philips $\left(\begin{array}{l}+ \\ +5 \\ +5\end{array}\right.$

Electronic
components
and materials

PHILIPS

Buyers \& engineers guide

MIMIDRTMS AND

MIGR10PR:0GHJSORS

bipolar and MOS

$$
\begin{aligned}
& \text { JFP Prillipse } \\
& 7-11-1978
\end{aligned}
$$

WHEN ORDERING
please quote the ordering code to specify device, temperature range if applicable (prefix N or S), and package (suffix D, E, F, I, K, N, P, T or TA).
examples:
N82S25N commercial temperature range, plastic DIL package
S82S16F military temperature range, cerdip DIL package
N74S89N commercial temperature range, plastic DIL package
S54S89F military temperature range, cerdip DIL package
26501 commercial temperature range, metal ceramic DIL package

memories

type index

Bipolar

technology	RAM capacity	type	page	PROM capacity	type	page
TTL	16×4	N3101A	10-11	32×8	N82S23	12-13
	16×4	N74S89		32×8	N82S123	
	16×4	N74S189		256×4	N82S27	
	16×4	N82S25		256×4	N82S126	
	256×1	N74S200		256×4	N82S129	
	256×1	N74S201		256×8	N82S114	
	256×1	N74S301		512×4	N82S130	
	256×1	N82S16		512×4	N82S131	
	256×1	N82S116		512×8	N82S115	
	256×1	N82S17		512×8	N82S140	
	256×1	N82S117		512×8	N82S141	
	64×9	N82S09		512×8	N82S146	
	$1 \mathrm{k} \times 1$	N82S10		512×8	N82S147	
	$1 \mathrm{k} \times 1$	N93415A		$1 \mathrm{k} \times 4$	N82S136	
	$1 \mathrm{k} \times 1$	N82S110		$1 \mathrm{k} \times 4$	N82S137	
	$1 \mathrm{k} \times 1$	N82LS10		$1 \mathrm{k} \times 8$	N82S180	
	$1 \mathrm{k} \times 1$	N82S11		$1 \mathrm{k} \times 8$	N82S181	
	$1 \mathrm{k} \times 1$	N93425A		$1 \mathrm{k} \times 8$	N82S2708	
	$1 \mathrm{k} \times 1$	N82S111		$2 \mathrm{k} \times 4$	N82S184	
	$1 \mathrm{k} \times 1$	N82LS11		$2 \mathrm{k} \times 4$	N82S185	
	256×8	N82S208		$2 \mathrm{k} \times 8$	N82S 190	
	256×9	N82S210		$2 \mathrm{k} \times 8$	N82S191	
	$4 \mathrm{k} \times 1$	N82S400				
	$4 \mathrm{k} \times 1$	N82S401				
ECL	16×4	GXB10145	14-15	32×8	GXB10139	14-15
	64×1	GXB10140		256×4	GXB10149	
	64×1	GXB10142				
	64×1	GXB10148				
	128×1	GXB10405				
	256×1	GXB10144				
	256×1	GXB10410				
	$1 \mathrm{k} \times 1$	GXB10415				

technology	ROM capacity	type	page	specials capacity		type	page
TTL	256×4	N82S226	14-15	8×4	SAM	N82S 12	14-15
	256×4	N82S229		8×4	SAM	N82S112	
	256×8	N82S214		32×2	WWRM	N82S21	
	512×4	N82S230		$16 \times 48 \times 8$	FPLA	N82S 100	
	512×4	N82S231		$16 \times 48 \times 8$	FPLA	N82S101	
	512×8	N82S215		16×9	FPGA	N82S 102	
	512×8	N82S240		16×9	FPGA	N82S103	
	512×8	N82S241		$16 \times 48 \times 8$	FPLA	N82S 106	
	$1 \mathrm{k} \times 4$	N8228		$16 \times 48 \times 8$	FPLA	N82S107	
	$1 \mathrm{k} \times 8$	N82S280		$16 \times 48 \times 8$	PLA	N82S200	
	$1 \mathrm{k} \times 8$	N82S281		$16 \times 48 \times 8$	PLA	N82S201	
	$2 \mathrm{k} \times 8$	N82S290					
	$2 \mathrm{k} \times 8$	N82S291					

ECL
8×2 CAM GXB10155 $14-15$

memories

type index

MOS

technology	RAM capacity	type	page	EPROM capacity	type	page
MOS	static		16-17			16-17
	256×1	2501		4 k	2704	
	256×1	25L01		8k	2708	
	256×1	HEF4720B(V)				
	256×4	2101				
	256×4	2111				
	256×4	2112				
	256×4	2606				
	256×4	2606-1				
	$1 \mathrm{k} \times 1$	2102				
	$1 \mathrm{k} \times 1$	21F02				
	$1 \mathrm{k} \times 1$	21L02				
	$1 \mathrm{k} \times 1$	2102A/AL				
	$1 \mathrm{k} \times 1$	2115				
	$1 \mathrm{k} \times 1$	2125				
	$1 \mathrm{k} \times 4$	2614				
	$1 \mathrm{k} \times 4$	2624				
	$4 \mathrm{k} \times 1$	2613				
	$4 \mathrm{k} \times 1$	2623				
	dynamic					
	$4 \mathrm{k} \times 1$	2627	16-17			
	$4 \mathrm{k} \times 1$	2660				
	$4 \mathrm{k} \times 1$	2680				
	16k $\times 1$	2690				

technology	capacity	type	page	shift registers capacity	type	page
MOS	ROM			static		
	512×8	2530	16-17	2×50	2509	18
	$1 \mathrm{k} \times 8$	2607		6×32	2518	
	$1 \mathrm{k} \times 8$	2608		2×100	2510	
	$2 \mathrm{k} \times 4$	2580		6×40	2519	
	$2 \mathrm{k} \times 8$	2600		2×128	2521	
	$2 \mathrm{k} \times 8$	2616		2×132	2522	
	$2 \mathrm{k} \times 8$	2617		4×80	2532	
				2×200	2511	
				2×240	2529	
				2×250	2528	
				2×256	2527	
				$1 \times 1 \mathrm{k}$	2533	
	character ger			dynamic		
	$64 \times 8 \times 5$	2513	16-17	2×100	2506	18
	$64 \times 6 \times 8$	2516		2×100	2507	
	$64 \times 9 \times 9$	2526		2×100	2517	
	$128 \times 7 \times 9$	2609		1×512	2505	
				1×512	2524	
				4×256	2502	
				2×512	2503	
				$1 \times 1 \mathrm{k}$	2504	
				$1 \times 1 \mathrm{k}$	2512	
				$1 \times 1 \mathrm{k}$	2525	

memories

cross reference

Bipolar

AMD	Signetics	Fairchild	Signetics	Harris	Signetics
2700/27LS00	$82 \mathrm{S16}$	10405	GXB10405	0064	82S25
2701/27LS01	82S17	10410	GXB10410/10144	1024/HM7610	82S129
27S08/27LS08	82S23	10415	GXB10415	1024A/HM7611	82S126
27S09/27LS09	82S123	10145A	GXB10145	2048	82S131
27S10	82S126	10149	GXB10149	2048A	82S130
$27 \mathrm{S11}$	82S129	93403	82S25	HM7602/8256	82S23
2952	82S10/93415A	93406	82S226	HM7603	82S123
2953	82S11/93425A	93410	74S301	HM7615	GXB10149
2980	82S101	93411	82517	HM7620	82S130
2981	82S100	93411A	$82 \mathrm{S117}$	HM7621	82S131
3101	82S25	93415	82S10	HM7640	82S140
3101A/27S02	3101A	93415A	93415A	HM7641	82S141
		93415B	82S110	HM7642	82S136
		93L415	82 LS 10	HM7643	82S137
		93417	82S126	HM7644	82S115 **
		93419	82S09	HM7699	82S115**
		93421	82S16		
		93421A	825116	Intel	
		93425	82S11	Intel	Signetics
		93425A	93425A	2708	8252708
		93425B	82S111	3101	82525
		93L425	82LS11	3101A	3101A
		93427	82S129	3106/3106A	$82 S 16$
		93431	82S230	3107/3107A	82S17
		93436	82S130	3301A	82S226
		93438	82S140	3302	82S230
		93441	82S231	3304	82S215 **
		93442	82S241	3322	82S231
		93446	82S131	3601	82S126
		93448	825141	3602	82S130
		93452	825136	3604	82S140
		93453	82S137	3605	82S136
		93454	82S280	3621	82S129
		93457	$82 S 226$	3622	82S131
		93464	82S281	3624	82S141
		93467	82S229	3625	82S137

** Not pin-for-pin compatible.

Intersil	Signetics	MMI	Signetics	National	
				Semiconductor	Signetics
5501	82525	10149	GXB10149		
5503	74S301	6200	82S226	74187	82S226
55S08(A)	$82 \mathrm{S10}$	6201	82S229	8573	82S126
55S18(A)	82511	5205	82S230	8574	82S129
5523A	82S16	6206	82S231	8582	82S17
5533A	$82 \mathrm{S17}$	6275	82S290	8588	82S23
5600	$82 \mathrm{S23}$	6276	825291	86L99	82S25
5603	82S126	6280	82S280		
5604A	82S130	6281	82S281		
5605	82S140	6300-1	82S126	TI	Signetics
56506	82S136	6301-1	82S129	2708	82S2708
5610	82S123	6305-1	82S130		82S400
5623A	825129	6306-1	82S131		82S401
5624	82S131	6330	82523	10142	GXB10142
5625	82S141	6331	82S123	.	GXB10144/10410
$56 S 26$	82S137	6335	82S114**	10147	GXB10405
		6340	82S140	74187	82S226
		6341	82S141	745188	82S23
		6348	82S146	74S189	74S189
Motorola	Signetics	6349	$82 S 147$	745189	745189
10139	GXB10139	6352	82S136	74589 745200	74589 745200
10140	GXB10140	6353	825137	745201	745201
10142	GXB10142	6380	$82 \mathrm{S180}$	745209	82S11/93425A
10144	GXB10144/10410	6381	825181	745270	82S230
10145	GXB10145	6385	8252708	74 S 287	82S129
10146/10415	GXB10415	6530	$82 \mathrm{S17}$	74 S 288	82S123
10147	GXB10405	6531	82516	745289	3101A
10148	GXB10148	6555	82S09 $82525 / 3101 \mathrm{~A}$	745301	74S301
10149	GXB10149	6560 6561	82S25/3101A 74S189	745309	82S10/93415A
4004A	82S226	6561		745370	82S231
4064	82S25	$82 \mathrm{S100}$	82S100	745387	82S126
4256	$82 \mathrm{S16}$	82S101	82S101	745472	82S146
5005	82S126			745473	82S147
68708	8252708				

[^0]
memories

cross reference
mOS

AMD	Signetics	Fairchild	Signetics	Intel	Signetics
2102	2102	2102	2102	2101	2101
	21 F02		21 F02		2102
	21L02		21L02		21F02
9216	2617	3343	2521	2102 A	21L02
AM 1402APC	2502	3344	2522		2102A
AM1403A	2503	3347	2532	2102 AL .	2102AL
AM1404A	2504	3349	2518	2107B	2680
AM1507	2517	3533	2533	2111	2111
AM1507T	2506	F4720	HEF4720B	2112	2112
AM2505K	2505			2114	2614
AM2806HC	2512	General		2115	2115
AM2807PC	2524			2116A	2690
AM2808PC	2525	Instruments		2125	2125
AM2809	2521			2308	2607
AM2833PC	2533	2509 2510		2316E	2616
AM9060	2680	2511	2511	2704	2704
P1101	2501	2513	2513	2708	2607
		2516	2516		2708
		2530	2530	C1402A	2502
Electronic		2533	2533	C1403A	2503
Arrays	Signetics	2580	2580	M1404A	2504
4600				Mi 405 A	2505
4900	2600			P1101	2501

Intersil	Signetics	Motorola	Signetics	Synertex	Signetics
IM7501	2501	6570	2609	2316 B	2616
1M7552	2102	6830	2608	4600	2600
	21 F02				
	21L02				
IM7712C	2512	National		Texas	
IM7722C	2525	Semiconductor	Signetics	Instruments	Signetics
IM7780C	2532		2501		
		MM1402A	2502	TMS3120NC	2532
Mostek		MM1403A	2503	TMS3128NC	2521
	Signetics	MM 1404A	2504	TMS3129NC	2522
	2600	MM 1506H	2506	TMS3133NC	2533
MK1007P	2532	MM 1507H	2517	TMS4035	2102
MK4007	2501	MM2102	2102		21 F02
	25L01		21 F02		21L02
MK4027	2627		21L02	TMS4030	2680
MK4096	2660	MM2521	2521	TMS4060	2680
MK4102	2102	MM2522	2522		
	21 F02	MM5058	2533		
	21L02	MM5280	2680		
	2690				

memories

technical data

Bipolar

Output structure: OC open collector
TS three-state

	capacity	type	output structure	no. of pins	tAA max ns	input current $\mu \mathrm{A}$	supply voltage V	max supply current mA	packages
TTL-RAM	16×4	N3101A *	OC	16	35	100	5	105	N, F
	16×4	N74S89	OC	16	50	100	5	105	N, F
	16×4	N74S189	TS	16	35	250	5	110	N, F
	16×4	N82S25	OC	16	50	100	5	105	N, F
	256×1	N74S200	TS	16	50	100	5	130	N, F
	256×1	N74S201	TS	16	50	100	5	130	N, F
	256×1	N74S301	OC	16	50	100	5	130	N, F
	256×1	N82S16	TS	16	50	100	5	115	N, F
	256×1	N82S17	OC	16	50	100	5	115	N, F
	256×1	N82S116	TS	16	40	100	5	115	N, F
	256×1	N82S117	OC	16	40	100	5	115	N, F
	64×9	N82S09	OC	28	45	100	5	190	N, I
	1024×1	N82S10	OC	16	45	100	5	170	N, F
	1024×1	N82S11	TS	16	45	100	5	170	N, F
	1024×1	N82S110	OC	16	35	100	5	170	N, F
	1024×1	N82S111	TS	16	35	100	5	170	N, F
	1024×1	N93415A	OC	16	45	1.00	5	170	N, F
	1024×1	N93425A	TS	16	45	100	5	170	N, F
	1024×1	N82LS10 *	OC	16	60	100	5	60	N, F
	1024×1	N82LS11 *	TS	16	60	100	5	60	N, F
	256×8	N82S208	TS	22	60	100	5	185	N, F
	256×9	N82S210	TS	24	60	100	5	185	N, F
	4096×1	N82S400 *	OC	18	70	150	5	155	1
	4096×1	N82S401 *	TS	18	70	150	5	155	1

* In development.

Military versions of industrial ICs with prefix N have S as a prefix.
Example: industrial version N82S25, military version S82S25. The specifications shown below apply to industrial versions. There is generally some derating in specification for military versions due to the extended temperature range.
Temperature ranges
C 0 to $75^{\circ} \mathrm{C}$
M -55 to $+125^{\circ} \mathrm{C}$

chip enable lines	temp. range	pin compatible types © = fully compatible	second sourced by	pin diagram on page
1	M, C	82S25, 74S89	AMD, Intel, MMI, TI	26
1	M, C	N3101A, 82S25	TI	26
1	M, C	-	MMI, TI	26
1	M, C	N3101A, 74S89	AMD, Fch, Harris, Intel, Intersil, MMI, Mot, National	26
3	M, C	82S16, 82S116, 74S201	TI	24
3	M, C	82S16, 82S116, 74S200^	TI	24
3	M, C	82S17, 82S117	Fch, Intersil, TI	24
3	M, C	82S116, 74S200, 74S201	AMD, Fch, Intel, Intersil, MMI, Mot	24
3	M, C	82S117, 825301	AMD, Fch, Intel, Intersil, MMI	24
3	C	82S16, 74S200, 74S201	Fch	24
3	C	82S17, 74S301	Fch	24
1	M, C	-	Fch, MMI	27
1	M, C	82S110, 93415A 4, 82LS10	AMD, Fch, Intersil, TI	25
1	M, C	82S111, 93425A, 82LS11	AMD, Fch, Intersil, TI	25
1	C	82S10, 93415A, 82LS10	Fch	25
1	C	82S11, 93425A, 82LS11	Fch	25
1	C	82S10 4, 82S110, 82LS10	AMD, Fch, TI	25
1	C	82S11 4, 82S111, 82LS11	AMD, Fch, TI	25
1	C	82S10, 93415A, 82S110	Fch	25
1	C	82S11, 93425A, 82S111	Fch	25
1	C	-	-	27
1	C	-	-	27
1	C	-	TI	25
1	C	-	TI	25

memories

technical data

Bipolar

Output structure: OC open collector
TS three-state

	capacity	type	output structure	no. of pins	${ }^{\mathrm{t}} \mathrm{AA}$ max ns	input current $\mu \mathrm{A}$	supply voltage V	max supply current mA	packages
TTL-PROM	32×8	N82S23	OC	16	50	100	5	77	N, F
	32×8	N82S123	TS	16	50	100	5	77	N, F
	256×4	N82S27	OC	16	40	1600	5	140	F
	256×4	N82S126	OC	16	50	100	5	120	N, F
	256×4	N82S129	TS	16	50	100	5	120	N, F
	256×8	N82S114	TS	24	60	100	5	180	N, F
	512×4	N82S130	OC	16	50	100	5	140	N, F
	512×4	N82S131	TS	16	50	100	5	140	N, F
	512×8	N82S115	TS	24	60	100	5	180	N, F
	512×8	N82S140	OC	24	60	100	5	175	N, F
	512×8	N82S141	TS	24	60	100	5	175	N, F
	512×8	N82S146 *	OC	20	45	-	5	-	N
	512×8	N82S147 *	TS	20	45	-	5	-	N
	1024×4	N82S136	OC	18	60	100	5	140	F
	1024×4	N82S137	TS	18	60	100	5	140	F
	1024×8	N82S180	OC	24	70	100	5	150	F
	1024×8	N82S181	TS	24	70	100	5	150	F
	1024×8	N82S2708	TS	24	70	100	5	150	F
	2048×4	N82S184	OC	18	100	100	5	120	1
	2048×4	N82S185	TS	18	100	100	5	120	1
	2048×8	N82S190	OC	24	80	100	5	175	N, F
	2048×8	N82S191	TS	24	80	100	5	175	N, F

* In development.

Military versions of industrial ICs with prefix N have S as a prefix.
Example: industrial version N82S25, military version S82S25.
The specifications shown below apply to industrial versions. There is generally some derating in specification for military versions due to the extended temperature range.
Temperature ranges
C 0 to $75^{\circ} \mathrm{C}$
M -55 to $+125^{\circ} \mathrm{C}$

chip	temp.	pin compatible types	second sourced by	pin diagram
enable	range	$\mathbf{\Delta}=$ fully compatible		on page

lines

1	M, C	-	AMD, Harris, Intersil, MMI, National, TI	21
1	M, C	-	AMD, Harris, Intersil, MMI, TI	21
2	C	82S126, 82S226	-	19
2	M, C	82S226 4, 82S27	AMD, Fch, Harris, Intel, Intersil, MMI, Mot, National, TI	19
2	M, C	82S229 4	AMD, Fch, Harris, Intel, Intersil, MMI, National, TI	19
2	M, C	82S214	MMI **	21
1	M, C	82S230 4	Fch, Harris, Intel, Intersil, MMI	19
1	M, C	82S2314	Fch, Harris, Intel, Intersil, MMI	19
2	M, C	82S215 ${ }^{\text {A }}$	Harris **	22
4	M, C	82S240 ${ }^{\text {- }}$	Fch, Harris, Intel, Intersil, MMI	22
4	M, C	82S2414	Fch, Harris, Intel, Intersil, MMI	22
1	C	-	MMI, TI **	22
1	C	-	MMI, TI **	22
2	M, C	-	Fch, Harris, Intel, Intersil, MMI	20
2	M, C	-	Fch, Harris, Intel, Intersil, MMI	20
4	M, C	82S2804	MMI	23
4	M, C	8252814	MMI	23
1	M, C	-	MMI, (EPROM - Intel, Mot, TI)	23
1	M, C	-	-	20
1	M, C	-	-	20
3	C	82S290 4	-	23
3	C	82S291	-	23

[^1]
technical data

Bipolar

* In development.

Military versions of industrial ICs with prefix N have S as a prefix.
Example: industrial version N82S25, military version S82S25.
The specifications shown below apply to industrial versions. There is generally some derating in specification for military versions due to the extended temperature range.
Temperature ranges

$$
\begin{aligned}
& \mathrm{TTL}-\mathrm{C}-0 \text { to } 75^{\circ} \mathrm{C} \\
& \mathrm{TTL}-\mathrm{M}--55 \text { to }+125^{\circ} \mathrm{C} \\
& \mathrm{ECL}-\mathrm{C}--30 \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
$$

chip	temp.	pin compatible types	second sourced by
enable	range	$\mathbf{\Delta}=$ fully compatible	
lines			pin diagram

2	M, C	N82S126 4, N82S27	Fch, Intel, MMI, Mot, National, TI	19
2	M, C	N82S129 ${ }^{\text {- }}$	Fch, MMI	19
2	M, C	N82S114	-	21
1	M, C	N82S130 ${ }^{\text {- }}$	Fch, Intel, MMI, TI	19
1	M, C	N82S1314	Fch, Intel, MMI, TI	19
2	M, C	N82S115	-	22
4	C	N82S140 ${ }_{\text {- }}$	-	22
4	C	N82S1414	Fch	22
-	C	-	-	20
4	M, C	N82S180 ${ }_{\text {4 }}$	Fch, MMI	23
4	M, C	N82S1814	Fch, MMI	23
3	C	N82S190	MMI	23
3	C	N82S191	MMI	23
2 wr . en.	C	-	-	28
2 wr . en.	C	-	-	28
-	C	-	-	28
1	M, C	N82S200	AMD, MMI	29
1	M, C	N82S2014	AMD, MMI	29
-	C	-	-	29
-	C	-	-	29
1	M, C	-	-	29
1	M, C	-	-	29
1	M, C	N82S100	-	29
1	M, C	N82S101	-	29
2	C	GXB10142, GXB10148	Mot	24
2	C	GXB10140, GXB10148	Mot, TI	24
2	C	GXB10140, GXB10142	Mot	24
1	C	-	Fch, Mot	26
-	C	-	Mot, TI	24
3	C	GXB10410	Fch, Mot, TI	24
3	c	GXB10144	Fch, Mot, TI	24
-	C	-	Fch, Mot	25
1	C	-	Mot	21
1	C	-	Fch, Harris, MMI, Mot	19
-	C	-	-	28

memories

technical data

MOS

	capacity	type	no. of pins	tAA typ ns	supply voltage V
Static RAM	256×1	2501	16	1000	+5, -9
	256×1	25L01	16	1000	+5, -12
	256×4	2101	22	450-1000	+5
	256×4	2111	18	450-1000	+5
	256×4	2112	16	450-1000	+5
	256×4	2606	16	750	+5
	256×4	2606-1	16	500	+5
	1024×1	2102	16	500-1000	+5
	1024×1	21F02	16	250-450	+5
	1024×1	21L02	16	400-1000	+5
	1024×1	2102A/AL	16	$150-650$	+5
	1024×1	2115	16	$35-75$	+5
	1024×1	2125	16	$35-75$	+5
	1024×4	2614*	18		+5
	1024×4	2624*	18		+5
	4096×1	2613*	18		+5
	4096×1	2623*	18		+5
LOCMOS static RAM	256×1	HEF4720B(V)	16	$150-450$	+3 to +15
Dynamic RAM	4096×1	2660	16	200-350	$+12,+5,5$
	396×1	2680	2 ?	200-350	-12, $+5,-5$
	106×1	2027	16	$150-250$	$+12 \div 5$
	(.) 1	2.900		$150-250$	$=12,+5$
ROMs and character generators p-channel					
	2048×4	2580	24	950	$+5,-12$
	$64 \times 8 \times 5$	2513	24	600	+5, -12
	$64 \times 6 \times 8$	2516	24	600	+5, -12
	$64 \times 9 \times 9$	2526	24	700	+5, -12
n-channel	1024×8	2607	24	450	+5
	1024×8	2608	24	550	+5
	2048×8	2600	24	300	+5
	2048×8	2616	24	300	$+5$
	2048×8	2617	24	450	+5
	4096×8	2632*	24		+5
	4096×8	2633 *	24		+5
	$128 \times 7 \times 9$	2609	24	500	+5
EPROM	4096	2704	24	450	+12, +5, -5
	8192	2708	24	450	+12, +5, -5

* In development.

Temperature range

$\mathrm{C}=0$ to $+70^{\circ} \mathrm{C}$
XC $=-40$ to $+85^{\circ} \mathrm{C}$

chip enable lines	temp. range	pin compatible types	second sourced by	pin diagram on page
-	C	25L01	AMD, Intel, Intersil, Mostek, National	30
1	C	2501	Mostek	30
2	C	-	Intel	32
2	c	-	Intel	32
1	c	-	Intel	33
1	C	2606-1	-	33
1	C	2606	-	33
1	C	21F02, 21L02, 2102A/AL		30
1	C	2102,21L02, 2102A/AL	AMD, Fch, Intel, Intersil, Mostek, National, TI	30
1	C	2102, 21F02, 2102A/AL		30
1	C	2102, 21F02, 21L02	Intel	30
1	C	2125	Intel	31
1	C	2115	Intel	31
-	C	2624	Intel	33
-	C	2614	Intel	33
-	c	2623	Intel	31
-	C	2613	Intel	31
1	XC	-	Fch	30
1	c	-	Mostek	34
1	C	-	AMD, Intel, National, TI	34
1	C	-	Mostek	34
1	C	-	Intel, Mostek	34
1	C	-	GI	35
4	C	-	GI	36
1	C	-	GI	38
1	C	-	GI	38
1	c	-	-	38
2	C	-	Intel	35
4	C	-	Motorola	35
2	C	-	Electronic Arrays, Mostek, Synertex	36
3	C	-	Intel, Synertex	37
3	c	-	AMD	37
-	C	-	-	37
-	C	-	will be industry standard	-
4	C	-	Motorola	39
1	c	-	Intel	39
1	c	-	Intel	39

technical data

MOS

Several types can be made available in Cerdip (F package) and metal ceramic
(I package).

Static shift registers - one clock (TTL compatible)							
capacity	type	output structure	on-chip recirculate	package leads	typ speed MHz	second sourced by pi	pin diagram on page
hex 32 bits	2518	bare drain	yes	$\mathrm{N}-16$	3,0	Fch, TI	40
hex 40 bits	2519	bare drain	yes	N-16	3,0	-	40
dual 50 bits	2509	three-state	yes	N-14, K	3,0	GI	40
quad 80 bits	2532	push-pull	yes	$\mathrm{N}-16$	3,0	Fch, Intersil, Mostek, TI	41
dual 100 bits	2510	three-state	yes	N-14, K	3,0	GI	40
dual 128 bits	2521	push-pull	yes	N-8	3,0	AMD, Fch, National, TI	41
dual 132 bits	2522	push-pull	yes	N 8	3,0	Fch, National, TI	41
dual 200 bits	2511	three-state	yes	N-14, K	3,0	GI	40
dual 240 bits	2529	push-pull	yes	N .8	3,0	-	41
dual 250 bits	2528	push-pull	yes	N-8	3,0	-	41
dual 256 bits	2527	push-pull	yes	N-8	3,0	-	41
1024 bits	2533	push-pull	jumper	N-8	2,0	AMD, Fch, GI, National, TI	TI 41

Dynamic shift registers - two clocks (not TTL compatible)

- power supplies +5 and $-5 \mathrm{~V}$							
dual 100 bits	2517	$20 \mathrm{k} \Omega$ PD	no	$\mathrm{T}, \mathrm{N}-8$	4,0	AMD, National	42
dual 100 bits	2507	$7,5 \mathrm{k} \Omega \mathrm{PD}$	no	$\mathrm{T}, \mathrm{N}-8$	4,0		42
dual 100 bits	2506	bare drain	no	$\mathrm{T}, \mathrm{N}-8$	4,0	AMD, National	42
quad 256 bits	2502	bare drain	no	$\mathrm{N}-16$	10,0	AMD, Intel, National	42
512 bits	2524	bare drain	yes	$\mathrm{N}-8$	5,0	AMD	42
512 bits	2505	bare drain	yes	K	3,0	AMD, Intel	43
dual 512 bits	2503	bare drain	no	$\mathrm{TA}, \mathrm{N}-8$	10,0	AMD, Intel, National	43
1024 bits	2525	bare drain	yes	$\mathrm{N}-8$	5,0	AMD, Intersil	42
1024 bits	2512	bare drain	yes	K	3,0	AMD, Intersil	42
1024 bits	2504	bare drain	no	TA, N-8	10,0	AMD, Intel, National	43

Bipolar

ROMs and PROMs 4 bits wide

	type	capacity/output structure	second source

GXB10149 256×4 PROM/OE

82 S 130
$82 S 131$

82S230
$82 S 231$
512×4 PROM/OC
$512 \times 4 \mathrm{PROM} / \mathrm{TS}$
$512 \times 4 \mathrm{ROM} / \mathrm{OC}$
$512 \times 4 \mathrm{ROM} / \mathrm{TS}$

Fch 10149, Harris HM7615, MMI 10149, Mot 10149

memories

pin diagrams - second sources

Bipolar

ROMs and PROMs 4 bits wide

type	capacity/output structure	second source
8228	1024×4 ROM/TP	-

82S136

82S137 1024×4 PROM/TS

Fch 93452, Harris HM7642, Intel 3605, Intersil 56S06, MMI 6352
Fch 93453, Harris HM7643, Intel 3625, Intersil 56S26, MMI 6353

82S184 2048×4 PROM/OC
82S185 2048×4 PROM/TS

ROMs and PROMs 8 bits wide

type	capacity/output structure	second source
82S23	$32 \times 8 \mathrm{PROM} / \mathrm{OC}$	AMD 27S08/27LS08,
		Harris HM7602/8256,
		Intersil 5600, MMI 6330,
		National 8588, TI 74S188
82 S 123	$32 \times 8 \mathrm{PROM} / \mathrm{TS}$	AMD 27S09/27LS09,
		Harris HM7603, Intersil 5610, MMI 6331, TI 74S288

GXB10139 32×8 PROM/OE
Mot 10139

82S114 256×8 PROM/TS MMI 6335**
82S214 256×8 ROM/TS
** Not pin-for-pin compatible.

memories

pin diagrams - second sources

Bipolar

ROMs and PROMs 8 bits wide

type	capacity/output structure	second source
$82 S 115$	512×8 PROM/TS	Harris HM7644**/HM7699**
$82 S 215$	512×8 ROM/TS	-

82S140	512×8 PROM/OC	Fch 93438, Harris HM7640, Intel 3604, Intersil 5605, MMI 6340
82S141	$512 \times 8 \mathrm{PROM} / \mathrm{TS}$	Fch 93448, Harris HM7641, Intel 3624, Intersil 5625, MMI 6341
825240	$512 \times 8 \mathrm{ROM} / \mathrm{OC}$	-
82S241	$512 \times 8 \mathrm{ROM} / \mathrm{TS}$	Fch 93442

82S146 $512 \times 8 \mathrm{PROM} / O C$
82S147 $512 \times 8 \mathrm{PROM} / \mathrm{TS}$

MMI 6348, TI 74S472** MMI 6349, TI 74S473**

type	capacity/output structure	second source
82S180	1024×8 PROM/OC	MMI 6380
82S181	1024×8 PROM/TS	MMI 6381
82S280	1024×8 ROM/OC	Fch 93454, MMI 6280
82S281	1024×8 ROM/TS	Fch 93464, MMI 6281

82 252708 1024×8 PROM/TS | | MMI6385, |
| :--- | :--- |
| | EPROM - Intel 2708, |
| | Mot 68708, TI 2708 |

82S190	2048×8 PROM/OC	-
82S191	2048×8 PROM/TS	-
82S290	2048×8 ROM/OC	MMI 6275
82S291	2048×8 ROM/TS	MMI 6276

memories

pin diagrams - second sources

Bipolar

RAMs 1 bit wide

type	capacity/output structure	second source
GXB10140	$64 \times 1 /$ OE	Mot 10140
GXB10142	$64 \times 1 /$ OE	Mot 10142, TI 10142
GXB10148	$64 \times 1 /$ OE	Mot 10148

74S200	$256 \times 1 / \mathrm{TS}$
74S201	$256 \times 1 / \mathrm{TS}$
74S301	$256 \times 1 / \mathrm{OC}$
82S16	$256 \times 1 / \mathrm{TS}$
82S116	$256 \times 1 / \mathrm{TS}$
82S17	$256 \times 1 / \mathrm{OC}$
82S117	$256 \times 1 / \mathrm{OC}$

TI 74S200
TI 74S201
Fch 93410, Intersil 5503,
TI 74S301
AMD 2700/27LS00, Fch 93421,
Intel 3106/3106A,
Intersil 5523A, MMI 6531,
Mot 4256
Fch 93421A
AMD 2701/27LS01, Fch 93411,
Intel 3107/3107A, Intersil 5533A,
MMI 6530
Fch 93411A

RAMs 1 bit wide

| | type | capacity/output structure | second source |
| :--- | :--- | :--- | :--- | :--- | :--- |

memories

pin diagrams - second sources

Bipolar

RAMs 4 bits wide

82S25	$16 \times 4 / \mathrm{OC}$
74S89	$16 \times 4 / \mathrm{OC}$
74S189	$16 \times 4 / \mathrm{TS}$
3101A	$16 \times 4 / \mathrm{OC}$

AMD 3101, Fch 93403, Harris 0064, Intel 3101, Intersil 5501, MMI 6560,
Mot 4064, National 86L99
$\begin{array}{ll}\text { 74S89 } & 16 \times 4 / \mathrm{OC} \\ \text { 74S189 } & 16 \times 4 / \mathrm{TS} \\ \text { 3101A } & 16 \times 4 / \mathrm{OC}\end{array}$
TI 74S89
MMI 6561, TI 74S189
AMD 3101A/27S02, Intel 3101A, MMI 6560, TI 74S289

RAMs 1 byte (8 or 9 bits) wide

type	capacity/output structure	second source
$82 S 09$	$64 \times 9 /$ OC	Fch 93419, MMI 6555

82S210 $256 \times 9 / T S$

memories

pin diagrams - second sources

Bipolar

Specials (SAM, WWRM, CAM)

82S21

$$
32 \times 2 \text { WWRM/OC }
$$

A Write While Read Memory element is a RAM provided with output latches, in such a way that (read out) data may be retained in the latches either when the chip is disabled or when new information has to be written in the memory.

GXB10155 $8 \times 2 \mathrm{CAM} / \mathrm{OE}$

In a Content Addressable Memory or association memory the address information is associated with the memory content to search whether and/or in which location this information is stored; data is searched in parallel.
The normal functions of read-out and write-in can also be performed.

Specials (PLA, FPLA, FPGA)

type	capacity/output structure	second source
82S100	$16 \times 48 \times 8 \mathrm{FPLA} / \mathrm{TS}$	AMD 2981, MMI 82S100
82S101	$16 \times 48 \times 8 \mathrm{FPLA} / \mathrm{OC}$	AMD 2980, MMI 82S101
82S200	$16 \times 48 \times 8 \mathrm{PLA} /$ TS	-
82S201	$16 \times 48 \times 8$ PLA/OC	
82S106	$16 \times 48 \times 8 \mathrm{FPLA} / \mathrm{OC}$	
82S107	$16 \times 48 \times 8 \mathrm{FPLA} / \mathrm{TS}$	-
In the 82S106/107, the chip enable input is replaced by a "flag" output indicating whether a programmed product term is activated.		
The Programmable Logic Array is a two level AND-OR/AND-NOR combinational logic element, consisting of a system of logic gates with programmable inputs and outputs in order to generate series of product-terms according to customer requirements. Programming can either be done during production (PLA) or by the customer in the field (FPLA).		

82S102	16×9 FPGA/OC	-
82S103	16×9 FPGA/TS	-

The Field Programmable Gate Array is a one-level AND/NAND logic element with programmable inputs and outputs to generate several AND/NAND functions according to customer requirements.

memories

pin diagrams - second sources

MOS

Static RAMs 1-bit wide

type	capacity	second source
$\mathbf{2 5 0 1}$	256×1	AMD P1101, Intel P1101, Intersil IM7501, Mostek MK4007,
		National MM1101
25L01	256×1	Mostek MK4007

HEF4720B(V) $256 \times 1 \quad$ Fch F4720

2102 21F02 21L02	1024×1		
1024×1			
$2102 A$	1024×1	\left\lvert\,\quad	1024×1
:---			
2102AL			
1024×1	\quad	AMD 2102, Fch 2102, Intel 2102A,	
:---			
Intersil IM7552, Mostek MK4102,			
National MM2102, TI TMS4035			
Intel 2102A			
Intel 2102AL	\right.		

		type	capacity	second source
		2115	1024×1	Intel 2115
	15 Din	2125	1024×1	Intel 2125
$A_{1} 3$	$14 . \overline{W E}$			
$A_{2} 4$	${ }_{13}{ }^{\text {Ag }}$			
$A_{3} 5$	${ }_{12} A_{8}$			
A $_{4} 6$	$11{ }^{4}$			
Oout 7	$10{ }^{10} 46$			
GNO 8	${ }_{9}{ }_{4}$			

4096×1
4096×1

Intel
Intel

memories

pin diagrams - second sources

MOS

Static RAMs 4-bits wide

2111
256×4
Intel 2111

type	capacity	second source
2112	256×4	Intel 2112

2606	256×4	-
$2606-1$	256×4	-

1024×4
1024×4

Intel 2114
Inte|

Dynamic RAMs 1-bit wide

AMD 9060, Intel 2107B, National MM5280,
TI TMS4060, TMS4030

ROMs 8-bits wide

type	capacity	second source
2530	512×8	General 2530

[^2]2608
1024×8
Motorola 6830

memories

pin diagrams - second sources

MOS

ROMs 4 and 8-bits wide

| | type | capacity | second source |
| :--- | :--- | :--- | :--- | :--- | :--- |

2600 2048×8

Electronic Arrays 4600 and 4900, Mostek 29000,
Synertex 4600

type	capacity	second source
2616	2048×8	Intel 2316E, Synertex 2316B

2632
4096×8

memories

pin diagrams - second sources
mos

Character generators

type	capacity	second source
$\mathbf{2 5 1 3}$	$64 \times 8 \times 5$	General 2513

2516
$64 \times 6 \times 8$
General 2516

$64 \times 9 \times 9$

EPROMs

type	capacity	second source
2609	$128 \times 7 \times 9$	Motorola 6570

memories

pin diagrams - second sources
mos

Static shift registers

type	capacity	second source
$\mathbf{2 5 1 8}$	6×32	Fch 3349, TI TMS3112NC
2519	6×40	-

2509	2×50	General 2509
2510	2×100	General 2510
2511	2×200	General 2511

2521	2×128	AMD AM2809, Fch 3343, National MM2521, TI TMS3128NC
2522	2×132	Fch 3344, National MM2522,
		TI TMS3129NC
2529	2×240	-
2528	2×250	-
2527	2×256	-

memories

pin diagrams - second sources

MOS

Dynamic shift registers

AMD AM1404A, Intel M1404A, National MM1404A

microprocessors

type index
cross reference

technical data - bipolar

8X300 fixed instruction set bipolar microprocessor

The Signetics 8×300 is a monolithic, high-speed microprocessor implemented with bipolar Schottky technology. As the central processing unit, CPU, it allows 16 -bit instructions to be fetched, decoded and executed in 250 ns . A 250 ns instruction cycle requires maximum memory access of 65 ns , and maximum I/O device access of 35 ns .

Instructions operate on an 8 -bit byte. Input data can be rotated and masked before being subjected to an arithmetic or logic operation. Output data can be shifted and merged with the input data before being applied to external logic. This allows 1 to 8 -bit I/O and data memory fields to be accessed and the resulting data to be processed in a single instruction cycle.

Features

- 185 ns instruction decode and execute delay (with Signetics 8T32/33 I/O port)
- Eight 8 -bit working registers
- Single instruction access to 1 -bit, 2 -bit, 3 -bit ... or 8 -bit field on $1 / O$ bus
- Separate instruction address, instruction, and I/O data busses
- On-chip oscillator
- Bipolar Schottky technology
- TTL inputs and outputs
- Three-state output on I/O data bus
- +5 V operation from 0 to $70^{\circ} \mathrm{C}$

8X300 Instruction Set

- General purpose instruction set with substantial capabilities in arithmetic, byte and bit manipulation and I/O processing
- 16-bit instruction word
- 13 bits allow 8 k program words
- Eight instruction classes: MOVE, ADD, AND, XOR, XEC, NZT, XMIT and JMP

Typical system configuration

Pin configuration - I package

microprocessors

technical data - bipolar

8X300KT100SK designer's evaluation kit for fixed instruction bipolar microprocessor

The Signetics 8X300 Fixed Instruction Bipolar Microprocessor provides new levels of high performance to microprocessor applications not previously possible with MOS technology.

In the majority of cases, the choice of a bipolar microprocessor slice, as opposed to a MOS device, is based on speed. The 8×300 processor, combined with high-speed memory and I/O devices, is capable of executing all instructions in 250 ns .

The 8×300 is optimized for control and data movement applications. It has a 13 -bit address bus for selecting instructions from program storage and a separate input bus for entering 16 -bit instruction words. Data handling and I/O device addressing are accomplished via the 8 -bit Interface Vector (IV) bus. The IV bus is supported by four additional control lines and a clock.
The unique features of the 8×300 IV bus and instruction set permit 8 -bit parallel data to be rotated or masked before undergoing arithmetic or logic operations. Then, the data may be shifted and merged into any set of from 1 to 8 contiguous bits at the destination. The entire process of input, shifting, processing and output is done in 1 instruction cycle time. The 250 ns cycle time makes the 8×300 ideally suited for high-speed applications.

The evaluation board contains all the elements which a designer needs to judge the suitability of the 8×300 for his systems applications. Included with the 8×300 are 4 I/O ports for external device interface, 256 bytes of temporary (working) data storage, and 512 words of program storage all properly connected to the 8×300 to allow immediate exercising of the board. For this purpose, the PROMs are preprogrammed with the I/O controI, RAM control, and RAM integrity diagnostic programs. With the remaining PROM space, the designer may enter his own benchmark, test, or development routines.

The board design allows complete flexibility in access to the address, instruction and IV busses as well as all controls and signals of the 8×300. The IV bus, I/O port user connection, clock signals control lines, address bus and instruction bus are wired to output pins, the board edge connector and flat cable connectors.
The board layout permits variations and/or expansions of the basic design. In addition to the access to all signals for transfer off the board, a wire wrap area is provided so that the designer may add to the board circuitry as he desires.

The addition may include memory, additional interfaces, or special circuits which meet specific user requirements.

Controls are also provided for diagnostic and instructional purposes by allowing various operating modes. In the WAIT mode, the program may be single-stepped for ease of checkout. The one-shot instruction jamming allows control of the program start location, changes of program flow, changing or examining the internal registers, or testing of simple sequences. The repeated instruction jamming provides a means of repetitive execution of an instruction so that the I/O bus and the control lines may be examined without software changes. In both of these jam cases, the jammed instruction is selected by board-mounted switches.

Features

- 250 ns CPU with crystal
- 4 I/O ports (32 lines)
- 256 bytes data storage
- 512 words program storage
- run/wait control
- single step
- instruction jamming, one-shot instruction jam repeated jam
- all busses to output pins
- firmware diagnostics
- wire wrap area
- edge connector
- flat cable connectors
- wire wrap posts for bus lines

8×300 KIT CONFIGURATION

Contents

1 each 8×300
8 each 82S116 (256×1 RAM)
2 each 82S115 (512 x 8 PROM)
4 each $8 T 32$ (addressable bidirectional I/O port)
1 each 8 T 31 (bidirectional I/O port)
2 each 8T26A (quad bus transceiver)
4 each 74157 (quad 2 -input data selector)
2 each 7474 (dual D flip-flop)
2 each 7400 (quad NAND gate)
1 each 7427 (3 -input NOR gate)
1 each p.c. board
miscellaneous parts
1 each introductory manual, assembly instructions, code
listings and schematics

microprocessors

technical data - bipolar

8×01 CRC generator/checker

Objective specification

The CRC Generator/Checker circuit is used to provide an error detection capability for serial digital data handling system. The serial data stream is divided by a selected polynomial and the division remainder is transmitted at the end of the data stream as a Cyclic Redundancy Check Character (CRCC). When the data is received, the same calculation is performed. If the received message is errorfree, the calculated remainder should satisfy a predetermined pattern. In most cases, the remainder is zero except in the case where Synchronous Data Link Control type protocols are used whereby the correct remainder is checked for $1111000010111000\left(X^{0}-X^{15}\right)$.

8 polynomials are provided and can be selected via a 3-bit control bus. Popular polynomials such as CRC-16 and CCITT are implemented. Polynomials can be programmed to start with either all zeros or all ones.
Automatic right justification for polynomials of degree less than 16 is provided.

Features

- $1^{2} L$ technology
- TTL inputs/outputs
- 5 MHz (max) data rate
- total power dissipation $=175 \mathrm{~mW}(\max)$
- $\mathrm{V}_{\mathrm{CC}}=5,0 \mathrm{~V}$
- $\mathrm{V}_{\mathrm{JJ}}=1,0 \mathrm{~V}$
- separate preset and reset controls
- SDLC specified pattern match
- automatic right justification

Typical applications

- floppy and other disc systems
- digital cassette and cartridge systems
- data communication systems

Pin configuration - F, N packages

8×02 control store sequencer

Objective specification

The Signetics 8 X02 is a Low-Power Schottky LSI device intended for use in high performance microprogrammed systems to control the fetch sequence of microinstructions. When combined with standard ROM or PROM, the 8×02 forms a powerful microprogrammed control section for computers, controllers, or sequenced logic.

Features

- low-power Schottky process
- 50 ns cycle time (typ)
- 1024 microinstruction addressability
- N -way branch
- 4-level stack register file (LIFO type)
- automatic push/pop stack operation
- "test \& skip" operation on test input line
- 3-bit command code
- three-state buffered outputs
- auto-reset to address 0 during power up
- conditional branching, pop stack and push stack
- positive edge trigger (low-to-high transition)

Pin configuration - N, I packages

Block diagram

8T32 Three-state, synchronous user port
8T33 Open collector, synchronous user port
8T35 Open collector, asynchronous user port
8T36 Three-state, asynchronous user port

The interface vector (IV) byte is an 8-bit bidirectional data register designed to function as an I/O interface element in microprocessor systems. It contains 8 data latches accessible from either a microprocessor (IV) port or a user port. Separate I / O control is provided for each port. The 2 ports operate independently, except when both are attempting to input data into the IV byte. In this case, the user port has priority.
A unique feature of the $8 T 32 / 33 / 35 / 36$ IV byte is the way in which it is addressed. Each IV byte has an 8 -bit, field programmable address, which is used to enable the microprocessor port. When the SC control signal is HIGH , data at the microprocessor port is treated as an address. If the address matches the IV byte's internally programmed address, the microprocessor port is enabled, allowing data transfer through it.

Features

- A field-programmable address allows 1 of 512 IV bytes on a bus to be selected, without decoder
- Each byte has 2 ports, one to the user, the other to a microprocessor. IV bytes are completely bidirectional
- Ports are independent, with the user port having priority for data entry
- A selected IV byte de-selects itself when another IV byte address is sensed
- User data input available as synchronous (8T32, 8T33) or as asynchronous (8T35, 8T36) function
- The user data bus is available with three-state ($8 T 32,8 T 36$) or open collector ($8 T 33,8 T 35$) outputs
- At power up, the IV byte is not selected and the user port outputs are HIGH
- Three-state TTL outputs for high drive capability
- Directly compatible with the 8×300 interpreter
- Operates from a single 5 V power supply over a temperature range of 0 to $70^{\circ} \mathrm{C}$

This kit provides signals and levels required for programming the select addresses of the $8 \mathrm{~T} 32,8 \mathrm{~T} 33,8 \mathrm{~T} 35$ and $8 \mathrm{~T} 36 \mathrm{I} / \mathrm{O}$ ports. Controls are provided for programming, testing and isolating the nichrome fuses which determine the device address.

Contents

$1 \times$ NE556A timer
2×74 LS 74 latch
1×74 LS93 counter
$1 \times 74 \mathrm{LS} 154$ decoder
4×8 T26AB transceiver
2×74 LS08 AND gate
1×8 T80A NAND gate
1×74 LS04 inverter
$6 \times 75450 B A$ driver
$2 \times$ LM309DA regulator
printed circuit board and associated components

Block diagram

microprocessors

technical data - bipolar

8T39 bus expander

The Bus Expander is specifically designed to increase the 1/O capability of 8×300 systems previously limited by fan-out considerations. The bus expander serves as a buffer between the 8×300 and blocks of I/O devices. Each bus expander can buffer a block of 16 I/O ports while only adding a single load to the 8×300

Features

- 15 ns propagation delay
- bidirectional
- three-state outputs on both ports
- pre programmed address range

Applications

The bus expander is not limited to use with the 8×300, but may be applied in any system which uses a combined address/data bus.

Pin configuration - I, N packages

N2901-1 bipolar microprocessor processing element

Objective specification

The 4-bit bipolar microprocessor slice is designed as a high-speed cascadable element intended for use in CPUs, peripheral controllers, programmable microprocessors and numerous other applications. The microinstruction flexibility of the 2901-1 will allow efficient emulation of almost any digital computing machine.
The device, as shown in the block diagram below, consists of a 16 -word by 4 -bit 2 -port RAM, a high-speed ALU, and the associated shifting, decoding and multiplexing circuitry. The 9 -bit microinstruction word is organized into 3 groups of 3 bits each and selects the ALU source operands, the ALU function, and the ALU destination register. The microprocessor is cascadable with full look-ahead or with ripple carry, has three-state outputs, and provides various status flag outputs from the ALU. Advanced low-power Schottky processing is used to fabricate this 40 -lead LSI chip.

Block diagram

Pin configuration - I, N packages

Features

- 80 ns cycle time
- 2-address architecture
independent simultaneous access to 2 working
registers saves machine cycles
- 8 -function ALU
performs addition, 2 subtraction operations, and 5 logic functions on 2 source operands
- flexible data source selection

ALU data is selected from 5 source ports for a total of 203 source operand pairs for every ALU function

- left/right shift independent of ALU
add and shift operations take only 1 cycle
- 4 status flags
carry, overflow, zero, and negative
- expandable
connect any number of 2901-1s together for longer word lengths
- microprogrammable

3 groups of 3 bits each for source operand, ALU function, and destination control

Microprogram control unit N3001

The N3001 MCU is one element of a bipolar microcomputer set. When used with the 3002,745182, ROM or PROM, a powerful microprogrammed computer can be implemented. The 3001 MCU controls the fetch sequence of microinstructions from the microprogram memory. Functions performed by the 3001 include:

- maintenance of microprogram address register
- selection of next microinstruction address
- decoding and testing of data supplied via several input busses
- saving and testing of carry output data from the central processing (CP) array
- control of carry/shift input data to the CP array
- control of microprogram interrupts

Features

- Schottky TTL process
- 45 ns cycle time (typ)
- direct addressing of standard bipolar PROM or ROM
- 512 microinstruction addressability
- advanced organization:

9 -bit microprogram address register and bus organized to address memory by row and column
4-bit program latch
2 flag registers

- 11 address control functions
- flight flag control functions:

4 flag input functions
4 flag output functions

Pin configuration $-\mathrm{I}, \mathrm{N}$ packages

Central processing element N3002

3000KT1000

prototyping kit.

The N3002 central processing element (CPE) is one part of a bipolar microcomputer set. The N3002 is organized as a 2 -bit slice and performs the logical and arithmetic functions required by microinstructions. A system with any number of bits in a data word can be implemented by using multiple N3002s, the N3001 microcomputer control unit, the N74S182 carry look-ahead unit and ROM or PROM.

Features

- 45 ns cycle time (typ)
- easy expansion to multiple of 2 bits
- 11 general purpose registers
- full function accumulator
- useful functions include:

2's complement arithmetic
logical AND, OR, NOT, EXCLUSIVE-NOR
increment, decrement
shift left/shift right
bit testing and zero detection
carry look-ahead generation
masking via K-bus
conditioned clocking allowing non-destructive testing of data in accumulator and scratchpad

- 3 input busses
- 2 output busses
- control bus

Pin configuration - I, N packages

3000 KT 1000 - 12 package prototyping kit
Central processing unit

- microprogram control unit

N30011	$(1 \times)$
N30021	$(4 \times)$
N74S182B	$(1 \times)$

Microprogram memory

- 256×8 PROM

N82S114।
(3x)

Input/output

- 8 -bit bidirectional $1 / \mathrm{O}$ port with latches

N8T31N
(1x)

- 4-bit bus transceiver

N8T26AB
(2x)

microprocessors

technical data - bipolar

3000KT8080SK bipolar emulation kit for the 3000 series 8080A system emulator

The 8080 Emulation Kit is a microprogrammable microprocessor utilizing Schottky LSI components to implement an emulation of an Intel 8080A microcomputer system. The emulation is functionally equivalent to a microprocessor system incorporating the following Intel devices: 8080A, 8228,8224 and 8212 . The kit provides the standard address, data, status and control busses as defined in the Intel 8080 Microcomputer System Manual. Since the kit uses bipolar LSI elements, the emulator lacks the two-phase nonoverlapping clock. Furthermore, those signals emanating from the 8080 during SYNC time are not provided, but rather the useful status signals provided by the 8228 system controller are implemented. The emulation also provides an extension of the 8228 operation during multi-byte interrupts. This is realized by allowing any 8080 program branch instruction to be inserted during interrupts rather than restricting multi-byte instructions to CALL during interrupts. Finally, a non-standard status signal, RTRAP, is provided which indicates that the present instruction is a reserved or undefined instruction. After this indication, the processor will enter the normal HALT routine and await an interrupt. (Intel 8080A operation during undefined instructions is undefined.) Thus all 12 of the unused instructions in the 8080 instruction set are reserved for future instruction set expansion. These unused codes may be used at any time to extend the usual instruction set without requiring any reprogramming of the bipolar PROMs used for microprogram memory. Finally, the emulator is fully static so that the clock may be adjusted from a typical cycle time of 150 ns to d.c.

The kit contains all the parts necessary to construct the emulator and includes preprogrammed PROMs. The kit is designed to be assembled by a skilled technician in about 8 hours.

Features

- full emulation of 8080A system
- speed increase by factor of 2 to 9,2 over 8080 A system
- static operation; microcycle time d.c. to 150 ns
- operation from single +5 V supply
- executes all 8080 instructions
- hardware multiply and divide
- microprogram expandable
- includes single-phase clock
- full vectored interrupt to any location within 64 k memory

Kit contents

1 each N74123
1 each N3001
8 each N3002
7 each N82S115
1 each N82S23
2 each N82S123
2 each N82S126
3 each N8263
3 each N74S182
1 each N74S280
2 each N7475
1 each DM8613
11 each N74S174
2 each N8T28
3 each N8T97
1 each N74S153
2 each N74S157
1 each N7400
1 each N74SO2
3 each N74SO4
1 each N74S08
1 each N74S10
1 each N74S133
2 each resistor networks $1 \mathrm{k} \Omega, 16$ pin
1 each P.C. board
1 each manual
1 each schematic
1 each set of microprogram listings
plus: over 25 miscellaneous resistors, capacitors and other parts

Block diagram

8-bit MOS microprocessors 2650, 2650A

The 2650 processor is a general purpose, single chip, fixed instruction set, parallel 8 -bit binary processor. It can perform any data manipulations through execution of a stored sequence of machine instructions. The processor has been designed to closely resemble conventional binary computers, but executes variable length instructions of one to three bytes in length. BCD arithmetic is made possible through use of a special "DAR" machine instruction.

The 2650 is manufactured using Signetics' n-channel silicon gate MOS technology. N-channel provides high carrier mobility for increased speed and also allows the use of a single 5 V power supply. Silicon gate provides for better density and speed. Standard 40 -pin dual in-line packages are used for the processor.
The 2650 contains a total of seven general purpose registers, each eight bits long. They may be used as a source or destination for arithmetic operations, as index registers and for 1/O transfers.
The processor can address up to 32768 bytes of memory in four pages of 8192 bytes each. Processor instructions are one, two or three bytes long, depending on the instruction. Variable length instructions tend to conserve memory space since a one or two-byte instruction may often be used rather then a three-byte instruction. The first byte of each instruction always specifies the operation to be performed and the addressing mode to be used. Most instructions use six of the first eight bits for this purpose, with the remaining two bits forming the register field. Some instructions use the full eight bits as an operation code.

The most complex direct instruction is three bytes long and takes $9,6 \mu$ s to execute assuming that the processor is running at its maximum clock rate and has an associated memory with cycle and access times of 620 ns or less. The minimum instruction execution time is $4,8 \mu \mathrm{~s}$.
The clock input to the processor is a single phase pulse train and uses only one interface pin. It requires a normal TTL voltage swing, so no special clock driver is required.
The Data Bus and Address signals are three-state to provide convenience in system design. Memory and I/O interface signals are synchronous so that Direct Memory Access (DMA) and multiprocessor operations are easy to implement.

The interrupt mechanism is implemented as a single level, address vectoring type. Address vectoring means that an interrupting device can force the processor to execute code at a device-determined location in memory.

The 2650A is a functional equivalent of the 2650 with a new mask design which provides improved device-operating margins. Both versions are pin-for-pin compatible.

Features

- general purpose processor
- single chip
- fixed instruction set
- parallel 8-bit binary operations
- 40-pin dual in-line package
- n-channel silicon gate MOS technology
- TTL compatible inputs and outputs
- single power supply of +5 V
- seven general purpose registers
- return address stack, 8 deep, on chip
- 32 k byte addressing range
- separate address and data lines
- variable length instructions of 1,2 or 3 bytes
- 75 instructions
- machine cycle time of $2,4 \mu \mathrm{~s}$ at clock frequency of $1,25 \mathrm{MHz}$
- direct instructions take 2,3, or 4 cycles
- single phase TTL level clock input
- static logic
- three-state output buses
- register, immediate, relative, absolute, indirect, and indexed addressing modes
- vector interrupt format

Pin configuration - I package

microprocessors
technical data - mos

Addressing modes

The 2650 processor can develop addresses in eight ways:

- register addressing
- immediate addressing
- relative addressing
- relative, indirect addressing
- absolute addressing
- absolute, indirect addressing
- absolute, indexed addressing
- absolute, indirect, indexed addressing

Interface signal definition

ADRO-ADR12 - The low order 13 bits of address for memory access are on these pins. ADRO-ADR7 are also used in two-byte I/O instructions. These outputs are three-state buffers controlled by ADREN.
ADR13-E/ $\overline{N E}$ - This multiplexed output signal delivers the ADR 13 address bit when $\mathrm{M} / 1 \mathrm{O}$ is in the M phase or discriminates between Extended and Non-Extended I/O instructions when M / IO is in the $1 / O$ phase.
ADR14-D/ $\overline{\mathbf{C}}$ - Address 14 or Data/Control is a multiplexed output signal. This pin delivers the ADR14 address bit when M / IO is in the M phase or discriminates between Data and Control I/O instructions when M / IO is in the $1 / O$ phase.
$\overline{\text { ADREN }}$ - Address Bus Enable is an input providing the external control for the ADRO-ADR12 three-state buffer drivers.

DBUS0-DBUS7 - This is the 8-bit, bidirectional three-state bus over which data is communicated into or out of the processor.
$\overline{\text { DBUSEN }}$ - Data Bus Enable is an input that controls the three-state buffer drivers for DBUSO to DBUS7.
OPREQ - Operation Request is an output signal that informs external devices that the information on other output pins is valid.
$\overline{\text { OPACK }}$ - Operation Acknowledge is an input which is used by external devices to end an I/O or memory signalling sequence.
$\mathrm{M} / \overline{\mathrm{IO}}$ - Memory/Input-Output. This output informs external devices whether Memory or Input/Output functions are being performed.
$\overline{\mathbf{R}} / \mathbf{W}$ - This output signal describes an I/O or memory operation as Read or Write, and defines whether the bidirectional DBUS is transmitting or receiving.

WRP - This Write Pulse is generated during write sequences and may be used to strobe memory or I/O devices.

SENSE - Is an input, independent of the other I/O signals, that provides a direct input to the processor.

FLAG - This pin provides a direct output signal that is completely independent of the other I/O signals.
$\overline{\text { INTREQ }}$ - Interrupt Request. This input is used by external devices to force the processor into the interrupt sequence.
INTACK - Interrupt Acknowledge is the signal used by the processor to inform external devices that it has entered an interrupt sequence.
$\overline{\text { PAUSE }}$ - Pause is used to temporarily stop the processor at the end of the current instruction. It may stop processing for an indefinite length of time and is available to use for DMA (Direct Memory Access).
RUN/ $\overline{\text { WAIT }}$ - Informs external circuits as to the Run/Wait status of the 2650 processor.
RESET - Is an input that resets the program counter to zero and clears the interrupt inhibit bit.
CLOCK - This is the only clock input to the processor. It accepts standard TTL levels.
$V_{C C}-+5 \mathrm{~V}$ power.
GND - The logic and power supply ground for the processor.

Processor hardware architecture

A block diagram of the processor is shown below. The first, second, and third bytes of instructions are read into the processor on the data bus and loaded into the Instruction Register, Holding Register, and Data Bus Register, respectively. The instructions are decoded through a combination of ROM and random logic.

The ALU performs arithmetic, Boolean, and combinatorial shifting functions. It operates on eight bits in parallel and utilizes carry-look-ahead logic. A second adder is used to increment the instruction address register and to calculate operand addresses for the indexed and relative addressing modes. This separate address adder allows complex
addressing modes to be implemented with no increase in instruction execution time.

The General Purpose Register Stack and the Subroutine Return Address Stack are implemented with static RAM cells. The Register Stack consists of seven 8 -bit registers. The Subroutine Stack can contain eight 15 -bit addresses, thereby allowing eight levels of subroutine nesting. Placing the Subroutine Stack on the chip allows efficient ROMonly systems to be implemented in some applications. Separate 15 -bit Instruction Address and Operand Address Registers are provided. The 2650 is an 8 -bit binary processor with $B C D$ capability.

Program Status Word

The Program Status Word (PSW) increases the flexibility and processing power of the 2650 . The PSW is a special purpose register within the processor that contains status and control bits.

It is divided into two registers called the Program Status Upper (PSU) and Program Status Lower (PSL). The PSW bits may be tested, loaded, stored, preset, or cleared using the instructions which affect the PSW. The bits are utilized as follows:
PSL

7	6	5	4	3	2	1	0
CC 1	CCO	IDC	RS	WC	OVF	COM	C

CC1 Condition Code One WC With/Without Carry
CC0 Condition Code Zero OVF Overflow
IDC Interdigit Carry
RS COM Logical/Arith. Compare
Register Bank Select C Carry/Borrow
technical data - mos

Instruction set

mnemonic		op code	format*	description of operation	affects	cycles
	z	000000	12	Load Register Zero	CC (Note 1)	2
	1	000001	21	Load Immediate	CC (Note 1)	2
	R	000010	2R	Load Relative	CC (Note 1)	3
	A	000011	3A	Load Absolute	CC (Note 1)	4
	Z	110000	12	Store Register Zero ($r \neq 0$)	CC (Note 1)	2
	R	110010	2 R	Store Relative	-	3
	A	110011	3 A	Store Absolute	-	4
ADD	Z	100000	12	Add to Register Zero w/wo Carry	C, CC (Note 1), IDC, OVF	2
	1	100001	21	Add Immediate w/wo Carry	C, CC (Note 1), IDC, OVF	2
	R	100010	2 R	Add Relative w/wo Carry	C, CC (Note 1), IDC, OVF	3
$\begin{aligned} & \text { O} \\ & \stackrel{U}{\#} \\ & \text { E } \\ & \text { 定 SUB } \end{aligned}$	A	100011	3 A	Add Absolute w/wo Carry	C, CC (Note 1), IDC, OVF	4
	Z	101000	12	Subtract from Register Zero w/wo Borrow	C, CC (Note 1), IDC, OVF	2
	1	101001	21	Subtract Immediate w/wo Borrow	C, CC (Note 1), IDC, OVF	2
	R	101010	2 R	Subtract Relative w/wo Borrow	C, CC (Note 1), IDC, OVF	3
	A	101011	3 A	Subtract Absolute w/wo Borrow	C, CC (Note 1), IDC, OVF	4
DAR		100101	12	Decimal Adjust Register	CC (Note 2)	3
AND	z	010000	12	AND to Register Zero ($r \neq 0$)	CC (Note 1)	2
	1	010001	21	AND Immediate	CC (Note 1)	2
	R	010010	2 R	AND Relative	CC (Note 1)	3
	A	010011	3 A	AND Absolute	CC (Note1)	4
$\begin{aligned} & \overline{0} \\ & \text { OiOR } \\ & \text { IOR } \end{aligned}$	Z	011000	12	Inclusive OR to Register Zero	CC (Note 1)	2
	।	011001	21	Inclusive OR Immediate	CC (Note 1)	2
	R	011010	2 R	Inclusive OR Relative	CC (Note 1)	3
	A	011011	3A	Inclusive OR Absolute	CC (Note 1)	4
EOR	Z	001000	12	Exclusive OR to Register Zero	CC (Note 1)	2
	1	001001	21	Exclusive OR Immediate	CC (Note 1)	2
	R	001010	2R	Exclusive OR Relative	CC (Note 1)	3
	A	001011	3 A	Exclusive OR Absolute	CC (Note 1)	4
	z	111000	12	Compare to Register Zero Arithmetic/Logical	CC (Note 3)	2
	1	111001	21	Compare Immediate Arithmetic/Logical	CC (Note 4)	2
	R	111010	2 R	Compare Relative Arithmetic/Logical	CC (Note 4)	3
	A	111011	3A	Compare Absolute Arithmetic/Logical	CC (Note 4)	4
$\begin{aligned} & \text { \# RRR } \\ & \text { Ni RRL } \end{aligned}$		010100	12	Rotate Register Right w/wo Carry	C, CC, IDC, OVF	2
		110100	12	Rotate Register Left w/wo Carry	C, CC, IDC, OVF	2
BCT	R	000110	2R	Branch On Condition True Relative	-	3
	A	000111	3B	Branch On Condition True Absolute	-	3
	R	100110	2 R	Branch On Condition False Relative	-	3
	A	100111	3B	Branch On Condition False Absolute	-	3
	R	010110	2R	Branch On Register Non-Zero Relative	-	3
	A	010111	3 B	Branch On Register Non-Zero Absolute	-	3
BIR	R	110110	2 R	Branch On Incrementing Register Relative	-	3
	A	110111	3B	Branch On Incrementing Register Absolute	-	3

[^3]
Notes:

[^4]
microprocessors

technical data - mos

Programmable Communications Interface (PCI) 2651

Applications

- intelligent terminals
- network processors
- front end processors
- remote data concentrators
- computer to computer links
- serial peripherals

The Signetics 2651 PCI is a universal synchronous/ asynchronous data communications controller chip designed for microcomputer systems. It interfaces directly to the Signetics 2650 microprocessor and may be used in a polled or interrupt driven system environment. The 2651 accepts programmed instructions from the microprocessor and supports many serial data communication disciplines, synchronous and asynchronous, in the full or half-duplex mode.

The PCI serializes parallel data characters received from the microprocessor for transmission. Simultaneously, it can receive serial data and convert it into parallel data characters for input to the microcomputer.

The 2651 contains a baud rate generator which can be programmed to either accept an external clock or to generate internal transmit or receive clocks. Sixteen different baud rates can be selected under program control when operating in the internal clock mode.

The PCI is constructed using Signetics' n-channel silicon gate depletion load technology and is packaged in a 28-pin DIP.

Features

- Synchronous operation

5 to 8-bit characters
single or double SYN operation
internal character synchronization transparent or non-transparent mode automatic SYN or DLE-SYN insertion SYN or DLE stripping odd, even, or no parity local or remote maintenance loop back mode baud rate: d.c. to $0,8 \mathrm{M}$ baud (1 x clock)

- Asynchronous operation

5 to 8 -bit characters
$1,1 \frac{1}{2}$ or 2 stop bits
odd, even, or no parity
parity, overrun and framing error detection line break detection and generation
false start bit detection
automatic serial echo mode
local or remote maintenance loop back mode baud rate: d.c. to $0,8 \mathrm{M}$ baud (1 x clock)
d.c. to 50 k baud (16 x clock)
d.c. to $12,5 k$ baud ($64 \times$ clock)

Pin designation

pin no.	symbol	name and function	type
27, 28, 1, 2, 5-8	$\mathrm{D}_{0}-\mathrm{D}_{7}$	8-bit data bus	1/O
21	RESET	Reset	1
12, 10	$A_{0}-A_{1}$	Internal register select lines	1
13	\bar{R} / W	Read or write command	1
11	$\overline{\mathrm{CE}}$	Chip enable input	1
22	$\overline{\text { DSR }}$	Data set ready	1
24	$\overline{\mathrm{DTR}}$	Data terminal ready	0
23	$\overline{\mathrm{RTS}}$	Request to send	0
17	$\overline{\mathrm{CTS}}$	Clear to send	1
16	$\overline{\text { DCD }}$	Data carrier detected	1
18	$\overline{T \times E M T} / \overline{\mathrm{DSCHG}}$	Transmitter empty or data set change	0
9	$\overline{T \times C}$	Transmitter clock	1/0
25	$\overline{R \times C}$	Receiver clock	1/0
19	$T \times D$	Transmitter data	0
3	$R \times D$	Receiver data	1
15	TXRDY	Transmitter ready	0
14	$\overline{R \times R D Y}$	Receiver ready	0
20	BRCLK	Baud rate generator clock	1
26	VCC	+5 V supply	1
4	GND	Ground	1

Pin configuration - I package

Block diagram

The PCI consists of six major sections. These are the transmitter, receiver, timing, operation control, modem control and SYN/DLE control. These sections communicate with each other via an internal data bus and an internal control bus. The internal data bus interfaces to the microprocessor data bus via a data bus buffer.

Other features

- internal or external baud rate clock
- 16 internal rates - 50 to 19200 baud
- double buffered transmitter and receiver
- full or half-duplex operation
- fully compatible with 2650 CPU
- TTL compatible inputs and outputs
- single 5 V power supply
- no system clock required
- 28-pin dual in-line package

microprocessors

technical data - mos

Programmable Communications Interface (continued)

Table 1 Baud rate generator characteristics - crystal frequency $=5,0688 \mathrm{MHz}$

theoretical baud rate	actual frequency $16 x$ clock	frequency $16 \times$ clock	duty percentage error	cycle $\%$	divisor

Note
$16 x$ clock is used in asynchronous mode. In synchronous mode clock multiplier is $1 x$ and duty cycle is 50% for any baud rate.

Table 2 CPU-related signals

pin name	pin no.	input/output	function
VCC	26	1	+5 V supply input.
GND	4	Ground.	
RESET	21	A high on this input performs a master reset on the 2651. This signal asynchronously terminates any device activity and clears the Mode, Command and Status registers. The device assumes the idle state and	
		remains there until initialized with the appropriate control words.	

$A_{1} \cdot A_{0}$	10,12	I
\bar{R} / W	13	I
$\overline{C E}$	11	।

$\mathrm{D}_{7}-\mathrm{D}_{0}$	$8,7,6,5$ $2,1,28,27$	$1 / \mathrm{O}$
$\overline{\text { T×RDY }}$	15	0

$\overline{R \times R D Y} \quad 14 \quad 0$
$\overline{T \times E M T} / \overline{\mathrm{DSCHG}} 18 \quad 0$

Address lines used to select internal PCI registers.
Read command when low, write command when high.
Chip enable command. When low, indicates that control and data lines to the PCI are valid and that the operation specified by the $\overline{\mathrm{R}} / \mathrm{W}$, A_{1} and A_{0} inputs should be performed. When high, places the $D_{0}-D_{7}$ lines in the three-state condition.

8 -bit, three-state data bus used to transfer commands, data and status between PCI and the $\mathrm{CPU} . \mathrm{D}_{0}$ is the least significant bit; D_{7} the most significant bit.

This output is the complement of Status Register bit SRO. When low, it indicates that the Transmit Data Holding Register (THR) is ready to accept a data character from the CPU. It goes high when the data character is loaded. This output is valid only when the transmitter is enabled. It is an open drain output which can be used as an interrupt to the CPU

This output is the complement of Status Register bit SR1. When low, it indicates that the Receive Data Holding Register (RHR) has a character ready for input to the CPU. It goes high when the RHR is read by the CPU, and also when the receiver is disabled. It is an open drain output which can be used as an interrupt to the CPU.

This output is the complement of Status Register bit SR2. When low, it indicates that the transmitter has completed serialization of the last character loaded by the CPU, or that a change of state of the $\overline{\mathrm{DSR}}$ or $\overline{D C D}$ inputs has occurred. This output goes high when the Status Register is read by the CPU, if the TxEMT condition does not exist. Otherwise, the THR must be loaded by the CPU for this line to go high. It is an open drain output which can be used as an interrupt to the CPU.

microprocessors

technical data - mos

Multi-Protocol Communications Controller (MPCC) 2652

The 2652 Multi-Protocol Communications Controller (MPCC) is a monolithic n-channel MOS LSI circuit that formats, transmits and receives synchronous serial data while supporting bit-oriented or byte control protocols. The chip is TTL compatible, operates from a single +5 V supply, and can interface to a processor with an 8 or 16 -bit bidirectional data bus.

Features

- d.c. to 500k bps data rate
- protocol management
bit-oriented protocols (BOP): SDLC, ADCCP, HDLC byte-control protocols (BCP): BI-SYNC, DDCMP
- programmable operation

8 or 16 -bit three-state data bus
protocol selection - BOP or BCP
error control-CRC or VRC or no error check character length -1 to 8 -bits for BOP or 5 to 8 bits for BCP
SYNC or secondary station address comparison for BCP-BOP
idle transmission of SYNC/FLAG or MARK for BCP-BOP

- automatic detection and generation of special BOP control sequences, i.e., FLAG, ABORT, GA
- zero insertion and deletion for BOP
- short character detection for last BOP data character
- SYNC generation, detection, and stripping for BCP
- maintenance mode for self-testing
- common parameter control registers
- independent status and data registers for receive and transmit
- status indicator signals can be used as CPU interrupts
- TTL compatible
- 40-pin package
- single +5 V supply

Applications

- intelligent terminals
- network processors
- front end communications
- remote data concentrators
- communication test equipment
- computer to computer links

Pin configuration - I package

Pin designation

mnemonic	pin no.	type	name and function
DB15-DB00	$\begin{aligned} & 17.10 \\ & 24.31 \end{aligned}$	1/O	Data Bus. DB07-DB00 contain bidirectional data while DB15-DB08 contain control and status information to or from the processor. Corresponding bits of the high and low order bytes can be WIRE OR'ed into an 8 -bit data bus.
A2-A0	19-21	1	Address Bus. A2-A0 select internal registers. The four 16 -bit registers can be addressed on a word or byte basis. See Register Address section.
BYTE	22	1	Byte. Single byte (8-bit) data bus transfers are specified when this input is high. A low level specifies 16 -bit data bus transfers.
CE	1	1	Chip Enable. A high input permits a data bus operation when DBEN is activated.
R/W	18	1	Read/Write. \bar{R} / W controls the direction of data bus transfer. When high, the data is to be loaded into the addressed register. A low input causes the contents of the addressed register to be presented on the data bus.
DBEN	23	1	Data Bus Enable. After A2-AO, CE, BYTE and $\overline{\mathrm{R}} / \mathrm{W}$ are set up, DBEN may be strobed. During a read, the three-state data bus (DB) is enabled with information for the processor. During a write, the stable data is loaded into the addressed register and TxBE will be reset if TDSR was addressed.
RESET	33	1	Reset. A high level initializes all internal registers and timing.
MM	40	1	Maintenance Mode. MM intemally gates TxSO back to R×SI and TxC to RxC for off-line diagnostic purposes. The RxC input is disabled when MM is asserted.

Pin designation
\(\left.$$
\begin{array}{llll}\hline \text { mnemonic } & \text { pin no. } & \text { type } & \begin{array}{l}\text { name and function }\end{array} \\
\text { RxE } & 8 & \begin{array}{l}\text { Receiver Enable. A high level input permits the processing of RxSI data. A low level } \\
\text { disables the receiver logic and initializes all receiver registers and timing. }\end{array}
$$

Receiver Active. RxA is asserted when the first data character of a message is ready

for the processor. In the BOP mode this character is the address. The received

address must match the secondary station address if the MPCC is a secondary station.

In BCP mode, if Strip-SYNC (PCSAR 13) is set, the first non SYNC character is the

first data character; if Strip-SYNC is zero, the character following the second SYNC

is the first data character. In the BOP mode, the closing FLAG resets RxA. In the\end{array}\right]\)| BCP mode, RxA is reset by a low level at RxE. |
| :--- | :--- | :--- |

[^5]
Programmable Peripheral Interface (PPI) 2655

The 2655 PPI is designed for 2650 microcomputer systems. It consists of three ports ($24 \mathrm{I} / \mathrm{O}$ pins), which can be individually programmed to function as input, output or bidirectional ports. Interface with the 2650 is via an eightbit bidirectional data bus.

The PPI may be programmed for five major modes of operation: static I/O, strobed I/O, bidirectional I/O, serial I/O, or serial/timer I/O. In the serial/timer mode, parallel-to-serial or serial-to-parallel conversion of data operates simultaneously with the timer on one of the three ports.

Features

- five selectable major operating modes:
static I/O
strobed I/O
bidirectional I/O
serial I/O
serial/timer I/O
- three ports (A, B and C) with 24 programmable I / O pins
- completely TTL compatible
- 3 MHz programmable timer or event counter
- fully compatible with the 2650 microprocessor
- direct bit set/reset capability of each bit for all three ports
- ability to source 1 mA at $1,5 \mathrm{~V}$
- 300 ns port read/write access time
- operates in a polled or interrupt driven system environment
- 40-pin dual in-line package
- single +5 V supply

Pin configuration - I package

Block diagram

microprocessors

technical data - mos

Programmable Peripheral Interface (continued)

Operation
The following is a functional description of the five operating modes of the PPI. Each mode is selected via a mode control word. Interrupt generation and interrupt enable/disable functions are available with each mode except the static mode which operates entirely under program control.

Static mode

All three ports can operate in the static I/O mode. This mode allows each pin of each port to be either an input pin or an output pin. A logic '1' written to a pin of a selected port from the 2650 will condition that pin to be an input or output pin. Writing a logic ' O ' to the pin conditions that pin to be an output pin only. Outputs are latched while inputs are not. Each pin may be set or reset on an individual basis by a "set/reset" command.

Strobed I/O mode

In this mode, data may be transferred to or from a specified port in conjunction with strobe or "handshaking" signals. Ports A and B can operate in the strobed $1 / O$ mode and port C bits are used as control and status bits. In this mode both inputs and outputs are latched, and each port can be either an input or output.

Bidirectional I/O mode

This mode provides a means for communicating with a peripheral device over a single eight-bit bus with both transmitting and receiving capability. Port A operates in this mode with Port C pins providing "handshaking" signals for
status and control. Both inputs and outputs are latched and port direction is determined by a control signal from the peripheral.
Serial I/O mode
This mode provides a means for communicating with a peripheral device on a bit serial basis through Port B. Parallel data from the CPU will be shifted out to the peripheral over the least significant bit of Port B (PBO). Eight clocks will be required for a complete character transfer. The eight-bit character will be repeatedly shifted out until the CPU presents another character to Port B.

For the serial in mode, data is input from the peripheral at the most significant bit of Port B (PB7). Eight clocks will be required to assemble the eight-bit character. An interrupt request will signal the CPU for character transfer.

Timer mode

This mode enables the PPI to perform time interval measurements, pulse width measurements, and event counting. This timing function is performed during the serial/timer mode, and is restricted to Port B only. The mode is initiated by selecting the desired operation and loading a 16 -bit down counter with an initial value. The counter does not start counting until the upper eight bits have been loaded. An interrupt can be generated to signal the CPU when the timer reaches a zero count.

Pin definitions

pin no.	pin name	type	function
27-34	D7-D0	1/O	Eight-bit three-state bidirectional data bus. All data and command transfers are made using this bus. DO is the least-significant bit; D7 is the most-significant bit.
35	Reset	1	Resets all internal storage elements, including the data latches and command registers. Resets ports A, B and C to accept input data, and operating mode to static mode. A functionally equivalent on-chip power-on reset is also provided.
8,9	A1, A0	1	Address lines used to select internal PPI modes or registers. Indicates control or data words to be placed on the data bus. Used in conjunction with the $\overline{\mathrm{R}} / \mathrm{W}$ line.
5	$\overline{\mathrm{R}} / \mathrm{W}$	I	When low, gates the selected register to the data bus. When high, gates the contents of the data bus into the selected register.
6	$\overline{C E}$	1	When low, identifies that control and data lines to the PPI are valid.
36	$\overline{\text { SCLK }}$	1	Provides a serial clock for the parallel-to-serial or serial-to-parallel conversion.
$\begin{aligned} & 37.40 \\ & 1-4 \end{aligned}$	PA7-PAO	I/O	An eight-bit three-state quasi-bidirectional port. * PAO is the least-significant bit; PA7 is the most-significant bit.
25-18	PB7-PB0	I/O	An eight-bit quasi-bidirectional port. * PBO is the least-significant bit; PB7 is the mostsignificant bit.
			Port B also has parallel-to-serial or serial-to-parallel conversion capability with PBO, 7 being either the serial output or input respectively. Data is double buffered.
			Port B can also operate as a 16 -bit binary timer, as an event counter, or as a pulse width indicator. An output is generated whenever the counter is decremented to the all-zero state.
10-17	PC7-PC0	1/0	A eight-bit quasi-bidirectional port.* PCO is the least-significart bit; PC7 is the mostsignificant bit. Port C bits are also used as control and status signals in conjunction with ports A and B. When the pin bit is used as a strobe input, the line receives an external strobe input which clocks information from port A or port B into the port A or port B data latches.
			When the pin is used as a status line, the line indicates port A or port B status condition which may be used as an interrupt input to the 2650 .
26	VCC	1	+5 V supply.
7	GND	1	Ground.

* A quasi-bidirectional port allows each bit to be designated as input or output under program control. If any bit of the port is set to a ' 1 ', that bit becomes an input or output depending on the usage of the port pin. If the peripheral is driving the port bit (i.e. overriding the logic ' 1 ' condition produced by the internal port pull-up resistor), then the bit is an input. If the peripheral is receiving from the port bit, then a ' 0 ' or ' 1 ' written to the port will be transmitted to the peripheral.

microprocessors

technical data - mos

System Memory Interface (SMI)
2656

The 2656 System Memory Interface (SMI) is a mask programmable circuit with on-chip memory, I/O, and timing (clock) functions. It is usable either in 2-chip or multi-chip microcomputer systems. Used with the 2650 microprocessor, it provides a 2 -chip microcomputer. This 2 -chip microcomputer offers the user 2 kx 8 bits of ROM, 128×8 bits of RAM, and an 8 -bit multi-function I/O port.
Used as a system interface in a multi-chip microcomputer, with large memory and/or additional peripheral requirements, the programmable versatility of the SMI provides decoded chip enable outputs. These outputs connect directly to other memory or I/O functional blocks with few, if any, requirements for additional interfacing chips. This reduces both chip count and cost in complex microcomputer systems.

The 2656 is processed using Signetics' n-channel silicon gate technology. Only a single power supply of +5 V is needed.

Features

- $2 \mathrm{k} \times 8$ mask programmable ROM
- 128×8 static RAM
- 8 multi-purpose pins for either chip enables or I/O bits
- 8-bit latch for either I/O or MPU storage
- internal clock generator with crystal, RC, or external timing source
- system power-on reset
- 40-pin dual in-line package
- single +5 V supply
- 2-chip microcomputer
- system control for multi-chip microcomputers eliminates or reduces TTL support circuitry for memory and I / O device selection
- from small ($2 \mathrm{k}-2$ chip) to 32 k microprocessor-based systems.

Pin configuration - I package

Pin definitions

pin no.	pin name	function
38-40, 1-5	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	8-bit bidirectional data bus. All data transfers between the MPU and ROM, RAM, Latch and X pins are made using this bus.
15-32	PGA inputs	18 PGA inputs that are used to determine SMI operation during the current MPU cycle. These inputs should include:
18-32	$A_{0} \cdot A_{14}$	- MPU address bus. Address bus inputs occupy contiguous bit positions with A_{0} as the least-significant address bit.
16	OPREQ	- A control signal that specifies the valid state of address and control bus.
15,17	$\mathrm{M} / \overline{\mathrm{IO}}, \mathrm{WRP}$	- Optional signals. Possibilities include Memory or $1 / \mathrm{O}(\mathrm{M} / \overline{\mathrm{IO}})$, Write Pulse (WRP), external control signals, or additional high order address bits.
14	$\overline{\mathrm{R}} / \mathrm{W}$	A control signal from the MPU that indicates whether the requested operation is to be a Read or Write (0 or 1 respectively). This signal must not change while OPREQ is true.
10	CLOCK	Output clock to the MPU. The frequency is determined by the timing element and the mask programmable divisor (divided by $1,2,3,4$).
11, 12	$\mathrm{CK}_{1} / \mathrm{RST}^{\prime}, \mathrm{CK}_{2}$	Connections for the timing element. Only CK_{2} is necessary for an RC or external timing source. The $\mathrm{CK}_{1} /$ RST pin then becomes a power-on RESET output. Two pins are necessary for direct connection of a crystal.
33,13	$V_{C C}, G N D$	Power supply connection and ground.
$34-37,9-6$	$x_{0} \cdot x_{7}$	Multi-purpose I / O pins. These pins can be mask programmed as external memory or I/O Chip Enables, or bidirectional I/O Port data bits, or any combination of the two.

microprocessors

technical data - mos

System Memory Interface (continued)

Functional block descriptions

Data Bus Buffer

A three-state bidirectional 8 -bit bus transceiver for data transfer between the SMI and MPU.

Programmable Gate Array (PGA)

Provides select signal outputs for the internal ROM, RAM, Latch, and up to 8 multi-purpose I/O pins that are maskprogrammed as Chip Enables. A PGA output is active when the input variables match any one of 11 corresponding maskprogrammed product terms. The 18 input variables are normally address and control bus signals from the MPU and may be programmed as ' 1 ', ' 0 ', and 'don't care'. Each product term is a specified combination of the input variables.

Control and Clock

Generates the CLOCK output signal to the MPU and control signals for the ROM, RAM, and LATCH. A mask programmable frequency divider provides input frequency division by $1,2,3$ or 4 . The timing source is mask programmable and may be a crystal, RC, or external oscillator. If either of the latter two are designated as a timing source, the second timing pin becomes a RESET output to the MPU.

ROM

2048 bytes of mask-programmable Read Only Memory for storage of instructions and constants. The ROM base address is PGA mask programmable over the entire MPU address range. The ROM can be disabled by a mask option.

RAM

128 bytes of Read/Write Memory for MPU data storage and retrieval. The RAM base address is PGA mask programmable
over the entire MPU address range. RAM dominates over ROM if address overlap is intentionally mask programmed. The RAM can be disabled by a mask option.

Function Select (FS)

A 1×8 Function Select atray of mask -programmable contacts determine the function of each of the multi-purpose I/O pins ($\mathrm{X}_{0}-\mathrm{X}_{7}$). Two modes exist:

1. $C E$ - The X pin is an active low Chip Enable ($\overline{C E}$) for either external memory or an I/O port. PGA inputs receive the external address and MPU control signals required to generate the $\overline{\mathrm{CE}}$ output.
2. P - The X pin is a bidirectional I/O Port Data bit. A portion of the PGA provides the control signal to select the Port.

Latch

Holds output data for the multi-purpose I/O pins mask programmed as a mode P. The latch continues to function as a read/write element even if all multi-purpose I/O pins are programmed as chip enables. Thus, any X pin that is programmed as an external chip enable can have corresponding latch bits available for temporary data storage or software flags. To read an input pin, the corresponding latch bit must first be written to a ' 1 ' by the MPU program. This is done to disable all active outputs, changing them to passive pull-up outputs. This permits inputs to be sensed on the same pin. Subsequent reads of the same pin do not have to be preceded by a write if the state of the latch pin remains a ' 1 '.

microprocessors

technical data - mos

2650PC4000 Emulator board for 2656

The PC4000 is a circuit emulation of the 2656 , a 40 -pin NMOS-LSI system memory interface chip. The PC4000, in circuit board form, offers the engineer a system design aid. By designing with the PC-board emulator, specific ROM and PGA (programmable gate array) patterns can be determined for the user's application.

In utilizing the PC4000, the engineer-designer is able to implement the same functions as the 2656 . Through a cable and 40 -pin plug with a pin configuration identical to the 2656 , the user connects the PC4000 directly into his prototype system. He can access the 128×8 RAM, the preprogrammed ROM, and the gate array. The user can simulate the eight multi-function ports either as I/O ports or chip enables, the power-on reset, and the clock generator and divider.

The PC4000 emulator contains the same circuits that are available to the user on the 2656 Systems Memory Interface
chip. Functionally the PC4000 replaces the 2656 in the user's prototyping system through a pin-for-pin compatible plug and its 40 -wire ribbon cable attached to the PC4000. Identical circuit functionality of the 2656 chip is provided to the user by the functions of the PC Board.

In emulating the 2656, the speed of the board circuitry is equivalent to or faster than the on-chip circuitry. ROM is implemented with bipolar PROMs and on-chip RAM is implemented with the bipolar RAM packages. The programmable gate array (PGA) for the selection of the ROM and RAM enables and the I/O function selects are implemented with field programmable logic arrays (FPLAs).

The oscillator provided on the PC4000 has the same frequency dividers available as on the 2656. The oscillator divide ratio is implemented by the toggle switch settings.

Functional block descriptions

Input Buffer

This circuitry buffers the incoming signals from the MPU (specifically for the 2650 MPU , the addresses, A0-A14, and the 4 control signals, OPREQ, WRP, \bar{R} / W and $M / \bar{O})$.

Data Bus Transceiver

This circuitry buffers the incoming 8 -bit data bus from the MPU, and provides output drivers to the data bus.

FPLAs 1 and 2

FPLAs 1 and 2 represent a portion of the programmable gate array of the 2656 SMI chip. These 2 FPLAs decode the chip enable signals.

FPLAs 3 and 4

These FPLAs represent the remainder of the gate array. FPLA 3 and a portion of FPLA 4 generate the on-board ROM, RAM and port enable signals. The remainder of FPLA 4 is used to generate the data bus control signals.
Function Select and I/O Port Logic (via FPLAs 1-4)
The function select and I/O port logic allow the multipurpose pins of the 2656 to be individually selected as either an I/O port or a chip enable via eight switches, FSO-FS7. When assigned as chip enables, they must be programmed in FPLAs 1 and 2. When a multi-purpose pin is assigned as I/O or as an input port, the port address is programmed in FPLAs 1 and 2. When the FS switch is ON, the corresponding pin of the 2656 is selected as an I/O port. When the FS switch is OFF, the corresponding pin is selected as a chip enable.

Memory

Both ROM and RAM memory functions are implemented in bipolar PROM and RAM respectively. The memory chip enables are programmed in FPLAs 3 and 4. (See the PROGRAMMING section.)

Clock Divider, Reset Logic, and Internal Oscillator

This circuitry provides an internal oscillator with switches for frequency divide by $1,2,3$ or 4 . Reset logic is provided on the PC4000 to allow the user to reset the system during debug via an external switch closure, without the need for powering down. The reset logic is used when the RC or external oscillator modes are selected.
If the RC or crystal internal oscillator mode is desired, the frequency determining components must be installed on the emulator PCB. The pins on the header that correspond to the RC and Crystal pins are not used in this mode, and only the external Reset function is provided.

Part list

part number	quantity	description
7403	2	Open Collector Quad Nand
7404	3	Hex Inverter
7405	2	Open Collector Hex Inverter
74LS14	1	Hex Schmitt Trigger Inverter
7432	1	Quad 2-Input OR gate
74LS86	1	Quad 2-Input XOR
74109	1	Dual JK Flip-Flop
74116	1	Dual Quad D Latch with Clear
74126	4	Quad Three-state Buffer
74163	1	4-bit Binary Counter
8T28B	2	Bidirectional Data Bus Driver Receiver
8T97B	5	Three-state Hex Buffer
8T98B	2	Three-state Hex Inverter Buffer
82S101	4	Open Collector FPLA
82S115	4	512×8 PROM
82S09	2	64×9 BIPOLAR RAM
NE555	1	Timer
761-1-51,0 k	4	Resistor Dip Pak
	1	$10 \mathrm{k} \Omega$ Resistor
	1	$100 \mathrm{k} \Omega$ Resistor
	1	220Ω Resistor
		Note: All Resistors $1 / 4$ watt
	1	150 pF Capacitor
	2	$0,01 \mu \mathrm{~F}$ Capacitor
	5	$4,7 \mu \mathrm{~F}$ Capacitor
	14	0,1 $\mu \mathrm{F}$ Capacitor
	1	Edge Connector AMP
		225-21021-401-117
	2	8 -Position Dip Switch
	1	PC Board 2650/PC4000
	4	24-pin Dip Socket
	4	28-pin Dip Socket
	1	40-pin Dip Socket
	1	Cable Assembly

Required but not supplied:
Timing element for oscillator.

microprocessors

technical data - mos

Emulator board for 2656 (continued)

40-core cable pin configuration

The interface from the PC4000 to the user's system is a 40 -core cable with 40 -pin DIP plugs at both ends.

function	pin no.	pin no.	function
DBUS3	1	40	DBUS2
DBUS4	2	39	DBUS1
DBUS5	3	38	DBUS0
DBUS6	4	37	X3
DBUS7	5	36	X2
X7	6	35	X1
X6	7	34	X0
X5	8	33	NC
X4	9	32	ADDR14
CLK OUT	10	31	ADDR13
CLK 1	11	30	ADDR12
CLK2	12	29	ADDR11
VSS GND	13	28	ADDR10
R/W	14	27	ADDR9
M/I/O	15	26	ADDR8
OPREQ	16	25	ADDR7
WRP	17	24	ADDR6
ADDR0	18	23	ADDR5
ADDR1	19	22	ADDR4
ADDR2	20	21	ADDR3

* VDD for chip, no connection for board.

Note: Timing Element pins have alternative functions determined by connections W on the printed circuit board. CLK 1 is external reset out. To use, connect W (4) to W (5).
CLK 2 is external clock in. To use, connect W (2) to W (3).
CLK 2 not used: To use internal RC oscillator connect W (1) to W (2).
To use internal XTAL oscillator connect W (2) to W (8).

Edge conrrector

The edge connector for the 2650PC4000 is an AMP 225-21021-4-01-117 edge connector. This edge connector has 20 pins on 0,156 inch centres with the following pin configuration:

GND	1	A	GND
GND	2	B	GND
	3	C	C2X
	4	D	
	5	E	RESET OUT**
	6	F	CLK OUT** *
	7	H	RESET IN

Microprocessor prototyping card 2650PC1001

The 2650 PC 1001 is a complete microcomputer on a single printed circuit board. The heart of this computer is Signetics' 2650 Microprocessor; a single chip, n-channel MOS Integrated Circuit which contains the CPU and control sections of the classical general purpose computer architecture.
In addition to the Microprocessor, the 2650PC1001 contains both control and read/write memory, I/O ports, clock, and all the necessary buffering and interface circuits to permit data transfer both on and off the p.c.b.

Features

- 2650 Microprocessor
- 1 k bytes of ROM with PIPBUG*
- 1 k bytes of RAM (off-board expandable)
- 1 MHz crystal oscillator
- serial I/O (either TTY 20 mA current loop or RS232 - selectable by jumper wire)
- 2 eight-bit output ports
- 2 eight-bit input ports
- DMA capability
- LED display indicators
- data bus and address bus test points
- buffered data and address outputs
- single power supply $(+5 \mathrm{~V})^{* *}$
* Signetics' Loader and Debugging Program. (See appl. note SS50)
** Assumes RS232 I/O port is not used.

Memory

The memory of the 2650PC1001 is divided into two segments:
a. ROM with PIPBUG
b. RAM (Read/Write Memory)

The Read-Only Memory supplied with the card is the 82S129 Field Programmable type (PROM). Eight of these 256×4 devices are arranged to provide a 1 kx8 memory array. The 2650PC 1001 is supplied with the PIPBUG loader and debugger already programmed into the ROM. Since the devices are loaded into sockets, however, they can be easily replaced with other ROMs or PROMs programmed by the user.
The 1 kx 8 array is constructed with 2606 NMOS RAM devices. Since the 2606 is a 256×4 device, again 8 devices are used in the array.

Serial I/O

The serial I/O capability of the 2650PC1001 utilizes a unique serial I/O feature of the basic 2650 microprocessor. This feature allows serial data to be transferred directly into the 2650 under program control by using the sense and flag pins on the microprocessor.
Two types of serial I/O ports are available. The first is a teletype interface which can be directly connected to a teletype 20 mA current loop. The second is an RS232 interface which provides a connection for voltage-driven peripheral equipment. The selection of the particular interface to be used is made by connecting a jumper wire directly from the microprocessor flag and sense lines to the appropriate output port. If the RS232 interface is used, +12 and -12 V supplies are required in addition to the +5 V supply which operates the rest of the board.

Parallel I/O

Parallel I/O channels using the 2650's unique Non-Extended I/O mode are also provided. This mode allows a single byte instruction to select one of two distinct I/O devices. On the 2650PC1001, these two devices are represented by four separate data channels; two for reading and two for writing. The output (or write) channels are fully latched and buffered. The input (or read) channels are fully buffered. One read and one write channel represent a single I/O device. In addition to the Non-Extended I/O ports, the data and address buses, plus the appropriate control signals, are also available to provide the full extended I/O capability.

microprocessors

technical data - mos

Microprocessor prototyping card (continued)

Other I/O

A complete listing of the I/O pins, plus a brief description of any I/O signal not detailed above, is as follows:

1,2	Ground
4-11	Processor Data Bus*
12	Strobe to Enable Input Data Port
13	D/C Output*
14	DMA Control Input
15	Extended/Non-Extended Output*
16	Interrupt Acknowledge Output*
17	R/W Output*
18	Write Pulse Output*
19	Run/Wait Output*
20	Operation Request Output*
21	Memory/IO Output*
22	Operation Acknowledge Input*
23	Clock Output (or Input if on-board clock not used)
24	Operation Request Input for DMA
25	Reset Input*
26	Interrupt Request Input*
27	Pause Input*
28-32	Unused
33-47	Address Bus*
48	+12 V for RS232
49	-12 V for RS232
50	+5V
A, B	Ground
C	Not used
D-M	Non Extended Output Port "D"
N	Clock to load data into Output Port "D"
P	TTY serial data input (+)
R	TTY serial data input (-)
S	TTY serial data Output pull-up resistor (current loop +)
T	TTY serial data Output; TTL Level, open collector (current loop return)
U	RS232 ground
V	RS232 Output
W	TTY tape reader Output; TTL Level, open collector (+)
X	TTY tape reader Output pull-up resistor (-)
Y	RS232 Input
z	Clock to load data into Output Port "C"
a-h	Non-Extended Output Port "C"
j	Strobe to enable Input Port Control
k-u	Non-Extended Input Port "D"
v-c	Non-Extended Input Port "C"
d	+12 V for RS232
e	-12 V for RS232
f	+5V

Summary

The above is intended to provide a brief description of Signetics' 2650PC1001
Prototyping Board. More detailed information can be obtained from the following:
SS50 PIPBUG Application Note
SP50 2650PC1001 Manual (Detailed Description)
Serial I/O using Sense and Flag Application Note
2650BM 1000 Basic 2650 Microprocessor Manual

[^6]

Adaptable Board Computer (ABC) prototyping system 2650PC1500 2650KT9500

The Adaptable Board Computer, ABC 1500, is a modular microcomputer containing a CPU, memory, I/O ports and support circuitry. It is designed to cover a broad range of applications from software development to system hardware prototyping. Cost performance trade-offs have been carefully considered to achieve maximum flexibility and allow the card to be tailored to a variety of individual requirements.
The basic configuration consists of the 26508 -bit microprocessor, 512 bytes of read/write memory (four 2112 static RAMs), 1 k bytes of 2608 ROM with PIPBUG*, two 8 T31 I/O ports and buffering on data, address and control lines. A single +5 V supply will be required to power the card and communicate with a serial 20 mA current loop terminal.
Modifications to the basic system can be easily made to allow for various memory configurations and operating modes. Unused plated-through holes are provided for the PROM memory chips (82S115s). Other options are jumper selectable. The area on the card associated with each jumper is identified with a "Wx" mnemonic.

The ABC 1500 is sold either as a completely assembled and tested card (2650PC1500) or in kit form (2650KT9500).

Features

- expandable printed circuit card:
unused area on card filled with plated-through holes on $7,5 \mathrm{~mm}$ centres for wire-wrap sockets
- 1 k bytes of PIPBUG* ROM (in socket)
- 512 bytes of RAM
- two latched I/O ports - four non-extended I/O read/write user strobes
- three-state buffers on data, address and control lines
- serial input/output port
- single +5 V supply requirement (1,7 A max) for card and 20 mA current loop interface ($\pm 12 \mathrm{~V}$ supply for RS232 interface)
- simple memory and I/O port decoding with two 16 -pin DIPs
- interrupt and single step capability
- simple clock configured from dual monostable multivibrator
- 24 k memory expansion capability
- directly compatible with $4 k$ RAM card (2650PC2000) and power supply demonstration base (2650DS2000)
- card dimensions: 20 cm by $17,5 \mathrm{~cm}$ with a 100 -pin connector along the 20 cm dimension
* PIPBUG is a loader, editor, and debug program. See Table 1.

Options

- 1 k bytes of PROM in place of ROM
- 512 bytes of PROM or ROM in place of RAM
- asynchronous operation capability
- external clock input
- interrupt vector from port C

Interface

- terminal interface jumper selectable
a. W4 to W5 and W6 to W7 jumpers select the 20 mA current loop mode
b. W3 to W4 and W7 to W8 jumpers select the RS232 mode
- normally high input lines ($10 \mathrm{k} \Omega$ pull-up resistor on each): INTREQ, $\overline{P A U S E}, \overline{R E S E T}, \overline{W B A C}, \overline{W B A D}, C K C, C K D$
- plated-through holes are available at each connector pin to allow for insertion of wire-wrap pins
- edge connector supplied with card
- to allow for external clock input, remove jumper W9-W10
- asynchronous operation by removing jumper W1 to W2 and driving $\overline{\text { OPACK }}$
- during vectored interrupts, it is possible to allow port C to place the interrupt address on the data bus by removing jumper W21-W22 and jumpering W22-W23

Table 1 PIPBUG commands

alpha character input	command
A	alter memory
B	set breakpoint
C	clear breakpoint
D	dump memory to papertape
G	go to address
L	load memory from papertape
S	see and alter registers

Note: The program is entered by resetting the card. The terminal will then respond with an asterisk (*).

Memory configuration

All of page 0 is reserved for on-card memory (0 to 8191_{10}). Address lines A9, A11 and A12 are not decoded (Don't care signals) allowing two ICs to perform not only memory decoding but also I/O port decoding. As an added benefit, usable memory space exists at the top of page 0 (see memory map) due to the interleaving effect between the ROM and RAM memories. This memory space can be used as interrupt vector address locations in a negative direction from address location " 0 " (a negative relative instruction from address location " 0 " wraps around the first 8 k page).
There is a total of two blocks in the RAM structure, each of which contains 256 bytes of RAM. Since PIPBUG uses the first 63 RAM locations for temporary storage, the first actual user location is $1087_{10}\left(43 F_{16}\right)$ (there are seven other address locations corresponding to the first user location - see memory map). Starting at $43 F_{16}$, the range for on card RAM extends to address $1535_{10}\left(5 \mathrm{FF}_{16}\right)$, giving a total usable on-card space of 449 bytes.

The first external memory location for add-on memory is $8192_{10}\left(2000_{16}\right)$. All of page 1,2 , and 3 are available, giving a total memory expansion capability of 24 k .

Memory options

Modifications to the basic configuration can be made to provide a mix of RAM/PROM/ROM memories. PROM memories can be used in place of the PIPBUG ROM by removing the ROM from its socket and adding one or two 82 S 115 PROMs (512×8). Area and plated-through holes are provided on the card for insertion of sockets for the PROMs or the PROMs themselves. Decoding for the PROMs has been provided by ABC 1500 logic.
Data and address lines for 2112 RAMs and 82S129 PROMs or 82S229 ROMs are identical. It is, therefore, possible to use PROMs and/or ROMs in place of RAM. This option will require removal of the RAMs (two per block), and changing the jumper for each 256 byte block of PROM or ROM added. The jumper needed for each block of memory is as follows:

memory section	RAM jumper	PROM/ROM jumper
first block	W12-W13	W11-W13
second block	W15-W16	W14-W16

microprocessors

technical data - mos

Adaptable Board Computer (ABC) prototyping system (continued)

1/O Port configuration

Two ports (C and D) are implemented with 8 T 31 bidirectional ports and can be used for general purpose I/O. Each consists of 8 clocked latches with two sets of bidirectional inputs/outputs. Data written into one side of the port will appear inverted at the other side.

One side of each port (Bus B of the 8T31) is tied to the external data bus ($\overline{\mathrm{DBUSX}}$). The 2650 communicates with each port over this bus with one byte, non-extended I/O instructions. During 2650 activity with the ports, the ABC 1500 will provide four output strobes indicating the nature of the operation.

Table 2 Page 0 memory map

[^7]| strobe | function | strobe pulse width |
| :--- | :--- | :--- |
| WPC | write to Port C | duration of WRP |
| WPD | write to Port D | duration of WRP |
| RPC | read Port C | duration of OPREQ |
| RPD | read Port D | duration of OPREQ |

If no external logic is connected each port will be in the "read" mode ($\overline{\text { WBAX }}$ lines pulled high). The $\overline{\mathrm{RBAX}}$ lines are tied to ground to allow read/write control of the buses with just the $\overline{\text { WBAX }}$ lines. To allow control for three-stating the buses, the following jumpers must be removed:

The other side of each port (Bus A of the 8T31) is controlled by the user. Four control lines are used to read, write or three-state the buses.

control line				function
$\overline{\text { WBAD }}$	(1)	$\overline{\text { RBAD }}$	(0)	Read Port D
$\overline{\text { WBAD }}$	(0)	$\overline{\text { RBAD }}$	(0)	Write to Port D
$\overline{\text { WBAD }}$	(1)	$\overline{\text { RBAD }}$	(1)	Three-state D Bus
$\overline{\text { WBAC }}$	(1)	$\overline{\text { RBAC }}$	(0)	Read Port C
$\overline{\text { WBAC }}$	(0)	$\overline{\text { RBAC }}$	(0)	Write to Port C
$\overline{\text { WBAC }}$	(1)	$\overline{\text { RBAC }}$	(1)	Three-state C Bus

Line	Jumper
$\overline{\text { RBAC }}$	W19-W20
$\overline{\text { RBAD }}$	W17-W18

The clock for each port (CKC-Port C clock, CKD-Port D clock) is available at a connector pin for external control. These rormally "high" lines can be pulled low to disable writing to the ports from either the 2650 or the external device.

ABC 1500 edge connector signal list

pin no.	function						
1	GND	26	INTREQ	A	GND	d	OPC 3
2	GND	27	PAUSE	B	GND	e	OPC 4
3	NC*	28	NC*	C	$N C^{*}$	f	OPC 5
4	$\overline{\text { DBUSO }}$	29	$\overline{\text { RBAD }}$	D	OPD 0	g	OPC 6
5	DBUS 1	30	$N C^{*}$	E	OPD 1	h	OPC 7
6	DBUS2	31	$\stackrel{\text { RBAC }}{ }$	F	OPD 2	i	$N C^{*}$
7	$\overline{\text { DBUS3 }}$	32	NC*	H	OPD 3	k	RPD
8	DBUS4	33	A11	J	OPD 4	m	$\overline{\text { WBAD }}$
9	DBUS5	34	A13-E/ $\overline{N E}$	K	OPD 5	n	WPD
10	DBUS6	35	A12	L	OPD 6	p	CKD
11	DBUS7	36	A14-D/C	M	OPD 7	r	NC*
12	NC*	37	A9	N	$N C^{*}$	s	NC*
13	A14-D/C	38	A10	P	TTY serial in +	t	NC*
14	NC*	39	A8	R	TTY serial in -	u	NC*
15	A13-E/ $\overline{N E}$	40	A7	S	TTY serial out +	v	RPC
16	INTACK	41	A6	T	TTY serial out -	w	$\overline{\text { WBAC }}$
17	$\overline{\mathrm{R}} / \mathrm{W}$	42	A5	U	RS232 ground	x	WPC
18	WRP	43	A3	V	RS232 output	y	CKC
19	RUN/ $\overline{\text { WAIT }}$	44	AO	W	NC*	z	NC*
20	OPREQ	45	A1	X	NC*	$\overline{\mathrm{a}}$	NC*
21	$\mathrm{M} / \overline{\mathrm{IO}}$	46	A4	Y	RS232 input	万	NC*
22	OPACK	47	A2	Z	NC*	$\overline{\mathrm{c}}$	NC*
23	CLOCK	48	+12 V	a	OPC 0	ব	+12 V
24	TS	49	-12 V	b	OPC 1	$\overline{\mathrm{e}}$	-12 V
25	$\overline{\text { RESET }}$	50	+5V	c	OPC 2	F	+5 V

microprocessors

technical data - mos

Adaptable Board Computer (ABC) prototyping system (continued)

ABC 1500 parts list

quantity	description
1	PC1500 printed circuit board
1	edge connector - AMP 225-804-50
1	2650 8-bit static microprocessor
1	N7402 quad 2 -input NOR gate - 1/O strobe logic
1	N7416 hex inverter buffer - current loop interface
1	N74123 monostable multivibrator - clock for 2650
1	N74S138 3 line to 8 line decoder - control decode
1	8 T15 - EIA line driver - R232 driver
4	8T26 quad three-state driver/receiver - data and memory data buffer
2	8 T31 - bit latched bidirectional 1/O port
4	8 T 97 hex three-state driver - address and control line buffer
1	2608 static ROM (1024×8) - PIPBUG ROM - CN0035
4	2112 static RAM (256×4) - organized as 512 byte RAM
1	82S123 PROM (32×8) coded PROM CD 1500 - control decode
4	1 N 914 diode
1	2N2222 transistor
1	50 pF capacitor
1	300 pF capacitor
13	$0,1 \mu \mathrm{~F}$ capacitor
3	4,7 $\mu \mathrm{F}$ capacitor
2	220Ω resistor
6	$1 \mathrm{k} \Omega$ resistor
2	$2 \mathrm{k} \Omega$ resistor
1	$3,3 \mathrm{k} \Omega$ resistor
8	$10 \mathrm{k} \Omega$ resistor
1	$20 \mathrm{k} \Omega$ resistor
1	24-pin 2608 ROM socket - Robinson-Nugent ICN 246-54

Features

- 3-pass Resident Assembler
- $5,5 \mathrm{k}$ bytes assembler program
- socket for 512 bytes user defined PROM
- 2 k bytes RAM

Resident Assembler Board

- 365 user-definable symbols 2650PC1600
- 20 pre-defined symbols
- generation of error messages
- LIBR directive to create subroutine libraries
- compatible with PC1001, ABC1500 and DS2000
- paper tape editor facility
- single +5 V supply requirement (4 A max)
- card dimensions 20 cm by $17,5 \mathrm{~cm}$ with a 100 -pin connector along the 20 cm dimension

The 2650PC1600 is a resident assembler to be used with the PC1001 or ABC1500 prototyping boards. It also fits into the DS2000 power supply base.

The system consists of a printed-wiring board on which 11 PROMs containing the assembler program are mounted, together with 16 RAM ICs for use as storage during program assembly. The assembler has been designed for use with paper tape and so input and output are transmitted via a teletype. Alternatively, a fast paper tape reader may be used to advantage. An extra socket has been included on the PC1600 board for PROM containing a tape-reader control program

The PC1600 resident assembler accepts a program written in 2650 Assembly Language as input and produces a tape containing a hexadecimal translation of the program. This hexadecimal tape has a format suitable for input to the PC1001 or ABC1500 prototyping boards via the PIPBUG control program which is included on both these boards. The assembler is a three-pass type, that is the entire assembly language program is scanned three times by the assembler. On the first pass all the symbols defined by the user (up to a maximum of 365) are assigned values and stored in the RAMs on the PC1600 board and simple errors such as invalid symbols detected. During the second pass the internal logic of the program is checked and any further errors detected, the line-by-line assembly is performed and a full listing of the program, including any error messages, is printed out. On the third pass the hexadecimal tape is punched and a corresponding hexadecimal listing produced for reference.

The assembler program introduces several additional features over the cross assembler, the most important being four new error messages, 20 pre-defined symbols and a new assembler directive LIBR. This directive enables the user to assemble several tapes into one hexadecimal tape as part of the same program, this facilitates the creation of subroutine "libraries". The assembler also makes patching of a program in RAM easier by assembling the correct number of bytes for a line containing an error, so that these bytes may be altered without changing the memory locations of the rest of the bytes of the program.

PC1600 edge connector signal list

pin no.	function
1	GND
2	GND
4	DBUSO
5	DBUS1
6	DBUS2
7	DBUS3
8	DBUS4
9	DBUS5
10	DBUS6
11	DBUS7
17	R/W
18	WRP
20	OPREQ
21	M/IO
33	ABUS11
34	ABUS13
35	ABUS12
36	ABUS14
37	ABUS9
38	ABUS10
39	ABUS8
40	ABUS1
41	ABUS6
42	ABUS5
43	ABUS3
44	ABUS0
45	ABUS1
46	ABUS4
47	ABUS2
50	

4k Memory Card 2650PC2000

The 2650PC2000 is a 4 k Memory Card designed to be compatible with the 2650 microprocessor. It is composed of 32 NMOS, 1 k by 1 bit static RAMs, 21LO2, and organized in four groups of one kilobyte each. Decoding is provided to select one of the four groups and also distinguish the card in multi-card configurations. In a system application utilizing up to 8 cards (32 k), each card is uniquely identified by hardwired jumpers. No external decoding is required.
The decoding logic is sectioned into two blocks. The first block determines if the address identifies that card as being part of the 8 k page address. (The 2650 memory scheme is organized into 4 pages of $8 k$ each.) The second block uniquely locates 1 k bytes of memory on the board in the 8 k bytes of memory of the selected page. Each 1 k bank is individually selected by hardwired jumpers to the decoder.

Features

- requires only single +5 V supply
- industry standard 21L02 memories
- fully decoded for 32 k memory organization
- data bus buffered with three-state drivers/receivers
- accessable from microprocessor or DMA controller
- TTL compatible
- dimensions are $20 \times 17,5 \mathrm{~cm}$ with a $50-$ pin edge connector along 20 cm dimension
- typical power consumption of $4,5 \mathrm{~W}$

Signal definition

Memory control signals and address lines between the 2650 microprocessor and the 2650PC2000 are indicated in the block diagram. The $\overline{\text { OPEX }}$ control line is reserved for use with DMA controllers. Its function is similar to that of the OPREQ line from the 2650. When either of these lines are true and a memory operation is specified ($\mathrm{M} / \overline{\mathrm{O}}=\mathrm{High}$) the memory card is enabled to decode address lines AO-A14. When a bank is selected, the selected card control logic block allows the read-write line (\bar{R} / W) and write pulse (WRP) to pass to the memory array and also enable the external data bus drivers. When the operation is complete the memory card responds with a true condition on $\overline{\text { OPACK }}$.

Jumper address decoding

Jumpers are applied to designated plated-through holes identified by a " W n" mnemonic. To identify the card to be part of a particular page, jumper point W5 to one of the following:
W1 for page 0
W2 for page 1
W3 for page 2
W4 for page 3
To locate each of the 1 k bytes of the memory card in the selected memory page, four bank jumpers are required. The outputs of the decoder used to select one of eight 1 k byte memory segments (W6-W13) must be connected to the selected 1k bytes of memory on the 2650PC2000 (W14-W17).
Factory installed jumpers allow for immediate connection to a Demo System (DS1000/2000) which has $2 k$ of memory.
These jumpers have been connected as follows:
W1 to W5 (page 0)
W8 to W14
W9 to W15
W10 to W16
W11 to W17

2650PC2000 block diagram

2650PC2000 edge connector

pin no.	function	pin no.	function
1,2, A, B	GROUND	34	ABUS 13
4	$\overline{\text { DBUSO }}$	35	ABUS12
5	$\overline{\text { DBUS } 1}$	36	ABUS14
6	DBUS2	37	ABUS9
7	DBUS3	38	ABUS10
8	DBUS4	39	ABUS8
9	DBUS5	40	ABUS 7
10	DBUS6	41	ABUS6
11	DBUS 7	42	ABUS5
17	$\overline{\mathrm{R}} / \mathrm{W}$	43	ABUS3
18	WRP	44	ABUSO
20	OPREO	45	ABUS1
21	$\mathrm{M} / \overline{\mathrm{O}}$	46	ABUS4
22	$\overline{\text { OPACK }}$	47	ABUS2
24	OPEX	50, f	$V C C+5 \mathrm{~V}$
33	ABUS11		

microprocessors

technical data - mos

Microprocessor Demonstration System 2650DS2000

The Demo System 2000 (2650DS2000) is a hardware base for use with the 2650 CPU printed circuit board (PC1001) and allows the exercising of this card with user defined options. When the DS2000 is combined with a CPU board (PC1001) and a teletype (TTY), the user is equipped with everything he needs to exercise any of the software or hardware features of the 2650 . The DS2000 has a built-in power supply.

Features

- user-defined expansion capability from connector supplying address, data and control lines
- RS232 and TTY interface
- two extended and two non-extended I/O ports
- single step capability for program debugging
- display of address bus, data bus and the two non-extended I/O ports

Connectors

The 2650 CPU Board (PC1001) is inserted into the J8 connector to complete the demo system. The user printed circuit board is inserted into the J 7 connector. Both connectors are the same type (100 Pin Amphenol, series 225) and the numbered pins J 7 and J8 have the same signals (except pin 12). The lettered pins of J7 (pins A to g) are not used.

Displays

The address and data bus led displays reflect the information on these buses during each OPREQ (beginning of an external operation). Latches store the information until another OPREQ is received. The two non-extended port displays represent data on channel C (port 2) and channel D (port 1) during the OPREQ for each I/O operation. A logic one on these displays will turn "on" the leds and a logic zero will turn them "off".

DS2000 hardware base

Controls

The pause and step logic allows one instruction to be executed at a time by pushing the 'step' button when the Run/Pause switch is in the pause position. In this mode the Run/Wait display led will go off. The reset switch will reset the display latches and place all zeros in the 2650 instruction address register.

Connections to sockets J7 and J8

pin no.	function (J7 and J8)	pin no.	function (J7 and J8)	pin no.	function (J8 only)*	pin no.	function (J8 only)*
1	GND	26	INTREQ	A	GND	d	OPC 3
2	GND	27	PAUSE	B	GND	e	OPC 4
3	NC**	28	NC	C	NC	f	OPC 5
4	$\overline{\text { DBUSO }}$	29	NC	D	OPD 0	g	OPC 6
5	$\overline{\text { DBUS } 1}$	30	NC	E	OPD 1	h	OPC 7
6	DBUS2	31	NC	F	OPD 2	j	EIPC
7	DBUS3	32	NC	H	OPD 3	k	IPD 0
8	DBUS4	33	ABUS 11	J	OPD 4	m	IPD 1
9	DBUS5	34	ABUS 13	K	OPD 5	n	IPD 2
10	DBUS6	35	ABUS 12	L	OPD 6	p	IPD 3
11	DBUS7	36	ABUS 14	M	OPD 7	r	IPD 4
12^{*}	EIPD	37	ABUS 9	N	COPD	s	IPD 5
13	D/C	38	ABUS 10	P	TTY serial in +	t	IPD 6
14	$\overline{\text { DMA }}$	39	ABUS 8	R	TTY serial in -	u	IPD 7
15	E/ $\overline{N E}$	40	ABUS 7	S	TTY serial out +	v	IPC 0
16	INTACK	41	ABUS 6	T	TTY serial out -	w	IPC 1
17	$\overline{\mathrm{R}} / \mathrm{W}$	42	ABUS 5	\cup	RS232 ground	x	IPC 2
18	WRP	43	ABUS 3	V	RS232 output	y	IPC 3
19	RUN/WAIT	44	ABUS 0	W	TTY tape reader out +	z	IPC 4
20	OPREO	45	ABUS 1	\times	TTY tape reader out -	a	IPC 5
21	M/IO	46	ABUS 4	Y	RS232 input	万	IPC 6
22	OPACK	47	ABUS 2	z	COPC	$\overline{\mathrm{c}}$	IPC 7
23	CLOCK	48	+12 V	a	OPC 0	d	+12 V
24	OPEX	49	-12 V	b	OPC 1	e	-12 V
25	$\overline{\text { RESET }}$	50	+5V	c	OPC 2	9	+5V

* J7 has no connections to these pins.
** NC = No Connection.

microprocessors

technical data - mos

Microprocessor Demonstration System (continued)

Extended I/O DIL sockets			Non-extended I/O DIL sockets		
pin no.	function J5	function J6	pin no.	function J3	function J4
1	$\overline{\text { DBUSO }}$	ABUS 0	1	(Output Port C) 0	(Output Port D) 0
2	DBUS 1	ABUS 1	2	OPC 1	OPD 1
3	DBUS2	ABUS 2	3	OPC 2	OPD 2
4	DBUS3	ABUS 3	4	OPC 3	OPD 3
5	$\overline{\text { DBUS4 }}$	ABUS 4	5	OPC 4	OPD 4
6	DBUS5	ABUS 5	6	OPC 5	OPD 5
7	DBUS6	ABUS 6	7	OPC 6	OPD 6
8	DBUS7	ABUS 7	8	OPC 7	OPD 7
9	$\overline{\text { OPACK }}$	ABUS 8	9	Clock Output Port C	Clock Output Port D
10	$\mathrm{M} / \overline{\mathrm{OO}}$	ABUS 9	10	Enable Input Port C	Enable Input Port D
11	OPREQ	ABUS 10	11	(Input Port C) 7	(Input Port D) 7
12	RUN/ $\overline{\text { WAIT }}$	ABUS 11	12	IPC 6	IPD 6
13	WRP	ABUS 12	13	IPC 5	IPD 5
14	\bar{R} / W	ABUS 13	14	IPC 4	IPD 4
15	INTACK	ABUS 14	15	IPC 3	IPD 3
16	$E / \overline{N E}$	PAUSE	16	IPC 2	IPD 2
17	$\overline{\mathrm{DMA}}$	INTREQ	17	IPC 1	IPD 1
18	D / \bar{C}	CLOCK	18	IPC 0	IPD 0

TTY interface DIL socket		RS232 interface connector	
pin no.	function J1	pin no.	function J2
1	TTY serial in +	1	RS232 ground
2	TTY serial in -	2	RS232 input
8	TTY tape reader out -	3	RS232 output
9	TTY tape reader out +	5	jumper
13	TTL serial out -	6	jumper
14	TTL serial out +	7	RS232 ground
		8	jumper
		20	jumper

Intelligent Typewriter Controller 2650PC3000

The 2650PC3000 is a basic text generating system requiring only six integrated circuits including one 2650 microprocessor. The serial communication link between the 2650 and the users terminal is accomplished with the flag and sense lines on the microprocessor. The 2650 PC3000 is used to control the storage of characters entered from a terminal with either a current loop or voltage swing capability ($\pm 7,5 \mathrm{~V} \mathrm{~min}$).

Control Characters allow the text to be printed out on the terminal with the capability for inserting unique characters at locations identified during text generation. When the text is printed out the entire text will be output unless a control character is detected. The microprocessor then stops the print-out and the operator enters the desired unique information. Another control character is then given to continue printing the text until all characters stored in memory are printed or until another stop character is detected. The stop character is recorded in memory just like any other character; however, it is not printed during text print-out.
Additional control characters allow for the erasure of the previous character typed or the erasure of the entire memory.

Features

- total of six IC packages
- operates at +5 V at a max of 500 mA
- interface to either current loop or device capable of sending and receiving a minimum voltage swing of $\pm 7,5 \mathrm{~V}$ referenced to signal ground
- 250 character storage capability
- card size less than $7,5 \times 10 \mathrm{~cm}$ with four screwed-on stand-offs at corners
- 1 MHz clock implemented with 74123 one-shot
- variable baud rate between 110 and 300 baud by trimmer pot adjustment of clock
- PROM mounted in 24 -pin socket
- card edge connector supplied with each card
- inputs provided for an external system reset

Parts descriptions

2650	8-bit TTL compatible N-Channel Micro- processor incorporating a serial I/O Port. (See 2650 Hardware Specification Manual for complete description - 2650BM 1000.)
2606	1024-bit static MOS, TTL compatible RAM memory organized as 256 words by 4 bits/ word
82S115	4096 -bit Bipolar TTL compatible PROM organized as 512 words by 8 bits/word
N7426	Quad 2-input high voltage NAND gate with open collector capable of driving voltage and current loop interfaces (20 mA max)
74123	Dual retriggerable monostable multi- vibrator with clear configured as a clock for 2650
Potentiometer	Helipot series 91C 50 k $\Omega, 9,5 \mathrm{~mm}$ cermet trimming potentiometer
PC edge	Amphenol - 225-21021-401-117 Cinch - 251-10-30-160

Miscellaneous components consist of eleven $1 / 4 \mathrm{~W}$ and two $1 / 2 \mathrm{~W}$ resistors, and two mica, one ceramic and one tantalum capacitor.

The following are required to make the board functional but are not supplied with the card:
RS232 type connector for voltage swing interface: DB25P or DB25S
Reset switch - (normally open, connected to +5 V)
Power supplies: +5 V

$$
\pm 15 \mathrm{~V}
$$

Terminal interface
 voltage mode terminal connection

The voltage mode interface is very similar to the standard RS232 interface except that the "signal" ground cannot be connected to "protective" ground. When a Cinch type 25 -pin connector (DB25P or DB25S) is used on an RS232 compatible terminal, the PC3000 should be connected as follows:

DB25P (DB25S) pin no.	$\begin{aligned} & \text { PC3000 edge } \\ & \text { connector pin no. } \end{aligned}$	РС3000 signal name
1	no connection	-
3	6	VS out +
2	J	VS in +
7	K	VS out - (signal GND)

current loop terminal connection

When a terminal is used that employs current loop transmission techniques the four wires from the terminal should be connected to the corresponding four pins on the PC3000 card: TTY out +, TTY out -, TTY in +, and TTY in-. on card - jumper point A to B and point D to F.

PC3000 command summary

key	function
Rubout (delete)	Erase last character in memory and echo the erased character. Additional preceding characters can be erased by continuing to depress the delete key.
Control and E	Erase entire memory. Control and B Used to indicate beginning of inserted message. Is not printed but stored in memory. Stops print-out when read from memory. Required once from each unique information entry.
Control and C	Continues print-out of memory after entry of unique information.
Control and P	Prints out contents of terminal memory.
Control and R	Software reset.

Note:
Bell will ring if any of the following are true

1. Entering more than 250 characters in memory.
2. Requesting print-out of an empty buffer.
3. Attempting to delete more characters than there are in memory.

PC3000 connector pin assignment

pin no.	function	pin no.	function
1	GND	A	GND
2	+5	B	+5
3	+15	C	+15 V
4	-15	D	-15
5	-	E	TTY in -
6	VS out +	F	TTY out +
7	TTY in +	H	TTY out -
8	-	J	VS in +
9	RESET	K	VS out - (Signal Ground)
10	GND	L	GND

VS - Voltage Swing

Intelligent typewriter controller

microprocessors

technical data - mos

Intelligent Typewriter Controller (continued)

Intelligent typewriter controller board layout

Microprocessor Prototyping Kit 2650KT9100

The KT9100 kit contains a 2650 microprocessor and enough chips to implement a small development system. Since the interface requirements of the 2650 are completely TTL compatible, no attempt has been made to limit the user's flexibility by dictating a fixed logic configuration. There is complete freedom in using standard SSI or MSI logic to adapt the microprocessor to the memory, I/O devices, or clock.

Several simple system examples are presented to enable quick set up and evaluation. Other configurations to adapt to individual requirements should become evident from these examples.

Parts descriptions

2112: The 2112 is a static 1024 -bit RAM organized as 256 words by $4 \mathrm{Bits} /$ Word. It is manufactured with n-channel, silicon gate, MOS technology and achieves an access time of less than 800 ns . No clocks are required, and the chip is powered from a single 5 V source.
82S115I: The 82S1151 is a 4096-bit Schottky-Clamped, bipolar PROM incorporating on-chip data output registers. It is field-programmable and fully TTL compatible with on-chip decoding and two chip enable inputs for easy memory expansion. Inputs to the device are pnp transistors with a maximum current requirement of $100 \mu \mathrm{~A}$.
8T31: The 8 T31 is an 8 -bit Bidirectional I/O Port designed to function as a general purpose I/O interface element. It consists of 8 clocked latches with two sets of bidirectional Inputs/Outputs allowing master control from either the microprocessor or from the I/O device.

8T26B: The 8T26B consists of four pairs of inverting three-state logic elements configured as Quad Bus Drivers/ Receivers with separate buffered receiver enable and driver enable lines. Both the driver and receiver gates have threestate outputs and low-current pnp inputs.

Circuit examples

Two circuit configurations are presented to indicate a possible program checkout approach. The first allows the use of RAM for program debugging. The second figure represents a possible final system configuration with the program fixed in PROM. Both circuits use the 8 T26s as bus buffers.

Parts list

part no.	aty	description
2650	1	CPU
2112	4	256×4 RAM
82 S115I	1	4 k PROM (Unprogrammed) 512×8
8T31I	2	8-bit Bidirectional I/O Port
8T26B	4	Quad Bus DR/REC

One-shot clock oscillator circuit

Crystal oscillator circuit

microprocessors
technical data - mos

Microprocessor Prototyping Kit (continued)

Example of initial program checkout configuration

Finalized configuration with program fixed in PROM

2650 Assembler Version 3.2 2650AS1000/1100

The 2650 assembly language (PIPHASM) is a symbolic language designed specifically to facilitate the writing of programs for the 2650 microprocessor.

The AS1000 is for 32 -bit or larger machines and the AS1100 is for 16 -bit machines.

The 2650 assembler is a program which accepts symbolic source code as input and produces a listing and/or an object module "Hexadecimal" format compatible to the two tape punching programs PIPHTAP (for acceptance by PIPBUG), PIPSTAP (for PROMs) and also to the simulator, PIPSIM.
The assembler is written in standard Fortran IV and is approximately 1250 Fortran card images in length. It is modular and may be executed in an overlay mode should memory restrictions make that necessary. It operates in a two-pass mode to build a symbol table, to issue helpful error messages, produce an easily readable program listing and output a computer-readable object module. This version of the assembler compiles into a 12 k word load module on the PDP-11/40 (16-bit words) and executes under DOS (8k) within a 28 k memory.

Availability

The 2650 assembler is available on both NCSS and GE timeshare. It is also available from Signetics on 9-track magnetic tape written in EBCDIC in 80 -character unblocked records at a density of 800 bpi.

Features

- forward references
- pseudo-ops to aid programming
- self-defining constants
- symbolic machine operation codes
- free format source code
- syntax error checking
- symbolic address assignment and references
- data creation statements
- storage reservation statements
- assembly listing control statements
- addresses can be generated as constants
- character codes may be specified as ASCII or EBCDIC
- comments and remarks may be encoded for documentation

Language requirements

I. Input requirements

Input to the assembler consists of a sequence of characters combined to form assembly language elements. These language
elements include symbols, instruction mnemonics, constants and expressions which make up the individual program statements that comprise a source program.
A. Characters

alphabetic:	A-Z
numeric	$0-9$
special characters	blank
	(left parenthesis
) right parenthesis
	+ add or positive value
	- subtract or negative value
	* asterisk
	'single quote
	, comma
	/ slash
	\$ dollar sign
	<less than sign
	$>$ greater than sign

B. Symbols

Symbols are formed from combination of characters. Symbols provide a convenient means of identifying program elements so they can be referenced by other elements.
C. Constants

A constant is a self-defining language element. Unlike a symbol, the value of a constant is its own "face" value and is invariant. Internal numbers are represented in $2 s$ complement notation. There are two forms in which constants may be written: the Self-Defining Constant and the General Constant.

Self-Defining Constant

The self-defining constant is a form of constant which is written directly in an instruction and defines a decimal value.
General Constant
The general constant is also written directly in an instruction, but the interpretation of its value is dictated by a code character and delimited by quotation marks. Its form can be binary, octal, decimal, hexadecimal, EBCDIC or ASCII.
D. Expressions

An expression is an assembly language element that represents a value. It consists of a single term or combination of terms separated by arithmetic operators. A term may be a valid symbolic reference, a self-defining constant or a general constant.

microprocessors

technical data - mos

2650 Assembler Version 3.2 (continued)

II. Fields

A statement prepared for processing by the assembler is logically divided into four fields, as indicated below. They are free form and are separated by at least one blank character. The name must begin in logical column 1.

| Label | Operation
 opcode | Operand
 operand(s) |
| :--- | :--- | :--- | Comments

Where:
Label field contains an optional label which the assembler will assign as the symbolic address of the first byte of the instruction.
Operation contains any of the 2650 processor mnemonic field operation codes or any assembler Directive. This field may include an expression which specifies a register or value as required by the instruction. All symbols used in this field must have been previously defined, i.e. no symbolic forward references are allowed.
Operand contains one or more operand elements such as field indirect address indicator, operand expression, index register specification, auto-increment/ auto-decrement indicator, constant specification, etc. depending on the requirements of the particular instruction.
Comments any characters following the operand field will field be reproduced in the assembly listing without processing. The Comments Field must be separated from the argument field by at least one blank.

III. Directives

There are eleven directives which the assembler will recognize. These assembler directives, although written much like processor instructions, are simply commands to the assembler instead of to the processor. They direct the assembler to perform specific tasks during the assembly process, but have no meaning to the 2650 processor. These assembler directives are:
ORG Set location counter
EQU Specify a symbol equivalence
ACON Define address constant
DATA Defines memory data
RES Reserve memory storage
END End of assembly
EJE Eject the listing page
PRT Printer control
SPC Space control
TITL Title
PCM Punch control

2650 Simulator Version 1.2
 2650SM1000/1100

The 2650 Simulator (PIPSIM) is a Fortran IV program which allows a user to simulate the execution of his program without utilizing the 2650 processor. The simulator executes the 2650 program via host computer software by maintaining its own internal Fortran storage registers to describe the 2650 program, the microprocessor registers, the ROM/RAM memory configuration, and the input data to be read dynamically from I/O devices. Inputs to the simulator are the object module (or the 2650 program in object format) produced by the 2650 assembler and a deck of user commands. The simulator can accommodate an object module of up to 8192 Bytes.

The output consists of a listing of the user's commands and a print out of both static and dynamic information as requested by the commands. The user may request traces of the processor status, dumps of the contents of memory, and recording of program timing statistics. Multiple simulations of the same program with different parameters may be executed during one simulation run.

The SM1000 is configured to operate on 32-bit or larger machines and executes under DOS (8 k) within a 28 k memory. The SM1100 is configured for 16 -bit machines and compiles into a 16 k word load module on a PDP-11/40.

Availability

The 2650 Simulator is available on both NCSS and GE timeshare. It is also available from Signetics on a 9-track magnetic tape written in EBCDIC in 80-character unblocked records at a density of 800 bpi.

Features

- cycle counter for timing estimates
- instruction fetch break points
- operand fetch break points
- trace facilities
- snapshot dumps
- patching facility
- statistical information generated
- easy-to-use command language
- optionally selected start and end addresses
- simulated registers may be displayed while the simulation program is executed
- simulated registers may be altered while the program is executing
- maintains a 2 k cell (easily modified to 8 k) to simulate a read/write RAM
- capability exists for configuring parts of simulator memory to look like ROM
- incorporates a 200 -byte first in, first out (FIFO) buffer to store the data read from a simulated input device
- establishes initial program conditions
- monitors execution sequences

User commands

Commands specify how the program is to run and what data is to be recorded. The simulator accepts information in card image form. The entire card is read in Fortran " A " format, and one command must be complete on one card. Comments may appear in any order within a command set.
The basic manual set (2650BM1000) contains a complete description of the user commands and the general operation of the simulator.

command name	parameters	description
DUMP	LOC, FWA-LWA $(\ldots \ldots ;$ LOC, FWA-LWA)	Display the area of memory, FWA-LWA, whenever the instruction at LOC executes.
REND	NONE	
Execute the last simulation and terminate the entire		
run.		

Higher Level Language ($\mathrm{PL} \mu \mathrm{S}$) 2650PL1000

The higher level language is designed for use with the 2650 microprocessor. This language allows the programmer to reduce programming effort while retaining the control and efficiency of assembly language. It is written in ANSI standard Fortran IV and will execute on most machines without alteration. Programs written in this language tend to be self-documenting and are easily altered.

The higher level language is a sequence of "Declarations" and "Executable Statements".
The declarations allow the programmer to control allocation of storage, define simple textual substitutions (Macros), and define procedures. The language is "Block Structured": procedures may contain further declarations which control storage allocation and define other procedures.
The procedure definition facility of the language allows modular programming: a program can be divided into sections (e.g. teletype input, conversion from binary to decimal forms, and printing output messages). Each of these sections is written as a language procedure. Such procedures are conceptually simple, easy to formulate and debug and easily incorporated into a large program. They may form a basis for a procedure library, if a family of similar programs is being developed. Procedures may be individually compiled.

The language handles two kinds of data, its two basic "Data Types": byte and address. A byte variable or constant is one that can be represented as an 8-bit quantity; an address variable or constant is a 16 -bit or double-byte quantity. The programmer can declare variable names to represent byte or address values. One can also declare vectors (or arrays) or type byte or address.
In general, executable statements specify the computational processes that are to take place. To achieve this, arithmetic, logical (Boolean), and comparison (relational) operators are defined for variables and constants of both types (BYTE and ADDRESS). These operators and operands are combined to form EXPRESSIONS, which resemble those of elementary algebra. Expressions are a major component of language statements.

A simple statement form is the assignment statement, which computes a result and stores it in a memory location defined by a variable name. Other statements in the language perform conditional tests and branching, loop control, and procedure invocation with parameter passing. The flow of program execution is specified by means of powerful control structures
that take advantage of the block-structured nature of the language. Input and output statements read and write 8-bit values from and to input and output ports. Procedures can be defined which use these basic input and output statements to perform more complicated I/O operations.
A method of automatic text-substitution (more specifically, a "compile-time macro facility") is also provided. A programmer can declare a symbolic name to be completely equivalent to an arbitrary sequence of characters. As each occurrence of the name is encountered by the compiler, the declared character sequence is substituted, so the compiler actually processes the substituted character string instead of the symbolic name.

The compiler supports compile time expression evaluation and conditional compilation which allows selective compilation of code depending on an input parameter at compile time.

The language generates absolute and/or relocatable code. The relocatable modules may be linked by a powerful linkage editor at load time.

Additionally the language contains all machine independent features of the PL/M language as a subset, thereby enhancing portability of programs.

Availability

The higher level language is available on NCSS timeshare. It is also available from Signetics on magnetic tape for 16 and 32 -bit machines.

Features

- written in free-form
- adaptable to both 16 and 32-bit machines
- block structured
- employs procedure calls
- byte and address data elements
- based variables
- in-line assembly language
- Macro capability
- generates relocatable code supported by a relocating loader
- includes PL/M as a subset
- allows separate compilation of program modules
- has improved control structure over PL/M
- conditional compilation
- compile time expression evaluation

microprocessors

technical data - mos

Microcomputer Prototype Development System TWIN

The Microprocessor Prototype Development System is a modular system designed to support development and implementation of 2650 microcomputer systems.
A typical system consists of three hardware elements: a Prototype Development Computer (PDC), a floppy disk storage subsystem, and a system console (typically an ASR33 teletype). The PDC includes an integral MOS and bipolar PROM programmer and an in-circuit emulation/hardware debug facility. A wide range of PDC cards and system peripherals are available.

System software includes an Operating System, File Management, Debug Software, Text Editor, and 2650 Resident Assembler. These programs provide the user with the tools to perform his software development easily and quickly. These software capabilities, together with the capacity and performance of the floppy disk subsystem, and the incircuit emulation/hardware debug capability significantly reduce the time and cost of a microcomputer system development project.
The Microprocessor Prototype Development System introduces a unique new Multiprocessor architecture for prototyping systems. This architecture provides users with the benefits of maximum availability of common (user) memory space and a Master processor/Operating System that is isolated and independent from the user system in the in-circuit emulation/ hardware debug mode.

The Microprocessor Prototype Development System will have a long life cycle, since it is designed with the capability of supporting future microprocessors, additional peripherals and expanded software support and hardware debug capabilities.

Hardware features

Modular microprocessor prototype development system to support development, implementation and check out of 2650 microcomputer systems.

Powerful new Multiprocessor architecture provides maximum memory space to user and a protected environment for the Master processor/Operating System at all times.
The 2650 microprocessor -5 V only, fully TTL compatible, $2,4 \mu$ scycle time, easy-to-learn instruction set - is used for the Master and Slave microprocessors.

Hardware interfaces and software drivers provided for floppy disk storage subsystem, TTY, CRT terminal, paper tape reader, line printer and EIA RS232 terminals.

In-circuit emulation/hardware debug and powerful debug software provides extensive emulation and diagnostic facilities for the user system.
Integral MOS and bipolar PROM programmers.
User/Common memory of 16 k bytes, expandable to 64 k bytes.
Two universal bus structures with multiprocessor and DMA capabilities.
Eight-level maskable priority interrupt system available to the user.

Software features

System software provided with the Prototype Development System includes the Signetics Disk Operating System (SDOS), text editor, debug package, 2650 assembler and linkage editor.

The Signetics Disk Operating System (SDOS) provides complete control over operation of all portions of the Prototype Development System. All functions relating to file handling, loading and execution are included, as well as provision for invoking the debug system and PROM programming functions.

The SDOS software has been designed to allow the user to create, edit, and assemble files; obtain object and listing outputs; load and execute programs; and through the debug system, check out programs in a most efficient manner.

SDOS provides a powerful procedure capability which gives the user the capability of creating powerful and customized operating system commands dynamically.

Programs may be read and written in either hexadecimal or SMS (Signetics Memory Services) format for (P)ROM programming.

The SDOS software provides a flexible input/output system which is organized through logical channels allowing the user to dynamically assign any logical channel to any physical device or file within the system. Thus, system I/O devices may be dynamically assigned using SDOS commands either from the console or from within a user's program.

Typical system

SDOS assumes a dual CPU environment with one CPU designated as a master and the other as a slave. SDOS resides in a dedicated memory consisting of $1 / 4 \mathrm{k}$ PROM and 16 k of RAM running under the master CPU.

SDOS will control a multidrive floppy disk subsystem (up to 8 drives), a line printer, a high speed paper tape reader and an ASR-33TTY compatible console. Drivers are provided within SDOS for these I/O devices. In addition, the user may write his own driver for other peripheral devices and easily link them into the SDOS system.

The Prototype Development System Resident Assembler translates symbolic 2650 assembly language instructions into appropriate machine language code.
microprocessors
technical data - mos

Microcomputer Prototype Development System (continued)

The Assembier produces absolute object code. The absolute object code produced is in hexadecimal format which may be converted by an SDOS command to SMS format for PROM or ROM programming.
The Text Editor is a comprehensive software package which allows the user to enter and modify text files. The Text Editor is line oriented and accepts inputs from an input file, performs modifications in a work space and outputs the revised text to an output file.
The Debug System is a software program which will provide the user with run-time program debug capabilities within a hardware environment. It utilizes special hardware features built into the program development system to control the execution of the user's program. User programs operating under the debug system will have dynamic program trace, breakpoint capabilities, memory modification capabilities, and status reporting on the memory, program, and internal processor status.
All of the above-described software will be supplied in object format on diskette and is provided with each Prototype Development System.

PDC cards

Master CPU

System Crystal Clock
Master 2650
UART/TTY Interface
Real Time Clock
Disk/Paper tape Port
Control/debug
Debug Logic
Master/Slave Interaction
Interrupt Logic
Front Panel Interface
Slave CPU
Slave 2650
User Cable Interface
Master memory
4k-Byte Static NMOS RAM
2k-Byte 1702A Erasable PROM
Common memory - 4k RAM
4k-Byte Static NMOS RAM
Common memory - 16k RAM
16k-Byte Dynamic NMOS RAM

General purpose I/O
EIA Interface
Four Output Ports
Four Input Ports
8 Interrupt Lines

1702 PROM programmer

82S115 PROM programmer
User configurable card
For interfacing directly with users own I/O devices. Extender card

Peripherals

Floppy disk subsystem
Expandable to 8 drives
Line printer (optional)
High speed paper tape reader (optional)
Teletype (optional)
CRT terminal (optional)
A.C. power requirements

50 Hz or $60 \mathrm{~Hz}, 115 / 230$ VAC

documentation

Technical manuals

2650 Microprocessor Manual (bound manual) - Contains the complete specifications for the 2650 microprocessor. Describes the instruction set, interface signals, the internal organization, and the electrical characteristics. Includes user guides to the 2650 Assembler Language and the 2650 Simulator.
2650 Registered Microprocessor Manual Set (loose-leaf) Same as above with the addition of all Signetics microprocessor application memos with automatic updating service. Order No. 2650BM 1000.

Signetics TWIN 2650 Assembly Language Manual - A user's guide to the 2650 Assembly Language for the TWIN Prototype Development System. Order No. TW09005000.
TWIN Operator's Guide - Describes all aspects of TWIN system operation, from unpacking, through switches and indicators, to the use of the various system development programs. Order No. TW09003000.
TWIN System Reference Manual - Describes each board in the TWIN system, with functional descriptions and a theory of operation at the block diagram level. A knowledge of microcomputer development systems and the 2650 microprocessor is assumed. Order No. TW09004000.

Designing with Microcomputers - An introductory text on microcomputer fundamentals for electronic circuit and system designers and managers.

Data sheets
TWIN Microcomputer Prototype Development System PC1001 Microprocessor Prototyping Card
PC1500/KT9500 Adaptable Board Computer (ABC)
Prototyping System
PC1600 Resident Assembler Board
PC2000 4k Memory Card
PC4000 Emulator Board for 2656
DS2000 Microprocessor Demonstration System
KT9100 Microprocessor Prototyping Kit
AS1000/1100 2650 Assembler Version 3.2
SM 1000/1100 2650 Simulator Version 1.2
PL1000 Signetics Higher Level Language ($\mathrm{P} L \mu \mathrm{~S}$)
2651 Programmable Communications Interface (PCI)
Integrated Circuit
2652 Multi Protocol Communications Controller (MPCC) Integrated Circuit
2655 Programmable Peripheral Interface (PPI) Integrated Circuit
2656 System Memory Interface (SMI) Integrated Circuit

Brochure

Signetics TestWare Instrument (TWIN)

Application notes

no.	title	summary
AS50	Serial Input/Output	Describes how the Sense/Flag capability of the 2650 can be used for serial I/O interfaces.
AS51	Bit \& Byte Testing Procedures	Describes several methods of testing the contents of the internal registers in the 2650.
AS52	General Delay Routines	Describes several ways of writing software time delay routines for the 2650, including formulae for calculating the delay time.
AS53	Binary Arithmetic Routines	Provides examples for processing binary arithmetic addition, subtraction, multiplication, and division with the 2650.
AS54	Conversion Routines	Describes routines for converting:
		Eight-bit unsigned binary to BCD
		Sixteen-bit signed binary to $B C D$
		Signed BCD to ASCII
		ASCII to BCD
		Hexadecimal to ASCII
		ASCII to Hexadecimal
AS55	Fixed Point Decimal Arithmetic Routines	Describes methods of performing addition, subtraction, multiplication and division of binary-coded-decimal ($B C D$) numbers with the 2650 .
SP50	2650 Evaluation Printed Circuit Board (PC1001)	Provides a detailed description of the PC1001, an evaluation and design tool for the 2650.
SP51	2650 Demo System	Provides a detailed description of the Demo System, a hardware base for use with the 2650 CPU prototyping board (PC1001 or PC1500).
SP52	Support Software for use with the NCSS Timesharing System	Provides step-by-step procedures for generating, editing, assembling, punching, and simulating Signetics 2650 programs using the NCSS timesharing service.
SP53	Simulator, Version 1.2	Summarizes the features and characteristics inherent in version 1.2 of the 2650 simulator.
SP54	Support Software for use with the General Electric Mark III Timesharing System	Provides step-by-step procedures for generating, editing, assembling, simulating, and punching Signetics 2650 programs using General Electric's Mark III timesharing system.
SP55	The ABC 1500 Adaptable Board	Describes the various components and applications of the ABC
	Computer	(Adaptable Board Computer) 1500 system development card.
SS50	PIPBUG	Provides a detailed description of PIPBUG, a monitor program designed for use with the 2650 .
SS51	Absolute Object Format	Describes the absolute object code format for the 2650.
MP51	Initialization	Describes the procedures for initializing the 2650 microprocessor, memory, and I/O devices to their described initial states.
MP52	Low-Cost Clock Generator Circuits	Describes several clock generator circuits that may be used with the 2650. These circuits are standard TTL logic elements (7400 series). They include RC, LC and crystal oscillator types.
MP53	Address and Data Bus Interfacing Techniques	Provides several examples of interfacing the 2650 address and data buses with ROMs and RAMs, such as the 2608, 2606 and 2602.
MP54	2650 Input/Output Structures and Interfaces	Examines the use of the 2650s versatile set of I/O instructions and the interface between the 2650 and $1 / 0$ ports. A number of application examples for both serial and parallel I/O are given.

courses

Microprocessor courses

A series of one, two and three-day courses have been arranged and will be given in Eindhoven, The Netherlands. They will cover all aspects of the Signetics 2650 MOS and 8×300 bipolar microprocessors. The course language will be English. Apart from these, local courses are also being held

Description of the courses

Introduction to Microcomputers (1-day Course)
This basic course is intended for those engineers, salesmen, and managers who are not familiar with logic design. As a background, the course presents the developments that have made microprocessors possible and focuses on the advantages of microprocessor-based design and the tradeoffs between microprocessor-based solutions and the more conventional ones. The use of microprocessors from three different viewpoints - design, marketing and production - is described and the course reviews the fundamental concepts of the development cycle.

Designing with Microprocessors (1-day Course)

This course has a two-fold objective. That of familiarization of engineers and programmers with microprocessor fundamentals, and demonstrating the application of Signetics 2650 microprocessors to system design. A reallife design problem - an intelligent typewriter system is posed and solved. This design example also serves to illustrate the important differences between micro processor and random logic techniques, and illustrates the simplicity of using the Signetics 2650 microprocessor.

2650 Intensive Workshop (3-day Course)

This intensive workshop of lectures and laboratory work is intended primarily for logic designers. Divided into several sections, the course describes the 2650 instruction repertoire including instruction formats and addressing, the software development cycle, interface requirements and the design of interface circuits. The objective of this course is to provide participants with the knowledge and experience necessary to apply the 2650 microprocessor to the solution of real-life design problems. Accordingly, practical work also assumes a major role in this course.

2650 System Design Workshop (3-day Course)

For those who have completed the three-day intensive workshop, or for those familiar with the 2650 but lack design experience, the workshop offers mainly practical work. Problem solving with a microcomputer system, standard hardware interfacing methods, hardware system design and the program development are all included. This is a course only for those with a good 2650 background, but lack experience in tackling a design problem. Taking both courses gives complete capability to produce one's own system designs.

TWIN System User Course (2-day Course)

This course is principally for engineers and programmers familiar with the 2650 microprocessor and its instruction repertoire. The course develops a practical understanding of Signetics TWIN Prototype Development System. This system includes a development computer, dual floppy disk unit, display terminal with keyboard, high speed printer and in-circuit emulator TWICE. Laboratory work enables participants to execute a hardware/software development cycle.

8X300 Intensive Workshop (2-day Course)

This course is intended for users of the bipolar 8×300 microprocessor and provides a theoretical and practical background to 8X300 hardware, software and interface circuits. Each participant has the personal use of an 8X300 system development computer for course work. Participants can gain the knowledge necessary for using the 8×300 to solve real-life design problems.

PL μ S Course (3-day Course)

The $\mathrm{PL} \mu \mathrm{S}$ course (Programming Language for Micro Systems) is an introduction to high level language programming for hardware-oriented designers. Trade-offs between high level and assembly languages are discussed, including basic concepts of high level language programming. High level language enables a designer to develop machine language code with less effort and fewer statements than with assembly language.

The package types indicated in the technical data are listed in the table.
Packages D, E and P are not illustrated as their dimensions are similar to those of F, I and N, respectively. Dimensions shown are mm with inches in parenthesis.

package type	construction	no. of pins
D	cerdip DIL	16
E	metal ceramic DIL	16,18
F	cerdip DIL	$16,18,22,24$
I	metal ceramic DIL	$16,18,24,28,40,50$
K	metal can	10
N	plastic DIL	$8,14,16,20,22,24,28,40$
P	plastic DIL	16
T	metal can	8
TA	metal can	8

F package 16 pin

F package 22 pin

F package 18 pin

F package 24 pin

I package 16 pin

I package 24 pin

I package 18 pin

I package 28 pin

K package

$\underbrace{0.86\left(\frac{1038}{1.0281}\right)}_{0.71}$

T package

N package -24 pin as an example

TA package

Electronic components and materials

for professional, industrial and consumer uses

from the world-wide Philips Group of Companies

Argentina: FAPESA I.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., EIcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 421261.
Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.
Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel 5230000.
Brazil: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP, Tel. 284-4511.
Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO. Tel. 39-40 01.
Colombia: SADAPE S.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600600.
Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KøBENHAVN NV., Tel. (01) 691622.
Finland: OY PHILIPS AB, EIcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, TeI. 915311.
Hong Kong: PHILIPS HONG KONG LTD., Comp. Dept., Philips Ind. Bldg., Kung Yip St., K.C.T.L. 289, KWAI CHUNG, N.T. Tel. 12-24 51 21.
India: PHILIPS INDIA LTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD. Te!. 457 311-5.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, JI. Jen. Gatot Subroto, JAKARTA, TeI. 44163.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.P.A., Sezione EIcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6994.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa BIdg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611. (IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 44-4202.
Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 5-33-11-80.
Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, NL-4510 EINDHOVEN, TeI. (040) 793333.
New Zealand: Philips Electrical Ind. Ltd.; Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867119.
Norway: ELECTRONICA A/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 150590.
Peru: CADESA, Jr. Ilo, No. 216, Apartado 10132, LIMA, Tel. 277317.
Philippines: ELDAC, Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL. Tel. 86-89-51 to 59.
Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 683121.
Singapore: PHILIPS SINGAPORE PTE LTD., Elcoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payọh, SINGAPORE 12, Tel. 538811.
South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG 2001, Tel. 24/6701.
Spain: COPRESA S.A., Balmes 22, BARCELONA 7. Tel. 3016312.
Sweden: A.B. ELCOMA, Lidingövägen 50, S-10 250 STOCKHOLM 27, Tel. 08/67 9780.
Switzerland: PHILIPS A.G., Elcoma Dept., Edenstrasse 20, CH-8027 ZURICH, Te!. 01/44 2211.
Taiwan: PHILIPS TAIWAN LTD., 3rd FI., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.
Turkey: TÜRK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 435910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.
United States: (Active devices \& Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000. (Passive devices) MEPCO/ELECTRA INC. Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.
Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 94321.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, CARACAS, TeI. 360511.

[^0]: ** Not pin-for-pin compatible.

[^1]: ** Not pin-for-pin compatible.

[^2]: 2607
 1024×8
 Intel 2308,
 EPROM - Intel 2708

[^3]: * Format code: The number indicates the number of bytes. The letter(s) indicate the format type(s).

[^4]: 1. Condition code (CC1, CCO): 01 if positive, 00 if zero, 10 if negative.
 2. Condition code is set to a meaningless value
 3. Condition code (CC1, CC0): 01 if $r \geqslant V, 00$ if $r=V, 10$ if $r<V$.
 4. Condition code (CC1 , CCO): 01 if R0 r .00 if $R 0=r, 10$ if RO $<$,
 5. Index register must be register 3 or 3^{\prime}.
 6. Condition code (CC1, CC0): 00 if all selected bits are 1 s , 10 if not all selected bits are 1 s .
[^5]: * Indicates possible interrupt signal.

[^6]: * Buffered 2650 microprocessor outputs.

[^7]: Notes

 1. * $=$ Don't care for ROM and RAM; ** $=$ Don't care for RAM .
 2. Each block of RAM $=256$ bytes.
