—SP -1, (SP)—IXL
SP'—SP -1, (SP)~—IXH
SP'—SP -1, (SP)—DPR
SP'—SP -1, (SP)—ACCB
SP'—SP -1, (SP)—ACCA
SP'—SP -1, (SP)—CCR

Affected according to the operation.

CWAI

This instruction ANDs an immediate byte with the condition code
register which may clear the interrupt mask bits | and F, stacks the
entire machine state on the hardware stack and then looks for an in-
terrupt. When a non-masked interrupt occurs, no further machine
state information need be saved before vectoring to the interrupt
handling routine. This instruction replaced the MC6800 CLI WA| se-
quence, but does not place the buses in a high-impedance state. A
FIRQ (fast interrupt request) may enter its interrupt handler with its
entire machine state saved. The RTI (return from interrupt) instruc-
tion will automatically return the entire machine state after testing
the E (entire) bit of the recovered condition code register.

Immediate

The following immediate values will have the following results:

FF =enable neither
EF =enable IRQ
BF =enable FIRQ
AF =enable both

A-35

DAA

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Decimal Addition Adjust . DAA

DAA

ACCA’—ACCA + CF (MSN).CF(LSN)
where CF is a Correction Factor, as follows: the CF for each nibble
(BCD) digit is determined separately, and is either 6 or 0.

Least Significant Nibble
CF(LSN)=6IFF1)C=1
or2) LSN>9

Most Significant Nibble
CF(MSN)=6IFF1)C=1

or 2) MSN>9

or 3) MSN>8 and LSN>9

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Undefined.

C — Set if acarry is generated or if the carry bit was set before the
operation; cleared otherwise.

The sequence of a single-byte add instruction on accumulator A
(either ADDA or ADCA) and a following decimal addition adjust in-
struction results in a BCD addition with an appropriate carry bit.
Both values to be added must be in proper BCD form (each nibble
such that: O<nibble<9). Multiple-precision addition must add the
carry generated by this decimal addition adjust into the next higher
digit during the add operation (ADCA) immediately prior to the next
decimal addition adjust.

Inherent

A-36

DEC

Source Forms:
Operation:

Condition Codes:

Description:

Addressing Modes:

Decrement D EC

DEC Q; DECA; DECB
M’ —M -1

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if the original operand was 10000000; cleared otherwise.
C — Not affected.

Subtract one from the operand. The carry bit is not affected, thus
allowing this instruction to be used as a loop counter in multiple-
precision computations. When operating on unsigned values, only
BEQ and BNE branches can be expected to behave consistently.
When operating on twos complement values, all signed branches
are available.

Inherent
Extended
Direct
Indexed

A-37

EO R Exclusive OR EO R

Source Forms: EORA P; EORB P
Operation: R'—ReM

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: The contents of memory location M is exclusive ORed into an 8-bit
register.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-38

EXG Exchange Registers EXG

Source Form: EXG R1,R2

Operation: R1-R2

Condition Codes: Not affected (unless one of the registers is the condition code
register).

Description: Exchanges data between two designated registers. Bits 3-0 of the
postbyte define one register, while bits 7-4 define the other, as
follows:

0000=A:B 1000=A

0001 =X 1001 =B
0010=Y 1010 =CCR
0011=US 1011 =DPR
0100=SP 1100 = Undefined
0101=PC 1101 = Undefined

0110 = Undefined 1110 = Undefined
0111 = Undefined 1111 = Undefined

Only like size registers may be exchanged. (8-bit with 8-bit or 16-bit
with 16-bit.)

Addressing Mode: Immediate

A-39

INC

Source Forms:
Operatlon_:

Condition Codes:

Description:

Addressing Modes:

Increment I N C

INC Q; INCA; INCB
M'—M+1

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if the original operand was 01111111, cleared otherwise.
C — Not affected.

Adds to the operand. The carry bit is not affected, thus allowing this
instruction to be used as a loop counter in multiple-precision com-
putations. When operating on unsigned values, only the BEQ and
BNE branches can be expected to behave consistently. When
operating on twos complement values, all signed branches are cor-
rectly available.

Inherent
Extended
Direct
Indexed

A-40

JMP Jump JMP

Source Form: JMP EA

Operation: PC'—EA

Condition Codes: Not affected.

Description: Program control is transferred to the effective address.
Addressing Modes: Extended

Direct
Indexed

A-41

J S R Jump to Subroutine J S R

Source Form: JSR EA

Operation: SP'—SP -1, (SP)—PCL
SP'—SP -1, (SP)~—PCH
PC'—EA

Condition Codes: Not affected.

Description: Program control is transferred to the effective address after storing
the return address on the hardware stack. A RTS instruction should
be the last executed instruction of the subroutine.

Addressing Modes: Extended

Direct
Indexed

A-42

L D (8" B it) Load Register from Memory L D (8' B it)

Source Forms: LDA P;LDBP
Operation: R'~—M

Condition Codes: H — Not affected.
N — Set if the loaded data is negative; cleared otherwise.
Z — Set if the loaded data is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Loads the contents of memory location M into the designated
register.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-43

L D (1 6' Bit) Load Register from Memory LD (1 6' Bit)

Source Forms:
Operation:

Condition Codes:

Description:

Addressing Modes:

LDD P; LDX P: LDY P; LDS P; LDU P
R'—M:M + 1

H — Not affected.

N — Set if the loaded data is negative; cleared otheriwse.
Z — Set if the loaded data is zero; cleared otherwise.

V — Always cleared.

C — Not affected.

Load the contents of the memory location M:M+1 into the
designated 16-bit register.

Immediate
Extended
Direct
Indexed

A-44

LEA

Source Forms:
Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Load Effective Address L EA

LEAX, LEAY, LEAS, LEAU
R'—EA

H — Not affected.

N — Not affected.

Z — LEAX, LEAY: Set if the result is zero; cleared otherwise.
LEAS, LEAU: Not affected.

V — Not affected.

C — Not affected.

Calculates the effective address from the indexed addressing mode
and places the address in an indexable register.

LEAX and LEAY affect the Z (zero) bit to allow use of these registers
as counters and for MC6800 INX/DEX compatibility.

LEAU and LEAS do not affect the Z bit to allow cleaning up the stack
while returning the Z bit as a parameter to a calling routine, and also
for MC6800 INS/DES compatibility.

Indexed

Due to the order in which effective addresses are calculated inter-
nally, the LEAX, X+ + and LEAX, X+ do not add 2 and 1 (respective-
ly) to the X register; but instead leave the X register unchanged. This
also applies to the Y, U, and S registers. For the expected results,
use the faster instruction LEAX 2, X and LEAX 1, X.

Some examples of LEA instruction uses are given in the following
table.

Instruction Operation Comment

LEAX 10, X X+10-X Adds 5-bit constant 10 to X
LEAX 500, X X+500-X Adds 16-bit constant 500 to X

LEAY AY Y+A-Y Adds 8-bit accumulator to Y
LEAY DY Y+D-Y Adds 16-bit D accumulatorto Y
LEAU -10,U Uu-10-U Subtracts 10 from U

LEAS -10,S S-10-S Used to reserve area on stack
LEAS 10, S S+10-S Used to ‘clean up’ stack

LEAX 55 S+5-X Transfers as well as adds

b

A-45

LSL

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Modes:

Comments:

Logical Shift Left LS L

LSL Q; LSLA; LSLB

=)
b7 b0

H — Undefined.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits six and
seven of the original operand.

C — Loaded with bit seven of the original operand.

Shifts all bits of accumulator A or B or memory location M one place
to the left. Bit zero is loaded with a zero. Bit seven of accumulator A
or B or memory location M is shifted into the C (carry) bit.

Inherent
Extended
Direct
Indexed

This is a duplicate assembly-language mnemonic for the single
machine instruction ASL.

A-46

LS R Logical Shift Right LS R

Source Forms: LSR Q; LSRA; LSRB

Operation: [O

b7 b0

Condition Codes: H — Not affected.
N — Always cleared.
Z — Set if the result is zero; cleared otherwise.
V — Not affected.
C — Loaded with bit zero of the original operand.

Description: Performs a logical shift right on the operand. Shifts a zero into bit
seven and bit zero into the C (carry) bit.

Addressing Modes: Inherent
Extended
Direct
Indexed

A-47

MUL

Source Form:
Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Multiply M U L

MUL
ACCA":ACCB’'—ACCA x ACCB

H — Not affected.
N — Not affected.
Z — Set if the result is zero; cleared otherwise.

V — Not affected.
C — Set if ACCB bit 7 of result is set; cleared otherwise.

Multiply the unsigned binary numbers in the accumulators and
place the result in both accumulators (ACCA contains the most-
significant byte of the result). Unsigned multiply allows mulitiple-
precision operations.

Inherent

The C (carry) bit allows rounding the most-significant byte through
the sequence: MUL, ADCA #0.

A-48

NEG

Source Forms:
Operation:

Condition Codes:

Description:

Addressing Modes:

Negate N EG

NEG Q; NEGA; NEGB
M'~—0-M

H — Undefined.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Set if the original operand was 10000000.

C — Set if a borrow is generated; cleared otherwise.

Replaces the operand with its twos complement. The C (carry) bit
represents a borrow and is set to the inverse of the resulting binary
carry. Note that 8016 is replaced by itself and only in this case is the
V (overflow) bit set. The value 0016 is also replaced by itself, and only
in this case is the C (carry) bit cleared.

Inherent

Extended
Direct

A-49

N 0 P No Operation N 0 P

Source Form: NOP
Operation: Not affected.

Condition Codes: This instruction causes only the program counter to be incremented.
No other registers or memory locations are affected.

Addressing Mode: Inherent

A-50

O R Inclusive OR Memory into Register O R

Source Forms: ORA P; ORB P
Operation: R'—~RvVvM

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Performs an inclusive OR operation between the contents of ac-
cumulator A or B and the contents of memory location M and the
result is stored in accumulator A or B.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-51

0 R Inclusive OR Memory Immediate into Condition Code Register 0 R

Source Form:
Operation:
Condition Codes:

Description:

Addressing Mode:

ORCC #XX

R'—R v Ml

Affected according to the operation.

Performs an inclusive OR operation between the contents of the
condition code registers and the immediate value, and the result is
placed in the condition code register. This instruction may be used
to set interrupt masks (disable interrupts) or any other bit(s).

Immediate

A-52

PSHS

Source Form:

Operation:

Condition Codes:

Description:

Push Registers on the Hardware Stack PSH S

PSHS register list
PSHS #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 b1 b0
lPc{u [y [x [or[B | A |cc]
push order---->

IFF b7 of postbyte set, then: SP'—SP -1, (SP)—PCL
SP'~—SP -1, (SP)~—PCH
IFF b6 of postbyte set, then: SP'—SP -1, (SP)—USL
SP'—SP -1, (SP)—USH
IFF b5 of postbyte set, then: SP'—SP -1, (SP)—IYL
SP'—SP -1, (SP)~—IYH
IFF b4 of postbyte set, then: SP'—SP -1, (SP)—IXL
SP'—SP-1, (SP)~—IXH
IFF b3 of postbyte set, then: SP'—SP -1, (SP)—DPR
IFF b2 of postbyte set, then: SP'—SP -1, (SP)— ACCB
IFF b1 of postbyte set, then: SP'—SP -1, (SP)— ACCA
IFF b0 of postbyte set, then: SP'—SP -1, (SP)—CCR

Not affected.
All, some, or none of the processor registers are pushed onto the

hardware stack (with the exception of the hardware stack pointer
itself).

Addressing Mode: Imrmediate

Comments:

A single register may be placed on the stack with the condition
codes set by doing an autodecrement store onto the stack (example:
STX,- -9S).

A-53

PS H U Push Registers on the User Stack PSH U

Source Form: PSHU register list
PSHU #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 b1 b0
[pPc{u|Y [x]|orP[B | A]cCC|

Operation: IFF b7 of postbyte set, then: US'—US -1, (US)—PCL
UsS'—uUs -1, (US)~—PCH
IFF b6 of postbyte set, then: US'—US -1, (US)—SPL
US'—US -1, (US)—SPH
IFF b5 of postbyte set, then: US'—US -1, (US)—IYL
US'—US -1, (US)—IYH
IFF b4 of postbyte set, then: US’'—US -1, (US)—IXL
US'—US -1, (US)—IXH
IFF b3 of postbyte set, then: US'—US -1, (US)—DPR
IFF b2 of postbyte set, then: US'—US -1, (US)— ACCB
IFF b1 of postbyte set, then: US’'—US -1, (US)~— ACCA
IFF b0 of postbyte set, then: US’'—US -1, (US)— CCR

Condition Codes: Not affected.

Description: All, some, or none of the processor registers are pushed onto the
user stack (with the exception of the user stack pointer itself).

Addressing Mode: Immediate
Comments: A single register may be placed on the stack with the condition

codes set by doing an autodecrement store onto the stack (example:
STX,- -U).

A-54

PULS

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Pull Registers from the Hardware Stack P U LS

PULS register list
PULS #LABEL
Postbyte:

b7 b6 b5 b4 b3 b2 bi

frciuly | x]|pop|B] A]cCc]

<------ pull order

IFF b0 of postbyte set, then:
IFF b1 of postbyte set, then:
IFF b2 of postbyte set, then:
IFF b3 of postbyte set, then:
IFF b4 of postbyte set, then:

IFF b5 of postbyte set, then:
IFF b6 of postbyte set, then:

IFF b7 of postbyte set, then:

CCR' —(SP), SP'—SP + 1
ACCA’ —(SP), SP'—SP + 1
ACCB' — (SP), SP’'—SP + 1
DPR' —(SP), SP'—SP + 1
IXH' —(SP), SP'—SP + 1
IXL' —(SP), SP'—SP + 1
IYH' ~—(SP), SP'—~SP + 1
IYL' —(SP), SP'—~SP +1
USH’ —(SP), SP'—~SP + 1
USL' —(SP), SP'—SP +1
PCH’ ~—(SP), SP'—SP + 1
PCL' ~—(SP), SP'—SP +1

May be pulled from stack; not affected otherwise.

All, some, or none of the processor registers are pulled from the
hardware stack (with the exception of the hardware stack pointer

itself).

Immediate

A single register may be pulled from the stack with condition codes
set by doing an autoincrement load from the stack (example:

LDX , S+ +).

A-55

P U L U Pull Registers from the User Stack P U L U

Source Form: PULU register list
PULU #LABEL

Postbyte:

b7 b6 b5 b4 b3 b2 b1 b0

[PcJu JY [xJorIB T ATCd
- pull order

Operation: IFF b0 of postbyte set, then: CCR' - (US), US'—US +1
IFF b1 of postbyte set, then: ACCA’ —(US), US'—US + 1
IFF b2 of postbyte set, then: ACCB’ —(US), US'—US + 1
IFF b3 of postbyte set, then: DPR’ «—(US), US'—US +1
IFF b4 of postbyte set, then: IXH' «—(US), US'—US+1

IXL' «—(US), US'—US+1
IFF b5 of postbyte set, then: IYH' «(US), US'—US +1
IYL" «—(US), US'—US +1
IFF b6 of postbyte set, then: SPH’' «—(US), US'—US + 1
SPL’ «—(US),US'—US+1
IFF b7 of postbyte set, then: PCH «—(US), US'—US +1
PCL' «—(US), US'—US +1

Condition Codes: May be pulled from stack; not affected otherwise.

Description: All, some, or none of the processor registers are pulled from the user
stack (with the exception of the user stack pointer itself).

Addressing Mode: Immediate
Comments: A single register may be pulled from the stack with condition codes

set by doing an autoincrement load from the stack (example:
LDX ,U+ +).

A-56

RO L Rotate Left RO L

Source Forms: ROL Q; ROLA; ROLB

Operation: »{C}
g A=A

I

b7 = b0

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Loaded with the result of the exclusive OR of bits six and
seven of the original operand.
C — Loaded with bit seven of the original operand.

Description: Rotates all bits of the operand one place left through the C (carry)
bit. This is a 9-bit rotation.

Addressing Mode: Inherent
Extended
Direct
Indexed

A-57

ROR

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Modes:

Rotate Right RO R

ROR Q; RORA; RORB

I in

b7 > b0

H — Not affected.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Not affected.

C — Loaded with bit zero of the previous operand.

Rotates all bits of the operand one place right through the C (carry)
bit. This is a 9-bit rotation.

Inherent
Extended
Direct
Indexed

A-58

RT' Return from Interrupt RTI

Source Form: RTI
Operation: CCR'—(SP), SP'—SP + 1, then

IFF CCR bit E is set, then: ~ ACCA’ —(SP), SP'—SP + 1
ACCB' — (SP), SP'—SP + 1
DPR’ +(SP), SP'—SP + 1
IXH' ~—(SP;, SP'—SP +1
IXL' = (SP), SP'—SP +1
IYH' ~(SP), SP'—SP +1
IYL' ~—(SP), SP'—SP +1
USH' —(SP), SP'—SP + 1
USL' ~(SP), SP'—SP + 1
PCH' ~—(SP), SP'—SP +1
PCL' ~—(SP), SP'—SP +1

IFF CCR bit E is clear, then: PCH' «—(SP), SP'—SP+1
PCL' «(SP), SP'—SP +1

Condition Codes: Recovered from the stack.

Description: The saved machine state is recovered from the hardware stack and
control is returned to the interrupted program. If the recovered E (en-
tire) bit is clear, it indicates that only a subset of the machine state
was saved (return address and condition codes) and only that subset
is recovered.

Addressing Mode: Inherent

A-59

RTS Return from Subroutine RTS

Source Form: RTS

Operation: PCH'~—(SP), SP'—SP +1
PCL'~— (SP), SP’—SP + 1

Condition Codes: Not affected.

Description: Program control is returned from the subroutine to the calling pro-
gram. The return address is pulled from the stack.

Addressing Mode: Inherent

A-60

S B C Subtract with Borrow S B C

Source Forms: SBCA P; SBCB P
Operation: R—~R-M-C

Condition Codes: H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Subtracts the contents of memory location M and the borrow (in the
C (carry) bit) from the contents of the designated 8-bit register, and
places the result in that register. The C bit represents a borrow and
is set to the inverse of the resulting binary carry.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-61

S EX Sign Extended S EX

Source Form: SEX

Operation: If bit seven of ACCB is set then ACCA'—FF1g
else ACCA’'—0016

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.
V — Not affected.
C — Not affected.

Description: This instruction transforms a twos complement 8-bit value in ac-
cumulator B into a twos complement 16-bit value in the D ac-

cumulator.

Addressing Mode: Inherent

A-62

ST (8"Bit) Store Register into Memory ST (B'Bit)

Source Forms: STAP;STBP
Operation: M'—R

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Writes the contents of an 8-bit register into a memory location.
Addressing Modes: Extended

Direct
Indexed

A-63

ST (1 6'Bit) Store Register into Memory ST (1 6'Bit)

Source Forms: STD P; STX P; STY P; STS P; STUP
Operation: M':M+1'—R

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Writes the contents of a 16-bit register into two consecutive memory
locations.

Addressing Modes: Extended

Direct
Indexed

A-64

SU B (8' Bit) Subtract Memory from Register SU B (8' Bit)

Source Forms: SUBA P; SUBB P
Operation: R'—R-M

Condition Codes: H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwiss.
V — Set if the overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Subtracts the value in memory location M from the contents of a
designated 8-bit register. The C (carry) bit represents a borrow and is
set to the inverse of the resulting binary carry.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-65

SU B (1 6'Bit) Subtract Memory from Register SU B (1 6'Bit)

Source Forms: SUBD P
Operation: R—R - MM +1

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Subtracts the value in memory location M:M + 1 from the contents of
a designated 16-bit register. The C (carry) bit represents a borrow
and is set to the inverse of the resulting binary carry.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-66

SWI

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Software Interrupt

SWI

Set E (entire state will be saved)
SP'—SP -1, (SP)—PCL
SP'—SP -1, (SP)—PCH
SP'—SP -1, (SP)—USL
SP'—SP -1, (SP)~—USH
SP'—SP -1, (SP)—IYL
SP'—SP -1, (SP)—IYH
SP'—SP -1, (SP)—IXL
SP'—SP -1, (SP)~—IXH
SP'—SP -1, (SP)—DPR
SP'—SP -1, (SP)—ACCB
SP'—SP -1, (SP)—ACCA
SP'—SP -1, (SP)~—CCR
Set |, F (mask interrupts)
PC’'—(FFFA):(FFFB)

Not affected.

SWI

All of the processor registers are pushed onto the hardware stack
(with the exception of the hardware stack pointer itself), and control
is transferred through the software interrupt vector. Both the normal

and fast interrupts are masked (disabled).

Inherent

A-67

SWi2

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Software Interrupt 2

SWi2

Set E (entire state saved)
SP'—SP-1, (SP)~—PCL
SP'—SP -1, (SP)—PCH
SP'—SP -1, (SP)—USL
SP'—SP -1, (SP)—USH
SP'—SP -1, (SP(—IYL
SP'—SP -1, (SP)—IYH
SP'—SP -1, (SP)—IXL
SP'—SP -1, (SP)~—IXH
SP'—SP -1, (SP)~—DPR
SP'—SP -1, (SP)~—ACCB
SP'—SP -1, (SP)— ACCA
SP'—SP -1, (SP)—CCR
PC' — (FFF4):(FFF5)

Not affected.

SWI2

All of the processor registers are pushed onto the hardware stack
(with the exception of the hardware stack pointer itself), and control
is transferred through the software interrupt 2 vector. This interrupt
is available to the end user and must not be used in packaged soft-
ware. This interrupt does not mask (disable) the normal and fast in-

terrupts.

Inherent

A-68

SWI3

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Software Interrupt 3

SWI 3

Set E (entire state will be saved)
SP'—SP -1, (SP)—PCL
SP'—SP -1, (SP)—PCH
SP'—SP -1, (SP)—USL
SP'~—SP -1, (SP)~—USH
SP'—SP-1, (SP)~—IYL
SP'—SP -1, (SP)~—IYH
SP'—SP -1, (SP)—IXL
SP'—SP -1, (SP)~—IXH
SP'—SP -1, (SP)~—DPR
SP'—SP -1, (SP)— ACCB
SP'—SP -1, (SP)— ACCA
SP'—SP -1, (SP)—CCR
PC’'—(FFF2):(FFF3)

Not affected.

SWI3

All of the processor registers are pushed onto the hardware stack
(with the exception of the hardware stack pointer itself), and control
is transferred through the software interrupt 3 vector. This interrupt

does not mask (disable) the normal and fast interrupts.

Inherent

A-69

SYNC

Source Form:
Operation:

Condition Codes:

Description:

Addressing Mode:

Synchronize to External Event SYN C

SYNC
Stop processing instructions
Not affected.

When a SYNC instruction is excuted, the processor enters a syn-
chronizing state, stops processing instructions, and waits for an in-
terrupt. When an interrupt occurs, the synchronizing state is cleared
and processing continues. If the interrupt is enabled, and it lasts
three cycles or more, the processor will perform the interrupt
routine. if the interrupt is masked or is shorter than three cycles, the
processor simply continues to the next instruction. While in the syn-
chronizing state, the address and data buses are in the high-
impedance state.

This instruction provides software synchronization with a hardware
process. Consider the following example for high-speed acquisition
of data:

FAST SYNC WAIT FOR DATA
Interrupt!
LDA DISC DATA FROM DISC AND CLEAR INTERRUPT
STA X+ PUTIN BUFFER
DECB COUNT IT, DONE?
BNE FAST GO AGAIN IF NOT.

The synchronizing state is cleared by any interrupt. Of course, enabil-
ed interrupts at this point may destroy the data transfer and, as
such, should represent only emergency conditions.

The same connection used for interrupt-driven |/O service may also
be used for high-speed data transfers by setting the interrupt mask

and using the SYNC instruction as the above example
demonstrates.

Inherent

A-70

T F R Transfer Register to Register T F R

Source Form: TFR R1, R2

Operation: R1—R2

Condition Code: Not affected unless R2 is the condition code register.

Description: Transfers data between two designated registers. Bits 7-4 of the

postbyte define the source register, while bits 3-0 define the destina-
tion register, as follows:

0000 =A:B 1000=A

0001 =X 1001 =8B
0010=Y 1010=CCR

0011 =US 1011 =DPR

0100 =SP 1100 = Undefined
0101 =PC 1101 = Undefined

0110 =Undefined 1110 =Undefined
0111 =Undefined 1111 =Undefined

Only like size registers may be transferred. (8-bit to 8-bit, or 16-bit to
16-bit.)

Addressing Mode: Immediate

A-71

TST

Source Forms:
Operation:

Condition Codes:

Description:

Addressing Modes:

Comments:

Test TST

TST Q; TSTA; TSTB
TEMP—M-0

H — Not affected.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.

Set the N (negative) and Z (zero) bits according to the contents of
memory location M, and clear the V (overflow) bit. The TST instruc-
tion provides only minimum information when testing unsigned
values; since no unsigned value is less than zero, BLO and BLS have
no utility. While BHI could be used after TST, it provides exactly the
same control as BNE, which is preferred. The signed branches are
available.

Inherent
Extended
Direct
Indexed

The MC6800 processor clears the C (carry) bit.

A-72

FIRQ

Operation:

Condition Codes:

Description:

Addressing Mode:

Fast Interrupt Request (Hardware Interrupt) FI RQ

IFF F bit clear, then: SP'—SP -1, (SP)— PCL
SP'—SP -1, (SP)~—PCH
Clear E (subset state is saved)
SP'—SP-1, (SP)~—CCR
Set F, | (mask further interrupts)
PC’'— (FFF6):(FFF7)

Not affected.

A FIRQ (fast interrupt request) with the F (fast interrupt request
mask) bit clear causes this interrupt sequence to occur at the end of
the current instruction. The program counter and condition code
register are pushed onto the hardware stack. Program control is
transferred through the fast interrupt request vector. An RTI (return
from interrupt) instruction returns the processor to the original task.
It is possible to enter the fast interrupt request routine with the en-
tire machine state saved if the fast interrupt request occurs after a
clear and wait for interrupt instruction. A normal interrupt request
has lower priority than the fast interrupt request and is prevented
from interrupting the fast interrupt request routine by automatic set-
ting of the | (interrupt request mask) bit. This mask bit could then be
reset during the interrupt routine if priority was not desired. The fast
interrupt request allows operations on memory, TST, INC, DEC, etc.
instructions without the overhead of saving the entire machine state
on the stack.

Inherent

A-73

IRQ

Operation:

Condition Codes:

Description:

Addressing Mode:

Interrupt Request (Hardware Interrupt) IRQ

IFF | bit clear, then:

Not affected.

SP'—SP-1, (SP)—PCL
SP'—SP -1, (SP)— PCH
SP'—SP -1, (SP)—USL
SP'—SP -1, (SP)—USH
SP'—SP -1, (SP)—IYL
SP'—SP-1, (SP)—IYH
SP'—SP -1, (SP)—IXL
SP'—SP -1, (SP)—IXH
SP'—SP-1, (SP)—DPR
SP'—SP -1, (SP)—ACCB
SP'—SP -1, (SP)— ACCA
Set E (entire state saved)
SP'—SP -1, (SP)—CCR
Set | (mask further IRQ interrupts)
PC’' — (FFF8).(FFF9)

If the | (interrupt request mask) bit is clear, a low level on the IRQ in-
put causes this interrupt sequence to occur at the end of the current
instruction. Control is returned to the interrupted program using a
RTI (return from interrupt) instruction. A FIRQ (fast interrupt request)
may interrupt a normal IRQ (interrupt request) routine and be
recognized anytime after the interrupt vector is taken.

Inherent

A-74

NMI

Operation:

Condition Codes:

Description:

Addressing Mode:

Non-Maskable Interrupt (Hardware Interrupt)

SP'—SP -1, (SP)~—PCL
SP'—SP -1, (SP)~—PCH
SP'—SP -1, (SP)—USL
SP'—SP -1, (SP)~—USH
SP'—SP -1, (SP)~—IYL
SP'—SP -1, (SP)~—IYH
SP'—SP -1, (SP)~—IXL
SP'—SP -1, (SP)~—IXH
SP'—SP -1, (SP)~—DPR
SP'—SP-1, (SP)—ACCB
SP'—SP -1, (SP)— ACCA
Set E (entire state save)
SP'—SP -1, (SP)—CCR
Set |, F (mask interrupts)
PC'— (FFFC):(FFFD)

Not affected.

A negative edge on the NMI (non-maskable interrupt) input causes
all of the processor’s registers (except the hardware stack pointer)
to be pushed onto the hardware stack, starting at the end of the cur-
rent instruction. Program control is transferred through the NMI vec-
tor. Successive negative edges on the NMI input will cause suc-
cessive NMI operations. Non-maskable interrupt operation can be
internally blocked by a RESET operation and any non-maskable in-
terrupt that occurs will be latched. If this happens, the non-
maskable interrupt operation will occur after the first load into the
stack pointer (LDS; TFR r,s; EXG r,s; etc.) after RESET.

Inherent

A-75

R ESTA RT Restart (Hardware Interrupt) R ESTA RT

Operation: CCR' — X1X1XXXX
DPR’'—0016
PC'— (FFFE).(FFFF)

Condition Codes: Not affected.

Description: The processor is initialized (required after power-on) to start pro-
gram execution. The starting address is fetched from the restart vec-
tor.

Addressing Mode: Extended Indirect

A-76

APPENDIX B
ASSIST09 MONITOR PROGRAM

B.1 GENERAL DESCRIPTION

The M6809 is a high-performance microprocessor which supports modern programming
techniques such as position-independent, reentrancy, and modular programming. For a
software monitor to take advantage of such capabilities demands a more refined and
sophisticated user interface than that provided by previous monitors. ASSIST09 is a
monitor which supports the advanced features that the M6809 makes possible.
ASSISTO09 features include the following:

® Coded in a position (address) independent manner. Will execute anywhere in the

64K address space.

® Multiple means available for installing user modifications and extensions.

® Full complement of commands for program development including breakpoint and
trace.

® Sophisticated monitor calls for completely address-independent user program ser-
vices.

® RAM work area is located relative to the ASSIST09 ROM, not at a fixed address as
with other monitors.

® Easily adapted to real-time environments.

® Hooks for user command tables, I/O handlers, and default specifications.

® A complete user interface with services normally only seen in full disk operating
systems.

The concise instruction set of the M6809 allows all of these functions and more to be
contained in only 2048 bytes.

The ASSIST09 monitor is easily adapted to run under control of a real-time operating
system. A special function is available which allows voluntary time-slicing, as well as
forced time-slicing upon the use of several service routines by a user program.

B.2 IMPLEMENTATION REQUIREMENTS

Since ASSIST09 was coded in an address-independent manner, it will properly execute
anywhere in the 64K address space of the M6809. However, an assumption must be made
regarding the location of a work area needed to hold miscellaneous variables and the
default stack location. This work area is called the page work area and it is addressed
within ASSISTO09 by use of the direct page register. It is located relative to the start of the

B-1

ASSIST09 ROM by an offset of —1900 hexadecimal. Assuming ASSISTO09 resides at the
top of the memory address space for direct control of the hardware interrupt vectors, the
memory map would appear as shown in Figure B-1.

FFFF ASSISTO09 at Top of
ASSISTO09 Memory Map
Base ROM

F800 Extension ROM or Other Use

User
Extension ROM

FOOO Unused 2K
(Unused)
EBOO Default PTM and ACIA
Locations
PTM/ACIA
EOOO Work Page and Default
Work Page/Stack Stack (DFFF and Down)

j\,

Figure B-1. Memory Map

If F80O0 is not the start of the monitor ROM the addresses would change, but the relative
locations would remain the same except for the programmable timer module (PTM) and
asynchronous communications interface adapter (ACIA) default addresses which are fix-
ed.

The default console input/output handlers access an ACIA located at E008. For trace
commands, a PTM with default address E000 is used to force an NMI so that single in-
structions may be executed. These default addresses may easily be changed using one
of several methods. The console |/O handlers may also be replaced by user routines. The
PTM is initialized during the MONITR service call (see Paragraph B.9 SERVICES) to fireup
the monitor unless its default address has been changed to zero, in which case no PTM
references will occur.

B.3 INTERRUPT CONTROL

Upon reset, a vector table is created which contains, among other things, default inter-
rupt vector handler appendage addresses. These routines may easily be replaced by user
appendages with the vector swap service described later. The default actions taken by
the appendages are as follows:

RESET — Build the ASSIST09 vector table and setup monitor defaults, then invoke
the monitor startup routine.

SWI — Request a service from ASSISTO09.
FIRQ — An immediate RTI is done.

SWI2, SWI3, iRQ, Reserved, NMI — Force a breakpoint and enter the command
processor.

B-2

The use of IRQ is recommended as an abort function during program debugging ses-
sions, as breakpoints and other ASSIST09 defaults are reinitialized upon RESET. Only the
primary software interrupt instruction (SWI) is used, not the SWI2 or SWI3. This avoids
page fault problems which would otherwise occur with a memory management unit as
the SWI2 and SWI3 instructions do not disable interrupts.

Counter number one of the PTM is used to cause an NMI interrupt for the trace and break-
point commands. At RESET the control register for timer one is initialized for tracing pur-
poses. If no tracing or breakpointing is done then the entire PTM is available to the user.
Otherwise, only counters two and three are available. Although control register two must
be used to initialize control register one, ASSIST09 returns control register two to the
same value it has after a RESET occurs. Therefore, the only condition imposed on a user
program is that if the “operate/preset” bit in control register one must be turned on, $A7
should be stored, $A6 should be stored if it must be turned off.

B.4 INITIALIZATION

During ASSIST09 execution, a vector table is used to address certain service routines
and default values. This table is generated to provide easily changed control information
for user modifications. The first byte of the ASSIST09 ROM contains the start of a
subroutine which initializes the vector table along with setting up certain default values
before returning to the caller.

If the ASSIST09 RESET vector receives control, it does three things:
1. Assigns a default stack in the work space,
2. Calls the aforementioned subroutine to initialize the vector table, and
3. Fires up the ASSIST09 monitor proper with a MONITR SWI service request.

However, a user routine can perform the same functions with a bonus. After calling the
vector intitialization subroutine, it may examine or alter any of the vector table values
before starting normal ASSIST09 processing. Thus, a user routine may ‘‘bootstrap”
ASSISTO09 and alter the default standard values.

Another method of inserting user modifications is to have a user routine reside at an ex-
tension ROM location 2K below the start of the ASSIST09 ROM. The vector table in-
itialization routine mentioned above, looks for a “BRA*” flag ($20FE) at this address, and
if found calls the location following the flag as a subroutine with the U register pointing
to the vector table. Since this is done after vector table initialization, any or all defaults
may be altered at this time. A big advantage to using this method is that the modifica-
tions are “automatic” in that upon a RESET condition the changes are made without
overt action required such as the execution of a memory change command.

No special stack is used during ASSIST09 processing. This means that the stack pointer
must be valid at all interruptable times and should contain enough room for the stacking
of at least 21 bytes of information. The stack in use during the initial MONITR service call
to start up ASSISTO09 processing becomes the “‘official” stack. If any later stack validity
checks occur, this same stack will be re-based before entering the command handler.

B-3

ASSIST09 uses a work area which is addressed at an offset from the start of the
ASSIST09 ROM. The offset value is —1900 hexadecimal. This points to the base page us-
ed during monitor execution and contains the vector table as well as the start of the
default stack. If the default stack is used and it exceeds 81 bytes in size, then contiguous
RAM must exist below this base work page for proper extension of the stack.

BS5. INPUT/OUTPUT CONTROL

Output generated by use of the ASSIST09 services may be halted by pressing any key,
causing a ‘FREEZE’ mode to be entered. The next keyboard entry will release this condi-
tion allowing normal output to continue. Commands which generate large amounts of
output may be aborted by entering CANCEL (CONTROL-X). User programs may also
monitor for CANCEL along with the ‘FREEZE’ condition even when not performing con-
sole 1/0 (PAUSE service).

B.6 COMMAND FORMAT

There are three possible formats for a command:
<Command> CR

<Command> <Expression1> CR
<Command> <Expression1> <Expression2> CR

The space character is used as the delimiter between the command and all arguments.
Two special quick commands need no carriage return, “.” and ‘‘/”’. To re-enter a command
once a mistake is made, type the CANCEL (CONTROL-X) key.

Each ‘“expression” above consists of one or more values separated by an operator.
Values can be hex strings, the letters “P”, ““M”’, and “W", or the result of a function. Each
hexadecimal string is converted internally to a 16-bit binary number. The letter “P”
stands for the current program counter, “M” for the last memory examine/change ad-
dress, and “W” for the window value. The window value is set by using the WINDOW
command.

One function exists and it is the INDIRECT function. The character “@" following a value
replaces that value with the 16-bit number obtained by using that value as an address.

Two operators are allowed, “+ " and ““ ="' which cause addition and subtraction. Values
are operated on in a left-to-right order.
Examples:

480 — hexadecimal 480
W + 3 — value of window plus three

P-200 — current program counter minus 200 hexadecimal
M —W — current memory pointer minus window value
100@ — value of word addressed by the two bytes at 100 hexadecimal

P+ 1@ — value addressed by the word located one byte up from the current program
counter

B-4

B.7 COMMAND LIST

Table B-1 lists the commands available in the ASSIST09 monitor.

Table B-1. Command List

Command Name Description Command Entry
Breakpoint Set, clear, display, or delete breakpoints B
Call Call program as subroutine c
Display Display memory block in hex and ASCII D
Encode Return indexed postbyte value E
Go Start or resume program execution G
Load Load memory from tape L
Memory Examine or alter memory M

Memory change or examine last referenced /

Memory change or examine hex/
Null Set new character and new line padding N
Offset Compute branch offsets (0]
Punch Punch memory on tape P
Registers Display or alter registers R
Stlevel Alter stack trace level value S
Trace Trace number of instructions T

Trace one instruction .
Verify Verify tape to memory ioad "
Window Set a window value w

B.8 COMMANDS

Each of the commands are explained on the following pages. They are arranged in
alphabetical order by the command name used in the command list. The command name
appears at each margin and in slightly larger type for easy reference.

B-5

BREAKPOINT BREAKPOINT

Format: Breakpoint
Breakpoint —
Breakpoint <Address>
Breakpoint — < Address>

Operation: Set or change the breakpoint table. The first format displays all breakpoints.
The second clears the breakpoint table. The third enters an address into the
table. The fourth deletes an address from the table. At reset, all breakpoints
are deleted. Only instructions in RAM may be breakpointed.

CALL CALL

Format: Call
Call < Address>

Operation: Call and execute a user routine as a subroutine. The current program counter
will be used unless the address is specified. The user routine should eventual-
ly terminate with a “RTS” instruction. When this occurs, a breakpoint will en-
sue and the program counter will point into the monitor.

B-6

DISPLAY DISPLAY

Format:

Operation:

Display <From>
Display <From> <Length>
Display <From> <To>

Display contents of memory in hexadecimal and ASCII characters. The se-
cond argument, when entered, is taken to be a length if it is less than the first,
otherwise it is the ending address. A default length of 16 decimal is assumed
for the first format. The addresses are adjusted to iricluce all bytes within the
surrounding modulo 16 address byte boundary. The CANCEL (CONTROL-X)
key may be entered to abort the display. Care must be exercised when the last
15 bytes of memory are to be displayed. The < Length> option should always
be used in this case to assure proper termination: D FFEOQ 40

Examples:

D M 10 — Display 16 bytes surrounding the last memory
location examined.

D EOO00 FO00 — Display memory from E000 to FOOO hex.

ENCODE ENCODE

Format:

Operation:

Encode <lIndexed operand>

The encode command will return the indexing instruction mode postbyte
value from the entered assembler-like syntax operand. This is useful when
hand coding instructions. The letter “H” is used to indicate the number of hex
digits needed in the expression as shown in the following examples:

E .Y — Return zero offset to Y register postbyte.

E [HHHH,PCR] — Return two byte PCR offset using indirection.
E [S+ +] — Return autoincrement S by two indirect.

E H)X — Return 5-bit offset from X.

Note that one “H” specifies a 5-bit offset, and that the result given will have
zeros in the offset value position. This comand does not detect all incorrectly
specified syntax or illegal indexing modes.

B-7

GO GO

Format: Go
Go < Address>

Operation: Execute starting from the address given. The first format will continue from
the current program counter setting. If it is a breakpoint no break will be
taken. This allows continuation from a breakpoint. The second format will
breakpoint if the address specified is in the breakpoint list.

LOAD LOAD

Format: Load
Load <Offset>

Operation: Load a tape file created using the S1-S9 format. The offset option, if used, is
added to the address on the tape to specify the actual load address. All off-
sets are positive, but wrap around memory modulo 64K. Depending on the
equipment involved, after the load is complete a few spurious characters may
still be sent by the input device and interpreted as command characters. If
this happens, a CANCEL (CONTROL-X) should be entered to cause such
characters to be ignored. If the load was not successful a ““?” is displayed.

MEMORY

Format:

Operation:

MEMORY

MEMORY < Address>/

< Address>/

/

Initiate the memory examine/change function. The second format will not ac-
cept an expression for the address, only a hex string. The third format
defaults to the address displayed during the last memory change/examine
function. (The same value is obtained in expressions by use of the letter “M”.)
After activation, the following actions may be taken until a carriage return is

entered:
< Expr>

SPACE

LF

A

CR
'<Text>’

Replaces the byte with the specified value. The value may
be an expression.

Go to next address and print the byte value.

(Comma) Go to next address without printing the byte
value.

(Line feed) Go to next address and print it along with the
byte value on the next line.

(Circumflex or Up arrow) Go the previous address and print
it along with the byte value on the next line.

Print the current address with the byte value on the next
line.

(Carriage return) Terminate the command.

Replace succeeding bytes with ASCIl characters until the
second apostrophe is entered.

If a change attempt fails (i.e., the location is not valid RAM) then a question
mark will appear and the next location displayed.

B-9

NULL NULL

Format: Null <Specification>

Operation: Set the new line and character padding count values. The expression value is
treated as two values. The upper two hex represent the character pad count,
and the lower two the new line pad count (triggered by a carriage return). An
expression of less than three hex digits will set the character pad count to
zero. The values must range from zero to 7F hexadecimal (127 decimal).

Example:
N 3 — Set the character count to zero and new line count
to three.
N 207 — Set character padding count to two and new line
count to seven.
Settings for Tl Silent 700 terminals are:

Baud Setting

100 0
300 4
1200 317
2400 72F

OFFSET OFFSET

Format: Offset <Offset addr> <To instruction>

Operation: Print the one and two byte offsets needed to perform a branch from the first
expression to the instruction. Thus, offsets for branches as well as indexed
mode instructions which use offsets may be obtained. If only a four byte
value is printed, then a short branch count cannot be done between the two

addresses.
Example:

0 P+2 A000 — Compute offsets needed from the current pro-
gram counter plus two to A00O.

B-10

PUNCH PUNCH

Format: Punch <From> <To>

Operation: Punch or record formatted binary object tape in S1-S9 (MIKBUG) format.

REGISTER REGISTER

Format: Register

Operation: Print the register set and prompt for a change. At each prompt the following
may be entered.

SPACE Skip to the next register prompt

< Expr> SPACE Replace with the specified value and prompt for the next
register.

<Expr> CR (carriage return) Replace with the specified value and ter-
minate the command.

CR Terminate the command.

MIKBUG is a trademark of Motorola Inc.

B-11

STLEVEL STLEVEL

Format:

Operation:

Stlevel
Stlevel < Address>

Set the stack trace level for inhibiting tracing information. As long as the
stack is at or above the stack level address, the trace display will continue.
However, when lower than the address it is inhibited. This allows tracing of a
routine without including all subroutine and lower level calls in the trace in-
formation. Note that tracing through a ASSIST09 “SWI"” service request may
also temporarily supress trace output as explained in the description of the
trace command. The first format sets the stack trace level to the current pro-
gram stack value.

TRACE TRACE

Format:

Operation:

Trace <Count>
. (period)

Trace the specified number of instructions. At each trace, the opcode just ex-
ecuted will be shown along with the register set. The program counter in the
register display points to the NEXT instruction to be executed. A CANCEL
(CONTROL-X) will prematurely halt tracing. The second format (period) will
cause a single trace to occur. Breakpoints have no effect during the trace.
Selected portions of a trace may be disabled using the STLEVEL command.
Instructions in ROM and RAM may be traced, whereas breakpoints may be
done only in RAM. When tracing through a ASSIST09 service request, the
trace display will be supressed starting two instructions into the monitor until
shortly before control is returned to the user program. This is done to avoid an
inordinate amount of displaying because ASSIST09, at times, performs a
sizeable amount of processing to provide the requested services.

B-12

VERIFY VERIFY

Format: Verify
Verify <Offset>

Operation: Verify or compare the contents of memory to the tape file. This command has
the same format and operation as a LOAD command except the file is com-
pared to memory. If the verify fails for any reasor. a *“?"” is displayed.

WINDOW WINDOW

Format: Window <Value>

Operation: Set the window to a value. This value may be referred to when entering ex-
pressions by use of the letter “W”. The window may be set to any 16-bit value.

B-13

B.9 SERVICES

The following describes services provided by the ASSIST09 monitor. These services are
invoked by using the “SWI” instruction followed by a one byte function code. All services
are designed to allow complete address independence both in invocation and operation.
Unless specified otherwise, all registers are transparent over the “SWI” call. In the
following descriptions, the terms “input handler” and “output handler” are used to refer
to appendage routines which may be replaced by the user. The default routines perform
standard 1/0 through an ACIA for console operations to a terminal. The ASCII CANCEL
code can be entered on most terminals by depressing the CONTROL and X keys
simultaneously. A list of services is given in Table B-2.

Table B-2. Services

Service Entry Code Description
Obtain input character INCHP 0 Obtain the input character in register A from the input handler
Qutput a character OUTCH 1 Send the character in the register A to the output handler
Send string PDATA1 2 Send a string of characters to the output handler
Send new line and string PDATA 3 Send a carriage return, line feed, and string of characters to the

output handler

Convert byte to hex QUT2HS 4 Display the byte pointed to by the X register in hex
Convert word to hex OUT4HS 5 Display the word pointed to by the X register in hex
Output to next line PCRLF 6 Send a carriage return and line feed to the output handler
Send space SPACE P Send a blank to the output handler

Fireup ASSIST09 MONITR 8 Enter the ASSIST03 monitor

Vector swap VCTRSW 9 Examine or exchange a vector table entry

User breakpoint BRKPT 10 Display registers and enter the command handler

Program break and check PAUSE " Stop processing and check for a freeze or cancel condition

B-14

B R KPT User Breakpoint B R K PT

Code:
Arguments:

Result:

Description:

Example:

10
None

A disabled breakpoint is taken. The registers are displayed and the com-
mand handler of ASSIST09 is entered.

Establishes user breakpoints. Both SWI2 and SWI3 default appendages
cause a breakpoint as well, but do not set the | and F mask bits. However,
since they may both be replaced by user routines the breakpoint service
always ensures breakpoint availability. These user breakpoints have
nothing to do with system breakpoints which are handled differently by the
ASSIST09 monitor.

BRKPT EQU 10 INPUT CODE FOR BRKPT
SWi REQUEST SERVICE
FCB BRKPT FUNCTION CODE BYTE

| N C H P Obtain Input Character I N C H P

Code:
Arguments:
Result:

Description:

Example:

0
None
Register A contains a character obtained from the input handler.

Control is not returned until a valid input character is received from the in-
put handler. The input character will have its parity bit (bit 7) stripped and
forced to a zero. All NULL ($00) and RUBOUT ($7F) characters are ignored
and not returned to the caller. The ECHO flag, which may be changed by
the vector SWAP service, determines whether or not the input character is
echoed to the output handler (full duplex operation). The default at reset is
to echo input. When a carriage return ($0D) is received, line feed ($A0) is
automatically sent back to the output handler.

INCHNP EQU O INPUT CODE FOR INCHP
SWI PERFORM SERVICE CALL
FCB INCHNP FUNCTION FOR INCHNP

A REGISTER NOW CONTAINS NEXT CHARACTER

B-15

MONITR Startup ASSISTOS MONITR

Code:

Arguments:

Result:

Description:

Example:

8

S— Stack to become the “official” stack

DP— Direct page default for executed user programs

A =0 Call input and output console initialization handlers and give the
“ASSIST09"” startup message

A#0 Go directly to the command handler

ASSISTO09 is entered and the comand handler given control

The purpose for this function is to enter ASSIST09, either after a system
reset, or when a user program desires to terminate. Control is not returned
unless a “GO” or “CALL” command is done without altering the program
counter. ASSIST09 runs on the passed stack, and if a stack error is
detected during user program execution this is the stack that is rebased.
The direct page register value in use remains the default for user program
execution.

The ASSISTO9 restart vector routine uses this function to startup monitor
processing after calling the vector build subroutine as explained in IN-
ITIALIZATION.

If indicated by the A register, the input and output initialization handlers
are called followed by the sending of the string ““ASSIST09” to the output
handler. The programmable timer (PTM) is initialized, if its address is not
zero, such that register 1 can be used for causing an NMI during trace com-
mands. The command handler is then entered to perform the command re-
quest prompt.

MONITR EQU 8 INPUT CODE FOR MONITR
LOOP CLRA PREPARE ZERO PAGE REGISTER AND
* INITIALIZATION PARAMETER

TFR ADP SET DEFAULT PAGE VALUE

LEAS STACK, PCR SETUP DEFAULT STACK VALUE

SwWi REQUEST SERVICE

FCB MONITR FUNCTION CODE BYTE

BRA LOOP REENTER IF FALLOUT OCCURS

B-16

0 UTC H Output a Character 0 UTC H

Code: 1
Argumbnts: Register A contains the byte to transmit.

Result: The character is sent to the output handler

The character is set as follows ONLY if a LINEFEED was the character to
transmit:

CC =0 if normal output occurred.

CC =1 if CANCEL was entered during output.

Description: If a FREEZE Occurs (any input character is received) then control is not
returned to the user routine until the condition is released. The FREEZE
condition is checked for only when a linefeed is being sent. Padding null
characters ($00) may be sent following the outputted character depending
on the current setting of the NULLS command. For DLE (Data Link Escape),
character nulls are never sent. Otherwise, carriage returns ($00) receive the
new line count of nulls, all other characters the character count of nulls.

Example: OUTCH EQU 1 INPUT CODE FOR OUTCH
LDA #0 LOAD CHARACTER “0”
SWiI SEND OUT WITH MONITOR CODE
FCB OUTCH SERVICE CODE BYTE

OUTZHS Convert Byte to Hex OUT2HS

Code: 4

Arguments: Register X points to a byte to display in hex.

Result: The byte is converted to two hex digits and sent to the output handler
followed by a blank.
Example: OUT2HS EQU 4 INPUT CODE FOR OUT2HS
LEAX DATA, PCR POINT TO ‘DATA’ TO DECODE
SWI REQUEST SERVICE
FCB OUT2HS SERVICE CODE BYTE

B-17

OUT4HS Convert Word to Hex OUT4HS

Code: 5

Arguments: Register X points to a word (two bytes) to display in hex.

Result: The word is converted to four hex digits and sent to the output handler
followed by a blank.
Example: OUT4HS EQU S5 INPUT CODE FOR OUT4HS
LEAX DATA, PCR LOAD ‘DATA’ ADDRESS TO DECODE
SWi REQUEST ASSIST09 SERVICE
FCB OUT4HS SERVICE CODE BYTE

PAU S E Program Break and Check PAU S E

Code: 11
Arguments: None

Result: CC =0 For a normal return.
CC=1 If a CANCEL was entered during the interim.

Description: The PAUSE service should be used whenever a significant amount of pro-
cessing is done by a program without any external interaction (such as con-
sole 1/0). Another use of the PAUSE service is for the monitoring of FREEZE
or CANCEL requests from the input handler. This allows muiti-tasking
operating systems to receive control and possibly re-dispatch other pro-
grams in a timeslice-like fashion. Testing for FREEZE and CANCEL condi-
tions is performed before return. Return may be after other tasks have h<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>