# PHILIPS 

Data handbook



## Signetics integrated circuits 1978

## Bipolar and MOS microprocessors

|  |  |  |  |  |  |  | $\square$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

SIGNETICS reserves the right to make changes in the products contained in this book in order to improve design or performance and to supply the best possible products. Signetics also assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.
he present rapid growth of the electronic design revolution is being fueled by the microprocessor/microcomputer. As one of the industry leaders, Signetics gives new impetus to advancing the state-of-the-art with its technological strength, product depth and manufacturing know-how. We continue to develop all aspects of the microprocessor/microcomputer area, simultaneously providing products, ready-to-use training, software and development tools that help you to understand and apply Signetics advanced products.
This Microprocessor Data Manual will enable you to examine Signetics complete line of Bipolar and MOS Microprocessors, as well as a full line of support products. Each data sheet fully explains the operation of each product and contains application hints on how to best utilize the products' design advantages.
You will also find a variety of development systems, educational products, prototyping kits and software for both bipolar and MOS. And with a team of field application engineers throughout the country you will find that Signetics can provide you with the answer to your design problems.
We offer one of the broadest selections available of both bipolar and MOS microprocessor/microcomputers. Combined with our complete line of logic, analog, bipolar and MOS memories, a design engineer can select one source that will provide him with the best possible, cost effective solution to his design problems.

This book contains a compilation of all products currently available. Signetics is continuously developing new products. As you see new product announcements, you should contact your local Signetics sales office, representative or authorized distributor or write Signetics directly at 811 East Arques Avenue, Sunnyvale, California, 94086, for the latest technical information.

## TAßle Of COnTEnTS

Introduction ..... 3
Chapter 1 BIPOLAR MICROPROCESSORS, PERIPHERALS AND DEVELOPMENT PRODUCTS ..... 7
Microprocessors
Bit Slice Family Introduction ..... 9
8X02 Control Store Sequencer ..... 10
2901-1 Microprocessor Control Processing Element ..... 16
Series 3000 Introduction ..... 25
A Guide to the Selection of Support Components for Signetics Bit Slice Microprocessors ..... 28
S/N3001 Microprogram Control Unit ..... 32
S/N3002 Central Processing Element ..... 40
Introduction to the Bipolar Fixed Instruction Microprocessor ..... 49
8X300 Microcontroller ..... 50
Peripherals
Introduction to System Logic ..... 65
74S182/183 Look Ahead Carry ..... 66
54/74LS273 Octal D Flip Flop ..... 69
54/74LS377 Octal D Flip Flop ..... 69
82S100/101 Field Programmable Logic Array ..... 70
82S200/201 Programmable Logic Array ..... 80
82S102/103 Field Programmable Gate Array ..... 86
8T31 8-Bit Bidirectional I/O Port ..... 94
8T32/33/35/36 8-Bit Latched Addressable Bidirectional I/O Port ..... 98
8T39 Bus Expander ..... 105
8 T58 Transparent Bus Expander ..... 109
8X01 CRC Generator/Checker ..... 112
8X08 AM/FM Frequency Synthesizer ..... 115
Development Products
3000KT/1000 Designer's Development Kit ..... 120
3000KT/8080SK 8080 Emulator Kit ..... 122
8X02AS1000SS Microassembler (software) ..... 124
8X300KT100SK Designer's Kit ..... 125
8T32/33/35/36 Programmer Kit ..... 127
8X300AS100SS MCCAP 8X300 Cross Assembler (software) ..... 128
SMS3000 Microcontroller Simulator ..... 129
MS3300 Microcontroller Monitor ..... 131
Chapter 2 MOS MICROPROCESSORS, PERIPHERALS AND DEVELOPMENT PRODUCTS ..... 133
Microprocessors
2650/2650A-1 Microprocessor ..... 135
ISP-8A/600 Simple Cost Effective Microprocessor (SC/MP-11) ..... 146
MP8080A 8-Bit N-Channel Microprocessor ..... 163
Peripherals
2651 Programmable Communication Interface (PCI) ..... 174
2652 Multi-Protocol Communications Controller (MPCC) ..... 188
2655 Programmable Peripheral Interface (PPI) ..... 206
2656 System Memory Interface (SMI) ..... 208
MP8251 Programmable Communication Interface (PCI) ..... 219
MP8255 Programmable Peripheral Interface (PPI) ..... 227
Development Products
2650KT9000 Microprocessor Prototyping Kit ..... 238
2650PC1500/2650KT9500 Adaptable Board Computer (ABC) ..... 241
PC-4000 2656 System Memory Interface (SMI) Emulator ..... 245
2650PC1001 Microprocessor Prototyping Card ..... 257
2650PC2000 4KMemory Card ..... 259
2650DS2000 Microprocessor Demonstration System ..... 260
2650PC3000 Intelligent Typewriter Controller ..... 263
2650AS1000/1100 Assembler Version 3.2 (software) ..... 266
2650SM1000/1100 Simulator Version 1.2 (software) ..... 267
Signetics' Higher Level Language: $\mathrm{PL} \mu \mathrm{S}$ ..... 268
2650AR1000 Relocatable Assembler Version 5.0 ..... 269
The TWIN (Testware Instrument) System ..... 271
Chapter 3 STANDARD SUPPORT CIRCUITS ..... 277
Introduction ..... 279
Bipolar Memory Selection Guide ..... 280
MOS Memory Selection Guide ..... 282
7400 Series ..... 285
8200 Series ..... 286
8 T00 Series Interface ..... 287
Analog (Linear) ..... 288
MILITARY ..... 291
PACKAGES ..... 331

# CHAPTER I bipOlAR microprocessors Peripherals and 

 Developmenk Products
## BIT-SLICE MICROPROCESSOR SERIES

## Microcontrol and <br> Arithmetic Units

The introduction of the Signetics Bit-Slice Microprocessors has brought new levels of high performance to microprocessor applications not previously possible with MOS technology. Combining the Schottky bipolar microprocessors with industry standard memory and support circuits, microinstruction cycle times of 100 ns are possible.

In the majority of cases, the choice of a bipolar microprocessor slice, as opposed to an MOS device, is based on speed or flexibility of microprogramming. Starting with these characteristics, the design of the Signetics slice microprocessors has been optimized around the following objectives:

- Fast cycle time
- All memory and support chips are industry standard
- Cooler operation
- Lower total system cost

Furthermore, systems built with large-scale integrated circuits are much smaller and require less power than equivalent systems using medium and/or small scale integrated circuits.

Typically, slice microprocessors are employed in the realization of the Central Processing Unit (CPU) of a computer or for implementing dedicated smart controllers. The generalized and simplified structure of a CPU or "Smart" controller can be typically classified into 3 distinct but interactively related functional sections. These sections are generally referred to as the Processing section, the Control section, and the I/O and Memory Interface section. A simplified block diagram of a CPU is illustrated in Figure 1.

The major functions of the Processing section are to:

- provide data transfer paths;
- manipulate data through logic and arithmetic operations;
- provide storage facilities such as a register file; and
- generate necessary status flags based on the kind of operation performed by the ALU.


Figure 1

The major functions of the Control section are to:

- initiate memory or I/O operations;
- decode macroinstructions;
- control the manipulation and transfer of data;
- test status conditions; and
- sample and respond to interrupts.

The major functions of the $1 / O$ and Memory Interface section are to:

- multiplex data to the proper destination;
- provide bus driving/receiving capability; and
- provide latching capability.

With state-of-the-art bipolar Schottky technology, high-performance microprocessors are designed to perform functions of the Processing section. Due to the limitation on the number of pins and chip size, the overall Processing section is partitioned into several functionally equivalent slices. In today's bipolar microprocessor market, 2-bit and 4bit slice architecture predominates. Each architecture type has its uniqueness but, in general, a slice contains a group of general purpose registers, an accumulator, specialpurpose register(s) ALU and related status flags. All of these elements constitute the Processing section of a CPU. The flexibility of slice components allows the designer to construct a processing section of any desired width as required by his application.

The Control section of the CPU is more complex in design. Typically this section includes the macroinstruction decode logic, test-branch decode, microprogram sequencing logic, and the control store where the microprogram resides. Aside from the microprogram, the remaining portion of the Control section (macroinstruction decode and test-branch decode and sequencing logic), does not lend itself to efficient partitioning into vertical slices. This is due to the random nature of the logic usually found in the Control section. However, horizontal functional grouping is possible. For example, the macroinstruction decode and testbranch decode logic can now be replaced by the FPLA (Field Programmable Logic Array); the random logic traditionally
needed to implement the microprogram sequencing can now be replaced by the Microprogram Control Unit; and, of course, the microprogram can be stored in high density PROMs or ROMs. Since the designer must define his own microstructure, the slice microprocessors permit fundamental optimizations to be made. With slice hardware, the designer may have no macroinstructions at all, placing all of the program in PROM for dedicated control applications. Or he may define, as required, any number of macroinstructions selected specifically for his particular processor purpose. Various minicomputers and several MOS microprocessors have been emulated using slice hardware.
The I/O and Memory Interface section consists mainly of $1 / O$ ports, high power bus drivers, receivers, and some temporary register storage facilities. Bidirectional and tri-state devices are the most popular logic elements for implementing this interface structure.
Figure 2 shows an LSI approach to the implementation of the same generalized CPU structure indicated earlier.
Data specifications for Signetics' line of slice microprocessor components are contained within this chapter. Included is the popular 3000 series Microprogram Control Unit and the 2-bit slice Central Processing Element. These Signetics devices feature improved performance specifications over 3000 series components available on the general market. Moreover, the unique Signetics XL plastic package design results in significantly cooler operation of the chip than was previously possible with other plastic package designs. This section also features the 8X02 Control Store Sequencer. This device may be used with any TTL compatible slice processing elements and features extreme ease of use. The 8 simple, yet powerful, instructions permit subroutining and looping (using internal stack), unrestricted jumping, unrestricted conditional branching and conditional instruction skipping.


## DESCRIPTION

The Signetics $8 \times 02$ is a low power Schottky LSI device intended for use in high performance microprogrammed systems to control the fetch sequence of microinstructions. When combined with standard ROM or PROM, the $8 \times 02$ forms a powerful microprogrammed control section for computers, controllers, or sequential logic.

## FEATURES

- Low power Schottky process
- 1024 microinstruction addressability
- N -way branch
- 4-level stack register file (LIFO type)
- Automatic push/pop stack operation
- "Test and skip" operation on test input line
- 3-bit command code
- Tri-state buffered outputs
- Auto-reset to address 0 during power-up
- Conditional branching, pop stack, and push stack

PIN CONFIGURATION


## BLOCK DIAGRAM



## PIN DESIGNATION

| PIN | SYMBOL | NAME AND FUNCTION | TYPE |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 5-6 \\ 8-13 \end{gathered}$ | $\mathrm{A}_{0}-\mathrm{A}_{9}$ | Microprogram Address outputs | Three-state Active high |
| 1,28,27 | $\mathrm{AC}_{0}-\mathrm{AC}_{2}$ | Next Address Control Function inputs <br> All addressing control functions are selected by these command lines. | Active high |
| $\begin{aligned} & 14-21 \\ & 23-24 \end{aligned}$ | $\mathrm{B}_{0}-\mathrm{B}_{9}$ | Branch Address inputs <br> Determines the next address of an N-way branch when used with the BRANCH TO SUBROUTINE (BSR) or BRANCH ON TEST (BRT) command. | Active high |
| 2 | EN | Enable input <br> When in the low state, the Microprogram Address outputs are enabled. | Active low |
| 25 | CLK | Clock Input-High to Low transition for stack operations, Low to High transition for address modification. |  |
| 26 | TEST | Test input <br> Used in conjunction with four NEXT ADDRESS CONTROL FUNCTION commands to effect conditional skips, branches, and stack operations. | Active high |
| 7 | GND | Ground |  |
| 22 | $\mathrm{V}_{\mathrm{CC}}$ | +5 Volt supply |  |

## FUNCTIONAL DESCRIPTION

The Signetics $8 \times 02$ Control Store Sequencer is an LSI device using low power Schottky technology and is intended for use in high performance microprogrammed applications. When used alone, the $8 \times 02$ is capable of addressing up to 1 K words of microprogram. This may be expanded to any microprogram size by conventional paging techniques.
The Address Register consists of 10 D-type, edge-triggered flip-flops with a common clock. A new address is entered into the Address Register on the low-to-high transition of the clock. The next address to be entered into the Address Register is supplied via the Address Multiplexer.
The Address Multiplexer is a 5-input device that is used to select either the branch input, +1 adder, +2 adder, stack register file, or ground (all zeros) as the source of the next microinstruction address. The proper multiplexer channel is automatically selected via the Decode Logic according to the Address Control Function Input and Test Input line.

The $+1,+2$ logic is used to increment the present contents of the Address Register by 1 or 2 , depending on the function input command. Thus, the next address to the Control Store ROM/PROM may be either the current address plus $1(\mathrm{~N}+1)$ or the current address plus $2(\mathrm{~N}+2)$. If the same Microprogram Address is to be used on successive occasions, the clock to the $8 \times 02$ must simply be disabled; therefore, no new address is loaded into the Address Register.

The Stack File Register is used to provide a return address linkage whenever a subroutine or loop is executed. The $4 \times 10$ stack operates in a last-in, first-out (LIFO) mode, with the stack pointer always pointing to the next address to be read. Operation of the stack pointer is automatically controlled by the Address Control Function Inputs. Since the stack is 4 words deep, up to 4 loops and/or subroutines may be nested.

The branch input is a 10-bit field of direct inputs to the multiplexer which can be selected as the next control store address. Using the appropriate branch command, an N -way branch is possible where N is the
address of any microinstruction within the 1024 word microcode page. Likewise, the RESET command is a special case of an N way branch in which the multiplexer selects an all zeros input, forcing the next microinstruction address to be zero.
The Test Input line is used in conjunction with the conditional execution of 4 Address Control Function commands. When the Test Input is false (low), the sequencer simply increments to the next address $(N+1)$. When it is true (high), the sequencer executes a branch as defined by the input command, thereby transferring control to another portion of the microprogram.
All Address Output lines of the $8 \times 02$ are three-state buffered outputs with a common enable line $(\overline{\mathrm{EN}})$. When the Enable line is high, all outputs are placed in a highimpedance state, and external access to the control store ROM/PROM is possible. This allows a preprogrammed set of microinstructions to be executed from external or built-in test equipment (BITE), vectored interrupts, and Writable Control Store if implemented.

NEXT ADDRESS CONTROL FUNCTION TABLE

| MNEMONIC | DESCRIPTION | $\begin{gathered} \text { FUNC } \\ \mathrm{AC}_{2} \end{gathered}$ |  |  | TEST | NEXT ADDRESS | STACK | STACK POINTER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TSK | Test and skip | 0 | 0 | 0 | False True | $\begin{aligned} & \text { Current + } 1 \\ & \text { Current + } 2 \end{aligned}$ | N.C. <br> N.C. | $\begin{aligned} & \text { N.C. } \\ & \text { N.C. } \end{aligned}$ |
| INC | Increment | 0 | 0 | 1 | $X$ | Current +1 | N.C. | N.C. |
| BLT | Branch to loop if test input true | 0 | 1 | 0 | False <br> True | Current + 1 <br> Stack reg file | $\begin{gathered} X \\ \text { POP (read) } \end{gathered}$ | Decr Decr |
| POP | POP stack | 0 | 1 | 1 | X | Stack reg file | POP (read) | Decr |
| BSR | Branch to subroutine if test input true | 1 | 0 | 0 | False <br> True | Current + 1 <br> Branch address | $\stackrel{\text { N.C. }}{\text { PUSH }(\text { Curr }+1)}$ | N.C. Incr |
| PLP | Push for looping | 1 | 0 | 1 | X | Current + 1 | PUSH (Curr Addr) | Incr |
| BRT | Branch if test input true | 1 | 1 | 0 | False True | Current + 1 <br> Branch address | N.C. <br> N.C. | N.C. <br> N.C. |
| RST | Set microprogram address output to zero | 1 | 1 | 1 | X | All O's | N.C. | N.C. |

$\mathrm{X}=$ Don't care
N.C. $=$ No change

## FUNCTIONAL DESCRIPTION

The following is a description of each of the eight Next Address Control Functions ( $\mathrm{AC}_{2}-\mathrm{AC}_{0}$ )

| MNEMONIC | FUNCTION DESCRIPTION |
| :---: | :---: |
| TSK | $\mathrm{AC}_{2-0}=000:$ TEST AND SKIP  <br> Perform test on Test Input Line.  <br> If test is $\quad$ Next Address = Current Address + 1 <br> False (Low): Stack Pointer unchanged <br> If test is Next Address = Current Address + 2 <br> True (High) (i.e. Skip next microinstruction) <br>  Stack Pointer unchanged |
| INC | $\begin{aligned} & \mathrm{AC}_{2-0}=001: \text { INCREMENT } \\ & \text { Next Address = Current Address + } 1 \\ & \text { Stack Pointer unchanged } \end{aligned}$ |
| BLT | $\mathrm{AC}_{2-0}=-010:$ BRANCH TO LOOPIF TEST CONDITION TRUE.Perform test on Test Input Line.If test is $\quad$ Next Address = Current Address + 1False (Low): $\quad$ Stack Pointer decremented by 1If test is $\quad$ Next Address = Address from StackTrue (High): $\quad$Register File (POP) <br>  <br> Stack Pointer decremented by 1 |
| POP | ```AC 2-0 =011: POP STACK Next Address = Address from Stack Register File (POP) Stack Pointer decremented by 1``` |
| BSR | $\mathrm{AC}_{2-0}=100:$ BRANCH TO SUBROUTINEIF TESTCONDITION TRUE.Perform test on Test Input Line. <br> If test is <br> False (Low): $\quad$ Next Address $=$ Current Address +1 <br> If test is <br> True (High): $\quad$ Stack Pointer unchanged <br> PUSH (write) Current Address $+1 \rightarrow$ Stack Register File |
| PLP | $A C_{2-0}=101:$ PUSH FOR LOOPING <br> Next Address = Current Address +1 <br> Stack Pointer incremented by 1 PUSH (write) Current Address $\rightarrow$ Stack Register File |
| BRT | ```AC}\mp@subsup{C}{2-0}{}=110: BRANCH ON TEST CONDITION TRUE Perform test on Test Input Line. If test is Next Address = Current Address + 1 False (Low): Stack Pointer unchanged If test is Next Address = Branch Address Input ( }\mp@subsup{\textrm{B}}{0-g}{ True (High): Stack Pointer unchanged``` |
| RST | ```AC 2-0 = 111: RESET TO ZERO Next Address = 0 Stack Pointer unchanged``` |

## ABSOLUTE MAXIMUM RATINGS

|  | PARAMETER | RATING | UNIT |
| :--- | :--- | :---: | :---: |
| $V_{\text {CC }}$ | Power supply voItage | +7 | Vdc |
| $V_{\text {IN }}$ | Input voltage | +5.5 | VdC |
| VO $_{\mathrm{O}}$ | Off-State output voltage | +5.5 | VdC |
| TA $_{\text {A }}$ | Operating temperature range | $0^{\circ}$ to $+70^{\circ}$ | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {STG }}$ | Storage temperature range | $-65^{\circ}$ to $+150^{\circ}$ | ${ }^{\circ} \mathrm{C}$ |

## DC ELECTRICAL CHARACTERISTICS TA $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{C}} \overline{\mathrm{C}} \leq 5.25 \mathrm{~V}$

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ ${ }^{1}$ | Max |  |
| $\mathrm{V}_{\text {IH }}$ | High level input voltage |  |  | 2 |  |  | V |
| $V_{\text {IL }}$ | Low level input voltage |  |  |  | 0.8 | $v$ |
| $V_{1}$ | Input clamp voltage | $V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  | -1.5 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High level output voltage | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$ | 2.4 |  |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Low level output voltage | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ |  |  | 0.5 | v |
| 11 | Input current at maximum Input voltage | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$ |  |  | 100 | $\mu \mathrm{A}$ |
| $1 / \mathrm{H}$ | High level input current $\mathrm{AC}_{2}-\mathrm{AC}_{0}, \overline{\mathrm{EN}}, \mathrm{TEST}$ $\mathrm{B}_{9}-\mathrm{B}_{0}$ CLK | $V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=2.7 \mathrm{~V}$ |  |  | 40 20 60 | $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| $I_{\text {IL }}$ | Low level input current $\mathrm{AC}_{2}-\mathrm{AC}_{0}, \overline{\mathrm{EN}}$, TEST $\mathrm{B}_{9}-\mathrm{B}_{0}$ CLK | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}$ |  |  | -0.72 -0.36 -1.08 | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$ |
| I OS | Short-circuit output current | $V_{C C}=5.25 \mathrm{~V}$ | -15 |  | -100 | mA |
| ${ }^{\prime} \mathrm{OZH}$ | High-Z state output current | $\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$ |  |  | 20 | $\mu \mathrm{A}$ |
| I OZL | High-Z state output current | $\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$ |  |  | -20 | $\mu \mathrm{A}$ |
| ${ }^{1} \mathrm{CC}$ | Supply current | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ |  | 165 | 200 | mA |

NOTE

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## TEST LOAD CIRCUIT



NOTES
A. $C_{L}$ includes probe and jig capacitance.
B. All diodes are 1 N916 or 1 N3064.
C. $R_{L}=2 k, C=15 p F$.

## VOLTAGE WAVEFORMS


enable and disable times three-state outputs


AC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ}-70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \%$

|  | PARAMETER | то | FROM | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ ${ }^{1}$ | Max |  |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{HI}}(1) \\ &(0) \end{aligned}$ | Test |  |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline-10 \\ & -24 \end{aligned}$ |  | ns |
| $\begin{aligned} &{ }^{\mathrm{t}} \mathrm{SF}^{1}(1) \\ &(0) \\ &{ }^{\mathrm{t}} \mathrm{SI}^{1}(1) \\ &(0) \end{aligned}$ | Control and data input setup times with respect to CLK (!) for stack related functions (BLT, POP, BSR, PLP) (2) $\mathrm{AC}_{0}-\mathrm{AC}_{2}$ <br> Test |  |  | $\begin{aligned} & 35 \\ & 35 \\ & 28 \\ & 28 \end{aligned}$ | $\begin{aligned} & 23 \\ & 22 \\ & 23 \\ & 22 \end{aligned}$ |  | ns |
| ${ }^{\mathrm{t}} \mathrm{PLZ}$ <br> ${ }^{1} \mathrm{PHZ}$ <br> ${ }^{\text {t}} \mathrm{PZL}$ <br> ${ }^{\mathrm{t}} \mathrm{PZH}$ <br> ${ }^{\mathrm{t}} \mathrm{PHL}$ <br> ${ }^{\mathrm{t}} \mathrm{PLH}$ | Propagation delay <br> Low to high $Z$ <br> High to high Z <br> High to low <br> High $Z$ to high Propagation delay <br> High to low <br> Low to high | $\begin{aligned} & \hline \mathrm{A}_{0}-\mathrm{A}_{9} \\ & \mathrm{~A}_{0}-\mathrm{A}_{9} \end{aligned}$ |  |  | $\begin{aligned} & 12 \\ & 16 \\ & 14 \\ & 15 \\ & \\ & 33 \\ & 33 \\ & \hline \end{aligned}$ | $\begin{aligned} & 35 \\ & 35 \\ & 25 \\ & 35 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$ | ns |
| $\frac{\mathrm{t}^{\mathrm{t}} \mathrm{PW}}{\mathrm{P} W}$ | Clock pulse width High Low |  |  | $\begin{aligned} & 50 \\ & 60 \end{aligned}$ | $\begin{aligned} & 36 \\ & 42 \end{aligned}$ |  | ns |
| $\begin{array}{ll} \mathrm{t}_{\mathrm{t}} \mathrm{SF} & (1) \\ & (0) \\ & (0) \\ { }^{\mathrm{t}} \mathrm{SK} & (1) \\ & (0) \\ & \\ & \mathrm{SI} \\ \hline \end{array}\left(\begin{array}{l} 1) \\ \\ \\ \hline \end{array}\right)$ | Control and data input setup times with respect to CLK (1) for non-stack related functions (TSK, INC, BRT, RST) $\mathrm{AC}_{0}-\mathrm{AC}_{2}$ $B_{0}-B_{9}{ }^{2}$ <br> Test |  |  | $\begin{aligned} & 90 \\ & 90 \\ & 27 \\ & 29 \\ & 60 \\ & 60 \end{aligned}$ | $\begin{aligned} & 70 \\ & 70 \\ & 22 \\ & 24 \\ & 45 \\ & 45 \end{aligned}$ |  | ns |
| $\begin{array}{r} \mathrm{t}_{\mathrm{HF}}^{(1)}\left(\begin{array}{l} (0) \\ (0) \\ \mathrm{t}_{\mathrm{HK}}^{(1)} \\ (0) \end{array}\right. \end{array}$ | Control and data input hold times with respect to CLK (1) $\mathrm{AC}_{0}-\mathrm{AC}_{2}$ $\mathrm{B}_{0}-\mathrm{B}_{9}{ }^{2}$ |  |  | 0 0 0 0 | $\begin{gathered} -7 \\ -12 \\ -12 \\ -10 \end{gathered}$ |  | ns |

NOTES

1. Typical values are to $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5.0$ volts
2. $\mathrm{B}_{0}-\mathrm{B}_{9}$ inputs are required to Clock (1) only. See TSK (1) and TSK (0).

TIMING WAVEFORM


PULSE WIDTH (TPW) vs TEMPERATURE


## DESCRIPTION

The 4-bit bipolar microprocessor slice is designed as a high-speed cascadable element intended for use in CPUs, peripheral controllers, programmable microprocessors and numerous other applications. The microinstruction flexibility of the 2901-1 will allow efficient emulation of almost any digital computing machine.

The device, as shown in the block diagram below, consists of a 16-word by 4-bit 2-port RAM, a high-speed ALU, and the associated shifting, decoding and multiplexing circuitry. The 9 -bit microinstruction word is organized into 3 groups of 3 bits each and selects the ALU source operands, the ALU function, and the ALU destination register The microprocessor is cascadable with full look-ahead or with ripple carry, has threestate outputs, and provides various status flag outputs from the ALU. Advanced lowpower Schottky processing is used to fabricate this 40-lead LSI chip.

## FEATURES

- 80ns cycle time
- 2-address architecture Independent simultaneous access to 2 working registers saves machine cycles
- 8-function ALU

Performs addition, 2 subtraction operations, and 5 logic functions on 2 source operands

- Flexible data source selection ALU data is selected from 5 source ports for a total of 203 source operand pairs for every ALU function
- Left/right shift independent of ALU Add and shift operations take only 1 cycle
- 4 status flags Carry, overflow, zero, and negative
- Expandable

Connect any number of 2901-1's together for longer word lengths

- Microprogrammable

3 groups of 3 bits each for source operand, ALU function, and destination control

## BLOCK DIAGRAM



PIN CONFIGURATION


## PIN DESIGNATION

| PIN | SYMBOL | NAME AND FUNCTION | TYPE |
| :---: | :---: | :---: | :---: |
| 1-4 | $\mathrm{A}_{0}-\mathrm{A}_{3}$ | A Address <br> The 4 address inputs to the register stack used to select 1 register whose contents are displayed through the A port. $A_{0}$ is the LSB. | Active high |
| 17-20 | $\mathrm{B}_{0}-\mathrm{B}_{3}$ | B Address <br> The 4 address inputs to the register stack used to select 1 register whose contents are displayed through the B port and into which new data can be written when the clock goes LOW. $\mathrm{B}_{0}$ is the LSB. | Active high |
| $\begin{aligned} & 12-14, \\ & 26-28, \\ & 5-7 \end{aligned}$ | $\mathrm{I}_{0}-\mathrm{I}_{8}$ | Instruction Control <br> The 9 instruction control lines to the 2901-1 used to determined what data sources will be applied to the ALU ( $1_{012}$ ), what function the ALU will perform ( $\mathrm{I}_{345}$ ), and what data is to be deposited in the Q register or the register stack ( $\mathrm{I}_{678}$ ). | Active high |
| $\begin{aligned} & 8 \\ & 16 \end{aligned}$ | $\begin{gathered} \mathrm{RAM}_{3} \\ \mathrm{Q}_{3} \end{gathered}$ | Shift Line <br> A shift line at the MSB of the $Q$ register $\left(Q_{3}\right)$ and the register stack $\left(R A M_{3}\right)$. Electrically these lines are three-state outputs connected to TTL inputs internal to the 2901-1. When the destination code on $I_{678}$ indicates a left (up) shift (octal 6 or 7 ) the three-state outputs are enabled and the MSB of the $Q$ register is available on the $Q_{3}$ and the MSB of the ALU output is available on the RAM $_{3}$ pin. Otherwise, the three-state outputs are off (highimpedance) and the pins are electrically LS-TTL inputs. When the destination code calls for a right (down) shift, the pins are used as the data inputs to the MSB of the Q register (octal 4) and RAM (octal 4 or 5). | Three-state Active high |
| $\begin{aligned} & 9 \\ & 21 \end{aligned}$ | $\begin{gathered} \text { RAM }_{0} \\ Q_{0} \end{gathered}$ | Shift Line <br> Shift lines similar to $Q_{3}$ and $R A M_{3}$, at the LSB of the $Q$ register and RAM. These pins are tied to the $Q_{3}$ and $R A M_{3}$ pins of the adjacent device and are used to transfer data between devices for left and right shifts of the $Q$ register and ALU data. | Active high |
| 22-25 | $\mathrm{D}_{0}-\mathrm{D}_{3}$ | Direct Data Inputs <br> A 4-bit data field which may be selected as one of the ALU data sources for entering data into the 2901-1. $\mathrm{D}_{0}$ is the LSB. | Active high |
| 36-39 | $Y_{0}-Y_{3}$ | Data Out <br> The 4 data outputs of the 2901-1. These are three-state output lines. When enabled, they display either the 4 outputs of the ALU or the data on the A port of the register stack, as determined by the destination code $I_{678} . Y_{0}$ is the LSB. | Three-state Active high |
| 40 | $\overline{O E}$ | Output Enable <br> When $\overline{O E}$ is High, the $Y$ outputs are disabled; when $\overline{O E}$ is Low, the $Y$ outputs are active (high or low). | Active low |
| 32,35 | $\overline{\mathrm{G}}, \overline{\mathrm{P}}$ | Carry Generate, Propagate <br> The carry generate and propagate outputs of the 2901-1. These signals are used with the N74S182 for carry-lookahead. See Table 7 for the logic equations. | Active low |
| 34 | OVR | Overflow <br> This pin is logically the Exclusive-OR of the carry-in and carry-out of the MSB of the ALU. At the most significant end of the word, this pin indicates that the result of an arithmetic two's complement operation has overflowed into the sign-bit. See Table 7 for logic equation. | Active high |
| 11 | $F=0$ | $F=0$ <br> This is an open collector output which goes High (off) if the data on the 4 ALU outputs $\mathrm{F}_{0-3}$ are all low. In positive logic, it indicates the result of an ALU operation is zero. | Active high |
| 29 | $\mathrm{C}_{n}$ | Carry In | Active high |
| 33 | $C_{n+4}$ | Carry Out (See Table 7 for logic equations.) | Active high |
| 15 | CP | Clock <br> The Q register and register stack outputs change on the clock Low-to-High transition. The clock Low time is internally the write enable to the 16X4 RAM which comprises the "master" latches of the register stack. While the clock is Low, the "slave" latches on the RAM outputs are closed, storing the data previously on the RAM outputs. This allows synchronous master-slave operation of the register stack. | Active high |

## SYSTEM DESCRIPTION

A detailed block diagram of the bipolar microprogrammable microprocessor structure is shown in Figure 1. The circuit is a 4bit slice cascadable to any number of bits. Therefore, all data paths within the circuit are 4 bits wide. The two key elements in the Figure 1 block diagram are the 16 -word by 4-bit 2-port RAM and the high-speed ALU.

Data in any of the 16 words of the Random Access Memory (RAM) can be read from the A port of the RAM as controlled by the 4-bit A address field input. Likewise, data in any of the 16 words of the RAM as defined by the $B$ address field input can be simultaneously read from the B port of the RAM. The same code can be applied to the A select field and $B$ select field in which case the identical file data will appear at both the RAM A port and $B$ port outputs simultaneously.

When enabled by the RAM write enable (RAM EN), new data is always written into the file (word) defined by the B address field of the RAM. The RAM data input field is
driven by a 3 -input multiplexer. This configuration is used to shift the ALU output data $(F)$ if desired. This 3-input multiplexer scheme allows the data to be shifted up (left) 1 bit position, shifted down (right) 1 bit position, or not shifted in either direction.
The RAM A port data outputs and RAM B port data outputs drive separate 4-bit latches. These latches hold the RAM data while the clock input is low. This eliminates any possible race conditions that could occur while new data is being written into the RAM.
The high-speed Arithmetic Logic Unit (ALU) can perform 3 binary arithmetic and 5 logic operations on the two 4-bit input words $R$ and $S$. The $R$ input field is driven from a 2-input multiplexer, while the $S$ input field is driven from a 3-input multiplexer. Both multiplexers also have an inhibit capability; that is, no data is passed. This is equivalent to a "zero" source operand.
Referring to Figure 1, the ALU R-input multiplexer has the RAM A port and the direct
data inputs (D) connected as inputs. Likewise, the ALU S input multiplexer has the RAM A port, the RAM B port and the Q register connected as inputs.
This multiplexer scheme gives the capability of selecting various pairs of the $A, B, D, Q$ and " 0 " inputs as source operands to the ALU. These 5 inputs, when taken 2 at a time, result in 10 possible combinations of source operand pairs. These combinations include $A B, A D, A Q, A 0, B D, B Q, B O, D Q, D 0$ and QO. It is apparent that $A D, A Q$ and $A 0$ are somewhat redundant with $B D, B Q$ and $B 0$ in that if the $A$ address and $B$ address are the same, the identical function results. Thus, there are only 7 completely non-redundant source operand pairs for the ALU. The 29011 microprocessor implements 8 of these pairs. The microinstruction inputs used to select the ALU source operands are the $I_{0}$, $I_{1}$, and $I_{2}$ inputs. The definition of $I_{0}, I_{1}$, and $I_{2}$ for the 8 source operand combinations are as shown in Table 1. Also shown is the octal code for each selection.

## DETAILED 2901-1 BLOCK DIAGRAM



Figure 1

| MICRO CODE |  |  |  | ALU SOURCE <br> OPERANDS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{2}$ | $\mathrm{I}_{1}$ | $\mathrm{I}_{0}$ | Octal <br> Code | R | S |
| L | L | L | 0 | A | Q |
| L | L | H | 1 | A | B |
| L | H | L | 2 | 0 | Q |
| L | H | H | 3 | 0 | B |
| H | L | L | 4 | 0 | A |
| H | L | H | 5 | D | A |
| H | $H$ | L | 6 | D | Q |
| H | $H$ | $H$ | 7 | D | 0 |

Table 1 ALU SOURCE OPERAND CONTROL

The 2 source operands not fully described as yet are the $D$ input and $Q$ input. The $D$ input is the 4-bit wide direct data field input. This port is used to insert all data into the working registers inside the device. Likewise, this input can be used in the ALU to modify any of the internal data files. The $Q$ register is a separate 4-bit file intended primarily for multiplication and division routines but it can also be used as an accumulator or holding register for some applications.

The ALU itself is a high-speed arithmetic/logic operator capable of performing 3 binary arithmetic and 5 logic functions. The $I_{3}, I_{4}$, and $I_{5}$ microinstruction inputs are used to select the ALU function. The definition of these inputs is shown in Table 2. The octal code is also shown for reference. The normal technique for cascading the ALU of several devices is in a look-ahead carry mode. Carry generate, G, and carry propagate, P , are outputs of the device for use with a carry-look-aheadgenerator such as the N74S182. A carry-out, $C_{n+4}$, is also generated and is available as an output for use as the carry flag in a status register. Both carry-in ( $\mathrm{C}_{\mathrm{n}}$ ) and carry-out $\left(C_{n+4}\right)$ are active high.

| MICRO CODE |  | ALU |  |
| :---: | :---: | :---: | :---: |
| $\begin{array}{llll}I_{5} & I_{4} & I_{3}\end{array}$ | Octal Code | Function | Symbol |
| L L L | 0 | R Plus S | $R+S$ |
| L L H | 1 | $S$ Minus R | S-R |
| L H L | 2 | R Minus S | R-S |
| L H H | 3 | R ORS | $R \vee S$ |
| H L L | 4 | R AND S | $\underline{R} \wedge S$ |
| H L H | 5 | $\overline{\mathrm{R}}$ AND S | $\bar{R} \wedge S$ |
| H H L | 6 | R EX-OR S | $R \forall S$ |
| H H H | 7 | R EX-NOR S | $R \forall S$ |

Table 2 ALU FUNCTION CONTROL
The ALU has three other status-oriented outputs. These are $\mathrm{F}_{3}, \mathrm{~F}=0$, and overflow (OVR). The $F_{3}$ output is the most significant (sign) bit of the ALU and can be used to

| MICRO CODE |  | RAM FUNCTION |  | Q REGISTER FUNCTION |  |  | RAM SHIFTER |  | Q SHIFTER |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{llll}I_{8} & I_{7} & I_{6}\end{array}$ | Octal Code | Shift | Load | Shift | Load |  | $\begin{aligned} & \text { RAM }_{0} \\ & \text { LO/RI } \end{aligned}$ | $\begin{aligned} & \mathrm{RAM}_{3} \\ & \mathrm{LI} / \mathrm{RO} \end{aligned}$ | $\begin{gathered} Q_{0} \\ \text { LO/RI } \end{gathered}$ | $\begin{gathered} Q_{3} \\ \text { LI/RO } \end{gathered}$ |
| L L L | 0 | $x$ | None | None | $F \rightarrow Q$ | F | $x$ | $x$ | $x$ | $x$ |
| L L H | 1 | x | None | x | None | F | $x$ | x | x | x |
| L H L | 2 | None | $F \rightarrow B$ | X | None | A | $x$ | x | x | $x$ |
| L H H | 3 | None | $F \rightarrow B$ | x | None | F | X | X | x | X |
| H L L | 4 | Right (Down) | $F / 2 \rightarrow B$ | Right (Down) | $Q / 2 \rightarrow Q$ | F | $\mathrm{F}_{0}$ | $1 \mathrm{~N}_{3}$ | $Q_{0}$ | $1 \mathrm{~N}_{3}$ |
| H L H | 5 | Right (Down) | $F / 2 \rightarrow B$ | X | None | F | $\mathrm{F}_{0}$ | $1 \mathrm{~N}_{3}$ | $Q_{0}$ | X |
| H H L | 6 | Left <br> (Up) | $2 \mathrm{~F} \rightarrow \mathrm{~B}$ | Left <br> (Up) | $2 Q \rightarrow Q$ | F | $\mathrm{IN}_{0}$ | $F_{3}$ | $1 \mathrm{~N}_{0}$ | $Q_{3}$ |
| H H H | 7 | $\begin{aligned} & \text { Left } \\ & \text { (Up) } \end{aligned}$ | $2 F \rightarrow B$ | X | None | F | $1 \mathrm{~N}_{0}$ | $\mathrm{F}_{3}$ | X | $Q_{3}$ |

$X=$ Don't care. Electrically, the shift pin is a TTL input internally connected to a three-state output which is in the high-impedance state.

Table 3 ALU DESTINATION CONTROL
determine positive or negative results without enabling the three-state data outputs. $F_{3}$ is non-inverted with respect to the sign bit output $Y_{3}$. The $\mathrm{F}=0$ output is used for zero detect. It is an open-collector output and can be wire OR'ed between microprocessor slices. $F=0$ is high when all $F$ outputs are low. The overflow output (OVR) is used to flag arithmetic operations that exceed the available two's complement number range. The overflow output (OVR) is high when overflow exists. That is, when $\mathrm{C}_{\mathrm{n}+3}$ and $C_{n+4}$ are not the same polarity.
The ALU data output is routed to several destinations. It can be a data output of the device and it can also be stored in the RAM or the $Q$ register. Eight possible combinations of ALU destination functions are available as defined by the $I_{6}, I_{7}$, and $I_{8}$ microinstructon inputs. These combinations are shown in Table 3.

The 4-bit data output field $(Y)$ features three-state outputs and can be directly bus organized. An output control ( $\overline{(\mathrm{OE})}$ is used to enable the three-state outputs. When $\overline{\mathrm{OE}}$ is high, the $Y$ outputs are in the highimpedance state.
A 2-input multiplexer is also used at the data output such that either the A port of the RAM or the ALU outputs (F) are selected at the device $Y$ outputs. This selection is controlled by the $I_{6}, I_{7}$, and $I_{8}$ microinstruction inputs. Refer to Table 3 for the selected output for each microinstruction code combination.

As was discussed previously, the RAM inputs are driven from a 3 -input multiplexer. This allows the ALU outputs to be entered
non-shifted, shifted up (left) one position (X2) or shifted down (right) one position $(\div 2)$. The shifter has 2 ports; one is labeled $R A M_{0}$ and the other is labeled $R A M_{3}$. Both of these ports consist of a buffer-driver with a three-state output and an input to the multiplexer. Thus, in the shift up mode, the RAM $M_{3}$ buffer is enabled and the RAM ${ }_{0}$ multiplexer input is enabled. Likewise, in the shift down mode, the RAM ${ }_{0}$ buffer and RAM ${ }_{3}$ input are enabled. In the no-shift mode, both buffers are in the high-impedance state and the multiplexer inputs are not selected. This shifter is controlled from the $I_{6}, I_{7}$, and $I_{8}$ microinstruction inputs as defined in Table 3.

Similarly, the Q register is driven from a 3input multiplexer. In the no-shift mode, the multiplexer enters the ALU data into the $Q$ register. In either the shift-up or shift-down mode, the multiplexer selects the Q register data appropriately shifted up or down. The $Q$ shifter also has 2 ports; one is labeled $Q_{0}$ and the other is $Q_{3}$. The operation of these 2 ports is similar to the RAM shifter and is also controlled from $I_{6}, I_{7}$, and $I_{8}$ as shown in Table 3.
The clock input to the 2901-1 controls the RAM, the $Q$ register, and the $A$ and $B$ data latches. When enabled, data is clocked into the $Q$ register on the low-to-high transition of the clock. When the clock input is high, the $A$ and $B$ latches are open and will pass whatever data is present at the RAM outputs. When the clock input is low, the latches are closed and will retain the last data entered. If the RAM-EN is enabled, new data will be written into the RAM file (word) defined by the $B$ address field when the clock input is low.

## SOURCE OPERANDS AND ALU FUNCTIONS

There are eight source operand pairs available to the ALU as selected by the $I_{0}, I_{1}$, and $I_{2}$ instruction inputs. The ALU can perform eight functions; five logic and three arithmetic. The $I_{3}, I_{4}$, and $I_{5}$ instruction inputs control this function selection. The carry input, $C_{n}$, also affects the ALU results when in the arithmetic mode. The $\mathrm{C}_{n}$ input has no effect in the logic mode. When $I_{0}$ through $I_{5}$ and $\mathrm{C}_{n}$ are viewed together, the matrix of Table 4 results. This matrix fully defines the ALU/source operand function for each state.

The ALU functions can also be examined on a "task" basis, i.e., add, subtract, AND, OR, etc. In the arithmetic mode, the carry will

| $\begin{aligned} & \text { OCTAL } \\ & \mathrm{I}_{543}, \mathrm{I}_{210} \end{aligned}$ | GROUP | FUNCTION |
| :---: | :---: | :---: |
| $\begin{array}{ll} 4 & 0 \\ 4 & 1 \\ 4 & 5 \\ 4 & 6 \end{array}$ | AND | $A \wedge Q$ <br> $A \wedge B$ <br> $D \wedge A$ <br> $D \wedge Q$ |
| $\begin{array}{ll} 3 & 0 \\ 3 & 1 \\ 3 & 5 \\ 3 & 6 \end{array}$ | OR | $\begin{aligned} & A \vee Q \\ & A \vee B \\ & D \vee A \\ & D \vee Q \end{aligned}$ |
| $\begin{array}{ll} 6 & 0 \\ 6 & 1 \\ 6 & 5 \\ 6 & 6 \end{array}$ | EX-OR | $\begin{aligned} & A \forall Q \\ & A \forall B \\ & D \forall A \\ & D \forall Q \end{aligned}$ |
| $\begin{array}{ll} 7 & 0 \\ 7 & 1 \\ 7 & 5 \\ 7 & 6 \end{array}$ | EX-NOR | $\frac{\frac{\overline{A \forall Q}}{\frac{A \forall B}{D \forall A}} \frac{D \forall Q}{D}}{}$ |
| $\begin{array}{ll} 7 & 2 \\ 7 & 3 \\ 7 & 4 \\ 7 & 7 \end{array}$ | INVERT | $\frac{\overline{\mathrm{Q}}}{\frac{\bar{B}}{\bar{A}}}$ |
| $\begin{array}{ll} 6 & 2 \\ 6 & 3 \\ 6 & 4 \\ 6 & 7 \end{array}$ | PASS | $\begin{aligned} & \mathrm{Q} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{D} \\ & \hline \end{aligned}$ |
| $\begin{array}{ll} 3 & 2 \\ 3 & 3 \\ 3 & 4 \\ 3 & 7 \\ \hline \end{array}$ | PASS | $\begin{aligned} & Q \\ & B \\ & A \\ & D \\ & \hline \end{aligned}$ |
| $\begin{array}{ll} 4 & 2 \\ 4 & 3 \\ 4 & 4 \\ 4 & 7 \end{array}$ | "ZERO" | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| $\begin{array}{ll} 5 & 0 \\ 5 & 1 \\ 5 & 5 \\ 5 & 6 \end{array}$ | MASK | $\begin{aligned} & \bar{A} \wedge Q \\ & \bar{A} \wedge B \\ & \bar{D} \wedge A \\ & \bar{D} \wedge Q \end{aligned}$ |

Table 5 ALU LOGIC MODE FUNCTIONS ( $\mathrm{C}_{\mathrm{n}}$ Irrelevant)
affect the function performed while in the logic mode, the carry will have no bearing on the ALU output. Table 5 defines the various logic operations that the 2901-1 can
perform and Table 6 shows the arithmetic functions of the device. Both carry-in low $\left(C_{n}=0\right)$ and carry-in high $\left(C_{n}=1\right)$ are defined in these operations.

| 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | $\mathrm{I}_{210}$ OCTAL

$+=$ Plus; $-=$ Minus, $V=O R ; \Lambda=A N D, \forall=E X-O R$
Table 4 SOURCE OPERAND AND ALU FUNCTION MATRIX

| $\begin{aligned} & \text { OCTAL } \\ & \mathrm{I}_{543}, \mathrm{I}_{210} \end{aligned}$ | $C_{n}=0$ (LOW) |  | $C_{n}=1$ (HIGH) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Group | Function | Group | Function |
| $\begin{array}{ll} 0 & 0 \\ 0 & 1 \\ 0 & 5 \\ 0 & 6 \end{array}$ | ADD | $\begin{aligned} & A+Q \\ & A+B \\ & D+A \\ & D+Q \end{aligned}$ | ADD plus one | $\begin{aligned} & A+Q+1 \\ & A+B+1 \\ & D+A+1 \\ & D+Q+1 \end{aligned}$ |
| $\begin{array}{ll} 0 & 2 \\ 0 & 3 \\ 0 & 4 \\ 0 & 7 \\ \hline \end{array}$ | PASS | $\begin{aligned} & \hline Q \\ & B \\ & A \\ & D \\ & \hline \end{aligned}$ | Increment | $\begin{aligned} & \hline Q+1 \\ & B+1 \\ & A+1 \\ & D+1 \end{aligned}$ |
| $\begin{array}{ll} 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 2 & 7 \end{array}$ | Decrement | $\begin{aligned} & \text { Q-1 } \\ & B-1 \\ & \text { A }-1 \\ & D-1 \end{aligned}$ | PASS | $\begin{aligned} & \hline \mathrm{Q} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{D} \\ & \hline \end{aligned}$ |
| $\begin{array}{ll} \hline 2 & 2 \\ 2 & 3 \\ 2 & 4 \\ 1 & 7 \\ \hline \end{array}$ | 1's Comp. | $\begin{aligned} & \hline-Q-1 \\ & -B-1 \\ & -A-1 \\ & -D-1 \end{aligned}$ | 2's Comp. <br> (Negate) | $\begin{aligned} & \hline-Q \\ & -B \\ & -A \\ & -D \end{aligned}$ |
| $\begin{array}{ll} \hline 1 & 0 \\ 1 & 1 \\ 1 & 5 \\ 1 & 6 \\ 2 & 0 \\ 2 & 1 \\ 2 & 5 \\ 2 & 6 \end{array}$ | Subtract (1's Comp.) | $\begin{aligned} & \text { Q - A - } 1 \\ & B-A-1 \\ & A-D-1 \\ & \text { Q }- \text { D - } \\ & \text { A }- \text { Q }-1 \\ & A-B-1 \\ & D-A-1 \\ & D-Q-1 \end{aligned}$ | Subtract <br> (2's Comp.) | $\begin{aligned} & Q-A \\ & B-A \\ & A-D \\ & Q-D \\ & A-Q \\ & A-B \\ & D-A \\ & D-Q \end{aligned}$ |

Table 6 ALU ARITHMETIC MODE FUNCTIONS

## LOGIC FUNCTIONS FOR $\overline{\mathrm{G}}, \overline{\mathrm{P}}, \mathrm{C}_{\mathrm{n}}+4$, AND OVR

The four signals $\bar{G}, \bar{P}, C_{n}+4$, and OVR are designed to indicate carry and overflow conditions when the 2901-1 is in the add or subtract mode. Table 7 indicates the logic equations for these four signals for each of the eight ALU functions. The $R$ and $S$ inputs are the two inputs selected according to Table 1.

| $\mathrm{I}_{543}$ | FUNCTION | $\overline{\mathbf{P}}$ | $\overline{\mathrm{G}}$ | $\mathrm{C}_{\mathrm{n}}+\mathbf{4}$ | OVR |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathrm{R}+\mathrm{S}$ | $\overline{\mathrm{P}_{3} P_{2} \mathrm{P}_{1} \mathrm{P}_{0}}$ | $\overline{\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{G}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{3} P_{2} P_{1} \mathrm{G}_{0}}$ | $\mathrm{C}_{4}$ | $\mathrm{C}_{3} \forall \mathrm{C}_{4}$ |
| 1 | $\mathrm{~S}-\mathrm{R}$ | Same as $\mathrm{R}+\mathrm{S}$ equations, but substitute $\overline{\mathrm{R}}_{\mathrm{i}}$ for $\mathrm{R}_{\mathrm{i}}$ in definitions $\rightarrow$ |  |  |  |
| 2 | $\mathrm{R}-\mathrm{S}$ | Same as $\mathrm{R}+\mathrm{S}$ equations, but substitute $\overline{\mathrm{S}}_{\mathrm{i}}$ for $\mathrm{S}_{\mathrm{i}}$ in definitions $\rightarrow$ |  |  |  |
| 3-7 | All logic <br> operations | High | Low | High | High |

Table 7 LOGIC EQUATIONS

Definitions ( $+=$ OR)
$\mathrm{P}_{0}=\mathrm{R}_{0}+\mathrm{S}_{0}$
$\mathrm{G}_{0}=\mathrm{R}_{0} \mathrm{~S}_{0}$
$P_{1}=R_{1}+S_{1}$
$\mathrm{G}_{1}=\mathrm{R}_{1} \mathrm{~S}_{1}$
$P_{2}=R_{2}+S_{2}$
$\mathrm{G}_{2}=\mathrm{R}_{2} \mathrm{~S}_{2}$
$P_{3}=R_{3}+S_{3}$
$\mathrm{G}_{3}=\mathrm{R}_{3} \mathrm{~S}_{3}$
$C_{4}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{n}$
$C_{3}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C n$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant+70^{\circ} \mathrm{C}, 4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| $\mathrm{V}_{\mathrm{OH}}$ | High level output voltage |  | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=1.6 \mathrm{~mA}$ | 2.4 |  |  | V |
| ${ }^{1}$ CEX | Output leakage current | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=5.25 \mathrm{~V}$, |  |  | 250 | $\mu \mathrm{A}$ |
|  | for $\mathrm{F}=0$ output | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low level output voltage | $V_{C C}=4.75 \mathrm{~V}$ |  |  |  |  |
|  | $Y$ | $1 \mathrm{OL}=20 \mathrm{~mA}$ |  |  | 0.5 | V |
|  | $\overline{\mathrm{G}}$ | $1 \mathrm{OL}=16 \mathrm{~mA}$ |  |  | 0.5 | V |
|  | $C_{n}+4, F=0, O V R, \bar{P}, F_{3}$ | $1 \mathrm{OL}=10 \mathrm{~mA}$ |  |  | 0.5 | V |
|  | RAM ${ }_{3,0}, \mathrm{Q}_{3,0}$ | $1 \mathrm{OL}=6 \mathrm{~mA}$ |  |  | 0.5 | V |
| $\mathrm{V}_{1 \mathrm{H}}$ | High level input voltage |  | 2.0 |  |  | V |
| $V_{\text {IL }}$ | Low level input voltage |  |  |  | 0.8 | V |
|  | Input clamp voltage | $V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  | -1.5 | V |
| 11 | High level input current at maximum input voltage | $\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$ |  |  | 1.0 | mA |
| ${ }^{1 / H}$ | High level input current <br> Clock, $\overline{\mathrm{OE}}, \mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{I}, \mathrm{C}$ n | $V_{C C}=5.25 \mathrm{~V}, V_{1}=2.7 \mathrm{~V}$ |  |  | 20 | $\mu \mathrm{A}$ |
|  | $\mathrm{RAM}_{3,0}, \mathrm{Q}_{3,0}$ (Note 1) |  |  |  | 20 | $\mu \mathrm{A}$ |
| ${ }^{1 / L}$ | Low level input current Clock, DE, A, B, D, I, C n | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=0.5 \mathrm{~V}$ |  |  |  | $\mu \mathrm{A}$ |
|  | RAM $_{3,0}, \mathrm{Q}_{3,0}$ (Note 1) |  |  |  | -100 | $\mu \mathrm{A}$ |
|  | Short circuit output current (Note 2) | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ | -10 |  | -40 | mA |
| ${ }^{\text {I Oz }}$ | High-Z state output current $Y_{0}-Y_{3}$ | $\mathrm{V}_{0}=2.4 \mathrm{~V}$ |  |  | 50 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{0}=0.5 \mathrm{~V}$ |  |  | -50 | $\mu \mathrm{A}$ |
|  | $\mathrm{RAM}_{3,0}, \mathrm{Q}_{3,0}$ | $\mathrm{V}_{0}=2.4 \mathrm{~V}$ |  |  | 100 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{0}=0.5 \mathrm{~V}$ |  |  | -100 | $\mu \mathrm{A}$ |
| ${ }^{1} \mathrm{CC}$ | Supply current | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ |  | 165 | 265 | mA |

NOTES

1. LO/RI and RO/LI are three-state outputs internally connected to TTL inputs. Input characteristics are measured with $I_{678}$ in a state such that the three-state output is OFF.
2. Not more than 1 output should be shorted at a time. Duration of the short-circuit test should not exceed 1 second.

## ABSOLUTE MAXIMUM RATINGS

|  | PARAMETER | RATING | UNIT |
| :---: | :---: | :---: | :---: |
| $V_{\text {CC }}$ | Power supply voltage | +7 | Vdc |
| $\mathrm{V}_{\text {IN }}$ | Input voltage | +5.5 | Vdc |
| $\mathrm{V}_{\mathrm{O}}$ | Off-state output voltage | +5.5 | Vdc |
| $\mathrm{T}_{\mathrm{A}}$ | Operating temperature range | $0^{\circ}$ to $+70^{\circ}$ | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {STG }}$ | Storage temperature range | $-65^{\circ}$ to $+150^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{C}$ |

AC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

| PARAMETER |  | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| ${ }^{t} \mathrm{CY}$ <br> ${ }^{t}$ RMW <br> ${ }^{f} \mathrm{Q}$ <br> ${ }^{\dagger} \mathrm{CL}$ <br> ${ }^{t} \mathrm{CH}$ | Clock Times ${ }^{1}$ |  |  |  |  |
|  | Clock cycle time | 80 | 65 |  | ns |
|  | Ready-modify-write cycle | 70 | 55 |  | ns |
|  | Clock frequency to shift Q register | 25 | 30 |  | MHz |
|  | Clock low period | 30 | 22 |  | ns |
|  | Clock high period | 30 | 13 |  | ns |
| ${ }_{\mathrm{t}}^{\mathrm{H}}$ | Hold Times ${ }^{1}$ Any input | 0 | -3 |  | ns |
| ${ }^{t}$ SAB | A, B, setup time ${ }^{2,3,4}$ |  |  |  |  |
|  |  | 90 | 65 |  | ns |
|  |  | ${ }^{t} \mathrm{CLL}+30$ | ${ }^{\text {t }} \mathrm{CL}^{+15}$ |  | ns |
|  | B destination setup time ${ }^{2,3,4}$ D input setup time Cn input setup time ALU source control setup time ALU function setup time ALU destination control setup time ${ }^{5}$ RAM $_{3,0}$, input setup time $\mathrm{Q}_{3,0}$ | ${ }^{\text {t }} \mathrm{CL}+15$ | ${ }^{\mathrm{t}} \mathrm{CL}+5$ |  | ns |
| ${ }^{\text {t }}$ SD |  | 60 | 45 |  | ns |
| ${ }^{\text {t }}$ SCn |  | 50 | 35 |  | ns |
| ${ }^{\text {t }}$ S 012 |  | 80 | 60 |  | ns |
| ${ }^{\text {t }}$ S1345 |  | 75 | 58 |  | ns |
| ${ }^{\text {t }}$ S1678 |  | ${ }^{\text {t }} \mathrm{CL}+25$ | ${ }^{t} \mathrm{CL}+15$ |  | ns |
| ${ }^{\text {t }}$ SS |  | 30 | 20 |  | ns |
|  |  | 15 |  |  |  |

NOTES

1. Setup and hold times are defined relative to the clock low-to-high edge. Inputs must be steady at all times from the setup time prior to the clock until the hold after the clock. The setup times allow sufficient time to perform the correct operation on the correct operation on the correct data so that the correct ALU data can be written into one of the registers.
2. If the $B$ address is used as a source operand, allow for the $A, B$ source setup time; if it is used only for the destination address, use the B dest. setup time.
3. Where 2 numbers are shown, both must be met.
4. ${ }^{t} \mathrm{CL}$ is the clock low time.

PROPAGATION DELAYS (ns) $\mathbf{C}_{\mathbf{L}}=\mathbf{1 5 p F} \mathrm{T}_{\mathbf{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

|  | Y | $F_{3}$ | $C_{n+4}$ | $\bar{G}, \bar{P}$ | $\begin{gathered} F=0 \\ R L= \\ 470 \end{gathered}$ | OVR | SHIFT OUTPUTS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | RAM | Q |
| Clock | 60 | 55 | 45 | 50 | 65 | 50 | 65 | 45 |
| A, B | 75 | 65 | 60 | 70 | 80 | 60 | 80 | - |
| D (arithmetic mode) | 40 | 30 | 30 | 40 | 55 | 40 | 55 | - |
| D( $=$ X37, logic mode) | 40 | 30 | - | - | 55 | - | 55 | - |
| $\mathrm{C}_{\mathrm{n}}$ | 40 | 25 | 25 | - | 45 | 30 | 50 | - |
| $\mathrm{I}_{012}$ | 60 | 50 | 45 | 50 | 60 | 45 | 65 | - |
| $\mathrm{I}_{345}$ | 55 | 40 | 40 | 50 | 50 | 45 | 60 | - |
| $\mathrm{I}_{678}$ | 30 | - | - | - | - | - | 45 | 45 |
| OE Enable/Disable | 25/30 | - | - | - | - | - | - | - |
| A bypassing <br> $\operatorname{ALU}(1=2 x x)$ | 45 | - | - | - | - | - | - | - |

## TEST LOAD CIRCUIT

(SEE NOTE 2)

## VOLTAGE WAVEFORMS



NOTES

1. $C_{L}$ includes probe and jig capacitance.
2. All diodes 1 N916 or 1 N3064.
3. $R_{L}=2 K$



NOTES
4. This delay is the max. tpd of the register containing $A, B, D$, and I
5. 10 ns for lookahead carry. For ripple carry over 16 birs use $2 \times(C n \rightarrow C n+4)$
6. This is the delay associated with the multiplexer between the shift outputs and shift inputs on the 2901-1s. Normally applicable only for double length or circular shifts.
7. Not applicable for logic operations.

## INTRODUCTION

The 2 components of the Series 3000 chip set, when combined with industry standard memory and peripheral circuits, allows the design engineer to construct highperformance processors and/or controllers with a minimum amount of auxillary logic. Features such as the multiple independent address and data buses, tri-state logic, and separate output enable lines eliminate the need for time-multiplexing of buses and associated hardware

Each Central Processing Element represents a complete 2-bit slice through the data processing section of a computer. Several CPEs may be connected in parallel to form a processor of any desired word length. The Microprogram Control Unit controls the sequence in which microinstructions are fetched from the microprogram memory (ROM/PROM), with these microinstructions controlling the step-by-step operation of the processor.
Each CPE contains a 2-bit slice of 5 independent buses. Although they can be used
in a variety of ways, typical connections are:
Input M-bus: Carries data from external memory
Input I-bus: Carries data from input/output device
Input K-bus: Used for microprogram mask or literal (constant) value input
Output A-bus: Connected to CPE Memory Address Register
Output D-bus: Connected to CPE accumulator.
As the CPEs are paralleled together, all buses, data paths, and registers are correspondingly expanded.

The microfunction input bus (F-bus) controls the internal operation of the CPE, selecting both the operands and the operation to be executed upon them. The arithmetic logic unit (ALU), controlled by the microfunction decoder, is capable of over 40 Boolean and binary operations as outlined in the Function Description section of the N3002 data sheet. Standard carry look-ahead outputs ( $X$ and $Y$ ) are generated by the CPE for use with industry stand-
ard devices such as the 74S182.
A typical processor configuration is shown in Figure 1. It should be remembered that in working with slice-oriented microprocessors, the final configuration may be varied to enhance speed, reduce component count, or increase data-processing capability. One method of maximizing a processor's performance is called pipelining. To accomplish this, a group of D-type flip-flops or latches (such as the 74174 Hex D-type Flip-Flop) are connected to the microprogram memory outputs (excluding the address control field $\mathrm{AC}_{0}-\mathrm{AC}_{6}$ ) to buffer the current microinstruction and allow the MCU to overlap the fetch of the next instruction with the execution of the current one. The time saved in pipelining operations is the shorter of either the address set-up time to the microprogram memory (ROM/PROM) or the access time of the ROM/PROM. A convenient way of implementing pipelining is to use ROMs with on-board latches, such as the Signetics 82S115.

MICROCOMPUTER BLOCK DIAGRAM


Figure 2 shows a typical microinstruction format using the 825114 PROMs contained in the Signetics 3000 Microprocessor Designer's Evaluation Kit. Although this particular example is for a 48 -bit word ( 6 PROMs), the allocation of bits for the mask (K-bus) and optional processor functions depends on the specific application of the system and the trade offs which the designer wishes to make.

In using the K-bus, it should be kept in mind that the K inputs are always ANDed with the B-multiplexer outputs into the ALU. Bit masking, frequently done in computer control systems, can be performed with the mask supplied to the K-bus directly from the microinstruction.
By placing the K-bus in either the all-one or all-zero condition (done with a single control bit in the microinstruction), the accumulator will either be selected or deselected, respectively, in a given operation. This feature nearly doubles the amount of microfunctions in the CPE. A description of these various microfunctions can be found in the N3002 data sheet under the heading Function Description by referring to the Kbus conditions of all-ones (11) and all-zeros (00).

The MCU controls the sequence in which microinstructions are fetched from the microprogram memory (ROM/PROM). In its classical form, the MCU would use a nextaddress field in each microinstruction. However, the N3001 uses a modified classical approach in which the microinstruction field specifies conditional tests on the MCU bus inputs and registers. The next-address logic of the MCU also makes extensive use of a row/column addressing scheme, whereby the next address is defined by a 5bit row address and 4-bit column address. Thus, from a particular address location, it is possible to jump unconditionally to any location within that row or column, or conditionally to other specified locations in one operation. Using this method, the processor functions can be executed in parallel with program branches.
As an example of this flexibility, let us assume a disk controller is being designed. As part of the sequence logic, 3 bits of the disk drive status word must be tested and all 3 must be true in order to proceed with the particular sequencing operation. In any sequencing operation using a status word for conditional branch information, there are innumerable combinations of bits which must be tested throughout the sequencing operation. Using discrete logic techniques, this would involve several levels of gating.
However, the entire operation can be done


At other times, it is entirely user definable.

## Figure 2

## SYSTEM TIMING-NON-PIPELINED CONFIGURATION



Figure 3
in two microinstructions. First, the mask (Kbus) field in the microinstruction format is encoded with a one for each corresponding status bit to be tested and a zero for each bit to be discarded. The status word is input via the I-bus and ANDed with the K-bus mask using the CPE microfunction operation from F-Group 2, R-Group III. Assuming we are using low-true logic (true $=0$ volts), we now test the result, which is located in the accumulator AC, for all zeros using the CPE microfunction operation from F-Group 5, R-Group III. Depending on the zero/nonzero status of AC, a one or zero will be loaded into the carryout CO bit. This bit can now be used as a condition for the next address jump calculation within the N3001 MCU. If the AC was zero (status word was true), we will jump to the next address within our controller sequence. If the AC was nonzero (status word not true), then a jump would be made back to the beginning of this 2-microinstruction loop and the test sequence repeated until the status word (all 3 bits) is true.
Figure 3 shows a typical timing diagram for a system operating in the non-pipelined mode. Keep in mind that the maximum clock rate is dependent upon the total of propagation delay times plus required setup times. It is at the designer's discretion to resolve the speed versus complexity tradeoffs.

ABSOLUTE MAXIMUM RATINGS

| PARAMETER | N3001/N3002 | S3001/S3002 | UNIT |
| :--- | :---: | :---: | :---: |
| Temperature under bias | 0 to +70 | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | -60 to +160 | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| All output and supply voltages | -0.5 to +7 | -0.5 to +7 | V |
| All input voltages | -1.0 to +5.5 | -1.0 to +5.5 | V |
| Output currents | 100 | 100 | mA |

'NOTE
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS N3001/N3002 ${ }^{\top} \mathrm{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ S3001/S3002 $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$


## NOTES

1. SN3001 typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
2. SN3002 EN input grounded, all other inputs and outputs open. SN3002 CLK input grounded, other inputs open.

## A Gullie 10 THE SELEGTIN OF SUPPORT COMPONENTS FOR SIGNETES BII SLLEE MICROPROCESSORS

## INTRODUCTION

Signetics family of Bipolar Bit Slice Microprocessor products consists of the $8 \times 02$ Control Store Sequencer, the 3001 microprogram control unit (MCU), the 2901-1 four bit central processing element and the 3002 two bit central processing element. These devices, all manufactured with low power Schottky technology, can be readily and efficiently interfaced with all other industry standard components, including the $7400,74 \mathrm{LS}, 74 \mathrm{~S}$ and Signetics' 82 S and 8 T families.

Figure 1 is a generalized functional block diagram of a typical Bipolar Microprocessor based system. This applications memo categorizes various components that can be used to implement each of the major functional blocks shown in Figure 1.

## THE PROCESSING SECTION

The Processing Section of a computer, or "smart" controller, as shown in Figure 2, provides facilities for the transfer of data, logical and arithmetic manipulation of data, and temporary storage of data, address and status information. Cache memories are frequently used to enhance system performance by providing immediately available information and data to the CPU at high speed.
Signetics devices that can be used to implement the Processing Section of the CPU or controller are listed below in Tables 1 and 2.

| DEVICE | DESCRIPTION |
| :--- | :---: |
| $2901-1$ | 4-Bit Register and ALU |
|  | Central Processing Element |
| N3002 | Central Processing Element |
| $74 S 182$ | Carry-Look-Ahead Generator |

Table 1 ALU, GENERAL PURPOSE REGISTERS, AND CARRY-LOOK-AHEAD CIRCUITS

| DEVICE | DESCRIPTION |
| :--- | :--- |
|  |  |
| 3101 A | RAM (16 words by 4 bits) |
| $82 S 25$ | Write-While-Read RAM |
|  | (32 words by 2 bits) |
| $82 S 25$ | RAM (16 words by 4 bits) |
| $82 S 09$ | RAM (64 words by 9 bits) |
| $82 S 116 / 117$ | RAM (256 words by 1 bit) |
| 74 S200/201 | RAM (256 words by 1 bit) |
| 745301 | RAM (256 words by 1 bit) |
| $93415 A$ | RAM (1024 words by 1 bit) |
| $93425 A$ | RAM (1024 words by 1 bit) |
| $82 S 10 / 11$ | RAM (1024 words by 1 bit) |
|  |  |

Table 2 HIGH SPEED BIPOLAR CACHE MEMORIES

BLOCK DIAGRAM OF TYPICAL BIPOLAR MICROPROCESSOR SYSTEM


Figure 1


## A GUIIDE TO THE SELECTIN OF SUPPORT COMPONENTS

 FOR SIGNETICS BII SLLCE MICROPROCESSORS
## THE CONTROL SECTION

The Control Section logic as shown in Figure 3, handles most, if not all, of the control functions. These functions are typified by operations such as decoding macroinstructions, testing of hardware or program status, initializing memory and I/O operations, manipulating data, and sampling and responding to external and internal interrupts. These control functions are implemented by executing a single microinstruction or a series of microinstructions. Through microprogramming, a structured form of control can be realized.

Reference Tables 3 through 6 for hardware selection.

| DEVICE | DESCRIPTION |
| :---: | :---: |
| $82 S 100 / 101$ | Field Programmable Logic Array <br> (FPLA) |
| $82 S 102 / 103$ | Field Programmable Gate Array |

NOTE
In addition to the FPLA, all ROMs and PROMs listed below under Conditional Test and Branch Decoding and Microprogram Memory can also be used.

Table 3 MACRO INSTRUCTION DECODING

| DEVICE | DESCRIPTION |
| :--- | :--- |
| $82 S 123$ | PROM (32 words by 8 bits) |
| $82 S 23$ | PROM (32 words by 8 bits) |
| $82 S 229$ | PROM (256 words by 4 bits) |
| $82 S 226$ | ROM (256 words by 4 bits) |
| $82 S 129$ | PROM (256 words by 4 bits) |
| $82 S 126$ | PROM (256 words by 4 bits) |
| $82 S 27$ | PROM (256 words by 4 bits) |

Table 4 CONDITIONAL TEST AND BRAND DECODING

| DEVICE | DESCRIPTION |
| :---: | :---: |
| N3001 | Microprogram Control Unit <br> (512-word addressability) <br> Control Store Sequencer <br> (1024-word addressability) |

NOTE
In addition, all ROMs and PROMs listed in Conditional Test and Branch Decoding can also be used.

Table 5 MICROPROGRAM SEQUENCING


| DEVICE | DESCRIPTION |
| :--- | :--- |
| $82 S 130$ | PROM ( 512 words by 4 bits) |
| $82 S 131$ | PROM (512 words by 4 bits) |
| $82 S 114$ | PROM with output latches |
|  | (256 words by 8 bits) |
| $82 S 214$ | ROM with output latches |
|  | (256 words by 8 bits) |
| $82 S 215$ | ROM with output latches |
|  | (512 words by 8 bits) |
| $82 S 230 / 231$ | ROM (512 words by 4 bits) |
| 8228 | ROM (1024 words by 4 bits) |
| $82 S 115$ | PROM with output latches |
|  | (512 words by 8 bits) |
| $82 S 136 / 137$ | PROM (1024 words by 4 bits) |
| $82 S 236 / 237$ | ROM (1024 words by 4 bits) |
| $82 S 280 / 281$ | ROM (1024 words by 8 bits) |
| $82 S 184 / 185$ | PROM (2048 words by 4 bits) |
| $82 S 284 / 285$ | ROM (2048 words by 4 bits) |

Table 6 MICROPROGRAM MEMORY

## A GUIDE TO THE SEECTION OF SUPPORT COMPONENTS FOR SHGNETICS BIT SLIEE MICROPROCESSORS

## I/O INTERFACE LOGIC

There are many different types of bus structures (see Figure 4). To save hardware and the number of signal lines, the use of a bidirectional bus is an excellent solution for handling the data bus problem, while a tristate bus structure is ideal for the address bus, (see Table 7). In many instances, when systems of different logic families need to be interfaced with each other, logic level translators are required, (see Table 8).

| DEVICE | DESCRIPTION |
| :---: | :---: |
| 8T26A | Tri-state, inverting quad bus transceiver. |
| 8T28 | Tri-state, non-inverting quad bus transceiver. |
| 8 T31 | Tri-state 8-bit bidirectional I/O port. |
| 8T09 | Tri-state quad bus driver ( 40 mA ), with individual enable/disable |
| 8T10 | Tri-state quad D-type bus (FF) with high drive capability |
| 8 T 13 | Dual-line driver |
| 8T14 | Triple line receiver with hysteresis |
| 8T15 | Dual Communications EIA/MIL line driver |
| 8T16 | Dual Communication EIA/MIL line receiver with hysteresis. |
| 8T23 | Dual-line driver |
| 8T24 | Triple-line receiver with hysteresis |
| 8 738 | Quad bus transceiver |
| 8T95 | Tri-state, non-inverting hex buffer |
| 8 T96 | Tri-state, non-inverting hex buffer |
| 8 T97 | Tri-state, inverting hex buffer |
| 8T98 | Tri-state, inverting hex buffer |
| 8 T 100 | Quad differential line drivers |
| 8 T 110 | Quad differential line receivers |

Table 7 BUS BUFFERS AND DRIVERS


| DEVICE | DESCRIPTION |
| :---: | :---: |
| 10124 | Quad TTL-to-ECL driver <br> 10125 <br> 8 T80 |
| 8 Quad ECL-to-TTL receiver |  |
| Quad gate TTL to High- |  |
| voltage |  |
| Hex buffer TTL to High- |  |
| voltage |  |
| $8 T 18$ |  |$\quad$| MOS-to-TTL translator |
| :--- |
| High-voltage to TTL |

Table 8 LOGIC LEVEL TRANSLATORS

## A GUIDE 70 THE SELEGTION OF SUPPORT COMPONENTS

 FOR SIGNETHES BIT SLIEE MIGROPROCESSORS
## MEMORY INTERFACE AND MAIN MEMORY

When dynamic MOS memory devices are used as main memory, see Figure 5, a memory refresh scheme will be needed. Usually sense amplifiers, address and data buffers, and parity generators and checkers are considered as part of the memory interface logic, (see Table 9-12)

| DEVICE | DESCRIPTION |
| :--- | :--- |
| 7520 | Dual core-memory sense <br> amplifiers |
| 7521 | Dual core-memory sense <br> amplifiers <br> Dual core-memory sense <br> amplifiers |
| 7523 | Dual core-memory sense <br> amplifiers |
| 7524 | Dual core-memory sense <br> amplifiers |
| 7525 | Dual core-memory sense <br> amplifiers |
| 3207 A-1 | Quad TTL-MOS clock drivers <br> Quad TTL-MOS clock drivers |
| $8 T 09$ | Tri-state quad bus driver |
| $8 T 380$ | Tri-state bus receiver, <br> with: |
| TT25 | Tri-state dual sense <br> amplifier/latch |

Table 9 SENSE AMPLIFIERS AND DRIVERS

| DEVICE | DESCRIPTION |
| :---: | :---: |
| 8262 <br> 74180 | 9-bit parity <br> 8-bit parity |

Table 10 PARITY GENERATOR AND CHECKER

| DEVICE | DESCRIPTION |
| :--- | :--- |
| 8281 | Binary counter |
| 8291 | Binary counter |
| 74123 | Dual one-shot |
| $82 S 33$ | Quad 2-to-1 multiplexer |
| $82 S 34$ | Quad 2-to-1 multiplexer |

Table 11 MEMORY REFRESH LOGIC

| DEVICE | DESCRIPTION |
| :--- | :---: |
| 1103 | 1K $(1024 \times 1)$ RAM |
| $1103-1$ | 1K $(1024 \times 1)$ RAM |
| $2602-1$ | 1K $(256 \times 4)$ RAM, |
| 2606 | static |
|  | 1K (256X4) RAM, |
| 2102 | static |
| 2680 | 1K (1024X1) RAM |
| 2660 | $4 K(4096 \times 1)$ RAM |
|  | $4 K(4096 \times 1)$ RAM |




## TIMING GENERATION AND MISCELLANEOUS CONTROL

Most timing generation requirements as shown in Figure 6 can be met by using a one-shot (retriggerable monostable multivibrator). If a multiple-phase clocking system is required, additional shift registers may be used.

| DEVICE | DESCRIPTION |
| :--- | :--- |
| 74123 | Dual-monostable multivibrator <br> 9602 <br> $74 S 194$ <br> $74 S 195$ <br> Dual-monostable multivibrator <br> 4-bit bidirectional universal <br> shift register |
| $74 S 178$ | 4-bit parallel-access shift <br> registers <br> 4-bit shift register <br> 4-bit shift register |

## DESCRIPTION

The S／N3001 MCU is 1 element of a bipolar microcomputer set．When used with the S／N3002，54／74S182，ROM or PROM mem－ ory，a powerful microprogrammed com－ puter can be implemented．

The 3001 MCU controls the fetch sequence of microinstructions from the micropro－ gram memory．Functions performed by the 3001 include：
－Maintenance of microprogram address register
－Selection of next microinstruction address
－Decoding and testing of data supplied via several input buses
－Saving and testing of carry output data from the central processing（CP）array
－Control of carry／shift input data to the CP array
－Control of microprogram interrupts

FEATURES
－Schottky TTL process
－45ns cycle time（typ．）
－Direct addressing of standard bipolar PROM or ROM
－ 512 microinstruction addressability
－Advanced organization：
9 －bit microprogram address register and bus organized to address memory by row and column 4－bit program latch 2－flag registers
－ 11 address control functions： 3 jump and test latch function 16 way jump and test instruction
－ 8 flag control functions：
4 flag input functions 4 flag output functions

PIN CONFIGURATION

| 1 PACKAGE |  |
| :---: | :---: |
| $\overline{\bar{x}_{6}}$ | $\mathrm{V}_{\mathrm{vcc}}$ |
| 可，园 | ${ }^{\text {a }} \mathrm{c}_{0}$ |
| 啊号 | 可ac， |
|  | Tacs |
| ${ }_{5 \times 3}{ }^{\text {a }}$［ | 20 |
| 5x2 ${ }^{\text {c／}}$ | TEba |
| $\cdots$ |  |
| 5x，国 | 四m， |
| －${ }^{\circ}$ 回 |  |
| $\mathrm{ExO}^{\text {a }}$ | （1） $\mathrm{as}_{5}$ |
| ${ }^{80} 0$ 毛 | 國的禹 |
| $\mathrm{Fc}_{3}$ 回 | 回ma |
| $\mathrm{Cc}_{2}$ 回 | 囫 $a_{3}$ |
| क0 | $\mathrm{O}^{0 \mathrm{Na}_{2}}$ |
| $\mathrm{Fc}_{0}$ 辰 | 圂ma， |
| ${ }^{\circ}$ 毘 | Ten |
| T／ | （0acs |
| sf | $\square^{\left(a C_{4}\right.}$ |
| oux | $\square^{\text {aca }}$ |
|  | $\mathrm{Dac}_{2}$ |

## BLOCK DIAGRAM



## PIN DESIGNATION

| PIN | SYMBOL | NAME AND FUNCTION | TYPE |
| :---: | :---: | :---: | :---: |
| 1-4 | $\overline{\mathrm{PX}}_{4}-\overline{\mathrm{PX}}_{7}$ | Primary Instruction Bus Inputs <br> Data on the primary instruction bus is tested by the JPX function to determine the next microprogram address. | Active low |
| 5,6,8,10 | $\overline{S X}_{0}-\overline{S X}_{3}$ | Secondary Instruction Bus Inputs <br> Data on the secondary instruction bus is synchronously loaded into the PR-latch while the data on the PX-bus is being tested (JPX). During a subsequent cycle, the contents of the PR-latch may be tested by the JPR, JLL, or JRL functions to determine the next microprogram address. | Active low |
| 7,9,11 | $\mathrm{PR}_{0}-\mathrm{PR}_{2}$ | PR-Latch Outputs <br> The PR-latch outputs ( $S_{X_{0}}-S X_{2}$ ) are synchronously enabled by the JCE function. They can be used to modify microinstructions at the outputs of the microprogram memory or to provide additional control lines. | Open Collector |
| $\begin{aligned} & 12,13 \\ & 15,16 \end{aligned}$ | $\mathrm{FC}_{0}-\mathrm{FC}_{3}$ | Flag Logic Control Inputs <br> The flat logic control inputs are used to cross-switch the flags ( $C$ and $Z$ ) with the flag logic input (FI) and the flag logic output (FO). | Active high |
| 14 | $\overline{\mathrm{FO}}$ | Flag Logic Output <br> The outputs of the flags ( $C$ and $Z$ ) are multiplexed internally to form the common flag logic output. The output may also be forced to a logical 0 or logical 1. | Active low <br> Three-state |
| 17 | $\overline{\mathrm{FI}}$ | Flag Logic Input <br> The flag logic input is demultiplexed internally and applied to the inputs of the flags ( $C$ and $Z$ ). Note: The flag input data is saved in the F-latch when the clock input (CLK) is low. | Active Iow |
| 18 | ISE | Interrupt Strobe Enable Output <br> The interrupt strobe enable output goes to logical 1 when one of the JZR functions are selected (see Functional Description). It can be used to provide the strobe signal required by interrupt circuits. | Active high |
| 19 | CLK | Clock Input |  |
| 20 | GND | Ground |  |
| 21-24 | $\mathrm{AC}_{0}-\mathrm{AC}_{6}$ | Next Address Control Function Inputs | Active high |
| 37-39 |  | All jump functions are selected by these control lines. |  |
| 25 | EN | Enable Input <br> When in the high state, the enable input enables the microprogram address, PR-latch and flag outputs. |  |
| 26-29 | $M A_{0}-M A_{3}$ | Microprogram Column Address Outputs | Three-state |
| 30-34 | $\mathrm{MA}_{4}-\mathrm{MA}_{8}$ | Microprogram Row Address Outputs | Three-state |
| 35 | ERA | Enable Row Address Input <br> When in the low state, the enable row address input independently disables the microprogram row address outputs. It can be used to facilitate the implementation of priority interrupt systems. | Active high |
| 36 | LD | Microprogram Address Load Input <br> When the active high state, the microprogram address load input inhibits all jump functions and synchronously loads the data on the instruction buses into the microprogram address register. However, it does not inhibit the operation of the PR-latch or the generation of the interrupt strobe enable. | Active high |
| 40 | $\mathrm{V}_{\mathrm{CC}}$ | +5 Volt supply |  |

## THEORY OF OPERATION

The MCU controls the sequence of microinstructions in the microprogram memory. The MCU simultaneously controls 2 flipflops (C, Z) which are interactive with the carry-in and carry-out logic of an array of CPEs.

The functional control of the MCU provides both unconditional jumps to new memory locations and jumps which are dependent on the state of MCU flags or the state of the "PR" latch. Each instruction has a "jump set" associated with it. This "jump set" is the total group of memory locations which can be addressed by that instruction.

The MCU utilizes a two-dimensional addressing scheme in the microprogram memory. Microprogram memory is organized as 32 rows and 16 columns for a total of 512 words. Word length is variable according to application. Address is accomplished by a 9 -bit address organized as a 5 -bit row and 4bit column address.


## FUNCTIONAL DESCRIPTION

The following is a description of each of the eleven address control functions. The symbols shown below are used to specify row and column addresses.

| MNEMONIC | FUNCTION |
| :---: | :--- |
| rown | 5-bit next row address <br> where n is the decimal <br> row address. |
| col | 4-bit next column address <br> where n is the decimal <br> column address. |

## Unconditional Address Control (Jump) Functions

The jump functions use the current microprogram address (i.e., the contents of the microprogram address register prior to the rising edge of the clock) and several bits from the address control inputs (ACO-AC6) to generate the next microprogram address.

## Flag Conditional Address

Control (Jump Test)

## Functions

The jump/test flag functions use the current microprogram address, the contents of the selected flag or latch, and several bits from the address control function to generate the next microprogram address.

## JUMP FUNCTION TABLE

| MNEMONIC | NAME AND FUNCTION |
| :---: | :---: |
| JCC | Jump in current column. $\mathrm{AC}_{0}-\mathrm{AC}_{4}$ are used to select 1 of 32 row addresses in the current column, specified by $M A_{0}-M A_{3}$, as the next address. |
| JZR | Jump to zero row. $\mathrm{AC}_{0}-\mathrm{AC}_{3}$ are used to select 1 of 16 column addresses in row ${ }_{0}$, as the next address. |
| JCR | Jump in current row. $\mathrm{AC}_{0}-\mathrm{AC}_{3}$ are used to select 1 of 16 addresses in the current row, specified by $\mathrm{MA}_{4}-\mathrm{MA}_{8}$, as the next address. |
| JCE | Jump in current column/row group and enable PR-latch outputs. $\mathrm{AC}_{0}{ }^{-}$ $\mathrm{AC}_{2}$ are used to select 1 of 8 row addresses in the current row group, specified by $M A_{7}-M A_{8}$, as the next row address. The current column is specified by $\mathrm{MA}_{0}-\mathrm{MA}_{3}$. The PR-latch outputs are asynchronously enabled. |

## JUMP/TEST FUNCTION TABLE

| MNEMONIC | NAME AND FUNCTION |
| :---: | :---: |
| JFL | Jump/test F-latch. $\mathrm{AC}_{0}-\mathrm{AC}_{3}$ are used to select 1 of 16 row addresses in the current row group, specified by $\mathrm{MA}_{8}$, as the next row address. If the current column group, specified by $\mathrm{MA}_{3}$, is $\mathrm{col}_{0}-\mathrm{col}_{7}$, the F -latch is used to select $\mathrm{COI}_{2}$ or $\mathrm{COI}_{3}$ as the next column address. If $\mathrm{MA}_{3}$ specifies column group $\mathrm{COl}_{8}-\mathrm{COl}_{15}$, the F-latch is used to select $\mathrm{COl}_{10}{\text { or } \mathrm{COl}_{11} \text { as the next }}^{\text {a }}$ column address. |
| JCF | Jump/test C-flag. $\mathrm{AC}_{0}-\mathrm{AC}_{2}$ are used to select 1 of 8 row addresses in the current row group, specified by $\mathrm{MA}_{7}$ and $\mathrm{MA}_{8}$, as the next row address. If the current column group specified by $\mathrm{MA}_{3}$ is $\mathrm{Col}_{0}-\mathrm{col}_{7}$, the C -flag is used to select $\mathrm{col}_{2}$ or $\mathrm{COl}_{3}$ as the next column address. If $\mathrm{MA}_{3}$ specifies column group $\mathrm{col}_{8}-\mathrm{COl}_{15}$, the C -flag is used to select $\mathrm{COl}_{10} \mathrm{or}_{\mathrm{COl}}^{11}$ as the next column address. |
| JZF | Jump/test Z-flag. Identical to the JCF function described above, except that the Z-flag, rather than the C-flag, is used to select the next column address. |
| JPR | Jump/test PR-latch. $A C_{0}-A C_{2}$ are used to select 1 of 8 row addresses in the current row group, specified by $\mathrm{MA}_{7}$ and $\mathrm{MA}_{8}$, as the next row address. The 4 PR-latch bits are used to select 1 of 16 possible column addresses as the next column address. |
| JLL | Jump/test leftmost PR-latch bits. $\mathrm{AC}_{0}-\mathrm{AC}_{2}$ are used to select 1 of 8 row addresses in the current row group, specified by $\mathrm{MA}_{7}$ and $\mathrm{MA}_{8}$, as the next row address. $\mathrm{PR}_{2}$ and $\mathrm{PR}_{3}$ are used to select 1 of 4 column addresses in $\mathrm{COl}_{4}$ through $\mathrm{COl}_{7}$ as the next column address. |
| JRL | Jump/test rightmost PR-latch bits. $\mathrm{AC}_{0}$ and $\mathrm{AC}_{1}$ are used to select 1 of 4 high-order row addresses in the current row group, specified by $\mathrm{MA}_{7}$ and $M A_{8}$, as the next row address. $\mathrm{PR}_{0}$ and $P R_{1}$ are used to select 1 of 4 possible column addresses in $\mathrm{col}_{12}$ through $\mathrm{col}_{16}$ as the next column address. |
| JPX | Jump/test PX-bus and load PR-latch. $A C_{0}$ and $A C_{1}$ are used to select 1 of 4 row addresses in the current row group, specified by $M A_{6}-M A_{8}$, as the next row address. $\mathrm{PX}_{4}-\mathrm{PX}_{7}$ are used to select 1 of 16 possible column addresses as the next column address. $\mathrm{SX}_{0}-\mathrm{SX}_{3}$ data is locked in the PRlatch at the rising edge of the clock. |

## PX-Bus and PR-Latch <br> Conditional Address Control (Jump/Test) Functions

The PX-bus jump/test function uses the data on the primary instruction bus ( $\mathrm{PX}_{4}{ }^{-}$ $\mathrm{PX}_{7}$ ), the current microprogram address, and several selection bits from the address control function to generate the next microprogram address. The PR-latch jump/ test functions use the data held in the PRlatch, the current microprogram address, and several selection bits from the address control function to generate the next microprogram address.

## Flag Control Functions

The flag control functions of the MCU are selected by the 4 input lines designated $\mathrm{FC}_{0}-\mathrm{FC}_{3}$. Function code formats are given in "Flag Control Function summary."

The following is a detailed description of each of the 8 flag control functions.

## Flag Input Control Functions

The flag input control functions select which flag or flags will be set to the current value of the flag input (FT) line.
Data on $\overline{\mathrm{Fl}}$ is stored in the F -latch when the clock is low. The content of the F-latch is loaded into the C and/or Z flag on the rising edge of the clock.

## Flag Output Control Functions

The flag output control functions select the value to which the flag output ( $\overline{\mathrm{FO} \text { ) line will }}$ be forced.

FLAG CONTROL FUNCTION TABLE

| MNEMONIC | FUNCTION DESCRIPTION |
| :--- | :--- |
| SCZ | Set C-flag and Z-flag to FI. The C-flag and the Z-flag are both set to the <br> value of FI. <br> Set Z-flag to FI. The Z-flag is set to the value of FI. The C-flag is <br> unaffected. <br> STC C-flag to FI. The C-flag is set to the value of FI. The Z-flag is <br> unaffected. <br> Hold C-flag and Z-flag. The values in the C-flag and Z-flag are <br> unaffected. |

## FLAG OUTPUT CONTROL FUNCTION TABLE

| MNEMONIC | FUNCTION DESCRIPTION |
| :---: | :---: |
| FFO | Force FO to 0. FO is forced to the value of logical 0. |
| FFC | Force FO to C. FO is forced to the value of the C-flag. |
| FFZ | Force FO to $Z . F O$ is forced to the value of the Z-flag. |
| FF1 | Force FO to 1. FO is forced to the value of logical 1. |

## FLAG CONTROL FUNCTION SUMMARY

| TYPE | MNEMONIC | DESCRIPTION | FC ${ }_{1}$ | 0 |
| :---: | :---: | :---: | :---: | :---: |
| Flag Input | SCZ | Set C-flag and Z-flag to f | 0 | 0 |
|  | STZ | Set Z-flag to f | 0 | 1 |
|  | STC | Set C-flag to f | 1 | 0 |
|  | HCZ | Hold C-flag and Z-flag | 1. | 1 |
| TYPE | MNEMONIC | DESCRIPTION | $\mathrm{FC}_{3}$ | 2 |
| Flag Output | FF0 | Force FO to 0 | 0 | 0 |
|  | FFC | Force FO to C-flag | 1 | 0 |
|  | FFZ | Force FO to Z-flag | 0 | 1 |
|  | FF1 | Force FO to 1 | 1 | 1 |


| LOAD FUNCTION | NEXT ROW |  |  |  |  | NEXT COL |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LD | $\mathrm{MA}_{8}$ | 7 |  |  |  |  |  |  | 0 |
| 0 | See Address Control Function Summary |  |  |  |  |  |  |  |  |
| 1 | 0 | $X_{3}$ | $\mathrm{X}_{2}$ | X | X | $\mathrm{X}_{7}$ | $\mathrm{X}_{6}$ | $X_{5}$ | $\mathrm{X}_{4}$ |

NOTE
$f=$ Contents of the F-latch $\quad x n=$ Data on PX- or SX-bus line $n$ (active low)

## ADDRESS CONTROL FUNCTION SUMMARY

| MNEMONIC | DESCRIPTION | FUNCTION |  |  |  |  |  |  | NEXT ROW |  |  |  |  | NEXT COL |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{AC}_{6}$ | 5 | 4 | 3 | 2 | 1 | 0 | MA ${ }_{8}$ | 7 | 6 | 5 | 4 | $\mathrm{MA}_{3}$ | 2 | 1 | 0 |
| JCC | Jump in current column | 0 | 0 | $\mathrm{d}_{4}$ | $\mathrm{d}_{3}$ | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | $\mathrm{d}_{4}$ | $\mathrm{d}_{3}$ | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | $\mathrm{m}_{3}$ | $\mathrm{m}_{2}$ | $\mathrm{m}_{1}$ | $\mathrm{m}_{0}$ |
| JZR | Jump to zero row | 0 | 1 | 0 | $\mathrm{d}_{3}$ | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | 0 | 0 | 0 | 0 | 0 | $\mathrm{d}_{3}$ | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ |
| JCR | Jump in current row | 0 | 1 | 1 | $\mathrm{d}_{3}$ | - $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | $\mathrm{m}_{8}$ | $\mathrm{m}_{7}$ | $\mathrm{m}_{6}$ | $\mathrm{m}_{5}$ | $\mathrm{m}_{4}$ | $\mathrm{d}_{3}$ | $\mathrm{d}_{2}$ | $d_{1}$ | $d_{0}$ |
| JCE | Jump in column/enable | 1 | 1 | 1 | 0 | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | $\mathrm{m}_{8}$ | $\mathrm{m}_{7}$ | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | $\mathrm{m}_{3}$ | $\mathrm{m}_{2}$ | $\mathrm{m}_{1}$ | $\mathrm{m}_{0}$ |
| JFL | Jump/test F-latch | 1 | 0 | 0 | $d_{3}$ | $\mathrm{d}_{2}$ | $d_{1}$ | $d_{0}$ | $\mathrm{m}_{8}$ | $d_{3}$ | $\mathrm{d}_{2}$ | $d_{1}$ | $d_{0}$ | $\mathrm{m}_{3}$ | 0 | 1 | f |
| JCF | Jump/test C-flag | 1 | 0 | 1 | 1 | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $d_{0}$ | $\mathrm{m}_{8}$ | $\mathrm{m}_{7}$ | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | $\mathrm{m}_{3}$ | 0 | 1 | c |
| JZF | Jump/test Z-flag | 1 | 0 | 1 | 1 | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | $\mathrm{m}_{8}$ | $\mathrm{m}_{7}$ | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | $\mathrm{m}_{3}$ | 0 | 1 | Z |
| JPR | Jump/test PR-latch | 1 | 1 | 0 | 0 | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | $\mathrm{m}_{8}$ | $\mathrm{m}_{7}$ | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | $\mathrm{p}_{3}$ | $\mathrm{p}_{2}$ | $\mathrm{p}_{1}$ | $\mathrm{p}_{0}$ |
| JLL | Jump/test left PR bits | 1 | 1 | 0 | 1 | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | $\mathrm{m}_{8}$ | $\mathrm{m}_{7}$ | $\mathrm{d}_{2}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | 0 | 1 | $\mathrm{p}_{3}$ | $\mathrm{p}_{2}$ |
| JRL | Jump/test right PR bits | 1 | 1 | 1 | 1 | 1 | $\mathrm{d}_{1}$ | $d_{0}$ | $\mathrm{m}_{8}$ | $\mathrm{m}_{7}$ | 1 | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | 1 | 1 | $\mathrm{p}_{1}$ | $\mathrm{p}_{0}$ |
| JPX | Jump/test PX-bus | 1 | 1 | 1 | 1 | 0 | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | $\mathrm{m}_{8}$ | $\mathrm{m}_{7}$ | $\mathrm{m}_{6}$ | $\mathrm{d}_{1}$ | $\mathrm{d}_{0}$ | $\mathrm{x}_{7}$ | $\mathrm{x}_{6}$ | $\mathrm{x}_{5}$ | $\mathrm{x}_{4}$ |

$d n=$ Data on address control line $n$
$\mathrm{mn}=$ Data in microprogram address register bit n

Pn = Data in PR-latch bit $n$
$x n=$ Data on PX-bus line $n$ (active low)
$\mathrm{f}, \mathrm{c}, \mathrm{z}=$ Contents of F -latch, C -flag, or Z-flag, respectively

## STROBE FUNCTIONS

The load function of the MCU is controlled by the input line designated LD．If the LD line is active high at the rising edge of the clock，the data on the primary and second－ ary instruction buses， $\mathrm{PX}_{4}-\mathrm{PX}_{7}$ and $\mathrm{SX}_{0}-\mathrm{SX}_{3}$ ， is loaded into the microprogram address register． $\mathrm{PX}_{4}-P X_{7}$ are loaded into $M A_{0}-M A_{7}$ and $S X_{0}-S X_{3}$ are loaded into $M A_{4}-M A_{7}$ ．The high－order bit of the microprogram address register $M A_{8}$ is set to a logical 0 ．The bits from the primary instruction bus select 1 of 16 possible column addresses．Likewise， the bits from the secondary instruction bus select 1 of the first 16 row addresses．

The MCU generates an interrupt strobe enable on the output line designated ISE． The line is placed in the active high state whenever a JZR to $\mathrm{Col}_{15}$ is selected as the address control function．Generally，the start of a macroinstruction fetch sequence is situated at row ${ }_{0}$ and $\mathrm{col}_{15}$ so the interrupt control may be enabled at the beginning of the fetch／execute cycle．The interrupt con－ trol responds to the interrupt by pulling the enable row address（ERA）input line low to override the selected next row address from the MCU．Then by gating an alternative next row address on to the row address lines of the microprogram memory，the micropro－ gram may be forced to enter an interrupt handling routine．The alternative row ad－ dress placed on the microprogram memory address lines does not alter the contents of the microprogram address register．There－ fore，subsequent jump functions will utilize the row address in the register，and not the alternative row address，to determine the next microprogram address．

Note，the load function always overrides the address control function on $\mathrm{AC}_{0}-\mathrm{AC}_{6}$ ．It does not，however，override the latch enable or load sub－functions of the JCE or JPX instruction，respectively．In addition，it does not inhibit the interrupt strobe enable or any of the flag control functions．

## JUMP SET DIAGRAMS

The following 10 diagrams illustrate the jump set for each of the 11 jump and jump／ test functions of the MCU．Location 341 indicated by the circled square，represents 1 current row（row ${ }_{21}$ ）and current column （ $\mathrm{COI}_{5}$ ）address．The dark boxes indicate the microprogram locations that may be select－ ed by the particular function as the next address．

JUMP SET DIAGRAMS

| JCC <br> JUMP IN CURRENT COLUMN |  |  |  |  |  |  |  |  | JZRJUMP TO ZERO ROW |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{ROW}_{0} \rightarrow$ |  |  |  |  |  |  |  | － |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | $\bigcirc$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | － |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | － |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\text { Row }_{0} \longrightarrow$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\square$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|             <br>             |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { CURRENT } \\ & \text { ROW } \\ & \text { GROUP } \\ & M_{8} 7 \\ & 10 \end{aligned}$ |  |  |  |  |  |  |  | ，\幺 | CURRENT |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | そ，幺幺 | ROW |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | group |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | \％：\％ | $\mathrm{M}_{8} 7$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | ，\％（\％） | 10 |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | 紋 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | $\square$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

JUMP SET DIAGRAMS (Cont'd)


37

AC ELECTRICAL CHARACTERISTICS S $3001 \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$


NOTE

1. Typical values are for $T A=25^{\circ} \mathrm{C}$ and 5.0 supply voltage.
2. $\mathrm{S} 3001: \mathrm{t} C Y=\mathrm{t} W \mathrm{P}+\mathrm{tSF}+\mathrm{tCO}$

VOLTAGE WAVEFORMS


## DESCRIPTION

The N3002 Central Processing Element (CPE) is one part of a bipolar microcomputer set. The N3002 is organized as a 2-bit slice and performs the logical and arithmetic functions required by microinstructions. A system with any number of bits in a data word can be implemented by using multiple N3002s, the N3001 microcomputer control unit, the N74S182 carry look-ahead unit and ROM or PROM memory.

## FEATURES

- 45ns cycle time (typ)
- Easy expansion to multiple of 2 bits
- 11 general purpose registers
- Full function accumulator
- Useful functions include: 2's complement arithmetic Logical AND, OR, NOT, exclusiveNOR
Increment, decrement Shift left/shift right Bit testing and zero detection Carry look-ahead generation Masking via K-bus Conditioned clocking allowing nondestructive testing of data in accumulator and scratchpad
- 3 input buses
- 2 output buses
- Contral bus

FUNCTION TRUTH TABLE

| FUNCTION <br> GROUP | $F_{6}$ | $F_{5}$ | $F_{4}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 2 | 0 | 1 | 0 |
| 3 | 0 | 1 | 1 |
| 4 | 1 | 0 | 0 |
| 5 | 1 | 0 | 1 |
| 6 | 1 | 1 | 0 |
| 7 | 1 | 1 | 1 |


| REGISTER <br> GROUP | REGISTER | $F_{3}$ | $F_{2}$ | $F_{1}$ | $F_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $R_{0}$ | 0 | 0 | 0 | 0 |
|  | $R_{1}$ | 0 | 0 | 0 | 1 |
|  | $R_{2}$ | 0 | 0 | 1 | 0 |
|  | $R_{3}$ | 0 | 0 | 1 | 1 |
|  | $R_{4}$ | 0 | 1 | 0 | 0 |
|  | $R_{5}$ | 0 | 1 | 0 | 1 |
|  | $R_{6}$ | 0 | 1 | 1 | 0 |
|  | $R_{7}$ | 0 | 1 | 1 | 1 |
|  | $R_{8}$ | 1 | 0 | 0 | 0 |
|  | $R_{9}$ | 1 | 0 | 0 | 1 |
|  | T | 1 | 1 | 0 | 0 |
|  | AC | 1 | 1 | 0 | 1 |
| II | T | 1 | 0 | 1 | 0 |
|  | AC | 1 | 0 | 1 | 1 |
|  | T | 1 | 1 | 1 | 0 |
|  | AC | 1 | 1 | 1 | 1 |

PIN CONFIGURATION


## BLOCK DIAGRAM



## PIN DESIGNATION

| PIN | SYMBOL | NAME AND FUNCTION | TYPE |
| :---: | :---: | :---: | :---: |
| 1, 2 | $\mathrm{T}_{0}-\bar{T}_{1}$ | External Bus Inputs | Active low |
|  |  | The external bus inputs provide a separate input port for external input devices. |  |
| 3, 4 | $\overline{\mathrm{K}_{0}}-\overline{\mathrm{K}}_{1}$ | Mask Bus Inputs | Active low |
|  |  | The mask bus inputs provide a separate input port from the microprogram memory, to allow mask or constant entry. |  |
| 5, 6 | $X, Y$ | Standard Carry Look-Ahead Cascade Outputs | Active high |
|  |  | The cascade outputs allow high speed arithmetic operations to be performed when they are used in conjunction with the 74S182 Look-Ahead Carry Generator |  |
| 7 | $\overline{\mathrm{CO}}$ | Ripple Carry Out | Active low |
|  |  | The ripple carry output is only disabled during shift right operations. | Three-state |
| 8 | $\overline{\mathrm{RO}}$ | Shift Right Output | Active low |
|  |  | The shift right output is only enabled during shift right operations. | Three-state |
| 9 | प1 | Shift Right Input | Active low |
| 10 | $\overline{\mathrm{Cl}}$ | Carry Input | Active low |
| 11 | $\overline{E A}$ | Memory Address Enable Input | Active low |
|  |  | When in the low state, the memory address enable input enables the memory address outputs ( $A_{0}-A_{1}$ ). |  |
| 12-13 | $\overline{\mathrm{A}_{0}}-\overline{\mathrm{A}_{1}}$ | Memory Address Bus Outputs | Active low |
|  |  | The memory address bus outputs are the buffered outputs of the memory address register (MAR). | Three-state |
| 14 | GND | Ground |  |
| 14-17, | $\mathrm{F}_{0}-\mathrm{F}_{6}$ | Micro-Function Bus Inputs | Active high |
| $24-27$ |  | The micro-function bus inputs control ALU function and register selection. |  |
| 18 | $\frac{\overline{\mathrm{CLK}}}{\overline{\mathrm{D}_{0}}-\overline{\mathrm{D}_{1}}}$ | Clock Input |  |
| 19-20 |  | Memory Data Bus Outputs | Active low |
|  |  | The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). | Three-state |
| 21-22 | $\overline{M_{0}}-\overline{M_{1}}$ | Memory Data Bus Inputs | Active low |
|  |  | The memory data bus inputs provide a separate input port for memory data. Memory Data Enable Input |  |
| $\begin{array}{r}23 \\ \\ \hline 8\end{array}$ | ED | Memory Data Enable Input <br> When in the low state, the memory data enable input enables the memory data outputs ( $\mathrm{D}_{0}-\mathrm{D}_{1}$ ). | Active low |

## SYSTEM DESCRIPTION

## Microfunction Decoder and K-Bus

Basic microfunctions are controlled by a 7 bit bus ( $F_{0}-F_{6}$ ) which is organized into 2 groups. The higher 3 bits $\left(F_{4}-F_{6}\right)$ are designated as $F$-Group and the lower 4 bits ( $F_{0^{-}}$ $F_{3}$ ) are designated as the R-Group. The FGroup specifies the type of operation to be performed and the R-Group specifies the registers involved.

The F-Bus instructs the microfunction decoder to:

- Select ALU functions to be performed
- Generate scratchpad register address
- Control A and B multiplexer

The resulting microfunction action can be:

- Data transfer
- Shift operations
- Increment and decrement
- Initialize stack
- Test for zero conditions
- 2's complement addition and subtraction
- Bit masking
- Maintain program counter


## A and B Multiplexers

$A$ and $B$ multiplexers select the proper 2 operands to the ALU.

A multiplexer selects inputs from one of the following:

- M-bus (data from main memory)
- Scratchpad registers
- Accumulator

B multiplexer selects inputs from one of the following:

- I-bus (data from external I/O devices)
- Accumulator
- K-bus (literal or masking information from micro-program memory)


## Scratchpad Registers

- Contains 11 registers $\left(R_{0}-R_{9}, T\right)$
- Scratchpad register outputs are multiplexed to the ALU via the A multiplexer
- Used to store intermediate results from arithmetic/logic operations
- Can be used as program counter


## Arithmetic/Logic Unit (ALU)

The ALU performs the arithmetic and logic operations of the CPE.

Arithmetic operations are:

- 2's complement addition
- Incrementing
- Decrementing
- Shift left
- Shift right

Logical operations are:

- Transfer
- AND
- Inclusive-OR
- Exclusive-NOR
- Logic complement

ALU operation results are then stored in the accumulator and/or scratchpad registers. For easy expansion to larger arrays, carry look-ahead outputs ( $X$ and $Y$ ) and cascading shift inputs (LI, RO) are provided.

## Accumulator

- Stores results from ALU operations
- The output of accumulator is multiplexed into ALU via the $A$ and $B$ multiplexer as one of the operands


## Input Buses

M-bus: Data bus from main memory

- Accepts 2 bits of data from main memory into CPE
- Is multiplexed into the ALU via the A multiplexer
I-bus: Data bus from input/output devices
- Accepts 2 bits of data from external input/output devices into CPE
- Is multiplexed into the ALU via the B multiplexer

K-bus: A special feature of the N3002 CPE

- During arithmetic operations, the K-bus can be used to mask portions of the field being operated on
- Select or remove accumulator from operation by placing K-bus in all " 1 " or all " 0 " state respectively
- During non-arithmetic operation, the carry circuit can be used in conjunction with the K-bus for word-wise-OR operation for bit testing
- Supply literal or constant data to CPE


## Output Buses

A-bus and Memory Address Register

- Main memory address is stored in the memory address register (MAR)
- Main memory is addressed via the A-bus
- MAR and A-bus may also be used to generate device address when executing I/OO instrucinstructions
- A-bus has Tri-State outputs

D-bus: Data bus from CPE to main memory or to I/O devices

- Sends buffered accumulator outputs to main memory or the external I/O devices
- D-bus has Tri-State outputs


## FUNCTION DESCRIPTION

| $\begin{gathered} \text { F } \\ \text { GROUP } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { R } \\ \text { GROUP } \end{array}$ | $\begin{gathered} \mathrm{K} \\ \text { BUS } \end{gathered}$ | NAME | EQUATION | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | XX | - | $\mathrm{R}_{\mathrm{n}}+(\mathrm{AC} \wedge \mathrm{K})+\mathrm{Cl} \rightarrow \mathrm{R}_{\mathrm{n}}, \mathrm{AC}$ | Logically AND AC with the K-bus. Add the result to $R_{n}$ and carry input (CI). Deposit the sum in $A C$ and $R_{n}$. |
|  |  | OO | ILR | $\mathrm{R}_{\mathrm{n}}+\mathrm{Cl} \rightarrow \mathrm{R}, \mathrm{AC}$ | Conditionally increment $R_{n}$ and load the result in $A C$. Used to load AC from $R_{n}$ or to increment $R_{n}$ and load a copy of the result in AC. |
|  |  | 11 | ALR | $\mathrm{AC}+\mathrm{R}_{\mathrm{n}}+\mathrm{Cl} \rightarrow \mathrm{R}_{\mathrm{n}}, \mathrm{AC}$ | Add $A C$ and $C I$ to $R_{n}$ and load the result in $A C$. Used to add $A C$ to a register. If $R_{n}$ is $A C$, then $A C$ is shifted left one bit position. |
| 0 | 11 | xx | - | $\mathrm{M}+(\mathrm{AC} \wedge \mathrm{K})+\mathrm{Cl} \rightarrow \mathrm{AT}$ | Logically AND AC with the K-bus. Add the result to Cl and the M-bus. Deposit the sum in AC or T. |
|  |  | 00 | ACM | $\mathrm{M}+\mathrm{Cl} \rightarrow \mathrm{AT}$ | Add Cl to M -bus. Load the result in AC or T , as specified. Used to load memory data in the specified register, or to load incremented memory data in the specified register. |
|  |  | 11 | AMA | $\mathrm{M}+\mathrm{AC}+\mathrm{Cl} \rightarrow \mathrm{AT}$ | Add the M-bus to AC and CI , and load the result in AC or T , as specified. Used to add memory data or incremented memory data to $A C$ and store the sum in the specified register. |
| 0 | III | $x x$ | - |  | None |
|  |  | 00 | SRA | $\begin{gathered} A T_{L} \rightarrow R_{R} \\ A_{H} \rightarrow A_{L} \\ L_{1} \rightarrow A_{H} \end{gathered}$ | Shift AC or T, as specified, right one bit position. Place the previous low order bit value on RO and fill the high order bit from the data on LI. Used to shift or rotate AC or T right one bit. |
| 1 | I | XX | - | $\begin{aligned} & K \vee R_{n} \rightarrow M A R \\ & R_{n}+K+C I \rightarrow R_{n} \end{aligned}$ | Logically $O R R_{\mathbf{n}}$ with the $\mathbf{K}$-bus. Deposit the result in MAR. Add the K-bus to Rn and Cl . Deposit the result in $\mathrm{R}_{\mathrm{n}}$. |
|  |  | 00 | LMI | $\mathrm{Rn} \rightarrow \mathrm{MAR}, \mathrm{Rn}+\mathrm{Cl} \rightarrow \mathrm{Rn}$ | Load MAR from $R_{n}$. Conditionally increment $R_{n}$. Used to maintain a macro-instruction program counter. |
|  |  | 11 | DSM | $11 \rightarrow \mathrm{MAR}, \mathrm{Rn}-1+\mathrm{Cl} \rightarrow \mathrm{Rn}$ | Set MAR to all ones. Conditionally decrement $R_{n}$ by one. Used to force MAR to its highest address and to decrement Rn. |
| 1 | 11 | xx | - | $\begin{aligned} & \mathrm{KVM} \rightarrow \mathrm{MAR} \\ & \mathrm{M}+\mathrm{K}+\mathrm{Cl} \rightarrow \mathrm{AT} \end{aligned}$ | Logically OR the M-bus with the K-Bus. Deposit the result in MAR. Add the K-bus to the M-bus and CI. Deposit the sum in $A C$ or $T$. |
|  |  | 00 | LMM | $\mathrm{M} \rightarrow \mathrm{MAR}, \mathrm{M}+\mathrm{Cl} \rightarrow \mathrm{AT}$ | Load MAR from the M-bus. Add Cl to the M-bus. Deposit the result in AC or $T$. Used to load the address register with memory data for macro-instructions using indirect addressing. |
|  |  | 11 | LDM | $\begin{aligned} & 11 \rightarrow \text { MAR } \\ & \mathrm{M}-1+\mathrm{Cl} \rightarrow \mathrm{AT} \end{aligned}$ | Set MAR to all ones. Subtract one from the M-bus. Add Cl to the difference and deposit the result in AC or T, as specified. Used to load decremented memory data in AC or T. |

FUNCTION DESCRIPTION (Cont'd)

| GROUP | $\begin{gathered} \text { R } \\ \text { GROUP } \end{gathered}$ | $\begin{gathered} K \\ \text { BUS } \end{gathered}$ | NAME | EQUATION | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | III | XX <br> 00 <br> 11 | CIA <br> DCA | $\begin{gathered} (\overline{\mathrm{AT}} \vee \mathrm{~K})+(\mathrm{AT} \wedge \mathrm{~K})+\mathrm{Cl} \rightarrow \mathrm{AT} \\ \overline{\mathrm{AT}}+\mathrm{Cl} \rightarrow \mathrm{AT} \\ \overline{\mathrm{AT}}-1+\mathrm{Cl} \rightarrow \mathrm{AT} \end{gathered}$ | Logically OR the K-bus with the complement of AC or T, as specified. Add the result to the logical AND of specified register with the K-bus. Add the sum to CI . Deposit the result in the specified register. <br> Add CI to the complement of AC or T, as specified. Deposit the result in the specified register. Used to form the 1's or 2's complement of AC or T. <br> Subtract one from AC or T , as specified. Add Cl to the difference and deposit the sum in the specified register. Used to decrement AC or T. |
| 2 | 1 | $\begin{gathered} \text { XX } \\ 00 \\ 11 \end{gathered}$ | CSR <br> SDR | $(A C \wedge K)-1+C I \rightarrow R_{n}$ <br> $\mathrm{Cl}-1 \rightarrow \mathrm{R}_{\mathrm{n}}$ <br> (See Note 1) <br> $A C-1+\mathrm{Cl} \rightarrow \mathrm{R}_{\mathrm{n}}$ <br> (See Note 1) | Logically AND the K-bus with AC. Subtract one from the result and add the difference to Cl . Deposit the sum in $\mathrm{R}_{\mathrm{n}}$. <br> Subtract one from Cl and deposit the difference in Rn . Used to conditionally clear or set $R_{n}$ to all 0 's or 1 's, respectively. Subtract one from AC and add the difference to CI. Deposit the sum in $R_{n}$. Used to store $A C$ in $R_{n}$ or to store the decremented value of $A C$ in $R_{n}$. |
| 2 | 11 | XX <br> 00 <br> 11 | CSA <br> SDA | $(\mathrm{AC} \wedge \mathrm{~K})-1+\mathrm{Cl} \rightarrow \mathrm{AT}$ <br> (See Note 1) <br> $\mathrm{Cl}-1 \rightarrow \mathrm{AT}$ <br> (See Note 1) <br> AC-1+CI $\rightarrow$ AT <br> (See Note 1) | Logically AND the K-bus with AC. Subtract one from the result and add the difference to CI . Deposit the sum in AC or T , as specified. <br> Subtract one from Cl and deposit the difference in AC or T . Used to conditionally clear or set AC or T. <br> Subtract one from AC and add the difference to CI . Deposit the sum in $A C$ or $T$. Used to store $A C$ in $T$, or decrement $A C$, or store the decremented value of $A C$ in $T$. |
| 2 | III | XX <br> 00 <br> 11 | CSA <br> LDI | $(\mathrm{I} \wedge \mathrm{~K})-1+\mathrm{Cl} \rightarrow \mathrm{AT}$ <br> (See Note 1) $\begin{gathered} \mathrm{CI}-1 \rightarrow \mathrm{AT} \\ \mathrm{I}-1+\mathrm{CI} \rightarrow \mathrm{AT} \end{gathered}$ | Logically AND the data of the K-bus with the data on the Ibus. Subtract one from the result and add the difference to Cl . Deposit the sum in AC or T, as specified. <br> Subtract one from Cl and deposit the difference in AC or T . Used to conditionally clear or set AC or T. <br> Subtract one from the data on the I-bus and add the difference to CI. Deposit the sum in AC or T, as specified. Used to load input bus data or decremented input bus data in the specified register. |
| 3 | 1 | $\begin{gathered} \mathrm{XX} \\ 00 \\ 11 \end{gathered}$ | INR <br> ADR | $\begin{gathered} R_{n}+(A C \wedge K)+C I \rightarrow R_{n} \\ R_{n}+C I \rightarrow R_{n} \\ A C+R_{n}+C I \rightarrow R_{n} \end{gathered}$ | Logically AND AC with the K-bus. Add $\mathrm{R}_{\mathrm{n}}$ and Cl to the result. Deposit the sum in $\mathrm{R}_{\mathrm{n}}$. <br> Add Cl to $\mathrm{R}_{\mathrm{n}}$ and deposit the sum in $\mathrm{R}_{\mathrm{n}}$. Used to increment $R_{n}$. <br> Add $A C$ to $R_{n}$. Add the result to Cl and deposit the sum in $\mathrm{R}_{\mathrm{n}}$. Used to add the accumulator to a register or to add the incremented value of the accumulator to a register. |
| 3 | II | XX <br> 00 <br> 11 | ACM <br> AMA | $\begin{gathered} \mathrm{M}+(\mathrm{AC} \wedge \mathrm{~K})+\mathrm{Cl} \rightarrow \mathrm{AT} \\ \mathrm{M}+\mathrm{Cl} \rightarrow \mathrm{AT} \\ \mathrm{M}+\mathrm{AC}+\mathrm{Cl} \rightarrow \mathrm{AT} \end{gathered}$ | Logically AND AC with the K-bus. Add the result to Cl and the M-bus. Deposit the sum in AC or T. <br> Add Cl to M-bus. Load the result in AC or T, as specified. Used to load memory data in the specified register, or to load incremented memory data in the specified register. <br> Add the M -bus to AC and Cl , and load the result in AC or T , as specified. Used to add memory data or incremented memory data to $A C$ and store the sum in the specified register. |

## NOTE

1. 2 's complement arithmetic adds 111 . . . 11 to per-
form subtraction of 000 . . 01.

## FUNCTION DESCRIPTION (Cont'd)

| $\begin{gathered} \text { F } \\ \text { GROUP } \end{gathered}$ | $\mathbf{R}$ GROUP | $\begin{gathered} \mathrm{K} \\ \text { BUS } \end{gathered}$ | NAME | EQUATION | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | III | $\begin{gathered} \mathrm{XX} \\ \\ \mathrm{OO} \\ 11 \end{gathered}$ | $\begin{gathered} - \\ \text { INA } \\ \text { AIA } \end{gathered}$ | $\begin{gathered} A T+(I \wedge K)+C I \rightarrow A T \\ A T+C I \rightarrow A T \\ I+A T+C I \rightarrow A T \end{gathered}$ | Logically AND the K-bus with the I-bus. Add Cl and the contents of $A C$ or $T$, as specified, to the result. Deposit the sum in the specified register. <br> Conditionally increment $A C$ or $T$. Used to increment $A C$ or $T$. <br> Add the I-bus to AC or T. Add CI to the result and deposit the sum in the specified register. Used to add input data or incremented input data to the specified register. |
| 4 | I | $\begin{aligned} & \mathrm{XX} \\ & 00 \\ & 11 \end{aligned}$ | CLR <br> ANR | $\begin{gathered} C I \vee\left(R_{n} \wedge A C \wedge K\right) \rightarrow C O \\ R_{n} \wedge(A C \wedge K) \rightarrow R_{n} \\ \\ C I \rightarrow C O, O \rightarrow R_{n} \\ C I \vee\left(R_{n} \wedge A C\right) \rightarrow C O \\ R_{n} \wedge A C \rightarrow R_{n} \end{gathered}$ | Logically AND the K-bus with AC. Logically AND the result with the contents of $R_{n}$. Deposit the final result in $R_{n}$. Logically OR the value of Cl with the word-wise OR of the bits of the final result. Place the value of the carry OR on the carry output (CO) line. <br> Clear $\mathrm{R}_{\mathrm{n}}$ to all O's. Force CO to CI . Used to clear a register and force CO to Cl . <br> Logically AND AC with $R_{n}$. Deposit the result in $R_{n}$. Force CO to one if the result is non-zero. Used to AND the accumulator with a register and test for a zero result. |
| 4 | 11 | $\begin{aligned} & \mathrm{XX} \\ & \\ & 00 \\ & 11 \end{aligned}$ | CLA <br> ANM | $\begin{gathered} C I \vee(M \wedge A C \wedge K) \rightarrow C O \\ M \wedge(A C \wedge K) \rightarrow A T \\ C I \rightarrow C O, O \rightarrow A T \\ C I \vee(M \wedge A C) \rightarrow C O \\ M \wedge A C \rightarrow A T \end{gathered}$ | Logically AND the K-bus with AC. Logically AND the result with the M-bus. Deposit the final result in AC or T. Logically OR the value of Cl with the word-wise OR of the bits of the final result. Place the value of the carry OR on CO. <br> Clear AC or T, as specified, to all O's. Force CO to CI. Used to clear the specified register and force CO to Cl . <br> Logically AND the M-bus with AC. Deposit the result in AC or T. Force CO to one if the result is non-zero. Used to AND Mbus data to the accumulator and test for a zero result. |
| 4 | III | XX <br> 00 <br> 11 | CLA <br> ANI | $\begin{gathered} \mathrm{CI} \vee(\mathrm{AT} \wedge 1 \wedge \mathrm{~K}) \rightarrow \mathrm{CO} \\ \mathrm{AT} \wedge(\mathrm{I} \wedge \mathrm{~K}) \rightarrow \mathrm{AT} \\ \mathrm{CI} \rightarrow \mathrm{CO}, \mathrm{O} \rightarrow \mathrm{AT} \\ \mathrm{CI} \vee(\mathrm{AT} \wedge \mathrm{I}) \rightarrow \mathrm{CO} \\ A T \wedge 1 \rightarrow A T \end{gathered}$ | Logically AND the I-bus with the K-bus. Logically AND the result with AC or $T$. Deposit the final result in the specified register. Logically OR CI with the word-wise OR of the final result. Place the value of the carry OR on CO. <br> Clear AC or T, as specified, to all O's. Force CO to CI. Used to clear the specified register and force CO to Cl . <br> Logically AND the I-bus with AC or T, as specified. Deposit the result in the specified register. Force CO to one if the result is non-zero. Used to AND the l-bus to the accumulator and test for a zero result. |
| 5 | I | XX <br> OO <br> 11 | CLR TZR | $\begin{gathered} \mathrm{CI} \vee\left(\mathrm{R}_{n} \wedge \mathrm{~K}\right) \rightarrow \mathrm{CO} \\ \mathrm{~K} \wedge \mathrm{R}_{n} \rightarrow \mathrm{R}_{n} \\ \mathrm{CI} \rightarrow \mathrm{CO}, \mathrm{O} \rightarrow \mathrm{R}_{n} \\ \mathrm{CI} \vee \mathrm{R}_{\mathrm{n}} \rightarrow \mathrm{CO} \\ \mathrm{R}_{\mathrm{n}} \rightarrow \mathrm{R}_{\mathrm{n}} \end{gathered}$ | Logically AND the K-bus with $\mathbf{R}_{\mathbf{n}}$. Deposit the result in Rn. Logically OR CI with the word-wise OR of the result. Place the value of the carry OR on CO. <br> Clear Rn to all O's. Force CO to CI . Used to clear a register and force CO to Cl . <br> Force CO to one if Rn is non-zero. Used to test a register for zero. Also used to AND K-bus data with a register for masking and, optionally, testing for a zero result. |
| 5 | 11 | XX <br> 00 <br> 11 |  | $\begin{gathered} \mathrm{CI} \vee(\mathrm{M} \wedge \mathrm{~K}) \rightarrow \mathrm{CO} \\ \mathrm{~K} \wedge \mathrm{M} \rightarrow \mathrm{AT} \\ \mathrm{CI} \rightarrow \mathrm{CO}, \mathrm{O} \rightarrow \mathrm{AT} \\ \mathrm{CI} \vee \mathrm{M} \rightarrow \mathrm{CO} \\ M \rightarrow A T \end{gathered}$ | Logically AND the K-bus with the M-bus. Deposit the result in AC or T, as specified. Logically OR CI with the word-wise OR of the result. Place the value of the carry OR on CO. <br> Clear AC or T, as specified, to all O's. Force CO to CI. Used to clear the specified register and force CO to Cl . <br> Load AC or T, as specified, from the M-bus. Force CO to one if the result is non-zero. Used to load the specified register from memory and test for a zero result. Also used to AND the K-bus with the M-bus for masking and, optionally, testing for a zero result. |

FUNCTION DESCRIPTION (Cont'd)

| $\begin{array}{c\|} \hline F \\ \text { GROUP } \end{array}$ | $\begin{array}{\|c\|} \hline \text { R } \\ \text { GROUP } \end{array}$ | $\begin{gathered} K \\ \text { BUS } \end{gathered}$ | NAME | EQUATION | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | III | XX <br> 00 <br> 11 | CLA TZA | $\begin{gathered} \mathrm{CI} \vee(\mathrm{AT} \wedge \mathrm{~K}) \rightarrow \mathrm{CO} \\ \mathrm{~K} \wedge \mathrm{AT} \rightarrow \mathrm{AT} \\ \mathrm{CI} \rightarrow \mathrm{CO}, \mathrm{O} \rightarrow \mathrm{AT} \\ \mathrm{CI} \vee \mathrm{AT} \rightarrow \mathrm{CO} \\ \mathrm{AT} \rightarrow \mathrm{AT} \end{gathered}$ | Logically AND the K-bus with AC or T, as specified. Deposit the result in the specified register. Logically OR CI with the word-wise OR of the result. Place the value of the carry OR on CO. <br> Clear AC or T, as specified, to all O's. Force CO to CI. Used to clear the specified register and force CO to CI . <br> Force CO to one if AC or T , as specified, is non-zero. Used to test the specified register for zero. Also used to AND the Kbus to the specified register for masking and, optionally, testing for a zero result. |
| 6 | । | XX <br> 00 <br> 11 | NOP ORR | $\begin{gathered} C I \vee(A C \wedge K) \rightarrow C O \\ R_{n} \vee(A C \wedge K) \rightarrow R_{n} \\ C I \rightarrow C O, R_{n} \rightarrow R_{n} \\ C I \vee A C \rightarrow C O \\ R_{n} \vee A C \rightarrow R_{n} \end{gathered}$ | Logically OR CI with the word-wise OR of the logical AND of AC and the K-bus. Place the result of the carry OR on CO. Logically OR $R_{n}$ with the logical AND of AC and the K-bus. Deposit the result in $R_{n}$. <br> Force CO to Cl . Used as a null operation or to force CO to Cl . <br> Force CO to one if AC is non-zero. Logically OR AC with $R_{n}$. Deposit the result in $R_{n}$. Used to OR the accumulator to a register and, optionally, test the previous accumulator value for zero. |
| 6 | 11 | XX <br> 00 <br> 11 | LMF <br> ORM | $\begin{aligned} & \mathrm{CI} \vee(\mathrm{AC} \wedge \mathrm{~K}) \rightarrow \mathrm{CO} \\ & \mathrm{M} \vee(\mathrm{AC} \wedge \mathrm{~K}) \rightarrow \mathrm{AT} \\ & \\ & \mathrm{CI} \rightarrow \mathrm{CO}, \mathrm{M} \rightarrow \mathrm{AT} \\ & \\ & \mathrm{CI} \vee \mathrm{AC} \rightarrow \mathrm{CO} \\ & \mathrm{M} \vee \mathrm{AC} \rightarrow \mathrm{AT} \end{aligned}$ | Logically OR CI with the word-wise OR of the logical AND of AC and the K-bus. Place the carry OR on CO. Logically OR the M-bus, with the logical AND of AC and the K-bus. Deposit the final result in AC or T. <br> Load AC or T, as specified, from the M-bus. Force CO to CI. Used to load the specified register with memory data and force CO to Cl . <br> Force CO to one if AC is non-zero. Logically OR the M-bus with AC. Deposit the result in AC or T, as specified. Used to OR M-bus with the AC and, optionally, test the previous value of $A C$ for zero. |
| 6 | III | XX | - | $\begin{aligned} & \mathrm{CI} \vee(I \wedge K) \rightarrow \mathrm{CO} \\ & \mathrm{AT} \vee(I \wedge I) \rightarrow \mathrm{AT} \end{aligned}$ | Logical OR CI with the word-wise OR of the logical AND of the I-bus and the K-bus. Place the carry OR on CO. Logically AND the K-bus with the I-bus. Logically OR the result with AC or T , as specified. Deposit the final result in the specified register. |

## FUNCTION DESCRIPTION (Cont'd)

| $\begin{gathered} \text { F } \\ \text { GROUP } \end{gathered}$ | R GROUP | $\begin{gathered} \mathrm{K} \\ \text { BUS } \end{gathered}$ | NAME | EQUATION | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | II | XX | - | $\begin{aligned} & C I \vee(M \wedge A C \wedge K) \rightarrow C O \\ & M \Subset(A C \wedge K) \rightarrow A T \end{aligned}$ | Logically OR CI with the word-wise OR of the logical AND of AC and the K-bus and M-bus. Place the carry OR on CO. Logically AND the K-bus with AC. Exclusive NOR the result with the M-bus. Deposit the final result in AC or $T$. |
|  |  | 00 | LCM | $\mathrm{Cl} \rightarrow \mathrm{CO}, \overline{\mathrm{M}} \rightarrow \mathrm{AT}$ | Load the complement of the M-bus into AC or T, as specified. Force CO to Cl . |
|  |  | 11 | XNM | $\begin{gathered} C I \vee(M \wedge A C) \rightarrow C O \\ M \oplus A C \rightarrow A T \end{gathered}$ | Force $C O$ to one if the logical AND of $A C$ and the M-bus is non-zero. Exclusive-NOR AC with the M-bus. Deposit the result in $A C$ or $T$, as specified. Used to exclusive-NOR memory data with the accumulator. |
| 7 | III | XX | - | $\mathrm{CI} \vee(\mathrm{AT} \wedge \mathrm{I} \wedge \mathrm{K}) \rightarrow \mathrm{CO}$ AT 〒 $(1 \quad K) \rightarrow A T$ | Logically OR CI with the word-wise OR of the logical AND of the specified register and the I-bus and K-bus. Place the carry OR on CO. Logically AND the K-bus with the I-bus. Exclusive-NOR the result with AC or $T$, as specified. Deposit the final result in the specified register. |
|  |  | 00 | CMA | $\mathrm{Cl} \rightarrow \mathrm{CO} \quad \overline{\mathrm{AT}} \rightarrow \mathrm{AT}$ | Complement AC or T , as specified. Force CO to Cl . |
|  |  | 11 | XNI | $\mathrm{Cl} \vee(\mathrm{AT} \wedge \mathrm{I}) \rightarrow \mathrm{CO}$ <br> $I \oplus A T \rightarrow A T$ | Force CO to one if the logical AND of the specified register and the I-bus is non-zero. Exclusive-NOR AC with the I-bus. Deposit the result in AC or T, as specified. Used to exclusiveNOR input data with the accumulator. |

## FUNCTION DESCRIPTION KEY

| SYMBOL | MEANING |
| :---: | :---: |
| I, K, M | Data on the $\mathrm{I}, \mathrm{K}$, and M buses, respectively |
| $\mathrm{Cl}, \mathrm{LI}$ | Data on the carry input and left input, respectively |
| CO,RO | Data on the carry output and right output, respectively |
| Rn | Contents of register n including T and AC (R-Group I) |
| AC | Contents of the accumulator |
| AT | Contents of AC or T, as specified |
| MAR | Contents of the memory address register |
| L, H | As subscripts, designate low and high order bit, respectively |
| + | 2 's complement addition |
| - | 2 's complement subtraction |
| $\wedge$ | Logical AND |
| $\checkmark$ | Logical OR |
| $\oplus$ | Exclusive-NOR |
| $\rightarrow$ | Deposit into |

AC ELECTRICAL CHARACTERISTICS N3001 $=T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ S3001 $=T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

| PARAMETER | N3002 |  |  | S3002 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Typ* | Max | Min | Typ* | Max |  |
| tCY Clock Cycle Time | 70 | 45 |  | 120 | 45 |  | ns |
| tWP Clock Pulse Width | 17 | 10 |  | 42 | 10 |  | ns |
| tFS Function Input Set-Up Time ( $\mathrm{F}_{0}$ through $\mathrm{F}_{6}$ ) | 48 | $-23-35$ |  | 70 | $-23-35$ |  | ns |
| Data Set-Up Time: |  |  |  |  |  |  |  |
| tDS $I_{0}, I_{1}, M_{0}, M_{1}, K_{0}, K_{1}$ | 40 | 12-29 |  | 60 | 12-29 |  | ns |
| tSS LI, Cl | 21 | $0 \rightarrow 7$ |  | 30 | $0-7$ |  | ns |
| Data and Function Hold Time: <br> tFH $\quad F_{0}$ through $F_{6}$ | 4 | 0 |  | 5 | 0 |  | ns |
| tDH $1_{0}, I_{1}, M_{0}, M_{1}, K_{0}, K_{1}$ | 4 | -28 - -11 |  | 5 | $-28-11$ |  | ns |
| tSH LI, Cl | 12 | -7-0 |  | 15 | $-7-0$ |  | ns |
| Propagation Delay to $X, Y$, RO from: |  |  |  |  |  |  |  |
| tXF Any Function Input |  | 28 | 52 |  | 28 | 65 | ns |
| tXD Any Data Input |  | 16-20 | 33 |  | 16-20 | 65 | ns |
| tXT Trailing Edge of CLK |  | 33 | 48 |  | 33 | 75 | ns |
| tXL Leading Edge of CLK | 13 | 18-40 | 70 | 13 | $18-40$ | 90 | ns |
| Propagation Delay to CO from: |  |  |  |  |  |  |  |
| tCL Leading Edge of CLK | 16 | $24-44$ | 70 |  | 24-44 | 90 | ns |
| tCT Trailing Edge of CLK |  | $30-40$ | 56 |  | 30-40 | 100 | ns |
| tCF Any Function Input |  | 25-35 | 52 |  | 25-35 | 75 | ns |
| tCD Any Data Input |  | 17-23 | 55 |  | 17-23 | 65 | ns |
| tCC CI (Ripple Carry) |  | 9-13 | 20 |  | 9-13 | 30 | ns |
| Propagation Delay to $A_{0}, A_{1}, D_{0}, D_{1}$ from: |  |  |  |  |  |  |  |
| tDL Leading Edge of CLK |  | 17-25 | 40 |  | $17-25$ | 75 | ns |
| tDE Enable Input ED, EA |  | 10-12 | 20 |  | $10-12$ | 35 | ns |

* NOTE

Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and typical supply voltage
CARRY LOOK-AHEAD CONFIGURATION


TYPICAL CONFIGURATIONS


VOLTAGE WAVEFORMS


## INTRODUCTION

## A Microcomputer Designed for Control

The $8 \times 300$ is a microcomputer designed for control. It features:

## Execution Speed

- 250ns instruction execution time
- Direct address capability-up to 8192 16-bit words of program memory
- Eight 8-bit general purpose registers
- Simultaneous data transfer and data edit in a single instruction cycle time
- n-way branch or n-entry table lookup in 2 instruction cycle times
- $8 \times 300$ instructions operate with equal speed on 1-bit, 2-bit, 3 -bit, 4-bit, 5 -bit, 6 -bit, 7 -bit, or 8 -bit data formats

The $8 \times 300$ instruction set features controloriented instructions which directly access variable length input/output and internal data fields. These instructions provide very high performance for moving and interpreting data. This makes the $8 \times 300$ ideal in switching, controlling, and editing applications.

## Direct Processing of External Data

The $8 \times 300$ I/O system is treated as a set of
internal registers. Therefore data from external devices may be processed (tested, shifted, added to, etc.) without first moving them to internal storage. In fact, the entire concept is to treat data at the I/O interface no differently than internal data. This concept extends to the software which allows variables at the input/output system to be named and treated in the same way as data in storage.

## Separate Program Storage and Data Storage

The storage concept of the $8 \times 300$ is to separate program storage from data storage. Program storage is implemented in read-only memory in recognition of the fact that programs for control applications are fixed and dedicated. The benefits of using read-only memory are that great speeds may be obtained at lower cost than if read/write memory were used, and that program instructions reside in a nonvolatile medium and cannot be altered by system power failures.

## 8X300 Architecture

Figure 1 of the $8 \times 300$ data sheet illustrates the $8 \times 300$ architecture. The $8 \times 300$ contains an Arithmetic Logic Unit (ALU), Program Counter, and an Address Register. Eight 8-
bit general purpose registers are also provided, including 7 working registers and an auxiliary register which performs as a working register and also provides an implied operand for many instructions. The $8 \times 300$ registers are shown in Figure 1 of the $8 \times 300$ data sheet and are summarized below:

## Control Registers include:

- Instruction-A 16 -bit register containing the current instruction
- Program Storage Address Register (AR)-A 13-bit register containing the address of the current instruction being accessed from Program Storage
- Program Counter (PC)-A 13-bit register containing the address of the next instruction to be read from Program Storage


## Data Registers include:

- Working Registers (WR)-Seven 8-bit registers for data storage
- Overflow (OVF)-A 1-bit register that retains the most significant bit position carry from ALU addition operation. Arithmetically treated as $2^{\circ}$.
- Auxiliary (AUX)-An 8-bit register. Source of implied operand for arithmetic and logical instructions. May be used as a working register.

A crystal external to the CPU may be used to generate the CPU system clock. The CPU executes 8 instruction types.

## DESCRIPTION

The Signetics $8 \times 300$ Microcontroller is a monolithic, high-speed microprocessor implemented with bipolar Schottky technology. As the central processing unit, CPU, it allows 16-bit instructions to be fetched, decoded and executed in 250ns. A 250ns instruction cycle requires maximum memory access of 65 ns , and maximum I/O device access of 35 ns .

Microcontroller instructions operate on 8bit, parallel data. Logic is distributed along the data path within the Microcontroller. Input data can be rotated and masked before being subject to an arithmetic or logical operation; and output data can be shifted and merged with the input data, before being output to external logic. This allows 1to 8-bit I/O and data memory fields to be accessed and processed in a single instruction cycle.

## PROGRAM STORAGE INTERFACE

Program Storage is typically connected to the A0-A12 (A12 is least significant bit) and 10-I15 signal lines. An address output on A0-A12 identifies one 16-bit instruction word in program storage. The instruction word is subsequently input on 10-115 and defines the Microcontroller operations which are to follow.

The Signetics 82 S 115 PROM, or any TTL compatible memory, may be used for program storage.

## I/O DEVICES INTERFACE

An 8-bit I/O bus, called the Interface Vector (IV) data bus, is used by the Microcontroller to communicate with 2 fields of I/O devices. The complementary $\overline{\mathrm{LB}}$ and $\overline{\mathrm{RB}}$ signals identify which field of the I/O devices is selected.

Both I/O data and I/O address information can be output on the IV bus. The SC and WC signals are typically used to distinguish between I/O data and I/O address information as follows:

## SC WC

10 I/O address is being output on IV bus
$0 \quad 1$ I/O data is being output on IV bus
00 I/O data is expected on the IV, bus, as input to the Microcontroller
11 Not generated by the Microcontroller

The Signetics 82SXXX series RAM, and the 8T32/33 may be attached to the IV bus.

## FEATURES

- 185ns instruction decode and execute delay (with Signetics 8T32/33 I/O port)
- Eight 8 -bit working registers
- Single instruction access to 1-bit, 2-bit, 3bit or 8-bit field on I/O bus
- Separate instruction address, instruction, and I/O data buses
- On-chip oscillator
- Bipolar Schottky technology
- TTL inputs and outputs
- Tri-state output on I/O data bus
- +5 volt operation from $0^{\circ}$ to $70^{\circ} \mathrm{C}$


## PIN CONFIGURATION



## PIN DESIGNATION

| PIN | SYMBOL | NAME AND FUNCTION | TYPE |
| :---: | :---: | :---: | :---: |
| 2-9, 45-49 | A0-A12: | Instruction address lines. A high level equals "1." These outputs directly address up to 8192 words of program storage. A12 is least significant bit. | Active high |
| 13-28 | 10-115: | Instruction lines. A high level equals "1." Receives instructions from Program Storage. $I_{15}$ is least significant bit. | Active high |
| $\begin{aligned} & 33-36, \\ & 38-41 \end{aligned}$ | $\overline{\text { IVBO-IVB7 }}$ | Interface Vector (IV) Bus. A low level equals "1." Bidirectional tri-state lines to communicate with I/O devices. $\overline{\mathrm{VB7}}$ is least significant bit. | Three-state Active low |
| 42 | $\overline{\text { MCLK }}$ | Master Clock. Output to clock I/O devices, and/or provide synchronization for external logic |  |
| 30 | WC: | Write Command. High level output indicates data is being output on the IV Bus. | Active high |
| 29 | SC: | Select Command. High level output indicates that an address is being output on the IV Bus. | Active high |
| 31 | $\overline{\mathrm{LB}}$ : | Left Bank. Low level output to enable one of two sets of I/O devices ( $\overline{\mathrm{LB}}$ is the complement of RB). | Active low |
| 32 | $\overline{\mathrm{RB}}$ : | Right Bank. Low level output to enable one of two sets of $\mathrm{I} / \mathrm{O}$ devices ( $\overline{\mathrm{RB}}$ is the complement of $\overline{\mathrm{LB}}$ ). | Active low |
| 44 | HALT: | Low level is input to stop the Microcontroller. | Active low |
| 43 | $\overline{\text { RESET: }}$ | Low level is input to initialize the Microcontroller. | Active low |
| 10-11 | X1, $\mathrm{x}_{2}$ : | Inputs for an external frequency determining crystal. May also be interfaced to logic or test equipment. |  |
| 50 | VR | Reference voltage to pass transistor. |  |
| 1 | VCR | Regulated output voltage from pass transistor. |  |
| 37 | $V_{\text {CC }}$ : | 5 V power connection. |  |
| 12 | GND: | Ground. |  |

## MICROCONTROLLER ARCHITECTURE



Figure 1

R1 - General working register
R2 - General working register
R3 - General working register
R4 - General working register
R5 - General working register
R6 - General working register
R11 - General working register
AUX - General working register. Contains second term for arithmetic or logical operations.

OVF - The least-significant bit of this register is used to reflect overflow status resulting from the most recent ADD operation (see Instruction Set Summary).

Program Counter (PC)

- Normally contains the address of the current instruction and is incremented to obtain the next instruction address.

Address Register (AR)

- A 13-bit register containing the address of the current instruction.

Table 1 INTERNAL REGISTERS
5ipnotils

## INSTRUCTION CYCLE

Each Microcontroller operation is executed in 1 instruction cycle, which may be as short as 250 ns. The Microcontroller generates MCLK to synchronize external logic to the instruction cycle. Instruction cycles are subdivided into quarter cycles. MCLK is an output during the last quarter cycle.
During the third quarter cycle of an instruction, an address is output on A0-A12, identifying the location in program storage o..le next instruction word. This instruction word defines the next instruction, which must be input on $10-115$ during the first quarter cycle of the next instruction cycle (see Table 2).

## Instruction Set Summary

The 16-bit instruction word input on $10-115$ is decoded by the instruction decode logic to implement events that are to occur during the remainder of the instruction cycle. Generally the 16 -bit instruction word is decoded as follows:


A detailed usage of the 13 "operand ( s ) specification" bits is given in following sections.

Three operation code bits allow for 8 instruction classes. The 8 instruction classes are summarized in Table 3. Each entry is referred to as an "instruction class" because the unique architecture of the Interpreter allows a number of powerful variations to be specified by the 13 operand(s) specification bits. A complete description of instruction formats and some instruction examples are provided in the Microprocessor Applications manual.

## Data Processing

The Microcontroller architecture includes eight 8 -bit working registers, an arithmetic logic unit (ALU), an overflow register, and the 8-bit IV Bus. Internal 8-bit data paths connect the registers and IV Bus to the ALU inputs, and the ALU output to the registers and IV Bus. Data processing logic is distributed along these internal 8 -bit data paths. Rotate and mask logic precedes the ALU on the data entry path. Shift and merge logic follows the ALU on the data output path. All 4 sets of logic can operate on 8 data bits in a single instruction cycle (See Figure 1).
When less than 8 bits of data are specified for output to the IV bus by the ALU, the data field (shifted if necessary) is inserted into the prior contents of the IV bus latches. The


Figure 2


Table 2 INSTRUCTION CYCLE

IV bus latches contain data input at the start of an instruction. This data in the IV bus latches will be specified in the instruction as a) IV bus source data or b) data from an automatic read when the IV bus is specified as a destination. Therefore, IV bus bit positions outside an inserted bit field are unmodified.

## Data Addressing

Sources and destinations of data are specified using a 5 -bit octal number. The source and/or destination of data to be operated upon is specified in a single instruction word.

Referring to Figure 1, the Auxiliary register (address 00 ) is the implied source of the second argument for ADD, AND or XOR operations.
IVL and IVR are write-only registers used only as a destination. They have addresses and are treated as registers, but in reality they do not exist. When IVL is specified as a destination or the $D$ field $=20-27_{8}$, then $L B=$ 'low', RB = 'high' are generated; when IVR is specified as a destination or the $D$ field $=30-$ $37_{8}$, then RB = low, LB = 'high' are generated.

When IVL or IVR is specified as the destination in an instruction, SC is also activated
and data is placed on the IV bus. If IVL or IVR is specified as a source of data, the source data is all zeroes.

## INSTRUCTION SEQUENCE CONTROL

The Address Register and Program Counter are used to generate addresses for accessing an instruction. The Address Register is used to form the instruction address, and in all but 3 instructions (XEC, NZT, and JMP) the address is copied into the Program Counter. The instruction address is formed in 1 of 3 ways:

1. For all instructions but the JMP, XEC, and a satisfied NZT, the Program Counter is incremented by 1 and placed in the Address Register.
2. For the JMP instruction, the full 13-bit address field from the JMP instruction is placed into the Address Register and copied into the Program Counter.
3. For the XEC and NZT instructions, the high order 5- or 8 -bits of the Program Counter are combined with 8 - or 5 -lower-order bits of ALU output (XEC or NZT) and placed in the Address Register. For the NZT instruction, it is also copied into the Program Counter.

## INSTRUCTION SET

The $8 \times 300$ Microcontroller has a repertoire of 8 instruction classes which allow the user to test input status lines, set or reset output control lines, and perform high speed input/output data transfers. All instructions are 16 bits in length and each is fetched, decoded and executed in 250 ns.

Data is respresented as an 8-bit byte; bit positions are numbered from left to right, with the least significant bit in position 7.


Within the $8 \times 300$, all operations are performed on 8-bit bytes. Arithmetic operations use 8-bit, unsigned 2's complement arithmetic.

## INSTRUCTION FORMATS

The general $8 \times 300$ instruction format is:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | 15

All instructions are specified by a 3-bit Operation (Op Code) field. The operand may consist of the following fields: Source

| OPERATION | FORMAT | RESULT | NOTES |
| :---: | :---: | :---: | :---: |
| MOVE | 1,11I,II | Content of data field specified by $\{S, R / L\}$ replaces data in field specified by $\{D, R / L$. | If $S$ and $D$ both are registers, then R/L specifies a right rotate of the register specified by S . |
| ADD |  | Sum of AUX and data specified by $\{S, R / L\}$ replaces data in field specified by $\{D, R / L\}$. |  |
| AND | 1,111,11 | Logical AND of AUX and data specified by $\{S, R / L\}$ replaces data in field specified by $\{D, R / L$. $\}$ |  |
| XOR |  | Logical exclusive OR of AUX and data specified by $\{S, R / L\}$ replaces data in field specified by $\{D, R / L$. \} |  |
| XMIT | III,IV | The literal value I replaces the data in the field specified by $\{S, L$. | If $S$ is an $1 / O$ address then 1 is limited to range 00-37. Otherwise I is limited to range 000-377. |
| NZT | III,IV | If the data in the field specified by $\{\mathrm{S}, \mathrm{L}\}$ equals zero, perform the next instruction in sequence. If the data specified by $\{S, L\}$ is not equal to zero, execute the instruction at address determined by using the literal I as an offset to the Program Counter. | If $S$ is an $1 / O$ address then $\mid$ is limited to range 00-37. Otherwise । is limited to range 000-377. |
| XEC | III,IV | Perform the instruction at address determined by applying the sum of the literal I and the data specified by $\{S, L\}$ as an offset to the Program Counter. If that instruction does not transfer control, the program sequence will continue from the XEC instruction location. | The offset operation is performed by reducing the value of PC to the nearest multiple of 32 (if I = 00-37) or 256 (if $\mathrm{I}=000-377 \mathrm{l}$ and adding the offset. |
| JMP | V | The address value A replaces contents of the Program Counter. | A limited to the range 0-177778. |

Table $38 \times 300$ INSTRUCTION SUMMARY
(S) field, Destination (D) field, Rotate/ Length (R/L) field, immediate (I) field, or (Program Storage) Address (A) field.

The instructions are divided into 5 format types, based on the Op Code and the Operand(s), as shown in Figure 3.

INSTRUCTION FORMATS
operations
(REGISTER TO REGISTER)
MOVE AND


Type I

OPERATIONS
(REGISTER TO I/O, I/O TO REGISTER, I/OTO I/O) MOVE ADD


Type II

OPERATIONS
XEC $\underset{\text { NZT }}{\text { XMIT }}$


Type IV

OPERATIONS

JMP


Type V
*NOTE
If XMIT, S actually represents the destination.
Figure 3

## INSTRUCTION FIELDS

Op Code Field (3-Bit Field)
The Op Code field is used to specify 1 or 8 $8 \times 300$ instructions as shown in Table 4.

| OP CODE <br> OCTAL <br> VALUE | INSTRUCTION |  |
| :---: | :--- | :--- |
| 0 | MOVE | S,R/L,D |
| 1 | ADD | S,R/L,D |
| 2 | AND | S,R/L,D |
| 3 | XOR | S,R/L,D |
| 4 | XEC | I,R/L,S or I,S |
| 5 | NZT | I,R/L,S or I,S |
|  |  |  |
| 6 | XMIT | I,R/L,D or I,D |
| 7 | JMP | A |

## Table 4 OP CODE FIELD OCTAL ASSIGNMENTS

## S,D Fields (5-Bit Fields)

The $S$ and $D$ fields specify the source and destination of data for the operation defined by the Op Code field. The Auxiliary Register is an implied second source for the instructions ADD, AND and XOR, each of which require two source fields. That is, instructions of the form,
ADD X, Y
imply a third operand, say $Z$, located in the Auxiliary Register so that the operation which takes place is actually $X+Z$, with the result stored in Y .

The S and/or D fields may specify a register, or a 1 to 8 -bit I/O field. S and D field value assignments in octal are shown in Table 5.
$0_{8}-178$ is used to specify 1 of 7 working registers (R1-R6, R11), the Auxiliary Register, the Overflow Register, or IVL and IVR write-only registers.

|  |  |
| :---: | :---: |
|  |  |
|  |  |
| $0$ |  |
|  |  |
|  |  |
| $\begin{aligned} & 03 \\ & 04 \end{aligned}$ |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

$20_{8}-27_{8}$ is used to specify the least significant bit of a variable length field within the I/O Port previously selected by the IVL register. The length of the field is determined by R/L.


01234567

c. Right Bank I/O Field Specification

## R/L Field (3-Bit Field)

The R/L field performs one of two functions, specifying either a field length ( $L$ ) or a right rotation (R). The function it specifies for a given instruction depends upon the contents of the S and D fields:
A. When both $S$ and $D$ specify registers, the R/L field is used to specify a right rotation of the data specified by the $S$ field. (Rotation occurs on the bus and not in the source register.) The register source data is right rotated within one instruction cycle time independent of the number of bit positions specified in the R/L field.
B. When either or both the S and D fields specify a variable length I/O data field, the R/L field is used to specify the length of that data field.
C. R/L field assignments are shown in Table 6.

| R/L FIELD <br> OCTAL <br> VALUE | SPECIFICATION |
| :---: | :--- |
| 0 | Field Length $=8$ Bits |
| 1 | Field Length $=1$ Bit |
| 2 | Field Length $=2$ Bits |
| 3 | Field Length $=3$ Bits |
| 4 | Field Length $=4$ Bits |
| 5 | Field Length $=5$ Bits |
| 6 | Field Length $=6$ Bits |
| 7 | Field Length $=7$ Bits |

Table 6 R/L FIELD OCTAL ASSIGNMENTS

## I Field (5/8-Bit Field)

The I field is used to load a literal value (contained in the instruction) into a register, or a variable I/O data field, or to modify the low order bits of the Program Counter.

The length of the I field is based on the $S$ field in XEC, NZT, and XMIT instructions, as follows:
A. When $S$ specifies a register, the literal 1 is an 8 bit field (Type III format),
B. When $S$ specifies variable I/O data field, the literal I is a 5-bit field (Type IV format).

## A Field (13-Bit Field)

The $A$ field is a 13 -bit Program Storage address field. This allows the $8 \times 300$ to directly address 8192 instructions.

## REGISTER OPERATIONS

When a register is specified as the source and a variable $1 / O$ data field is specified as the destination, the low order bits of the results of the instructions MOVE, ADD, XOR are merged with the original destination data.

When an $1 / O$ data field of 1 to 8 bits is specified as the source, and a register as the destination, the 8 -bit result of the operations MOVE, ADD, AND, XOR is stored in the register. The operations $A D D, A N D$, XOR actually use the I/O data field (1 to 8 bits) with leading zeros to obtain 8 -bit source data for use with the 8-bit AUX data during the operation.
IVL and IVR are write-only pseudo registers, and therefore can be specified as destination fields only. Operations involving IVL and IVR as sources are not possible. For example, it is not possible to increment IVR or IVL in a single instruction, and the contents of IVL or IVR cannot be transferred to a working register, or I/O Port.

The OVF (Overflow) Register can only be used as a source field; it is set or reset only by the ADD instruction.

## ADDRESSING DATA ON THE INTERFACE VECTOR

I/O data fields are implemented via general purpose 8-bit I/O registers called Interface Vector (IV) Bytes. The IV registers serve to select IV bytes. In order for an instruction to access (read or write) an I/O data field, the address must be output to the IVL or IVR registers.

Thus, two instructions are required to operate on an Interface Vector byte.

Each of the two IV registers (IVL and IVR) may be set to select an IV byte, therefore two I/O ports may be active at one time-one on the Right Bank (IVR) and ore on the Left Bank (IVL). Data may be input and output in one instruction following the selection of IV bytes:

$$
\begin{array}{ll}
\text { XMIT } & \text { ADDRESS1, IVL } \\
\text { XMIT } & \text { ADDRESS2, IVR } \\
\text { ADD } & \text { LB, RB }
\end{array}
$$

Once the IV byte is selected (addressed) it will remain selected until another address is output to the same IV register. Since an IV register (IVL, IVR) can be used only as a destination field of an instruction, any instruction sending data to IVL or IVR can be used to select an IV byte.
From the user's standpoint, however, all IV byte outputs can be read by an external device regardless of whether they are selected or not.
The address range of IVL and IVR is 0-25510.

## INSTRUCTION DESCRIPTIONS

The following instruction descriptions employ MCCAP (the 8X300 Cross Assembly Program) programming notation. This notation varies somewhat from the instruction descriptions provided in Tables 3 through 5. Thus, for example, explicit $L$ field definition, as shown in Table 3 and Table 4 is not required by MCCAP instructions; MCCAP can create appropriate variable field addresses from information contained in Data Declaration statements which may be provided by the programmed at the beginning of his program.
The $8 \times 300$ instruction set is described below with examples shown in Figures 4 through 11.

## MOVE S,D or <br> MOVE S(R),D

## Format: Type I, Tvpe II

Operation: $(\mathrm{S}) \rightarrow$ (D)

## Description

Move data. The contents of $S$ are transferred to $D$; the contents of $S$ are unaffected. If both $S$ and $D$ are registers, $R / L$ specifies a right rotate of the source data before the move. Otherwise, R/Lspecifies the length of the source and/or destination I/O data field. If the MOVE is between Left Bank and Right Bank I/O field, an 8-bit field must always be moved.

## Example

Store the least significant 3 bits of register 5 (R5) in bits 4,5 and 6 of the I/O Port previously addressed by the IVL register. See Figure 4.

## MOVE S,D or MOVE S(R),D



R5 SELECTED LEFT BANK IO FIELD AFTER OPERATION

NOTE
X's in the field denote bits unaffected by the move operation.

Figure 4

## ADD S,D or ADD S(R),D



BINARY REPRESENTATION octal representation


R1


CONTENTS OF R1 ROTATED RIGHT 4 PLACES


AUX

| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

R3-AFTER OPERATIONOVF

Figure 5

## AND S,D or <br> AND S(R),D

## Format: Type I, Type II <br> Operation: $(S) \wedge(A \cup X) \rightarrow D$ Description

Logical AND. The AND of the source field and the Auxiliary Register is stored into the destination. If both $S$ and $D$ are registers, $R / L$ specifies a right rotate of the source (S) data before the AND operation. Otherwise $R / L$ specifies the length of the source and/ or destination I/O data fields. S and AUX are unaffected unless specified as a destination.

## Example

Store the AND of the selected right bank I/O field and AUX in R4. The right bank data field is called WSBCD and is 4 bits long and located in bits 2, 3, 4 and 5. See Figure 6.

## XOR S,D or

XOR S(R),D
Format: Type I, Type II
Operation: $(S) \oplus(A U X) \rightarrow D$ Description
Exclusive-OR. The Exclusive-OR of the source field and the Auxiliary Register is stored in the destination. If both $S$ and $D$ are registers, R/L specifies a right rotate of the source (S) data before the XOR operation. Otherwise R/L specifies the length of the source and/or destination I/O data fields. S and $A \cup X$ are unaffected unless specified as a destination.

## Example

Replace the selected I/O data field with the XOR of the field and AUX. The I/O data field is called STATUS and is 5 bits in length and located in bits 3, 4, 5, 6 and 7 of left bank. See Figure 7.

AND S,D or AND S(R),D


Figure 6

## XOR S,D or XOR S(R),D



BINARY REPRESENTATION
OCTAL REPRESENTATION


Figure 7

## XEC I(S)

## Format: Type III, Type IV

## Operation

Execute instruction at the address specified by the Address Register with lower 5 or 8 bits replaced by $(\mathrm{S})+1$.

## Description

Execute the instruction at the address determined by replacing the low order bits of the Address Register (AR) with the low order bits of the sum of the literal I and the contents of the source field. If $S$ is a register, the low order 8 bits of AR are replaced; if $S$ is an I/O data field, the low order 5 bits of AR are replaced, resulting in an execute range of 256 and 32 respectively. The Program Counter is not affected unless the instruction executed is a JMP or NZT (whose branch is taken).

## Example

Execute one of $n$ JMPs in a table of JMP instructions determined by the value of the selected I/O data field on the left bank. The table follows immediately after the XEC instruction and the I/O field is called $\operatorname{IN}$ TERPT and is a 3 -bit field located in bits 4,5 and 6. See Figure 8.


Figure 8

## XMIT I,D



BINARY REPRESENTATION octal representation


SELECTED I/O DATA-BEFORE OPERATION

| FIELD

SELECTED I/O DATA-AFTER OPERATION

Figure 9

## NZT S,I

## Format: Type III, Type IV

## Operation:

Non-Zero Transfer. If (S) $\neq 0$, PC offset by I $\rightarrow \mathrm{PC}$; otherwise PC $+1 \rightarrow \mathrm{PC}$.

## Description

If the data specified by the $S$ field is nonzero, replace the low order bits of the Program Counter with I. Otherwise, processing continues with the next instruction in sequence. If S is a register, the low order 8 bits of the PC are replaced; if $S$ is an I/O data field, the low order 5 bits of the PC are replaced, resulting in an NZT range of 256 and 32 respectively.

## Example

Jump to Program Address ALPHA if the selected right bank I/O field is non-zero. The field name is OVERFLO and it is a 1-bit field located in bit 3. See Figure 10.

## NZT S,I



BINARY REPRESENTATION
OCTAL REPRESENTATION


OVERFLO


Figure 10

## JMP A



BINARY REPRESENTATION
OCTAL REPRESENTATION


## JMP A

## Format: Type V

Operation: A P PC

## Description

The literal value $A$ is placed in the Program Counter and Address Register, and processing continues at location A. A has a range of $0-177778$ (0-8191).

## Example

Jump to location ALPHA (0000101110001). See Figure 11.

## SYSTEM DESIGN USING THE 8X300 MICROCONTROLLER

Designing hardware around the $8 \times 300 \mathrm{In}$ terpreter reduces to selecting a program storage devicer (ROM, PROM, etc.), selecting I/O devices (IV byte, multiplexers, RAM, etc.), selecting clock mode (system driven or crystal controlled) and interfacing the Microcontroller to these components.
A specific example of a control system using the $8 \times 300$ Microcontroller is shown in Figure 12. Only 8 components-four 8 T32 I/O Ports, one 82S208 RAM, two 82 S215 ROMs, and an $8 \times 300$ are required to build this system which contains 512 words of program storage, 32 TTL I/O connection points, 256 bytes of working storage, and operates at a 250 ns instruction cycle time.

## Halt, Reset Signals

## HALT:

A low level at the HALT input stops internal operation of the Microcontroller at the start of the next instruction after HALT is applied (quarter cycle after MCLK). Since $\overline{H A L T}$ is sampled at the start of each instruction cycle it is possible to prevent a cycle by applying HALT early in that cycle. HALT does not inhibit MCLK or affect any internal registers. Normal operation begins with the next complete cycle after the HALT input goes high.
$\overline{\text { RESET: }}$
A low level at the RESET input sets the program counter and address register to zero. While $\overline{\operatorname{RESET}}$ is low MCLK is inhibited. If $\overline{R E S E T}$ is applied during the last 2 quarter cycles, the MCLK during that cycle may be shortened. $\overline{\text { RESET }}$ should be applied for 1 full instruction cycle time to assure proper operation. When $\overline{\operatorname{RESET}}$ input goes high an MCLK occurs prior to the resumption of normal processing. $\overline{\text { RESET }}$ does not affect the other internal registers.

## SYSTEM TIMING

In systems with fast instruction cycle times, most Microcontroller delays are strictly determined by internal gate propagation delays.


Figure 12

Since some events are constrained to occur in certain quarter cycles, as system cycle times become slower, the delays will appear to increase due to gating with internal clocks. In the table of AC Electrical Characteristics, 2 columns are used: 1 to denote times which occur due to internal clock intervention and 1 to denote minimum delays for fast cycle times.
When using Signetics 8 T32 I/O Ports, selection of instruction cycle time involves calculating the maximum program storage access time. Assuming the instruction is available when MCLK falls, the I/O control lines are stable 35 ns later. Signetics 8 T32's require another 35 ns to disable a previously selected port and enable the desired port (assumes a change in bank signals). A 10 ns margin has been added to the 8T32 enable for this evaluation to reflect the fact that most systems will have more capacitive loading than the 50 pF test condition in the 8 T32 specification and to allow for line delays.
The system instruction cycle time for normal systems such as shown in Figure 12 is determined by Microcontroller propagation delays, program storage access time, and port output enable times. Instruction cycle time is normally constrained by one or more of the following conditions:

1. Instruction to $L B / R B$ (input phase) and I/O Port output enable:
TOE $\leq 1 / 2$ cycle -55 ns (Figure 13).
2. Program storage access time and instruction to LB/RB (input phase) and I/O Port output enable and IV data (input phase) to address $\leq$ instruction cycle time (Figure 14).
3. Program storage access time and instruction to address $\leq$ instruction cycle time (Figure 15).
The first constraint can be used to determine the minimum cycle time. Using the inequality $35 \mathrm{~ns}+35 \mathrm{~ns} \leq 1 / 2$ cycle -55 ns implies $1 / 2$ cycle $\geq 125$ ns or an instruction time of 250 ns.
Program storage access time for a 250 ns instruction cycle can be calculated from the second constraint. Noting that the specification for IV data (input phase) to address is 115ns: Program storage access time +35 ns $+35 \mathrm{~ns}+115 \mathrm{~ns} \leq 250 \mathrm{~ns}$ implies program storage access time $\leq 65 \mathrm{~ns}$.
The third constraint can be used to verify the maximum program storage access time. Noting that the specification for instruction to address is 185 ns : Program storage access time $+185 \mathrm{~ns} \leq 250 \mathrm{~ns}$ confirms that program storage access time 65 ns is satisfactory.


Figure 13


Figure 14

## SYSTEM INSTRUCTION CYCLE TIME



Figure 15

## System Clock

The Micrcontroller has an integrated oscillator which generates all necessary clock signals. The oscillator is designed to connect directly to a series resonant quartz crystal via pins X1 and X2. The crystal resonant frequency, $f$, is related to the desired cycle time, $T$, by the relationship $f=2 / T$. For a 250 ns system, $\mathrm{f}=8.00 \mathrm{MHz}$.

| Type: | Fundamental mode, <br> series resonant |
| :--- | :--- |
| Impedance at <br> Fundamental: | 35 ohms maximum |
| Impedance at <br> harmonics and <br> spurs: | 50 ohms minimum |

Table 7 CRYSTAL CHARACTERISTICS

In lower speed applications where the cycle time need not be precisely controlled, a capacitor may be connected between X1 and X2 to drive the oscillator. Approximate capacitor values are given in Table 8. If cycle time is to be varied, X 1 and X 2 should be driven from complementary outputs of a pulse generator. Figure 16 shows a typical configuration. For systems where the Interpreter is to be driven from a master clock the X1 and X2 lines may be interfaced to TTL logic as shown in Figure 17.

| Cx,pF | CYCLE TIME |
| :---: | :---: |
| 100 | 300 ns |
| 200 | 500 ns |
| 500 | $1.1 \mu \mathrm{~s}$ |
| 1000 | $2.0 \mu \mathrm{~s}$ |

Table 8 CLOCK CAPACITOR VALVES

## CLOCKING WITH A PULSE GENERATOR



Figure 16

## CLOCKING WITH TTL

 outputs $\leq 10 \mathrm{~ns}$

Figure 17
AC ELECTRICAL CHARACTERISTICS $V_{C C}=5 \mathrm{~V} \pm 5 \%$ and $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$

| DELAY DESCRIPTION | PROPAGATION <br> DELAY TIME | CYCLE TIME <br> LIMIT |
| :--- | :---: | :---: |
| X1 falling edge to MCLK (driven from external |  |  |
| pulse generator) | 75 ns |  |
| MCLK to SC/WC falling edge (input phase) | 25 ns | $11 / 2$ cycle +25 ns |
| MCLK to SC/WC rising edge (output phase) |  |  |
| MCLK to LB/RB (input phase) | 35 ns |  |
| Instruction to LB/RB output (input phase) | 35 ns | $1 / 4$ cycle +35 ns |
| MCLK to LB/RB (output phase) |  | 185 ns |
| MCLK to IV data (output phase) | 115 ns | $1 / 2$ cycle +60 ns |
| IV data (input phase) to IV data (output phase) | 185 ns | $1 / 40 \mathrm{~ns}$ |
| Instruction to Address | 185 ns | $1 / 2$ cycle +40 ns |
| MCLK to Address | 115 ns | $1 / 2$ cycle -55 ns |
| IV data (input phase) to Address |  | $1 / 4$ cycle -40 ns |
| MCLK to IV data (input phase) |  | to 1 cycle |

NOTE

1. Reference to MCLK is to the falling edge when loaded with 300 pF .
2. Loading on Address lines is 150 pF .


## DC ELECTRICAL CHARACTERISTICS

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| $V_{I H}$ | High level input voltage X1, X2 <br> All others |  |  | .6 2 |  |  | V |
| $V_{\text {IL }}$ | Low level input voltage $\mathrm{X}_{1, \mathrm{X}}$ <br> All others |  |  |  | $\begin{aligned} & .4 \\ & .8 \end{aligned}$ | V |
| VIC | Input clamp voltage (Note 1) | $\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & I_{1}=-10 \mathrm{~mA} \end{aligned}$ |  |  | -1.5 | v |
| ${ }^{1} \mathrm{IH}$ | High level input current $\mathrm{x} 1, \mathrm{x} 2$ <br> All others | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{1 \mathrm{H}}=.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{1 \mathrm{H}}=4.5 \mathrm{~V} \end{aligned}$ |  | 2700 $<1$ | 50 | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| IIL | Low level input current $\frac{\mathrm{X} 1, \mathrm{X} 2}{\mathrm{IVBO}-7}$ | $\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\text {IL }}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{aligned}$ |  | $\begin{gathered} -2500 \\ -140 \end{gathered}$ | -200 | ${ }_{\mu}^{\mu \mathrm{A}}$ |
|  | 10-115 | $\begin{aligned} & V_{\text {IL }}^{C C}=4 \mathrm{~V} \\ & V_{C C}=5.25 \mathrm{~V} \end{aligned}$ |  | -880 | -1600 | $\mu \mathrm{A}$ |
|  | HALT, $\overline{\text { RESET }}$ | $\begin{aligned} & V_{\text {IL }}=.4 \mathrm{~V} \\ & V_{C C}=5.25 \mathrm{~V} \\ & V_{\text {IL }}=.4 \mathrm{~V} \end{aligned}$ |  | -230 | -400 | $\mu \mathrm{A}$ |
| $V_{\text {OL }}$ | Low level output voltage A0-A12 <br> All others | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=4.25 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$ |  | .35 .35 | .55 .55 | V V |
| $\mathrm{V}_{\mathrm{OH}}$ | High level output voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{OH}^{\circ}=3 \mathrm{~mA} \end{aligned}$ | 2.4 |  |  | v |
| ${ }^{\prime}$ OS | Short circuit output current (Note 2) | $\mathrm{V}_{C C}=5.25 \mathrm{~V}$ | -30 |  | -140 | mA |
| $V_{\text {CC }}$ | Supply voltage |  | 4.75 | 5 | 5.25 | V |
| ${ }^{1} \mathrm{CC}$ | Supply current | $V_{C C}=5.25 \mathrm{~V}$ |  |  | 1.60 | mA |
| ${ }^{\prime}$ REG | Regulator control | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | -14 |  | -21 | mA |
| ${ }^{\prime} \mathrm{CR}$ | Regulator current (Note 3) |  |  |  | 290 | mA |
| $V_{\text {CR }}$ | Regulator voltage (Note 3) |  | 2.2 |  | 3.2 | v |

## NOTES

1. Crystal inputs X 1 and X 2 do not have clamp diodes.
2. Only one output may be grounded at a time
3. (Limits apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ and $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ unless specified otherwise.)

ABSOLUTE MAXIMUM RATINGS

| PARAMETER | RATING | UNIT |
| :---: | :---: | :---: |
| VCC Supply voltage | 7 | V |
| Logic input voltage | 5.5 | V |
| Crystal input | 2 | V |
| voltage |  |  |

## INTRODUCTION

Recent trends in system design are focusing on significantly lower costs and greater reliability while simultaneously maintaining or improving system preformance. Consequently, second generation as well as new system designs demand alternatives to conventional logic realizations which substantially reduce the system manufacturing costs. Signetics' LSI Logic Family provides this alternative by employing state-of-theart technology to produce Large-ScaleIntegrated, system oriented building blocks. By replacing a relatively large number of conventional logic circuits with a few LSI Logic components, system costs are reduced in proportion to system printed circuit board area, total number of circuits and power requirements. Moreover, system reliability is increased in direct proportion to the decrease in the number of integrated circuits within the system.

## SYSTEM LOGIC FAMILY

Signetics' LSI Logic offers the designer a dual technology logic family to achieve cost objectives. First, where speed is a primary objective, low power Schottky TTL technology is employed to yield devices which feature high speed, low power, and medium density. Therefore, significant reduction in the number of high speed logic components is possible without any sacrifice in performance. The distinct advantages of low power Schottky TTL give it one of the best technologies for high performance LSI design. The particular features of LS are:

- Comparable propagation delay to standard TTL 7-10ns/gate average
- Low power dissipation-2mW per gate typical at $50 \%$ duty cycle
- Low speed power product-19pj typical
- 45 MHz typical maximum J-K flip-flop clock frequency
- High fan-out capability-22 unit load-LS input current requirement is $1 / 4$ that of standard TTL ( $0.36 \mathrm{~mA} /$ input). Outputs are capable of sinking 8 mA .
- High logic density-70 gates $/ \mathrm{mm}^{2}$ of silicon
- Higher system reliability due to reduced power density.

Secondly, while lower power Schottky offers increased density at high speeds, substantial component reduction is achieved with devices employing Integrated Injection Logic (I2L). The very high density and low power of I2L makes it extremely attractive for use in realizing relatively large system building blocks. System level functions may each be accomplished at 10 MHz speeds by a single 12 L integrated circuit. 12 L features are:

- Speed-comparable to TTL (10-20ns propagation delay)
- Power-1-2 orders lower than any technology power down mode
- Density-40\% smaller than PMOScomparable to NMOS
- Interface-capability of mixing TTL, ECL circuits on the same chip.

The LSI Logic series of products are specially designed to aid system logic designers in the design of high performance, cost effective systems with a minimal number of parts. This is achieved through a line of standard products which are designed with the following objectives:

- Large Scale Building Blocks-devices are partitioned by function with high-level complexity and sophistication. These one chip building blocks are equivalent to 400 to 1500 elementary logic gates.
- Highest Performance Possible-devices in each category are optimized in performance according to their requirements. Devices requiring highest speed are designed using low power Schottky TTL and devices requiring medium speed are designed using I2L to minimize device power dissipation and maximize logic density.
- Off-the shelf items-system logic devices are designed to allow general purpose usage. Devices in this series can be used as stand-alone items to enhance performance on a certain system design or to utilize several components within the family to design a minimal cost system with minimum number of components, such as in microprocessor based systems.


## SIGNETICS CAPABILITIES

Signetics is a leader in the development of bipolar LSI logic circuits using both LS and I2L technologies. Our capabilities are demonstrated by an 8-bit Fixed Instruction Microprocessor that Signetics is presently manufacturing with low power Schottky technology.
This circuit, the $8 \times 300$ Microcontroller, contains the equivalent of 700 logic gates on a $250 \times 250$ mil chip. This capability is being used to develop the LSI Logic Family and produce the substantial cost reduction offered by LSI without paying a penalty in performance.

Signetics is a leader in 12 L technology. Signetics has been researching $I 2 \mathrm{~L}$ as a standard product technology for over three years. Presently, Signetics possesses one of the fastest 12 L processes in the industry. Recognizing the vast potential of 12 L technology, Signetics is heavily committed to develop this high-speed line of LSI products using this technology. Signetics' ${ }^{2} \mathrm{~L}$ process is basically the same process as its low power Schottky process that utilizes a thin expitaxial layer for speed improvement. Since this process is a highly reliable standard process in Signetics, the confidence
level of producing such LSI circuits is extremely high. In addition to its own development activities, Signetics has access to N.V. Philips' vast development resources for continued development and enhancement of its present capabilities. This massive investment will result in continued improvement in speed/power performance of 12L products.
Table 1 shows expected trends in 12L speed/ power curves during the next five years. Clearly I2L will play a major role in the innovation of faster and possibly more complex LSI Logic functions in the support of a continued exploitation of LSI circuitry in systems design.

## ADVANTAGES

The advantages of using LSI in system design are multifold. First, note that the cost of an LSI chip is no more than the sum cost of the circuits it replaces, consequently there is a direct saving in manufacturing costs as a result of a net reduction in the number of parts. Moreover an LSI system offers economic advantages over an SSI or MSI approach besides lowering direct manufacturing costs. Some important considerations are:

- Power supply costs are reduced because logic cells internal to the device require less drive capability and consequently consume less power.
- Field repair costs are reduced because reliability is higher with an LSI implementation. This higher reliability is achieved because IC failure rates are largely proportional to number of devices rather than device complexity.
- Another factor to be considered is that the development cost of printed circuit boards will decrease because of smaller number of ICs and that to some extent, this reduction offsets the cost of layout on the LSI devices.
- Applications requiring medium speed performance are often forced to use lower density, high speed semiconductor devices due to lack of availability of medium speed LSI devices. I2L has changed this picture significantly. With the capability of controlling the amount of device injection current into an LSI circuit, the device can be controlled to operate at the desired speed and power for that particular application; thus, power consumption is minimized.

| USING STANDARD LS PROCESS |  |
| :---: | :---: |
| Average Propagation Delay | 10-20ns at $200 \mu \mathrm{~A} /$ Gate Injection Current |
| Density (Dual Layer Metal) | Shift Register etc. $320 \mathrm{gates} / \mathrm{mm}^{2}$ <br> Random Logic $150 \mathrm{gates} / \mathrm{mm}^{2}$ <br> Single Inverter 15 mil 2 |
| Chip Complexity | 2000 gates at maximum speed (Random Logic) 4000 gates at maximum speed (Regular Arrays) |
| Speed-Power | 3pj @ maximum speed $0.35 \mathrm{pj} @<1 \mathrm{MHz}$ |

Table 1 SIGNETICS I2L CAPABILITY

## DESCRIPTION

The " 182 " is a high speed Look-Ahead Carry Generator ordinarily used with the "181" 4Bit ALU or other arithmetic processing elements. This combination provides high speed Look-Ahead over word lengths of more than 4 bits.

The " 182 " accepts up to 4 pairs of active Low Carry Propagate and Carry Generate signals, an active High Carry input, and provides anticipated active High carries across 4 groups of binary adders.

INPUT/OUTPUT SCHEMATICS


Logic equations provided at the outputs are:

$$
\begin{aligned}
& C_{n+x}=G_{0}+P_{0} C_{n} \\
& C_{n+y}=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{n} \\
& C_{n+z}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n} \\
& \bar{G}=\overline{G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}} \\
& \bar{P}=\overline{P_{3} P_{2} P_{1} P_{0}}
\end{aligned}
$$

FEATURES

- Provides look-ahead carries across a group of 4 ALU's
- Multi-level look-ahead for high speed arithmetic operation over long word lengths


## PIN CONFIGURATION



## PIN DESIGNATION

| PIN NOS. | DESIGNATION | FUNCTION |
| :---: | :---: | :---: |
| G0,G1,G2,G3 | $3,1,14,5$ | Active-Low <br> Carry Generate Inputs |
| P0,P1,P2,P3 | $4,2,15,6$ | Active-Low <br> Carry Propagate Inputs |
| $\mathrm{C}_{n}$ | 13 | Carry Input |
| $\mathrm{C}_{n+x}, \mathrm{C}_{n+y}$ <br> $\mathrm{C}_{n+z}$ | $12,11,9$ | Carry Outputs |
| G | 10 | Active-Low <br> Carry Generate Output |
| P | 7 | Active-Low <br> Carry Propagate Output |
| VCC | 16 | Supply Voltage |
| GND | 8 | Ground |

## DC ELECTRICAL CHARACTERISTICS

| PARAMETER |  | TEST CONDITIONS | 74S182 |  |  | 745183 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| VIL | Input Low voltage |  |  | 2.0 |  | 0.8 | 2.0 | 0.8 |  | V |
| $\mathrm{V}_{\text {IH }}$ | Input High voltage |  |  |  |  |  |  |  | V |
| $V_{C D}$ | Input clamp diode voltage |  |  |  | -1.5 | -1.2 |  |  | V |
| VOL | Output Low voltage |  |  |  | 0.4 | 0.5 |  |  | V |
| VOH | Output High voltage | 2.4 |  |  |  |  | 2.7 |  | V |
| 1 IH | Input High current |  |  |  |  |  |  |  |  |
|  | $\mathrm{C}_{\mathrm{n}}$ input |  |  |  | 80 | 50 |  |  | $\mu \mathrm{A}$ |
|  | $\mathrm{P}_{2}$ input |  |  |  | 160 | 150 |  |  | $\mu \mathrm{A}$ |
|  | $P_{3}$ input |  |  |  | 120 | 100 |  |  | $\mu \mathrm{A}$ |
|  | $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{G}_{3}$ input |  |  |  | 200 | 200 |  |  | $\mu \mathrm{A}$ |
|  | $\mathrm{G}_{0}, \mathrm{G}_{2}$ input |  |  |  | 360 | 350 |  |  | $\mu \mathrm{A}$ |
|  | $\mathrm{G}_{1}$ input |  |  |  | 400 | 400 |  |  | $\mu \mathrm{A}$ |
| IIL | Input Low current $\mathrm{C}_{n}$ input | $\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$ |  |  | -3.2 |  | -2.0 |  | mA |
|  | $P_{2}$ input |  |  |  | -6.4 |  | -6.0 |  | mA |
|  | $\mathrm{P}_{3}$ input |  |  |  | -4.8 |  | -4.0 |  | mA |
|  | $\mathrm{P}_{9}, \mathrm{P}_{1}, \mathrm{G}_{3}$ input |  |  |  | -8.0 |  | -8.0 |  | mA |
|  | $\mathrm{G}_{0}, \mathrm{G}_{2}$ input |  |  |  | -14.4 |  | -14 |  | mA |
|  | $\mathrm{G}_{1}$ input |  |  |  | -16 |  | -16 |  | mA |
| los | Output short circuit current | $\mathrm{V}_{\text {CC }}=\mathrm{Max}$ | -40 |  | -100 | -40 | -100 |  | mA |
| ICC | Power supply current | $V_{C C}=M a x, V_{\text {IN }}=5 \mathrm{~V}$ |  |  | 72 |  | 109 |  | mA |

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V}$ unless otherwise specified.


NOTES
Load circuit and typical waveforms are shown at the front of section.

1. $R_{L}=400 \Omega$ for $54 / 74$.
2. $R_{L}=280 \Omega$ for $54 / 74 \mathrm{~S}$.

## LOORF-ALILAD CARPM GENERATOR

## LOGIC DIAGRAM



## DESCRIPTION

The 54/74LS273 is an Octal D Flip-Flop used primarily as an 8 -bit positive edgetriggered storage register. D input informa-
tion is transferred to storage during the Low to High transition of the clock pulse. The Master Reset (MR) input simultaneously clears all flip-flops when low.

## LOGIC DIAGRAM



## OCTAL D FLIP.FLOP

## DESCRIPTION

The 54/74LS377 is an Octal D Flip-Flop used primarily as an 8 -bit positive edgetriggered storage register. D input information is transferred to storage during the Low
to High transition of the clock pulse. The edge-triggered Clock Enable ( $\overline{\mathrm{CE}}$ ) input enables the clock when Low and holds data when High.

## LOGIC DIAGRAM



## PIN CONFIGURATION



## DESCRIPTION

The 82S100 (tri-state outputs) and the 82S101 (open collector outputs) are Bipolar Programmable Logic Arrays, containing 48 product terms (AND terms), and 8 sum terms (OR terms). Each OR term controls an output function which can be programmed either true active-high ( Fp ), or true activelow (F). The true state of each output function is activated by any logical combination of 16 -input variables, or their complements, up to 48 terms. Both devices are field programmable, which means that custom patterns are immediately available by following the fusing procedure outlined in this data sheet.

The 82S100 and 82S101 are fully TTL compatible, and include chip-enable control for expansion of input variables, and output inhibit. They feature either open collector or tri-state outputs for ease of expansion of product terms and application in busorganized systems.

Both devices are available in commercial and military temperature ranges. For the commercial temperature range $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ ) specify $\mathrm{N} 82 \mathrm{~S} 100 / 101$, or N , and for the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ ) specify S82S100/101,I.

FPLA EQUIVALENT LOGIC PATH


## LOGIC FUNCTION

Typical Product Term:
$P_{0}=I_{0} \cdot I_{1} \cdot \overline{I_{2}} \cdot I_{5} \cdot \overline{I_{13}}$
Typical Output Functions:
$\mathrm{F}_{0}=(\overline{\mathrm{CE}})+\left(\mathrm{P}_{0}+\mathrm{P}_{1}+\mathrm{P}_{2}\right) @ \mathrm{~S}=$ Closed $F_{0}^{\star}=(\overline{C E})+\left(\overline{P_{0}} \cdot \overline{P_{1}} \cdot \overline{P_{2}}\right) @ S=$ Open
NOTE
For each of the 8 outputs, either the function Fp (active-high) or $\mathrm{F} \dot{\mathrm{p}}$ (active low) is available, but not both. The required function polarity is programmed via link (S).

## APPLICATIONS

- CRT display systems
- Random logic
- Code conversion
- Peripheral controllers
- Function generators
- Look-up and decision tables
- Microprogramming
- Address mapping
- Character generators
- Sequential controllers
- Data security encoders
- Fault detectors
- Frequency synthesizers


## TRUTH RATINGS

| MODE | Pn | $\overline{C E}$ | $\mathrm{Sr} \stackrel{?}{=} \mathrm{f}(\mathrm{Pn})$ | Fp | $F_{\text {pre }}^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { Disabled } \\ & (82 S 101) \end{aligned}$ | X | 1 | x | 1 | 1 |
| $\begin{aligned} & \hline \text { Disabled } \\ & (82 S 100) \end{aligned}$ |  |  |  | $\mathrm{Hi}-\mathrm{Z}$ | Hi-z |
| Read | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | Yes | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$ |
|  | X | 0 | No | 0 | 1 |

## PIN CONFIGURATION

| I,N PACKAGE* |  |
| :---: | :---: |
|  |  |
| FE+ 1 | $28{ }^{\text {cc }}$ |
| 1.2 | 2718 |
| 163 | 2619 |
| 154 | 25. |
| 145 | $24{ }^{11}$ |
| 136 | $23{ }^{1 / 2}$ |
| 127 | $221_{13}$ |
| 1. 8 | 21 ${ }_{1 / 4}$ |
| 109 | 20] 1/5 |
| $\mathrm{F}_{7} 10$ | 19 CE |
| $\mathrm{F}_{6} 11$ | 18 F \% |
| $\mathrm{F}_{5} 12$ | 17 F , |
| $\mathrm{F}_{4} 13$ | $16 \mathrm{~F}_{2}$ |
| GND 14 | $15 F_{3}$ |
| - I = Ceramic |  |
| $\mathrm{N}=$ Plastic <br> †Open during normal operation |  |

## THERMAL TABLE

| TEMPERATURE | MILI- <br> TARY | COM- <br> MER- <br> CIAL |
| :---: | :---: | :---: |
| Maximum <br> junction <br> Maximum <br> ambient <br> Allowable thermal <br> rise ambient <br> to junction | $175^{\circ} \mathrm{C}$ | $150^{\circ} \mathrm{C}$ |

## LOGIC DIAGRAM



## ABSOLUTE MAXIMUM RATINGS1

| PARAMETER |  | RATING |  | UNIT |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage |  | +7 | $V \mathrm{dc}$ |
| VIN | Input voltage |  | +5.5 | $V d c$ |
| Vout | Output voltage |  | +5.5 | $V d c$ |
| IIN | Input currents | $-30$ | $+30$ | mA |
| lout | Output currents |  | +100 | $m A$ |
|  | Temperature range |  |  | ${ }^{\circ} \mathrm{C}$ |
| TA | Operating |  |  |  |
|  | N82S100/101 | 0 | +75 |  |
|  | S82S100/101 | -55 | +125 |  |
| TSTG | Storage | -65 | +150 |  |

DC ELECTRICAL CHARACTERISTICS N82S100/101: $0^{\circ} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
S82S100/101: $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

| PARAMETER |  | TEST CONDITIONS | N82S100/101 |  |  | S82S100/101 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |
| $\begin{aligned} & V_{I H} \\ & V_{I L} \\ & V_{I C} \end{aligned}$ | Input voltage ${ }^{3}$ <br> High <br> Low Clamp 3 ,4 |  | $\begin{gathered} V_{C C}=\text { Max } \\ V_{C C}=\text { Min } \\ V_{C C}=M i n, I_{\mathbb{N}}=-18 \mathrm{~mA} \end{gathered}$ | 2 | -0.8 | $\begin{array}{r} 0.85 \\ -1.2 \end{array}$ | 2 | -0.8 | $\begin{array}{r} 0.8 \\ -12 \end{array}$ | V |
| VOH VOL | Output voltage <br> High (82S100)3,6 Low ${ }^{3,6}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{IOL}=9.6 \mathrm{~mA} \\ & \mathrm{IOH}=-2 \mathrm{~mA} \end{aligned}$ | 2.4 | 0.35 | 0.45 | 2.4 | 0.35 | 0.50 | v |
| $\begin{aligned} & I_{H} \\ & I_{I L} \end{aligned}$ | Input current High Low | $\begin{gathered} V_{\mathbb{N}}=5.5 \mathrm{~V} \\ V_{\mathbb{N}}=0.45 \mathrm{~V} \end{gathered}$ |  | $\begin{gathered} <1 \\ -10 \end{gathered}$ | $\begin{gathered} 25 \\ -100 \end{gathered}$ |  | $\begin{gathered} <1 \\ -10 \end{gathered}$ | $\begin{gathered} 50 \\ -150 \end{gathered}$ | $\mu \mathrm{A}$ |
| IoLk lo(OFF) <br> los | Output current Leakage ${ }^{7}$ Hi-Z state (82S100)7 <br> Short circuit (82S100)4,8 | $\begin{aligned} & V_{\text {CC }}=\mathrm{Max} \\ & \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V} \\ & \text { VOUT }=5.5 \mathrm{~V} \\ & \text { VOUT }=0.45 \mathrm{~V} \\ & \text { VOUT }=0 \mathrm{~V} \end{aligned}$ | -20 | $\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$ | $\begin{gathered} 40 \\ 40 \\ -40 \\ -70 \end{gathered}$ | -15 | $\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$ | $\begin{gathered} 60 \\ 60 \\ -60 \\ -85 \end{gathered}$ | $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ <br> mA |
| Icc | V CC supply current9 | $V_{C C}=\operatorname{Max}$ |  | 120 | 170 |  | 120 | 180 | mA |
| $\mathrm{C}_{\mathrm{IN}}$ Cout | Capacitance ${ }^{7}$ Input Output | $\begin{gathered} V_{C C}=5.0 \mathrm{~V} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$ |  | $\begin{gathered} 8 \\ 17 \end{gathered}$ |  |  | $\begin{gathered} 8 \\ 17 \end{gathered}$ |  | pF |

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}$
N82S100/101: $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.25 \mathrm{~V}$
S82S100/101: $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.5 \mathrm{~V}$

| PARAMETER |  | TO | FROM | N82S100/101 |  |  | S82S100/101 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min |  | Typ ${ }^{2}$ | Max | Min | Typ ${ }^{2}$ | Max |  |
| TIA Tce | Access time Input Chip enable |  | Output Output | Input Chip enable |  | $\begin{aligned} & 35 \\ & 15 \end{aligned}$ | $\begin{aligned} & 50 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 35 \\ & 15 \end{aligned}$ | $\begin{aligned} & 80 \\ & 40 \end{aligned}$ | ns |
| TCD | Disable time Chip disable | Output | Chip enable |  | 15 | 30 |  | 15 | 40 | ns |

[^0]825100 (T.S.) $/ 825101$ (0.C.)

NOTES

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device of these or any other condition above those indicated in the operation of the device specifications is not implied.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at the time.
5. Measured with $V_{I L}$ applied to $\overline{\mathrm{CE}}$ and a logic high stored.
6. Measured with a programmed logic condition for which the output test is at a low logic level. Output sink current is applied thru a resistor to $V_{C C}$.
. Measured with: $V_{I H}$ applied to $\overline{C E}$.
. Duration of short circuit should not exceed 1 second
7. ICC is measured with the chip enable input grounded, all other inputs at 4.5 V and the outputs open.

## TEST LOAD CIRCUIT



## TIMING DIAGRAM



## TIMING DEFINITIONS

TCE Delay between beginning of Chip Enable low (with Address valid) and when Data Output becomes valid.
TCD Delay between when Chip Enable becomes high and Data Output is in off state ( $\mathrm{Hi}-\mathrm{Z}$ or high).
TIA Delay between beginning of valid Input (with Chip Enable low) and when Data Output becomes valid.

## VIRGIN DEVICE

The 82S100/101 are shipped in an unprogrammed state, characterized by:

1. All internal $\mathrm{Ni}-\mathrm{Cr}$ links are intact.
2. Each product term (P-term) contains both true and complement values of every input variable $I_{m}$ (P-terms always logically "false").
3. The "OR" Matrix contains all 48-P-terms.
4. The polarity of each output is set to active high (Fp function).
5. All outputs are at a low logic level.

## RECOMMENDED PROGRAMMING PROCEDURE

To program each of 8 Boolean logic functions of 16 true or complement variables, including up to 48 P-terms, follow the Program/Verify procedures for the "AND" matrix, "OR" matrix, and output polarity outlined below. To maximize recovery from programming errors, leave all links in unused device areas intact.

## SET-UP

Terminate all device outputs with a 10 K resistor to +5 V . Set GND (pin 14) to OV .

VOLTAGE WAVEFORM



Measurements: All circuit delays are measured at the +1.5 V level of inputs and outputs.

## Output Polarity <br> pROGRAM ACTIVE LOW (Fp̂ FUNCTION)

Program output polarity before programing "AND" matrix and "OR" matrix. Program 1 output at the time. (S) links of unused outputs are not required to be fused.

1. Set FE (pin 1) to VFEL.
2. Set $V_{C C}$ (pin 28 ) to $V_{C C L}$.
3. Set $\overline{C E}$ (pin 19), and $I_{0}$ through $I_{15}$ to $V_{I H}$.
4. Apply $V$ OPH to the appropriate output, and remove after a period $t_{p}$.
5. Repeat step 4 to program other outputs.

## VERIFY OUTPUT POLARITY

1. Set FE (pin 1) to $V_{\text {FEL }}$; set $V_{C C}$ (pin 28) to Vccs.
2. Enable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to VIL.
3. Address a non-existent P-term by applying $V_{I H}$ to all inputs $I_{0}$ through $l_{15}$.
4. Verify output polarity by sensing the logic state of outputs Fo through F7. All outputs at a high logic level are programmed active low ( $F_{p}$ function), while all outputs at a low logic level are programmed active high ( $F_{p}$ function).
5. Return $V_{C C}$ to $V_{C C P}$ or $V_{C C L}$.

## "AND" Matrix <br> PROGRAM INPUT VARIABLE

Program one input at the time and one Pterm at the time. All input variable links of unused P-terms are not required to be fused. However, unused input variables must be programmed as Don't Care for all programmed P-terms.

1. Set $F E$ (pin 1) to $V_{F E L}$, and $V_{C C}($ pin 28) to VCcP.
2. Disable all device outputs by setting $\overline{C E}\left(\right.$ pin 19) to $V_{I H}$.
3. Disable all input variables by applying VIX to inputs $I_{0}$ through $I_{15}$.
4. Address the P-term to be programmed (No. 0 through 47) by forcing the corresponding binary code on outputs Fo through $F_{5}$ with $F_{0}$ as LSB. Use standard TTL logic levels VOHF and VOLF.
5 a . If the P-term contains neither Io nor $\overline{T_{0}}$ (input is a Don't Care), fuse both lo and To links by executing both steps $5 b$ and $5 c$, before continuing with step 7 .
5 b. If the P-term contains $I_{0}$, set to fuse the Fo link by lowering the input voltage at Io from $V_{I X}$ to $V_{I H}$. Execute step 6.
5 c. If the P-term contains To, set to fuse the Io link by lowering the input voltage at Io from $V_{\text {IX }}$ to $V_{\text {IL }}$. Execute step 6.
6a. After to delay, raise FE (pin 1) from $V_{F E L}$ to $\mathrm{V}_{\mathrm{FEH}}$.
6 b . After $t_{D}$ delay, pulse the $\overline{\mathrm{CE}}$ input from VIH to VIX for a period $t_{p}$.
6 c. After to delay, return FE input to VFEL.
5. Disable programmed input by returning lo to VIX.
6. Repeat steps 5 through 7 for all other input variables.
7. Repeat steps 4 through 8 for all other P terms.
8. Remove VIX from all input variables.

## VERIFY INPUT VARIABLE

1. Set FE (pin 1) to $\mathrm{V}_{\text {FEL }}$; set $\mathrm{V}_{C C}($ pin 28) to Vccp.
2. Enable $F_{7}$ output by setting $\overline{C E}$ to $V_{I X}$.
3. Disable all input variables by applying $\mathrm{V}_{\mathrm{I}} \mathrm{X}$ to inputs $I_{0}$ through $I_{15}$.
4. Address the P-term to be verified (No. O through 47) by forcing the corresponding binary code on outputs $\mathrm{F}_{0}$ through $\mathrm{F}_{5}$.
5. Interrogate input variable $I_{0}$ as follows:
A. Lower the input voltage at lo from $\mathrm{VIX}_{\mathrm{IX}}$ to $\mathrm{V}_{1 \mathrm{H}}$, and sense the logic state of output $\mathrm{F}_{7}$.
B. Lower the input voltage at $I_{0}$ from $V_{I H}$ to $\mathrm{V}_{\mathrm{IL}}$, and sense the logic state output $F_{7}$.

The state of 10 contained in the P-term is determined in accordance with the following truth table:

| $\mathrm{I}_{0}$ | $\mathrm{~F}_{7}$ | INPUT VARIABLE STATE <br> CONTAINED IN P-TERM |
| :---: | :---: | :---: |
| 0 | 1 | $\Gamma_{0}$ |
| 1 | 0 | $\mathrm{I}_{0}$ |
| 0 | 0 |  |
| 1 | 1 | Don't Care |
| 0 | 1 | $\left(I_{0}\right),\left(\overline{I_{0}}\right)$ |
| 1 | 1 |  |
| 0 | 0 |  |
| 1 | 0 |  |

Note that 2 tests are required to uniquely determine the state of the input variable contained in the P-term.
6. Disable verified input by returning to to VIX.
7. Repeat steps 5 and 6 for all other input variables.
8. Repeat steps 4 through 7 for all other $P$ terms.
9. Remove $V_{I X}$ from all input variables.

## "OR" MATRIX <br> PROGRAM PRODUCT TERM

Program one output at the time for one $P$ term at the time. All $P_{n}$ links in the "OR" matrix corresponding to unused outputs and unused P -terms are not required to be fused.

1. Set FE (pin 1) to VFEL.
2. Disable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to $\mathrm{V}_{\mathrm{IH}}$.
3. After to delay, set $\mathrm{V}_{C C}(\operatorname{pin} 28)$ to $\mathrm{V}_{C C S}$, and inputs $I_{6}$ through $I_{15}$ to $V_{I H}, V_{\text {IL }}$, or VIX.
4. Address the P-term to be programmed (No. 0 through 47) by applying the corresponding binary code to input
variables $I_{0}$ through $I_{5}$, with $I_{0}$ as LSB.
$5 a$. If the P-term is contained in output function $F_{0}\left(F_{0}=1\right.$ or $\left.F_{0}^{*}=0\right)$, got to step 6 , (fusing cycle not required).
5b. If the P-term is not contained in output function $F_{0}\left(F_{0}=0\right.$ or $\left.F_{0}^{*}=1\right)$, set to fuse the $P_{n}$ link by forcing output $F_{0}$ to Vopf.
6a. After to delay, raise FE (pin 1) from $V_{\text {FEL }}$ to $V_{\text {FEH }}$.
6b. After to delay, pulse the $\overline{C E}$ input from $V_{I H}$ to $V_{I X}$ for a period $t_{p}$.
6c. After to delay, return $F E$ input to $V_{F E L}$.
6d. After to delay, remove VOPF from output $\mathrm{F}_{0}$.
5. Repeat steps 5 and 6 for all other output functions.
6. Repeat steps 4 through 7 for all other P-terms.
7. Remove Vccs from Vcc.

## VERIFY PRODUCT TERM

1. Set FE (pin 1) to $\mathrm{V}_{\text {FEL }}$
2. Disable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to VIH.
3. After tD delay, set $V_{C C}(\operatorname{pin} 28)$ to $V_{C c s}$, and inputs $l_{0}$ through $I_{15}$ to $V_{I H}, V_{\text {IL }}$, or $V_{\text {IX }}$.
4. Address the P-term to be verified (No. O through 47) by applying the corresponding binary code to input variables $I_{0}$ through $\mathrm{I}_{5}$.
5. After tD delay, enable the chip by setting $\overline{C E}$ (pin 19) to VIL.
6. To determine the status of the $P_{n}$ link in the "OR" matrix for each output function $F_{p}$ or $F_{p}^{*}$, sense the state of outputs $F_{0}$ through $F_{7}$. The status of the link is given by the following truth table:

| OUTPUT |  |  |
| :---: | :---: | :---: |
| Active High <br> (Fp) | Active Low <br> (Fpp) | P-TERM LINK |
| 0 | 1 |  |
| 1 | 0 |  |

7. Repeat steps 4 through 6 for all other $P$ terms.
8. Remove Vccs from Vcc.

# BIPOLAR FIELD PROGRAMMABLE <br> LOGIC ARPAY ( $16 \times 48 \times 8$ ) 

## OUTPUT POLARITY PROGRAM-VERIFY SEQUENCE (TYPICAL)


"AND" MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL)

"OR" MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL)


PROGRAMMING SYSTEM SPECIFICATIONS ${ }^{1} \quad\left(T_{A}=+25^{\circ} \mathrm{C}\right)$

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| Vccs <br> Vccl <br> Iccs | VCC supply (program/verify <br> "OR", verify output polarity)2 <br> VCC supply (program output polarity) <br> Icc limit (program "OR") |  | $1 \mathrm{ccs}=550 \mathrm{~mA}, \mathrm{~min}$, Transient or steady state $V_{\text {ccs }}=+8.75 \pm .25 \mathrm{~V}$ | $\begin{gathered} 8.5 \\ 0 \\ 550 \end{gathered}$ | 8.75 0.4 | $\begin{gathered} 9.0 \\ 0.8 \\ 1,000 \end{gathered}$ | V <br> V <br> mA |
| Voph Vopl | Output voltage <br> Program output polarity ${ }^{3}$ Idle | $\mathrm{IOPH}=300 \pm 25 \mathrm{~mA}$ | $\begin{gathered} 16.0 \\ 0 \end{gathered}$ | $\begin{gathered} 17.0 \\ 0.4 \end{gathered}$ | $\begin{gathered} 18.0 \\ 0.8 \end{gathered}$ | v |
| IOPH | Output current limit (Program output polarity) | $\mathrm{V}_{\text {OPH }}=+17 \pm 1 \mathrm{~V}$ | 275 | 300 | 325 | mA |
| $\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$ | Input voltage <br> High <br> Low |  | $\begin{gathered} 2.4 \\ 0 \end{gathered}$ | 0.4 | $\begin{aligned} & 5.5 \\ & 0.8 \end{aligned}$ | v |
| $\begin{aligned} & \mathrm{I}_{\mathrm{H}} \\ & \mathrm{ILL}^{2} \end{aligned}$ | Input current High Low | $\begin{gathered} \mathrm{V}_{\mathrm{IH}}=+5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{gathered}$ |  |  | $\begin{gathered} 50 \\ -500 \end{gathered}$ | $\mu \mathrm{A}$ |
| VoHF Volf | Forced output voltage High Low |  | $\begin{gathered} 2.4 \\ 0 \end{gathered}$ | 0.4 | $\begin{aligned} & 5.5 \\ & 0.8 \end{aligned}$ | V |
| $\begin{aligned} & \text { lohf } \\ & \text { loLF } \end{aligned}$ | Output current High Low | $\begin{gathered} \mathrm{VOHF}=+5.5 \mathrm{~V} \\ \mathrm{VOLF}=0 \mathrm{~V} \end{gathered}$ |  |  | $\begin{gathered} 100 \\ -1 \end{gathered}$ | $\underset{\mathrm{mA}}{\mu \mathrm{~A}}$ |
| VIX | $\overline{\mathrm{CE}}$ program enable level |  | 9.5 | 10 | 10.5 | $\checkmark$ |
| lix1 | Input variables current | $\mathrm{V}_{\text {IX }}=+10 \mathrm{~V}$ |  |  | 2.5 | mA |
| 11x2 | $\overline{\mathrm{CE}}$ input current | $\mathrm{V}_{\text {IX }}=+10 \mathrm{~V}$ |  |  | 5.0 | mA |
| $V_{\text {FEH }}$ | FE supply (program) 3 | $I_{\mathrm{FEH}}=300 \pm 25 \mathrm{~mA}$ <br> Transient or steady state | 16.0 | 17.0 | 18.0 | V |
| $V_{\text {FEL }}$ | FE supply (idle) | $\mathrm{I}_{\text {FEL }}=-1 \mathrm{~mA}, \max$ | 1.25 | 1.5 | 1.75 | V |
| Ifeh | FE supply current limit | $\mathrm{V}_{\text {FEH }}=+17 \pm 1 \mathrm{~V}$ | 275 | 300 | 325 | mA |
| VCCP | $V_{C C}$ supply (program/verify "AND") | ICCP $=550 \mathrm{~mA}, \mathrm{~min}$, <br> Transient or steady state | 4.75 | 5.0 | 5.25 | V |
| Iccp | Icc limit (program "AND") | $V_{C C P}=+5.0 \pm .25 \mathrm{~V}$ | 550 |  | 1,000 | mA |
| Vopf | Forced output (program) |  | 9.5 | 10 | 10.5 | V |
| lopF | Output current (program) |  |  |  | 10 | mA |
| $T_{R}$ | Output pulse rise time |  | 10 |  | 50 | $\mu \mathrm{s}$ |
| tp | $\overline{\mathrm{CE}}$ programming pulse width |  | 0.3 | 0.4 | 0.5 | $\mathrm{ms}^{5}$ |
| to | Pulse sequence delay |  | 10 |  |  | $\mu \mathrm{s}$ |
| TPR | Programming time |  |  | 0.6 |  | ms |
| $\frac{T_{P R}}{T_{P R}+T_{P S}}$ | Programming duty cycle |  |  |  | 50 | \% |
| FL | Fusing attempts per link |  |  |  | 2 | cycle |
| $V_{S}$ | Verify threshold 4 |  | 1.4 | 1.5 | 1.6 | V |

NOTES

1. These are specifications which a Programming System must satisy in order to be qualified by Signetics.
2. Bypass $\mathrm{V}_{C C}$ to GND with a $0.01 \mu \mathrm{f}$ capacitor to reduce voltage spikes.
3. Care should be taken to ensure that the voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.
4. $\mathrm{V}_{\mathrm{S}}$ is the sensing threshold of the FPLA output voltage for a programmed link. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.
5. These are new limits resulting from device improvements, and which supersede, but do not obsolete the performance requirements of previously manufactured programming equipment.

16X48X8 FPLA PROGRAM TABLE


[^1]
## PUNCHED CARD CODING FORMAT

The FPLA Program Table can be supplied directly to Signetics in punched card form,
using standard 80 -column IBM cards. For each FPLA Program Table, the customer should prepare in input card deck in accordance with the following format. Product Term cards 3 through 50 can be in any
order. Not all 48 Product Terms need to be present. Unused Product Terms require no entry cards, and will be skipped during the actual programming sequence:

CARD NO.1—Free format within designated fields.


CARD NO. 2-


CARD NO. 3 through NO. 50


CARD NO. 51


Output Active Level entries are determined in accordance with the following table:

| OUTPUT ACTIVE LEVEL |  |
| :--- | :---: |
| Active high | Active low |
| H |  |


| L |
| :---: |

NOTES

1. Polarity programmed once only.
2. Enter (H) for all unused outputs.

Input Variable entries are determined in accordance with the following table:

| INPUT VARIABLE |  |  |
| :---: | :---: | :---: |
| $\operatorname{Im}$ | $\overline{I m}$ | Don't care |
| $H$ | $L$ | - (dash) |

NOTE
Enter (-) foriunused inputs of used P-terms.

Output Function entries are determined in accordance with the following table:

| OUTPUT FUNCTION |  |
| :---: | :---: |
| Product term <br> present in Fp <br> A | Product term not <br> present in Fp <br> $\bullet$ (period) |

## NOTES

1. Entries independent of output polarity.
2. Enter (A) for unused outputs of used P-terms.

## TWX TAPE CODING FORMAT

The FPLA Program Table can be sent to Signetics in ASCII code format via airmail using any type of 8-level tape (paper, mylar, fanfold, etc.), or via TWX: just dial (910) 339-

9283, tell the operator to turn the paper puncher on, and acknowledge. At the end of transmission instruct the operator to send tape to Signetics Order Entry.
A number of Program Tables can be se-
quentially assembled on a continuous tape as follows, however limit tape length to a roll of 1.75 inch inside diameter, and 4.25 inch outside diameter:

A. The MAIN HEADING at the beginning of tape includes the following information, with each entry preceded by a (\$) character, whether used or not:

1. Customer Name $\qquad$ 4. Purchase Order No.
2. Customer TWX No $\qquad$ 5. Number of Program Tables
3. Date
4. Total Number of Parts
B. Each SUB HEADING should contain specific information pertinent to each Program Table as follows, with each entry preceded by a (\$) character, whether used or not:

| 1. Signetics Device No. | 4. Date |
| :--- | :--- |
| 2. Program Table No. 5. Customer Symbolized Part No. <br> 3. Revision 6. Number of Parts |  |

C. Program Table data blocks are initiated with an STX character, and terminated with an ETX character. The body of the data consists of Output Active Level, Product Term, and Output Function information separated by appropriate identifiers in accordance with the following format:


Entries for the 3 Data Fields are determined in accordance with the following Table:

| INPUT VARIABLE |  |  |
| :---: | :---: | :---: |
| $I_{m}$ <br> $H$ | $\overline{I m}$ | Don't care <br> L (dash) |

NOTE
Enter ( - ) for unused inputs of used P-terms

| OUTPUT FUNCTION |  |
| :---: | :---: |
| Product term <br> present in Fp <br> A | Product term not <br> present in Fp <br> $\bullet$ (period) |

NOTES

1. Entries independent of output polarity.
2. Enter (A) for unused outputs of used P-terms.

| OUTPUT ACTIVE LEVEL |  |
| :---: | :---: |
| Active high <br> $H$ | Active low <br> L |

## NOTES

1. Polarity programmed once only.
2. Enter $(\mathrm{H})$ for all unused outputs.

Although the Product Term data are shown entered in sequence, this is not necessary. It is possible to input only one Product Term, if desired. Unused Product Terms require no entry. ETX signalling end of Program Table may occur with less than the maximum number of Product Terms entered.

## notes

1. Corrections to any entry can be made by backspace and rubout. However, limit consecutive rubouts to less than 25 .
2. P-Terms can be re-entered any number of times. The last entry for a particular $P$-Term will be interpreted as valid data.
3. Any $P$-Term can be deleted entirely by inserting the character ( $E$ ) immediately following the $P$-Term number to be deleted, i.e., *P 25E deletes P-Term 25.
4. To facilitate an orderly Teletype print out, carriage returns, line feeds, spaces, rubouts etc, may be interspersed between data groups, but only preceding an asterisk (*).
5. Comments are allowed between data fields, provided that an asterisk (*) is not used in any Heading or Comment entry.

TYPICAL APPLICATIONS


## DESCRIPTION

The 82 S200 (tri-state outputs) and the 82 S201 (open collector outputs) are Bipolar Programmable Logic Arrays, containing 48 product terms (AND terms), and 8 sum terms (OR tems). Each OR term controls an output function which can be programmed either true active-high ( $F_{p}$ ), or true active-low ( $\mathrm{F}_{\mathrm{p}}{ }^{*}$ ). The true state of each output function is activated by any logical combination of 16 input variables, or their complements, up to 48 terms. Both devices are mask programmable by supplying to Signetics Program Table data in one of the formats specified in this data sheet.
The 82S200 and 82S201 are fully TTL compatible, and include chip enable control for expansion of input variables, and output inhibit. They feature either open collector or tri-state outputs for ease of expansion of product terms and application in busorganized systems.
Both devices are available in commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $+75^{\circ} \mathrm{C}$ ) specify $\mathrm{N} 82 \mathrm{~S} 200 / 201$, I or N , and for the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ ) specify S82S200/201, I.

PLA EQUIVALENT LOGIC PATH


## LOGIC FUNCTION

Typical Product Term:
$P_{0}=I_{0} \cdot I_{1} \cdot \overline{I_{2}} \cdot I_{5} \cdot \overline{I_{13}}$
Typical Output Functions:
$F_{0}=(\overline{C E})+\left(P_{0}+P_{1}+P_{2}\right) @ S=$ Closed $F_{0}^{*}=(\overline{\mathrm{CE}})+\left(\overline{P_{0}} \cdot \overline{P_{1}} \cdot \overline{P_{2}}\right) @ S=$ Open

## NOTE

For each of the 8 outputs, either the function Fp (active-high) or $\mathrm{F} \dot{p}$ (active low) is available, but not both. The required function polarity is programmed via link (S).

## APPLICATIONS*

- CRT display systems
- Random logic
- Code conversion
- Peripheral controllers
- Function generators
- Look-up and decision tables
- Microprogramming
- Address mapping
- Character generators
- Sequential controllers
- Data security encoders
- Fault detectors
- Frequency synthesizers
*For diagrams of Typical Applications reference 825100 (T.S.)/82S101 (O.C.) Data Sheet.


## TRUTH TABLE

| MODE | Pn | $\overline{C E}$ | $\mathrm{Sr} \stackrel{?}{=} \mathrm{f}(\mathrm{Pn})$ | Fp | $F_{p}^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Disabled } \\ & \text { (82S201) } \end{aligned}$ | X | 1 | X | 1 | 1 |
| Disabled (82S200) |  |  |  | $\mathrm{Hi}-\mathrm{Z}$ | $\mathrm{Hi}-\mathrm{Z}$ |
| Read | 1 | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | Yes | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ |
|  | X | 0 | No | 0 | 1 |

## PIN CONFIGURATION



## THERMAL RATINGS

| TEMPERATURE | MILI- <br> TARY | COM- <br> MER- <br> CIAL |
| :--- | :---: | :---: |
| Maximum <br> junction <br> Maximum <br> ambient <br> Allowable thermal <br> rise ambient <br> to junction | $175^{\circ} \mathrm{C}$ | $150^{\circ} \mathrm{C}$ |

## LOGIC DIAGRAM



## ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

| PARAMETER |  | RATING |  | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| VCC | Supply voltage |  | +7 | $V d c$ |
| VIn | Input voltage |  | +5.5 | $V d \mathrm{c}$ |
| Vout | Output voltage |  | +5.5 | $V \mathrm{dc}$ |
| IIN | Input currents | $-30$ | +30 | mA |
| Iout | Output currents |  | +100 | mA |
|  | Temperature range |  |  | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {A }}$ | Operating |  |  |  |
|  | N82S200/201 | 0 | +75 |  |
|  | S82S200/201 | -55 | +125 |  |
| TSTG | Storage | -65 | +150 |  |

DC ELECTRICAL CHARACTERISTICS N82S200/201: $0^{\circ} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ S82S200/201: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

| PARAMETER |  | TEST CONDITIONS | N82S200/201 |  |  | S82S200/201 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ ${ }^{2}$ | Max | Min | Typ ${ }^{2}$ | Max |  |
| $\mathrm{V}_{\mathrm{IH}}$ <br> VIL VIC | Input voltage ${ }^{3}$ <br> High Low Clamp3,4 |  | $\begin{gathered} V_{C C}=\text { Max } \\ V_{C C}=M i n \\ V_{C C}=M \operatorname{Min}, \operatorname{IIN} 7-18 \mathrm{~mA} \end{gathered}$ | 2 | -0.8 | $\begin{array}{\|l\|} \hline 0.85 \\ -1.2 \end{array}$ | 2 | -0.8 | $\begin{gathered} 0.8 \\ -1.2 \end{gathered}$ | v |
| VOH Vol | Output voltage High (82S200)3,5 Low, ${ }^{3} 6$ | $\begin{aligned} & V_{C C}=M i n \\ & I O H=-2 \mathrm{~mA} \\ & I O L=9.6 \mathrm{~mA} \end{aligned}$ | 2.4 | 0.35 | 0.45 | 2.4 | 0.35 | 0.50 | V |
| $\begin{aligned} & I_{I H} \\ & I_{I L} \end{aligned}$ | Input current <br> High <br> Low | $\begin{gathered} V_{I N}=5.5 \mathrm{~V} \\ V_{I N}=0.45 \mathrm{~V} \end{gathered}$ |  | $\begin{gathered} <1 \\ -10 \end{gathered}$ | $\begin{array}{\|c\|} \hline 25 \\ -100 \end{array}$ |  | $\begin{gathered} <1 \\ -10 \end{gathered}$ | $\begin{array}{\|c\|} \hline 50 \\ -150 \\ \hline \end{array}$ | $\mu \mathrm{A}$ |
| lolk lo(OFF) los | Output current Leakage ${ }^{7}$ Hi-Z state (82S200)7 Short circuit (82S200)4,8 | $\begin{aligned} \text { VCC } & =\mathrm{Max} \\ \text { VOUT } & =5.5 \mathrm{~V} \\ \text { VOUT } & =5.5 \mathrm{~V} \\ \text { VOUT } & =0.45 \mathrm{~V} \\ \text { VOUT } & =0 \mathrm{~V} \end{aligned}$ | -20 | $\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$ | $\begin{gathered} 40 \\ 40 \\ -40 \\ -70 \end{gathered}$ | -15 | $\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$ | $\begin{gathered} 60 \\ 60 \\ -60 \\ -85 \end{gathered}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ <br> mA |
| Icc | VCC supply current ${ }^{\text {a }}$ | V cc Max |  | 120 | 170 |  | 120 | 180 | mA |
| CIN Cout | Capacitance ${ }^{7}$ Input Output | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$ |  | $\begin{gathered} 8 \\ 17 \end{gathered}$ |  |  | $\begin{gathered} 8 \\ 17 \end{gathered}$ |  | pF |

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}$
N82S200/201: $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
S82S200/201: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

| PARAMETER |  | то | FROM | N82S200/201 |  |  | S82S200/201 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min |  | Typ ${ }^{2}$ | Max | Min | Typ ${ }^{2}$ | Max |  |
| $\begin{aligned} & \mathrm{T}_{I A} \\ & \mathrm{~T}_{\mathrm{CE}} \end{aligned}$ | Access time Input Chip enable |  | Output <br> Output | Input <br> Chip enable |  | $\begin{aligned} & 35 \\ & 15 \end{aligned}$ | $\begin{aligned} & 50 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 35 \\ & 15 \end{aligned}$ | $\begin{aligned} & 80 \\ & 50 \end{aligned}$ | ns |
| TCD | Disable time Chip disable | Output | Chip enable |  | 15 | 30 |  | 15 | 50 | ns |

NOTES

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only, and functional operation of the device of these or any other
condition above those indicated in the operation of the device specifications is not implied.
2. All typical values are at $V_{C C}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
3. All voltage values are with respect to network ground terminal
4. Test one at the time.
5. Measured with VIL applied to $\overline{C E}$ and a logic high stored.
6. Measured with a programmed logic condition for which the output test is at a low logic level. Output
sink current is applied thru a resistor to VCC
7. Measured with: $V_{I H}$ applied to $\overline{C E}$.
8. Duration of short circuit should not exceed 1 second.
9. ICc is measured with the chip enable input grounded, all other inputs at 4.5 V and the outputs open

## TEST LOAD CIRCUIT




VOLTAGE WAVEFORM



Measurements: All circuit delays are measured at the +1.5 V level of inputs and outputs.

## TIMING DEFINITIONS

TCE Delay between beginning of Chip Enable low (with Address valid) and when Data Output becomes valid.
TCD Delay between when Chip Enable becomes high and Data Output is in off state ( $\mathrm{Hi}-\mathrm{Z}$ or high).
TiA Delay between beginning of valid Input (with Chip Enable low) and when Data Output becomes valid.

16X48X8 PLA PROGRAM TABLE


## PUNCHED CARD CODING FORMAT

The PLA Program Table can be supplied directly to Signetics in punched card form,
using standard 80 -column IBM cards. For each PLA Program Table, the customer should prepare an input card deck in accordance with the following format. Product Term cards 3 through 50 can be in any
order. Not all 48 Product Terms need to be present. Unused Product Terms require no entry cards, and will be skipped during the actual programming sequence:

## CARD NO.1—Free format within designated fields.

## CARD NO. 2-



CARD NO. 3 through NO. 50


## CARD NO. 51



COMMENTS (FREE FORMAT)

Output Active Level eritries are determined in accordance with the following table:

| OUTPUT ACTIVE LEVEL |  |
| :---: | :---: |
| Active high | Active low |
| $H$ | $L$ |

## NOTES

1. Polarity programmed once only
2. Enter $(H)$ for all unused outputs

Input Variable entries are determined in accordance with the following table:

| INPUT VARIABLE |  |  |
| :---: | :---: | :---: |
| $I m$ | $\overline{I m}$ | Don't care <br> - (dash) |
| $H$ | $L$ |  |

## NOTE

Enter (-) for unused inputs of used P-terms.

Output Function entries are determined in accordance with the following table:

| OUTPUT FUNCTION |  |
| :---: | :---: |
| Product term | Product term not |
| present in FP | present in FP |
| A | $\bullet$ (period) |

## NOTES

1. Entries independent of output polarity.
2. Enter (A) for unused outputs of used P-terms.

TWX TAPE CODING FORMAT
The PLA Program Table can be sent to Signetics in ASCII code format via airmail using any type of 8-level tape (paper, mylar, fanfold, etc.), or via TWX: just dial (910) 339-

9283, tell the operator to turn the paper puncher on, and acknowledge. At the end of transmission instruct the operator to send tape to Signetics Order Entry.
A number of Program Tables can be se-
quentially assembled on a continuous tape as follows, however limit tape length to a roll of 1.75 inch inside diameter, and 4.25 inch outside diameter:

A. The MAIN HEADING at the beginning of tape includes the following information, with each entry preceded by a (\$) character, whether used or not:
$\qquad$
2. Customer TWX No.
3. Date
4. Purchase Order No.
5. Number of Program Tables
6. Total Number of Parts
B. Each SUB HEADING should contain specific information pertinent to each Program Table as follows, with each entry preceded by a (\$) character, whether used or not:

| 1. Signetics Device No. 4. Date <br> 2. Program Table No. 5. Customer Symbolized Part No. <br> 3. Revision 6. Number of Parts |
| :--- | :--- |

C. Program Table data blocks are initiated with an STX character, and terminated with an ETX character. The body of the data consists of Output Active Level, Product Term, and Output Function information separated by appropriate identifiers in accordance with the following format:


Entries for the 3 Data Fields are determined in accordance with the following Table:

| INPUT VARIABL.E |  |  |
| :---: | :---: | :---: |
| $I_{m}$ | $I_{m}$ | Don't care <br> $H$ |
| $L$ | (dash) |  |

NOTE
Enter ( - ) for unused inputs of used P -terms.

| OUTPUT FUNCTION |  |
| :---: | :---: |
| Product term <br> present in Fp <br> A | Product term not <br> present in Fp <br> $\bullet$ (period) |

## NOTES

1. Entries independent of output polarity.
2. Enter (A) for unused outputs of used P-terms.

| OUTPUT ACTIVE LEVEL |  |
| :---: | :---: |
| Active high | Active low |
| $H$ | $L$ |

NOTES

1. Polarity programmed once only.
2. Enter $(\mathrm{H})$ for all unused outputs

Although the Product Term data are shown entered in sequence, this is not necessary. It is possible to input only one Product Term, if desired. Unused Product Terms require no entry. ETX signalling end of Program Table may occur with less than the maximum number of Product Terms entered.

## NOTES

1. Corrections to any entry can be made by backspace and rubout. However, limit consecutive rubouts to less than 25 .
2. P-Terms can be re-entered any number of times. The last entry for a particular P-Term will be interpreted as valid data.
3. Any P-Term can be deleted entirely by inserting the character $(E)$ immediately following the $P$-Term number to be deleted, i.e., 'P 25E deletes P-Term 25.
4. To facilitate an orderly Teletype print out, carriage returns, line feeds, spaces, rubouts etc. may be interspersed between data groups, but only preceding an asterisk (*).
5. Comments are allowed between data fields, provided that an asterisk ( ( ) is not used in any Heading or Comment entry.

## DESCRIPTION

The 82S102 and 82S103 are Bipolar programmable AND/NAND gate arrays, containing 9 gates sharing 16 common inputs. On-chip input buffers enable the user to individually program for each gate either the True $(1 \mathrm{~m})$, Complement $\left(\overline{I_{\mathrm{m}}}\right)$, or Don't Care (X) logic state of each input. In addition, the polarity of each gate output is individually programmable to implement either AND or NAND logic functions.

Alternately, if desired, OR/NOR logic functions can also be realized by programming for each gate the complement of its input variables, and output (DeMorgan theorem).
Both devices are field-programmable, which means that custom patterns are immediately available by following the fusing procedure outlined in this data sheet.

The 82S102 and 82S103 include chipenable control for output strobing and inhibit. They feature either open collector or tri-state outputs for ease of expansion of input variables and application in busorganized systems.

Both devices are available in the commercial and military temperature ranges. For the commercial range ( $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ ) specify N82S102/103, I or N, and for the military range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S82S102/103, I.

## FEATURES

- Field programmable (Ni-Cr link)
- 16 input variables
- 9 output functions
- Chip enable input
- I/O propagation delay: N82S102/103: 30ns max S82S102/103: 50ns max
- Power dissipation: 600mW typ
- Input loading:

N82S102/103: - $100 \mu \mathrm{~A}$ max
S82S102/103: $-150 \mu \mathrm{~A}$ max

- Output options:

82S102: Open collector 82S103: Tri-state

- Output disable function:

82S102: Hi
82S103: Hi-Z

- Fully TTL compatible


## APPLICATIONS

- Random logic
- Address decoders
- Code detectors
- Peripheral selectors
- Fault monitors
- Machine state decoders


## LOGIC DIAGRAM



[^2] The required function polarity is user programmable via fuse (S)

## BIPOLAR IHLD PROGRAMMABLE GATE ARRAY (16X9)

## ABSOLUTE MAXIMUM RATINGS

| PARAMETER |  | RATING | UNIT |
| :---: | :---: | :---: | :---: |
| Vcc | Supply voltage | +7 | Vdc |
| VIN | Input voltage | +5.5 | Vdc |
|  | Output voltage |  | Vdc |
| VOH | High (82S102) | +5.5 |  |
| Vo | Off-state (82S103) | +5.5 |  |
| In | Input current | $\pm 30$ | mA |
| Iout | Output current | +100 | mA |
|  | Temperature range |  | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {A }}$ | Operating |  |  |
|  | N82S102/103 | 0 to +75 |  |
|  | S82S102/103 | -55 to +125 |  |
| TSTG | Storage | -65 to +150 |  |

EQUIVALENT LOGIC PATH


The Field Programmable Gate Array consists of 9 gates with individually programmable inputs and outputs.
The inputs to each gate can be programmed either True (Im), Complement ( $\overline{I_{m}}$ ), or Don't Care via corresponding links (j) and (k). The outputs of each gate can be programmed active-high ( $F_{p}$ ) or active-low ( $F_{p}^{*}$ ) via corresponding links (S). Thus, each gate provides either of 2 output logic functions in terms of external input logic variables $X_{m}$ as defined below (positive logic):

$$
\begin{aligned}
\text { At S } & =\text { Open: } \\
F p & =\overline{C E}+\left(X_{0} \bullet X_{1} \bullet X_{2} \bullet \ldots X_{m}\right)=Y p \\
\text { At } S & =C \text { Cosed: } \\
F \dot{p} & =\overline{C E}+\left(\bar{X}_{0}+\bar{X}_{1}+\bar{X}_{2}+\ldots X_{m}\right)=y p \\
m & =0,1,2, \ldots \ldots 15
\end{aligned}
$$


$p=0,1,2, \ldots 8$
and where $\mathrm{X}_{\mathrm{m}}=1_{\mathrm{m}}, \bar{I}_{\mathrm{m}}$, Don't Care, as assigned by programming polarity of inputs Io- 15 .
When $\overline{C E}=$ low, all gates are enabled, and $F_{p}^{*}=\bar{F}_{p}$ giving $y_{p}=\bar{Y}_{p}$.

## PROGRAMMABLE LOGIC FUNCTIONS

All internal links of virgin FPGAs are intact. Therefore, as shown in the Equivalent Logic Path, all symbolic switches are initially closed. Selective programming (opening) of links (J), (K), and (S) enables the user to assign input and output polarities to each gate for implementing NAND, NOR, AND, OR logic functions without changing the routing of input and output wires. This is shown in the following diagrams for a typical gate in terms of 2 input variables, which can be readily extended up to 16 .


DC ELECTRICAL CHARACTERISTICS
N82S102/103: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
S82S102/103: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

| PARAMETER ${ }^{1}$ |  | TEST CONDITIONS | N82S102/103 |  |  | S82S102/103 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ ${ }^{2}$ | Max | Min | Typ ${ }^{2}$ | Max |  |
| $\begin{aligned} & V_{I L} \\ & V_{I H} \\ & V_{I C} \end{aligned}$ | Input voltage Low ${ }^{1}$ High1 Clamp 1,3 |  | $\begin{gathered} V_{C C}=\operatorname{Min} \\ V_{C C}=\operatorname{Max} \\ V_{C C}=M \operatorname{Min}, \mathrm{IIN}^{2}=-18 \mathrm{~mA} \end{gathered}$ | $2.0$ | -0.8 | $\begin{aligned} & 0.85 \\ & -1.2 \end{aligned}$ | 2.0 | -0.8 | $\begin{gathered} 0.8 \\ -1.2 \end{gathered}$ | V |
| Vol VOH | Output voltage Low 1,4 High (82S103)1,5 | $\begin{aligned} & \mathrm{VCC}=\mathrm{Min} \\ & \mathrm{IOL}=9.6 \mathrm{~mA} \\ & \mathrm{IOH}=-2 \mathrm{~mA} \end{aligned}$ | 2.4 | 0.35 | 0.45 | 2.4 | 0.35 | 0.50 | V |
| $\begin{aligned} & I_{I L} \\ & I_{I H} \end{aligned}$ | Input current Low High | $\begin{aligned} & V_{\mathbb{N}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$ |  | $\begin{gathered} -10 \\ <1 \end{gathered}$ | $\begin{gathered} -100 \\ 25 \end{gathered}$ |  | $\begin{aligned} & -10 \\ & <1 \end{aligned}$ | $\begin{gathered} -150 \\ 50 \end{gathered}$ | $\mu \mathrm{A}$ |
| lolk lo(OFF) los | Output current <br> Leakage (82S102)6 <br> Hi-Z state (82S103)6 <br> Short circuit (82S103)3,7 | $\begin{aligned} & V_{C C}=\mathrm{Max} \\ & \text { VOUT }=5.5 \mathrm{~V} \\ & \text { VOUT }=5.5 \mathrm{~V} \\ & \text { VOUT }=0.45 \mathrm{~V} \\ & \text { VOUT }=0 \mathrm{~V} \end{aligned}$ | -20 | $\begin{gathered} 1 \\ 1 \\ 1 \\ -1 \end{gathered}$ | $\begin{gathered} 40 \\ 40 \\ -40 \\ -70 \end{gathered}$ | -15 | $\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$ | $\begin{gathered} 60 \\ 60 \\ -60 \\ -85 \end{gathered}$ | $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ <br> mA |
| Icc | $\mathrm{V}_{\text {CC }}$ supply current ${ }^{8}$ | $V_{C C}=$ Max |  | 120 | 170 |  | 120 | 180 | mA |
| Cin Cout | Capacitance Input Output6 | $\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{\text {IN }}=2.0 \mathrm{~V} \\ & V_{\text {OUT }}=2.0 \mathrm{~V} \end{aligned}$ |  | $\begin{gathered} 8 \\ 15 \end{gathered}$ |  |  | $\begin{gathered} 8 \\ 15 \end{gathered}$ |  | pF |

AC ELECTRICAL CHARACTERISTICS
$R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}$
N82S102/103: $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
S82S102/103: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V} C \mathrm{C} \leq 5.5 \mathrm{~V}$

| PARAMETER |  | TO | FROM | N82S102/103 |  |  | S82S103/103 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min |  | Typ ${ }^{2}$ | Max | Min | Typ ${ }^{2}$ | Max |  |
| $\begin{aligned} & \mathrm{T}_{\text {IA }} \\ & \mathrm{T}_{C E} \end{aligned}$ | Access time Input Chip enable |  | Output <br> Output | Input <br> Chip enable |  | $\begin{aligned} & 20 \\ & 15 \end{aligned}$ | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 15 \end{aligned}$ | $\begin{aligned} & 50 \\ & 40 \end{aligned}$ | ns |
| TCD | Disable time Chip disable | Output | Chip enable |  | 15 | 30 |  | 15 | 40 | ns |

NOTES

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $\mathrm{VCC}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Test each output one at a time.
4. Measured with a programmed logic condition for which the output under test is at a low logic level.

Output sink current is supplied through a resistor to VCC.
5. Measured with $V_{I L}$ applied to $\overline{C E}$ and a logic high at the output.
6. Measured with $V_{I H}$ applied to $\overline{C E}$.
7. Duration of short circuit should not exceed 1 second.
8. ICC is measured with the chip enable input grounded, all other inputs at 4.5 V and the outputs open.

## TEST LOAD CIRCUIT



VOLTAGE WAVEFORM


## OUTPUT POLARITY PROGRAM-VERIFY SEQUENCE (TYPICAL)



## INPUT MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL)



## VIRGIN DEVICE

The 82S102/103 are shipped in an unprogrammed state, characterized by:

1. All internal $\mathrm{Ni}-\mathrm{Cr}$ links are intact.
2. Each gate contains both true and complement values of every input variable Im (logic Null state).
3. The polarity of each output is set to active low ( $F_{p}^{*}$ function).
4. All outputs are at a high logic level.

## RECOMMENDED

PROGRAMMING PROCEDURE
To program each of 9 Boolean logic functions of 16 True, Complement, or Don't Care input variables follow the program/verify procedures for the Input Matrix and Output Polarity outlined below. To maximize recovery from programming errors, leave all links of unused gates intact.

## SET-UP

Terminate all device outputs with a $10 \mathrm{~K} \Omega$ resistor to +5 V .

## Output Polarity

PROGRAM ACTIVE HIGH (Fp FUNCTION)
Program output polarity before programming inputs (for convenience). Program one output at a time. (S) links of unused outputs are not required to be fused.

1. Set GND (pin 14) to 0V, and $V_{C C}(p i n 28)$ to VCcV.
2. Disable all device outputs by setting $\overline{\mathrm{CE}}$ (pin 19) to $\mathrm{V}_{\mathrm{IH}}$
3. Disable all input variables by applying $V_{I X}$ to inputs $\mathrm{I}_{0}$ through $\mathrm{I}_{15}$.
A. Raise $V_{C C}$ (pin 28) from $V_{C C V}$ to $V_{C C P}$.

B After to delay, force output to be programmed to Vopf.
C.After to delay, pulse the $\overline{\mathrm{CE}}$ input from $\mathrm{V}_{\text {IH }}$ to Vix for a period tp.
D.After to delay, remove VOPF voltage source from output being programmed.
E. After to delay, return $V_{C C}(\operatorname{pin} 28)$ to $V_{C C V}$, and verify.
$F$. Repeat steps $A$ through $E$ for any other output.

## VERIFY OUTPUT POLARITY

1. Set GND (pin 14) to OV, and $V_{C C}$ (pin 28) to Vccv.
2. Disable all input variables by applying $\mathrm{V}_{1 \mathrm{X}}$ to inputs $I_{0}$ through $I_{15}$.
A.After to delay, set the $\overline{C E}$ input to $V_{I L}$.
B. Verify output polarity by sensing the logic state of outputs $\mathrm{F}_{0}$ through $\mathrm{F}_{8}$. All outputs at a low logic level are programmed active low ( $F_{p}^{*}$ function), while all outputs at a high logic level are programmed active high ( $F_{p}$ function).

## Input Matrix

## PROGRAM INPUT VARIABLE

Program one input at a time for one gate at a time. Input variable links of unused gates are not required to be fused. However, unused input variables must be programmed at Don't Care for all used gates.

1. Set GND ( $\operatorname{pin} 14$ ) to $0 V$, and $V_{C C}(\operatorname{pin} 28)$ to VCcV.
2. Disable all device outputs by setting $\overline{C E}$ (pin 19) to $\mathrm{V}_{\mathrm{I}}$.
3. Disable all input variables by applying $V$ IX to inputs $I_{0}$ through $I_{15}$.
A-1. If a gate contains nether $I_{0}$ nor $\bar{I}_{0}$ (input is a Don't Care), fuse both j and k links by executing both steps A-2 and A-3, before continuing with step $C$.
A-2.If a gate contains $I_{0}$, set to fuse the $k$ link by lowering the input voltage at lo from $\mathrm{V}_{\mathrm{Ix}}$ to $\mathrm{V}_{\mathrm{IH}}$. Execute step B .
A-3. If a gate contains $\overline{I_{0}}$, set to fuse the jlink by lowering the input voltage at Io from $\mathrm{V}_{\text {IX }}$ to $\mathrm{V}_{\text {IL }}$. Execute step B.
$B-1$. After to delay, raise $V_{C c}$ from $V_{c c v}$ to VCCP.
B-2.After to delay, force output of gate to be programmed to VOPF
B-3.After tD delay, pulse the $\overline{\mathrm{CE}}$ input from $V_{I H}$ to $V_{I L}$ for a period $t_{p}$.
B-4.After to delay, remove VOPF voltage source from output of gate being programmed.
B-5.After to delay, return $V_{C C}$ (pin 28) to VCCV, and verify.
C. Disable programmed input by returning $I_{0}$ to VIX.
D. Repeat steps A through C for all other input variables.
E. Repeat steps A through D for all other gates to be programmed.
F. Remove $V_{I X}$ from all input variables.

## VERIFY INPUT VARIABLE

Unambiguous verification of the logic state programmed for the inputs of each gate requires prior knowledge of its programmed output polarity. Therefore, the output polarity verify procedure must precede input variable verify.

1. Set GND (pin 14) to OV, and $V_{C C}(\operatorname{pin} 28)$ to Vccv.
2. Enable all outputs by setting $\overline{\mathrm{CE}}$ (pin 19) to VIL.
3. Disable all input variables by applying VIX to inputs $I_{0}$ through $I_{15}$.
A. Interrogate input variable $I_{0}$ as follows: Lower the input voltage to $I_{0}$ from $V_{I X}$ to $V_{I L}$, and sense the logic state of outputs F0-8.
Raise the input voltage to 10 from $V_{\text {IL }}$ to $\mathrm{V}_{\mathrm{IH}}$ and sense the logic state of outputs $\mathrm{F}_{0-8}$.

The state of lo contained in each gate is determined in accordance with the given truth table. Note that 2 tests are required to uniquely determine the state of the input variable contained in each gate.
$B$. Disable verified input by returning $I_{0}$ to VIX.
C. Repeat steps A and B for all other input variables.
D. Remove $V_{I X}$ from all input variables.

TRUTH TABLE FOR INPUT VERIFICATION

| $\mathbf{I}_{0}$ | $\mathbf{F p}$ | $\mathbf{F} \dot{p}$ | INPUT VARIABLE STATE | LINK FUSED |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | $\overline{I_{0}}$ | j |
| 1 | 0 | 1 | 10 | k |
| 0 | 0 | 1 |  | Both |
| 1 | 1 | 0 |  |  |
| 0 | 1 | 0 | Don't care | Neither |
| 1 | 1 | 0 | $\left(I_{0}\right),\left(\overline{0_{0}}\right)$ |  |
| 0 | 0 | 1 |  |  |
| 1 | 0 | 1 |  |  |

PROGRAMMING SYSTEMS SPECIFICATIONS $1 \quad T_{A}=25^{\circ} \mathrm{C}$

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| VCCP <br> Vccv | Vcc supply <br> Program² <br> Verify |  | $\text { ICCP }=350 \pm 50 \mathrm{~mA},$ <br> Transient or steady state | 8.5 <br> 4.75 | $\begin{array}{r} 8.75 \\ 5.0 \\ \hline \end{array}$ | $\begin{gathered} 9.0 \\ 5.25 \end{gathered}$ | V |
| ICCP <br> VopF <br> IOPF | Icc limit (program) <br> Forced output voltage ${ }^{3}$ (program) <br> Output current limit (program) | $V_{C C P}=+8.75 \pm .25 \mathrm{~V},$ <br> Transient or steady state $\mathrm{lop}=150 \pm 25 \mathrm{~mA},$ <br> Transient or steady state $V_{O P}=+17 \pm 1 \mathrm{~V},$ <br> Transient or steady state | $\begin{aligned} & 400 \\ & 16.0 \\ & 125 \end{aligned}$ | $\begin{array}{r} 450 \\ 17.0 \\ 150 \end{array}$ | $\begin{aligned} & 500 \\ & 18.0 \\ & 175 \end{aligned}$ | $\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$ |
| VIH <br> VIL | Input voltage High Low |  | $\begin{gathered} 2.4 \\ 0 \end{gathered}$ | 0.4 | $\begin{aligned} & 5.5 \\ & 0.8 \end{aligned}$ | V |
| $\begin{aligned} & \mathrm{I}_{\mathrm{H}} \\ & \mathrm{I}_{\mathrm{IL}} \end{aligned}$ | Input current High Low | $\begin{gathered} \mathrm{V}_{\mathrm{IH}}=+5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{gathered}$ |  |  | $\begin{gathered} 50 \\ -500 \\ \hline \end{gathered}$ | $\mu \mathrm{A}$ |
| $\begin{aligned} & V_{1 X} \\ & I_{\mid x 1} \\ & I_{1 \times 2} \end{aligned}$ | $\overline{\mathrm{CE}}$ program enable level Input variables current $\overline{\mathrm{CE}}$ input current | $\begin{aligned} & V \mid X=+10 V \\ & V \mid X=+10 V \end{aligned}$ | 9.5 | 10 | $\begin{gathered} 10.5 \\ 5.0 \\ 10.0 \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$ |
| $\begin{aligned} & T_{R} \\ & t_{P} \\ & t_{D} \\ & T_{P R} \\ & \frac{T_{P R}}{T_{P R}+T_{P S}} \\ & F_{L} \\ & V_{S} \end{aligned}$ | Output pulse rise time <br> $\overline{\mathrm{CE}}$ programming pulse width <br> Pulse sequence delay <br> Programming time <br> Programming duty cycle <br> Fusing attempts per link <br> Verify threshold 4 |  | 10 <br> 0.3 <br> 10 <br> 1.4 | $\begin{aligned} & 0.4 \\ & 0.6 \\ & \\ & 1.5 \end{aligned}$ | $\begin{gathered} 50 \\ 0.5 \\ \\ 100 \\ 2 \\ 1.6 \end{gathered}$ | $\mu \mathrm{S}$ <br> ms $\mu \mathrm{S}$ ms \% cycle V |

NOTES

1. These are specifications which a Programming System must satisfy in order to be qualified by Signetics.
2. Bypass VCc to $G N D$ with a $0.01 \mu \mathrm{~F}$ capacitor to reduce voltage spikes
3. Care should be taken to ensure that the voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.
4. $V_{S}$ is the sensing threshold of a gate output voltage for a programmed link. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.

## PROGRAMMING

In a virgin device all $\mathrm{Ni}-\mathrm{Cr}$ links are intact. The initial programmed state of each gate is shown in the Typical Gate illustration.

To program inputs and outputs of each gate for implementing the desired logic function, fuse $\mathrm{Ni}-\mathrm{Cr}$ links as indicated in the fuse link diagrams.

TYPICAL GATE


OUTPUT ACTIVE HIGH = FUSE LINK S


INPUT Īm = FUSE LINK J


INPUT Im = FUSE LINK K


INPUT DON'T CARE = FUSE BOTH LINKS J, K


FPGA MANUAL FUSER


## 16X9 FPGA PROGRAM TABLE

| CUSTOMER NAME - |
| :--- |
| PURCHASE ORDER \# - |
| SIGNETICS DEVICE \# - |
| TOTAL NUMBER OF PARTS - |
| PROGRAM TABLE \# |

THIS PORTION TO BE COMPLETED BY SIGNETICS CF ( $X X X X$ ) CUSTOMER SYMBOLIZED PART \# DATE RECEIVED
COMMENTS
$\mathrm{F}_{0}=$ $\qquad$
$\mathrm{F}_{1}=$
$F_{2}=$ $\qquad$
$\mathrm{F}_{3}=$
$F_{4}=$
$\mathrm{F}_{5}=$ $\qquad$
$\mathrm{F}_{6}=$
$\mathrm{F}_{7}=$ $\qquad$
$\mathrm{F}_{8}=$

| OUTPUT POLARITY |  | INPUT VARIABLE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{I}_{0}$ | $\mathrm{I}_{1}$ | $\mathrm{I}_{2}$ | $\mathrm{I}_{3}$ | $\mathrm{I}_{4}$ | $I_{5}$ | $\mathrm{I}_{6}$ | $\mathrm{I}_{7}$ | $\mathrm{I}_{8}$ | $\mathrm{I}_{9}$ | $\mathrm{I}_{\mathrm{A}}$ | IB | Ic | ID | IE | If |
| $\mathrm{F}_{0}$ | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 5 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15. |
| $\mathrm{F}_{1}$ | 16 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| $F_{2}$ | 32 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| $\mathrm{F}_{3}$ | 48 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 83 |
| $\mathrm{F}_{4}$ | 64 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | ${ }^{76}$ | 77 | 78 | 79 |
| $\mathrm{F}_{5}$ | 80 | 80 | 81 | 82 | 33 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 |
| $\mathrm{F}_{6}$ | 96 | 96 | 97 | 98 | 99 | 100 | 40. | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 |
| $\mathrm{F}_{7}$ | 112 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 |
| $\mathrm{F}_{8}$ | 129 | 128 | 123 | 130 | 137 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | ${ }^{149}$ | 141 | 442 | 143 |
| $\begin{aligned} & \text { Active-high }=\mathrm{H} \\ & \text { Active-low }=L \end{aligned}$ |  | $\begin{aligned} & I_{m}=H \\ & \frac{1 m}{m}=L \\ & \text { Don't Care }= \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

The number in each cell in the table denotes its address for programmers with a decimal address display.

## DESCRIPTION

The I/O Port is an 8-bit bidirectional data register designed to function as an I/O interface element in microprocessor systems. It contains 8 clocked data latches accessible from either a microprocessor port or a user port. Separate I/O control is provided for each port. The 2 ports operate independently, except when both are attempting to input data into the I/O Port. In this case, the user port has priority.

A master enable (ME) is provided that enables or disables the $\mu \mathrm{P}$ bus regardless of the state of the other inputs, but has no effect on the user bus.

A unique feature of this family is its ability to start up in a predetermined state. If the clock is maintained at a voltage less than .8 V until the power supply reaches 3.5 V , the user port will always be all logic 1 levels, while the microprocessor port will be all logic 0 levels.

## FEATURES

- Each device has 2 ports, one to the user, the other to a microprocessor. I/O Ports are completely bidirectional
- Ports are independent, with the user port having priority for data entry
- User data input synchronous
- The user data bus is available with tristate (8T32, 8T36) or open collector (8T33, 8T35) outputs
- At power up, the user port outputs are high
- Tri-state TTL outputs for high drive capability
- Directly compatible with the $8 \times 300 \mathrm{Mi}$ crocontroller
- Operates from a single 5 V power supply over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

BLOCK DIAGRAM

PIN CONFIGURATION



PIN DESIGNATION

| PIN | SYMBOL | NAME AND FUNCTION | TYPE |
| :---: | :---: | :---: | :---: |
| 1-8 | UDO-UD7: | User Data I/O Lines. Bidirectional data lines to communicate with user's equipment. | Acitve high three-state |
| 16-23 | IV0-IV7: | Microprocessor Bus. Bidirectional data lines to communicate with controlling digital system. | Active Iow three-state |
| 10 | $\overline{\mathrm{BIC}}$ : | Input Control. User input to control writing into the I/O Port from the user data lines. | Active low |
| 9 | $\overline{\mathrm{BOC}}$ | Output Control. User input to control reading from the I/O Port onto the user data lines. | Active low |
| 11 | $\overline{\mathrm{ME}}$ | Master Enable. System input to enable or disable all other system inputs and outputs. It has no effect on user inputs and outputs. | Active low |
| 15 | WC: | Write Command. When WC is high, stores contents of IV0-IV7 as data. | Active high |
| 14 | $\overline{\mathrm{RC}}$ | Read Command. When RC is low, data is presented on IV0-IV7. | Active low |
| 13 | MCLK | Master Clock. Input to strobe data into the latches. See function tables for details. | Active high |
| 24 | $V_{\text {CC }}$ : | 5 V power connection. |  |
| 12 | GND: | Ground |  |


| $\overline{\text { BIC }}$ | $\overline{\text { BOC }}$ | MCLK | USER DATA BUS FUNCTION |
| :---: | :---: | :---: | :---: |
| $H$ | $L$ | $X$ | Output Data <br> Input Data <br> Inactive |
| $H$ | $X$ | $H$ | $X$ |

$H=$ High Level $L=$ Low Level $X=$ Don't care
Table 1 USER PORT CONTROL FUNCTION

| $\overline{\text { ME }}$ | $\overline{\text { RC }}$ | WC | MCLK | $\overline{\text { BIC }}$ | MICROPROCESSOR BUS <br> FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L | L | L | X | X | Output Data |
| L | X | H | H | H | Input Data |
| X | H | L | X | X | Inactive |
| X | X | H | X | L | Inactive |
| H | X | X | X | X | Inactive |

Table 2 MICROPROCESSOR PORT CONTROL FUNCTION

## USER DATA BUS CONTROL

The activity of the user data bus is controlled by the BIC and BOC inputs as shown in Table 1.

The user data input is a synchronous function with MCLK. A low level on the BIC input allows data on the user data bus to be written into the data latches only if MCLK is at a high level. A low level on the BIC input allows data on the user data bus to be latched regardless of the level of the MCLK input.

To avoid conflicts at the data latches, input from the microprocessor port is inhibited when BIC is at a low level. Under all other conditions the 2 ports operate independently.

## MICROPROCESSOR BUS CONTROL

As is shown in Table 2, the activity of the microprocessor port is controlled by the ME, RC, WC and BIC inputs, as well as the state of an internal status latch. BIC is included to show user port priority over the microprocessor port for data input.

## BUS OPERATION

Data written into the I/O Port from one port will appear inverted when read from the other port. Data written into the I/O Port from one port will not be inverted when read from the same port.

DC ELECTRICAL CHARACTERISTICS $V_{C C}=5 \mathrm{~V} \pm 5 \%, 0^{\circ} \mathrm{C} \leq T A \leq 70^{\circ} \mathrm{C}$ unless otherwise specified.

| PARAMETER | TEST CONDITIONS |  | LIMITS |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Min |  |
| Input voltage |  |  |  |  | V |
| $\mathrm{V}_{\text {IH }}$ High |  | 2.0 |  |  |  |
| $V_{\text {IL }}$ Low |  |  |  | . 8 |  |
| $V$ IC Clamp | $\mathrm{I}_{1}=-5 \mathrm{~mA}$ |  |  | -1 |  |
| Output voltage | $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ |  |  |  | v |
| $\mathrm{V}_{\mathrm{OH}}$ High |  | 2.4 |  |  |  |
| $\mathrm{V}_{\text {OL }}$ Low |  |  |  | . 55 |  |
| Input current ${ }^{1}$ | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ |  |  |  | $\mu \mathrm{A}$ |
| $1_{\text {IH }}$ High | $\mathrm{V}_{\text {IH }}=5.25 \mathrm{~V}$ |  | <10 | 100 |  |
| IIL Low | $\mathrm{V}_{\mathrm{IL}}=.5 \mathrm{~V}$ |  | -350 | -550 |  |
| Output current ${ }^{2}$ |  |  |  |  | mA |
| IOS Short circuit | $\mathrm{V}_{C C}=4.75 \mathrm{~V}$ |  |  |  |  |
| UD bus |  | 10 |  |  |  |
| IV bus |  | 20 |  |  |  |
| ${ }^{\text {I CC }}$ VCC supply current | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ |  | 100 | 150 | mA |

NOTES

1. The input current includes the tri-state/open collector leakage current of the output driver on the data
lines.
2. Only one output may be shorted at a time.

## PARAMETER MEASUREMENT INFORMATION



AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T A \leq 70^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 5 \%$

| PARAMETER | INPUT | TEST CONDITION | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ${ }^{\text {t PD }}$ User data delay ${ }^{1}$ | $\begin{aligned} & \text { UDX } \\ & \text { MCLK } \end{aligned}$ | $C_{L}=50 \mathrm{pF}$ |  | $\begin{aligned} & 25 \\ & 45 \end{aligned}$ | $\begin{aligned} & 38 \\ & 61 \end{aligned}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ |
| ${ }^{\text {t }}$ OE User output enable | BOC | $C_{L}=50 \mathrm{pF}$ | 18 | 26 | 47 | ns |
| ${ }^{\text {t }}$ OD User output disable | $\begin{aligned} & \mathrm{BIC} \\ & \mathrm{BOC} \end{aligned}$ | $C_{L}=50 \mathrm{pF}$ | $\begin{aligned} & 18 \\ & 16 \end{aligned}$ | $\begin{aligned} & 28 \\ & 23 \end{aligned}$ | $\begin{aligned} & 35 \\ & 33 \end{aligned}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ |
|  | IVBX MCLK | $C_{L}=50 \mathrm{pF}$ |  | $\begin{aligned} & 38 \\ & 48 \end{aligned}$ | $\begin{aligned} & 53 \\ & 61 \end{aligned}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ |
| ${ }^{\text {t }}$ OE $\mu$ P output enable | ME <br> RC <br> WC | $C_{L}=50 \mathrm{pF}$ | 14 | 19 | 25 | ns |
| ${ }^{\text {t }}$ OD $\quad \mu$ P output disable | $\begin{aligned} & \mathrm{ME} \\ & \mathrm{RC} \\ & \mathrm{WC} \end{aligned}$ | $C_{L}=50 \mathrm{pF}$ | 13 | 17 | 32 | ns |
| ${ }^{\text {t }}$ W Minimum pulse width | MCLK |  | 40 |  |  | ns |
| ${ }^{\text {t }}$ SETUP Minimum setup time ${ }^{2}$ | UDX ${ }^{3}$ <br> BIC <br> IVX <br> ME <br> RC <br> WC |  | $\begin{aligned} & 15 \\ & 25 \\ & 55 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$ |  |  | ns |
| ${ }^{\text {t HOLD }}$ Minimum hold time ${ }^{2}$ | UDX ${ }^{3}$ <br> BIC <br> IVX <br> ME <br> RC <br> WC |  | $\begin{array}{r} 25 \\ 10 \\ 10 \\ 5 \\ 5 \\ 5 \end{array}$ |  |  | ns |

NOTES

1. Data delays referenced to the clock are valid only if the input data is stable at the arrival
2. Times are referenced to MCLK
of the clock and the hold time requirement is met.
3. Set up and hold times given are for "normal" operation. BIC setup and hold times are for a user write operation. RC setup and hold times are for an I/O Port select operation. ME and WC setup and hold times are for a microprocessor bus write operation.

## VOLTAGE WAVEFORMS

SETUP AND HOLD TIMES


## TYPES

8T32 Tri-State, Synchronous User Port
8 T33 Open Collector, Synchronous User Port
8T35 Open Collector, Asynchronous User Port
8T36 Tri-State, Asynchronous User Port

## DESCRIPTION

The Addressable I/O Port is an 8-bit bidirectional data register designed to function as an I/O interface element in microprocessor systems. It contains 8 data latches accessible from either a microprocessor port or a user port. Separate I/O control is provided for each port. The 2 ports operate independently, except when both are attempting to input data into the I/O Port. In this case, the user port has priority.
A unique feature of the I/O Port is the way in which it is addressed. Each device has an 8bit, field programmable address, which is used to enable the microprocessor port. When the SC control signal is high, data at the microprocessor port is treated as an address. If the address matches the I/O Port's internally programmed address, the microprocessor port is enabled, allowing data transfer through it.
The port remains enabled until an address which does not match is presented, at which time the port is disabled (data transfer is inhibited). A Master Enable input (ME) can serve as a ninth address bit, allowing 512 I/O Ports to be individually selected on a bus, without decoding. The user port is accessible at all times, independent of whether or not the microprocessor port is selected.
A unique feature of this family is their ability to start up in a predetermined state. If the clock is maintained at a voltage less than .8 V until the power supply reaches 3.5 V , the user port will always be all logic 1 levels, while the port will be all logic 0 levels.

## ORDERING

The 8T32/33/35/36 may be ordered in preaddressed form. To order a preaddressed device use the following part number format:
N8TYY-XXX P


A stock of 8 T32s and 8 T36s with addresses 1 through 10 will be maintained. A small quantity of addresses 11 through 50 will also be available with a longer lead time.

## FEATURES

- A field-programmable address allows 1 of $512 \mathrm{I} / \mathrm{O}$ Ports on a bus to be selected, without decoders.
- Each device has 2 ports, one to the user, the other to a microprocessor.
- Completely bidirectional.
- Ports are independent, with the user port having priority for data entry.
- A selected I/O Port de-selects itself when another I/O Port address is sensed.
- User data input available as synchronous (8T32, 8T33) or as asynchronous (8T35, 8T36) function.
- The user data bus is available with tristate (8T32, 8T36) or open collector ( $8 \mathrm{~T} 33,8 \mathrm{~T} 35$ ) outputs.
- At power up, the I/O Port is not selected and the user port outputs are high.
- Tri-state TTL outputs for high drive capability.
- Directly compatible with the $8 \times 300 \mathrm{Mi}-$ crocontroller.
- Operates from a single 5V power supply over a temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.


## BLOCK DIAGRAM

PIN CONFIGURATION



## PIN DESCRIPTION

| PIN | SYMBOL | NAME AND FUNCTION | TYPE |
| :---: | :---: | :---: | :---: |
| 1-8 | UDO-UD7: | User Data I/O Lines. Bidirectional data lines to communicate with user's equipment. Either tristate or open collector outputs are available. | Active high |
| 16-23 | $\overline{\mathrm{IVO}}$-IV7: | Microprocessor Bus. Bidirectional data lines to communicate with controlling digital system (microprocessor). | Active low three-state |
| 10 | $\overline{\mathrm{BIC}}$ | Input Control. User input to control writing into the I/O Port from the user data lines. | Active low |
| 9 | $\overline{\mathrm{BOC}}$ : | Output Control. User input to control reading from the I/O Port onto the user data lines. | Active low |
| 11 | $\overline{M E}$ : | Master Enable. System input to enable or disable all other system inputs and outputs. It has no effect on user inputs and outputs. | Active low |
| 15 | WC: | Write Command. When WC is high and SC is low, I/O Port, if selected, stores contents of IV0-IV7 as data. | Active high |
| 14 | SC: | Select Command. When SC is high and WC is low, data on IVO-IV7 is interpreted as an address. I/O Port selects itself if its address is identical to $\mu \mathrm{P}$ bus data; it de-selects itself otherwise. | Active high |
| 13 | MCLK: | Master Clock. Input to strobe data into the latches. See function tables for details. | Active high |
| 24 | VCC: | 5 V power connection. |  |
| 12 | GND: | Ground. |  |


| $\overline{\text { BIC }}$ | $\overline{B O C}$ | MCLK | USER DATA BUS FUNCTION |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 8T32, 8T33 | 8T35, 8T36 |
| H | L | X | Output Data | Output Data |
| L | X | H | Input Data | Input Data |
| L | X | L | Inactive | Input Data |
| H | H | X | Inactive | Inactive |

$H=$ High Level $L=$ Low Level $X=$ Don't care
Table 1 USER PORT CONTROL FUNCTION

| $\overline{\text { ME }}$ | SC | WC | MCLK | $\overline{\text { BIC }}$ | STATUS <br> LATCH | I/O PORT <br> FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | L | L | X | X | SET | Output Data |
| L | L | H | H | H | SET | Input Data |
| L | H | L | H | X | X | Input Address |
| L | H | H | H | L | X | Input Address |
| L | H | H | H | H | X | InputData and Address |
| L | X | H | L | X | X | Inactive |
| L | H | X | L | X | X | Inactive |
| L | L | H | H | L | X | Inactive |
| L | L | X | X | X | Not Set | Inactive |
| H | X | X | X | X | X | Inactive |

Table 2 MICROPROCESSOR PORT CONTROL FUNCTION

## USER DATA BUS CONTROL

The activity of the user data bus is controlled by the BIC and BOC inputs as shown in Table 1.

For the 8T32 and 8T33, user data input is a synchronous function with MCLK. A low level on the BIC input allows data on the user data bus to be written into the data latches only if MCLK is at a high level. For the 8 T35 and 8 T36, user data input is an asynchronous function. A low level on the BIC input allows data on the user data bus to be latched regardless of the level of the MCLK input. Note that when 8 T35 or 8 T36 are used with the $8 \times 300$ Microcontroller care must be taken to insure that the Microprocessor bus is stable when it is being read by the 8X300 Microcontroller.

To avoid conflicts at the Data Latches, input from the Microprocessor Port is inhibited when BIC is at a low level. Under all other conditions the 2 ports operate independently.

## MICROPROCESSOR BUS CONTROL

As is shown in Table 2, the activity of the microprocessor port is controlled by the ME, SC, WC and BIC inputs, as well as the state of an internal status latch. BIC is included to show user port priority over the microprocessor port for data input.
Each I/O Port's status latch stores the result of the most recent I/O Port select; it is set when the I/O Port's internal address matches the Microprocessor Bus. It is cleared when an address that differs from the internal address is presented on the Microprocessor Bus.
In normal operation, the state of the status latch acts like a master enable; the microprocessor port can transfer data only when the status latch is set.

When SC and WC are both high, data on the Microprocessor Bus is accepted as data, whether or not the I/O Port was selected. The data is also interpreted as an address. The I/O Port sets its select status if its address matches the data read when SC and WC were both high; it resets its select status otherwise.

## BUS OPERATION

Data written into the I/O Port from one port will appear inverted when read from the other port. Data written into the I/O Port from one port will not be inverted when read from the same port.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T A \leq 70^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 5 \%$

| PARAMETER | INPUT | TEST CONDITION | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| ${ }^{\text {PPD }}$ User data delay (Note 1) | $\begin{aligned} & \text { UDX } \\ & \text { MCLK* } \\ & \text { BIC } \dagger \end{aligned}$ | $C_{L}=50 p F$ |  | $\begin{aligned} & 25 \\ & 45 \\ & 40 \end{aligned}$ | $\begin{aligned} & 38 \\ & 61 \\ & 55 \end{aligned}$ | ns |
| ${ }^{\text {t }}$ OE User output enable | BOC | $C_{L}=50 \mathrm{pF}$ | 18 | 26 | 47 | ns |
| ${ }^{\text {t OD }}$ OD User output disable | $\begin{aligned} & \mathrm{BIC} \\ & \mathrm{BOC} \end{aligned}$ | $C_{L}=50 \mathrm{pF}$ | $\begin{aligned} & 18 \\ & 16 \end{aligned}$ | $\begin{aligned} & 28 \\ & 23 \end{aligned}$ | $\begin{aligned} & 35 \\ & 33 \end{aligned}$ | ns |
| ${ }^{\text {tPD }}$ P $\quad \mu \mathrm{P}$ data delay (Note 1) | $\begin{aligned} & \text { IVBX } \\ & \text { MCLK } \end{aligned}$ | $C_{L}=50 p F$ |  | $\begin{aligned} & 38 \\ & 48 \end{aligned}$ | $\begin{aligned} & 53 \\ & 61 \end{aligned}$ | ns |
| ${ }^{\text {t }}$ OE $\quad \mu \mathrm{P}$ output enable | $\begin{aligned} & \mathrm{ME} \\ & \mathrm{SC} \\ & \mathrm{WC} \end{aligned}$ | $C_{L}=50 p F$ | 14 | 19 | 25 | ns |
| ${ }^{\text {t }}$ OD $\mu$ P output disable | $\begin{aligned} & \text { ME } \\ & \text { SC } \\ & \text { WC } \end{aligned}$ | $C_{L}=50 p F$ | 13 | 17 | 32 | ns |
| ${ }^{t}$ W Minimum pulse width | MCLK $\mathrm{BIC}+$ |  | $\begin{aligned} & 40 \\ & 35 \end{aligned}$ |  |  | ns |
| ${ }^{\text {t }}$ SETUP Minimum setup time | $\begin{aligned} & \text { UDXロ } \\ & \text { BIC* } \\ & \text { IVX } \\ & \text { ME } \\ & \text { SC } \\ & \text { WC } \end{aligned}$ | (Note 2) | $\begin{aligned} & 15 \\ & 25 \\ & 55 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$ |  |  | ns |
| ${ }^{\text {t HOLD }}$ Minimum hold time | UDXロ <br> BIC* <br> IVX <br> ME <br> SC <br> WC | (Note 2) | $\begin{array}{r} 25 \\ 10 \\ 10 \\ 5 \\ 5 \\ 5 \end{array}$ |  |  | ns |

- Applies for 8T32 and 8T33 only.
+ Applies for 8T35 and 8T36 only.
- Times are referenced to MCLK for 8 T32 and 8T33, and are referenced to BIC for 8T35 and 8T36.


## NOTES:

1. Data delays referenced to the clock are valid only if the input data is stable at the arrival of the clock and the hold time requirement is met.
2. Set up and hold times given are for "normal" operation. BIC setup and hold times are for a user write operaton. SC setup and hold times are for an I/O Port select operation. WC setup and hold times are for an Microprocessor Bus write operation. ME setup and hold times are for both IV write and select operations.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

|  | PARAMETER | TEST CONDITIONS | LIMITS |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage |  | 2.0 |  |  | V |
| VIL | Low-level input voltage |  |  |  | 8 | V |
| VCL | Input clamp voltage | $I_{1}=-5 \mathrm{~mA}$ |  |  | -1 | V |
| $\mathrm{IIH}^{\text {H }}$ | High-level input current ${ }^{1}$ | $\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{1 H}=5.25 \mathrm{~V} \end{aligned}$ |  | <10 | 100 | $\mu \mathrm{A}$ |
| IIL | Low level input current ${ }^{1}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=.5 \mathrm{~V} \end{gathered}$ |  | -350 | -550 | $\mu \mathrm{A}$ |
| VoL | Low-level output voltage | $\begin{aligned} & \hline \mathrm{VCC}=4.75 \mathrm{~V} \\ & \mathrm{IOL}=16 \mathrm{~mA} \\ & \hline \end{aligned}$ |  |  | . 55 | V |
| VOH | High-level output voltage | $\begin{gathered} \hline \mathrm{VCC}=4.75 \mathrm{~V} \\ \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA} \end{gathered}$ | 2.4 |  |  | V |
| los | Short-circuit output current ${ }^{2}$ <br> UD bus <br> IV bus | $\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & V_{C C}=4.75 \mathrm{~V} \\ & \hline \end{aligned}$ | $\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$ |
| Icc | Supply current | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ |  | 100 | 150 | mA |

NOTES

1. The input current includes the Tri-state/Open Collector leakage current of the output driver on the data lines.
2. Only one output may be shorted at a time.
3. These limits do not apply during address programming,

TEST LOAD CIRCUIT
(OPEN COLLECTOR OUTPUTS)


NOTE: $C_{L}$ includes fixture capacitance.

Absolute Maximum Ratings:
Supply voltage ${ }^{3}$
Input voltage ${ }^{3}$
5.5 V
test load circuit
(TRI-STATE OUTPUTS)


## VOLTAGE WAVEFORMS

INPUT WAVEFORM

CLOCK PULSE WIDTH


VOLTAGE WAVEFORMS (Cont'd)

| DATA DELAY TIMES Input Data Reference | DATA DELAY TIMES <br> Clock Referenced |
| :---: | :---: |
| SETUP AND HOLD TIMES | OUTPUT ENABLE AND DISABLE TIMES <br> (Tri-State Outputs) <br> Waveform \#1 is for an output with internal conditions such that the output is Low when the tri-state driver is enabled. Waveform \#2 is for the opposite condition. |

## ADDRESS PROGRAMMING

The I/O Port is manufactured such that an address of all high levels ( $>2 \mathrm{~V}$ ) on the Microprocessor Bus inputs matches the Port's internal address. To program a bit so a lowlevel input ( $<0.8 \mathrm{~V}$ ) matches, the following procedure should be used:

1. Set all control inputs to their inactive state $\left(\mathrm{BIC}=\mathrm{BOC}=\mathrm{ME}=\mathrm{V}_{\mathrm{CC}}, \mathrm{SC}=\mathrm{WC}=\right.$ MCLK = GND). Leave all Microprocessor Bus I/O pins open.
2. Raise V CC to $7.75 \mathrm{~V} \pm .25 \mathrm{~V}$.
3. After V CC has stabilized, apply a single programming pulse to the user data bus bit where a low-level match is desired. The voltage should be limited to 18 V ; the current should be limited to 75 mA . Apply the pulse as shown in Figure 1.
4. Return $\mathrm{V}_{\mathrm{CC}}$ to OV. (Note 1).
5. Repeat this procedure for each bit where a low-level match is desired.
6. Verify that the proper address is programmed by setting the Port's status latch (IVO-IV7 = desired address, $\mathrm{ME}=$ $W C=L, S C=M C L K=H$ ). If the proper address has been programmed, data presented at the $\mu \mathrm{P}$ bus will appear inverted on the user bus outputs. (Use normal $\mathrm{V}_{\mathrm{CC}}$ and input voltage for verification.)

After the desired address has been programmed, a second procedure must be followed to isolate the address circuitry. The procedure is:


Figure 2

1. Set $V_{C C}$ and all control inputs to $O V$. $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{BIC}=\mathrm{BOC}=\mathrm{ME}=\mathrm{SC}=\mathrm{WC}=\right.$ MCLK = OV). Leave all Microprocessor Bus I/O pins open.
2. Apply a protect programming pulse to every user data bus pin, one at a time. The voltage should be limited to 14 V ; the current should be limited to 150 mA . Apply the pulse as shown in Figure 2.
3. Verify that the address circuitry is isolated by applying 7 V to each user data bus pin and measuring less than 1 mA of input current. The conditions should be the same as in step 1 above. The rise time on the verification voltage must be slower than $100 \mu \mathrm{~s}$.

## PROGRAMMING SPECIFICATIONS ${ }^{1}$

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| $\left.\begin{array}{ll}V_{\text {CCP }} & \begin{array}{l}\text { Programming supply voltage } \\ \text { Address }\end{array} \\ & \text { Protect }\end{array}\right\}$I CCP Programming supply current <br>  Max time $V_{\text {CCP }}>5.25 \mathrm{~V}$ <br>  Programming voltage <br>  Address <br>  Protect <br>  Programming current <br>  Address <br>  Protect <br>  Programming pulse rise time <br>  Address <br> Protect  <br> Programming pulse width  |  |  |  | 7.5 | 0 | 8.0 | $\begin{aligned} & V \\ & V \end{aligned}$ |
|  |  | $V_{\text {CCP }}=8.0 \mathrm{~V}$ |  |  | 250 | mA |
|  |  |  |  |  | 1.0 | S |
|  |  |  | $\begin{aligned} & 17.5 \\ & 13.5 \end{aligned}$ |  | $\begin{aligned} & 18.0 \\ & 14.0 \end{aligned}$ | $\begin{aligned} & V \\ & V \end{aligned}$ |
|  |  |  |  |  | $\begin{gathered} 75 \\ 150 \end{gathered}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
|  |  |  | $\begin{gathered} .1 \\ 100 \end{gathered}$ |  | 1 | $\mu \mathrm{s}$ $\mu \mathrm{s}$ |
|  |  |  | . 5 |  | 1 | ms |

NOTE

1. If all programming can be done in less than 1 second, $\mathrm{V}_{\mathrm{CC}}$ may remain at 7.75 V for the entire programming cycle.

## APPLICATIONS

Figure 3 shows some of the various ways to use the I/O Port in a system. By controlling the BIC and BOC lines, the device may be used for the input and output of data, control, and status signals. I/O Port 1 functions bidirectionally for data transfer and I/O Port 2 provides a similar function for discrete status and control lines. I/O Ports 3 and 4 serve as dedicated output and input ports, respectively.


Figure 3

## DESCRIPTION

The Bus Expander is specifically designed to increase the 1/O capability of $8 \times 300$ systems previously limited by fanout considerations. The bus expander serves as a buffer between the $8 \times 300$ and blocks of $1 / 0$ devices. Each bus expander can buffer a block of 16 I/O ports while only adding a single load to the $8 \times 300$.

## FEATURES

- 15ns max propagation delay
- Bidirectional
- Three-state outputs on both ports
- Pre-programmed address range


## APPLICATIONS

The 8T39 Bus Expander is designed to be used with the $8 \times 300$ microprocessor to allow increased I/O capability in those systems previously limited by fanout considerations. Figure 1 shows a typical arrangement of the bus expander in an $8 \times 300$ system. Each expander services I/O ports whose address is within the range of the expander. Other I/O ports or working storage may be directly connected to the bus as shown.
The bus expander is not limited to use with the $8 \times 300$, but may be applied in any system which uses a combined address/data bus.

## 8T39 ADDRESSING

During normal operation of the $8 \times 300$ when an I/O port address is being sent on the IV Bus (SC is high), the I/O port will examine all eight bits of the microprocessor bus for an address compare. Since the 8T39 is used to buffer blocks of 1/O ports, only the four most significant bits are examined by the 8 T39 for an address compare.
Note that redundant addresses are not programmed into separate devices. Rather, a discrete device (such as the 8T39-03) may be wired for any address requiring two 1 bits and two 0 bits in the address. The various address ranges for this same device are obtained by permuting the high order (DIO and DOO are MSB) data lines accordingly. Both input and output lines must be redefined in order to maintain data and address integrity on the extended bus. Table 1 summarizes the 8T39 addressing.
Address functions are specified with the convention that bit 0 is the MSB and bit 7 is the LSB. The DI microprocessor bus address decoding is active low.

## FUNCTIONAL DESCRIPTION

The Bus Expander contains eight sets of non-inverting bidirectional tri-state drivers for the bus data bits, four non-inverting
unidirectional drivers for I/O port control, and necessary control logic. The control logic is required to maintain the proper directional transfer of bus data as dictated by the states of the 1/O port control signals and the currently enabled $1 / O$ port. Each bus expander is programmed during manufacturing to respond to a specific block of I/O port addresses. Only I/O ports with addresses in the range of a given bus expander may be connected to that expander. A bus expander may be used on either left bank or right bank. Multiple expanders on the same bank must have different address ranges; however, expanders with the same address range can be connected if they are on different banks. Systems may be configured with I/O ports connected directly to the $8 \times 300$, as well as $1 / 0$ ports connected through a bus expander; however, no unbuffered 1/O port may have an address within the span of a bus expander on the same bank.

Addition of bus expanders may impact system cycle time due to the added delay in the data path. For the purposes of calculating allowable cycle time as described in the $8 \times 300$ data sheet, the bus expander delays

## PIN CONFIGURATION


may be considered additive to the I/O port delays so that a buffered 1/O port simply appears as a slower I/O port.

## PIN DESIGNATION

| PIN NO. | SYMBOL | NAME AND FUNCTION | TYPE |
| :--- | :---: | :--- | :--- |
| $2-7,9,10$ | DOO-DO7 | I/O port data bus | Active low, |
| 11 | WC(OUT) | Write command output | Active high |
| 12 | SC(OUT) | Select command output | Active high |
| 13 | MCLK(OUT) | Master clock output | Acitve high |
| 14 | $\overline{\text { ME(OUT) }}$ | Master enable output | Active low |
| 15 | $\overline{\text { ME(IN) }}$ | Master enable input | Active low |
| 16 | MCLK(IN) | Master clock input | Active high |
| 17 | SC(IN) | Select command output | Active high |
| 18 | WC(IN) | Write command output | Active high |
| $19,20,22-27$ | DIO-DI7 | Microprocessor data bus | Active low, |
| $1,8,21$ | GND | Ground |  |
| 28 |  |  |  |
|  |  | VCC |  |


| PART TYPE | ADDRESS PATTERN <br> MSB(0) LSB(7) | ADDRESS BLOCKS <br> Octal |
| :---: | :---: | :---: |
| 8 T39-00 | $0000 X X X X$ | $0-17$ |
| $8 T 39-01$ | 0001 XXXX | $20-37,40-57,100-117,200-217$ |
| $8 T 39-03$ | 0011 XXXX | $60-77,120-137,220-237,140-157,240-257,300-317$ |
| $8 T 39-07$ | $0111 X X X X$ | $160-177,260-277,320-337,340-357$ |
| $8 T 39-17$ | 1111 XXXX | $360-377$ |

Table 1 8T39 ADDRESSING SUMMARY

TRUTH TABLE

$\left.$| $\overline{M E}$ | SC | WC | MCLK | SELECT <br> LATCH | DATA TRANSFER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIRECTION |  |  |  |  |  | | ADDRESS* |
| :---: |
| COMPARISON | \right\rvert\,

NOTES
'When an address comparison is made the select latch is set if the data on the DI Bus is within the manufactured address range of the IV Bus Expander. Otherwise, the select latch is cleared.

FUNCTIONAL BLOCK DIAGRAM


## ABSOLUTE MAXIMUM RATINGS1

|  | PARAMETER | RATING | UNIT |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Power supply voltage | +7 | Vdc |
| VIN | Input voltage | +5.5 | $V d c$ |
| $\mathrm{V}_{\mathrm{O}}$ | Off-state output voltage | +5.5 | Vdc |
| TA | Operating temperature range | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |
| ${ }^{\text {T STG }}$ | Storage temperature range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

## ORDERING INFORMATION

The Bus Expander is ordered by specifying the following part number:

N8T39-XX P
$T L P=\left\{\begin{array}{l}1-\text { Ceramic Package } \\ X L \text { - Epoxy Package }\end{array}\right.$
Address Range As Determined From Table 1

DC ELECTRICAL CHARACTERISTICS $V_{C C}=5 \mathrm{~V} \pm 5 \%, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}$


AC ELECTRICAL CHARACTERISTICS $\quad V_{C C}=5 \mathrm{~V} \pm 5 \%, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}, \mathrm{CL}^{1}=300 \mathrm{pF}^{2}$

| PARAMETER |  | TO | FROM | TEST CONDITIONS |  | LIMITS |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min |  |  | Typ | Max |  |
| ${ }^{t} \mathrm{pd}$ | Propagation Delay Data |  | $\begin{aligned} & \text { DOX } \\ & \text { DIX } \end{aligned}$ | $\begin{aligned} & \text { DIX } \\ & \text { DOX } \end{aligned}$ |  |  |  | 15 | ns |
| ${ }^{\text {p }} \mathrm{pd}$ | Control Propagation Delay | $\overline{\mathrm{ME}}$ (out) MCLK (out) SC (out) WC (out) | $\begin{gathered} \overline{M E} \text { (in) } \\ \text { MCLK (in) } \\ \text { SC (in) } \\ \text { WC (in) } \end{gathered}$ |  |  |  | 15 |  |
| toe | Data Output Enable | $\begin{aligned} & \text { DIX } \\ & \text { DOX } \end{aligned}$ | $\begin{aligned} & \overline{\mathrm{ME}} \text { (in) } \\ & \mathrm{SC}(\mathrm{in}) \\ & \mathrm{WC}(\mathrm{in}) \end{aligned}$ |  | 28 |  | 56 | ns |
| tod | Data Output Disable | $\begin{aligned} & \text { DIX } \\ & \text { DOX } \end{aligned}$ | $\begin{aligned} & \overline{M E} \text { (in) } \\ & S C \text { (in) } \\ & W C \text { (in) } \end{aligned}$ |  | 15 |  |  | ns |
| tsetup | Adverse Setup Time ${ }^{3}$ | $\begin{aligned} & \text { DIX } \\ & \text { DOX } \end{aligned}$ | $\begin{gathered} \text { DIX } \\ \text { ME (in) } \\ \text { MCLK (in) } \\ \text { SC (in) } \\ \text { WC (in) } \end{gathered}$ |  | 54 |  |  | ns |
| $t_{\text {hold }}$ | Address <br> Hold Time ${ }^{3}$ | $\begin{aligned} & \text { DIX } \\ & \text { DOX } \end{aligned}$ | $\begin{gathered} \text { DIX } \\ \text { ME (in) } \\ \text { MCLK (in) } \\ \text { SC (in) } \\ \text { WC (in) } \end{gathered}$ |  | 3 |  |  | ns |

## NOTES

1. Includes tri-state leakage.
2. Minimum clock width $\approx 50 \mathrm{~ns}$.
3. All set up and hold times are referenced to the trailing edge of the clocking input MCLK.

## TYPICAL APPLICATIONS



TEST LOAD CIRCUIT


All resistors values are typical and in ohms.

## NOTES

1. $C_{L}$ includes probe and jig capacitance.
2. All diodes are 1 N916 or 1 N3064.

## VOLTAGE WAVEFORMS



PROPAGATION DELAY TIMES


PRELIMINARY SPECIFICATION
Manufacturer reserves the right to make design changes and improvements.

## DESCRIPTION

The Bus Expander is specifically designed to increase the I/O capability of $8 \times 300$ systems previously limited by fanout considerations. The bus expander serves as a buffer between the $8 \times 300$ and blocks of I/O devices. Each bus expander can buffer a block of 16 I/O ports while only adding a single load to the 8 X 300 .

## FEATURES

- 15ns max propagation delay
- Bidirectional
- Three-state outputs on both ports


## FUNCTIONAL DESCRIPTION

The Bus Expander contains eight sets of non-inverting bidirectional tri-state drivers for the bus data bits, four non-inverting undirectional drivers for I/O port control, and necessary control logic. The control logic is required to maintain the proper directional transfer of bus data as dictated by the states of the I/O port control signals. A bus expander may be used on either left bank or right bank. Systems may be configured with I/O ports connected directly to the $8 \times 300$, as well as $1 / O$ ports connected through a bus expander.
Addition of bus expanders may impact system cycle time due to the added delay in the data path. For the purposes of calculating allowable cycle time as described in the $8 \times 300$ data sheet, the bus expander delays may be considered additive to the I/O port delays so that a buffered I/O port simply appears as a slower I/O port.

## APPLICATIONS

The 8T39 Bus Expander is designed to be used with the $8 \times 300$ microprocessor to allow increased I/O capability in those systems previously limited by fanout considerations. Figure 1 shows a typical arrangement of the bus expander in an $8 \times 300$ system. Other I/O ports or working storage may be directly connected to the bus as shown.

The bus expander is not limited to use with the $8 \times 300$, but may be applied in any system which uses a combined address/data bus.

## PIN CONFIGURATION



## TRUTH TABLE

| $\overline{\mathbf{M E}}$ | SC | WC | DATATRANSFER <br> DIRECTION | ADDRESS <br> COMPARISON |
| :---: | :---: | :---: | :---: | :---: |
| $L$ | $L$ | $L$ | DI Bus $\leftarrow$ DO Bus | No |
| $L$ | $L$ | $H$ | DI Bus $\rightarrow$ DO Bus | No |
| L | $H$ | $X$ | DI Bus $\rightarrow$ DO Bus | No |
| $H$ | $X$ | $X$ | DI Bus $\rightarrow$ DO Bus | No |

## PIN DESIGNATION

| PIN NO. | SYMBOL | NAME \& FUNCTION | TYPE |
| :--- | :---: | :---: | :---: |
| $2-7,9,10$ | DOO-DO7 | I/O port data bus | Active low, |
| three-state |  |  |  |
| 11 |  |  |  |
| 12 | WC(OUT) | Write command output | Active high |
| 13 | SC(OUT) | Select command output | Active high |
| 14 | MCLK(OUT) | Master clock input | Active high |
| 15 | $\overline{\text { ME(OUT) }}$ | Master enable output | Active low |
| 16 | $\overline{\text { ME(IN) }}$ | Master enable input | Active low |
| 17 | MCLK(IN) | Master clock input | Active high |
| 18 | SC(IN) | Select command output | Active high |
| $19,20,22-27$ | WC(IN) | Write command output | Active high |
| $1,8,21$ | DIO-DI7 | Microprocessor data bus | Active low, |
| 28 | GND | Ground | three-state |
|  | VCC | +5 volt supply |  |

## FUNCTIONAL BLOCK DIAGRAM



## ABSOLUTE MAXIMUM RATINGS

| PARAMETER |  | RATING | UNIT |
| :---: | :---: | :---: | :---: |
| VCC | Power supply voltage | +7 | Vdc |
| VIN | Input voltage | +5.5 | Vdc |
| Vo | Off-state output voltage | +5.5 | Vdc |
| TA | Operating temperature range | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |
| TSTG | Storage temperature range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

NOTE Includes tri-state leakage.
AC ELECTRICAL CHARACTERISTICS $\mathrm{VCC}_{C \mathrm{C}}=5 \mathrm{~V} \pm 5 \%, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$

| PARAMETER |  | TO | FROM | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min |  |  | Typ | Max |  |
| tpd | Path delay Data |  | $\begin{gathered} \text { DOX } \\ \text { DIX } \end{gathered}$ | $\begin{aligned} & \text { DIX } \\ & \text { DOX } \end{aligned}$ |  |  |  | 15 | ns |
| tpd | Control | $\overline{\mathrm{ME}}$ (OUT) MCLK(OUT) SC(OUT) WC(OUT) | $\overline{M E}(I N)$ MCLK(IN) SC(IN) WC(IN) |  |  |  | 15 | ns |
| toe | Data Output Enable | $\begin{aligned} & \text { DIX } \\ & \text { DOX } \end{aligned}$ | $\overline{\mathrm{ME}}(\mathrm{IN})$ SC(IN) WC(IN |  | 28 |  | 56 | ns |
| tod | Data <br> Output <br> Disable | $\begin{aligned} & \text { DIX } \\ & \text { DOX } \end{aligned}$ | $\overline{\mathrm{ME}}(\mathrm{IN})$ SC(IN) WCIIN |  | 15 |  |  |  |


| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| Input voltage |  |  | -5 mA at $\mathrm{V}_{\mathrm{CC}} \mathrm{min}$ | 2.0 |  | 8 | V |
| VIL | Low |  |  |  |  |  |
| $\mathrm{V}_{\text {IH }}$ | High Clamp |  |  |  | -1 |  |  |
| VIC |  |  |  |  |  |  |  |
| VOL VOH | Output voltage | $\mathrm{V}_{C C}=4.75 \mathrm{~V}$ | 2.4 |  | . 55 | v |  |
|  | Low | $\mathrm{IOL}=50 \mathrm{~mA}$ |  |  |  |  |  |
|  | High | $1 \mathrm{OH}=-3.2 \mathrm{~mA}$ |  |  |  |  |  |
|  | Input current | $\mathrm{V}_{C C}=5.25 \mathrm{~V}$ |  |  |  | $\mu \mathrm{A}$ |  |
| IIL | Low ${ }^{1}$ | $\mathrm{V}_{\mathrm{IL}}=.5 \mathrm{~V}$ |  |  | -250 |  |  |
| $\mathrm{I}_{\mathrm{H}}$ | High 1 | $\mathrm{V}_{\mathrm{IH}}=5.25 \mathrm{~V}$ |  | <10 | 100 |  |  |
|  | Short circuit output current | $\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}$ | -40 |  |  | mA |  |
| Icc | Supply current | $\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$ |  |  | 200 | mA |  |

## VOLTAGE WAVEFORMS



## TEST LOAD CIRCUIT



All resistors values are typical and in ohms.

## NOTES

1. $C_{L}$ includes probe and jig capacitance.
2. All diodes are 1 N916 or 1N3064.

TYPICAL APPLICATION


## DESCRIPTION

The CRC Generator/Checker circuit is used to provide an error detection capability for serial digital data handling system. The serial data stream is divided by a selected polynomial and the division remainder is transmitted at the end of the data stream, as a Cyclic Redundancy check character (CRCC). When the data is received, the same calculation is performed. If the received message is error-free, the calculated remainder should satisfy a predetermined pattern. In most cases, the remainder is zero except in the case where Synchronous Data Link Control type protocols are used whereby the correct remainder is checked for $1111000010111000\left(x^{0}-x^{15}\right)$.
8 polynomials are provided and can be selected via a 3-bit control bus. Popular polynomials such as CRC-16 and CCITT are implemented. Polynomials can be programmed to start with either all zeros or all ones.

Automatic right justification for polynomials of degree less than 16 is provided.

## FUNCTIONAL DESCRIPTION

The CRC Generator/Checker circuit provides a means of detecting errors in a serial data communications environment. A binary message can be interpreted as a binary polynomial $H(x)$. This polynomial can be divided by a generator polynomial $P(x)$ such that $H(x)=P(x) Q(x)+R(x)$ whereby $Q(x)$ is the quotient and $P(x)$ is the remainder. During transmission, the remainder is appended to the end of the message as check bits. For a given message, a unique remainder is generated. Hardware implementation of division is simply a feedback shift register with Exclusive-OR gating. Subtraction and addition in modulo 2 is implemented by the Exclusive-OR function. The number of shift register stages is equal to the degree of the divisor polynomial.

Table 1 shows the polynomials implemented in the CRC circuit. Each polynomial can be selected via the 3-bit polynomial control inputs $S_{0}, S_{1}$ and $S_{2}$. To generate the check bits, the data stream is entered via the Data ( $D$ ) input, using the high to low transition of the Clock (CP) input. This data is gated with the most significant output $(Q)$ of the register, and controls the exclusive OR gates. The Check Word Enable (CWE) must be held high while the data is being entered. After the last data bit is entered, the CWE is brought low and the check bits are shifted out of the register and appended to the data bits using external gating.

## FEATURES

- I2L technology
- TTL inputs/outputs
- 10 MHz (max) data rate
- Total power dissipation $=175 \mathrm{mw}$ (max)
- $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- $\mathrm{V}_{\mathrm{JJ}}=1.0 \mathrm{~V}$
- Separate preset and reset controls
- SDLC specified pattern match
- Automatic right justification


## TYPICAL APPLICATIONS

- Floppy and other disc systems
- Digital cassette and cartridge systems
- Data communication systems

To check an incoming message for errors, both the data and check bits are entered through the D input with the CWE input held high. The $8 \times 01$ is not in the data path, but only monitors the message. The Error output becomes valid after the last check bit has been entered into the $8 \times 01$ by a high to low transition of CP. If no detectable errors have occurred during the data transmission, the resultant internal register bits are all low and the Error output (ER) is low. If a detectable error has occurred, ER is high. ER remains valid until the next high to low transition of CP or until the device has been preset or reset. PME must be high if ER output is used to reflect all zero result.
For data communications using the Synchronous Data Link Control protocol (SDLC), the $8 \times 01$ is first preset to all ones before any accumulation is done. This applies to both transmitter and receiver.

A special pattern of 1111000010111000 ( $x^{0}$ $-x^{15}$ ) is used in place of all zeros during receiving for valid message check. PME is incorporated to select this option. If PME is low during the last bit time of the message, ER output is low if result matches this special pattern. When ER is high, error has occurred.

## PIN CONFIGURATION



## PIN DESIGNATION

| PIN NO. | FUNCTION |
| :---: | :---: |
| $S_{0}, S_{1}, S_{2}$ | Polynominal Select inputs |
| D | Data input |
| $\overline{C P}$ | Clock (operates on high to low transition) input |
| CWE | Check Word Enable |
| $\overline{\mathrm{P}}$ | Preset (active low) input |
| MR | Master Reset (active high) input |
| Q | Data output |
| ER | Error (active high) output |
| $\overline{\text { PME }}$ | Pattern match enable (active low) |

A high level on the Master Reset (MR) input asynchronously clears the register. A low level on the Preset ( P ) input asynchronously sets the entire register if the control code inputs specify a 16 -bit polynomial; in the case of the 12 or 8 -bit check polynomials only the most significant 12 or 8 register bits are set and the remaining bits are cleared.

For SDLC, the user must invert the check sum shifted out of the $8 \times 01$.

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER |  | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| $V_{\text {CC }}$ | Supply voltage | 4.75 | 5.0 | 5.25 | V |
| $\mathrm{I}_{\mathrm{JJ}}$ | Supply current | 40 |  | 100 | mA |
| $\overline{\mathrm{CP}}$ | Clock input | 0 |  | 5 | MHz |

TRUTH TABLE

| SELECT CODE |  |  | POLYNOMIAL | REMARKS |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{2}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ |  |  |
| L | L | L | $\mathrm{X}^{16}+\mathrm{X}^{15}+\mathrm{X}^{2}+1$ | CRC-16 |
| L | L | H | $x^{16}+x^{14}+x+1$ | CRC-16 REVERSE |
| L | H | L | $x^{16}+x^{15}+x^{13}+x^{7}+x^{4}+x^{2}+x^{1}+1$ |  |
| L | H | H | $\mathrm{x}^{12}+\mathrm{x}^{11}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$ | CRC-12 |
| H | L | L | $x^{8}+x^{7}+x^{5}+x^{4}+x+1$ |  |
| H | L | H | $\mathrm{x}^{8}+1$ | LRC-8 |
| H | H | L | $x^{16}+x^{12}+x^{5}+1$ | CRC-CCITT |
| H | H | H | $\mathrm{x}^{16}+\mathrm{x}^{11}+\mathrm{X}^{4}+1$ | CRC-CCITT REVERSE |

## LOGIC DIAGRAM



DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE
(Unless Otherwise Noted)

| PARAMETER | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| $\mathrm{V}_{\mathrm{IH}}$ Input high voltage <br> $V_{\text {IL }}$ Input low voltage <br> $V_{\text {IC }}$ Input clamp diode voltage | $V_{C C}=\mathrm{MIN}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$ | 2.0 |  |  | $\begin{aligned} & v \\ & v \\ & v \end{aligned}$ |
| VOH Output high voltage <br> VOL Output low voltage | $\begin{gathered} V_{C C}=M I N, \\ I_{O H}=-400 \mu A, I J J=M I N \\ V_{C C}=M I N, I O L=8 \mathrm{~mA}, \\ I_{J J}=M I N \end{gathered}$ | 2.7 |  | 0.5 | v <br> v |
| $\begin{array}{ll}\text { IL } & \text { Input low current } \\ \text { IIH } & \text { Input high current } \\ \text { I IH }^{\text {IH }} & \text { Max. input current }\end{array}$ | $\begin{gathered} V_{C C}=M A X, V_{I N}=0.4 V \\ V_{C C}=M A X, V_{I N}=2.7 V \\ V_{C C}=\text { MAX } \end{gathered}$ |  |  | $\begin{gathered} -0.36 \\ 20 \\ 0.1 \end{gathered}$ | $\begin{gathered} \mathrm{mA} \\ \mu \mathrm{~A} \\ \mathrm{~mA} \end{gathered}$ |
| IOS Output short circuit current | $\begin{gathered} C C=M A X \\ V_{\text {OUT }}=O V, I_{J J}=M I N \end{gathered}$ | -10 |  | -42 | mA |
| ${ }^{\text {I CC }}$ Supply current IJJ Injection current | $V_{C C}=M A X$, inputs open <br> $V_{C C}=M A X$, inputs open | $\begin{aligned} & 10 \\ & 60 \end{aligned}$ |  | $\begin{gathered} 18 \\ 100 \end{gathered}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |

I $^{2}$ L injector current source

|  |  |
| ---: | :--- |
| $R_{J J}$ | $=\frac{V_{C C}-V_{J J J}}{\mathrm{I}_{\mathrm{ij}}}=\frac{(5.0-0.8) \mathrm{V}}{60 \mathrm{~mA}}$ |
|  | $=\frac{4.20 \mathrm{~V}}{60 \mathrm{~mA}}=70 \Omega$ |

## TEST CIRCUIT



INPUT/OUTPUT CIRCUITS


OUTPUT STRUCTURE

note: all resistors values are typical and in ohms.

## AC ELECTRICAL CHARACTERISTICS

| PARAMETER | TO | FROM | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |
| $f_{\max }$ Maximum clock frequency <br> Pulse width <br> $t_{w} \mathrm{CP}(\mathrm{L})$ Clock low <br> $t_{w} P(L)$ Preset low <br> $t_{W} \mathrm{MR}(\mathrm{H})$ Master reset high |  |  | See Figure 2 <br> See Figure 3 <br> See Figure 4 | $\begin{gathered} 5 \\ \\ 100 \\ 120 \\ 150 \end{gathered}$ | 7 |  | MHz <br> ns |
|  Setup and hold time <br> $t_{S} \mathrm{D}$ Setup time <br> $\mathrm{t}_{5}$ CWE Setup time <br> $\mathrm{t}_{\mathrm{n}}$ Hold time | Clock <br> Clock <br> Clock | Data <br> CWE <br> Data, CWE | See Figure 5 | 0 | $\begin{gathered} 120 \\ 75 \\ -30 \\ \hline \end{gathered}$ | $\begin{gathered} 150 \\ 100 \\ 0 \end{gathered}$ | ns |
|  Propagation delay <br> Low to high <br> ${ }^{\text {t PLH }}$  | Data output <br> Data output <br> Error output | Clock, preset <br> MR <br> Clock, MR, preset | See Figures 1,2,3 <br> See Figure 4 <br> See Figures 2,3,4 |  | $\begin{aligned} & 100 \\ & 75 \\ & 150 \end{aligned}$ | $\begin{aligned} & 160 \\ & 100 \\ & 200 \end{aligned}$ | ns |
| ${ }^{\text {t REC }}$ Recovery time | Clock | MR, preset | See Figures 3,4 |  | 60 | 90 | ns |



## VOLTAGE WAVEFORMS

PROPAGATION DELAYS

PROPAGATION DELAYS, $\overline{\mathrm{P}}$ TO Q AND ER
PLUS RECOVERY TIME P TO $\overline{\mathrm{CP}}$


Figure 3


Figure 4

SET UP AND HOLD TIMES D TO $\overline{\mathrm{CP}}$ and CWE TO $\overline{\mathbf{C P}}$


Figure 5

## DESCRIPTION

This LSI integrated circuit performs the digital control functions required for generating AM/FM radio frequency local oscillator signals using digital phase locked loop techniques. By the use of low power Schottky and ECL technologies on the same substrate it is possible to operate at 80 MHz input frequencies with an average system power of 1.6 mW per gate typical.

## FEATURES

- 80 MHz input frequency
- ECL prescaler
- LS process
- Single 5V supply
- Power dissipation-600mW (max)
- External components-
- 1 crystal
- 2 capacitors

PHASE LOCKED LOOP BLOCK DIAGRAM


## PHASE LOCKED LOOP PRINCIPLES

Digital phase locked loops are comprised of 4 basic building blocks: A fixed reference frequency generator (crystal oscillator and divider), a phase comparator, a voltage controlled oscillator (VCO) and a programable counter ( $\div \mathrm{N}$ ).
In cases where very high frequencies must be generated, a fixed prescaler $(\div M)$ is employed to divide the local oscillator frequency down to a frequency compatible with the programmable counter. F out from the VCO is divided down by the prescaler and programmable counters and compared to the reference frequency by the phase detector. If $\frac{\text { Fout }}{\mathrm{MN}}$ is not equal to Fref in phase and MN
frequency, the phase detector generates a signal which causes the VCO frequency to
increase or decrease until Fref $=\frac{\text { Fout }}{\mathrm{MN}}$. When this occurs, the local oscillator is essentially as stable as the crystal reference oscillator.

The local oscillator frequency (Fout) is changed by programming a different number into the programmable counter. The distance between discrete frequencies or the channel spacing is determined by the reference frequency.
For the AM/FM circuit, up to 200 channels are possible with selectable channel spacing of 10 kHz for AM operation and 2000 channels at 100 kHz for FM operation.

## AM/FM Frequency Synthesizer Circuit Description

The frequency synthesizer circuit logic diagram is shown below. Following is a description of each of the major blocks.

## Programmable Counter

The programmable counter consists of 3 stages of decade counter plus a divide by 1 or 0 counter to divide by numbers up to 1999. BCD programming data is presented to the dividers in parallel form, one digit at a time. Parallel data is strobed into internal latches via strobe signals; one strobe for each digit. $\mathrm{A} \div 580 \mathrm{MHz}$ ECL prescaler precedes the programmable counter for FM operation. This prescaler plus an external $160 \mathrm{MHz} \div 2$ flip-flop provide $\mathrm{a} \div 10160 \mathrm{MHz}$ prescaler $(\div \mathrm{M})$ function to scale the programmable counter input frequency down to 16 MHz maximum. A logic control circuit bypasses the $\div M$ prescaler and the first decade counter for AM operation. By this technique, the channel spacing is programmable to 10 kHz for AM operation and 100 kHz for FM operation.

PIN CONFIGURATION


## vco

An externally provided integrator and voltage controlled oscillator must be provided to perform the complete frequency synthesizer function. The integrator converts the pulses that come from the phase detector into a dc signal that controls the output frequency of the voltage controlled oscillator. It is in the integrator part of the circuit that the critical loop constants are determined. The voltage controlled oscillator is normally a LC tuned oscillator with varactor diode tuning that is controlled by the dc signals from the integrator. In this case, two are required, one for the AM band and one for the FM band. The FM oscillator output must be +5 V ECL compatible while the AM oscillator must be TTL compatible.

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER |  | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIn | Typ | Max |  |
| $\stackrel{N}{A}_{V_{C C}}$ | Operating free air temperature | -40 |  | +85 | ${ }^{\circ} \mathrm{C}$ |
|  | Supply voltage | 4.75 | 5.0 | 5.25 | v |
|  | Max input voltage data, strobe |  |  | 16 | v |
|  | Max AM local oscillator input operating frequency (Pin 11) |  | 20 |  | MHz |
|  | Max FM local oscillator input operating frequency (Pin 10) |  | 100 | 80 | MHz |
|  | Maximum reference frequency oscillator operating frequency |  | 6 |  | MHz |

## Phase Detector Circuit

The phase detector is a digital edgedetecting device that provides an output three-state signal that is in a high impedance state when the 2 input signals are equal in phase and/or frequency. The output of the phase detector is a series of pulses that swing from the high impedance state to 3 V typical or from the high impedance state to 4.2 V typical. If the positive edge of the divider input leads the reference, the pulses will go to 4.2V. If it lags they will go to 3 V .
The width of the output pulses is a function of the time between the positive edges (phase) of the 2 signals. An example of the operation of the device is shown where the reference signal is twice the frequency of the divider signal and has a phase lead of $270^{\circ}$. The output pulses are converted to a dc signal by integrating amplifiers causing the output frequency of the voltage controlled oscillator to increase or decrease (increase in this case) until the divider output and the reference output are equal in phase and frequency.

## PHASE DETECTOR CIRCUIT



## DIVIDER REFERENCE



DC ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING CONDITIONS

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETER}} \& \multirow[b]{2}{*}{TEST CONDITIONS} \& \multicolumn{3}{|c|}{LIMITS} \& \multirow{2}{*}{UNITS} \\
\hline \& \& \& Min \& Typ \& Max \& \\
\hline \(\mathrm{V}_{\text {IH }}\) \& High level input voltage \(P, K_{D}, A M / F M\) inputs AM L.O. input FM L.O. input \& \& \[
\begin{gathered}
5.25 \\
2 \\
4.1
\end{gathered}
\] \& \& 5.25 \& \[
\begin{aligned}
\& V \\
\& V \\
\& V
\end{aligned}
\] \\
\hline \(V_{\text {IL }}\) \& Low level input voltage \(P, K_{D}, A M / \overline{F M}\) inputs AM L.O. input FM L.O. input \& \& \& \& 3.75
0.8
3.3 \& \[
\begin{aligned}
\& v \\
\& v \\
\& v
\end{aligned}
\] \\
\hline \({ }^{1 / H}\) \& \begin{tabular}{l}
High level input current \\
\(P, K_{D}, A M / \overline{F M}\) inputs \\
AM L.O. input (with \(5 \mathrm{k} \Omega\) pullup to \(\mathrm{V}_{\mathrm{CC}}\) ) FM L.O. input
\end{tabular} \& \[
\begin{aligned}
\& V C C=\max , V_{1}=16 \mathrm{~V} \\
\& V_{C C}=\max , V_{1}=5.25 \mathrm{~V} \\
\& V_{C C}=\max , V_{1}=5.25 \mathrm{~V} \\
\& V_{C C}=\max , V_{1}=5.25 \mathrm{~V}
\end{aligned}
\] \& \& \& \[
\begin{gathered}
200 \\
40 \\
200 \\
400
\end{gathered}
\] \& \begin{tabular}{l}
\(\mu A\)
\(\mu A\) \\
\(\mu \mathrm{A}\) \(\mu \mathrm{A}\)
\end{tabular} \\
\hline 1 IL \& \begin{tabular}{l}
Low level inputs current \\
\(P, K_{D}, A M / \overline{F M}\) inputs AM L.O. input (with \(5 \mathrm{k} \Omega\) pullup to VCC ) FM L.O. input
\end{tabular} \& \[
\begin{aligned}
\& V_{C C}=\max , V_{1}=3.75 \mathrm{~V} \\
\& V_{C C}=\max , V_{1}=0.4 \mathrm{~V} \\
\& V_{C C}=\max , V_{1}=0.4 \mathrm{~V}
\end{aligned}
\] \& -. 7 \& \& -40

-1.6

-40 \& | $\mu \mathrm{A}$ |
| :--- |
| mA $\mu \mathrm{A}$ | <br>

\hline V OL \& Low level output voltage System clock output Lock indicator output Phase detector output \& $$
\begin{aligned}
& V C C=\min , I O L=16 \mathrm{~mA} \\
& V C C=\min , I O L=16 \mathrm{~mA} \\
& V C C=\min , I O L=40 \mu \mathrm{~A}
\end{aligned}
$$ \& \& \& \[

$$
\begin{aligned}
& 0.8 \\
& 0.8 \\
& 0.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { V } \\
& \text { V } \\
& \text { V }
\end{aligned}
$$
\] <br>

\hline VOH \& High level output voltage Phase detector output \& $$
V_{C C}=\min , 1 O H=-40 \mu \mathrm{~A}
$$ \& V CC-0.5V \& \& \& <br>

\hline IOL

ICC \& | High level output current |
| :--- |
| System clock output |
| Lock indicator output Supply current | \& \[

$$
\begin{aligned}
& V_{C C}=\min , V_{O H}=16 \mathrm{~V} \\
& V_{C C}=\min , V_{O H}=16 \mathrm{~V} \\
& V_{C C}=\max
\end{aligned}
$$

\] \& \& \& \[

$$
\begin{aligned}
& 250 \\
& 250 \\
& 150
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A} \\
& \mathrm{~mA}
\end{aligned}
$$
\] <br>

\hline
\end{tabular}

## AC ELECTRICAL CHARACTERISTICS

| PARAMETER |  | TO | FROM | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min |  | Typ | Max |  |
|  | Strobe pulse width Setup and hold time <br> Logic high <br> Logic low <br> Logic high <br> Logic low |  |  |  | 200 | 100 |  | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ |
| $t_{s}$ |  | Strobe | Data | $\begin{gathered} 150 \\ 50 \end{gathered}$ |  |  |  |
| $t^{\prime}$ |  | Strobe | Data | $\begin{gathered} 40 \\ 0 \end{gathered}$ |  |  |  |

## VOLTAGE WAVEFORM



## Crystal Oscillator Circuit

In this circuit, the cross-coupled transistor pair form a bistable circuit. The crystal provides positive feedback between the emitters of $T_{15}$ and $T_{16}$ which causes the circuit to oscillate at the crystal frequency.

## Recommended Crystal

## Characteristics

| Type | Fundamental Mode <br> Series Resonant |
| :---: | :---: |
| Series resistance | $<100 \Omega$ |

## CRYSTAL OSCILLATOR CIRCUIT



## DESCRIPTION

The Signetics Series 3000 Bipolar Microprocessor Chip Set provides new levels of high performance to microprocessor applications not previously possible with MOS technology. Combining the Schottky bipolar N3001 Microprogram Control Unit (MCU) and N3002 Central Processing Element (CPE) with industry standard memory and support circuits microinstruction cycle times of 100 ns are possible.

In the majority of cases, the choice of a bipolar microprocessor slice, as opposed to an MOS device, is based on speed or flexibility of microprogramming. Starting with these characteristics, the design of the Signetics Series 3000 Microprocessor has been optimized around the following objectives:

- Fast cycle time
- All memory and support chips are industry standard
- Cooler operation
- Lower total system cost

Systems built with large-scale integrated circuits are much smaller and require less power than equivalent systems using medium and/or small scale integrated circuits.

The 2 components of the Series 3000 chip set, when combined with industry standard memory and peripheral circuits, allows the design engineer to construct highperformance processors and/or controllers with a minimum amount of auxiliary logic. Features such as the multiple independent address and data buses, tri-state logic, and separate output enable lines eliminate the need for time-multiplexing of buses and associated hardware.

Each Central Processing Element represents a complete 2-bit slice through the data processing section of a computer. Several CPEs may be connected in parallel to form a processor of any desired word length. The Microprogram Control Unit controls the sequence in which microinstructions are fetched from the microprogram memory (ROM/PROM), with these microinstructions controlling the step-by-step operation of the processor

Each CPE contains a 2-bit slice of 5 independent buses. Although they can be used in a variety of ways, typical connections are:
Input M-bus: Carries data from external memory
Input l-bus: Carries data from input/output device
Input K-bus: Used for microprogram mask or literal (constant) value input
Output A-bus: Connected to CPE Memory Address Register
Output D-bus: Connected to CPE accumulator.


As the CPEs are paralleled together, all buses, data paths, and registers are correspondingly expanded.

The microfunction input bus (F-bus) controls the internal operation of the CPE, selecting both the operands and the operation to be executed upon them. The arithmetic logic unit (ALU), controlled by the microfunction decoder, is capable of over 40 Boolean and binary operations as outlined in the FUNCTION DESCRIPTION section of the N3002 data sheet. Standard carry look-ahead outputs ( X and Y ) are generated by the CPE for use with industry standard devices such as the 74S182.

## FEATURES

- Bipolar Schottky Technology
- Multiple Input/Output Bus Structure
- Fastest Microprocessor Available
- 512 Microinstruction Addressibility
- Full Function Accumulator


## AVAILABILITY

Immediate delivery for Signetics Rep or Distributors.

## CONTENTS

1 ea--N3001 Microprogram Control Unit 4 ea-N3002 Central Processing Element
1 ea-74S182 Look-Ahead Carry
3 ea-82S114 $256 \times 8$ PROM
1 ea-8T31 Bidirectional I/O Port
2 ea-8T26A Quad Bus Transceiver
1 ea-Introductory Manual

MICROCOMPUTER BLOCK DIAGRAM


Figure 1

## COMPATIBLE PRODUCTS

## 82S100, 82S101 FPLA

- Field programmable (Ni-Cr Link)
- Input variables-16
- Output functions-8
- Product terms-48
- Address access time-50ns
- Tri-state (82S100) or open collector (82S101) outputs
- 28-pin ceramic dip

82S115/123/129 PROMs

- Schottky TTL technology
- Single +5 V power supply
- $32 \times 8$ organization (82S123)
- $256 \times 8$ organization (82S129)
- $512 \times 8$ organization (82S115)
- Field programmable (Nichrome)
- On-chip storage latches (82S115 only)
- Low current pnp inputs
- Tri-state outputs
- 35ns typical access time
- Standard 24-pin DIP (82S115)
- Standard 16-pin DIP (82S123, 82S129)


## 82S25/82S116/82S11 RAMs

- Schottky TTL technology
- $16 \times 4$ organization (82S25)
- $256 \times 1$ organization (82S116)
- $1024 \times 1$ organization (82S11)
- On-chip address decoding
- 16-pin ceramic dip


## 8T26A/8T28 Quad Transceiver

- Schottky TTL technology
- 4 pairs of bus drivers/receivers
- Separate drive and receive enable lines
- Tri-state outputs
- Low current pnp inputs
- High fan out-driver sinks 40 mA
- 20 ns maximum propagation delay
- Standard 16-pin DIP


## 8T31 8-Bit Bidirectional Port

- Schottky TTL technology
- 2 independent bidirectional buses
- 8 -bit latch register
- Independent read, write controls for each bus
- Bus A overrides if a write conflict occurs
- Register can be addressed as a memory location
- via Bus B Master Enable
- 30ns maximum propagation delay
- Low input current: $500 \mu \mathrm{~A}$
- High fan out-sinks 20 mA
- Standard 24-pin DIP


## DESCRIPTION

The 8080 Emulation Kit is a microprogrammable microprocessor utilizing Schottky LSI components to implement an emulation of an Intel 8080A microcomputer system The emulation is functionally equivalent to a microprocessor system incorporating the following Intel devices: 8080A, 8228, 8224 and 8212 . The kit provides the standard address, data, status and control buses as defined in the Intel 8080 Microcomputer System Manual. Since the kit uses bipolar LSI elements, the emulator lacks the twophase non-overlapping clock. Furthermore, those signals emanating from the 8080 during SYNC time are not provided, but rather the useful status signals provided by the 8228 system controller are implemented The emulation also provides an extension of the 8228 operation during multi-byte interrupts. This is realized by allowing any 8080 program branch instruction to be inserted during interrupts rather than restricting multi-byte instructions to CALL during interrupts. Finally, a nonstandard status signal, RTRAP, is provided which indicates that the present instruction is a reserved or undefined instruction. After this indication, the processor will enter the normal HALT routine and await an interrupt. (Intel 8080A operation during undefined instructions is undefined.) Thus all 12 of the unused instructions in the 8080 instruction set are reserved for future instruction set expansion. These unused codes may be used at any time to extend the usual instruction set without requiring any reprogramming of the bipolar PROMs used for microprogram memory. Finally, the emulator is fully static so that the clock may be adjusted from a typical cycle time of 150 ns to dc.

The kit contains all the parts necessary to construct the emulator and includes preprogrammed PROMs. The kit is designed to be assembled by a skilled technician in about 8 hours.


## FEATURES

- Full emulation of 8080A system
- Speed increase by factor of 2 to 9.2 over 8080A system
- Static operation; microcycle time dc to 150ns
- Operation from single +5 V supply
- Executes all 8080 instructions
- Hardware multiply and divide
- Microprogram expandable
- Includes single phase clock
- Full vectored interrupt to any location within 64 K memory

Part Number
Availability:
3000KT8080SK
Immediate delivery from Signetics, Rep or Distributors

## KIT CONTENTS

1 each N74123
1 each N3001
8 each N3002
7 each N82S115
1 each N82S23
2 each N82S123
2 each N82S126
3 each N8263
3 each N74S182
1 each N74S280
2 each N7475
1 each DM8613
11 each N74S174
2 each N8T28
3 each N8T97
1 each N74S153
2 each N74S157
1 each N7400
1 each N74S02
3 each N74S04
1 each N74S08
1 each N74S10
1 each N74S133
2 each Resistor networks $1 \mathrm{~K}, 16$-pin
1 each P.C. board
1 each Manual
1 each Schematic
1 each Set of microprogram listings
Plus: Over 25 miscellaneous resistors, capacitors and other parts

## BLOCK DIAGRAM



## INSTRUCTION EXECUTION

TIMES (150ns microinstruction cycle
time, 150 ns RAM access time)

| INSTRUCTION | $\begin{aligned} & \text { CY- } \\ & \text { CLES } \end{aligned}$ |  | CUTION E ( $\mu \mathrm{s}$ ) |
| :---: | :---: | :---: | :---: |
| LXI | 7 |  | . 05 |
| PUSH | 9 |  | . 35 |
| PUSH PSW | 9 |  | . 35 |
| POP | 9 |  | . 35 |
| POP PSW | 8 |  | . 20 |
| STA | 9 |  | . 35 |
| LDA | 8 |  | . 20 |
| XCHG | 7 |  | . 05 |
| XTHL | 13 |  | . 95 |
| SPHL | 3 |  | . 45 |
| PCHL | 6 |  | . 90 |
| DAD | 4 |  | . 60 |
| STAX | 6 |  | . 90 |
| LDAX | 5 |  | . 75 |
| INX | 2 |  | . 30 |
| DCX | 3 |  | . 45 |
| CMA | 2 |  | . 30 |
| STC | 3 |  | . 45 |
| CMC | 4 |  | . 60 |
| DAA | 10 |  | . 50 |
| SHLD | 11 |  | . 65 |
| LHLD | 12 |  | . 80 |
| El | 2 |  | . 30 |
| DI | 2 |  | . 30 |
| NOP | 2 |  | . 30 |
| MUL | 26 |  | 3.90 |
| MOV r1, r2 | 3 |  | . 45 |
| MOV M, r | 6 |  | . 90 |
| MOV r, M | 6 |  | . 90 |
| HLT | 4 |  | . 60 |
| MVI r | 4 |  | . 60 |
| MVI M | 7 |  | . 05 |
| INR | 3 |  | . 45 |
| DCR | 4 |  | . 60 |
| INR M, DCR M | 8 |  | . 20 |
| Arithmetic reg | 4 |  | . 60 |
| Arithmetic mem | 7 |  | . 05 |
| Arithmetic immed. | d. 4 |  | . 60 |
| RLC | 4 |  | . 60 |
| RRC | 3 |  | . 45 |
| RAL | 4 |  | . 60 |
| RAR | 3 |  | . 45 |
| ${ }^{\text {JMP }}{ }_{1}$ | 6 |  | . 90 |
| $\overline{J M P}^{1}$ | 4 |  | . 60 |
| $\mathrm{CALL}_{1}$ | 13 |  | . 95 |
| CALL | 4 |  | . 60 |
| RET | 8 |  | 1.20 |
| $\overline{R E T}{ }^{1}$ | 2 |  | . 30 |
| RST | 13 |  | 1.95 |
| IN | 8 |  | 1.20 |
| OUT | 8 |  | 1.20 |
| DIV | Min | Typ ${ }^{2}$ | Max |
|  | 4.80 | 6.60 | 8.40 |

NOTES

[^3]2. Depends upon value of divisor

## DESCRIPTION

The Signetics Microassembler is a complete software package designed to support general slice system architectures which employ Signetics bipolar microprocessor components. It provides a flexible microassembler language which is adaptable to the numerous configurations and formats of systems using bipolar microprocessor chips. The Microassembly language allows specification of the microinstruction formats and bipolar devices utilized in a user system. This enables the Microassembly language to be tailored to the specific configuration for which the microprogram is written. In particular, the Mircoassembly language provides intrinsic support for the 3002 and 2901 Central Processing Elements and the 8X02 Control Store Sequencer. Through the inclusion of explicit definitions, similar support can be obtained for the 3001 Microprogram Control Unit, as well as other bipolar chips. Although specifically intended for use with Signetics' bipolar microprocessor products, the flexibility of the Microassembler enables it to handle virtually all microprogrammed applications.

The Microassembler consists of two independent programs. The first reads the microprogram and the appropriate configuration and format descriptions written in the Microassembly language. It produces a listing of the source input and the resulting binary form of the microinstructions in the microprogram. The listing also includes diagnostics for any errors found in the source and a cross reference for symbols used in the microprogram.

The second program punches paper tapes that can be used to program microcontrol
store PROMS. It reads an object form of the microprogram produced by the first program. The microprogram object is partitioned into PROM modules and separate output is produced for each PROM.

## MICROASSEMBLY LANGUAGE

The Microassembly language input to the Microassembler is divided into two sections. The first section defines the microinstruction formats and device configurations of the user system. The second section is the microprogram in the form of symbolic microinstructions.

The definition section specifies the name and length of each field in the microinstruction. Microinstructions may be any length, and multiple microinstruction formats may be defined. In addition, the definition section allows definition of opcodes used in writing symbolic microinstructions.

The microprogram section is the sequence of symbolic microinstructions which comprise the microprogram. A symbolic microinstruction is a statement specifying values for each field in the microinstruction. User defined opcodes allow mnemonic specification of field values. Field values not specified may be defaulted.

The Microassembly language also supports the standard assembler directives-ORG, EQU, SET, SPACE, TITLE, EJECT. Values in the Microassembly language may be decimal, hexadecimal, octal or binary constants, ASCII character constants, or symbolic values. These may also be combined into expressions using arithmetic, binary shift, and logical operators. The supported operators include,+- , SHR, SHL, NOT, AND, OR, XOR.

## PROM FORMATTING

The microprogram object is formatted into paper tapes for programming microcontrol store PROMS using a microformat command file. The microformat commands specify the partitioning of the microprogram into PROMS and specify the format of the paper tape output. Each bit of a microinstruction may be individually allocated to a PROM and optionally inverted. The addressing space of the microprogram may also be partitioned with provisions for inverted addresses. A typical application would be the allocation of a $1024 \times 40 \mathrm{mi}-$ croprogram to ten $512 \times 8$ PROMS.

The following paper tape formats are supported-2650 Absolute Object Code SMS format and various BNPF formats. The 2650 Absolute Object Code, can read by the Signetics TWIN (Test Ware Instrument-A microprocessor system development instrument) when it is used to program PROMS.

## USING THE MICROASSEMBLER

The Microassembler is written in ANS FORTRAN IV and it may be run on any machine of sufficient memory size which has the requisite standard FORTRAN compiler. It is available in source form on magnetic tape. Or, if desired, the Microasssembler may be accessed via TYMSHARE, GE or NCSS Timesharing Services. The Microassembler also provides special commands called toggles which adapt the Microassembler to specific operating environments.

A full description of the Microassember is contained in the Signetics Microassembler Reference Manual.

## DESCRIPTION

The Signetics $8 \times 300$ Fixed Instruction Bi polar Microprocessor provides new levels of high performance to microprocessor applications not previously possible with MOS technology.

In the majority of cases, the choice of a bipolar microprocessor slice, as opposed to an MOS device, is based on speed. The $8 \times 300$ processor, combined with highspeed memory and I/O devices, is capable of executing all instruction in 250 ns .
The $8 \times 300$ is optimized for control and data movement applications. It has a 13-bit address bus for selecting instructions from program storage and a separate input bus for entering a 16 -bit instruction words. Data handling and 1/O device addressing are accomplished via the 8-bit Interface Vector (IV) bus. The IV bus is supported by four additional control lines and a clock.

The unique features of the $8 \times 300$ IV bus and instruction set permit 8 -bit parallel data to be rotated or masked before undergoing arithmetic or logical operations. Then, the data may be shifted and merged into any set of from 1 to 8 contiguous bits at the destination. The entire process of input, shifting, processing and output is done in 1 instruction cycle time. The 250 ns cycle time makes the $8 \times 300$ ideally suited for high-speed applications.

The evaluation board contains all the elements which a designer needs to judge the suitability of the $8 \times 300$ for his systems applications. Included with the $8 \times 300$ are 4 I/O ports for external device interface, 256 bytes of temporary (working) data storage, and 512 words of program storage, all properly connected to the $8 \times 300$ to allow immediate exercising of the board. For this purpose, the PROMs are preprogramed with the I/O control, RAM control, and RAM integrity diagnostic programs. With the remaining PROM space, the designer may enter his own benchmark, test, or development routines.
The board design allows complete flexibility in access to the address, instruction, and IV busses as well as all controls and signals of the $8 \times 300$. The IV bus, I/O port user connection, clock signals control lines, address bus and instruction bus are wired to output pins, the board edge connector and flat cable connectors.
The board layout permits variations and/or expansions of the basic design. In addition to the access to all signals for transfer off the board, a wire wrap area is provided so that the designer may add to the board circuitry as he desires. The addition may include memory, additional interfaces, or

special circuits which meet specific user requirements.

Controls are also provided for diagnostic and instructional purposes by allowing various operating modes. In the WAIT mode, the program may be single stepped for ease of checkout. The one-shot instruction jamming allows control of the program start location, changes of program flow, changing or examining the internal registers, or testing of simple sequences. The repeated instruction jamming provides a means of repetitive execution of an instruction so that the $1 / O$ bus and the control lines may be examined without software changes. In both of these jam cases, the jammed instruction is selected by boardmounted switches.

## FEATURES

- 250ns CPU with Crystal
- 4 I/O Ports ( 32 Lines)
- 256 Bytes Data Storage
- 512 Words Program Storage
- Run/Wait Control
- Single Step
- Instruction Jamming One Shot Instruction Jam Repeated Jam
- All Buses to Output Pins
- Firmware Diagnostics
- Wire-Wrap Area
- Edge Connector
- Flat Cable Connectors
- Wire Wrap Posts for Bus Lines


## CONTENTS

1 ea- $8 \times 300$
8 ea-82S116 (256 $\times 1$ RAM)
2 ea- 82 S115 ( $512 \times 8$ PROM)
4 ea-8T32 Addressable Bidirectional I/O Port
1 ea- 8 T31 (Bidirectional I/O Port)
2 ea-8T26A (Quad Bus Transceiver)
4 ea- 74157 (Quad 2-Input Data Selec-
tor)
2 ea- 7474 (Dual D Flip Flop)
2 ea- 7400 (Quad Nand Gate)
1 ea- 7427 (3-Input NOR Gate)
1 ea-P.C. Board
Misc. Parts
1 ea- Introductory Manual, assembly instructions, code listings and schematics

## AVAILABILITY

Immediate delivery from Signetics Rep. or Distributors.

## BLOCK DIAGRAM



## Auxiliary Circuits

The 8X300 can be used with any bipolar (or TTL-compatible) ICs. It can directly address 8192 program instruction locations and up to $512 \mathrm{I} / \mathrm{O}$ ports. The memory paging feature may be employed for larger working storage. Typical auxiliary circuits include:

| Program Storage |  |
| ---: | :--- |
| I/O | 82 S115 (512x8 PROM) <br> $8 T 32 / 33$ |
|  | (8-Bit Synchronous <br> Bidirectional I/O <br> Port) |
| $8 T 35 / 36$ | (8-Bit Asynchronous <br> Bidirectional I/O |
|  | Port) <br> (8-Bit Bidirectional |
| 8T31 | I/O Port) <br> (Quad Bus Extender) |
| WT39 | (Quad Bung Storage <br> 82S116 RAM |

## DESCRIPTION

A new kit has been developed which allows for convenient programming of the select addresses for the 8 T32 family of devices, including the $8 \mathrm{~T} 33,8 \mathrm{~T} 35$ and 8 T 36 . The kit consists of all parts necessary for the construction of the kit including voltage regulators, address program switches and status lights. All that is required is to construct the kit, apply +5 volts and approximately +28 volts and the 8 T 32 may be programmed. The programming sequence consists of three steps. First, the 8T32 select address is programmed. Second, the kit verifies the programming by testing for positive response to the address as well as the disable for the address complement. After verification, the programmer is switched to the protect mode in which the isolation is performed. This step prevents further address alteration. The kit includes documentation on assembly and use.

The kit is made available for those designers using 8 T32 family devices so that they may easily program the address in their lab or at a conveniently located Signetics or Distributer facility. For prototyping, the designer may order unprogrammed devices and then put in addresses as required rather than ordering several addresses of the preprogrammed type. This will save the designer time and money.

## AVAILABILITY

Immediate delivery from Signetics Rep. or Distributors


## CONTENTS

PC board
All IC's, discrete parts, and hardware Assembly instruction manual

FEATURES

- Programs, isolates, and verifies select addresses for 8T32 family
- Kit contains all components necessary to build programmer
- Two hour assembly time


## BLOCK DIAGRAM



## DESCRIPTION

The $8 \times 300$ Assembler is a program which accepts source code written in the 8X300 assembly language and which produces both a listing of the symbolic program and an object module in one of three formats: MCSIM, ROM Simulator or BPNF.

The assembler is written in ANSI standard Fortran and is approximately 2800 card images in length. It requires some rewindable I/O medium such as disk or tape for temporary storage, an input device to read source code and two output devices, one to output the assembler listing and one to output the object module. If desired, the assembler may be compiled and linked to execute in overlays.

The assembler consists of two passes which build a symbol table, issue helpful error messages, produce an easily readable program listing and output a computer readable object module.

## FEATURES

- Macros nested to three levels
- Conditional assembly
- Address arithmetic
- Automatic procedure/subroutine handling
- Reserved symbols for registers
- Multiple entry to procedures
- Symbolic machine operation codes
- Symbolic address assignment references
- Symbolic data creation statements (IV Byte References)
- Free format source code
- Syntax error checking
- Self-defining constants
- Assembly listing control statements
- ASCII character code
- Comment statements and comment areas
- Forward referencing


## MCCAP LANGUAGE

The assembler recognizes three types of statements: comment statements, machine instructions, and pseudo-ops (directives).

Comment statements are used to document a listing. They must contain an asterisk in column 1 and may contain any legal character in the other 79 columns.

Machine instruction statements are those statements that generate instruction(s) to be executed by the $8 \times 300$ processor. Machine instruction statements include:

MOVE Move byte from one location to another.
ADD Add the byte in one location to the byte in the auxiliary register and store the result in another location.
AND AND the byte in one location with the byte in the auxiliary register and store the result in another location
XOR Exclusive OR the byte in one location with the byte in the auxiliary register and store the result in another location.
XEC Execute the instruction at the specified address.
XMIT Transmit the literal (immediate data) contained in this instruction to the specified location.
NZT Jump to the specified address if the value in the specified location is not zero.
JMP Jump to the specified address.
CALL Transfer control to a procedure or an entry point.
RTN Returns control from a procedure or an entry point.
SEL Places the address of an IV Byte variable into the IVL or the IVR register.

Pseudo-Ops (or Directives) are commands to the assembler, but have no meaning to the 8X300 processor.

OBJ Specifies the format of the object module.
IF Introduces source statements subject to conditional assembly.
ENDIF Terminates the source statements subject to conditional assembly.
LIST Specifies the list and punch options.
NLIST Negates the list and punch options.
EJCT Advances listing to next page. SPAC Advances listing to next line. MACRO Defines the source statements generated a macro call.

## AVAILABILITY

The assembler is available on NCSS, GE and TYMSHARE timesharing services. It is also available from Signetics on 9 -track magnetic tape written in EBCDIC in 80character unblocked records at a density of 800 bpi.

## FEATURES

- Totally self-contained with keyboard alpha-numeric display, tape reader, TTY output
- Dual MicroControllers: one to run instrument, one dedicated to execute user's program
- Real time instruction execution
- Control of program execution-Halt Single Step and Run Modes
- Direct program/register/IV examination and modification through keyboard
- Three breakpoint types-Normal, Halt and Insert Instruction
- Up to 4 k words of high speed read/write program storage
- Format compatible with papertape output of MicroController Cross Assembly Program


## DESCRIPTION

The SMS MicroController Simulator, MCSIM, is a hardware development instrument designed to perform in the user's system exactly as an SMS MicroController. It directly supports the SMS 300 ( $8 \times 300$ ) as well as MicroController prototyping systems. MCSIM gives the user an Interpreter system with a modifiable Program Storage and a Control Panel which together provide a means of entering, running, monitoring, debugging and changing a program. It features ease of use due to its high level interactive display/keyboard and simple operating system. MCSIM allows the user to run his program on-line in real time. Through the Control Panel, data stored in internal registers, Working Storage and IV Bytes can be examined and modified. An extensive breakpoint capability permits the user to quickly locate program faults.

MCSIM contains two MicroControllers: one for running the instrument and a second totally dedicated to the user's program and prototyping system. This insures that when program development is complete and the design specifications have been met, production systems will perform identically with the prototype.

## OPERATION

MCSIM operation is separated into six modes, each mode consisting of a related set of functions and status displays. Access to a mode is made using one of the six mode selection keys. (See Table 1). The currently selected mode is displayed at the extreme left part of the display; the currently selected function is displayed at the extreme right of the display. Selection among the available functions is made using the $\mid$ and ! keys, incrementing and decrementing to the next function. The function selected at last exit is automatically re-selected when the mode is re-entered except for the Break-

point Mode which selects the Current display.
An operation is generally performed using the following four steps:

1. Select a mode by depressing one of the six Mode Select Keys.
2. Select a function in that mode by posi-

| MODE | FUNCTIONS |
| :---: | :---: |
| Manual <br> Examination and alteration of Program Storage | Change Address Store Instruction |
| Tape <br> Load or dump all or part of Program Storage | Load <br> Verify <br> Begin Punch Address <br> End Punch Address <br> Punch <br> Program Identification |
| Register <br> Examination and alteration of the Interpreter's internal registers | Change Address Store Octal Data Store Binary Data Complement Overflow |
| Interface Vector <br> Examination and alteration of the locations on the IV Bus | Display Current Enabled Bytes Change IV Address Store Binary Data in IV Location |
| Breakpoint <br> Set one of three types of breakpoint for program debugging | Display Currently Active Breakpoint <br> Set Normal (Sync) Breakpoint <br> Set Stop Breakpoint <br> Replace Instruction at <br> Breakpoint |
| Execute <br> Control and monitor execution of a program | Halt <br> Run Program <br> Insert Instruction <br> Single Step |

Table 1 MCSIM OPERATOR CONTROLLED FUNCTIONS

## SPECIFICATIONS

## Control Panel

The Mode Select Keys and the Function Select Keys used in combination give the user 26 possible functions to accomplish complete loading and testing of the program. Each Mode Select Key accesses a set of functions, one of which is chosen using the Function Select Keys.

## Status Messages

Message displays are used to indicate special conditions which may result from the operation of MCSIM:

POWER ON, MCSIM SYSTEM START ???MORE THAN ONE KEY PRESSED UNABLE TO READ TAPE. RESTART UNDEFINED MEMORY ADDRESS (octal address)
INVALID INSTRUCTION (instruction code) LOADING INTERRUPTED, RESTART, V'FYING INTERRUPTED, RESTART P'CHING INTERRUPTED, RESTART

NO VERIFY (octal address, tape data, memory data)
CLEAR RESET LINE TO START RUNNING CLEAR HALT LINE TO START RUNNING INVALID 8-BIT OCTAL VALUE (octal value) UNDEFINED IV BYTE ADDRESS (octal address)

## Sync Output

Output pulse whenever address breakpoint is reached.

## System Interface

MCSIM is connected to the user's prototyping system via a single ribbon cable. This cable terminates in either a MicroController Simulation Module or a dual in-line plug which is pin for pin compatible with the SMS 300 Interpreter. There are two different simulation modules to exactly match presently available MicroController systems. Selection of the proper input/output connector makes a MCSIM appear to be physically and electrically equivalent to a production MicroController or Interpreter.

## MCCAP

The MicroController Cross Assembly Program (MCCAP) is designed to translate symbolic instructions into object code that can be executed by the SMS 300. This program will run on most computers that have a FORTRAN compiler with a computer word length of at least 16 bits and a random access capability. MCCAP features:

- Symbolic address assignment and references
- Automatic Procedure Handling
- Predefined System Procedures
- Forward References
- Expression Evaluation
- Flexibility to handle MicroController component configurations as well as standard systems
- Generation of object code for MCSIM, and SMS ROM Simulator, or most PROM programmers


## Data Input/Output

| COMPONENTS | DESCRIPTION |
| :--- | :--- |
| Panel | 36 character self scan display for messages and data readout <br> Tape Reader <br> TTY key numeric keyboard for data entry/modification <br> 120 character/second tape reader for high speed data entry (ASCII <br> format) <br> TTY |
|  | 20mA current loop output for listing of program code on Teletype ${ }^{\circledR}$ <br> terminal |

## PHYSICAL CHARACTERISTICS

| Power | 115 V or $230 \mathrm{~V} \pm 10 \%$ <br> 50 or $60 \mathrm{~Hz} \pm 10 \%$ <br> 350 watts $/ \mathrm{min}$. to 750 watts/max. <br> (Power dissipation dependent on the number of Simulation Modules <br> configured in the system) |
| :--- | :--- |
| Dimensions <br> Installation | 7 inches high $\times 17$ inches wide $\times 19$ inches deep <br> May be used on table or may be installed in standard 19 inch rack with <br> mount adapters |
| Weight | 65 Ibs. net, 75 lbs. shipping |
| Ventilation | Air Flow 120 CFM |
| Environmental | $0^{\circ}$ to $55^{\circ} \mathrm{C}$, Relative Humidity to $90 \%$. |

## FEATURES

- Real time monitoring instrument for SMS 300
- Totally self contained
- Displays IV address and data
- Displays current program address
- Displays current instruction
- Control of RESET and HALT
- Single step capability
- Real time instruction insertion
- Two real time breakpoints
- Breakpoint output signal


## DESCRIPTION

The MicroController Monitor is a self contained debug and maintenance tool for use with all systems containing the SMS 300 ( $8 \times 300$ ). It provides a control panel allowing an operator to observe, modify, and control program execution in real time permitting system faults to be rapidly traced. The Monitor displays the status of the Address, Instruction, and IV Bus of an Interpreter. Switch registers associated with each display can be used to set breakpoint addresses and enter instructions or data from the Monitor. Program execution can be halted, single stepped, or altered from Monitor controls.

The Monitor can be used to insert instructions thereby examining or modifying the contents of internal registers, Working Store, and IV Bytes. In addition, it can be used to start program execution from any address and enable the operator to set program loops allowing a program segment to be checked independently of normal program flow. Breakpoints on IV data and program address allow the operator to halt program execution or insert instructions in real time.
As shown in the diagram below, the Monitor connects to the system under test through flat ribbon cables (provided) or an adaptor (optional) which plugs into an Interpreter socket. These connections are buffered and present a negligible load to the system. Other features include a Sync output which provides pulses at a selectable program address or Interface Vector event.

## OPERATION

The MicroController Monitor provides the user with two basic modes of system operation, RUN and STEP. When in the RUN mode, indicator LED's provide a continuous real time display of the three major system busses: Address, Instruction, and Data. Program execution can be halted by one of two actions: depressing the Halt switch or selecting the Halt on Breakpoint function. When halted, it is possible to execute one instruction at a time by pressing the RUN/


STEP control to the STEP position. The readout shows the current (static) bus information and the next instruction to be executed.
For checkout purposes it is useful to be able to set a program loop or modify the normal progam flow in some other manner. This is accomplished by inserting in real time the instruction set up on the Instruction Switch Register whenever the Program Address Breakpoint is reached. To check for system noise or similar malfunction a separate Insert Instruction switch can be set to the Multiple position, forcing one instruction repetitively. When halted, a single instruction can be inserted by toggling the Insert Instruction switch to the Single position. When an instruction is being inserted, system ROM is temporarily disabled.
To aid in the diagnosis of a malfunction an advanced breakpoint capability is provided. In addition to the Halt and Insert functions when a Program Address Breakpoint is reached, a breakpoint can be generated on the Interface Vector (IV) Bus data or address. This permits program execution to be halted or a Sync pulse generated in re-
sponse to external data or the contents of RAM. Three modes of IV Breakpoint generation are selectable: Breakpoint on IV Address; Breakpoint on IV Address and IV Write Data; and Breakpoint on IV Address and IV Read Data. The IV Breakpoint Data switches have a "don't care" position to permit generation of a breakpoint on a data subfield. A Sync pulse output is provided on either the IV Breakpoint or Program Address Breakpoint (switch selectable).

## SPECIFICATIONS

| - , Cońnfrols | Function |
| :---: | :---: |
| RUN/STEP | Sets operation mode, continuous execution (RUN) or single step (STEP). |
| INSERT INST | Unconditionally causes execution of the instruction in the Instruction Switch Register. |
| RESET/HALT | Three position switch used to unconditionally HALT program execution or RESET Interpreter's Program Counter to zero. |
| PGM ADR BKPT | Selects appropriate function to be performed when Program Address Breakpoint is reached: HALT-halt on breakpoint, INSERTreplace normal instruction with instruction set into Instruction Switch Register, OFF-program execution unchanged by breakpoint. |
| IV BKPT | Selects appropriate function to be performed when IV Breakpoint is reached: HALT-halt on breakpoint, OFF-program execution unchanged by breakpoint. |
| BKPT UPON | Selects IV Breakpoint on one of three conditions: specified IV address, specified write data at IV address, specified read data at the IV address. |
| SYNC SOURCE | Selects source for output Sync pulse, IV Breakpoint or Program Address Breakpoint. Sync pulse always available at breakpoint regardless of function selected by breakpoint controls. |
| Switch Registers |  |
| INSTRUCTION | Sixteen two position switches for entering instruction to be inserted (during breakpoint or insert instruction control). |
| BREAKPOINT ADDRESS | Thirteen two position switches to select program breakpoint address. |
| IV BREAKPOINT ADDRESS | Eight two position switches to select IV byte breakpoint address or Working Store breakpoint address. |
| BANK | Selects display of LB (Left Bank) or RB (Right Bank) IV address information. Also selects either LB or RB for IV breakpoint. |
| IV BREAKPOINT DATA | Eight three position switches, $0,1, \mathrm{X}$ (don't care), to select IV Data Breakpoint. |
| Displays |  |
| RUN | LED display indicating when Interp |
| CURRENT <br> INSTRUCTION | LED display of the binary value of next instruction to be executed. |
| CURRENT <br> PROGRAM <br> ADDRESS | LED display of the binary address of the next instruction to be performed. |
| IN XEC RANGE | LED display indicating that the value of the Interpreter's program counter and address register may not match because the previous instruction command was "Execute.' |
| BANK | Displays band addressed by the current instruction (left bank or right bank). |
| CURRENT IV ADDRESS | Shows the binary address of the currently enabled IV Byte or Working Store location. |
| CURRENT IV DATA | Binary display of the data on the IV bus. |
| Outputs |  |
| SYNC PGM EN(L) | Pulse output whenever the switch selected breakpoint occurs. A low true signal used to enable or disable system program ROM (required only when Interpreter adaptor is used). |
| Cycle Time |  |
| The Monitor can be adjusted to work with any MicroControllerbased system with a cycle time of 200 ns to $2 \mu \mathrm{~s}$. |  |

## PHYSICAL CHARACTERISTICS

| Power | $115 \mathrm{Vac} \pm 10 \%$ at 0.75 <br> amp max. <br> $230 \mathrm{Vac} \pm 10 \%$ at 0.38 <br> amp max. (optional) <br> $47-63 \mathrm{~Hz}$ |
| :--- | :--- |
| Dimensions | $7^{\prime \prime \prime} \mathrm{H} \times 17.5^{\prime \prime} \mathrm{W} \times 3^{\prime \prime} \mathrm{D}$ |
| Installation | May be used on table <br> or may be installed in <br> standard 19 inch rack <br> (using optional adap- <br> tors). |
| Weight | 10 Ibs. net, 13 lbs. <br> shipping |
| Ventilation | Forced air, 120 CFM. <br> Environmental$0^{\circ}$ to $+50^{\circ} \mathrm{C}$, relative hu- <br> midity to 90\% |
| Cables | 2 provided, 3 feet long |

# CHAPTER 2 mos microprocessors Peripherals and Developmenk Products 

## DESCRIPTION

The 2650A and -1 are additional members of the Signetics family of 8 -bit, NMOS microprocessors.
The 2650A is a functional equivalent of the 2650 with a new mask design which provides improved device operating margins.
The 2650A-1 is a high speed version of the 2650A.

## FEATURES

- Static 8-bit parallel NMOS microprocessor
- Single power supply of +5 volts
- TTL level single phase clock
- Standard 40 pin dual in-line package
- TTL compatible inputs and outputs
- 75 variable length instructions of 1,2 or 3 bytes
- 32k byte address range
- Coding efficiency with multiple addressing modes
- Synchronous or asynchronous memory and I/O interface
- Interfaces directly with industry standard memories
- Single bit serial I/O path
- Seven 8-bit addressable general purpose registers
- Vectored interrupt
- Subroutine return address stack
- $2.4 \mu$ s machine cycle time (2650A)
- $1.5 \mu \mathrm{~s}$ machine cycle time (2650A-1)


## PIN CONFIGURATION



## BLOCK DIAGRAM



## PIN DESIGNATION

| MNEMONIC | NUMBER | NAME | TYPE | FUNCTION |
| :---: | :---: | :---: | :---: | :---: |
| ADRO-ADR12 | 14-2 | Address lines | $\bigcirc$ | Low order memory address lines for instruction or operand fetch. ADRO is the least significant bit and ADR12 is the most significant bit. ADR0 through ADR7 are also used as the I/O device address for extended I/O instructions. |
| ADR13-E/ $\overline{\mathrm{NE}}$ | 19 | Address 13Extended/Non Extended | 0 | Low order memory page address line during memory reference instructions. For I/O instructions this line discriminates between extended and non-extended I/O instructions. |
| ADR14-D/ $\bar{C}$ | 18 | Address 14Data/Control | 0 | High order memory page address line during memory reference instructions. It also serves as the I/O device address for nonextended I/O instructions. |
| $\overline{\text { ADREN }}$ | 15 | Address enable | 1 | Active low input allowing tri-state control of the address bus ADROADR12. |
| DBUS0-DBUS7 | 33-26 | Data bus | 1/0 | These lines provide communication between the CPU, Memory, and I/O devices for instruction and data transfers. |
| $\overline{\text { DBUSEN }}$ | 25 | Data bus enable | 1 | This active low input allows tri-state control of the data bus. |
| OPREQ | 24 | Operation request | 0 | Indicates to external devices that all address, data and control information is valid. |
| $\overline{\text { OPACK }}$ | 36 | Operation acknowledge | 1 | Active low input indicating completion of an external operation. This allows asynchronous functioning of external devices. |
| $\mathrm{M} / \overline{\mathrm{IO}}$ | 20 | Memory/input-output | 0 | Indicates whether the current operation references memory or I/O. |
| $\overline{\mathrm{R}} / \mathrm{W}$ | 23 | Read/ Write | 0 | Indicates a read or a write operation. |
| WRP | 22 | Write pulse | 0 | This is a timing signal from the 2650 that provides a positive-going pulse during each requested write operation (memory or I/O) and a high level during read operations. |
| SENSE | 1 | Sense | 1 | The sense bit in the PSU reflects the logic state of the sense input to the processor at pin \#1. |
| FLAG | 40 | Flag | 0 | The flag bit in the PSU is tied to a latch that drives the flag output at pin \#40. |
| $\overline{\text { INTREQ }}$ | 17 | Interrupt request | 1 | This active low input line indicates to the processor that an external device is requesting service. The processor will recognize this signal at the end of the current instruction if the interrupt inhibit status bit is zero. |
| INTACK | 34 | Interrupt acknowledge | 0 | This line indicates that the 2650 is ready to receive the interrupt vector (relative address byte) from the interrupting device. |
| $\overline{\text { PAUSE }}$ | 37 | Pause | 1 | This active low input is used to suspend processor operation at the end of the current instruction. |
| RUN/ $\overline{\text { WAIT }}$ | 35 | Run/Wait | 0 | This output is a processor status indicator. During normal operation this line is high. If the processor is halted either by executing a halt instruction or by a low input on the pause line, the run/wait line will go low. |
| RESET | 16 | Reset | 1 | Resets the instruction address register to zero and clears the interrupt inhibit bit. |
| CLOCK | 38 | Clock | 1 | A positive going pulse train that determines the instruction execution time. |
| VCC | 39 | +5V | 1 | +5 V power |
| GND | 21 | GND | 1 | Ground |

## FUNCTIONAL DESCRIPTION

The 2650 series processors are general purpose, single chip, fixed instruction set, parallel 8-bit binary processors. A general purpose processor can perform any data manipulations through execution of a stored sequence of machine instructions. The processor has been designed to closely resemble conventional binary computers, but executes variable length instructions of one to three bytes in length.
The 2650 series contains a total of seven general purpose registers, each eight bits long. They may be used as source or destination for arithmetic operations, as index registers, and for I/O transfers.

The processor can address up to 32,768 bytes of memory in four pages of 8,192 bytes each. The processor instructions are one, two, or three bytes long, depending on the instruction. Variable length instructions tend to conserve memory space since a one-or-two byte instruction may often be used rather than a three byte instruction. The first byte of each instruction always specifies the operation to be performed and the addressing mode to be used. Most instructions use six of the first eight bits for this purpose, with the remaining two bits forming the register field. Some instructions use the full eight bits as an operation code.

The Data Bus and Address signals are tristate to provide convenience in system design. Memory and I/O interface signals are asynchronous so that Direct Memory Access (DMA) and multiprocessor operations are easy to implement.

The block diagram for the 2650 series shows the major internal components and the data paths that interconnect them. In order for the processor to execute an instruction, it performs the following general steps:

1. The Instruction Address Register provides an address for memory.
2. The first byte of an instruction is fetched from memory and stored in the Instruction Register.
3. The Instruction Register is decoded to determine the type of instruction and the addressing mode.
4. If an operand from memory is required, the operand address is resolved and loaded into the Operand Address Register.
5. The operand is fetched from memory and the operation is executed.
6. The first byte of the next instruction is fetched.

The Instruction Register (IR) holds the first byte of each instruction and directs the subsequent operations required to execute
each instruction. The IR contents are decoded and used in conjunction with the timing information to control the activation and sequencing of all the other elements on the chip. The Holding Register is used in some multiple-byte instructions to contain further instruction information and partial absolute addresses.

The Arithmetic Logic Unit (ALU) is used to perform all of the data manipulation operations, including Load, Store, Add, Subtract, And, Inclusive Or, Exclusive Or, Compare, Rotate, Increment and Decrement. It contains and controls the Carry bit, the Overflow bit, the Interdigit Carry and the Condition Code Register.
The Register Stack contains six registers that are organized into two banks of three registers each. The Register Select bit picks one of the two banks to be accessed by instructions. In order to accommodate the register-to register instructions, register zero (RO) is outside the array. Thus, register zero is always available along with one set of three registers.
The Address Adder is used to increment the instruction address and to calculate relative and indexed addresses.

The Instruction Address Register holds the address of the next instruction byte to be
accessed. The Operand Address Register stores operand addresses and sometimes contains intermediate results during effective address calculations.

The Return Address Stack (RAS) is a Last In, First Out (LIFO) storage which receives the return address whenever a Branch-toSubroutine instruction is executed. When a Return instruction is executed, the RAS provides the last return address for the processor's IAR. The stack contains eight levels of storage so that subroutines may be nested up to eight levels deep. The Stack Pointer is a three bit wraparound counter that indicates the next available level in the stack. It always points to the current address.

## PROGRAM STATUS WORD

The Program Status Word (PSW) is a major feature of the 2650 which greatly increases its flexibility and processing power. The PSW is a special purpose register within the processor that contains status and control bits.

It is divided into two bytes called the Program Status Upper (PSU) and Program Status Lower (PSL). The PSW bits may be tested, loaded, stored, preset, or cleared using the instructions which affect the PSW. The bits are utilized as shown in Table 1.

| BYTE | MNEMONIC | FUNCTION |
| :---: | :---: | :--- |
| PSU0,1,2 | SP | Pointer for the Return Address Stack. <br> PSU3,4 |
| PSU5 used. These bits are always zero. |  |  |
| PSU6 | II | Used to inhibit recognition of additional Interrupts. <br> PSU7 |
| PSL0 | S | Clag is a latch directly driving the flag output. |
| PSL1 | COM | Carry equals the state of the sense input. <br> Compare determines if a logical or arithmetic comparison is <br> to be made. |
| PSL2 | OVF | Overflow is set if a two's complement overflow occurs. <br> With Carry determines if the carry is used in arithmetic and <br> rotate instructions. |
| PSL3 | WC | RS |

PSU

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S | F | 11 |  |  | SP 2 | SP 1 | SP 0 |

S Sense
F Flag
II Interrupt Inhibit
SP2 Stack Pointer Two
SP1 Stack Pointer One
SPO Stack Pointer Zero

PSL

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CC 1 | CCO | IDC | RS | WC | OVF | COM | C |

CC1 Condition Code One
CCO Condition Code Zero
IDC Interdigit Carry
RS Register Bank Select
WC With/Without Carry
OVF Overflow
COM Logical/Arithmetic Compare
C Carry/Borrow

Table 1 PROGRAM STATUS WORD

## INPUT/OUTPUT INTERFACE

The 2650 series microprocessor has a set of versatile I/O instructions and can perform 1/O operations in a variety of ways. One-and two-byte I/O instructions are provided, as well as a special single-bit I/O facility. The I/O modes provided by the 2650 are designated as Data, Control, and Extended I/O.
Data or Control I/O instructions, also called Non-Extended I/O instructions, are one byte long. Any general purpose register can be used as the source or destination. A special control line indicates if either a Data or Control instruction is being executed.

Extended I/O is a two-byte read or write instruction. Execution of an extended I/O instruction will cause a 8-bit address, taken from the second byte of the instruction, to be placed on the low order eight address lines. The data, which can originate or terminate with any general purpose register, is placed on the data bus. This type of I/O can be used to simultaneously select a device and send data to it.

Memory reference instructions that address data outside of physical memory may also
be used for I/O operations. When an instruction is executed, the address may be decoded by the I/O device rather than memory.

## MEMORY INTERFACE

The memory interface consists of the address bus, the 8 -bit data bus and several signals that operate in an interlocked or handshaking mode.

The Write Pulse signal is designed to be used as a memory strobe signal for any memory type. It has been particularly optimized to be used as the Chip Enable or Read/Write signal.

## INTERRUPT HANDLING CAPABILITY

The 2650 series has a single level hardware vectored interrupt capability. When an interrupt occurs, the processor finishes the current instruction and sets the Interrupt Inhibit bit in the PSW. The processor then executes a Branch to Subroutine Relative to location Zero (ZBSR) instruction and sends out Interrupt Acknowledge and Operation Request signals. On receipt of the INTACK
signal the interrupting device inputs an 8-bit address, the interrupt vector, on the data bus. The relative and relative indirect addressing modes combined with this 8-bit address allow interrupt service routines to begin at any addressable memory location.

## INSTRUCTION SET

It may be seen from examination of the 2650 instruction set that there are many powerful instructions which are all easily understood and are typical of larger computers. There are one-, two-, and three-byte instructions as a result of the multiplicity of addressing models. See Table 2 for a complete listing and Block Diagram for instruction formats.
Automatic incrementing or decrementing of an index register is available in the arithmetic indexed instructions. All of the branch instructions except indexed branching can be conditional.

Register-to-register instructions are one byte; register-to-storage instructions are two or three bytes long. The two-byte register-to-memory instructions are either immediate or relative addressing types.


*See Figure 1
Table 2 INSTRUCTION SET SUMMARY (Cont'd)

## NOTES

1. Condition code (CC1, CC0): 01 if positive, 00 if zero, 10 if negative
2. Condition code (CC1, CC0): 01 if $R 0>r, 00$ if $R 0=r, 10$ if $R 0<r$
3. Condition code (CG1, CC0): 01 if $r>V, 00$ if $r=V, 10$ if $r<V$.
4. Condition code (CC1, CC0): 00 if all selected bits are 1s, 10 if not all the selected bits are 1 s .
5. Index register must be register 3 or 3 .
6. Requires two additional cycles if indirection is specified.
7. Requires two additional cycles if indirection is specified and branch is taken
8. Specify $\mathrm{CC}=11$ for unconditional branch
9. RS, WC and COM bits in PSW are also affected.
10. CC assumes number in register is a binary number

ADDRESSING MODES


## SYMBOLS

R - Register number
V - Value or condition
X - Index register number

- Indirect bit


HIGHER ORDER ADDRESS


## *INDEX CONTROL

Figure 1

## ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

| PARAMETER | RATING | UNIT |  |
| :--- | :--- | :---: | :---: |
| TA $^{\text {P }}$ | Operating temperature | 0 to 70 | ${ }^{\circ} \mathrm{C}$ |
| TSTG | Storage temperature | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| PD | Package power dissipation2 | 1.6 | W |
|  | All input, output, and supply |  |  |
|  | voltages with respect to GND3 | -.5 to +6 | V |

DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$.

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
|  | Current |  | $\mathrm{V}_{\mathrm{IN}}=0 \text { to } 5.25 \mathrm{~V}$ <br> ADREN, DBUSEN $=2.2 \mathrm{~V}$ VOUT $=4 \mathrm{~V}$ <br> ADREN, DBUSEN $=2.2 \mathrm{~V}$ VOUT $=0.45 \mathrm{~V}$ | $\begin{gathered} 2.2 \\ -0.5 \\ 2.4 \\ 0.0 \end{gathered}$ |  | $\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$ | $\mu \mathrm{A}$ |
| I/L | Input load |  |  |  |  |  |
| ILOH | Output high leakage |  |  |  |  |  |
| ILOL | Output low leakage |  |  |  |  |  |
|  | Voltage levels |  |  |  | V |  |  |
| $\mathrm{V}_{1}$ | Input high |  |  |  | Vcc |  |  |
| $V_{\text {IL }}$ | Input low |  |  |  | 0.8 |  |  |
| VOH | Output high | $\mathrm{IOH}=-100 \mu \mathrm{~A}$ |  |  |  |  |  |
| VOL | Output low | $\mathrm{lOL}=1.6 \mathrm{ma}$ |  |  | 0.45 |  |  |
| Icc | Power supply current Capacitance | $V_{C C}=5.25 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |  |  | 150 | $\mathrm{mA}$ |  |
| Cin | Input | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |  |  | 10 |  |  |
| Cout | Output | $V_{\text {OUT }}=0 \mathrm{~V}$ |  |  | 10 |  |  |

NOTES

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operation sections of this specification is not implied.
2. For operating at elevated temperatures the device must be derated based on $+150^{\circ} \mathrm{C}$ maximum junction temperature and thermal resistance of $50^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient (40 pin IW package).
3. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. However, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated maxima.
4. Parameters valid over operating temperature range unless otherwise specified.
5. All voltage measurements are referenced to ground.

PRELIMINARY SPECIFICATION: Manufacturer reserves the right to make design and process changes and improvements

AC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%$.


## NOTES

1. Input levels swing between 0.80 and 2.2 volts
2. Input signal transition times are 20 ns
3. Timing reference level is 1.5 volts.
4. Output load is $-100 \mu \mathrm{~A}$ at 100 pF and 1 TTL load
5. Processor cycles time consists of three clock periods.
6. Output buffer rise time is 150 ns maximum.
7. These values assume that OPACK is returned in time to not cause the processor to idle. Otherwise, the specified maximum will increase by an integral number of clock cycles.

PRELIMINARY SPECIFICATION: Manufacturer reserves the right to make design and process changes and improvements

## VOLTAGE WAVEFORMS



VOLTAGE WAVEFORMS (Cont'd)


TRI-STATE TIMING


## DESCRIPTION

SC/MP (Simple Cost-effective MicroProcessor) is a single-chip 8-bit microprocessor packaged in a standard, 40-pin, dual-in-line package.

N-channel, silicon gate, depletion mode standard-process technology ensures high performance, high reliability, and high producibility.
SC/MP is intended for use in generalpurpose applications where cost per function is a most significant criterion. But cost efficiency is only a part of SC/MP's story. It goes on to include a variety of useful functions that are not even provided by some of the expensive microprocessors, like selfcontained timing circuitry, 16 -bit ( 65 K ) addressing capability, serial or parallel datatransfer capability and common memory/peripheral instructions. The builtin features in conjunction with the low initial cost describe what SC/MP rea!ly is-a microprocessor specifically designed to provide the simplest and most efficient solution to many application requirements.

## APPLICATIONS

- Test systems and instrumentation
- Machine tool control
- Small business machines
- Word processing systems
- Educational systems
- Multiprocessor systems
- Process controllers
- Terminals
- Traffic controls
- Laboratory controllers
- Sophisticated games
- Automotive


## FEATURES

- Simpler interfacing
- Bidirectional Tri-state 8-bit data bus
- TTL-compatible input/output interface
- Si-gate $\mathbf{N}$-channel ion-implant process
- Direct Memory Access (DMA) and multiprocessor capabilities
- Handshake bus-access control on chip
- Simplified programming
- Multiple addressing modes-program-counter-relative, immediate data, indexed, auto-indexed, and implied
- Direct control output
- Three user-accessible control-flag outputs
- Simpler I/O hardware
- Separate serial-data input and output ports
- Two sense inputs
- Direct interfacing to standard memory parts
- Simplified timing hardware
- On-chip clock generator
- Interface flexibility
- Capability to interface with memories or peripherals of any speed
- Large system capability
- Address capability to 65 K bytes of memory
- Simplified power requirements
- Single 5 -volt supply
- Low power


## ABSOLUTE MAXIMUM RATINGS*

|  | PARAMETER | RATING | UNIT |
| :---: | :---: | :---: | :---: |
|  | Voltage at any pin | -0.5 to +7.0 | V |
| $\mathrm{T}_{\text {A }}$ | Operating temperature range | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {STG }}$ | Storage temperature range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
|  | Lead temperature (solder, 10 sec ) | +300 | ${ }^{\circ} \mathrm{C}$ |

## *NOTE

Maximum ratings indicate limits beyond which damage may occur. Continuous operation at these limits is not intended and should be limited to those conditions specified under electrical characteristics.

## PIN CONFIGURATION



## BLOCK DIAGRAM



DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%$

| PARAMETER | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| INPUT SPECIFICATIONS <br> All input pins except $V_{C C}$ and GND <br> Logic "1" input <br> Logic "0" input |  | $\begin{gathered} 2.0 \\ -0.5 \end{gathered}$ |  | $\begin{gathered} V_{C C} \\ 0.8 \end{gathered}$ | $\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$ |
| Capacitance <br> (All pins except $V_{C C}$ and GND) |  |  |  | 10 | pF |
| Supply current ICC | $T_{A}=25^{\circ} \mathrm{C}$ outputs unloaded <br> $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ outputs unloaded |  |  | $\begin{aligned} & 45 \\ & 50 \end{aligned}$ | $\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$ |
| OUTPUT SPECIFICATIONS TRI-STATE pins (NWDS, NRDS, DB0-DB7, AD00-AD11) <br> Logic " 1 " output <br> Logic "0" output | $\begin{aligned} & \text { lout }=-100 \mu \mathrm{~A} \\ & \text { Iout }=2.0 \mathrm{~mA} \end{aligned}$ | 2.4 |  | 0.4 | $\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$ |
| NADS, FLAG 0-2, SOUT, NENOUT <br> Logic " 1 " output <br> Logic " 1 " output <br> Logic "0" output | $\begin{aligned} & \text { lout }=-100 \mu \mathrm{~A} \\ & \text { lout }=-1 \mathrm{~mA} \\ & \text { IOUT }=2.0 \mathrm{~mA} \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}-1 \\ 1.5 \end{gathered}$ |  | 0.4 | $\begin{aligned} & v \\ & v \\ & v \end{aligned}$ |
| NBREQ1 <br> Logic "0" output <br> Logic " 1 " output | $\begin{gathered} \text { lout }=2.0 \mathrm{~mA} \\ 0 \leq \mathrm{V}_{\text {Out }} \leq \mathrm{V}_{\mathrm{CC}} \end{gathered}$ |  |  | $\begin{gathered} 0.4 \\ \pm 10 \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ { }_{\mu \mathrm{A}} \end{gathered}$ |
| XOUT <br> Logic " 1 " output Logic "0" output | $\begin{gathered} \text { IOUT }=-100 \mu \mathrm{~A} \\ \text { IOUT }=1.6 \mathrm{~mA} \end{gathered}$ | 2.4 |  | 0.4 | $\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$ |

## FUNCTIONAL DESCRIPTION

SC/MP is a self-contained general-purpose microprocessor designed for ease of implementation in stand-alone, DMA (Direct Memory Access), and multiprocessor applications. Communications between SC/MP and external memory/peripheral devices are effected via a 12-bit dedicated address bus and an 8-bit bidirectional data bus. During the address interval of each input/ output cycle, SC/MP employs both buses to provide a 16-bit address output: the 12 least 'NOTE
NBREQ is an input/output signal that requires an external resistor to $V_{C C}$.
significant address bits are sent out over the 12 -bit address bus and the 4 most significant address bits are sent out over the 8-bit data bus along with 4 status bits. Separate strobe outputs from SC/MP (NADS, NWDS, NRDS) indicate when valid address information is present on the two buses, and when valid input/outpút memory or peripheral data are present on the 8 -bit bus. To further extend flexibility of application, serial data input/output ports are also provided
so that serial data transfers can be effected under program control. The remaining input/output signals shown in the Detailed Block Diagram are dedicated to generalpurpose control and status functions, including initialization, bus management, microprocessor halt, interrupt request, input/output cycle extension, and userspecified hardware/software interface functions. A detailed description of each input/output signal is provided in Table 1.

## DETAILED BLOCK DIAGRAM



AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, 1 \mathrm{TTL}$ Load..$^{1,3}$

| PARAMETER | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| $\mathrm{f}_{\mathrm{x}}$ | $\begin{gathered} \mathrm{R}=240 \Omega \pm 5 \%(\text { Figure 2B) } \\ \mathrm{C}=300 \mathrm{pF} \pm 10 \% \end{gathered}$ | $\begin{aligned} & 0.1 \\ & 2.0 \end{aligned}$ |  | $\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$ |
| $T C^{2}$ <br> Microcycle |  | $\begin{gathered} 500 \\ 1 \end{gathered}$ |  |  | $\begin{aligned} & \mathrm{ns} \\ & \mu \mathrm{~s} \end{aligned}$ |
| External clock input <br> Two <br> Tw1 <br> XOUT/ADS timing relationship $\mathrm{T}_{H}(\mathrm{ADS})$ | See Figure 2 A <br> See Figure 3 | $\begin{aligned} & 120 \\ & 120 \\ & 100 \end{aligned}$ |  | 225 | ns <br> ns |
| Address and input/output status <br> TD1(ADS) <br> Tw(ADS) <br> Ts(ADDR) <br> $\mathrm{T}_{H}$ (ADDR) <br> Ts(STAT) <br> TH(STAT) <br> $T_{H}$ (NBREQ) | See Figures 5 and 6 | $\begin{array}{\|c} (\mathrm{TC} / 2)-50 \\ \left(\mathrm{TC}_{\mathrm{C}}^{2} / 2\right)-165 \\ 50 \\ \left(\mathrm{TC}_{\mathrm{C}}^{2} / 2\right)-150 \\ 50 \\ 0 \\ \hline \end{array}$ |  | $3 T_{c} / 2$ | ns |
| Data input cycle Td (RDS) Tw(RDS) Ts(RD) $T_{H}(R D)$ $T_{A C C}(R D)$ | See Figure 5 | $\begin{gathered} 0 \\ \mathrm{TC}+50 \\ 175 \\ 0 \\ 2 \mathrm{TC}-200 \end{gathered}$ |  |  | ns |
| Data output cycle Td (WDS) Tw(WDS) $\mathrm{T}_{\mathrm{S}}(\mathrm{WD})$ $T_{H}(W D)$ | See Figure 6 | $\begin{gathered} \mathrm{T}_{\mathrm{C}}-50 \\ \mathrm{~T}_{\mathrm{c}}-75 \\ \left(\mathrm{~T}_{\mathrm{c}} / 2\right)-200 \\ 100 \end{gathered}$ |  |  | ns |
| Input/output cycle extend <br> Ts(HOLD) <br> TD1 (HOLD) <br> TD2 (HOLD) <br> Tw(HOLD) <br> $\mathrm{TH}_{\mathrm{H}}(\mathrm{HOLD})$ | See Figure 7 | $\begin{gathered} 200 \\ 130 \\ 0 \\ \hline \end{gathered}$ |  | $\begin{gathered} 275 \\ 350 \\ \infty \end{gathered}$ | ns |
| ```Bus access Td(NENOUT) TD2(ADS) TH(NENIN)``` | See Figure 4 | $\begin{gathered} \mathrm{T}_{\mathrm{C}} / 2 \\ 0 \\ \hline \end{gathered}$ |  | $\begin{gathered} 150 \\ 3 \mathrm{~T}_{\mathrm{c} / 2} \end{gathered}$ | ns |
| Output load capacitance XOUT <br> All other output pins |  |  |  | $\begin{aligned} & 30 \\ & 75 \end{aligned}$ | pF |

## NOTES

1. All times measured from valid Logic " 0 " level $=0.8 \mathrm{~V}$ or valid Logic " 1 " level $=2.0 \mathrm{~V}$.
2. $T_{c}$ is the time period for two clock cycles of the on-chip or external oscillator ( $T_{c}=2 / f_{x}$ ).

Refer to paragraph titled Timing Control for detailed definition.
3. All times measured with a $50 \%$ duty cycle on the external clock.

## PIN DESIGNATIONS*

| SIGNAL MNEMONIC | FUNCTIONAL NAME | DESCRIPTION |
| :---: | :---: | :---: |
| NRST | Reset input | Set high for normal operation. When set low, aborts in-process operations. When returned high, internal control circuit zeroes all programmer-accessible registers; then, first instruction is fetched from memory location 000116. |
| CONT | Continue input | When set high, enables normal execution of program stored in external memory. When set low, SC/MP operation is suspended (after completion of current instruction) without loss of internal status. |
| NBREQ | Bus request input/output | Associated with SC/MP internal allocation logic for system bus. Can be used as bus request output or bus busy input. Requires external load resistor to $\mathrm{V}_{\mathrm{Cc}}$. |
| NENIN | Enable input | Associated with SC/MP internal allocation logic for system bus. When set low, SC/MP is granted access to system buses. When set high, places system buses in high-impedance (Tri-state) mode. |
| NENOUT | Enable output | Associated with SC/MP internal allocation logic for system bus. Set low when NENIN is low and SC/MP is not using system buses (NBREQhigh). Set high at all other times. |
| NADS | Address strobe output | Active-Low strobe. While low, indicates that valid address and status output are present on system buses. |
| NRDS | Read strobe output | Active-Low strobe. On trailing edge, data are input to SC/MP from 8-bit bidirectional data bus. High-impedance (Tri-state) output when input/output cycle not in progress. |
| NWDS | Write strobe output | Active-Low strobe. On trailing edge, data are input to SC/MP from 8-bit bidirectional data bus. High-impedance (Tri-state) output when input/output cycle not in progress. |
| NHOLD | Input/ouput cycle extend input | When set low prior to trailing edge of NRDS or NWDS strobe, stretches strobe to extend input/output cycle; that is, strobe is held low until NHOLD signal is returned high. |
| SENSE A | Sense/interrupt request input | Serves as interrupt request input when SC/MP internal IE (Interrupt Enable) flag is set. When IE flag is reset, serves as user-designated sense condition input. Sense condition testing is effected by copying status register to accumulator. |
| SENSE B | Sense input | User-designated sense-condition input. Sense-condition testing is effected by copying status register to accumulator. |
| SIN | Serial input to E register | Under software control, data on this line are right-shifted into E register by execution of SIO instruction. |
| SOUT | Serial output from E register | Under software control, data are right-shifted onto this line from E register by execution of SIO instruction. Each data bit remains latched until execution of next SIO instruction. |
| $\begin{aligned} & \text { FLAGS } \\ & 0,1,2 \end{aligned}$ | Flag outputs | User-designated general-purpose flag outputs of status register. Under program control, flags can be set and reset by copying accumulator to status register. |
| $\begin{aligned} & \text { AD00- } \\ & \text { AD11 } \end{aligned}$ | Address bit 00 through address bit 11 | Twelve Tri-state address output lines. SC/MP outputs 12 least significant address bits on this bus when NADS strobe is low. Address bits are then held valid until trailing edge of read (NRDS) or write. (NWDS) strobes. After trailing edge of NRDS or NWDS strobe, bus is set to highimpedance (Tri-state) mode until next NADS strobe. |

PIN DESIGNATIONS 1 (Cont'd)

| MNEMONIC | FUNCTIONAL NAME Output at NADS Time 2,3,4 | DESCRIPTION |
| :---: | :---: | :---: |
| DB0 | Address Bit 12 | Fourth most significant bit of 16-bit address. |
| DB1 | Address Bit 13 | Third most significant bit of 16-bit address. |
| DB2 | Address Bit 14 | Second most significant bit of 16-bit address |
| DB3 | Address Bit 15 | Most significant bit of 16-bit address. |
| DB4 | R-Flag | When high, data input cycle is starting; when low, data output cycle is starting. |
| DB5 | I-Flag | When high, first byte of instruction is being fetched. |
| DB6 | D-Flag | When high, indicates delay cycle is starting; that is, second byte of DLY instruction is being fetched. |
| DB7 | H-Flag | When high, indicates that Halt instruction has been executed. (In some system configurations, the H-Flag output is latched and, in conjunction with the Continue input, provides a programmed Halt.) |

NOTES

1. The 8 -bit bidirectional data bus is set to the high-impedance (tri-state) mode except when it is actually in use by SC/MP (NADS, NRDS, or NWDS low). During the addressing interval of each input/output cycle (NADS Iow), SC/MP provides address and status outputs over the bus. During the ensuing data-transfer interval (NRDS or NWDS low), 8-bit input or output data bytes are routed over the bus.
2. The DB0 through DB7 (AD12-HFLG) lines are a high-impedance (open circuit) load when SC/MP does not have access to the input/output bus.
3. Input at NRDS time: Input data are expected on the eight (DBO-DB7) lines.
4. Output at NWDS time: Output data are valid on the eight (DB0-DB7) lines.

## DRIVERS AND RECEIVERS

Equivalent circuits for SC/MP drivers and receivers are shown in Figure 2. All inputs have static charge protection circuits consisting of an RC filter and voltage clamp. These devices still should be handled with care, as the protection circuits can be destroyed by excessive static charge.


## TIMING CONTROL

All necessary timing signals are provided by a three-stage inverter ring oscillator contained on the SC/MP chip. Two control pins, XIN and XOUT, permit the frequency of the oscillator to be controlled by any of the following methods:

1. By leaving the XOUT pin unterminated and driving the XIN pin with an externally generated TTL clock that conforms to the parameters shown in Figure 3A. For this method, the frequency of the oscillator is equalt to the frequency of the external clock input.
2. By connecting a resistor-capacitor feedback network between the XIN and XOUT pins and GND as shown in Figure 3B.
3. By connecting a crystal with low-pass filter network between the XIN and XOUT pins and GND as shown in Figure 3C (for above 1 MHz or Figure 3 D (for 1 MHz or below). For this method, the frequency of the oscillator is equal to the resonant frequency of the crystal and the low-pass filter prevents unwanted harmonic oscillations.

In addition to illustrating appropriate frequency-control networks for the on-chip oscillator, Figures 3A through 3D also show how an optional driver may be used to derive a system clock from the oscillator signal present at the XOUT pin. For reference purposes, the timing relationship between the XOUT signal and the NADS strobe is shown in Figure 5.

In the discussions that follow, instruction execution and input/output timing are described in terms of microcycles.
The time interval of a microcycle is four times the period of the oscillator, that is:

$$
\begin{aligned}
& \text { period of one microcycle }=2 T c \\
& T_{C}=2\left(\frac{1}{f_{\text {osc }}}\right)=2\left(\frac{1}{f_{\text {res }}}\right)=2\left(\frac{1}{f_{\mathrm{xIN}}}\right)
\end{aligned}
$$

Where:
$T_{C}=$ time period for two cycles of on-chip or external oscillator
$f_{\text {OSc }}=$ frequency of on-chip oscillator
$\mathrm{f}_{\text {res }}=$ resonant frequency of crystal connected between XIN and XOUT pins
$\mathrm{f}_{\mathrm{XIN}}=$ frequency of external clock applied to XIN pin


SUGGESTED VALUES FOR CRYSTAL WITH LOW-PASS FILTER NETWORK.

| Crystal | Rp | $\mathbf{C}_{1}$ | $\mathbf{R}_{1}$ |
| :--- | :---: | :---: | :---: |
| 2 MHz | $100 \mathrm{k} \Omega$ | 56 pF | $1 \mathrm{k} \Omega$ |
| 3.58 MHz | $100 \mathrm{k} \Omega$ | 27 pF | $1 \mathrm{k} \Omega$ |
| 4 MHz | $100 \mathrm{k} \Omega$ | 27 pF | $1 \mathrm{k} \Omega$ |$\quad$| NOTE |
| :--- |

Figure 3

## INSTRUCTION FORMAT

The SC/MP instruction repertoire includes both single-byte and double-byte instructions. A single-byte instruction consists of an 8 -bit operation code that specifies an operation that SC/MP can execute without further reference to memory. A double-byte instruction consists of an 8 -bit operation code and an 8-bit data or displacement field. When the second byte represents a data field, the data are processed by SC/MP during execution of the instruction, thereby eliminating the need for further memory references. When the second byte represents a displacement value, it is used to calculate a memory address that will be accessed (written into or read from) during execution of the instruction (refer to Addressing).

## DATA STORAGE

As shown in the Detailed Block Diagram, SC/MP provides ten internal registers, seven of whivh are accessible to the programmer. The purpose and function of these registers are described below.

Program Counter-The program counter is a 16 -bit register that contains the address of the instruction being executed. The contents of this register are automatically incremented by one just before each instruction is fetched from memory to enable sequential execution of the stored instructions. Under program control, the contents of this register also may be modified or exchanged with the contents of a pointer register to effect subroutine calls and program branches.

## NOTE

The 16 -bit address output of the program counter consists of a 4-bit high-order address and a 12-bit low-order address. When the program counter is incremented at the start of each instruction fetch input/output cycle, only the 12 low-order bits are affected; no carry is provided to the 4 high-order bits. For systems employing memories of 4 K or less, the high-order bits can be ignored as they are set to $0000_{16}$ following initialization. For systems employing larger memories, the contents of a pointer register can be modified to select the desired 4 K block of memory.

Pointer Registers-The pointer registers are 16-bit general-purpose registers that normally are loaded under program control with reference addresses that serve as page

FREQUENCY CONTROL NETWORKS FOR ON-CHIP OSCILLATOR

Typical Osillator Frequency vs RC Time Constant


Figure 4

XOUT/NADS TIMING RELATIONSHIP


Figure 5
pointers, stack pointers, and subroutine pointers. In applications having minimal memory addressing requirements, these registers may be used alternately as data storage registers.
NOTE
When interrupt requests are enabled, pointer register 3 is automatically referenced by the internal microprogram for formation of the starting address of the user-generated interrupt service routine. (See Figure 10.) In this case, the contents of pointer register 3 must be set to one less than the memory location of the first instruction in the interrupt service routine.
Accumulator-The 8-bit accumulator (AC) is the primary working register of SC/MP. It is used for performing and storing the results of arithmetic and logic operations as well as for data transfers, shifts, rotates, and data exchanges with the program counter, the pointer registers, and the status register.

Extension Register-The extension register is used both for serial input/output data transfers and with the accumulator to effect arithmetic, logic, and data-transfer operations. If the second byte of an indexed or auto-indexed memory reference instruction
(refer to Addressing) equals -12810 , the contents of the extension register are used as the displacement value for address formation.

Status Register-The status register provides storage for arithmetic, control, and software status flags. For more detailed information on the function of this register, refer to Status Register under the description of the Arithmetic and Logic Unit.
Instruction Register-The 8-bit instruction register is not accessible to the programmer. During the fetch phase of each instruction cycle, this register is loaded with the 8bit instruction operation code retrieved from memory (for a single-byte instruction or the first byte of a double-byte instruction).
Data Input/Output Register-The data input/output register is not accessible to the programmer. It is used for temporary storage of all input/output data received via or transmitted over the 8-bit bidirectional data bus during the data-transfer interval of each input/output cycle (NRDS or NWDS Iow).

Address Register-The 16-bit address register is not accessible to the programmer. It is used for temporary storage of the 16-bit address transmitted during an input/output cycle.

## ARITHMETIC AND LOGIC UNIT

The Arithmetic and Logic Unit (ALU) provides the data-manipulation capability that is an essential feature of any microprocessor. The operations provided by the ALU include OR, XOR, increment, decrement, binary addition, and decimal addition. For decimal addition, the data inputs to the ALU are treated as two 4-bit BCD digits, thereby eliminating the program-storage and execution time required to perform BCD to binary conversion.

## BUS TRANSFER LOGIC

The bus transfer logic processes the gating and function control outputs of the instruction-decode logic to provide the shift-right (with link, without link, or with serial input data), rotate (with or without link), and bus-exchange functions necessary for data movement between the SC/MP internal read and write buses. A general summary of the data-manipulation capabilities available to the programmer follows.

1. Either the low-order or the high-order byte of any pointer register can be exchanged with the contents of the 8-bit accumulator. Thus, data exchanges between the pointer registers can be effected one byte at a time via the accumulator.
2. The contents of the program counter can be directly exchanged with the contents of any pointer register.
3. The contents of the extension register can be loaded into the accumulator or can be exchanged with the contents of the accumulator. When the accumulator is loaded from the extension register, the original contents of the accumulator are lost.
4. The contents of the status register can be copied into the accumulator to enable status modification or conditional branch testing. When the status register is copied into the accumulator, the contents of the status register are not altered but the original contents of the accumulator are lost.
5. The contents of the accumulator can be copied into the status register to change the outputs of the status register, except for status bits 4 and 5 (Sense A and B inputs to SC/MP). Since these are read-only bits, they are not affected by data movements internal to SC/MP. Copying the accumulator into the status register does not alter the contents of the accumulator.

NOTE
The flag 0,1 , and 2 outputs of the status register serve as latched flags, in other words, they are set to the specified state when the contents of the accumulator are copied into the status register, and they remain in the specified state until the contents of the status register are modified again under program control.

## STATUS REGISTER

The function of each bit in the status register is described briefly below.

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CY} / \mathrm{L}$ | OV | $\mathrm{S}_{\mathrm{B}}$ | $\mathrm{S}_{\mathrm{A}}$ | IE | $\mathrm{F}_{2}$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{0}$ |

User Flag 0-User-assigned general-purpose status bit for implementation as software status bit or in system control applications. This status bit is available as an external output from SC/MP.
User Flag 1-Same as User Flag 0.
User Flag 2-Same as User Flag 0.
Interrupt Enable Flag-Internal status bit that is set and reset under program control. When set, SC/MP recognizes external interrupt requests received via Sense A input. When reset, inhibits SC/MP from recognizing interrupt requests.

Sense A-General purpose status input for sensing external conditions. When IE flag is reset, this bit can be tested by copying status register to accumulator. When IE flag is set, this bit serves as interrupt request input causing SC/MP to automatically branch to user-generated interrupt-service routine in response to high input.

Sense B-Same as Sense A except that it is not tested for interrupt status.

## NOTE

Sense $A$ and $B$ inputs are read-only bits. Thus, they are not affected when the contents of the accumulator are copied into the status register.

Overflow (OV)-This bit is set if an arithmetic overflow occurs during an add (ADD, ADI, or $A D E$ ) or a complement-and-add instruction (CAD, CAI, or CAE). It is not affected by the decimal-add instructions (DAD, DAI, or DAE).
Carry/Link (CY/L)-This bit is set if a carry from the most significant bit occurs during an add, complement-and-add, or decimaladd instruction. Thus, it serves as a carry input to the next add instruction. In addition, it is included in the Shift Right with Link (SRL) and Rotate Right with Link (RRL) instructions.

## CONTROL

The operation of the SC/MP microprocessor consists of repeatedly accessing or fetching instructions from the program stored in external memory and executing the operations specified by the instructions. These two steps are carried out under the control of an internal microprogram. (SC/MP is not user-microprogrammable.) The microprogram is similar to a state table specifying the series of states of system control signals necessary to carry out each instruction. Microprogram storage is provided in the instruction decode and control logic, and microprogram routines are implemented to fetch and execute instructions. The fetch routine first increments the program counter, and then causes the instruction address to be transferred from the program counter to the system buses via the output address register. The microprogram next initiates an input data transfer. When the instruction operation code is subsequently placed on the 8 -bit data bus (singlebyte instruction or first byte of double-byte instruction), the operation code is loaded into the instruction register. The operation code is then partially decoded to determine whether the instruction contains a second byte. If it does, a second input data transfer is effected to load the next byte in the data input/output register.
After the complete instruction is stored in the instruction and/or data input/output register(s), the instruction decoder transforms the instruction operation code into the address of the appropriate instructionexecution routine contained in the internal microprogram. The microprogram then branches to the specified internal address to initiate execution of the instruction. The
resulting execution routine comprises one or more microinstructions that implement the required functions. For example, the first microcycle of an Extension Register Add Instruction (ADE) causes the contents of the extension register to be gated onto the read bus, transferred to the write bus via the bus control logic, and then written into the data input/output register. The next microcycle causes the contents of the accumulator to be gated onto the read bus, the contents of the read bus to be added to the contents of the data input/output register via the ALU, and the resultant output of the ALU to be written into the accumulator via the write bus. The final step of the execution routine is a jump back to the fetch routine to access the next instruction.

## INITIALIZATION

Since SC/MP may power up in a random condition, the following power-up and initialization procedure is recommended.

1. Apply power (GND and $\mathrm{V}_{\mathrm{CC}}$ ) and set NRST low.

## note

Allow ample time (typically, 250 ms ) for the oscillator and the internal clocks to stabilize. In systems where NRST is
set low after turning on power, NRST must remain low for a minimum of 4 TC. While NRST is low, any in-process operations are aborted automatically. When NRST is low strobes and address and data buses are in the Non-I/O state (high-Z state).
2. Set NRST high. If the rise time of this input is too slow, the processor, first, will initialize and execute a few instructions and, then, will reinitialize. If the application is such that multiple initialization is undesireable, NRST should be brought high at a minimum rate of 2 volts per microcycle.

## NOTE

This causes the SC/MP internal control circuit to set the contents of all programmer-accessible registers to zero Thus, when SC/MP is granted access to the system buses following initialization, the first instruction is fetched always from memory location 0001 16. The NBREQ output goes low, indicating the start of this input/output cycle; this occurs at a time within 13 Tc after NRST is set high. Normal execution of the program continues as long as NRST remains high.

## PARALLEL DATA TRANSFERS

Parallel data transfers occur during each instruction fetch and during the ensuing read/write cycle associated with execution of the memory-reference instructions. This class of instruction could perhaps more properly be called the "Input/Output Refer-
ence Class" in the case of the SC/MP microprocessor, since all data tranfers, whether with memory, peripheral devices, or a cencral processor data bus, occur through the execution of these instructions. This unified bus structure is in contrast with many other microprocessors and minicomputers that have one instruction type (input/output class) for communication with peripheral devices and another instruction type (memory reference class) for communication with memories. The advantage of the approach taken by SC/MP is that a wider variety of instructions the entire memory-reference class) is available for communications with peripherals. Thus, the LD and ST (Load and Store) instructions can be used for basic transfers, the ILD and DLD (increment/decrement and load) instructions can be used for indexing peripheral registers, and the remaining memory reference instructions can be used, as required, for "one-step" retrieval and processing of peripheral input data.

## BUS UTILIZATION

The bus utilization of SC/MP is shown in Table 2.


Table 2 BUS UTILIZATION OF EACH INSTRUCTION

NBREQ, NENIN, and NENOUT are active and bus access is controlled as shown in Figure 5. If NENIN is returned high during an input/output cycle, the input/output cycle is repeated when NENIN is again returned low.
During an ILD or DLD instruction, SC/MP does not relinquish the bus between the loading of the data and the storing of the modified data. If NENIN is brought high after the data have been loaded, the load portion of the cycle is not repeated when NENIN is returned low.

## BUS ACCESS

Before SC/MP can initiate parallel data transfers with memory or peripheral devices, it must have access to the system address and data buses. Three of the SC/MP input/output signals are associated with bus control: NBREQ, NENIN, and NENOUT. For simple stand-alone applications, the NENOUT signal can be ignored and the NENIN signal can be tied to GND to allow the SC/MP microprocessor to have continual access to the system buses. The NBREQ input/output line then goes low during each input/output cycle as shown in Figures 6 and 7 to indicate when SC/MP is actually using the system buses.

## NOTE

The NBREQ input/output line must be tied to $V_{C C}$ via an external load resistor to allow normal operation of the SC/MP microprocessor.

For DMA and multiprocessor applications, the NBREQ, NENIN, and NENOUT signals can be interconnected in various configurations to allow bus access to be granted to requesting devices according to userspecified priorities. Figure 5 illustrates the general sequence in which these signals are processed by SC/MP to gain access to the system buses and to indicate when the buses are actually being used.

## INPUT/OUTPUT CYCLE

Once SC/MP has control of the system buses, the actual input/output cycle begins. As shown in Figures 6 and 7, the functions of memory addressing, data reading, and data writing are implemented, respectively, by the address strobe (NADS), the read strobe (NRDS), and the write strobe (NWDS). Note that the NBREQ signal is reset high at the end of the input/output cycle to indicate that the system buses are now free for use by the highest-priority requesting device.
The first operation that SC/MP performs for each input/output cycle is to load the 12 least significant address bits onto the 12 -bit address bus, and the 4 most significant

B. NBREQ, NENIN, and NENOUT Timing


NOTES

1. NENOUT is always high while SC/MP is actually using bus; that is, NENIN input and NBREQ output are low
2. When SC/MP is not using bus (NBREQ output or NENIN input high), NENOUT is held in same state as NENIN input.
3. NENOUT goes low to indicate that SC/MP was granted access to bus (NENIN low) but is not using bus.
4. NENOUT goes high in response to high NENIN input.
5. SC/MP generates bus request; bus access not granted because NENIN high.
6. NENIN goes low. Bus access now granted and input/output cycle actually initiated. If NENIN is set high while SC/MP has access to the bus, the address and data ports will go to the high-impedance (Tri-State) state, but NBREQ will remain low. When NENIN is subsequently set low, the input/output cycle will begin again.
7. Input/output cycle completed. NENOUT goes low to indicate that SC/MP granted access to bus but not using bus. If NENIN had been set high before completion of input/output cycle. NENOUT would have remained high.

Figure 5


Timing is valid when NENIN is low before NBREQ is set low by SC/MP; see Figure 5 for NADS timing when NENIN is set low after NBREQ.

Figure 6
address bits along with 4 status bits onto the 8-bit data bus. At the same time, SC/MP sets the NADS output low to indicate that the address and the status information are valid. The low-order address on the 12-bit bus is then held valid for the duration of the input/ output cycle; the high-order address and the status information on the 8-bit bus remain valid only while NADS is low. While valid, the status bits have the following significance:

RFLG-When high, indicates that input/ output cycle is read cycle; when low, indicates that input/output cycle is write cycle.
IFLG-Set high to indicate that instruction operation code (single-byte instruction or first byte of double-byte instruction) will be output from memory following NADS.

DFLG-Set high only when second byte of Delay Instruction is to be read from memory following NADS. Execution of the Delay Instruction then starts at trailing edge of NRDS. Upon completion, SC/MP provides NADS output to initiate next input/output cycle if bus access is granted. Time in microcycles from leading edge of delay flag to leading edge of subsequent NADS output is computed from the following formula:

$$
\begin{aligned}
& \text { Delay }=[9+2(\mathrm{AC})+2 \text { disp }+29 \text { disp }] \\
& \text { microcycles } \\
& \text { where: } \\
&(\mathrm{AC})=\text { unsigned contents of accumulator } \\
& \text { disp }= \text { unsigned displacement value contained } \\
& \text { in second byte of Delay Instruction }
\end{aligned}
$$

The time derived from the above formula does not include the four microcycles required to fetch the first byte of the Delay Instruction. Thus, when the Delay Instruction is used for software timing, total instruction execution time equals $[13+2(A C)$ +2 disp +29 disp] microcycles.

## NOTE

When Halt Instruction is executed, instruction decode and control logic inhibits incrementing of program counter for one input/output cycle. Thus, Halt Instruction is read from memory a second time to enable generation of HFLG output, but no further processing of Halt Instruction occurs. In effect, this procedure ensures HFLG is output in advance of the next instruction to be fetched from memory.

HFLG-Set high only during addressing interval of read cycle that follows Halt Instruction. HFLG may be used to cause userprovided external logic to set the CONT input low, and thereby to effect a programmed halt. Since HFLG read cycle precedes the next instruction fetch, termination of programmed halt enables fetch of first instruction that follows Halt Instruction.


After resetting the NADS output, SC/MP generates an NRDS or NWDS strobe, respectively, to initiate a data-input (read) or data-output (write) operation. For a read operation, input data are strobed into SC/MP from the 8 -bit bus on the trailing edge of the NRDS strobe. For a write operation, SC/MP places valid output data on the 8 -bit bus on the leading edge of the NWDS strobe. After resetting the NRDS or NWDS strobe to complete the data transfer, SC/MP then resets the NBREQ signal to indicate that the system buses are free for use by another controller.

## INPUT/OUTPUT CYCLE EXTENSION

As shown in Figure 8, the NHOLD signal may be set low prior to the trailing edge of the NRDS or NWDS strobe to cause SC/MP to lengthen the input/output cycle by holding the strobe active until after the NHOLD signal is returned high. Since there is no restriction on the maximum duration of the NHOLD signal, it can be used in a variety of
applications ranging from accommodation of memories/peripherals with long access times to single-cycle control of the operating program for software debug purposes.
Figure 9 illustrates a typical circuit that may be used to generate an NHOLD signal of repeatable duration. The circuit shown employs an N74165 8-Bit Parallel In/Serial Out Shift Register to allow selection of an input/ output cycle extend time that ranges from $\mathrm{T}_{\mathrm{c}} / 2$ to $2 \mathrm{~T}_{\mathrm{c}}$ in increments of $\mathrm{T}_{\mathrm{c}} / 2$. Functional operation of the circuit is controlled by the NADS strobe and XOUT signals. Each time that the NADS strobe goes low, the data present at the A through H terminals are loaded into the shift register in parallel. When the NADS strobe subsequently returns high, the data are then shifted out serially on the positive-to-negative transitions of XOUT. Thus, the NHOLD output of the circuit is set low on the leading edge of each NADS strobe and, as shown in the chart that accompanies the circuit diagram, it remains low for a time period ranging from three clock cycles minimum (B, C,

D, and E inputs = Logic " 1 ") to seven clock cycles maximum ( $B, C, D$, and $E$ inputs = Logic "0").
It is important to note that instruction execution time is increased whenever an input/ output cycle is extended via the NHOLD signal. For purposes of computing the increase in instruction execution time, it is necessary to distinguish between the terms Input/Output Cycle Delay Period and Input/ Output Cycle Extend Time. The term Input/Output Cycle Delay Period refers to the time that the NRDS/NWDS strobe is actually "stretched" to provide the required memory or peripheral access time. The term Input/Output Cycle Extend Time refers to the additional number of microcycles required by the internal SC/MP microprogram to complete the extended input/output cycle; that is:

| INPUT/OUTPUT CYCLE |  |
| :--- | ---: |
| Delay Period | Extend Time |
| $\mathrm{Tc} / 2$ through 2Tc |  |
| $(>0 \leq 1 \mu \mathrm{cycle})$ |  |
| $5 \mathrm{Tc} / 2$ through 4Tc |  |
| $(>1 \leq 2 \mu$ cycles $)$ |  |
| $9 \mathrm{Tc} / 2$ through 6Tc |  |
| $(>2 \leq 3 \mu$ cycles) |  |
| etc. |  |

The total increase in instruction execution time, therefore, is equal to the Input/Output Cycle Extend Time multiplied by the total number of input/output cycles associated with the instruction. For example, a DLD Instruction is normally executed in 22 mi crocycles. Since this instruction employs three read input/output cycles and one write input/output cycle, an Input/Output Cycle Extend Time of one microcycle would increase total DLD Instruction execution time to 26 microcycles.

## SERIAL DATA TRANSFERS

Serial input/output data transfers can be used efficiently with very slow input/output peripherals such as $X-Y$ plotters, teletypewriters, slow-speed printers, and so forth. Such transfers can be effected in any of the following manners:

1. By assigning serial input/output functions to the extension register via the SIO (Serial Input/Output) Instruction. When this instruction is executed, the contents of the extension register are shifted right one bit. At the same time, data present on the SIN line are shifted into bit position 7 of the extension register and the original contents of bit position 0 are shifted into a flip-flop to provide a latched output of the SOUT line. The SOUT data are then held latched until the next SIO instruction is executed.


Figure 9
2. By using one of the status flags as an output data bit and one of the sense lines as an input data bit.
3. By implementing external logic such that only one line of the 8-bit data input/output bus is used.
For synchronous systems, serial data input/ output timing may be provided by program loops that employ the delay instruction, or by using one or more of the transfer instructions (see Table 2) to test the output of an external timing circuit. For asynchronous systems, one of the sense inputs can be used for testing bit-received/ready status and a pulsed flag output can be provided, under program control, for peripheral indexing each time that a data bit is actually shifted in or out.

Systems that have several indut/outbut devices must be multiplexed, device selection can then be accomplished using the status flag outputs of SC/MP, or by using parallel input/output commands to load an external latch. Systems that do not require serial input/output capability can employ the SIN and SOUT lines as a sense input and flag output, respectively.

## INTERRUPTS

When the internal interrupt enable (IE) flag is set under program control, the Sense A line is enabled to serve as an interrupt request input; when the IE flag is reset, SC/MP is inhibited from detecting interrupts. Thus, while the IE flag is set, the Sense A input is tested prior to the fetch phase of each instruction as shown in Figure 10. Upon detection of an interrupt re-
quest (Sense A high), the following events occur automatically.


1. The status register IE flag is reset to prevent SC/MP from responding to any further interrupt requests. Interrupt request capability can then be reenabled during or at the end of the ensuing user-generated interrupt service routine via the IEN (Enable Interrupt) Instruction or by copying the accumulator into the status register.
2. The contents of the program counter are exchanged with the contents of the pointer register 3.
3. The contents of the program counter are incremented by one to address the first instruction of the user-generated interrupt service routine.

The interrupt system must be armed before interrupts are enabled. This is accomplished as follows:

1. First, the Interrupt Enable Bit in the Status Register is set true by executing either an Enable Interrupt Instruction (IEN) or a Copy Accumulator to Status Register Instruction (CAS).
2. Second, one additional instruction is fetched and executed.

A return from interrupt is accomplished by executing two instructions: Enable Interrupt (IEN) immediately followed by Ex-
change Pointer 3 with Program Counter (XPPC 3).

## MICROPROCESSOR HALT

The CONT input to SC/MP is provided to enable suspension of operation without loss of internal status. Processing of the CONT input is shown in Figure 9. Since this is an asynchronous input, it can be controlled by external timing logic, or as stated previously, the HALT flag output that appears on the 8 -bit data bus (during the read cycle that follows execution of a Halt Instruction) can be used with an external circuit to effect a programmed halt condition. Note that when an interrupt request is detected while the CONT input is low, the first instruction of the user-generated interrupt service routine is automatically executed. Thus, the first instruction of the interrupt service routine can be used to reset the external CONT input logic and, thereby, to terminate the
microprocessor halt condition if so desired.
After execution of an instruction, the CONT input must be high for a minimum time of 2Tc (1 microcycle) in order to fetch and execute the next instruction.

## INSTRUCTION SET

The SC/MP instruction set provides the general-purpose user of microprocessors a powerful programming capability along with above-average flexibility and speed. The instruction set consists of 46 instructions, which comprise eight general categories. A listing of the complete instruction set is provided in Table 2; typical instruction execution times are given in Table 3, and notations and symbols used as shorthand expressions of instruction capability are defined in Table 4.

| DOUBLE-BYTE INSTRUCTIONS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| MNEMONIC | DESCRIPTION | OBJECT FORMAT | OPERATION | MICROCYCLES |
| LD ST <br> AND <br> OR <br> XOR <br> DAD <br> ADD <br> CAD | Memory reference instructions <br> Load <br> Store <br> AND <br> OR <br> Exclusive-OR <br> Decimal add <br> Add <br> Complement and add |  | $\begin{aligned} & (\mathrm{AC})-(\mathrm{EA}) \\ & (\mathrm{EA})-(\mathrm{AC}) \\ & (\mathrm{AC})-(\mathrm{AC}) \perp(\mathrm{EA}) \\ & (\mathrm{AC})-(\mathrm{AC}) \vee(\mathrm{EA}) \\ & (\mathrm{AC})-(\mathrm{AC}) \forall(\mathrm{EA}) \\ & (\mathrm{AC})-(\mathrm{AC})_{10}+(\mathrm{EA})_{10}+(\mathrm{CY} / \mathrm{L}) ;(\mathrm{CY} / \mathrm{L}) \\ & (\mathrm{AC})-(\mathrm{AC})+(\mathrm{EA})+(\mathrm{CY} / \mathrm{L}) ;(\mathrm{CY} / \mathrm{L}),(\mathrm{OV}) \\ & (\mathrm{AC})-(\mathrm{AC})+\sim(\mathrm{EA})+((\mathrm{CY} / \mathrm{L}) ; \\ & (\mathrm{CY} / \mathrm{L}),(\mathrm{OV}) \end{aligned}$ | $\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 23 \\ & 19 \\ & 20 \end{aligned}$ |
| $\begin{aligned} & \text { ILD } \\ & \text { DLD } \\ & \hline \end{aligned}$ | Memory increment/ decrement instructions Increment and load Decrement and load | $$ | $\begin{aligned} & (A C),(E A)-(E A)+1 \\ & (A C),(E A)-(E A)-1 \end{aligned}$ | $\begin{aligned} & 22 \\ & 22 \\ & \hline \end{aligned}$ |
| LDI ANI <br> ORI <br> XRI <br> DAI <br> ADI <br> CAI | Immediate instructions <br> Load immediate <br> AND immediate <br> OR immediate <br> Exclusive-OR immediate <br> Decimal add immediate <br> Add immediate <br> Complement and add <br> immediate |  | (AC)-data <br> (AC)-(AC) $\Lambda$ data <br> ( $A C$ )-(AC) $V$ data <br> (AC)-(AC) $\forall$ data <br> (AC)-(AC) ${ }_{10}+$ data $_{10}+(C Y / L) ;(C Y / L)$ <br> $(A C)-(A C)+$ data $+(C Y / L)$; (CY/L), (OV) <br> $(A C)-(A C)+\sim$ data $+(C Y / L)$; <br> (CY/L), (OV) | $\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 15 \\ & 11 \\ & 12 \end{aligned}$ |
| $\begin{aligned} & \text { JMP } \\ & \text { JP } \\ & \text { JZ } \\ & \text { JNZ } \end{aligned}$ | Transfer instructions Jump <br> Jump if positive <br> Jump if zero <br> Jump if not zero |  | $\begin{aligned} & \text { (PC)-EA } \\ & \text { If }(A C) \geq 0,(P C)-E A \\ & \text { If }(A C)=0,(P C)-E A \\ & \text { If }(A C) \neq 0,(P C)-E A \end{aligned}$ | $\begin{aligned} & 11 \\ & 9,11 \\ & 9,11 \\ & 9,11 \end{aligned}$ |
| DLY | Double-byte miscellaneous instructions Delay | 76543210 76543210 <br> 10001111 disp | count AC to -1 . <br> delay $=13+2(A C)+2$ disp $+2^{9}$ disp microcycles | $\begin{gathered} 13 \text { to } \\ 131,593 \end{gathered}$ |

Table 3 SC/MP INSTRUCTION SUMMARY

## SINGLE-BYTE INSTRUCTIONS

| MNEMONIC | DESCRIPTION | OBJECT FORMAT | OPERATION | MICROCYCLES |
| :---: | :---: | :---: | :---: | :---: |
| LDE <br> XAE <br> ANE <br> ORE <br> XRE <br> DAE <br> ADE <br> CAE | Extension register instructions <br> Load AC from extension <br> Exchange AC and extension <br> AND extension <br> OR extension <br> Exclusive-OR extension <br> Decimal add extension <br> Add extension <br> Complement and add extension | 7 6 5 4 3 2 1 0  <br> 0 1 0 0 0 0 0 0  <br> 0 0 0 0 0 0 0 0 1 <br> 0 1 0 1 0 0 0 0  <br> 0 1 0 1 1 0 0 0  <br> 0 1 1 0 0 0 0 0  <br> 0 1 1 0 1 0 0 0  <br> 0 1 1 1 0 0 0 0  <br> 0 1 1 1 1 0 0 0  | $\begin{aligned} & (\mathrm{AC}) \leftarrow(\mathrm{E}) \\ & (\mathrm{AC}) \leftarrow(\mathrm{E}) \\ & (\mathrm{AC}) \leftarrow(\mathrm{AC}) \Lambda(\mathrm{E}) \\ & (\mathrm{AC}) \leftarrow(\mathrm{AC}) \vee(\mathrm{E}) \\ & (\mathrm{AC})-(\mathrm{AC}) \forall(\mathrm{E}) \\ & (\mathrm{AC})-(\mathrm{AC})_{10}+(\mathrm{E})_{10}+(\mathrm{CY} / \mathrm{L}) ;(\mathrm{CY} / \mathrm{L}) \\ & (\mathrm{AC})-(\mathrm{AC})+(\mathrm{E})+(\mathrm{CY} / \mathrm{L}) ;(\mathrm{CY} / \mathrm{L}),(\mathrm{OV}) \\ & (\mathrm{AC}) \leftarrow(\mathrm{AC})+\$(\mathrm{E})+(\mathrm{CY} / \mathrm{L}) ;(\mathrm{CY} / \mathrm{L}),(\mathrm{OV}) \end{aligned}$ | $\begin{gathered} 6 \\ 7 \\ 6 \\ 6 \\ 6 \\ 11 \\ 7 \\ 8 \end{gathered}$ |
| XPAL <br> XPAH <br> XPPC | Pointer register move instructions <br> Exchange pointer low <br> Exchange pointer high <br> Exchange pointer with PC | $\begin{array}{\|llllll\|l\|} \hline 7 & 6 & 5 & 4 & 3 & 2,1 & 0 \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & \text { ptr } \\ \hline 0 & 0 & 1 & 1 & 0 & 1 & \\ \hline 0 & 0 & 1 & 1 & 1 & 1 & \\ \hline \end{array}$ | $\begin{aligned} & (\mathrm{AC})-\left(\mathrm{PTR}_{7: 0}\right) \\ & (\mathrm{AC})-\left(\mathrm{PTR}_{15: 8}\right) \\ & (\mathrm{PC})-(\mathrm{PTR}) \end{aligned}$ | $\begin{aligned} & 8 \\ & 8 \\ & 7 \end{aligned}$ |
| SIO SR SRL RR RRL | Shift, rotate, serial I/O instructions <br> Serial input/output <br> Shift right <br> Shift right with link <br> Rotate right <br> Rotate right with link | 7 6 5 4 3 2 1 0 <br> 0 0 0 1 1 0 0 1 <br> 0 0 0 1 1 1 0 0 <br> 0 0 0 1 1 1 0 1 <br> 0 0 0 1 1 1 1 0 <br> 0 0 0 1 1 1 1 1 | $\begin{aligned} & \left(\mathrm{E}_{\mathrm{i}}\right) \rightarrow\left(\mathrm{E}_{\mathrm{i}-1}\right), \mathrm{SIN} \rightarrow\left(\mathrm{E}_{7}\right),\left(\mathrm{E}_{0}\right) \rightarrow \mathrm{SOUT} \\ & \left(\mathrm{AC}_{\mathrm{i}}\right) \rightarrow\left(\mathrm{AC}_{\mathrm{i}-1}\right), 0 \rightarrow(\mathrm{AC} 7) \\ & \left(\mathrm{AC}_{\mathrm{i}}\right) \rightarrow\left(\mathrm{AC}_{\mathrm{i}-1}\right),(\mathrm{CY} / \mathrm{L}) \rightarrow\left(\mathrm{AC}_{7}\right) \\ & \left(\mathrm{AC}_{\mathrm{i}}\right) \rightarrow\left(\mathrm{AC}_{-1}\right),(\mathrm{AC} 0) \rightarrow\left(\mathrm{AC}_{7}\right) \\ & (\mathrm{AC}) \rightarrow\left(\mathrm{AC}_{\mathrm{i}-1}\right),(\mathrm{AC} 0) \rightarrow\left(\mathrm{CY}_{\mathrm{i}} / \mathrm{L}\right) \rightarrow\left(\mathrm{AC}_{7}\right) \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ |
| HALT CCL SCL DINT IEN CSA CAS NOP | Single-byte miscellaneous instructions <br> Halt <br> Clear carry/link <br> Set carry/link <br> Disable interrupt <br> Enable interrupt <br> Copy status to AC <br> Copy AC to status <br> No operation | 7 6 5 4 3 2 1 0 <br> 0 0 0 0 0 0 0 0 <br> 0 0 0 0 0 0 1 0 <br> 0 0 0 0 0 0 0 1 1 | Pulse H-flag (CY/L)-0 <br> (CY/L) -1 <br> (IE) -0 <br> (IE)-1 <br> (AC)-(SR) <br> (SR)-(AC) <br> None | $\begin{aligned} & 8 \\ & 5 \\ & 5 \\ & 6 \\ & 6 \\ & 5 \\ & 6 \\ & 5 \end{aligned}$ |

Table 3 SC/MP INSTRUCTION SUMMARY (Cont'd)

| INSTRUCTION | READ CYCLES | WRITE CYCLES | TOTAL MICROCYCLES |
| :---: | :---: | :---: | :---: |
| ADD | 3 | 0 | 19 |
| ADE | 1 | 0 | 7 |
| ADI | 2 | 0 | 11 |
| AND | 3 | 0 | 18 |
| ANE | 1 | 0 | 6 |
| ANI | 2 | 0 | 10 |
| CAD | 3 | 0 | 20 |
| CAE | 1 | 0 | 8 |
| CAI | 2 | 0 | 12 |
| CAS | 1 | 0 | 6 |
| CCL | 1 | 0 | 5 |
| CSA | 1 | 0 | 5 |
| DAD | 3 | 0 | 23 |
| DAE | 1 | 0 | 11 |
| DAI | 2 | 0 | 15 |
| DINT | 1 | 0 | 6 |
| DLD | 3 | 1 | 22 |
| DLY | 2 | 0 | 13-131593 |
| HALT | 2 | 0 | 8 |
| IEN | 1 | 0 | 6 |
| ILD | 3 | 1 | 22 |
| JMP | 2 | 0 | 11 |
| JNZ | 2 | 0 | 9,11 for Jump |
| JP | 2 | 0 | 9,11 for Jump |
| JZ | 2 | 0 | 9,11 for Jump |
| LD | 3 | 0 | 18 |
| LDE | 1 | 0 | 6 |
| LDI | 2 | 0 | 10 |
| NOP | 1 | 0 | 5 |
| OR | 3 | 0 | 18 |
| ORE | 1 | 0 | 6 |
| ORI | 2 | 0 | 10 |
| RR | 1 | 0 | 5 |
| RRL | 1 | 0 | 5 |
| SCL | 1 | 0 | 5 |
| SIO | 1 | 0 | 5 |
| SR | 1 | 0 | 5 |
| SRL | 1 | 0 | 5 |
| ST | 2 | 1 | 18 |
| XAE | 1 | 0 | 7 |
| XOR | 3 | 0 | 18 |
| XPAH | 1 | 0 | 8 |
| XPAL | 1 | 0 | 8 |
| XPPC | 1 | 0 | 7 |
| XRE | 1 | 0 | 6 |
| XRI | 2 | 0 | 10 |

NOTE
If slow memory is being used, the appropriate delay should be added for each read or write cycle
Table 4 INSTRUCTION EXECUTION TIME

## ADDRESSING

During execution, instructions and data defined in a program are stored into and loaded from specific memory locations, the accumulator, or selected registers. Because SC/MP, memory (read/write and read-only),
and peripherals are on a common data bus, any instruction used to address memory may be used to address the peripherals. The formats of the instruction groups that reference memory are shown below.


Memory-reference instructions use the PCrelative, indexed, or auto-indexed methods of addressing memory. The memoryincrement/decrement instructions and the transfer instructions use the PC-relative or indexed methods of addressing.

The various methods of addressing memory and peripherals are shown below.

Immediate addressing is an addressing format specific to the immediate instruction group.

| TYPE OF |  | OPERAND FORMATS |  |  |
| :--- | :---: | :--- | :--- | :---: |
| ADDRESSING | $\mathbf{m}$ | ptr | disp |  |
| PC-relative | 0 | 0 | -128 to +127 |  |
| Indexed | 0 | 1,2 , or | -128 to +127 |  |
| Immediate | 1 | 0 | -128 to +127 |  |
| Auto- |  |  |  |  |
| indexed | 1 | 1,2, or 3 | -128 to +127 |  |

For PC-relative, indexed, and auto-indexed memory-reference instructions, another feature of the addressing architecture is that the contents of the extension register are substituted for the displacement if the instruction displacement equals -128 (-X'80).

NOTE
All arithmetic operations associated with address formation affect only the 12 low-order address bits; no carry is provided to the 4 high-order bits. For systems employing memories of 4 K or less, the high-order bits can be ignored as they are set to 0000 following initialization. For systems employing larger memories, the high-order bits must be set to the starting address of the desired 4 K block of memory. For example:
$0001_{2}$ enables memoory locations 100016 - 1FFF 16 to be addressed.
$0010_{2}$ enables memory locations $20000_{16}$ - 2 FFF 16 to be addressed and so forth.

PC-Relative Addressing-A PC-relative address is formed by adding the displacement value specified in the operand field of the instruction to the current contents of the program counter. The displacement is an 8bit twos-complement number, so the range of the PC-relative addressing format is $-128_{10}$ to $+127_{10}$ locations from the current contents of the program counter.
Immediate Addressing-Immediate addressing uses the value in the second byte of a double-byte instruction as the operand for the operation to be performed (see below).

For example, compare a Load (LD) instruction to a Load Immediate (LDI) instruction. The Load instruction uses the contents of
the second byte of the instruction in computing the effective address of the data to be loaded. The Load Immediate instruction uses the contents of the second byte as the data to be loaded.

Indexed Addressing-Indexed addressing enables the programmer to address any location in memory through the use of the pointer register and the displacement. When indexed addressing is specified in an instruction, the contents of the designated pointer register are added to the displacement to form the effective address. The contents of the pointer register are not modified by indexed addressing.
Auto-Indexed Addressing-Auto-indexed addressing provides the same capabilities as indexed addressing along with the ability to increment or decrement the designated pointer register by the value of the displacement. If the displacement is less than zero, the pointer register is decremented by the displacement before the contents of the effective address are fetched or stored. If the displacement is equal to or greater than zero, the pointer register is used as the effective address, and the pointer register is incremented by the displacement after the contents of the effective address are fetched or stored.

## SYSTEM IMPLEMENTATION

Figures 11 and through 13 illustrate typical SC/MP system configurations. In Figure 10, SC/MP is shown interconnected to three memory devices to form a stand-alone 4device system that provides 256 words of read/write memory and 2,048 words for program storage. Figure 12 shows SC/MP interconnected to an external controller for Direct Memory Access (DMA) operation, and Figure 13 illustrates a multiprocessor application using SC/MP's built-in logic to control bus access.


Figure 12


Figure 13

| SYMBOL AND NOTATION | MEANING |
| :---: | :---: |
| AC | 8-bit Accumulator. |
| CY/L | Carry/Link Flag in the Status Register. |
| data | Signed, 8-bit immediate data field. |
| disp | Displacement; represents an operand in a nonmemory reference instruction or an address modifier field in a memory reference instruction. It is a signed twos-complement number. |
| EA | Effective Address as specified by the instruction. |
| E | Extension Register; provides for temporary storage, variable displacements and separate serial input/output port. |
| i | Unspecified bit of a register. |
| IE | Interrupt Enable Flag. |
| m | Mode bit, used in memory reference instructions. Blank parameter sets $\mathrm{m}=0$, at sets $\mathrm{m}=1$. |
| OV | Overflow Flag in the Status Register. |
| PC | Program Counter (Pointer Register 0); during address formation, PC points to the last byte of the instruction being executed. |
| ptr | Pointer Register (ptr = 0 through 3). The register specified in byte 1 of the instruction. |
| ptrn:m | Pointer register bits; $\mathrm{n}: \mathrm{m}=7$ through 0 or 15 through 8 . |
| SIN | Serial Input pin. |
| SOUT | Serial Output pin. |
| SR | 8-bit Status Register. |
| () | Means "contents of." For example, (EA) is contents of Effective Address. |
| [ ] | Means optional field in the assembler instruction format. |
| ] | Ones complement of value to right of $\sim$. |
| $\rightarrow$ | Means "replaces." |
| $\square$ | Means "is replaced by." |
| - | Means "exchange." |
| @ | When used in the operand field of the instruction, sets the mode bit ( m ) to 1 for auto-incrementing/autodecrementing indexing. |
| 10+ | Modulo 10 addition. |
| $\wedge$ | AND operation. |
| $\checkmark$ | Inclusive-OR operation. |
| $\forall$ | Exclusive-OR operation. |
| $\geq$ | Greater than or equal to. |
| $=$ | Equals. |
| \# | Does not equal. |

Table 5 GLOSSARY

## DESCRIPTION

The MP8080A is an 8-bit microprocessor housed in a standard, 40-pin dual-in-line package. The chip, which is fabricated using N-channel silicon gate MOS technology, functions as the central processing unit (CPU) in Signetics' 8080 microcomputer family
The MP8080A has a 16 -bit address bus that is capable of addressing up to 65 k bytes of memory and up to 256 input and 256 output devices. Data is routed to and from the MP8080A on a separate bidirectional 8-bit bus. This data bus is also Tri-State, making direct memory addressing (DMA) and multiprocessing applications possible. The MP8080A directly provides signals to control the interface to memory and I/O ports. All buses, including control, are TTL compatible.

An asynchronous interrupt capability is included in the MP8080A to allow external signals to change the instruction sequence. The interrupting device may vector the program to a particular service routine location (or some other direct function) by specifying an interrupt instruction to be executed.

## FEATURES

- $2 \mu$ s instruction cycle
- Variable length instructions
- General purpose registers-six plus an accumulator
- Direct addressing up to 65 k bytes
- Variable length stack accessed by 16-bit stack pointer
- Addresses 256 input and 256 output ports
- Provisions for vectored interrupts
- Tri-state bus for DMA and multiprocessing capability
- Tri-state TTL drive capabilities for address and data buses
- Decimal arithmetic capability
- Multiple addressing modes Direct
Register
Register indirect Immediate
- Direct plug-in replacement for Intel MP8080A


## PIN CONFIGURATION



## FUNCTIONAL BLOCK DIAGRAM



FUNCTIONAL BLOCK DIAGRAM

*NOTE
$\Delta 1$ supply $/ \Delta T_{A}=0.45 \% /{ }^{\circ} \mathrm{C}$

## TYPICAL PERFORMANCE CHARACTERISTICS




## PIN DESIGNATION

| MNEMONIC | PIN NO. | TYPE | NAME AND FUNCTION |
| :---: | :---: | :---: | :---: |
| READY | 23 | I | Ready: When high (logic 1), indicates that valid memory or input data are available to the CPU on the MP8080A data bus. The Ready signal is used to synchronize the CPU with slower memory or input/output devices. If the MP8080A does not receive a high Ready input after sending out an address to memory or an input/output device, the MP8080A enters a Wait mode for as long as the Ready input remains low (logic 0). The CPU may also be single stepped by the use of the Ready signal. |
| HOLD | 13 | 1 | Hold: When high, requests that the CPU enter the Hold mode. When the CPU is in the Hold mode, the CPU address and the data buses both will be in the high-impedance state. The Hold mode allows an external device to gain control of the MP8080A address and data buses immediately following the completion of the current machine cycle by the CPU. The CPU acknowledges the Hold mode via the HLDA output line. The Hold request is recognized under the following conditions: <br> 1. The CPU is in the Halt mode. <br> 2. The Ready signal is active and the CPU is in the $t_{2}$ or $t_{w}$ state. |
| INT | 14 | 1 | Interrupt Request: When high, the CPU recognizes an interrupt request on this line after completing the current instruction or while in the Halt mode. An interrupt request is not honored if the CPU is in the Hold mode (HLDA = logic 1) or the INTE Flip-flop is reset (logic 0). |
| RESET | 12 | 1 | Reset: When activated (high) for a minimum of three clock periods, the content of the Program Counter is cleared and the Interrupt Enable and HLDA Flip-flops are reset. Following a Reset, program execution starts at memory location O. It should be noted that the status flags, accumulator, stack pointer, and registers are not cleared during the Reset sequence. |
| $\phi_{1,} \phi_{2}$ | 22,15 | 1 | $\phi_{1}$ and $\phi_{2}$ Clocks: Two non-TTL compatible clock phases which provide nonoverlapping timing references for internal storage elements and logic circuits of the CPU. |
| SYNC | 19 | 0 | Sychronizing Signal: When activated (high), the beginning of a new machine cycle is indicated and the status word is outputted on the Data Bus. |
| $\mathrm{A}_{15}-\mathrm{A}_{0}$ | $\begin{aligned} & 25-27 \\ & 29-40 \end{aligned}$ | 0 | Address Bus: This bus comprises sixteen tri-state output lines. The bus provides the address to memory (up to 65 k bytes) or denotes the input/output device number for up to 256 input and 256 output peripherals. |
| WAIT | 24 | 0 | Wait: When high, acknowledges that the CPU is in the Wait mode. |
| WR | 18 | 0 | Write: When low, the data on the data bus are stable for Write memory or output operation. |
| HLDA | 21 | 0 | Hold Acknowledge: Goes high in response to a logic 1 on the Hold line and indicates that the data and address bus will go to the high-impedance state. The HLDA begins at one of the following times: <br> 1. The $t_{3}$ state of the Read memory input operation. <br> 2. The clock period following the $t_{3}$ state of a Write memory output operation. In both cases, the HLDA signal starts after the rising edge of the $\phi_{1}$ clock, and high impedance occurs after the rising edge of the $\phi_{2}$ clock. |
| INTE | 16 | 0 | Interrupt Enable: Indicates the content of the internal INTE Flip-flop. The Enable and Disable Interrupt (EI and DI) Instructions cause the INTE Flip-flop to be set and reset, respectively. When the Flip-flop is reset (INTE = logic 0 ), it inhibits interrupts from being accepted by the CPU. In addition, the INTE Flip-flop is automatically reset (thereby disabling further interrupts) at the $t_{1}$ state of the instruction fetch cycle, when an interrupt is accepted; it is also reset by the Reset Signal. |
| $\mathrm{D}_{7}-\mathrm{D}_{0}$ | 3-10 | 1/0 | Data Bus: This bus comprises eight tri-state input/output lines. The bus provides bidirectional communication between the CPU, memory, and input/output devices for instructions and data transfers. A status word (which describes the current machine cycle) is also outputted on the data bus during the first state of each machine cycle (SYNC = logic 1). |
| +12V | 28 | I | +2 Volts: VDD Supply. |
| $+5 \mathrm{~V}$ | 20 | 1 | +5 Volts: VCC Supply. |
| -5V | 11 | 1 | -5 Volts: VBB Supply. |
| GND | 2 | 1 | Ground: VSS (0 volt) reference. |

## ABSOLUTE MAXIMUM RATINGS

|  | PARAMETER | RATING | UNIT |
| :---: | :---: | :---: | :---: |
| TA | Operating temperature range | 0 to 70 | ${ }^{\circ} \mathrm{C}$ |
| TstG | Storage temperature range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
|  | All input or output voltages with respect to $V_{B B}$ | -0.3 to +20 | V |
| Vcc | $V_{D D}$ and $V_{S S}$ with respect to $V_{B B}$ | -0.3 to 20 | V |
|  | Power dissipation | 1.5 | W |

NOTE Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be limited to those conditions specified under dc electrical characteristics.

DC ELECTRICAL CHARACTERISTICS
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{C C}= \pm 5 \mathrm{~V} \pm 5 \%$, $\mathrm{V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \% \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| VIHC <br> VILC <br> $\mathrm{V}_{\mathrm{IH}}$ <br> VIL | Input voltage Clock high Clock low High Low |  |  | $\begin{gathered} 9.0 \\ V_{S S}-1 \\ 3.3 \\ V_{S S}-1 \\ \hline \end{gathered}$ |  | $V_{D D}+1$ <br> $\mathrm{V}_{\text {SS }}+0.8$ <br> $V_{C C}+1$ <br> $\mathrm{V}_{\mathrm{SS}}+0.8$ | v |
| VOH VOL | Output voltage High <br> Low | $\begin{gathered} \mathrm{IOH}=150 \mu \mathrm{~A} \\ \mathrm{IOL}=1.9 \mathrm{~mA} \text { on all inputs } \end{gathered}$ | 3.7 |  | 0.45 | V |
| IDD(AV) $\operatorname{lcC}(A V)$ $I_{B B(A V)}$ | Supply current <br> Avg. (VD) <br> Avg. (VCC) <br> Avg. (VBB) | Operation tcy $=0.48 \mu \mathrm{~s}$ <br> Operation tcy $=0.48 \mu \mathrm{~s}$ |  | $\begin{gathered} 40 \\ 60 \\ 0.01 \\ \hline \end{gathered}$ | $\begin{gathered} 70 \\ 80 \\ 1 \\ \hline \end{gathered}$ | mA |
| $\begin{aligned} & I_{I L} \\ & I_{C L} \\ & \hline \end{aligned}$ | Leakage current Input Clock | $\begin{gathered} V_{S S} \leq V_{I N} \leq V_{C C} \\ V_{S S} \leq V_{C L O C K} \leq V_{D D} \\ \hline \end{gathered}$ |  |  | $\begin{array}{r}  \pm 10 \\ \pm 10 \\ \hline \end{array}$ | $\mu \mathrm{A}$ |
| $1 L^{*}$ | Data bus (in input mode) | $\begin{gathered} V_{S S} \leq V_{I N} \leq V_{S S}+0.8 V \\ V_{S S} \leq+0.8 V \leq V_{I N} \leq V_{C C} \end{gathered}$ |  |  | $\begin{array}{r} -100 \\ -2.0 \\ \hline \end{array}$ | $\mu \mathrm{A}$ |
| IFL | Address and data bus (during hold) | $\begin{gathered} V_{\text {ADDR/DATA }}=V_{C C} \\ V_{\text {ADDR/DATA }}=V_{S S}+0.45 \mathrm{~V} \end{gathered}$ |  |  | $\begin{aligned} & +10 \\ & -100 \\ & \hline \end{aligned}$ | $\mu \mathrm{A}$ |
| C $\phi$ $\mathrm{Cl}_{\mathrm{IN}}$ Cout | Capacitance <br> Clock <br> Input <br> Output | $\begin{gathered} \left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V},\right. \\ \left.\mathrm{V}_{\mathrm{BB}}=-5 \mathrm{~V}\right) \\ \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz} \\ \text { Unmeasured pins } \\ \text { Returned to } \mathrm{V}_{S S} \end{gathered}$ |  | $\begin{gathered} 17 \\ 6 \\ 10 \end{gathered}$ | $\begin{aligned} & 25 \\ & 10 \\ & 20 \end{aligned}$ | pF |

*NOTE
When DBIN is high and $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathbb{I H}}$ an internal active pull up will be switched onto the Data Bus.

AC ELECTRICAL CHARACTERISTICS (Cont'd) $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=+12 \mathrm{~V} \pm 5 \%, \mathrm{VCC}= \pm 5 \mathrm{~V} \pm 5 \%$,
$V_{B B}=-5 \mathrm{~V} \pm 5 \% V_{S S}=0 \mathrm{~V}$, unless otherwise specified.

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| tcy ${ }^{3}$ | Clock period |  |  | 0.48 |  | 2.0 | $\mu \mathrm{S}$ |
| $t_{\text {r,t }}$ | Clock rise and fall time |  | 0 |  | 50 | ns |
| $t_{\phi 1}$ | $\phi_{1}$ Pulse width |  | 60 |  |  | ns |
| t¢ 2 | $\phi_{2}$ Pulse width |  | 220 |  |  | ns |
| tD1 | Delay $\phi_{1}$ to $\phi_{2}$ |  | 0 |  |  | ns |
| tD2 | Delay $\phi_{2}$ to $\phi_{1}$ |  | 70 |  |  | ns |
| tD3 | Delay $\phi_{1}$ to $\phi_{2}$ leading edges |  | 80 |  |  | ns |
| tDA ${ }^{2}$ | Address output delay from $\phi_{2}$ | $C_{L}=100 \mathrm{pF}$ |  |  | 200 | ns |
| $t_{\text {DD }}{ }^{2}$ | Data output delay from $\phi_{2}$ | $C_{L}=100 \mathrm{pF}$ |  |  | 220 | ns |
| $t_{\text {D }}{ }^{2}$ | Signal output delay from $\phi_{1}$ or $\phi_{2}$ (SYNC, WR, WAIT, HLDA) | $C_{L}=50 \mathrm{pF}$ |  |  | 120 | ns |
| tDF2 | DBIN delay from $\phi_{2}$ | $C_{L}=50 \mathrm{pF}$ | 25 |  | 140 | ns |
| tol 1 | Delay for input bus to enter input mode |  |  |  | tDF | ns |
| tDS1 | Data setup time during $\phi_{1}$ and DBIN |  | 30 |  |  | ns |
| tDS2 | Data setup time to $\phi_{2}$ during DBIN |  | 150 |  |  | ns |
| $t_{\text {DH }}{ }^{1}$ | Data hold time from $\phi_{2}$ during DBIN |  | 1 |  |  | ns |
| $\mathrm{tIE}^{2}$ | INTE output delay from $\phi_{2}$ | $C_{L}=50 \mathrm{pF}$ |  |  | 200 | ns |
| trs | Ready setup time during $\phi_{2}$ |  | 120 |  |  | ns |
| ths | Hold setup time to $\phi_{2}$ |  | 140 |  |  | ns |
| $\mathrm{t}_{1}$ | INT setup time during $\phi_{2}$ (during $\phi_{1}$ in halt mode) |  | 120 |  |  | ns |
| ${ }_{\text {th }}$ | Hold time from $\phi_{2}$ (READY, INT, HOLD) |  | 0 |  |  | ns |
| tFD | Delay to float during hold (address and data bus) $\qquad$ | $C_{L}=100 \mathrm{pF}$ : Address, data |  |  | 120 | ns |
|  | Address stable prior to $\overline{\mathrm{WR}}^{5}$ |  |  |  |  | ns |
| tow ${ }^{2}$ | Output data stable prior to $\overline{W R}^{6}$ | $C_{L}=50 \mathrm{pF}: \overline{W R}$, HLDA, DBIN | (Note 6) |  | (Note 6) | ns |
| ${ }_{\text {tw }} \mathrm{w}^{2}$ | Output data stable from $\overline{W R}^{7}$ |  | (Note 7) |  | (Note 7) | ns |
| twa ${ }^{2}$ | Address stable from $\overline{W R}^{7}$ |  | (Note 7) |  | (Note 7) | ns |
| thF $\mathrm{F}^{2}$ | HLDA to float delay ${ }^{8}$ |  | (Note 8) |  | (Note 8) | ns |
| $t_{\text {w }}{ }^{2}$ | $\overline{\mathrm{WR}}$ to float delay ${ }^{9}$ |  | (Note 9) |  | (Note 9) | ns |
| $t_{A H}{ }^{2}$ | Address hold time after DBIN during HLDA |  | -20 |  |  | ns |

NOTES

1. Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured. tDH $=50 \mathrm{~ns}$ or tDF, whichever is less. 2. Typical load circuit:

2. The following are relevant when interfacing the MP8080A to devices having $\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}$ a) Maximum output rise time from 0.8 V to $3.3 \mathrm{~V}=100 \mathrm{~ns} @ C_{L}=$ SPEC
b) Output Delay when measured to $3.0 \mathrm{~V}=\mathrm{SPEC}+60 \mathrm{~ns} @ \mathrm{C}_{\mathrm{L}}=\mathrm{SPEC}$.
c) If $C_{L} \neq$ SPEC, add $0.6 \mathrm{~ns} / \mathrm{pF}$ if $\mathrm{C}_{\mathrm{L}}>\mathrm{C}_{\text {SPEC }}$, subtract $0.3 \mathrm{~ns} / \mathrm{pF}$ (from modified delay) if $C_{L}<C_{\text {SPEC }}$.
3. taw $=2 \mathrm{t}_{\mathrm{CY}}-\mathrm{t}_{\mathrm{D} 3}-\mathrm{t}_{\text {r }} \mathrm{Q}_{2}-140 \mathrm{~ns}$.

4. If not HLDA, $t_{w D}=t_{w A}=t_{D} 3+t_{r} \phi_{2}+10 \mathrm{~ns}$. If HLDA, $t_{w D}=t_{w A}=t_{w F}$.
5. $t_{H F}=t_{D 3}+t_{r} t_{2}-50 \mathrm{~ns}$.
6. $\mathrm{twF}_{\mathrm{F}}=\mathrm{t}_{\mathrm{O}_{3}}+\mathrm{t}_{\mathrm{r}} \phi_{2}-10 \mathrm{~ns}$

## 3. $\mathrm{tcy}_{\mathrm{C}}=\mathrm{t}_{\mathrm{D} 3}+\mathrm{t}_{\mathrm{r} \phi 2}+\mathrm{t}_{\phi} \mathrm{\phi}_{2}+\mathrm{t}_{\mathrm{D} 2}+\mathrm{t}_{\mathrm{f}} \phi_{2}+\mathrm{t}_{\mathrm{r}} \phi_{1} \geq 480 \mathrm{~ns}$.



## VOLTAGE WAVEFORMS



NOTE Timing measurements are made at the following reference voltages: Clock ${ }^{\prime} 1$ ' $=$
$8.0 \mathrm{~V}, ' 0$ ' $=1.0 \mathrm{~V}$; Inputs ' 1 ' $=3.3 \mathrm{~V},{ }^{\prime} 0$ ' $=0.8 \mathrm{~V}$; Outputs ' 1 Y ' $=2.0 \mathrm{~V},{ }^{\prime} \mathrm{O}^{\prime}=0.8 \mathrm{~V}$.

| SYMBOLS | DATA BUS BIT | DEFINITION |
| :---: | :---: | :---: |
| OUT | D4 | Indicates that the address bus contains the address of an output device and the data bus will contain the output data when WR is active. |
| $\mathrm{M}_{1}$ | D5 | Provides a signal to indicate that the CPU is in the fetch cycle of the first byte of an instruction. |
| $1 N P^{*}$ | D6 | Indicates that the address bus contains the address of an input device and the input data should be placed on the data bus when DBIN is active. |
| MEMR* | D7 | Designates that the data bus will be used for memory read data. |
| INTA* | $\mathrm{D}_{0}$ | Acknowledge signal for Interrupt request. Signal should be used to gate a restart instruction onto the data bus when DBIN is active. |
| $\overline{W O}$ | $\mathrm{D}_{1}$ | Indicates that the operation in the current machine cycle will be a Write memory or Output function ( $\mathrm{WO}=0$ ). Otherwise, a Read memory or Input operation will be executed. |
| STACK | $\mathrm{D}_{2}$ | Indicates that the address bus holds the pushdown stack address from the Stack Pointer. |
| HLTA | $\mathrm{D}_{3}$ | Acknowledge signal for Halt Instruction. |

Table 1 STATUS INFORMATION DEFINITION
-These three status bits can be used to control the flow of data onto the MP8080A data bus.
NOTES

1. Data in must be stable for this period during DBIN-T3. Both tosi and tos2 must be satisfied.
2. Ready signal must be stable for this period during t2 or Tw. (Must be externally synchronized.
3. Hold signal must be stable for this period during $T_{2}$ or $T_{w} w$ when entering hold mode. and during $T_{3}, T_{4}, T_{5}$, and $T_{W H}$ when in hold mode. External synchronization is not required.)
4. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized on the following instruction. (External synchronization is not required.)

| MACHINE CYCLE | TYPE | DATA BUS BIT |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | D7 | D6 | D 5 | D4 | D3 | $\mathrm{D}_{2}$ | D1 | $\mathrm{D}_{0}$ |
| Instruction fetch | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Memory read | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| Memory write | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Stack read | 4 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| Stack write | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| Input read | 6 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| Output write | 7 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| Interrupt acknowledge | 8 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
| Halt acknowledge | 9 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| Interrupt acknowledge while halt | 10 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |

Table 2 STATUS WORD CHART

| MNEMONIC |  | DESCRIPTION | OPERATION | OP CODE |  |  |  |  |  |  |  | No. of Bytes | No. of Machine <br> (M) Cycles | No. of States (T) | CONDITION FLAGS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | D7 |  | D6 | D 5 | $\mathrm{D}_{4}$ | D3 | D2 | D1 | D0 | S |  |  |  | Z | AC | P | CY |
| DATA TRANSFER GROUP |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LDA |  |  | Load Accumulator Direct | $\left(\right.$ ( ) - ( $\left(\right.$ byte 3) $\left.{ }^{\text {(byte }} 2\right)$ ) | 0 | 0 | 1 | 1 |  | 0 | 1 | 0 | 3 | 4 | 13 |  |  |  |  |  |
| LDAX | B | Load Accumulator Indirect | $(\mathrm{A})-((\mathrm{B})(\mathrm{C})$ | 0 | 0 |  | 0 |  | 0 | 1 | 0 | 1 | 2 | 7 |  |  |  |  |  |
| LDAX | D | Load Accumulator Indirect | $(A)-((D)(E))$ | 0 | 0 |  | 1 |  | 0 | 1 | 0 | 1 | 2 | 7 |  |  |  |  |  |
| LHLD |  | Load H and L Direct | (L) - ((byte 3) (byte 2)) <br> (H) - ((byte 3) (byte 2) + 1) | 0 | 0 |  | 0 | 1 | 0 | 1 | 0 | 3 | 5 | 16 |  |  |  |  |  |
| LXI | B | Load Immediate, Registers B and C | $\begin{aligned} & \text { (B) - (byte } 3 \text { ) } \\ & \text { (C) }- \text { (byte } 2 \text { ) } \end{aligned}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 | 10 |  |  |  |  |  |
| LXI | D | Load Immediate, Registers D and E | $\begin{aligned} & \text { (D) }- \text { (byte } 3 \text { ) } \\ & \text { (E) - (byte } 2 \text { ) } \end{aligned}$ | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 3 | 3 | 10 |  |  |  |  |  |
| LXI | H | Load Immediate, Registers H and L | $\begin{aligned} & \text { (H) }-(\text { (byte }) \\ & (\mathrm{L})-(\text { byte } 2) \end{aligned}$ | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 3 | 3 | 10 |  |  |  |  |  |
| LXI | SP | Load Immediate, Stack Pointer | $\begin{aligned} & (\mathrm{SPH})-(\text { byte } 3) \\ & (\mathrm{SPL})-\text { (byte } 2) \end{aligned}$ | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 3 | 3 | 10 |  |  | ags |  |  |
| MOV | M, r | Move to Memory | $(\mathrm{H})(\mathrm{L})$ ) - (r) | 0 | 1 | 1 | 1 | 0 | S | S | S | 1 | 2 | 7 |  |  | fecte |  |  |
| MOV | $r, M$ | Move from Memory | $(\mathrm{r})-(\mathrm{H})(\mathrm{L})$ ) | 0 | 1 |  | D | D | 1 | 1 | 0 | 1 | 2 | 7 |  |  |  |  |  |
| MOV | r1, r2 | Move Registers | $(\mathrm{r} 1)-(\mathrm{r} 2)$ | 0 | 1 |  | D | D | S | S | S | 1 | 1 | 5 |  |  |  |  |  |
| MVI | M | Move to Memory Immediate | $($ (H) (L) ) - (byte 2) | 0 | 0 |  | 1 | 0 | 1 | 1 | 0 | 2 | 3 | 10 |  |  |  |  |  |
| MVI | r | Move Immediate | (r) - (byte 2) | 0 | 0 |  | D | D | 1 | 1 | 0 | 2 | 2 | 7 |  |  |  |  |  |
| SHLD |  | Store H and L Direct | ((byte 3) (byte 2)) - (L) <br> $($ (byte 3$)$ (byte 2) +1$)-(\mathrm{H})$ | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 3 | 5 | 16 |  |  |  |  |  |
| STA |  | Store Accumulator Direct | ((byte 3) (byte 2) - (A) | 0 | 0 |  | 1 | 0 | 0 | 1 | 0 | 3 | 4 | 13 |  |  |  |  |  |
| STAX | B | Store Accumulator Indirect | $((\mathrm{B})(\mathrm{C}))-(\mathrm{A})$ | 0 | 0 |  | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 7 |  |  |  |  |  |
| STAX | D | Store Accumulator Indirect | $((\mathrm{D})(\mathrm{E}))-(\mathrm{A})$ | 0 | 0 |  | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 7 |  |  |  |  |  |
| XCHG |  | Exchange $H$ and $L$ with $D$ and $E$ | $(\mathrm{H})-(\mathrm{D})$ | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 4 |  |  |  |  |  |
|  |  |  | (L) $-(\mathrm{E})$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ARITHMETIC GROUP |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ACl |  | Add Immediate with Carry | (A) $-($ A $)+($ byte 2$)+($ CY $)$ | 1 |  |  | 0 | 1 | 1 | 1 | 0 | 2 | 2 | 7 | ! | 1 | ! | t | : |
| ADC | M | Add Memory with Carry | $(\mathrm{A})-(\mathrm{A})+(\mathrm{HH})(\mathrm{L}))+(\mathrm{CY})$ | 1 | 0 | 0 | 0 |  | 1 | 1 | 0 | 1 | 2 | 7 | ! | 1 | : | ! | $\stackrel{1}{1}$ |
| ADC | $r$ | Add Register with Carry | $(\mathrm{A})-(\mathrm{A})+(\mathrm{r})+(\mathrm{CY})$ | 1 | 0 |  | 0 | 1 | S | S | S | 1 | 1 | 4 | 1 | 1 | , | ! | ! |
| ADD | M | Add Memory | $(\mathrm{A})-(\mathrm{A})+((\mathrm{H})(\mathrm{L}))$ | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 7 | 1 | 1 | ! | ! | ! |
| ADD | r | Add Register | $(\mathrm{A})-(\mathrm{A})+(\mathrm{r})$ | 1 | 0 | 0 | 0 | 0 | S | S | S | 1 | 1 | 4 | ! | 1 | $t$ | ! | ! |
| ADI |  | Add Immediate | $(\mathrm{A})-(\mathrm{A})+($ byte 2$)$ | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 7 | t | 1 | 1 | t | ! |
| DAA |  | Decimal Adjust Accumulator | 8 -bit number in Accumulator is converted to two 4-bit BCD digits | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 4 | ! | 1 | 1 | ! | : |
| DAD | B | Add $B$ and $C$ to $H$ and $L$ | $(\mathrm{H})(\mathrm{L})-(\mathrm{H})(\mathrm{L})+(\mathrm{B})(\mathrm{C})$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 3 | 10 | . | . | . | . | ! |
| DAD | D | Add $D$ and $E$ to $H$ and $L$ | $(\mathrm{H})(\mathrm{L})-(\mathrm{H})(\mathrm{L})+(\mathrm{D})(\mathrm{E})$ | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 3 | 10 | . |  | . | . | ! |
| DAD | H | Add $H$ and $L$ to $H$ and $L$ | $(\mathrm{H})(\mathrm{L})-(\mathrm{H})(\mathrm{L})+(\mathrm{H})(\mathrm{L})$ | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 3 | 10 | . |  | . |  | ! |
| DAD | SP | Add Stack Pointer to H and L | $(\mathrm{H})(\mathrm{L})-(\mathrm{H})(\mathrm{L})+(\mathrm{SP})$ | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 3 | 10 | . | . | $\cdots$ |  | ! |
| DCR | M | Decrement Memory | $((\mathrm{H})(\mathrm{L}))-(\mathrm{H})(\mathrm{L}))-1$ | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 3 | 10 | ! |  | : | ! | . |
| DCR | $r$ | Decrement Register | (r) - (r) - 1 | 0 | 0 | D | D | D | 1 | 0 | 1 | 1 | 1 | 5 | $\ddagger$ |  | ! | ! | . |
| DCX | B | Decrement Registers B and C | (B) $(\mathrm{C})-(\mathrm{B})(\mathrm{C})-1$ | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 5 | . | . | . | . | . |
| DCX | D | Decrement Registers D and E | (D) $(E)-(D)(E)-1$ | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 5 | . |  | . | . | . |
| DCX | H | Decrement Registers H and L | (H) $(\mathrm{L})-(\mathrm{H})(\mathrm{L})-1$ | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 5 | . |  | . | . | . |
| DCX | SP | Decrement Stack Power | $(\mathrm{SP})-(\mathrm{SP})-1$ | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 5 | . | . | . | . | . |
| INR | M | Increment Memory | $((\mathrm{H})(\mathrm{L}))-((\mathrm{H})(\mathrm{L}))+1$ | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 3 | 10 | 1 | 1 | t | 1 | . |
| INR | r | Increment Register | $(\mathrm{r})-(\mathrm{r})+1$ | 0 | 0 | D | D | D | 1 | 0 | 0 | 1 | 1 | 5 | $\pm$ | 1 | $\pm$ | ! | . |
| INX | B | Increment Registers B and C | (B) (C)-(B) $(\mathrm{C})+1$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 5 | . |  | . |  | . |
| INX | D | Increment Registers D and E | (D) $(E)-(D)(E)+1$ | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 5 | . | . | . |  | - |
| INX | H | Increment Registers $H$ and L | $(H)(L)-(H)(L)+1$ | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 5 | . |  | . | . | . |


| MNEMONIC |  | DESCRIPTION | OPERATION | OP CODE |  |  |  |  |  |  |  | No. of Bytes | No. of Machine (M) Cycles | No. of States ( T ) | CONDITION FLAGS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | D6 | D | , 4 | D3 | D2 | D1 | D0 | S |  |  |  | z | AC | P | CY |
| ARITHMETIC GROUP (Cont'd) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| INX | SP |  | Increment Stack Pointer | $(\mathrm{SP})-(\mathrm{SP})+1$ | 0 | 0 | 1 | 1 |  | 0 | 1 | 1 | 1 | 1 | 5 |  | . | . | - | . |
| SBB | M | Subtract Memory with Borrow | (A) - (A) -( H ( $)(\mathrm{L})$ ) $-(\mathrm{CY})$ | 1 | 0 | 0 | 1 |  | 1 | 1 | 0 | 1 | 2 | 7 | 1 | ! | ! | : | $!$ |
| SBB | 「 | Subtract Register with Borrow | (A) - (A) - (r) - (CY) | , | 0 | 0 | 1 |  | S | S | S | 1 | 1 | 4 | 1 | ! | ! | t | ! |
| SBI |  | Subtract Immediate with Borrow | $(\mathrm{A})-(\mathrm{A})-($ byte 2) $-(\mathrm{CY})$ | 1 | 1 | 0 | 1 |  |  |  | 0 | 2 | 2 | 7 | 1 | ! | t | 1 | ! |
| SUB | M | Subtract Memory | $(\mathrm{A})-(\mathrm{A})-($ (H) $(\mathrm{L}))$ | 1 | 0 |  | 1 |  |  |  | 0 | 1 | 2 | 7 | 1 | t | 1 | 1 | ! |
| SUB | r | Subtract Register | (A) $-(\mathrm{A})-(\mathrm{r})$ | 1 | 0 | 0 | 1 |  | S | S | S | 1 | 1 | 4 | : | : | $t$ | t | $!$ |
| SUI |  | Subtract Immediate | (A) - (A) - (byte 2) | 1 | 1 | 0 | 1 |  | 1 | 1 | 0 | 2 | 2 | 7 | 1 | ! | t | t | ! |
| LOGICAL GROUP |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ANA | M | AND Memory | $(\mathrm{A})-(\mathrm{A}) \quad(\mathrm{H})(\mathrm{L})$ | 1 | 0 | 1 | 0 |  | 1 | 1 | 0 | 1 | 2 | 7 | ! | ! | ! 1 | ! | 0 |
| ANA | r | AND Register | $(\mathrm{A})-(\mathrm{A}) \quad(\mathrm{r})$ | 1 | 0 | 1 | 0 |  | S | S | S | 1 | 1 |  | : | : | !d | 1 | 0 |
| ANI |  | AND Immediate | (A) - (A) (byte 2) | 1 | 1 | 1 | 0 |  |  |  | 0 | 2 | 2 | 7 | : | : | td | : | 0 |
| CMA |  | Complement Accumulator | (A) $-(\overline{\mathrm{A}})$ | 0 | 0 | 1 | 0 |  | 1 | 1 | 1 | 1 | 1 | 4 |  | . |  | . |  |
| CMC |  | Complement Carry | $(C Y)-(\overline{C Y})$ | 0 | 0 | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 | 4 |  |  |  | . | ! |
| CMP | M | Compare Memory | (A)-(H) (L) | 1 | 0 | 1 | 1 | 1 |  | 1 | 0 | 1 | 2 | 7 | : | : a | ! | : | ta |
| CMP | r | Compare Register | (A) -( r ) | 1 | 0 | 1 | 1 |  | S | S | S | 1 | . | 4 | ! | 10 | : | ! | t b |
| CPI |  | Compare Immediate | (A)-(byte 2) | 1 | 1 | 1 | 1 |  |  | 1 | 0 | 2 | 2 | 7 | : | 1 c | $\pm$ | 1 | tc |
| ORA | M | OR Memory | $(\mathrm{A})-(\mathrm{A}) \vee((\mathrm{H})(\mathrm{L})$ ) | 1 | 0 | 1 | 1 |  |  |  | 0 | 1 | 2 | 7 | : | ! | 0 | 1 | 0 |
| ORA | r | OR Register | (A) - (A) $\vee(\mathrm{r})$ | 1 | 0 | 1 | 1 |  | S | S | S | 1 | 1 | 4 | : | ! | 0 | ! | 0 |
| ORI |  | OR Immediate | (A) - (A) V (byte 2) | 1 | 1 | 1 | 1 |  |  |  | 0 | 2 | 2 | 7 | 1 | 1 | 0 | 1 | 0 |
| RAL |  | Rotate Left through Carry | $\begin{aligned} & \left(A_{n}+1\right)-\left(A_{n}\right) ;(C Y)-\left(A_{7}\right) \\ & \left(A_{0}\right)-(C Y) \end{aligned}$ | 0 | 0 | 0 | 1 | 0 |  |  | 1 | 1 | 1 | 4 |  | . |  | . | ! |
| RAR |  | Rotate Right through Carry | $\begin{aligned} & \left(A_{n}\right)-\left(A_{n}+1\right) ;(C Y)-\left(A_{0}\right) \\ & \left(A_{7}\right)-(C Y) \end{aligned}$ | 0 | 0 | 0 | 1 | 1 |  | 1 | 1 | 1 | 1 | 4 | $\cdot$ | . |  | . | $\dagger$ |
| RLC |  | Rotate Left | $\begin{aligned} & \left(A_{n}+1\right)-\left(A_{n}\right) ;\left(A_{0}\right)-\left(A_{7}\right) \\ & (C Y)-\left(A_{7}\right) \end{aligned}$ | 0 | 0 | 0 | 0 |  |  |  | 1 | 1 | 1 | 4 | - | . |  | . | 1 |
| RRC |  | Rotate Right | $\begin{aligned} & \left(A_{n}\right)-\left(A_{n}-1\right) ;\left(A_{7}\right)-\left(A_{0}\right) \\ & (C Y)-\left(A_{0}\right) \end{aligned}$ | 0 | 0 | 0 | 0 | 1 |  | 1 | 1 | 1 | 1 | 4 | * | . |  | . | 1 |
| STC |  | Set Carry | (CY) -1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 4 |  | . | , | . | 1 |
| XRA | M | Exclusive OR Memory | $(\mathrm{A})-(\mathrm{A}) \forall(\mathrm{H})(\mathrm{L})$ | 1 | 0 | 1 | 0 |  |  |  | 0 | 1 | 2 | 7 | 1 | , | 0 |  | 0 |
| XRA | r | Exclusive OR Register | (A) $-(\mathrm{A}) \forall(\mathrm{r})$ | 1 | 0 | 1 | 0 | 1 | S | S | S | 1 | 1 | 4 | : | : | 0 |  | 0 |
| XRI |  | Exclusive OR Immediate | (A) - (A) $\forall$ (byte 2) | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 2 | 2 | 7 | : | : | 0 |  | 0 |
| BRANCH GROUP |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CALL |  | Call Unconditional | $\begin{aligned} & ((S P)-1)-(P C H) \\ & ((S P)-2)-(P C L) \\ & (S P)-(S P)-2 \\ & (P C)-(\text { byte } 3)(\text { byte } 2) \end{aligned}$ | 1 | 1 | 0 | 0 |  | 1 | 0 | 1 | 3 | 5 | 17 |  |  |  |  |  |
| CC |  | Call on Carry | $\begin{aligned} & \text { If } C Y=1 \\ & ((S P)-1)-(P C H) \\ & ((S P)-2)-(P C L) \\ & (S P)-(S P)-2 \\ & (P C)-(\text { byte } 3) \text { (byte } 2) \end{aligned}$ | 1 | 1 | 0 | 1 |  | 1 | 0 | 0 | 3 | 3/5 | 11/17 |  |  |  |  |  |
| CM |  | Call on Minus | $\begin{aligned} & \text { If } S=1 \text {. } \\ & ((\mathrm{SP})-1)-(\mathrm{PCH}) \\ & ((\mathrm{SP})-2)-(\mathrm{PCL}) \\ & (\mathrm{SP})-(\mathrm{SP})-2 \\ & (\mathrm{PC})-(\text { byte } 3) \text { (byte } 2) \end{aligned}$ | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 3 | 3/5 | 11/17 |  |  |  |  |  |
| CNC |  | Call on No Carry | $\begin{aligned} & \text { If } C Y=0 \\ & ((S P)-1)-(P C H) \\ & ((S P)-2)-(P C L) \\ & (S P)-(S P)-2 \\ & (P C)-(\text { byte } 3) \text { (byte } 2) \end{aligned}$ | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 3 | $3 / 5$ | 11/17 |  |  | lags <br> ffect |  |  |
| CNZ |  | Call on Not Zero | $\begin{aligned} & \text { If } Z=0 \\ & ((\mathrm{SP})-1)-(\mathrm{PCH}) \\ & ((\mathrm{SP})-2)-(\mathrm{PCL}) \\ & (\mathrm{SP})-(\mathrm{SP})-2 \\ & (\mathrm{PC})-(\text { byte } 3) \text { (byte } 2) \end{aligned}$ | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 3/5 | 11/17 |  |  |  |  |  |
| CP |  | Call on Positive | $\begin{aligned} & \text { If } S=0 \\ & ((\mathrm{SP})-1)-(\mathrm{PCH}) \\ & ((\mathrm{SP})-2)-(\mathrm{PCL}) \\ & (\mathrm{SP})-(\mathrm{SP})-2 \\ & (\mathrm{PC})-(\text { byte } 3)(\text { byte } 2) \end{aligned}$ | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 3 | $3 / 5$ | 11/17 |  |  |  |  |  |
| CPE |  | Call on Parity Even | $\begin{aligned} & \text { (f } \mathrm{P}=1 \text {, } \\ & ((\mathrm{SP})-1)-(\mathrm{PCH}) \\ & ((\mathrm{SP})-2)-(\mathrm{PCL}) \\ & (\mathrm{SP})-(\mathrm{SP})-2 \\ & (\mathrm{PC})-(\text { byte } 3)(\text { byte } 2) \end{aligned}$ | 1 | 1 | 1 | 0 |  | 1 | 0 | 0 | 3 | 3/5 | 11/17 |  |  |  |  |  |
| CPO |  | Call on Parity Odd | $\begin{aligned} & \text { If } P=0 \\ & ((S P)-1)-(P C H) \\ & ((S P)-2)-(P C L) \\ & (S P)-(S P)-2 \\ & (P C)-(\text { byte } 3) \text { (byte } 2) \end{aligned}$ | 1 | 1 | 1 | 0 |  | 1 | 0 | 0 | 3 | 3/5 | 11/17 |  |  |  |  |  |

Table 3 INSTRUCTION SET (Cont'd)

| MNEMONIC | DESCRIPTION | OPERATION | OP CODE |  |  |  |  |  |  |  |  | No. of Bytes | No. of <br> Machine <br> (M) <br> Cycles | No. of States ( T ) | CONDITION FLAGS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | D | $\mathrm{D}_{2}$ | D 1 | D0 |  |  |  | S | z | AC | P | CY |
| BRANCH GROUP (Cont'd) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CZ | Call on Zero | $\begin{aligned} & \text { If } Z=1, \\ & (\text { (SP) }-1)-(P C H) \\ & (\text { (SP) }-2)-(P C L) \\ & (S P)-(S P)-2 \\ & (P C)-(\text { byte } 3)(\text { byte } 2) \end{aligned}$ | 1 |  | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 3 | 3/5 | 11/17 |  |  |  |  |  |
| JC | Jump on Carry | $\begin{aligned} & \text { If } C Y=1 \text {, } \\ & \text { (PC) - (byte 3) (byte 2) } \end{aligned}$ | 1 |  | 1 | 0 | 1 |  | 0 | 1 | 0 | 3 | 3 | 10 |  |  |  |  |  |
| JM | Jump on Minus | $\begin{aligned} & \text { If } S=1, \\ & (P C)-(\text { byte } 3)(\text { byte } 2) \end{aligned}$ | 1 |  | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 3 | 3 | 10 |  |  |  |  |  |
| JMP | Jump Unconditional | (PC) - (byte 3) (byte 2) | 1 |  | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 3 | 10 |  |  |  |  |  |
| JNC | Jump on No Carry | $\begin{aligned} & \text { If CY = } \\ & \text { (PC) - (byte 3) (byte 2) } \end{aligned}$ | 1 |  | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 3 | 3 | 10 |  |  |  |  |  |
| JNZ | Jump on Lot Zero | $\begin{aligned} & \text { If } Z=0, \\ & (\text { PC })-\text { (byte 3) (byte 2) } \end{aligned}$ | 1 |  | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 3 | 10 |  |  |  |  |  |
| JP | Jump on Positive | $\begin{aligned} & \text { If } \mathrm{S}=0 \text {, } \\ & \text { (PC) }- \text { (byte 3) (byte 2) } \end{aligned}$ | 1 |  | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 3 | 3 | 10 |  |  |  |  |  |
| JPE | Jump on Parity Even | $\begin{aligned} & \text { If } \mathrm{P}=1, \\ & \text { (PC) }-(\text { byte 3) (byte 2) } \end{aligned}$ | 1 |  | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 3 | 3 | 10 |  |  |  |  |  |
| JPO | Jump on Parity Odd | $\begin{aligned} & \text { If } P=0, \\ & \text { (PC) }- \text { (byte 3) (byte 2) } \end{aligned}$ | 1 |  | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 3 | 3 | 10 |  |  |  |  |  |
| jz | Jump on Zero | If $Z=1$. <br> (PC) - (byte 3) (byte 2) | 1 |  | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 3 | 3 | 10 |  |  |  |  |  |
| PCHL | $H$ and $L$ to Program Counter | $\begin{aligned} & (\mathrm{PCH})-(\mathrm{H}) \\ & (\mathrm{PCL})-(\mathrm{L}) \end{aligned}$ | 1 |  | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 5 |  |  |  |  |  |
| RC | Return on Carry | $\begin{aligned} & \text { If } C Y=1, \\ & (P C L)-((S P)) \\ & (P C H)-((S P)+1) \\ & (S P)-(S P)+2 \end{aligned}$ | 1 |  | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1/3 | 5/11 |  |  | ags fected |  |  |
| RET | Return | $\begin{aligned} & (P C L)-((S P)) \\ & (P C H)-((S P)+1) \\ & (S P)-(S P)+2 ; \end{aligned}$ | 1 |  | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 3 | 10 |  |  |  |  |  |
| RM | Return on Minus | $\begin{aligned} & \text { If } \mathrm{S}=1, \\ & (\mathrm{PCL})-((\mathrm{SP})) \\ & (\mathrm{PCH})-((\mathrm{SP})+1) \\ & (\mathrm{SP})-(\mathrm{SP})+2 \end{aligned}$ | 1 |  | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1/3 | 5/11 |  |  |  |  |  |
| RNC | Return on No Carry | $\begin{aligned} & \text { If } \mathrm{CY}=0, \\ & (\mathrm{PCL})-((\mathrm{SP})) \\ & (\mathrm{PCH})-((\mathrm{SP})+1) \\ & (\mathrm{SP})-(\mathrm{SP})+2 \end{aligned}$ | 1 |  | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1/3 | 5/11 |  |  |  |  |  |
| RNZ | Return on Not Zero | $\begin{aligned} & \text { If } Z=0, \\ & (P C L)-(\text { (SP) }) \\ & (P C H)-((S P)+1) \\ & (S P)-(S P)+2 \end{aligned}$ | 1 |  | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1/3 | 5/11 |  |  |  |  |  |
| RP | Return on Positive | $\begin{aligned} & \text { If } S=0, \\ & (P C L)-((S P)) \\ & (P C H)-((S P)+1) \\ & (S P)-(S P)+2 \end{aligned}$ | 1 |  | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1/3 | 5/11 |  |  |  |  |  |
| RPE | Return on Parity Even | $\begin{aligned} & \text { If } \mathrm{P}=1 \text {. } \\ & \text { (PCL)-((SP)) } \\ & \text { (PCH)-((SP)+1) } \\ & \text { (SP) }-(\mathrm{SP})+2 \end{aligned}$ | 1 |  | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1/3 | 5/11 |  |  |  |  |  |
| RPO | Return on Parity Odd | $\begin{aligned} & \text { If } P=0, \\ & (P C L)-((S P)) \\ & (P C H)-((S P)+1) \\ & (S P)-(S P)+2 \end{aligned}$ | 1 |  | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1/3 | 5/11 |  |  |  |  |  |
| RST | Restart | $\begin{aligned} & ((\mathrm{SP})-1)-(\mathrm{PCH}) \\ & ((\mathrm{SP})-2)-(\mathrm{PCL}) \\ & (\mathrm{SP})-(\mathrm{SP})-2 \\ & (\mathrm{PC})-8^{*}(\mathrm{NNN}) \end{aligned}$ | 1 |  | 1 | N | N | N | 1 | 1 | 1 | 1 | 3 | 11 |  |  |  |  |  |
| RZ | Return on Zero | $\begin{aligned} & \text { If } Z=1, \\ & (P C L)-((S P)) \\ & (P C H)-(\text { (SP) })+1) \\ & (S P)-(S P)+2 \end{aligned}$ | 1 |  | 1 | 0 | 0 |  | 0 | 0 | 0 | 1 | 1/3 | 5/11 |  |  |  |  |  |

## 

| MNEMONIC |  | DESCRIPTION | OPERATION | OP CODE |  |  |  |  |  |  |  | No. of Bytes | No. of Machine <br> (M) <br> Cycles | No. of States (T) | CONDITION FLAGS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | D7 |  | D | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | D3 | D2 | D1 | Do | S |  |  |  | $z$ | AC | P | CY |
| STACK, I/O, AND MACHINE CONTROL GROUP |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DI |  |  | Disable Interrupts | The Interrupt system is disabled following the execution of the DI instruction. | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 4 |  |  |  |  | . |
| El |  | Enable Interrupts | The interrupt system is enabled following the execution of next instruction. | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 4 |  |  |  |  |  |
| HLT |  | Halt | Processor is stopped; registers and flags are unaffected | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 7 |  |  |  |  | . |
| IN |  | Input | (A) - (data). | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 2 | 3 | 10 | . |  |  |  | . |
| NOP |  | No operation | No operation is performed; registers and flags are unaffected. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4 | . |  |  |  | . |
| OUT |  | Output | (data) - (A) | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 2 | 3 | 10 | . | . |  |  | . |
| POP | B | Pop Registers B and C off Stack | $\begin{aligned} & (\mathrm{C})-((\mathrm{SP})) \\ & (\mathrm{B})-((\mathrm{SP})+1) \\ & (\mathrm{SP})-(\mathrm{SP})+2 \end{aligned}$ | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 10 | . |  | . | . | . |
| POP | D | Pop Registers D and E off Stack | $\begin{aligned} & \text { (E) }-((\mathrm{SP})) \\ & (\mathrm{D})-((\mathrm{SP})+1) \\ & (\mathrm{SP})-(\mathrm{SP})+2 \end{aligned}$ | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 3 | 10 | . |  | . |  | . |
| POP | H | Pop Registers $H$ and $L$ off Stack | $\begin{aligned} & (L)-((S P)) \\ & (H)-((S P)+1) \\ & (S P)-(S P)+2 \end{aligned}$ | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 10 | . | . |  |  | . |
| POP | PSW | Pop Accumulator and Flags off Stack | $\begin{aligned} & (\mathrm{CY})-((\mathrm{SP}))_{0} \\ & (\mathrm{P})-\left((\mathrm{SP})_{2}\right. \\ & (\mathrm{AC})-\left((\mathrm{SP})_{4}\right. \\ & (\mathrm{Z})-\left((\mathrm{SP})_{6}\right. \\ & (\mathrm{S})-((\mathrm{SP}))_{7} \\ & (\mathrm{~A})-((\mathrm{SP})+1) \\ & (\mathrm{SP})-(\mathrm{SP})+2 \end{aligned}$ | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 3 | 10 | : | : | ! | ! | 1 |
| PUSH | B | Push Registers B and C on Stack | $\begin{aligned} & ((S P)-1)-(B) \\ & ((S P)-2)-(C) \\ & (S P)-(S P)-2 \end{aligned}$ | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 3 | 11 | . | . |  |  |  |
| PUSH | D | Push Registers D and E on Stack | $\begin{aligned} & ((S P)-1)-(D) \\ & ((S P)-2)-(E) \\ & (S P)-(S P)-2 \end{aligned}$ | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 3 | 11 | . | . | . |  | . |
| PUSH | H | Push Registers H and L on Stack | $\begin{aligned} & ((S P)-1)-(H) \\ & ((S P)-2)-(L) \\ & (S P)-(S P)-2 \end{aligned}$ | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 3 | 11 | . | - | . |  | . |
| PUSH | PSW | Push Accumulator and Flags on Stack | $\begin{aligned} & ((\mathrm{SP})-1)-(\mathrm{A}) \\ & ((\mathrm{SP})-2)_{0}-(\mathrm{CY}) \\ & ((\mathrm{SP})-2)_{1}-1 \\ & ((\mathrm{SP})-2)_{2}-(\mathrm{P}) \\ & ((\mathrm{SP})-2)_{3}-0 \\ & ((\mathrm{SP})-2)_{4}-(\mathrm{AC}) \\ & ((\mathrm{SP})-2)_{5}-0 \\ & ((\mathrm{SP})-2)_{6}-(\mathrm{Z}) \\ & (\mathrm{SP})-2)_{7}-(\mathrm{S}) \\ & (\mathrm{SP})-(\mathrm{SP})-2 \end{aligned}$ | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 3 | 11 | . | . |  |  | . |
| SPHL |  | Move $H$ and $L$ to Stack Pointer | (SP) - (H) (L) | 1 | 1 | 1 | 1 | 1 | $0$ | 0 | 1 | $1$ | $1$ | $5$ | - |  |  |  |  |
| XTHL |  | Exchange Top of Stack with $H$ and $L$ | $\begin{aligned} & (L)-((S P)) \\ & (H)=((S P)+1) \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  | . |  |  |  |  |

NOTES
a. $Z=1$ if $(A)=(H)(L)$;
$C Y=1$ if $(A)<(H)(L)$
b. $Z=1$ if $(A)=(r)$;
$\mathrm{CY}=1$ if $(\mathrm{A})<(\mathrm{r})$
c. $Z=1$ if $(A)=($ byte 2$)$;
$\mathrm{CY}=1$ if (A) < (byte 2)
d. As if an arithmetic operation
were performed.
Table 3 INSTRUCTION SET (Cont'd)

## CONDITION FLAGS AND STANDARD RULES

There are five condition flags associated with the execution of instructions on the MP8080A. They are Zero, Sign, Parity, Carry, and Auxiliary Carry, and each flag is represented by a 1 -bit register in the CPU. A flag is "set" by forcing the bit to 1 , "reset" by forcing the bit to 0 . The bit positions of the flags are indicated in the PUSH and POP PSW instructions.

Unless indicated otherwise, when an instruction affects a flag, it affects it in the following manner:

ZERO (Z) If the result of an instruction has the value 0 , this flag is set; otherwise, it is reset.
SIGN (S) If the most significant bit of the result of the operation has the value 1 , this flag is set; otherwise, it is reset.
PARITY (P) If the modulo 2 sum of the bits of the result of the operation is 0 (that is, if the result has even parity), this flag is set; otherwise, it is reset (that is, if the result has odd parity).
CARRY (CY) If the instruction resulted in a carry (from addition) or a borrow (from subtraction or a comparison) out of the high-order bit, this flag is set; otherwise, it is reset.
AUXILIARY
CARRY (AC)

## SYMBOLS AND ABBREVIATIONS

The following symbols and abbreviations are used in the subsequent description of the MP8080A instructions:

| Symbols | Meaning |
| :---: | :---: |
| A | Register A (Accumulator) |
| B | Register B |
| C | Register C |
| D | Register D |
| H | Register H |
| L | Register L |
| DDD, SSS | The bit pattern designating one of the registers $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, $\mathrm{E}, \mathrm{H}, \mathrm{L}$ (DDD = destination, SSS = source): |
|  | DDD or SSS Register Name |
|  | 111 A |
|  | 000 B |
|  | 001 C |
|  | 010 D |
|  | 011 E |
|  | 100 H |
|  | 101 L |
| byte 2 | The second byte of the instruction |
| byte 3 | The third byte of the instruction |
| port | 8 -bit address of an I/O device |
| r,r1,r2 | One of the registers A, B, C, D, E, H, L |


| Symbols | Meaning |
| :---: | :---: |
| PC | 16-bit program counter register (PCH and PCL are used to refer to the high-order and low-order 8 bits respectively.) |
| SP | 16-bit stack pointer register (SPH and SPL are used to refer to the high-order and loworder 8 bits respectively.) |
| ( ) | The contents of the memory location or registers enclosed in the parentheses |
| - | "Is replaced by" |
| $\wedge$ | Logical AND |
| $\forall$ | Exclusive-OR |
| V | Inclusive-OR |
| + | Addition |
| - | Twos complement subtraction |
| * | Multiplication |
| $\stackrel{ }{+}$ | "Exchange" |
| - | The ones complement (for example, ( $\overline{\mathrm{A}})$ ) |
| n | The restart number 0 through 7 |
| NNN | The binary representation 000 through 111 for restart number 0 through 7 resepctively |
| - | "Not affected" |
| 0 | "Reset" |
| 1 | "Set" |
| X | Unknown |
| $t$ | Flags affected according to Standard Rules, except as noted. |

## PHYSICAL DIMENSIONS <br> PHYSICAL DIMENSIONS

## DESCRIPTION

The Signetics 2651 PCI is a universal synchronous/asychronous data communications controller chip designed for microcomputer systems. It interfaces directly to the Signetics 2650 microprocessor and may be used in a polled or interrupt driven system environment. The 2651 accepts programmed instructions from the microprocessor and supports many serial data communication disciplines, synchronous and asynchronous, in the full or half-duplex mode.
The PCI serializes parallel data characters received from the microprocessor for transmission. Simultaneously, it can receive serial data and convert it into parallel data characters for input to the microcomputer.
The 2651 contains a baud rate generator which can be programmed to either accept an external clock or to generate internal transmit or receive clocks. Sixteen different baud rates can be selected under program control when operating in the internal clock mode.
The PCI is constructed using Signetics nchannel silicon gate depletion load technology and is packaged in a 28 -pin DIP.

## FEATURES

- Synchronous operation 5 to 8-bit characters
Single or double SYN operation Internal character synchronization Transparent or non-transparent mode Automatic SYN or DLE-SYN insertion SYN or DLE stripping Odd, even, or no parity Local or remote maintenance loop back mode Baud rate: dc to 0.8M baud (1X clock)
- Asynchronous operation

5 to 8-bit characters
1, 1 1/2 or 2 stop bits
Odd, even, or no parity
Parity, overrun and framing error detection
Line break detection and generation
False start bit detection
Automatic serial echo mode
Local or remote maintenance loop
back mode
Baud rate: dc to 0.8 M baud ( 1 X clock) dc to 50 k baud ( 16 X clock) dc to 12.5 k baud ( 64 X clock)

## OTHER FEATURES

- Internal or external baud rate clock
- 16 internal rates-50 to 19,200 baud
- Double buffered transmitter and receiver
- Full or half duplex operation
- Fully compatible with 2650 CPU
- TTL compatible inputs and outputs
- Single 5V power supply
- No system clock required
- 28-pin dual in-line package


## APPLICATIONS

- Intelligent terminals
- Network processors
- Front end processors
- Remote data concentrators
- Computer to computer links
- Serial peripherals


## PIN CONFIGURATION



## PIN DESIGNATION

| PIN NO. | SYMBOL | NAME AND FUNCTION | TYPE |
| :---: | :---: | :---: | :---: |
| 27,28,1,2, 5-8 | $\mathrm{D}_{0}-\mathrm{D}_{7}$ | 8-bit data bus | 1/0 |
| 21 | RESET | Reset | 1 |
| 12,10 | $\mathrm{A}_{0}-\mathrm{A}_{1}$ | Internal register select lines | I |
| 13 | $\overline{\mathrm{R}} / \mathrm{W}$ | Read or write command | I |
| 11 | $\overline{\mathrm{CE}}$ | Chip enable input | 1 |
| 22 | $\overline{\text { DSR }}$ | Data set ready | 1 |
| 24 | $\overline{\text { DTR }}$ | Data terminal ready | 0 |
| 23 | $\overline{\text { RTS }}$ | Request to send | $\bigcirc$ |
| 17 | CTS | Clear to send | 1 |
| 16 | $\overline{\text { DCD }}$ | Data carrier detected | 1 |
| 18 | $\overline{\text { TxEMT/ }} \overline{\mathrm{DSCHG}}$ | Transmitter empty or data set change | 0 |
| 9 | $\overline{T x C}$ | Transmitter clock | 1/0 |
| 25 | $\overline{R x C}$ | Receiver clock | $1 / 0$ |
| 19 | TxD | Transmitter data | 0 |
| 3 | RxD | Receiver data | 1 |
| 15 | TxRDY | Transmitter ready | 0 |
| 14 | $\overline{\text { RxRDY }}$ | Receiver ready | 0 |
| 20 | BRCLK | Baud rate generator clock | I |
| 26 | VCC | +5 V supply | 1 |
| 4 | GND | Ground | 1 |

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

| PARAMETER | RATING | UNIT |
| :--- | :---: | :---: |
| Operating ambient temperature ${ }^{2}$ | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| All voltages with respect to ground 3 | -0.5 to +6.0 | V |

PRELIMINARY SPECIFICATION
Manufacturer reserves the right to make design and process changes and improvements.

| BAUD RATE | THEORETICAL FREQUENCY 16X CLOCK | ACTUAL FREQUENCY 16X CLOCK | PERCENT ERROR | DIVISOR |
| :---: | :---: | :---: | :---: | :---: |
| 50 | 0.8 KHz | 0.8 KHz | -- | 6336 |
| 75 | 1.2 | 1.2 | -- | 4224 |
| 110 | 1.76 | 1.76 | -- | 2880 |
| 134.5 | 2.152 | 2.1523 | 0.016 | 2355 |
| 150 | 2.4 | 2.4 | -- | 2112 |
| 300 | 4.8 | 4.8 | -- | 1056 |
| 600 | 9.6 | 9.6 | -- | 528 |
| 1200 | 19.2 | 19.2 | -- | 264 |
| 1800 | 28.8 | 28.8 | -- | 176 |
| 2000 | 32.0 | 32.081 | 0.253 | 158 |
| 2400 | 38.4 | 38.4 | -- | 132 |
| 3600 | 57.6 | 57.6 | -- | 88 |
| 4800 | 76.8 | 76.8 | -- | 66 |
| 7200 | 115.2 | 115.2 | -- | 44 |
| 9600 | 153.6 | 153.6 | -- | 33 |
| 19200 | 307.2 | 316.8 | 3.125 | 16 |

NOTE
16 X clock is used in asynchronous mode. In synchronous mode, clock multiplier is 1 X .

Table 1 BAUD RATE GENERATOR CHARACTERISTICS Crystal Frequency $=5.0688 \mathrm{MHz}$

| PIN NAME | PIN NO. | INPUT/OUTPUT |  |
| :--- | :---: | :---: | :--- |
| VCC | 26 |  | FUNCTION |
| GND |  |  |  |
| RESET |  |  |  |

Table 2 CPU-RELATED SIGNALS

## BLOCK DIAGRAM



## BLOCK DIAGRAM

The PCl consists of six major sections. These are the transmitter, receiver, timing, operation control, modem control and SYN/DLE control. These sections communicate with each other via an internal data bus and an internal control bus. The internal data bus interfaces to the microprocessor data bus via a data bus buffer.

## Operation Control

This functional block stores configuration and operation commands from the CPU and generates appropriate signals to various internal sections to control the overall device operation. It contains read and write circuits to permit communications with the microprocessor via the data bus and contains Mode Registers 1 and 2, the Command Register, and the Status Register. Details of register addressing and protocol are presented in the PCI Programming section of this data sheet.

## Timing

The PCI contains a Baud Rate Generator (BRG) which is programmable to accept external transmit or receive clocks or to divide an external clock to perform data communications. The unit can generate 16 commonly used baud rates, any one of which can be selected for full duplex operation. See Table 1.

## Receiver

The Receiver accepts serial data on the RxD pin, converts this serial input to parallel format, checks for bits or characters that are unique to the communication technique and sends an "assembled" character to the CPU.

## Transmitter

The Transmitter accepts parallel data from the CPU, converts it to a serial bit stream, inserts the appropriate characters or bits (based on the communication technique) and outputs a composite serial stream of data on the TxD output pin.

## Modem Control

The modem control section provides interfacing for three input signals and three output signals used for "handshaking" and status indication between the CPU and a modem.

## SYN/DLE Control

This section contains control circuitry and three 8-bit registers storing the SYN1, SYN2, and DLE characters provided by the CPU. These registers are used in the synchronous mode of operation to provide the characters required for synchronization, idle fill and data transparency.

## INTERFACE SIGNALS

The PCI interface signals can be grouped into two types: the CPU-related signals (shown in Table 2), which interface the 2651 to the microprocessor system, and the device-related signals (shown in Table 3), which are used to interface to the communications device or system.

| PIN NAME | PIN NO. | INPUT/OUTPUT | FUNCTION |
| :---: | :---: | :---: | :---: |
| BRCLK | 20 | 1 | 5.0688 MHz clock input to the internal baud rate generator. Not required if external receiver and transmitter clocks are used. |
| $\overline{\mathrm{RxC}}$ | 25 | 1/0 | Receiver clock. If external receiver clock is programmed, this input controls the rate at which the character is to be received. Its frequency is $1 \mathrm{X}, 16 \mathrm{X}$ or 64 X the baud rate, as programmed by Mode Register 1. Data is sampled on the rising edge of the clock. If internal receiver clock is programmed, this pin becomes an output at 1 X the programmed baud rate. |
| $\overline{T \times C}$ | 9 | 1/0 | Transmitter clock. If external transmitter clock is programmed, this input controls the rate at which the character is transmitted. Its frequency is $1 \mathrm{X}, 16 \mathrm{X}$ or 64 X the baud rate, as programmed by Mode Register 1. The transmitted data changes on the falling edge of the clock. If internal transmitter clock is programmed, this pin becomes an output at 1 X the programmed baud rate. |
| RxD | 3 | 1 | Serial data input to the receiver. "Mark" is high, "Space" is low. |
| TxD | 19 | 0 | Serial data output from the transmitter. "Mark" is high, "Space" is low. Held in Mark condition when the transmitter is disabled. |
| $\overline{\text { DSR }}$ | 22 | 1 | General purpose input which can be used for Data Set Ready or Ring Indicator condition. Its complement appears as Status Register bit SR7. Causes a low output on $\overline{\text { TxEMT/ }} / \overline{\mathrm{DSCHG}}$ when its state changes. |
| $\overline{D C D}$ | 16 | 1 | Data Carrier Detect input. Must be low in order for the receiver to operate. Its complement appears as Status Register bit SR6. Causes a low output on $\overline{\text { TxEMT/ } / \overline{D S H G}}$ when its state changes. |
| $\overline{\text { CTS }}$ | 17 | 1 | Clear to Send input. Must be low in order for the transmitter to operate. |
| $\overline{\text { DTR }}$ | 24 | 0 | General purpose output which is the complement of Command Register bit CR1. Normally used to indicate Data Terminal Ready. |
| $\overline{\text { RTS }}$ | 23 | 0 | General purpose output which is the complement of Command Register bit CR5. Normally used to indicate Request to Send. |

Table 3 DEVICE-RELATED SIGNALS

## OPERATION

The functional operation of the 2651 is programmed by a set of control words supplied by the CPU. These control words specify items such as synchronous or asynchronous mode, baud rate, number of bits per character, etc. The programming procedure is described in the PCI Programming section of this data sheet.
After programming, the PCI is ready to perform the desired communications functions. The receiver performs serial to parallel conversion of data received from a modem or equivalent device. The transmitter converts parallel data received from the CPU to a serial bit stream. These actions are accomplished within the framework specified by the control words.

## Receiver

The 2651 is conditioned to receive data when the $\overline{D C D}$ input is low and the RxEN bit in the command register is true. In the asynchronous mode, the receiver looks for a high to low transition of the start bit on the RxD input line. If a transition is detected, the state of the $R \times D$ line is sampled again after a delay of one-half of a bit time. If $R \times D$ is now high, the search for a valid start bit is begun again. If R×D is still low, a valid start bit is assumed and the receiver continues to sample the input line at one bit time intervals
until the proper number of data bits, the parity bit, and the stop bit(s) have been assembled. The data is then transferred to the Receive Data Holding Register, the RxRDY bit in the status register is set, and the $\overline{\text { RXRDY }}$ output is asserted. If the character length is less than 8 bits, the high order unused bits in the Holding Register are set to zero. The Parity Error, Framing Error, and Overrun Error status bits are set if required. If a break condition is detected ( RxD is low for the entire character as well as the stop bit [s]), only one character consisting of all zeros (with the FE status bit set) will be transferred to the Holding Register. The RxD input must return to a high condition before a search for the next start bit begins.

When the PCI is initialized into the synchronous mode, the receiver first enters the hunt mode. In this mode, as data is shifted into the Receiver Shift Register a bit at a time, the contents of the register are compared to the contents of the SYN1 register. If the two are not equal, the next bit is shifted in and the comparison is repeated. When the two registers match, the hunt mode is terminated and character assembly mode begins. If single SYN operation is programmed, the SYN DETECT status bit is set. If double SYN operation is programmed, the first character assembled after SYN1 must be SYN2 in order for the SYN DETECT bit to be set.

Otherwise, the PCl returns to the hunt mode. (Note that the sequence SYN1-SYN1SYN2 will not achieve synchronization). When synchronization has been achieved, the PCl continues to assemble characters and transfer them to the Holding Register, setting the RxRDY status bit and asserting the $\overline{\text { RXRDY output each time a character is }}$ transferred. The PE and OE status bits are set as appropriate. Further receipt of the appropriate SYN sequence sets the SYN DETECT status bit. If the SYN stripping mode is commanded, SYN characters are not transferred to the Holding Register. Note that the SYN characters used to establish initial synchronization are not transferred to the Holding Register in any case.

## Transmitter

The PCl is conditioned to transmit data when the CTS input is low and the TXEN command register bit is set. The 2651 indicates to the CPU that it can accept a character for transmission by setting the TxRDY status bit and asserting the TXRDY output. When the CPU writes a character into the Transmit Data Holding Register, these conditions are negated. Data is transferred from the Holding Register to the Transmit Shift Register when it is idle or has completed transmission of the previous character. The TXRDI conditions are then asserted
again. Thus, one full character time of buffering is provided.

In the asynchronous mode, the transmitter automatically sends a start bit followed by the programmed number of data bits, the least significant bit being sent first. It then appends an optional odd or even parity bit and the programmed number of stop bits. If, following transmission of the stop bits, a new character is not available in the Transmit Holding Register, the TXD output remains in the marking (high) condition and the $\overline{\text { TXEMT }} / \overline{\mathrm{DSCHG}}$ output and its corresponding status bit are asserted. Transmission resumes when the CPU loads a new character into the Holding Register. The transmitter can be forced to output a continuous low (BREAK) condition by setting the Send Break command bit high.

In the synchronous mode, when the 2651 is initially conditioned to transmit, the TXD output remains high and the TxRDY condition is asserted until the first character to be transmitted (usually a SYN character) is loaded by the CPU. Subsequent to this, a continuous stream of characters is transmitted. No extra bits (other than parity, if commanded) are generated by the PCI unless the CPU fails to send a new character to the PCl by the time the transmitter has completed sending the previous character. Since synchronous communications does not allow gaps between characters, the PCI asserts TxEMT and automatically "fills" the gap by transmitting SYN1s, SYN1-SYN2 doublets, or DLE-SYN1 doublets, depending on the command mode. Normal transmission of the message resumes when a new character is available in the Transmit Data Holding Register. If the SEND DLE bit in the command register is true, the DLE character is automatically transmitted prior to transmission of the message character.

## PCI PROGRAMMING

Prior to initiating data communications, the 2651 operational mode must be programmed by performing write operations to the mode and command registers. In addition, if synchronous operation is programmed, the appropriate SYN/DLE registers must be loaded. The PCI can be reconfigured at any time during program execution. However, the receiver and transmitter should be disabled if the change has an effect on the reception or transmission of a character. A flowchart of the initialization process appears in Figure 1.
The internal registers of the PCl are accessed by applying specific signals to the $\overline{C E}, \bar{R} / W, A_{1}$ and $A_{0}$ inputs. The conditions necessary to address each register are shown in Table 4.


Figure 1

| $\overline{\mathbf{C E}}$ | $\mathbf{A}_{1}$ | $\mathbf{A}_{0}$ | $\overline{\mathbf{R}} / \mathbf{W}$ | FUNCTION |
| :---: | :---: | :---: | :---: | :--- |
| 1 | $\times$ | $\times$ | $\times$ | Tri-state data bus |
| 0 | 0 | 0 | 0 | Read receive holding register |
| 0 | 0 | 0 | 1 | Write transmit holding register |
| 0 | 0 | 1 | 0 | Read status register |
| 0 | 0 | 1 | 1 | Write SYN1/SYN2/DLE registers |
| 0 | 1 | 0 | 0 | Read mode registers $1 / 2$ |
| 0 | 1 | 0 | 1 | Write mode registers $1 / 2$ |
| 0 | 1 | 1 | 0 | Read command register |
| 0 | 1 | 1 | 1 | Write command register |

NOTE
See AC Characteristics section for timing requirements.
Table 42651 REGISTER ADDRESSING

The SYN1, SYN2, and DLE registers are accessed by performing write operations with the conditions $A_{1}=0, A_{0}=1$, and $\bar{R} / W=$ 1. The first operation loads the SYN1 register. The next loads the SYN2 register, and the third loads the DLE register. Reading or loading the mode registers is done in a similar manner. The first write (or read) operation addresses Mode Register 1, and a subsequent operation addresses Mode Register 2. If more than the required number of accesses are made, the internal sequencer recycles to point at the first register. The pointers are reset to SYN1 Register and Mode Register 1 by a RESET input or by performing a "Read Command Register" operation, but are unaffected by any other read or write operation.

The 2651 register formats are summarized in Tables 5, 6, 7 and 8. Mode Registers 1 and 2 define the general operational characteristics of the PCI , while the Command Register controls the operation within this basic frame-work. The PCl indicates its status in the Status Register. These registers are cleared when a RESET input is applied.

## Mode Register 1 (MR1)

Table 5 illustrates Mode Register 1. Bits MR11 and MR10 select the communication format and baud rate multiplier. 00 specifies synchronous mode and 1X multiplier. 1X, 16 X , and 64 X multipliers are programmable for asynchronous format. However, the multiplier in asynchronous format applies only if the external clock input option is selected by MR24 or MR25.

MR13 and MR12 select a character length of $5,6,7$, or 8 bits. The character length does not include the parity bit, if programmed, and does not include the start and stop bits in asynchronous mode.

MR14 controls parity generation. If enabled, a parity bit is added to the transmitted character and the receiver performs a parity check on incoming data. MR15 selects odd or even parity when parity is enabled by MR14.

In asychronous mode, MR17 and MR16 select character framing of $1,1.5$, or 2 stop bits. (If 1 X baud rate is programmed, 1.5 stop bits defaults to 1 stop bits on transmit). In synchronous mode, MR17 controls the number of SYN characters used to establish
synchronization and for character fill when the transmitter is idle. SYN1 alone is used if MR17 = 1, and SYN1-SYN2 is used when MR17 $=0$. If the transparent mode is specified by MR16, DLE-SYN1 is used for character fill, but the normal synchronization sequence is used.

## Mode Register 2 (MR2)

Table 6 illustrates Mode Register 2. MR23, MR22, MR21, and MR20 control the frequency of the internal baud rate generator (BRG). Sixteen rates are selectable. When driven by a 5.0688 MHz input at the BRCLK input (pin 20), the BRG output has zero error except at $134.5,2000$, and 19,200 baud, which have errors of $+0.016 \%,+0.235 \%$, and $+3.125 \%$ respectively.

MR25 and MR24 select either the BRG or the external inputs $\overline{T \times C}$ and $\overline{R x C}$ as the clock source for the transmitter and receiver, respectively. If the BRG clock is selected, the baud rate factor in asynchronous mode is 16 X regardless of the factor selected by MR11 and MR10. In addition, the corresponding clock pin provides an output at 1 X the baud rate.

| MR17 | MR16 | MR15 | MR14 | MR13 | MR12 | MR11 | MR10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Parity Type | Parity Control | Character Length |  | Mode and Baud Rate Factor |  |
| ASYNCH: STOP BIT LENGTH <br> $00=$ INVALID <br> $01=1$ STOP BIT <br> $10=11 / 2$ STOP BITS <br> $11=2$ STOP BITS |  | $\begin{aligned} & 0=\mathrm{ODD} \\ & 1=\mathrm{EVEN} \end{aligned}$ | $\begin{aligned} & 0=\text { DISABLED } \\ & 1=\text { ENABLED } \end{aligned}$ | $\begin{aligned} & 00=5 \text { BITS } \\ & 01=6 \text { BITS } \\ & 10=7 \text { BITS } \\ & 11=8 \text { BITS } \end{aligned}$ |  | $00=$ SYNCHRONOUS 1X RATE <br> $01=$ ASYNCHRONOUS $1 \times$ RATE <br> $10=$ ASYNCHRONOUS 16X RATE <br> 11 = ASYNCHRONOUS 64X RATE |  |
| SYNCH: NUMBER OF SYN CHAR <br> 0 = DOUBLE SYN <br> 1 = SINGLE SYN | SYNCH: TRANSPARENCY CONTROL <br> $0=$ NORMAL <br> $1=$ TRANSPARENT |  |  |  |  |  |  |

NOTE
Baud rate factor in asynchronous applies only if external clock is selected. Factor is 16 X if internal clock is selected.
Table 5 MODE REGISTER 1 (MR1)

| MR27 | MR26 | MR25 | MR24 | MR23 | MR22 |
| :---: | :---: | :---: | :---: | :---: | :---: | MR21 | MR20 |
| :---: |

Table 6 MODE REGISTER 2 (MR2)

## Command Register (CR)

Table 7 illustrates Command Register. Bits CRO (TxEN) and CR2 (RxEN) enable or disable the transmitter and receiver respectively. If the transmitter is disabled, it will complete the transmission of the character in the Transmit Shift Register (if any) prior to terminating operation. The TxD output will then remain in the marking state (high). If the receiver is disabled, it will terminate operation immediately. Any character being assembled will be neglected.

Bits CR1 (DTR) and CR5 (RTS) control the $\overline{D T R}$ and $\overline{R T S}$ outputs. Data at the outputs is the logical complement of the register data.

In asynchronous mode, setting CR3 will force and hold the TxD output low (spacing condition) at the end of the current transmitted character. Normal operation resumes when CR3 is cleared. The TxD line will go high for a least one bit time before beginning transmission of the next character in the Transmit Data Holding Register. In synchronous mode, setting CR3 causes the transmission of the DLE register contents prior to sending the character in the Transmit Data Holding Register. CR3 should be reset in response to the next TxRDY.

Setting CR4 causes the error flags in the Status Register (SR3, SR4, and SR5) to be cleared. This bit resets automatically.
The PCl can operate in one of four submodes within each major mode (synchronous or asynchronous). The operational sub-mode is determined by CR7 and CR6. CR7-CR6 $=00$ is the normal mode, with the transmitter and receiver operating independently in accordance with the Mode and Status Register instructions.

In asynchronous mode, CR7-CR6 $=01$ places the PCI in the Automatic Echo mode. Clocked, regenerated received data is automatically directed to the TxD line while normal receiver operation continues. The receiver must be enabled (CR2 $=1$ ), but the
transmitter need not be enabled. CPU to receiver communications continues normally, but the CPU to transmitter link is disabled. Only the first character of a break condition is echoed. The TxD output will go high until the next valid start is detected. The following conditions are true while in Automatic Echo mode:

1. Data assembled by the receiver is automatically placed in the Transmit Holding Register and retransmitted by the transmitter on the TxD output.
2. Transmit clock $=$ receive clock.
3. $\overline{\text { TXRDY output }=1 .}$
4. The $\overline{\text { TxEMT }} / \overline{\mathrm{DSCHG}}$ pin will reflect only the data set change condition.
5. The TXEN command (CRO) is ignored.

In synchronous mode, CR7-CR6 $=01$ places the PCl in the Automatic SYN/DLE Stripping mode. The exact action taken depends on the setting of bits MR17 and MR16:

1. In the non-transparent, single SYN mode (MR17-MR16 $=10$ ), characters in the data stream matching SYN1 are not transferred to the Receive Data Holding Register (RHR).
2. In the non-transparent, double SYN mode (MR17-MR16 $=00$ ), characters in the data stream matching SYN1, or SYN2 if immediately preceded by SYN1, are not transferred to the RHR. However, only the first SYN1 of an SYN1SYN1 pair is stripped.
3. In transparent mode (MR16 =1), characters in the data stream matching DLE, or SYN1 if immediately preceded by DLE, are not transferred to the RHR. However, only the first DLE of a DLE-DLE pair is stripped.

Note that Automatic Stripping mode does not affect the setting of the DLE Detect and SYN Detect status bits (SR3 and SR5).
Two diagnostic sub-modes can also be configured. In Local Loop Back mode (CR7-CR6 $=10$ ), the following loops are connected internally:

1. The transmitter output is connected to the receiver input.
2. $\overline{\mathrm{DTR}}$ is connected to $\overline{\mathrm{DCD}}$ and $\overline{\mathrm{RTS}}$ is connected to $\overline{\mathrm{CTS}}$.
3. Receive clock $=$ transmit clock.
4. The $\overline{\overline{D T R}}, \overline{R T S}$ and $\overline{T \times D}$ outputs are held high.
5. The $\overline{C T S}, \overline{D C D}, \overline{D S R}$ and RxD inputs are ignored.
Additional requirements to operate in the Local Loop Back mode are that CRO (TxEN), CR1 (DTR), and CR5 (RTS) must be set to 1 . CR2 (RxEN) is ignored by the PCI.

The second diagnostic mode is the Remote Loop Back mode (CR7-CR6 = 11). In this mode:

1. Data assembled by the receiver is automatically placed in the Transmit Holding Register and retransmitted by the transmitter on the TxD output.
2. Transmit clock $=$ receive clock.
3. No data is sent to the local CPU, but the error status conditions (PE, OE, FE) are set.
4. The $\overline{\mathrm{RXRDY}}, \overline{\mathrm{T} \times R D Y}$, and $\overline{\mathrm{TxEMT}} / \overline{\mathrm{DSCHG}}$ outputs are held high.
5. CR1 (TXEN) is ignored.
6. All other signals operate normally.

## Status Register

The data contained in the Status Register (as shown in Table 8) indicate receiver and transmitter conditions and modem/data set status.

SRO is the Transmitter Ready (TxRDY) status bit. It, and its corresponding output, are valid only when the transmitter is enabled. If equal to 0 , it indicates that the Transmit Data Holding Register has been loaded by the CPU and the data has not been transferred to the Transmit Shift Register. If set equal to 1 , it indicates that the Holding Register is ready to accept data from the CPU. This bit is initially set when the Transmitter is enabled by CRO, unless a character has previously been loaded into the Holding Register. It is not set when the Automatic Echo or Remote Loop Back modes are programmed. When this bit is set, the TxRDY output pin is low. In the Automatic Echo and Remote Loop Back modes, the output is held high.

| CR7 CR6 | CR5 | CR4 | CR3 | CR2 | CR1 | CRO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating Mode | Request to Send | Reset Error |  | Receive Control (RxEN) | Data Terminal Ready | Transmit Control (TxEN) |
| $00=$ NORMAL OPERATION <br> 01 = ASYNCH: AUTOMATIC <br> ECHO MODE <br> SYNCH: SYN AND/OR <br> DLE STRIPPING MODE <br> $10=$ LOCAL LOOP BACK <br> $11=$ REMOTE LOOP BACK | $0=$ FORCE $\overline{\text { RTS }}$ OUTPUT HIGH 1 = FORCE $\overline{R T S}$ OUTPUT LOW | $\begin{aligned} & 0=\text { NORMAL } \\ & 1=\text { RESET } \end{aligned}$ <br> ERROR FLAG <br> IN STATUS REG <br> (FE, OE, <br> PE/DLE DETECT) | ASYNCH: <br> FORCE BREAK $\begin{aligned} 0= & \text { NORMAL } \\ 1= & \text { FORCE } \\ & \text { BREAK } \end{aligned}$ <br> SYNCH: <br> SEND DLE <br> $0=$ NORMAL <br> 1 = SEND DLE | $\begin{aligned} & 0=\text { DISABLE } \\ & 1=\text { ENABLE } \end{aligned}$ | $0=$ FORCE $\overline{\text { DTR }}$ OUTPUT HIGH 1 = FORCE $\overline{\text { DTR }}$ OUTPUT LOW | $\begin{aligned} & 0=\text { DISABLE } \\ & 1=\mathrm{ENABLE} \end{aligned}$ |

Table 7 COMMAND REGISTER (CR)

| SR7 | SR6 | SR5 | SR4 | SR3 | SR2 | SR1 | SRO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data Set Ready | Data Carrier Detect | FE/SYN Detect | Overrrun | PE/DLE Detect | TxEMT/DSCHG | RxRDY | TxRDY |
| $\begin{aligned} & 0=\overline{\text { DSR } \text { INPUT }} \\ & \text { IS HIGH } \\ & 1= \overline{\text { DSR INPUT }} \\ & \text { IS LOW } \end{aligned}$ | $\begin{aligned} 0= & \overline{\mathrm{DCD}} \text { INPUT } \\ & \text { IS HIGH } \\ 1= & \overline{\mathrm{DCD}} \text { INPUT } \\ & \text { IS LOW } \end{aligned}$ | ASYNCH: <br> $0=$ NORMAL <br> $1=$ FRAMING ERROR <br> SYNCH: $\begin{aligned} & 0=\text { NORMAL } \\ & 1=\text { SYN CHAR } \end{aligned}$ DETECTED | $\begin{aligned} 0= & \text { NORMAL } \\ 1= & \text { OVERRUN } \\ & \text { ERROR } \end{aligned}$ | ASYNCH: <br> $0=$ NORMAL <br> $1=$ PARITY <br> ERROR <br> SYNCH: <br> $0=$ NORMAL <br> 1 = PARITY <br> ERROR OR <br> DLE CHAR <br> RECEIVED | $\begin{aligned} & 0=\text { NORMAL } \\ & 1=\text { CHANGE } \end{aligned}$ <br> IN DSR OR <br> $\overline{\mathrm{DCD}}, \mathrm{OR}$ <br> TRANSMIT <br> SHIFT REGIS- <br> TER IS <br> EMPTY | $\begin{aligned} & 0=\text { RECEIVE } \\ & \text { HOLDING REG } \\ & \text { EMPTY } \\ & 1=\text { RECEIVE } \\ & \text { HOLDING REG } \\ & \text { HAS DATA } \end{aligned}$ | $\begin{aligned} & 0=\text { TRANSMIT } \\ & \text { HOLDING } \\ & \text { REG BUSY } \\ & 1=\text { TRANSMIT } \\ & \text { HOLDING } \\ & \text { REG EMPTY } \end{aligned}$ |

Table 8 STATUS REGISTER (SR)

SR1, the Receiver Ready (RxRDY) status bit, indicates the condition of the Receive Data Holding Register. If set, it indicates that a character has been loaded into the Holding Register from the Receive Shift Register and is ready to be read by the CPU. If equal to zero, there is no new character in the Holding Register. This bit is cleared when the CPU reads the Receive Data Holding Register or when the receiver is disabled by CR2. When set, the $\overline{\text { RxRDY output is low. }}$
The TxEMT/DSCHG bit, SR2, when set, indicates either a change of state of the $\overline{\mathrm{DSR}}$ or $\overline{\mathrm{DCD}}$ inputs or that the Transmit Shift Register has completed transmission of a character and no new character has been loaded into the Transmit Data Holding Register. Note that in synchronous mode this bit will be set even though the appropriate "fill" character is transmitted. It is cleared when the transmitter is enabled by CRO and does not indicate transmitter condition until at
least one character is transmitted. It is also cleared when the Status Register is read by the CPU. When SR2 is set, the TxEMT/DSCHG output is low.

SR3, when set, indicates a received parity error when parity is enabled by MR14. In synchronous transparent mode (MR16 = 1), with parity disabled, it indicates that a character matching the DLE Register has been received. However, only the first DLE of two successive DLEs will set SR3. This bit is cleared when the receiver is disabled and by the Reset Error command, CR4.

The Overrun Error status bit, SR4, indicates that the previous character loaded into the Receive Holding Register was not read by the CPU at the time a new received character was transferred into it. This bit is cleared when the receiver is disabled and by the Reset Error command, CR4.

In asynchronous mode, bit SR5 signifies that the received character was not framed by the programmed number of stop bits. If 1.5 stop bits are programmed, only the first stop bit is checked.) In synchronous nontransparent mode (MR16 $=0$ ), it indicates receipt of the SYN1 character is single SYN mode or the SYN1-SYN2 pair in double SYN mode. In synchronous transparent mode (MR16 = 1), this bit is set upon detection of the initial synchronizing characters (SYN1 or SYN1-SYN2) and, after synchronization has been achieved, when a DLE-SYN1 pair is received. The bit is reset when the receiver is disabled, when the Reset Error command is given in asynchronous mode, and when the Status Register is read by the CPU in the synchronous mode.
SR6 and SR7 reflect the conditions of the $\overline{\mathrm{DCD}}$ and $\overline{\mathrm{DSR}}$ inputs respectively. A low input sets its corresponding status bit and a high input clears it.

DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% 4,5,6$

| PARAMETER | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
|  Input voltage <br> $\mathrm{V}_{\text {IL }}$ Low <br> $\mathrm{V}_{\text {IH }}$ High |  |  | $\begin{aligned} & 0.8 \\ & 2.0 \end{aligned}$ |  | V |
|  Output voltage <br> VoL Low <br> VOH High | $\begin{aligned} \mathrm{IOL} & =1.6 \mathrm{~mA} \\ \mathrm{IOH} & =-100 \mathrm{uA} \end{aligned}$ |  | $\begin{gathered} 0.25 \\ 2.8 \end{gathered}$ |  | V |
| ILL Input load current | $\mathrm{V}_{\text {IN }}=0$ to 5.5 V |  | 10 |  | $\mu \mathrm{A}$ |
| Tristate Output leakage current <br> ILH Data bus high <br> ILL Data bus low | $\begin{gathered} V_{O}=4.0 \mathrm{~V} \\ V_{\mathrm{O}}=0.45 \mathrm{~V} \end{gathered}$ |  | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ |  | $\mu \mathrm{A}$ |
| Icc Power supply current |  |  | 90 |  | mA |

PRELIMINARY SPECIFICATION
Manufacturer reserves the right to make design and process changes and improvements.

CAPACITANCE $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=0 \mathrm{~V}$

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| Cin | Capacitance Input |  | $\mathrm{fc}=1 \mathrm{MHz}$ <br> Unmeasured pins tied to ground |  |  | 20 | pF |
| Cout | Output |  |  |  | 20 |  |  |
| $\mathrm{Cl}_{1 / \mathrm{O}}$ | Input/Output |  |  |  | 20 |  |  |

PRELIMINARY SPECIFICATION
Manufacturer reserves the right to make design and process changes and improvements.
AC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% 4,5,6$

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| tres tce | Pulse width Reset Chip enable |  |  |  | $\begin{gathered} 1000 \\ 200 \end{gathered}$ |  | ns |
| $t_{A S}$ tah tcs ${ }^{\mathrm{t}} \mathrm{CH}$ tos tDH trxs trxh | Setup and hold time Address setup Address hold $\bar{R} / W$ control setup $\overline{\mathrm{R}} / \mathrm{W}$ control hold Data setup for write Data hold for write $R x$ data setup Rx data hold |  |  | $\begin{gathered} 10 \\ 10 \\ 10 \\ 10 \\ 150 \\ 80 \\ 150 \\ 280 \end{gathered}$ |  | ns |
| $\begin{aligned} & \hline \text { tDD } \\ & \text { tDF } \\ & \hline \end{aligned}$ | Data delay time for read Data bus floating time for read | $\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$ |  | $\begin{aligned} & 180 \\ & 70 \end{aligned}$ |  | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ |
| $f_{B R G}$ $\mathrm{f}_{\mathrm{R} / \mathrm{T}}$ | Input clock frequency Baud rate generator $\overline{T x C}$ or $\overline{R x C}$ |  | $\begin{gathered} 5.0637 \\ \mathrm{dc} \\ \hline \end{gathered}$ | $\begin{gathered} 5.0688 \\ 1.0 \\ \hline \end{gathered}$ | 5.0738 | MHz |
| tBRH <br> tBRL <br> $t_{\text {R/TH }}$ <br> tR/TL | Clock state <br> Baud rate high <br> Baud rate low <br> $\overline{\mathrm{TxC}}$ or $\overline{\mathrm{RxC}}$ high (duty cycle) <br> $\overline{\mathrm{TxC}}$ or $\overline{\mathrm{RxC}}$ low (duty cycle) |  | $\begin{aligned} & 44 \% \\ & 44 \% \end{aligned}$ | $\begin{gathered} 90 \\ 90 \\ 50 \% \\ 50 \% \\ \hline \end{gathered}$ | $\begin{aligned} & 56 \% \\ & 56 \% \end{aligned}$ | ns |
| $\begin{aligned} & \text { tTXD } \\ & \text { tTCS } \end{aligned}$ | TxD delay from falling edge of $\overline{T \times C}$ Skew between TXD changing and falling edge of $\overline{T \times C}$ output ${ }^{8}$ | $\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$ |  | $\begin{gathered} 300 \\ 0 \end{gathered}$ |  | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ |

## NOTES

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operation section of this specification is not implied.
2. For operating at elevated temperatures, the device must be derated based on $+150^{\circ} \mathrm{C}$ maximum junction temperature and thermal resistance of $60^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient (IQ ceramic package).
3. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated maxima.
4. Parameters are valid over operating temperature range unless otherwise specified.
5. All voltage measurements are referenced to ground. All time measurements are at the $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\text {IH }}$, $V_{\text {IL }}$ levels as appropriate.
6. Typical values are at $+25^{\circ} \mathrm{C}$, typical supply voltages and typical processing parameters.
7. $\overline{T \times R D Y}, \overline{R x R D Y}$ and $\overline{T x E M T} / \overline{D S C H G}$ outputs are open drain.
8. Parameter applies when internal transmitter clock is used.

PRELIMINARY SPECIFICATION
Manufacturer reserves the right to make design and process changes and improvements.

TIMING DIAGRAMS


TIMING DIAGRAMS (Cont'd)

PROGRAMMABLE COMMUUICATIONS INTERFACE (PCI)

TIMING DIAGRAMS (Cont'd)


TYPICAL APPLICATIONS


TYPICAL APPLICATIONS


## DESCRIPTION

The 2652 Multi-Protocol Communications Controller (MPCC) is a monolithic $n$ channel MOS LSI circuit that formats, transmits and receives synchronous serial data while supporting bit-oriented or byte control protocols. The chip is TTL compatible, operates from a single +5 V supply, and can interface to a processor with an 8 or 16-bit bidirectional data bus.

## FEATURES

- DC to 500 K bps data rate
- Protocol management Bit-oriented protocols (BOP): SDLC, ADCCP, HDLC
Byte-control protocols (BCP): BI-SYNC, DDCMP
- Programmable operation 8 or 16-bit tri-state data bus Protocol selection-BOP or BCP Error control-CRC or VRC or no error check
Character length-1 to 8 bits for BOP or 5 to 8 bits for BCP SYNC or secondary station address comparison for BCP-BOP Idle transmission of SYNC/FLAG or MARK for BCP-BOP
- Automatic detection and generation of special BOP control sequences, i.e., FLAG, ABORT, GA
- Zero insertion and deletion for BOP
- Short character detection for last BOP data character
- SYNC generation, detection, and stripping for BCP
- Maintenance Mode for self-testing
- Common parameter control registers
- Independent status and data registers for receive and transmit
- Status indicator signals can be used as CPU interrupts
- TTL compatible
- 40-pin package
- Single +5 V supply


## APPLICATIONS

- Intelligent terminals
- Line controllers
- Network processors
- Front end communications
- Remote data concentractors
- Communication test equipment
- Computer to computer links

PIN CONFIGURATION

| IW |  |
| :---: | :---: |
| ce 1 | 40 mm |
| RxC 2 | 39 TxC |
| RxSI 3 | 38 TxSO |
| S/F 4 | 37 TXE |
| RXA 5 | 36 TxU |
| RXDA 6 | 35 TXBE |
| RxSA 7 | 34 TXA |
| RXE 8 | 33 RESET |
| GND 9 | 32 vcc |
| D808 10 | 31 D800 |
| D809 11 | 30 DB01 |
| DB10 12 | 29. DB02 |
| D811 13 | 28 Dвоз |
| D812 14 | 27 D804 |
| D813 15 | 26 DB05 |
| DB14 16 | 25 D806 |
| DB15 17 | 24 DB07 |
| R/W 18 | 23 dben |
| A2 19 | 22 byte |
| A1 20 | 21 AO |
| NOTE |  |
| 00 is least significant bit, highest number that is, DB15, A2) is most significant bit. |  |

## BLOCK DIAGRAM



## PIN DESIGNATION

| MNEMONIC | PIN NO. | TYPE | NAME AND FUNCTION |
| :---: | :---: | :---: | :---: |
| DB15-DB00 | $\begin{aligned} & 17-10 \\ & 24-31 \end{aligned}$ | 1/0 | Data Bus: DB07-DB00 contain bidirectional data while DB15-DB08 contain control and status information to or from the processor. Corresponding bits of the high and low order bytes can be WIRE OR'ed onto an 8-bit data bus. |
| A2-A0 | 19-21 | 1 | Address Bus: A2-A0 select internal registers. The four 16 -bit registers can be addressed on a word or byte basis. See Register Address section. |
| BYTE | 22 | 1 | Byte: Single byte ( 8 bit) data bus transfers are specified when this input is high. A low level specifies 16 bit data bus transfers. |
| CE | 1 | 1 | Chip Enable: A high input permits a data bus operation when DBEN is activated. |
| $\overline{\mathrm{R}} / \mathrm{W}$ | 18 | 1 | Read/Write: $\bar{R} / W$ controls the direction of data bus transfer. When high, the data is to be loaded into the addressed register. A low input causes the contents of the addressed register to be presented on the data bus. |
| DBEN | 23 | 1 | Data Bus Enable: After A2-A0, CE, BYTE and $\bar{R} / W$ are set up, DBEN may be strobed. During a read, the tri-state data bus ( $D B$ ) is enabled with information for the processor. During a write, the stable data is loaded into the addressed register and TXBE will be reset if TDSR was addressed. |
| RESET | 33 | 1 | Reset: A high level initializes all internal registers and timing. |
| MM | 40 | 1 | Maintenance Mode: MM internally gates TxSO back to RxSI and $\overline{T \times C}$ to RxC for off line diagnostic purposes. The $R \times C$ input is disabled when MM is asserted. |
| RxE | 8 | 1 | Receiver Enable: A high level input permits the processing of RxSI data. A low level disables the receiver logic and initializes all receiver registers and timing. |
| $R \times A$ | 5 | 0 | Receiver Active: RxA is asserted when the first data character of a message is ready for the processor. In the BOP mode this character is the address. The received address must match the secondary station address if the MPCC is a secondary station. In BCP mode, if strip-SYNC (PCSAR ${ }_{13}$ ) is set, the first non-SYNC character is the first data character; if strip-SYNC is zero, the character following the second SYNC is the first data character. In the BOP mode, the closing FLAG resets RxA. In the BCP mode, RxA is reset by a low level at RxE. |
| R×DA* | 6 | - 0 | Receiver Data Available: R×DA is asserted when an assembled character is in RDSRL and is ready to be presented to the processor. This output is reset when RDSRL is read. |
| RxC | 2 | 1 | Receiver Clock: RxC(1X) provides timing for the receiver logic. The positive going edge shifts serial data into the RxSR from RxSI. |
| S/F | 4 | 0 | SYNC/FLAG: S/F is asserted for one RxC clock time when a SYNC or FLAG character is detected. |
| $R \times S A^{*}$ | 7 | 0 | Receiver Status Available: RxSA is asserted when there is a zero to one transition of any bit in RDSRH except for RSOM. It is cleared when RDSRH is read. |
| $\mathrm{R} \times \mathrm{SI}$ | 3 | 1 | Receiver Serial Input: RxSI is the received serial data. Mark = ' 1 ', space = ' 0 '. |
| TxE | 37 | 1 | Transmitter Enable: A high level input enables the transmitter data path between TDSRL and TxSO. At the end of a message, a low level input causes $T \times S O=1$ (mark) and $T \times A=0$ after the closing FLAG (BOP) or last character (BCP) is output on TxSO. |
| TXA | 34 | 0 | Transmitter Active: TxA is asserted when TxE is high and TSOM (TDSR8) is set. This output will reset when TxE is low and the closing FLAG (BOP) or last character (BCP) has been output on TxSO. |
| TxBE* | 35 | 0 | Transmitter Buffer Empty: TxBE is asserted when the TDSR is ready to be loaded with new control information or data. The processor should respond by loading the TDSR which resets TxBE. |
| TxU* | 36 | O | Transmitter Underrun: $T x U$ is asserted during a transmit sequence when the service of TxBE has been delayed for more than one character time. This indicates the processor is not keeping up with the transmitter ( $T_{x S O}$ depends on PCSAR ${ }_{11}$ ). TxU is reset by RESET or setting of TSOM (TDSR8). |
| TxC | 39 | 1 | Transmitter Clock: $\operatorname{TxC}$ (1X) provides timing for the transmitter logic. The positive going edge shifts data out of the TxSR to TxSO. |
| TxSO | 38 | 0 | Transmitter Serial Output. TxS0 is the transmitted serial data. Mark = '1', space = '0'. |
| $V_{\text {CC }}$ | 32 | 1 | +5V: Power supply. |
| GND | 9 | 1 | Ground: OV reference ground. |

[^4]

NOTE
*H = High byte - bits 15-8
L = Low byte - bits 7-0
Table 1 GLOSSARY

| CHARACTER | DESCRIPTION |
| :--- | :--- |
| FCS | Frame Check Sequence is <br> transmitted/received as 16 <br> bits following the last data <br> character of a BOP message <br> and is usually CRC-CCITT <br> (X16 + X12 + X5 +1) with divi- <br> dend preset to 1's. <br> Block Check Character is <br> Bransmitted/received as two <br> successive characters fol- <br> sowing the last data charac- <br> ter of a BCP message. Either <br> CRC-16 (X16 + X15 + X + + $)$ <br> with dividend preset to O's or <br> LRC (X8 + 1) as computed by <br> the processor, is polynomial. <br> CRC-16 is used with 8-bit <br> EBC DIC. LRC is used with <br> 7-bit ASCII in conjunction <br> with VRC. The CRC-16 is <br> computed on all characters <br> beginning with the first non- <br> sync character at the start of <br> the message. |

Table 2 ERROR CONTROL

## FUNCTIONAL DESCRIPTION

The MPCC can be functionally partitioned into receiver logic, transmitter logic, registers that can be read or loaded by the processor, and data bus control circuitry. The MPCC block diagram is shown in Figure 1 while the receiver and transmitter data paths are depicted in Figures 2 and 3.

| OPERATION | BIT PATTERN | FUNCTION |
| :---: | :---: | :---: |
| BOP <br> FLAG <br> ABORT <br> GA <br> Address <br> BCP <br> SYNC | 01111110 <br> 11111111 generation 01111111 detection 01111111 <br> (PCSARL) ${ }^{1}$ <br> (PCSARL) or (TxDB)2 generation | Frame message <br> Terminate communication <br> Terminate loop mode repeater <br> function <br> Secondary station address <br> Frame message |

NOTES

1. ( $\propto$ ) refers to contents of $\propto$
2. For IDLE $=0$ or 1 respectively

Table 3 SPECIAL CHARACTERS

## SHORT FORM REGISTER BIT FORMATS



NOTE
Refer to Register Formats for mneumonics and description.
Figure 1


Figure 2


## RECEIVER OPERATION General

After initializing the parameter control registers (PCSAR and PCR), the RxE input must be set high to enable the receiver data path. The serial data on the RxSI is synchronized and shifted into an 8 -bit Control Character Shift Register (CCSR) on the rising edge of RxC . A comparison between CCSR contents and the FLAG (BOP) or SYNC (BCP) character is made untila match is found. At that time, the S/F output is asserted for one RxC time and the 16 -bit Holding Shift Register (HSR) is enabled. The receiver then operates as described below.

## BOP Operation

A flow chart of receiver operation in BOP mode appears in Figure 4. Zero deletion (after five ones are received) is implemented on the received serial data so that a data character will not be interpreted as a FLAG, ABORT, or GA. Bits following the FLAG are shifted through the CCSR, HSR, and into the Receiver Shift Register (RxSR). A character will be assembled in the RxSR and transferred to the RDSRL for presentation to the processor. At that time the R×DA output will be asserted and the processor must take the character before the next character is assembled in the RxSR. If not, an overrun (RDSR $_{11}=1$ ) will occur and succeeding characters will be lost.

The first character following the FLAG is the secondary station address. If the MPCC is a secondary station (PCSAR $12=1$ ), the contents of RxSR are compared with the address stored in PCSARL. A match indicates the forthcoming message is intended for the station; the RxA output is asserted, the character is loaded into RDSRL, RxDA is asserted and the Receive Start of Message bit (RSOM) is set. No match indicates that another station is being addressed and the receiver searches for the next FLAG.

If the MPCC is receiving data from a secondary station $\left(\right.$ PCSAR $\left._{12}=0\right)$, no secondary address check is made; RxA is asserted and RSOM is set once the first non-FLAG character has been loaded into RDSRL and R×DA has been asserted.

When the 8 bits following the address character have been loaded into RDSRL and RxDA has been asserted, RSOM will be cleared. The processor should read this 8 bit character and interpret it as the Control field.
Received serial data that follows is read and interpreted as the Information field by the processor. It will be assembled into character lengths as specified by PCR ${ }_{8-10}$. As


Figure 4
before, RxDA is asserted each time a character has been transferred into RDSRL and is cleared when RDSR $L$ is read by the processor. RxSA is asserted when there is a zero to one transition for any bit in RDSRH except for RSOM. RxSA and all bits in RDSRH except RSOM are cleared when $^{\text {m }}$ RDSRH is read. The processor should check RDSR $_{9}-15$ each time RxSA is asserted. If RDSR $_{9}$ is set, then RDSR $_{12-15}$ should be examined.

Receiver character length may be changed dynamically in response to RxDA: read the character in RxDB and write the new char-
acter length into RxCL. The character length will be changed on the next $R \times C$ positive going edge.

The CRC-CCITT, if specified by PCSAR 8 10, is accumulated in RxCRC on each character following the FLAG. When the closing FLAG is detected in the CCSR, the received CRC is in the 16 -bit HSR. At that time, the Receive End of Message bit (REOM) will be set; RxSA and RxDA will be asserted. The processor should read the last data character in RDSRL and the receiver status in RDSR $_{9-15}$. If RDSR $_{15}=1$, there has been a
transmission error; the accumulated CRCCCITT is incorrect. If RDSR $12-14 \neq 0$, the last data character is not of prescribed length. Neither the received CRC nor closing FLAG are presented to the processor. The processor may drop RxE or leave it active at the end of the received message.

## BCP Operation

The operation of the receiver in BCP mode is shown in Figure 5. The receiver initially searches for two successive SYNC characters, of length specified by PCR8-10, that match the contents of PCSARL. The next non-SYNC character or next SYNC character if stripping is not specified $\left(\right.$ PCSAR $_{13}=$ 0 ), causes R×A to be asserted and enables the receiver data path from CCSR through HSRL to RxSR. All characters following the first non-SYNC are assembled in RxSR and loaded into RDSRL. RxDA is active when a character is available in RDSRL. RxSA is active on a 0 to 1 transition of any bit in RDSRH. The signals are cleared when $^{\text {w }}$ RDSRL or RDSRH are read respectively.

If CRC-16 error control is specified by PCSAR ${ }_{8-10}$, the processor must determine the last character received prior to the CRC field. When that character is loaded into RDSR $R_{L}$ and $R \times D A$ is asserted, the received CRC will be in CCSR and HSRL. To check for a transmission error, the processor must read the receiver status (RDSRH) and examine RDSR ${ }_{15}$. This bit will be set for one character time if an error free message has been received. If RDSR $_{15}=0$, the CRC- 16 is in error. Note that this bit should be examined only at the end of a message and that the accumulated CRC will include all characters starting with the first non-SYNC character at the start of the message. In particular, SYNC's in the middle of a message, DLE characters, and the first SOH or STX after line turn around are subject to CRC.

If VRC had been selected for error control, parity (odd or even) is regenerated on each character and check with the parity bit received. A discrepancy causes RDSR $_{15}$ to be set and RxSA to be asserted. This must be sensed by the processor. The received parity bit is stripped before the character is presented to the processor. The processor should compute and check LRC if required.

When the processor has read the last character of the message, it should drop RxE which disables the receiver logic and initializes all receiver registers and timing.


Figure 5

## TRANSMITTER OPERATION General

After the parameter control register (PCSAR and PCR) have been initialized, TxE must be set high to enable the transmitter data path. TxSO is held to mark until TSOM (TDSR 8 ) is set. Then, transmitter operation depends on protocol mode.

## BOP Operation

Transmitter operation for BOP is shown in Figure 6. A FLAG is sent when the processor sets the Transmit Start of Message bit (TSOM). The FLAG is used to synchronize the message that follows. TxA will be asserted after TSOM is set. When TXBE is asserted by the MPCC, the processor should load

TDSRL with the first character of the message. TSOM should be cleared at the same time TDSRL is loaded (16-bit data bus) or immediately thereafter (8-bit data bus). FLAGs are sent as long as $\mathrm{TSOM}=1$.

All succeeding characters are loaded into TDSR $L$ by the processor when $\operatorname{TxBE}=1$. Each character is serialized in TxSR and transmitted on TxSO. Internal zero insertion logic stuffs a "0" into the serial bit stream after five successive " 1 s " are sent. This insures a data character will not match a FLAG, ABORT, or GA reserved control character. As each character is transmitted, the Frame Check Sequence (FCS) is generated as specified by Error Control Mode (PCSAR ${ }_{8-10}$ ). The FCS should be the


Figure 6

CRC-CCITT polynomial) $\left.X^{16}+X^{12}+X^{5}+1\right)$ preset to 1 s . If an underrun occurs (processor is not keeping up with the transmitter), TxU and TERR (TDSR ${ }_{15}$ ) will be asserted with ABORT or FLAG used as the TxSO line fill depending on the state of IDLE (PCSAR ${ }_{11}$ ). The processor must set TSOM and retransmit the message to recover.
A residual character of 3 to 7 bits may be transmitted at the end of BOP information field to make sure that field is a multiple of 8 bits. In response to $T \times B E$, write the residual character length into TxCL and load TxDB with the residual character. Dynamic alteration of character length should be done in exactly the same sequence.

After the last data character has been loaded into TDSRL and sent to TxSR (TxBE $=1$ ), the processor should set TEOM (TDSRg). The MPCC will finish transmitting the last character followed by the FCS and the closing FLAG. The processor should clear TEOM and drop TXE when the next TXBE is asserted. This corresponds to the start of closing FLAG transmission. When TXE has been dropped, TXA will be low $11 / 2$ bit times after the last bit of the closing FLAG has been transmitted. TxSO will be marked after the closing FLAG has been transmitted.

If TXE and TEOM are high, the transmitter continues to send FLAGs. The processor may initiate the next message by resetting TEOM and setting TSOM, or by loading TDSR $L$ with a data character and then simply resetting TEOM (without setting TSOM).

## BCP Operation

Transmitter operation for BCP mode is shown in Figure 7. If TxE is high, TxA will be asserted when TSOM $=1$. At that time SYNC characters are sent from PCSAR or TDSR $_{L}$ (IDLE $=0$ or 1 ) as long as $T S O M=1 . T \times B E$ is asserted at the start of transmission of the first SYNC character. For more than one SYNC, the processor should reassert TSOM in response to the assertion of TXBE. When $T S O M=0$ transmission is from TDSR $_{\mathrm{L}}$, which must be loaded with characters from the processor each time TxBE is asserted. If this loading is delayed for more than one character time, an underrun results: TxU and TERR are asserted and the TxSO line fill depend on IDLE ( PCSAR $_{11}$ ). The processor must set TSOM and retransmit the message to recover.

CRC-16, if specified by PCSAR 8 -10, is generated on each character transmitted from TDSR $L$ when $T S O M=0$. The processor must set TEOM = 1 after the last data character has been sent to $T x S R(T x B E=1)$. The MPCC will finish transmitting the last data


Figure 7
character and the CRC-16 field before sending SYNC characters which are transmitted as long as TEOM $=1$. If SYNCs are not desired after CRC-16 transmission, the processor should clear TEOM and lower TxE when the TxBE corresponding to the start of CRC-16 transmission is asserted. When TEOM $=0$, the line is marked and a new message may be initiated by setting TxE and TSOM.

If LRC is required, it must be generated by the processor and transmitted after the last data character. TEOM should not be set under this condition. If VRC is specified, it is generated on each data character and the data character length must not exceed 7 bits. For software LRC or CRC TEOM should be set only if SYNCs are required at the end of the message block.

## SPECIAL CASE

The capability to transmit 16 spaces is provided for line turnaround in half duplex mode or for a control recovery situation.

This is achieved by setting TSOM and TEOM, clearing TEOM when $T \times B E=1$, and proceeding as required.

## PROGRAMMING

Prior to initiating data transmission or reception, PCSAR and PCR must be loaded with control information from the processor. The contents of these registers (see Register Format section) will configure the MPCC for the user's specific data communication environment. These registers should be loaded during power-on initialization and after a reset operation. They can be changed at any time that the respective transmitter or receiver is disabled.
The default value for all registers is zero. This corresponds to BOP, primary station mode, 8 -bit character length, FCS = CRCCCITT preset to 1 s .

For BOP mode the character length register (PCR) may be set to the desired values during system initialization. The address and control fields will automatically be 8 -
bits. If a residual character is to be transmitted, $T \times C L$ should be changed to the residual character length prior to transmission of that character.

## DATA BUS CONTROL

The processor must set up the MPCC register address (A2-A0), chip enable (CE), byte select (BYTE), and read/write ( $\overline{\mathrm{R}} / \mathrm{W}$ ) inputs before each data bus transfer operation.
During a read operation ( $\overline{\mathrm{R}} / \mathrm{W}=0$ ), the leading edge of DBEN will initiate an MPCC read cycle. The addressed register will place its contents on the data bus. If $\mathrm{BYTE}=$ 1, the 8-bit byte is placed on DB15-08 or DB07-00 depending on the $\mathrm{H} / \mathrm{L}$ status of the register addressed. Unused bits in RDSRL are zero. If $\mathrm{BYTE}=0$, all 16 bits (DB15-00) contain MPCC information. The trailing edge of DBEN will reset RxDA and/or RxSA if RDSR $_{H}$ or RDSR $_{L}$ is addressed respectively.
DBEN acts as the enable and strobe so that the MPCC will not begin its internal read cycle until DBEN is asserted.
During a write operation ( $\overline{\mathrm{R}} / \mathrm{W}=1$ ), data must be stable on DB $15-08$ and/or DB $07-00$ prior to the leading edge of DBEN. The stable data is strobed into the addressed register by DBEN. TXBE will be cleared if the addressed register was TDSRH or TDSRL.

|  | A2 | A1 | A0 | REGISTER |
| :---: | :---: | :---: | :---: | :---: |
| BYTE $=0$ | 16-BIT DATA BUS $=\mathrm{DB}_{15}-\mathrm{DB}_{00}$ |  |  |  |
|  | 0 | 0 | X | RDSR |
|  | 0 | 1 | X | TDSR |
|  | 1 | 0 | x | PCSAR |
|  | 1 | 1 | X | PCR* |
| BYTE $=1$ | 8-BIT DATA BUS $=$ DB $7-0$ or DB $15-8^{* *}$ |  |  |  |
|  | 0 | 0 | 0 | RDSRL |
|  | 0 | 0 | 1 | $\mathrm{RDSR}_{\mathrm{H}}$ |
|  | 0 | 1 | 0 | TDSRL |
|  | 0 | 1 | 1 | TDSR ${ }_{\text {H }}$ |
|  | 1 | 0 | 0 | PCSARL |
|  | 1 | 0 | 1 | PCSARH |
|  | 1 | 1 | 0 | PCRL* |
|  | 1 | 1 | 1 | PCRH |

NOTES

* PCR lower byte does not exist. It will be all " 0 "s when read.
* Corresponding high and low order pins should be tied together

Table 4 MPCC REGISTER ADDRESSING

| BIT | NAME | MODE | FUNCTION |
| :---: | :---: | :---: | :---: |
| 00-07 | Not Defined |  |  |
| 08-10 | RxCL | BOP/BCP | Receiver Character Length is loaded by the processor depending on RxBC when $R \times C L E=0$. |
| 11 | RxCLE | BOP/BCP | Receiver Character Length Enable should be zero when the processor loads RxCL. The remaining bits of PCR are not affected during loading. |
| 12 | TXCLE | BOP/BCP | Transmitter Character Length Enable should be zero when the processor loads TxCL. The remaining bits of PCR are not affected during loading. |
| 13-15 | TxCL | BOP/BCP | Transmitter Character Length is loaded by the processor when TxCLE $=0$. Character bit length specification format is identical to RxCL. |

Table 5 PARAMETER CONTROL REGISTER (PCR)-(R/W)


Table 6 PARAMETER CONTROL SYNC/ADDRESS REGISTER (PCSAR)-(R/W)

| BIT | NAME | MODE |  |
| :---: | :---: | :---: | :--- |
| $00-07$ | TxDB | BOP/BCP | FUNCTION <br> Transmit Data Buffer. Contains processor loaded characters to be serialized in TxSR <br> and transmitted on TxSO. |
| 08 | TSOM | BOP | Transmitter Start of Message. Set by the processor to initiate message transmission <br> provided TxE $=1$. <br> TSOM $=1$ generates FLAGs. When TSOM $=0$ transmission is from TxDB and FCS <br> generation begins. FCS, as specified by PCSAR $8-10$, should be CRC-CCITT preset to <br> 1 's. <br> TSOM $=1$ generates SYNCs from PCSARL or transmits from TxDB for IDLE $=0$ or 1 <br> respectively. When TSOM $=0$ transmission is from TxDB and CRC generation (if <br> specified) begins. |

Table 7 TRANSMIT DATA/STATUS REGISTER (TDSR) (R/W except TDSR 15)

| BIT | NAME | MODE | FUNCTION |
| :---: | :---: | :---: | :---: |
| 09 | TEOM | BOP | Transmit End of Message. Used to terminate a transmitted message when CRC error checking is used. <br> TEOM $=1$ causes the FCS and the closing FLAG to be transmitted following the transmission of the data character in TxSR. FLAGs are transmitted until TEOM $=0$. ABORT or GA are transmitted if TABORT or TGA are set when TEOM $=1$. |
|  |  | BCP | TEOM $=1$ causes CRC-16 to be transmitted (if selected) followed by SYNCs from PCSARL or TXDB (IDLE $=0$ or 1). Clearing TEOM prior to the end of CRC-16 transmission (when $\operatorname{TxBE}=1$ ) causes $T \times S O$ to be marked following the CRC-16. TxE must be dropped before a new message can be initiated. If CRC is not selected, TEOM should not be set. |
| 10 | TABORT | BOP | Transmitter Abort $=1$ will cause ABORT or FLAG to be sent (IDLE $=0$ or 1 ) after the current character is transmitted. $($ ABORT $=11111111)$ |
| 11 | TGA | BOP | Transmit Go Ahead (GA) instead of FLAG when TEOM $=1$. This facilitates repeater termination in loop mode. $(G A=01111111)$ |
| 12-14 | Not Defined |  |  |
| 15 | TERR | Read only BOP BCP | Transmitter Error $=1$ indicates the TXDB has not been loaded in time to maintain continous transmission. TxU will be asserted to inform the processor of this condition. <br> TERR is cleared by setting TSOM. <br> ABORT's or FLAG's are sent as fill characters (IDLE $=0$ or 1 ) <br> SYNC's or MARK's are sent as fill characters (IDLE $=0$ or 1). For IDLE $=1$ the last character before underrun is not valid. |

Table 7 TRANSMIT DATA/STATUS REGISTER (TDSR) (R/W except TDSR 15) (Cont'd)

| BIT | NAME | MODE | FUNCTION |
| :---: | :---: | :---: | :---: |
| 00-07 | RxDB | BOP/BCP | Receiver Data Buffer. Contains assembled characters from the RxSR. If VRC is specified, the parity bit is stripped. |
| 08 | RSOM | BOP | Receiver Start of Message $=1$ when a FLAG followed by a non-FLAG has been received and the latter character matches the secondary station address if $S A M=1$. RXA will be asserted when RSOM $=1$. RSOM resets itself after one character time and has no effect on RxSA. |
| 09 | REOM | BOP | Receiver End of Message $=1$ when the closing FLAG is detected and the last data character is loaded into RxDB or when an ABORT/GA character is received. REOM is cleared on reading RDSRH, reset operation, or dropping of RxE. |
| 10 | RAB/GA | BOP | Received ABORT or GA character $=1$ when the receiver senses an ABORT character if $S S / G A=0$ or a GA character if $S S / G A=1 . R A B / G A$ is cleared on reading RDSRH, reset operation, or dropping of RxE. A received ABORT inhibits RxDA. |
| 11 | ROR | BOP/BCP | Receiver Overrun $=1$ indicates the processor has not read the last character in the RxDB within one character time. Subsequent characters will be lost. ROR is cleared on reading RDSRH, reset operation, or dropping or RxE. |
| 12-14 | ABC | BOP | Assembled Bit Count. Specifies the number of bits in the last received data character of a message and should be examined by the processor when REOM $=1$ (RxDA and RxSA asserted). $A B C=0$ indicates the message was terminated (by a FLAG or GA) on a character boundary as specified by PCSCR8-10. Otherwise, ABC = number of bits in the last data character. ABC is cleared when RDSRH is read, reset operation, or dropping RxE. The residual character is right justified in RDSRL |
| 15 | RERR | BOP BCP | Receiver Error indicator should be examined by the processor when REOM $=1$ in BOP, or when the processor determines the last data character of the message in BCP with CRC or when RxSA is set in BCP with VRC. <br> CRC-CCITT preset to 1's should be specified by PCSAR ${ }_{8-10}$ : <br> RERR $=1$ indicates FCS error (CRC $\neq$ FOB8) <br> RERR $=0$ indicates FCS received correctly (CRC $=$ FOB8) <br> CRC-16 preset to 0 's on 8-bit data characters specified by PCSAR $8-10$ : <br> RERR $=1$ indicates CRC-16 received correctly (CRC-0). <br> RERR $=0$ indicates CRC-16 error ( $C R C \neq 0$ ) <br> VRC specified by PCSAR ${ }_{8-10}$ : <br> RERR $=1$ indicates VRC error <br> RERR $=0$ indicates VRC is correct |

Table 8 RECEIVER DATA/STATUS REGISTER (RDSR)-(Read Only)

## ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

| PARAMETER |  | RATING | UNIT |
| :---: | :---: | :---: | :---: |
| TA | Operating ambient temperature ${ }^{2}$ | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |
| TStG | Storage temperature | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
|  | Input or output voltages with respect to GND3 | -0.3 to +15 | V |
| Vcc | With respect to GND | -0.3 to +7 | V |

DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, V_{C C}=+5 \mathrm{~V} \pm 5 \% 4,5,6$

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| $\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$ | Input voltage Low High |  |  | 2.0 |  | 0.8 | V |
| VoL VOH | Output voltage Low High | $\begin{aligned} & \mathrm{IOL}=1.6 \mathrm{~mA} \\ & \mathrm{IOH}=-100 \mu \mathrm{~A} \end{aligned}$ | 2.4 |  | 0.4 | V |
| Icc | Power supply current | $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |  |  | 150 | mA |
| $\begin{aligned} & \text { IIL } \\ & \text { IOL } \end{aligned}$ | Leakage current Input Output | $\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \text { to } 5.25 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=0 \text { to } 5.25 \mathrm{~V} \end{aligned}$ |  |  | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | $\mu \mathrm{A}$ |
| CIN Cout | Capacitance Input Output | $\begin{gathered} V_{\text {IN }}=0 V, f=1 \mathrm{MHz} \\ V_{\text {OUT }}=0 V, f=1 \mathrm{MHz} \end{gathered}$ |  |  | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ | pF |

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{AC}$ timing indicated is with outputs unloaded. 4,5,6

| PARAMETER |  | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
|  | Setup and hold time |  |  |  | ns |
| $t_{\text {ACS }}$ | Address/control setup | 50 |  |  |  |
| $\mathrm{taCH}^{\text {a }}$ | Address/control hold | 0 |  |  |  |
| tos | Data bus setup (write) | 50 |  |  |  |
| toh | Data bus hold (write) | 0 |  |  |  |
| trxs | Receiver serial data transfer | 150 |  |  |  |
| $t_{\text {RxH }}$ | Receive serial data hold | 150 |  |  |  |
|  | Pulse width |  |  |  | ns |
| tres | RESET | 250 |  |  |  |
| toben | DBEN | 250 |  |  |  |
|  | Delay time |  |  |  | ns |
| tod | Data bus (read) |  |  | 200 |  |
| ${ }_{\text {t }}^{\text {x }}$ D | Transmit serial data |  |  | 300 |  |
| tof | Data bus float time (read) |  |  | 150 | ns |
| $f$ | Clock (RxC, TxC) frequency |  |  | 500 | kHz |
| tolk 1 | Clock high | 1000 |  |  | ns |
| tclko | Clock low | 1000 |  |  | ns |

NOTES

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operation sections of this specification is not implied.
2. For operating at elevated temperatures the device must be derated based on $+150^{\circ} \mathrm{C}$ maximum junction temperature and thermal resistance of $60^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient (IQ ceramic package)
3. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated maxima.
4. Parameters are valid over operating temperature range unless otherwise specified
5. All voltage measurements are referenced to ground. All time measurements are at the $\mathrm{V}_{\mathrm{OH}}, \mathrm{VOL}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{IH}}$, or $\mathrm{V}_{\text {IL }}$ levels as appropriate.
6. Typical values are at $+25^{\circ} \mathrm{C}$, nominal supply voltages, and nominal processing parameters.

PRELIMINARY SPECIFICATION
Manufacturer reserves the right to make design and process changes and improvements.



TIMING DIAGRAMS (Cont'd)



TIMING DIAGRAMS (Cont'd)

TRANSMIT UNDERRUN

TIMING DIAGRAMS (Cont'd)


## TYPICAL APPLICATIONS



TYPICAL APPLICATIONS (Cont'd)


## DESCRIPTION

The Signetics 2655 PPI is designed for 2650 microcomputer systems. It consists of three ports ( 24 I/O pins), which can be individually programmed to function as input, output or bidirectional ports. Interface with the 2650 is via an eight-bit bidirectional data bus.
The PPI may be programmed for five major modes of operation: static I/O, strobed I/O, bidirectional I/O, serial I/O, or serial/timer I/O. In the serial/timer mode, parallel to serial or serial to parallel conversion of data operates simultaneously with the timer on one of the three ports.

## FEATURES

- Five selectable major operating modes: Static I/O
Strobed I/O
Bidirectional
Serial I/O
Serial/timer I/O
- Three ports (A, B, and C) with 24 programmable I/O pins
- Completely TTL compatible
- Three MHz programmable timer or event counter
- Fully compatible with the $\mathbf{2 6 5 0}$ microprocessor
- Direct bit set/reset capability of each bit for all three ports
- 300 ns port read/write access time
- Operates in a polled or interrupt driven system environment
- Forty pin dual in-line package
- Single +5 volt supply


## OPERATION

The following is a functional description of the five operating modes of the PPI. Each mode is selected via a mode control word. Interrupt generation and interrupt enable/ disable functions are available with each mode except the static mode which operates entirely under program control.

## STATIC MODE

All three ports can operate in the static I/O mode. This mode allows each pin of each port to be either an input pin or an output pin. A logic " 1 " written to a pin of a selected port from the 2650 will condition that pin to be an input or output pin. Writing a logic "0" to the pin conditions that pin to be an output pin only. Outputs are latched while inputs are not. Each pin may be set or reset on an individual basis by a "set/reset" command.

## STROBED I/O MODE

In this mode, data may be transferred to or from a specified port in conjunction with strobe or "handshaking" signals. Ports A and $B$ can operate in the strobed I/O mode and port C bits are used as control and status bits. In this mode both inputs and outputs are latched, and each port can be either an input or output.

## BLOCK DIAGRAM



## PRODUCT PREVIEW

## BIDIRECTIONAL I/O MODE

This mode provides a means for communicating with a peripheral device over a single eight-bit bus with both transmitting and receiving capability. Port A operates in this mode with Port C pins providing "handshaking" signals for status and control. Both inputs and outputs are latched and port direction is determined by a control signal from the peripheral.

## SERIAL I/O MODE

This mode provides a means for communicating with a peripheral device on a bit serial
basis through Port B. Parallel data from the CPU will be shifted out to the peripheral over the least significant bit of Port B (PB0). Eight clocks will be required for a complete character transfer. The eight-bit character will be repeatedly shifted out until the CPU presents another character to Port B.

For the serial in mode, data is input from the peripheral at the most significant bit of Port $B$ (PB7). Eight clocks will be required to assemble the eight-bit character. An interrupt request will signal the CPU for character transfer.

## TIMER MODE

This mode enables the PPI to perform time interval measurements, pulse width measurements, and event counting. This timing function is performed during the serial/ timer mode, and is restricted to Port B only. The mode is initiated by selecting the desired operation and loading a 16-bit down counter with an initial value. The counter does not start counting until the upper eight bits have been loaded. An interrupt can be generated to signal the CPU when the timer reaches a zero count.

## PIN DESIGNATION

| PIN NO. | MNEMONIC | TYPE | NAME AND FUNCTION |
| :---: | :---: | :---: | :---: |
| 27-34 | D7-D0 | I/O | Data Bus: Eight-bit tri-state bidirectional data bus. All data and command transfers are made using this bus. D0 is the least-significant bit; D7 is the most-significant bit. |
| 35 | RESET | 1 | Reset: Resets all internal storage elements, including the data latches and command registers. Resets ports A, B and C to accept input data, and operating mode to Static mode. A functionally equivalent on chip power-on reset is also provided. |
| 8,9 | A1, A0 | I | Address: Address lines used to select internal PPI modes or registers. Indicates control or data words to be placed on the data bus. Used in conjunction with the $\overline{\mathrm{R}} / \mathrm{W}$ line. |
| 5 | $\overline{\mathrm{R}} / \mathrm{W}$ | 1 | Read/Write: When low, gates the selected register to the data bus. When high, gates the contents of the data bus into the selected register. |
| 6 | $\overline{\mathrm{CE}}$ | I | Chip Enable: When low, identifies that control and data lines to the PPI are valid. |
| 36 | $\overline{\text { SCLK }}$ | 1 | Serial Clock: Provides a serial clock for the parallel-to-serial or serial-to-parallel conversion. |
| $\begin{gathered} 37-40 \\ 1-4 \end{gathered}$ | I/O PA7-PAO | I/O | Port A: An eight-bit tri-state quasi-bidirectional port. * PAO is the least-significant bit; PA7 is the most-significant bit. |
| 25-18 | I/O PB7-PBO | 1/0 | Port B: An eight-bit quasi-bidirectional port. ${ }^{*}$ PBO is the least-significant bit; PB7 is the mostsignificant bit. <br> Port B also has parallel-to-serial, or serial-to-parallel conversion capability with PBO, 7 being either the serial output or input respectively. Data is double buffered. <br> Port B can also operate as a 16-bit binary timer, as an event counter, or as a pulse width indicator. An output is generated whenever the counter is decremented to the all-zero state. |
| $\begin{aligned} & 10-13 \\ & 17-14 \end{aligned}$ | I/O PC7-PC0 | 1/0 | Port C: An eight-bit quasi-bidirectional port. * PCO is the least-significant bit; PC7 is the most significant bit. Port C bits are also used as control and status signals in conjunction with ports A and B . When a pin is used as a strobe input, the line receives an external strobe input which clocks information from port A or port B into the port A or port B data latches. <br> When a pin is used as a status line, the line indicates port A or port B status condition which may be used as an interrupt input to the 2650 . |
| 26 |  | 1 | +5 Volt: Power supply. |
| 7 |  | 1 | Ground: OV reference. |

[^5]
## DESCRIPTION

The Signetics 2656 System Memory Interface (SMI) is a mask programmable circuit with on-chip memory, I/O, and timing (clock) functions. It is useable either in 2chip or multi-chip microcomputer systems. Used with the 2650 microprocessor, it provides a 2 -chip microcomputer. This 2-chip microcomputer offers the user 2KX8 bits of ROM, 128X8 bits of RAM, and an 8-bit inputoutput port.
Used as a system interface in a multi-chip microcomputer, with larger memory and/or additional peripheral requirements, the programmable versatility of the SMI provides decoded chip enable outputs. These outputs connect directly to other memory or I/O functional blocks with few and often no requirement for additional interfacing chips. This reduces both chip count and cost in complex microcomputer systems.
The 2656 is processed using Signetics $n$ channel silicon gate technology. Only a single power supply of +5 volts is needed for operation.

## BLOCK DIAGRAM



## FEATURES

- 2KX8 mask programmable ROM
- 128X8 static RAM
- 8 multi-purpose pins for either chip enables or I/O bits
- 8-bit latch for either I/O or MPU storage
- Internal clock generator with crystal, RC, or external timing source
- System power-on reset
- 40-pin dual-in-line package
- Single +5 volt supply


## APPLICATIONS

- 2-chip microcomputer
- System control for multi-chip microcomputers-eliminates or reduces TTL suppport circuitry for memory and I/O device selection.
- From small ( $2 \mathrm{~K}-2$ chip) to 32 K microprocessor-based systems


## PIN CONFIGURATION



## FUNCTIONAL BLOCK DESCRIPTIONS <br> Data Bus Buffer

A tri-state bidirectional 8-bit bus transceiver for data transfer between the SMI and MPU.

## Programmable Gate Array (PGA)

Provides select signal outputs for the internal ROM, RAM, Latch, and up to 8 multipurpose $1 / O$ pins that are mask programmed as Chip Enables. A PGA output is active when the input variables match any one of 11 corresponding mask programmed product terms. The 18 input variables are normally address and control bus signals from the MPU and may be programmed as "1", "0", and "don't care." Each product term is a specified combination of the input variables.

## Control and Clock

Generates the Clock output signal to the MPU and control signals for the ROM, RAM, and Latch. A mask programmable frequency divider provides input frequency division by $1,2,3$, or 4 . The timing source is mask programmable and may be a crystal, RC, or external oscillator. If either of the latter two are designated as a timing source, the second timing pin becomes a Reset output to the MPU.

## PIN DESIGNATION

| MNEMONIC | PIN NO. | TYPE | NAME AND FUNCTION |
| :---: | :---: | :---: | :---: |
| $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ | $\begin{gathered} 38-40 \\ 1-5 \end{gathered}$ | 1/O | 8-bit Bidirectional Data Bus: All data transfers between the MPU and ROM, RAM, Latch, and $X$ pins are made using this bus. |
| $A_{0}-A_{14}$ | 18-32 | 1 | MPU Address Bus: Address bus inputs occupy contiguous bit positions with $A_{0}$ as the least significant address bit. |
| OPREQ | 16 | 1 | Control Signal: A signal that specifies the valid state of address and control bus. |
| $\mathrm{M} / \overline{\mathrm{IO}}, \mathrm{WRP}$ | 15, 17 | 1 | Optional Signals: Possibilities include Memory or I/O (M/IO), Write Pulse (WRP), external control signals, or additional high order address bits. |
| $\bar{R} / W$ | 14 | 1 | Read/Write Control: A control signal from the MPU that indicates whether the requested operation is to be a Read or Write (0 or 1 respectively). This signal must not change while OPREQ is true. |
| CLOCK | 10 | 0 | Clock Output to the MPU: The frequency is determined by the timing element and the mask programmable divisor (divided by 1, 2, 3, 4). |
| $\mathrm{CK}_{1} / \mathrm{RST}, \mathrm{CK}_{2}$ | 11,12 | 1/0, 1 | Connections for the Timing Element: Only $\mathrm{CK}_{2}$ is necessary for an RC or external timing source. The $\mathrm{CK}_{1} /$ RST pin then becomes a power-on Reset output. Two pins are necessary for direct connection of a crystal. |
| VCC | 33 | 1 | +5V: Power supply. |
| GND | 13 | 1 | Ground: OV reference ground. |
| $\mathrm{XO}_{0}-\mathrm{X}_{7}$ | $\begin{gathered} 34-37 \\ 9-6 \end{gathered}$ | 1/0 | Multi-purpose I/O Pins: These pins can be mask programmed as external memory or I/O chip enables, or bidirectional I/O port data bits, or any combination of the two. |

## ROM

2,048 bytes of mask-programmable Read Only Memory for storage of instructions and constants. The ROM base address is PGA mask programmable over the entire MPU address range. The ROM can be disabled by a mask option.

## RAM

128 bytes of Read/Write Memory for MPU data storage and retrieval. The RAM base address is PGA mask programmable over the entire MPU address range. RAM dominates over ROM if address overlap is intentionally mask programmed. The RAM can be disabled by a mask option.

## Function Select

A 1X8 Function Select array of maskprogrammable contacts determine the function of each of the multi-purpose I/O pins $\left(X_{0}-X_{7}\right)$. Two modes exist:

1. CE - The $X$ pin is an active low Chip Enable ( $\overline{\mathrm{CE}}$ ) for either external memory or an I/O port. PGA inputs receive the external address and MPU control signals required to generate the $\overline{\mathrm{CE}}$ output.
2. $P$ - The $X$ pin is a bidirectional I/O port data bit. A portion of the PGA provides the control signal to select the port.

## Latch

Holds output data for the multi-purpose I/O pins mask programmed as a mode $P$. The latch continues to function as a read/write element even if all multi-purpose 1/O pins are programmed as chip enables. Thus, any $X$ pin that is programmed as an external chip enable can have corresponding latch bits available for temporary data storage or software flags. To read an input pin, the corresponding latch bit must first be written to a "one" by the MPU program. This is done to disable all active outputs, changing them to passive pullup outputs. This permits inputs to be sensed on the same pin. Subsequent reads of the same pin do not have to be preceeded by a write if the state of the latch pin remains a "one."

## ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

|  | PARAMETER | RATING | UNIT |
| :--- | :--- | :---: | :---: |
| TA $\quad$ Operating ambient temperature2 | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |  |
| $\mathrm{T}^{\circ} \mathrm{CTG}$ | Storage temperature |  |  |
|  | All voltages with respect to ground 3 | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
|  | -0.5 to +6.0 | V |  |

NOTES

1. Stress above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operations section of this specification is not implied.
2. For operating at elevated temperatures, the device must be derated based on $+150^{\circ} \mathrm{C}$
maximum junction temperature and thermal resistance of $55^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient (IWA ceramic package.)
3. This product includes circuitry specifically designed for this protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated maxima.

## DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V} C \mathrm{C}=5.0 \mathrm{~V} \pm 5 \% 1,2,3,4,10$



AC ELECTRICAL CHARACTERISTICS $\quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% .1,2,3,4,9,10$


## TIMING DIAGRAMS



## CLOCK CONFIGURATIONS




## TIMING DIAGRAMS (Cont'd)



## CUSTOM PATTERN PROGRAMMING INSTRUCTIONS

A computer-aided technique utilizing punched computer cards is employed to specify a custom version of the 2656 . This technique requires that the customer supply Signetics with a deck of standard $80-$ column computer cards describing the data to be stored in the ROM array, the Programmable Gate Array (PGA), and the Function Select Array.
On receipt of a card deck, Signetics will translate the card deck to a truth table using the Signetics Computer-Aided Design (CAD) facility. The truth table will then be sent to the customer for final approval. On receipt of final approval, Signetics will produce masks and proceed with manufacturing.
The contents of each card in the deck are:
Customer Identification Cards are always labeled with a " $C$ " in column 1. For customer identification any number of cards is permitted. A 4-card example is shown below. The following data should be included:

| COLUMN | DATA |
| :---: | :---: |
| 1 | C |
| 2 | Blank |
| 3-66 | Company name (Card \#1) |
|  | Street address (Card \#2) |
|  | City, State, Zip (Card \#3) |
|  | Contact person name (Card \#4) |
| 67 | Blank |
| 68-70 | SMI |
| 71 | Blank |
| 72-75 | 2656 |
| 76-78 | Blank |
| 79-80 | 2-digit decimal number indicating the truth table number. |
|  | Must be the same on all cards in the deck. |

(Explanatory Note: The next card for this example is card No. ${ }^{5}$ )

\section*{CARD \#5-SMI FUNCTIONAL PARAMETERS <br> | COLUMN | DATA |
| :--- | :--- | :--- |
| $1-9$ | Blank |}

The next eight columns specify whether multi-purpose pins ( $\mathrm{X}_{0}-\mathrm{X}_{7}$ ) are to be chip enables or I/O port data bits. Each column must contain either the character " $E$ " for chip enable or the character "P" for I/O port. Card column 10 specifies $X_{0}$, card column 17 specifies $X_{7}$.

| COLUMN | DATA |
| :--- | :--- |
| 10 | E or $P$ for $X_{0}$ |
| 11 | E or P for $X_{1}$ |
| 12 | E or P for $X_{2}$ |
| 13 | E or P for $X_{3}$ |
| 14 | E or P for $X_{4}$ |
| 15 | E or P for $X_{5}$ |
| 16 | E or P for $X_{6}$ |
| 17 | E or P for $X_{7}$ |
| $18-19$ | Blank |

Select one of the next three columns to specify the type of clock source; crystal, external or R/C network. An "X" designates the selected clock source. The other two columns must be blank.

| COLUMN | DATA |
| :--- | :--- |
| 20 | $X$ or blank (Crystal) |
| 21 | $X$ or blank (R/C Network) |
| 22 | X or blank (External) |
| $23-29$ | Blank |

Select one of the next four columns to specify the clock source divider value to divide by $1,2,3$ or 4 . An " $X$ " designates the selected divisor. The other three columns must be blank.

| COLUMN | DATA |
| :--- | :--- |
| 30 | $X$ or blank $(\div 1)$ |
| 31 | X or blank $(\div 2)$ |
| 32 | X or blank $(\div 3)$ |
| 33 | X or blank $(\div 4)$ |
| $34-39$ | Blank |

Access to ROM, RAM or I/O Port bits may be disabled. The next three columns are used to disable ROM, RAM or I/O Port. Specify an "X" (disable) or blank (do not disable).

| COLUMN | DATA |
| :--- | :--- |
| 40 | $X$ or blank (ROM) |
| 41 | X or blank (RAM) |
| 42 | X or blank (PORT) |
| $43-78$ | Blank |
| $79-80$ | Two-digit decimal number in- <br> dicating the truth table num- <br> ber. |

## CARD \#6-PGA SPECIFICATION

The PGA is an $18 \times 11$ input-output structure. The first eight outputs are available as chip enables (if selected by the appropriate function-select parameters on card \#5). The last three outputs are internally connected to enable the SMI internal I/O Port, RAM and ROM. (See Figure 1.) Ascending order of card columns correspond to ascending PGA outputs. Thus, columns 5 through 15 correspond, respectively, to PGA chip enable outputs 0 through 7, the latch enable, the RAM enable and the ROM enable. Valid characters are 1, 0 or X. " 1 " indicates active high, " 0 " indicates active low, and " $X$ " indicates don't care.

| COLUMN | DATA |
| :---: | :---: |
| 1 | A |
| 2 | 0 |
| 3-4 | Blank |
| 5-15 | 1, 0 or X ( $\mathrm{A}_{0}$ for $\mathrm{F}_{0}$ to $\mathrm{F}_{10}$ ) |
| 16 | Blank |
| 17-27 | 1, 0 or $\mathrm{X}\left(\mathrm{A}_{1}\right.$ for $\mathrm{F}_{0}$ to $\mathrm{F}_{10}$ ) |
| 28 | Blank |
| 29-39 | 1, 0 or $\mathrm{X}\left(\mathrm{A}_{2}\right.$ for $\mathrm{F}_{0}$ to $\mathrm{F}_{10}$ ) |
| 40 | Blank |
| 41-51 | 1, 0 or X ( $\mathrm{A}_{3}$ for $\mathrm{F}_{0}$ to $\mathrm{F}_{10}$ ) |
| 52 | Blank |
| 53-63 | 1, 0 or $\mathrm{X}\left(\mathrm{A}_{4}\right.$ for $\mathrm{Fo}_{0}$ to $\mathrm{F}_{10}$ ) |
| 64 | Blank |
| 65-75 | 1, 0 or X ( $\mathrm{A}_{5}$ for $\mathrm{F}_{0}$ to $\mathrm{F}_{10}$ ) |
| 76-78 | Blank |
| 79-80 | 2-digit decimal number indicating the truth table number. |

CARD \#7-
PGA SPECIFICATION (Cont'd)

| COLUMN | DATA |
| :--- | :--- |
| 1 | A |
| 2 | 6 |
| $3-4$ | Blank |
| $5-15$ | 1,0 or $X\left(A_{6}\right.$ for $F_{0}$ to $\left.F_{10}\right)$ |
| 16 | Blank |
| $17-27$ | 1,0 or $X\left(A_{7}\right.$ for $F_{0}$ to $\left.F_{10}\right)$ |
| 28 | Blank |
| $29-39$ | 1,0 or $X\left(A_{8}\right.$ for $F_{0}$ to $\left.F_{10}\right)$ |
| 40 | Blank |
| $41-51$ | 1,0 or $X\left(A_{9}\right.$ for $F_{0}$ to $\left.F_{10}\right)$ |
| 52 | Blank |
| $53-63$ | 1,0 or $X\left(A_{10}\right.$ for $F_{0}$ to $\left.F_{10}\right)$ |
| 64 | Blank |
| $65-75$ | 1,0 or $X\left(A_{11}\right.$ for $F_{0}$ to $\left.F_{10}\right)$ |
| $76-78$ | Blank |
| $79-80$ | $2-d i g i t ~ d e c i m a l ~ n u m b e r ~ i n d i-~$ |
|  | cating the truth table number. |



NOTE
Each intersection can be programmed as active low (0), active high (1), or "don't care"(X).
Figure 1

CARD \#8-
PGA SPECIFICATION (Cont'd)

| COLUMN | DATA |
| :--- | :--- |
| 1 | A |
| $2-3$ | 12 |
| 4 | Blank |
| $5-15$ | 1,0 or $X\left(A_{12}\right.$ for $F_{0}$ to $\left.F_{10}\right)$ |
| 16 | Blank |
| $17-27$ | 1,0 or $X\left(A_{13}\right.$ for $F_{0}$ to $\left.F_{10}\right)$ |
| 28 | Blank |
| $29-39$ | 1,0 or $X\left(A_{14}\right.$ for $F_{0}$ to $\left.F_{10}\right)$ |
| 40 | Blank |
| $41-51$ | 1,0 or $X\left(M / \overline{I O}\right.$ for $F_{0}$ to $\left.F_{10}\right)$ |
| 52 | Blank |
| $53-63$ | 1,0 or $X\left(O P R E Q\right.$ for $F_{0}$ to $\left.F_{10}\right)$ |
| 64 | Blank |
| $65-75$ | 1,0 or $X\left(W R P\right.$ for $F_{0}$ to $\left.F_{10}\right)$ |
| $76-78$ | Blank |
| $79-80$ | 2 -digit decimal number indi- |
|  | cating the truth table number. |

## BINARY ROM CODE FORMAT CARD \#9 THROUGH CARD \#264

These remaining cards specify the 2048 8bit locations of the SMI ROM. The first data field of card \#9 is ROM location 0 , the last data field of card \#264 is ROM location 2047. For each field, the leftmost character is the MSB, the rightmost character is the LSB. Valid characters are 1or O. Alternately,Por N characters may be used. A " 1 " or " $P$ " represents a logic high at the SMI data bus connection. A " 0 " or " $N$ " represent a logic low. Each of these cards is configured as follows:

| COLUMN | DATA |
| :--- | :--- |
| $1-5$ | Right justified decimal address <br> of first data field of the card <br> (columns 7-14). |
| 6 | Blank <br> 1 or 0; or, P or N |


| COLUMN | DATA | each data pair, the left character is the hexadecimal equivalent of bits $D_{7}$ to $D_{4}$; the right character is the hexadecimal equiva- |  |
| :---: | :---: | :---: | :---: |
| 15 | Blank |  |  |
| 16-23 | 1 or 0; or, P or N | lent of bits $D_{3}$ to $D_{0}$. Table 1 shows the |  |
| 24 | Blank | lent of bits $D_{3}$ to $D_{0}$. Table 1 shows the conversion from binary to hexidecimal. |  |
| 25-32 | 1 or 0; or, P or N | Each of these cards is configured as follows: |  |
| 33 | Blank |  |  |
| 34-41 | 1 or O; or, P or NBlank | COLUMN | DATA |
| 42 |  | 1-4 | Right justified hexadecimal |
| 43-50 | 1 or 0; or, P or N |  |  |
| 51 $52-59$ | Blank |  | card (columns 7-8). For exam- |
| 52-59 60 | 1 or 0; or, P or N |  | ple, card \#9 will contain '0000,' |
| 61-68 | 1 or 0; or, P or N |  | card \#10 will contain '0020' and |
| 69 | Blank |  | so forth until card \#72, which |
| 70-77 | 1 or 0; or, P or N |  | contains '07E0.' |
| 78 | Blank | 5-6 | Blank |
| 79-80 | 2-digit decimal number indicating the truth table number. | 7-8 | First data pa |
|  |  | 9-10 | Next data pair |
| HEXADECIMAL ROM CODE |  | 11-12 | Next data pair |
| FORMAT |  | 11-12 | Next data pair |
| CARD \#9 THROUGH CARD \#72 |  | 67-68 | Next data pair Next to last data pair |
| The customer may also submit ROM code in |  | 69-70 | Last data pair of card |
| hexadecimal format. 32 locations (bytes) are |  | 71-78 | Blank |
| specified on each card. Columns 7 and 8 of |  | 79-80 | 2-digit decimal number indicating the truth table number. |

## APPLICATION EXAMPLES

## A TWO CHIP MICROCOMPUTER

The minimum system depicted in Figure 2 is composed of the 2650 MPU , a 2656 SMI, and a resistor/capacitor network for a timing input. The SMI provides MPU CLOCK and RESET signals and eight I/O Port bits ( $\mathrm{X}_{0}$ $X_{7}$ ).

Note that because all eight I/O bits share the same device address, the MPU program must "housekeep" unwanted bits when reading or writing to any of them. If a one-bit write operation is desired, the MPU must preserve the state of all other output pins. This can be done by reading the latch, changing the state of the selected bit, and outputing the result.
Any latch bit used for input must first be written to a Logic " 1 " before a read operation. After reading the data, the bits not desired must be masked out by the program.
each data pair, the left character is the hexadecimal equivalent of bits $D_{7}$ to $D_{4}$; the in conven from binary to hexid sowal.

Each of these cards is configured as follows:

| BINARY COMBINATION $\mathrm{D}_{7}-\mathrm{D}_{4}$ OR D $_{3}-\mathrm{D}_{0}$ |  |  |  | HEXADECIMAL CHARACTER |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 2 |
| 0 | 0 | 1 | 1 | 3 |
| 0 | 1 | 0 | 0 | 4 |
| 0 | 1 | 0 | 1 | 5 |
| 0 | 1 | 1 | 0 | 6 |
| 0 | 1 | 1 | 1 | 7 |
| 1 | 0 | 0 | 0 | 8 |
| 1 | 0 | 0 | 1 | 9 |
| 1 | 0 | 1 | 0 | A |
| 1 | 0 | 1 | 1 | B |
| 1 | 1 | 0 | 0 | C |
| 1 | 1 | 0 | 1 | D |
| 1 | 1 | 1 | 0 | E |
| 1 | 1 | 1 | 1 | F |

## Table 1 BINARY TO HEXADECIMAL CONVERSION



Figure 2


## A GENERAL PURPOSE MICROCOMPUTER

A general purpose microcomputer is illustrated in Figure 3. The SMI provides ROM RAM and the MPU clock from a crystal source. It also provides chip enables for external ROM, RAM and LSI peripheral controllers 1 and 2 as well as four bidirectional data bits.

The state of $\mathrm{M} / \overline{\mathrm{IO}}$ in the Address Map (Table 6) indicates that $I / O_{1}$ and $I / O_{2}$ are memory mapped while the SMI port is referenced using any I/O instruction (extended or non-extended) on the 2650. See the SMI Program Table (Table 7).
The 2650 addresses the SMI port to input or output data on $\mathrm{X}_{4}-\mathrm{X}_{7}$. SMI latch bits $0-3$ are available for MPU temporary storage since
the corresponding $X$ pins are used for external chip enables.

Note that the 13 MPU address bits are assigned to the first 13 PGA inputs ( $A_{0}-A_{12}$ ) and that only two MPU control signals (OPREQ, M/IO) are input to the PGA (WRP is
not required).
The SMI uses the $\bar{R} / W$ signal from the 2650 to read or write from the internal RAM and port. External devices are enabled when their address $\left(A_{0}-A_{12}, M / \overline{I O}\right)$ have been decoded by the SMI and OPREQ is valid.

|  | PIN | \# BYTES | ADDRESS | M/ $\overline{\mathbf{O}}$ |
| :--- | :---: | :---: | :---: | :---: |
| Internal ROM | - | $2 K$ | $0000-07 \mathrm{FF}$ | 1 |
| External ROM | $\mathrm{X}_{0}$ | 2 K | $0800-0 \mathrm{FFF}$ | 1 |
| *Spare ROM | - | 1 K | $1000-13 \mathrm{FF}$ | 1 |
| External RAM | $\mathrm{X}_{1}$ | 256 | $1400-14 \mathrm{FF}$ | 1 |
| Internal RAM | - | 128 | $1500-157 \mathrm{~F}$ | 1 |
| *Spare RAM | - | 512 | $1600-17 \mathrm{FF}$ | 1 |
| I/O | 4 | $1800-1803$ | 1 |  |
| $1 / \mathrm{O}_{2}$ | $\mathrm{X}_{2}$ | 4 | $1804-1807$ | 1 |
| SMI Port | - | - | ANY | 0 |

*Space left for possible system expansion.
Table 6


HIGH PERFORMANCE MICROCOMPUTER SYSTEM
The six-chip high performance system of Figure 4 contains a 2655 Programmable Peripheral Interface and a 2651 Programmable Communication Interface. Two SMIs are used in the system. The first SMI provides CLOCK and RESET signals to the 2650, initial increments of ROM and RAM, and eight bits of bidirectional $1 / O$ to the
user's external interface. The second SMI provides a crystal controlled clock for the PCI , additional amounts of ROM and RAM, read (RDS) and write (WRS) strobes for the first SMI's eight-bit port, chip enables for PPI and PCI, and four bits of bidirectional I/O data.
The PPI and PCI addresses are decoded by SMI \#2 to generate the chip selects on $X_{7}$ and
$X_{6}$. The two least significant MPU address bits specify one of three PPI eight bit I/O ports or one of four PCI internal registers. Three PCI interrupt conditions are WIREORed (active low) to the 2650 interrupt request input (INTREQ). The interrupt acknowledge (INTACK) is inverted and used to enable the interrupt vector onto the data bus through the 74LS240 tri-state buffer.



## MICROCOMPUTER SYSTEM WITH MSI INPUT-OUTPUT

The system of Figure 5 incorporates MSI integrated circuits for input and output. It contains a total of 3 k bytes of ROM/PROM, 384 bytes of RAM, six bits of SMI latch storage, one latching input port (74LS374), one gated input port (74LS240), one byteoriented output port (74LS374), one bitoriented output port (74LS259/93L34), two single bit inputs and two single bit outputs (one each from the SMI and the 2650). The SMI divides the external clock frequency by $1,2,3$, or 4 and provides CLOCK and RESET outputs to the 2650. Six $X$ pins are used for chip enables and two for data bits.

Included are system memory map (Table 9) and the SMI Program Table. The I/O device and the SMI port are all memory mapped; thus, the $2650 \mathrm{M} / \overline{\mathrm{IO}}$ signal is not connected to the SMI.

WRP from the 2650 is connected to the SMI to control the two output ports:

1. When output-port-1's address and OPREQ are valid, the WRP input provides a gated chip enable on $X_{3}$. The trailing edge of this signal is used to clock 2650 data into the 74LS374.
2. One bit of 2650 data is gated into the 74LS259/93L34 addressable latch (output port 2) by means of $X_{2}$ which serves as the enable input. This signal is active when output port 2 has been selected. At the same time, three address bus lines select the latch to be written into.

|  | PIN | BYTES | ADDRESS |
| :--- | :---: | :---: | :---: |
| Internal ROM | - | 2 k | $0000-07 \mathrm{FF}$ |
| External PROM (82S181) | $\mathrm{X}_{7}$ | 1 k | $0800-0 \mathrm{BFF}$ |
| External RAM (2-2112's) | $\mathrm{X}_{6}$ | 256 | $1400-14 \mathrm{FF}$ |
| Internal RAM | - | 128 | $1500-157 \mathrm{~F}$ |
| SMI Port | - | 1 | $1 \mathrm{A00}$ |
| Input Port 1 (74LS374) | $\mathrm{X}_{5}$ | 1 | 1 A01 |
| Input Port 2 (74LS240) | $\mathrm{X}_{4}$ | 1 | $1 \mathrm{A02}$ |
| Output Port 1 (74LS374) | $\mathrm{X}_{3}$ | 1 | $1 \mathrm{A03}$ |
| Output Port 2 | $\mathrm{X}_{2}$ | 8 | 1 A08-1A0F |
| (74LS259/93L34) |  |  |  |

Table 9 ADDRESS MAP
FOR MSI I/O SYSTEM


Figure 5

## DESCRIPTION

The MP8251 is a programmable Universal Synchronous/Asynchronous Receiver/ Transmitter (USART) chip contained in a standard 28-pin dual-in-line package. The chip, which is fabricated using N -channel silicon gate technology, functions as a serial data input/output interface in the MP8080A microcomputer family. The functional configuration of the MP8251 is programmed by the system software for maximum flexibility, thereby allowing the system to receive and transmit virtually any serial data communication signal presently in use (including IBM Bisync).

The MP8251 can be programmed to receive and transmit either synchronous or asynchronous serial data. The MP8251 performs serial-to-parallel conversion on data characters received from an input/output device or a MODEM, and parallel-to-serial conversion on data characters received from the CPU. The CPU can read the complete status of the MP8251 at any time during the functional operation. Status information reported includes the type and the condition of the
transfer operations being performed by the MP8251, as well as any transmission error conditions (parity, overrun, or framing).

## FEATURES

- Synchronous and asynchronous full duplex operations
- Synchronous Mode Capabilities

Selectable 5- to 8-Bit characters
Internal or external character synchronization
Automatic sync insertion

- Asynchronous mode capabilities

Selectable 5- to 8-Bit characters
3 selectable clock rates (1x, 16x or 64x the baud rate)
Line break detection and generation 1-, 11/2-, or 2-Stop bit defection and generation
False start bit detection

- Baud rates

DC to 56 k baud (synchronous mode) DC to 9.6 k baud (asynchronous mode)

- Transmission error detection capabilities Parity
Overrun
Framing

PIN CONFIGURATION


- Double buffering of data
- TTL compatible
- Single TTL clock
- Reduces system component count


## PIN DESIGNATION



PIN DESIGNATION
(Cont'd)

| MNEMONIC | TYPE | NAME AND FUNCTION |
| :---: | :---: | :---: |
| $\overline{\mathrm{T} \times \mathrm{C}}$ | 1 | Transmitter Clock: This clock input controls the rate at which a data character is to be transmitted. The frequency of the TxC input is equal to the baud rate for the synchronous mode, and is a multiple ( $1 \mathrm{x}, 16 \mathrm{x}$ or 64 x ) of the baud rate for the asynchronous mode. A portion of the Mode Instruction Word (see figure) selects the value of the baud rate factor when in the asynchronous mode. Transmitter data are clocked out of the MP8251 on the falling edge of the TXC input. |
| R×D | 1 | Receiver data: Serial data input from a MODEM or an input/output device. |
| $\overline{\mathrm{RxC}}$ | 1 | Receiver clock: This clock input controls the rate at which a data character is to be received. The frequency and selection of the RxC input is as described above for the TXC input. Receiver data are clocked into the MP8251 on the rising edge of the $\mathrm{R} \times \mathrm{C}$ input. |
| vcc |  | +5 V power supply. |
| GND |  | Ground: 0-V reference. |
| $\overline{\text { DTR }}$ | $\bigcirc$ | Data terminal ready General purpose output which can be set to an active low by programming the DTR bit ( $\mathrm{D}_{1}$ ) of the Command Instruction Control Word. However, a low level DTR output is normally used for data terminal ready or rate select control. |
| $\overline{\text { RTS }}$ | $\bigcirc$ | Request to send: General purpose output which can be set to an active low by programming the RTS bit ( $\mathrm{D}_{5}$ ) of the Command Instruction Control Word. However, the RTS output is normally used for request to send control in the transmit mode. |
| TxD | $\bigcirc$ | Transmitter data: Composite serial data output to a MODEM or input/output device. The TxD output is held in the marking state (logic 1) upon a Reset operation. |
| TXRDY | ○ | Transmitter ready: When high, alerts the MP8080A that the transmitter is ready to accept a data character. The TXRDY output, which is automatically reset whenever a character is written into the MP8251. can be used as an interrupt to the system. For polled operation, the condition of the TxRDY signal can be tested by the MP8080A using a status read operation. |
| TxE | $\bigcirc$ | Transmitter empty: Goes high to indicate the end of a transmit mode The TxE output is automatically reset whenever a character is written into the MP8251. In the synchronous mode, a high-level TxE output indicates that a character has not been loaded, the transmitter buffer is empty, and the sync character(s) of a data block are soon to be transmitted automatically as fillers. |
| RxRDY | $\bigcirc$ | Receiver ready: When high, alert the MP8080A that the receiver contains a data character that is ready to be input to the CPU. The RxRDY output, which is automatically reset whenever a character is read from the MP8251, can be used as an interrupt to the system. For polled operation, the condition of the RxRDY signal can be tested by the MP8080A using a status read operation. |
| $\mathrm{D}_{7}$-D0 | 1/0 | Data bus: This bus comprises eight Tri-state input/output lines. The bus provides bidirectional communications between the MP8251 and the MP8080A. Data are routed to or from the internal data bus buffer upon execution of an MP8080A OUT or IN instruction, respectively. In addition, control words, command words and status information are transferred through the data bus buffer. |
| SYNDET | I/O | Sync detect: This pin may be used in the synchronous mode only System software can program SYNDET as either an input or an output When used as an output (Internal sync detect mode), a high level SYNDET output is automatically reset upon a status read operation by the MP8080A. When used as an input (external sync detect mode) a high level SYNDET causes the MP8251 to start assembling data characters on the falling edge of the next RxC input. |

## ABSOLUTE MAXIMUM RATINGS*

| PARAMETER |  | RATING | UNIT |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {A }}$ | Ambient temperature under bias | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |
| TSTG | Storage temperature | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
|  | Voltage on any pin with respect to ground | -0.5 to +7 | V |
| PD | Power dissipation | 1 | W |

*NOTE
Maximum ratings indicate limits beyond which permanent damage may occur
Continuous operation at these limits is not intended and should be limited to those
conditions specified under dc electrical characteristics.

## BLOCK DIAGRAMS



## BLOCK DIAGRAMS (Cont'd)



NOTE
Applicable pinout numbers are included within parentheses

TEST LOAD CIRCUIT


TYPICAL $\triangle$ OUTPUT DELAY vs $\triangle$ CAPACITANCE (dB)


DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{GND}=0 \mathrm{~V}$.

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| $\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$ | Input voltage High Low |  |  | $\begin{array}{r} 2.0 \\ -0.5 \end{array}$ |  | $\begin{gathered} \mathrm{VCC} \\ 0.8 \end{gathered}$ | V |
| $\mathrm{VOH}^{2}$ Vol | Output voltage High Low | $\begin{aligned} & \mathrm{IOH}=-100 \mu \mathrm{~A} \\ & \mathrm{IOL}=1.6 \mathrm{~mA} \end{aligned}$ | 2.4 |  | 0.45 | V |
| $\begin{aligned} & \text { IDL } \\ & \mathrm{I}_{\mathrm{IL}} \end{aligned}$ | Leakage <br> Data bus Input | $\begin{aligned} & V_{\text {OUT }}=0.45 \mathrm{~V} \\ & V_{\text {OUT }}=V_{C C} \\ & V_{\text {IN }} \\ & \hline \end{aligned}$ |  |  | $\begin{gathered} -50 \\ 10 \\ 10 \\ \hline \end{gathered}$ | $\mu \mathrm{A}$ |
| Icc | Power supply current |  |  | 45 | 80 | mA |
| $\begin{aligned} & \mathrm{C}_{1 \mathrm{~N}} \\ & \mathrm{Cl}_{1 / \mathrm{O}} \end{aligned}$ | Capacitance Input I/O | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}=0 \mathrm{~V} \\ \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz} \end{gathered}$ <br> Unmeasured pins returned to GND |  |  | $\begin{aligned} & 10 \\ & 20 \end{aligned}$ | pF |

AC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{GND}=0 \mathrm{~V}$.

| PARAMETER |  | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| BUS PARAMETERS ${ }^{1}$ Read Cycle |  |  |  |  |  |  |
|  | Address stable before $\overline{\mathrm{READ}}(\overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}})$ |  |  | 50 |  |  | ns |
| tra | Address hold time for $\overline{\mathrm{READ}}$ ( $\overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}}$ ) |  | 5 |  |  | ns |
| trR | $\overline{\text { READ }}$ pulse width |  | 430 |  |  | ns |
| tri | Data delay from $\overline{\mathrm{READ}}$ | $C_{L}=100 \mathrm{pF}$ |  |  | 350 | ns |
| tbF | $\overline{\text { READ }}$ to data floating | $\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$ | 25 |  | 200 | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ |
| trv | Recovery time between WRITES2 |  | 6 |  |  | tcy |
| Write Cycle |  |  |  |  |  |  |
| $t_{\text {AW }}$ | Address stable before WRITE |  | 20 |  |  | ns |
| twa | Address hold time for $\overline{\text { WRITE }}$ |  | 20 |  |  | ns |
| tww | $\overline{\text { WRITE }}$ pulse width |  | 400 |  |  | ns |
| tbw | Data set-up time for $\overline{\text { WRITE }}$ |  | 200 |  |  | ns |
| two | Data hold time for WRITE |  | 40 |  |  | ns |
| OTHER TIMINGS |  |  |  |  |  |  |
| tcy | Clock period ${ }^{3}$ |  | 0.420 |  | 1.35 | $\mu \mathrm{S}$ |
| t $\phi \mathrm{W}$ | Clock pulse width |  | 220 |  | 0.7 tcy | ns |
| $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ | Clock rise and fall time |  | 0 |  | 50 | ns |
| totx | TxD delay from falling edge of $\overline{\mathrm{TxC}}$ | $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ |  |  | 1 | $\mu \mathrm{S}$ |
| tsRx | $\mathrm{R} \times$ data set-up time to sampling pulse | $C_{L}=100 \mathrm{pF}$ | 2 |  |  | $\mu \mathrm{S}$ |
| thrix | Rx data hold time to sampling pulse | $C_{L}=100 \mathrm{pF}$ | 2 |  |  | $\mu \mathrm{S}$ |
| ${ }_{\mathrm{f}}^{\mathrm{T} x}$ | ```Transmitter input clock frequency 1x baud rate 16x and 64x baud rate``` |  | $\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \hline \end{aligned}$ |  | $\begin{gathered} 56 \\ 520 \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \hline \end{aligned}$ |
| tTPW | Transmitter input clock pulse width $1 x$ baud rate $16 x$ and $64 x$ baud rate |  | $\begin{gathered} 12 \\ 1 \\ \hline \end{gathered}$ |  |  | $\begin{aligned} & \text { tcy } \\ & \text { tcr } \\ & \hline \end{aligned}$ |
| tTPD | Transmitter input clock pulse delay $1 \times$ baud rate $16 x$ and $64 x$ baud rate |  | $\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$ |  |  | $\begin{aligned} & \text { tcy } \\ & \text { tcy } \\ & \hline \end{aligned}$ |
| $\mathrm{ff}_{\text {R }}$ | ```Receiver input clock frequency \(1 x\) baud rate \(16 x\) and \(64 x\) baud rate``` |  | $\begin{aligned} & \text { DC } \\ & \text { DC } \end{aligned}$ |  | $\begin{gathered} 56 \\ 520 \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \hline \end{aligned}$ |
| tRPW | Receiver input clock pulse width $1 x$ baud rate $16 x$ and $64 x$ baud rate |  | $\begin{gathered} 12 \\ 1 \\ \hline \end{gathered}$ |  |  | $\begin{aligned} & \text { tcy } \\ & \text { tor } \\ & \hline \end{aligned}$ |
| trPD | ```Receiver input clock pulse delay 1x baud rate 16x and 64x baud rate``` |  | $\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$ |  |  | $\begin{aligned} & \text { toy } \\ & \text { t } \mathrm{t} Y \\ & \hline \end{aligned}$ |
| tTx | TXRDY delay from center of data bit | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  | 16 | tcy |
| trx | RxRDY delay from center of data bit |  |  |  | 20 | tcy |
| tis | Internal SYNDET delay from center of data bit |  |  |  | 25 | tor |
| tes | Internal SYNDET set-up time before falling edge of $\overline{\mathrm{R} \times \mathrm{C}}$ |  |  |  | 16 | tcy |
| tT×E | TxEMPTY delay from center of data bit | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  | 16 | tCy |
| twc | Control delay from rising edge of $\overline{\text { WRITE }}$ ( $\overline{\mathrm{TXE}}, \overline{\mathrm{DTR}}, \overline{\mathrm{RTS}}$ ) |  |  |  | 16 | toy |
| tcr | Control to $\overline{\text { READ }}$ set up time ( $\overline{\mathrm{DSR}}, \overline{\mathrm{CTS}}$ ) |  |  |  | 16 | tcy |

## NOTES

1. AC timings measured at $\mathrm{VOH}=2.0 \mathrm{~V}, \mathrm{VOL}=0.8 \mathrm{~V}$, and with test load circuit.
2. This recovery time is for initialization only, when MODE, SYNC1, SYNC2, COMMAND and first DATA BYTES are written into the USART. Subsequent writing of both

COMMAND and DATA are only allowed when TxRDY $=1$
3. The $\overline{T \times C}$ and $\overline{R \times C}$ frequencies have the following limitations with respect to CLK:
for 1 x baud rate, $\mathrm{f}_{\mathrm{x}}$ or $\mathrm{f}_{\mathrm{Rx}} \leq 1 / 30 \mathrm{t}_{\mathrm{CY}}$ )
for 16 x and 64 x baud rate, $\mathrm{f}_{\mathrm{x}}$ or $\mathrm{f}_{\mathrm{Rx}} \leq 1 / 4.5$ tcy )

## TIMING WAVEFORMS



TIMING WAVEFORMS
(Cont'd)


MODE INSTRUCTION CONTROL WORD FORMAT


COMMAND INSTRUCTION CONTROL WORD FORMAT


## STATUS READ WORD FORMAT



## TYPICAL DATA BLOCK TRANSFER



- NOTE

When the mode instruction word has programmed the MP8251 to single sync character (bit $\mathrm{D}_{7}=$ " 1 "), sync character 2 is omitted. Both sync characters are omitted in the asynchronous mode.

## MP8251 STATUS

The MP8251 has provisions for allowing the programmer to read the status of the device at any time during the functional operation. When the C/D input is a high-level, a normal read operation is executed to read this status information. The figure below shows the bits in the Status Read Word format. Since some of the status word bits have identical meaning to external output pins, the MP8251 can be used in a completely polled environment or in an interrupt driven environment.

## DESCRIPTION

The MP8255 is a programmable peripheral interface contained in a standard, 40-pin dual-in-line package. The chip, which is fabricated using N -channel silicon gate technology, functions as a general-purpose parallel input/output interface in Signetics MP8080A microcomputer family. The functional configuration of the MP8255 is programmed by the system software so that normally no external logic is required to interface peripheral devices.
The MP8255 has three basic modes of operation that can be selected by the system software. In the first mode (Mode 0), the MP8255 provides simple input and output
operations for three 8-bit ports. Data is simply written to or read from a specified port (Port A, B, or C) without the use of "handshaking" signals. In the second mode (Mode 1), the MP8255 enables the transfer of input/output data to or from a specified 8-bit port (Port $A$ or $B$ ) in conjunction with strobes or "handshaking" signals. Ports A and B use the lines of Port C in this mode to generate or accept the "handshaking" signals with the peripheral device. In the third mode (Mode 2), the MP8255 enables communications with a peripheral device or structure via one bidirectional 8-bit bus port (Port A). "Handshaking" signals are provided over the lines of Port C in this mode to maintain proper bus flow discipline.

## ABSOLUTE MAXIMUM RATINGS

| PARAMETER |  | RATING | UNIT |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {A }}$ | Ambient temperature under-bias | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |
| TSTG | Storage temperature | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
|  | Voltage on any pin with respect to ground | -0.5 to +7 | V |

AC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%$; $\mathrm{Vss}=0 \mathrm{~V}$

| PARAMETER |  | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |
| twp | Pulse width of $\overline{W R}$ | 430 |  |  | ns |
| tow | Time D.B. stable before $\bar{W}$ | 10 |  |  | ns |
| two | Time D.B. stable after WR | 65 |  |  | ns |
| $t_{\text {AW }}$ | Time address stable before $\overline{\mathrm{WR}}$ | 20 |  |  | ns |
| twa | Time address stable after WR | 35 |  |  | ns |
| tow | Time CS stable before $\overline{\mathrm{WR}}$ | 20 |  |  | ns |
| twc | Time CS stable after $\overline{\text { WR }}$ | 35 |  |  | ns |
| twb | Delay from WR to output |  |  | 500 | ns |
| trp | Pulse width of $\overline{\mathrm{RD}}$ | 430 |  |  | ns |
| tiR | $\overline{\mathrm{RD}}$ set-up time | 50 |  |  | ns |
| thr | Input hold time | 50 |  |  | ns |
| trd | Delay from $\overline{R D}=0$ to system bus |  |  | 350 | ns |
| tod | Delay from $\overline{\mathrm{RD}}=1$ to system bus | 150 |  |  | ns |
| $t_{\text {AR }}$ | Time address stable before $\overline{\mathrm{RD}}$ | 50 |  |  | ns |
| tcr | Time $\overline{C S}$ stable before $\overline{\mathrm{RD}}$ | 50 |  |  | ns |
| tak | Width of $\overline{\text { ACK }}$ pulse | 500 |  |  | ns |
| tst | Width of STB pulse | 350 |  |  | ns |
| tps | Set-up time for peripheral | 150 |  |  | ns |
| tPH | Hold time for peripheral | 150 |  |  | ns |
| tra | Hold time for $\frac{A_{1}, A_{0} \text { after } \overline{\mathrm{RD}}=1}{}$ | 379 |  |  | ns |
| tre | Hold time for $\overline{C S}$ after RD $=1$ | 5 |  |  | ns |
| $t_{A D}$ | Time from $\overline{\overline{A C K}}=0$ to output (Mode 2) |  |  | 500 | ns |
| tkD | Time from $\overline{A C K}=1$ to output floating |  |  | 300 | ns |
| two | Time from $\mathrm{WR}=1$ to $\mathrm{OBF}=0$ |  |  | 300 | ns |
| ${ }^{\text {taO }}$ | Time from $\overline{\mathrm{ACK}}=0$ to $\overline{\mathrm{OBF}}=1$ |  |  | 500 | ns |
| tsı | Time from $\frac{\text { STB }}{}=0$ to IBF |  |  | 600 | ns |
| tri | Time from $\overline{R D}=1$ to $I B F=0$ |  |  | 300 | ns |

## PIN CONFIGURATION



## FEATURES

- Outputs source 1 mA at 1.5 volts
- 24 programmable input/output pins
- Direct bit set reset capability
- TTL compatible
- Reduces system component count


## PIN DESIGNATION


*NOTE
The system software uses a Mode Definition Control Word (see figure) as the second byte
of OUT Instruction(s) to program the functional configuration of Ports A through C.
Whenever the mode is changed, all output registers (and status flip flops) are reset.
DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

|  | PARAMETER | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| $\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$ | Input voltage High Low |  | 2.0 |  | 0.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ Vol | Output voltage <br> High <br> Low | $\begin{gathered} \mathrm{IOH}=-50 \mu \mathrm{~A}(-100 \mu \mathrm{~A} \text { for } \mathrm{D}, \mathrm{~B}, \text { Port }) \\ \mathrm{IOL}=1.6 \mathrm{~mA} \end{gathered}$ | 2.4 |  | 0.4 | V |
| $\begin{aligned} & \mathrm{IOH} \\ & \mathrm{ICC} \end{aligned}$ | Darlington drive current Power supply current | $\mathrm{V}_{\mathrm{OH}}=1.5 \mathrm{~V}, \mathrm{REXT}=390 \Omega$ |  | $\begin{aligned} & 2.0 \\ & 40 \end{aligned}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |

'NOTE
Available on 8 pins only of ports A and C , selected randomly.

## BLOCK DIAGRAMS



## BLOCK DIAGRAMS



CONTROL WORD FORMAT


## OPERATING MODES

Mode 0 (Basic Input/Output)
In this mode, simple input and output operations for each of the three ports are provided. No "handshaking" is required; data is simply written to or read from a specified port.

TIMING DIAGRAMS


MODE 0 (BASIC INPUT) D7-DO FOLLOWS INPUT-NO LATCHING


MODE 0 (BASIC OUTPUT)


MODE 0 (BASIC INPUT) OUTPUTS LATCHED


## MODE O PORT DEFINITION CHART

| NO. | CONTROL WORD BITS |  |  |  |  |  |  |  | GROUP A |  | GROUP B |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | D1 | $\mathrm{D}_{0}$ | Port A | Port C (Upper) | Port B | Port C (Lower) |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Output | Output | Output | Output |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Output | Output | Output | Input |
| 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | Output | Output | Input | Output |
| 3 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | Output | Output | Input | input |
| 4 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | Output | Input | Output | Output |
| 5 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | Output | Input | Output | Input |
| 6 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | Output | Input | Input | Output |
| 7 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | Output | Input | Input | Input |
| 8 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | Input | Output | Output | Output |
| 9 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | Input | Output | Output | Input |
| 10 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | Input | Output | Input | Output |
| 11 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | Input | Output | Input | Input |
| 12 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | Input | Input | Output | Output |
| 13 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | Input | Input | Output | Input |
| 14 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | Input | Input | Input | Output |
| 15 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | Input | Input | Input | Input |

## Mode 1 (Strobed Input/Output)

In this mode, a means for transferring input/output data to or from a specified port in conjunction with strobes or "handshaking" signals is provided. Port A and Port B use the lines on Port $C$ to generate or accept these "handshaking" signals in Mode 1. The programmer can read the contents of Port C to test or verify the status of each peripheral device. Since no special instruction is provided in the MP8080A microcomputer system to read the Port C status information, a normal read operation must be executed to perform this function.

TIMING DIAGRAMS


TIMING DIAGRAMS (Cont'd)



## Mode 2 (Strobed Bidirectional Bus

 Input/Output)This mode enables communication with a peripheral device or structure on a single 8bit bus for both transmitting and receiving data (bidirectional bus input/output). "Handshaking" signals are provided to maintain proper bus flow discipline in a manner similar to Mode 1. In addition, interrupt generation and enable/disable functions are available in Mode 2.

TIMING DIAGRAMS



MODE 2 COMBINATIONS (Cont'd)


MODE DEFINITION SUMMARY TABLE

| $\begin{aligned} & \text { PORT } \\ & \text { BITS } \end{aligned}$ | MODE 0 |  | MODE 1 |  | MODE 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IN | OUT | IN | OUT | GROUP A ONLY |
| PA0 | In | Out | In | Out | Bidirectional |
| $\mathrm{PA}_{1}$ | In | Out | In | Out | 4 |
| $\mathrm{PA}_{2}$ | In | Out | In | Out |  |
| $\mathrm{PA}_{3}$ | In | Out | In | Out |  |
| $\mathrm{PA}_{4}$ | In | Out | In | Out |  |
| $\mathrm{PA}_{5}$ | In | Out | In | Out |  |
| $P A_{6}$ | In | Out | In | Out |  |
| $\mathrm{PA}_{7}$ | In | Out | In | Out | Bidirectional |
| $\mathrm{PB}_{0}$ | In | Out | In | Out |  |
| $\mathrm{PB}_{1}$ | In | Out | In | Out |  |
| $\mathrm{PB}_{2}$ | In | Out | In | Out |  |
| $\mathrm{PB}_{3}$ | In | Out | In | Out | (Mode 0 or Mode 1 only) |
| PB4 | In | Out | In | Out | (Mode 0 or Mode 1 Only) |
| PB5 | In | Out | In | Out |  |
| PB6 | In | Out | In | Out |  |
| $\mathrm{PB}_{7}$ | In | Out | In | Out |  |
| PC 0 | In | Out | $\mathrm{INTR}_{\mathrm{B}}$ | INTR $^{\text {a }}$ | 1/0 |
| $\mathrm{PC}_{1}$ | In | Out | $1 \mathrm{BFB}^{\text {a }}$ | $\overline{\mathrm{OBF}}_{\mathrm{B}}$ | 1/0 |
| $\mathrm{PC}_{2}$ | In | Out | $\overline{S T B}_{B}$ | $\overline{\mathrm{ACK}}_{\mathrm{B}}$ | 1/0 |
| $\mathrm{PC}_{3}$ | In | Out | INTR $_{A}$ | INTR $_{\text {A }}$ | INTR $_{\text {A }}$ |
| $\mathrm{PC}_{4}$ | In | Out | $\overline{S T B}_{A}$ | 1/O | $\overline{\text { STB }}_{\text {A }}$ |
| $\mathrm{PC}_{5}$ | In | Out | $\mathrm{IBF}_{\text {A }}$ | 1/O | $\mathrm{IBF}_{A}$ |
| $\mathrm{PC}_{6}$ | In | Out | $1 / 0$ | ${\overline{\overline{\mathrm{ACK}}^{\text {a }}}}$ | ${\triangle A C K_{A}}$ |
| $\mathrm{PC}_{7}$ | In | Out | 1/0 | $\overline{\mathrm{OBF}}_{\mathrm{A}}$ | $\overline{\mathrm{OBF}}_{\mathrm{A}}$ |

## DESCRIPTION

The KT9000 kit contains a 2650 microprocessor and enough chips to allow for the implementation of a small developmental system. Since the interface requirements of the 2650 are completely TTL compatible, no attempt has been made to limit the user's flexibility by dictating a fixed logic configuration. There is complete freedom in using standard SSI or MSI logic to adapt the microprocessor to the memory, I/O devices, or clock.

Several minimal system examples are presented to enable quick set up and evaluation. Other configurations to adapt to individual requirements should become evident from these examples.

## PARTS DESCRIPTIONS

2112: The 2112 is a static 1024-bit Random Access Memory organized as 256 words by 4 Bits/Word. It is fabricated with N-Channel, Silicon Gate, MOS technology and achieves an access time of less than 800 nanoseconds. No clocks are required, and the chip is powered from a single 5 volt source.

82S115I: The 82S115I is a 4096-bit Schottky-Clamped, Bipolar Read Only Memory, incorporating on-chip data output registers. It is field-programmable and fully TTL compatible with on-chip decoding and two chip enable inputs for ease of memory expansion. Inputs to the device are PNP transistors with a maximum current requirement of $100 \mu \mathrm{~A}$.
8T31: The 8 T31 is an 8-bit Bidirectional I/O Port designed to function as a general purpose I/O interface element. It consists of 8 clocked latches with two sets of bidirectional Inputs/Outputs. The capability exists for various hook-up schemes allowing master control from either the microprocessor or from the I/O device.

8T26B: The 8T26B consists of four pairs of inverting Tri-State Logic elements configured as a Quad Bus Drivers/Receivers with separate buffered receiver enable and driver enable lines. Both the driver and receiver gates have Tri-State outputs and lowcurrent PNP inputs.

## CIRCUIT EXAMPLES

Two circuit configurations are presented to indicate a possible program checkout approach. Figure 1 is hooked up to allow the use of RAM for program debugging. The second figure represents a possible final system configuration with the program fixed in PROM. Both circuits use the 8T26's as bus buffers.


## PARTS LIST

| PART NO. | QTY | DESCRIPTION | REFERENCE <br> DATA SHEET |
| :--- | :--- | :--- | :--- |
| 2650 | 1 | CPU | - |
| 2112 | 4 | 256X4 RAM | MOS Products |
| 82 S115I | 1 | 4K PROM (Unprogrammed) $512 \times 8$ | Bipolar Memories |
| 8T31I | 2 | 8-bit Bidirectional I/O Port | 8000 Product |
| 8T26B | 4 | Quad Bus DR/REC | 8000 Product |
| 2650BM1000 | 1 | Basic Manual | - |



Figure 1

FINALIZED CONFIGURATION WITH PROGRAM FIXED IN PROM


## TYPICAL APPLICATIONS



CRYSTAL OSCILLATOR CIRCUIT


## DESCRIPTION

The Signetics Adaptable Board Computer, ABC 1500, is a modular microcomputer containing a CPU, memory, I/O ports and support circuitry. It is designed to cover a broad range of applications from software development to system hardware prototyping. Cost performance trade offs have been carefully considered to achieve maximum flexibility and allow the card to be tailored to a variety of individual requirements.
The basic configuration consists of the 2650 8 -bit microprocessor, 512 bytes of read/ write memory (four 2112 static RAM's), 1 K bytes of 2608 ROM with PIPBUG*, two 8T31 I/O ports and buffering on data, address and control lines. A single +5 volt supply will be required to power the card and communicate with a serial 20 mA current loop terminal.
Modifications to the basic system can be easily made to allow for various memory configurations and operating modes. Unused plated through holes are provided for the PROM memory chips ( 82 S 115 's). Other options are jumper selectable.
The ABC 1500 is sold either as a completely assembled and tested card (2650PC1500) or in kit form (2650KT9500).
-PIPBUG is a loader, editor, and debug program. See Table 1.

## FEATURES

- Expandable printed circuit card: Unused area on card filled with plated through holes on .300 in . centers for wirewrap sockets
- 1K bytes of PIPBUG* ROM (in socket)
- 512 bytes of RAM
- Two latched I/O ports
-four non-extended I/O read/write user strobes
- Tri-state buffers on data, address and control lines
- Serial input/output port
- Single +5 volt supply requirement (1.7A max) for card and 20mA current loop interface ( $\pm 12$ volt supply for RS232 interface)
- Interrupt and single step capability
- Simple clock configured from dual monostable multivibrator
- 24K memory expansion capability
- Directly compatible with 4K RAM card (2650PC2000) and power supply demonstration base (2650DS2000)
- Card dimensions: 8 in. by 6.875 in. with a 100 pin connector along the 8 in. dimension


## OPTIONS

- 1 K bytes of PROM in place of ROM
- 512 bytes of PROM or ROM in place of RAM
- Asynchronous operation capability
- External clock input
- Interrupt vector from Port C


## INTERFACE

- Terminal interface jumper selectable
A. W4 to W5 and W6 to W7 jumpers select the 20 mA current loop mode
B. W3 to W4 and W7 to W8 jumpers select the RS232 mode
- Normally high input lines (10k pull up resistor on each): $\overline{\text { INTREQ }}, \overline{\text { PAUSE }}$ $\overline{\text { RESET, }}$ WBAC, WBAD, CKC, CKD
- Plated through holes are available at each connector pin to allow for insertion of wirewrap pins.
- Edge connector supplied with card
- To allow for external clock input, remove jumper W9-W10
- Asynchronous operation by removing jumper W1 to W2 and driving OPACK
- During vectored interrupts, it is possible to allow port $C$ to place the interrupt address on the data bus by removing jumper W21-W22 and jumpering W22-W23


## ABC 1500 BLOCK DIAGRAM



| ALPHA <br> CHAR- <br> ACTER <br> INPUT | COMMAND |
| :---: | :--- |
| A | Alter memory |
| B | Set breakpoint |
| C | Clear breakpoint |
| D | Dump memory to papertape |
| G | Go to address |
| L | Load memory from papertape |
| S | See and alter registers |

NOTE
The program is entered by resetting the card. The terminal will then respond with an asterisk (*).

Table 1 PIPBUG COMMANDS

## MEMORY CONFIGURATION

All of page 0 is reserved for on card memory (0 to 8191 10). Address lines A9, A11 and A12 are not decoded (Don't care signals) allowing two IC's to perform not only memory decoding but also I/O port decoding. As an added benefit, usable memory space exists at the top of page 0 (see Table 2) due to the interleaving effect between the ROM and RAM memories. This memory space can be used as interrupt vector address locations in a negative direction from address location
" 0 " (a negative relative instruction from address location "0" wraps around the first 8K page).
There are a total of two blocks in the RAM structure, each of which contains 256 bytes of RAM. Since PIPBUG uses the first 63 RAM locations for temporary storage, the first actual user location is $1087_{10}$ (43F16) (there are seven other address locations corresponding to the first user locationsee memory map). Starting at 43F16, the range for on card RAM extends to address 153510 (5FF 16 ), giving a total usable on-card space of 449 bytes

The first external memory location for addon memory is $8192_{10}\left(2000_{16}\right)$. All of page 1 , 2 , and 3 are available, giving a total memory expansion capability of 24 K .

## MEMORY OPTIONS

Modifications to the basic configuration can be made to provide a mix of RAM/PROM/ ROM memories. PROM memories can be used in place of the PIPBUG ROM by removing the ROM from its socket and adding one or two 82S115 PROMs (512X8). Area and plated through holes are provided on the card for insertion of sockets for the

PROMs or the PROMs themselves. Decoding for the PROMs has been provided by ABC 1500 logic.
Data and address lines for 2112 RAMs and 82S129 PROMs or 82S229 ROMs are identical. It is, therefore, possible to use PROMs and/or ROMs in place of RAM. This option will require removal of the RAMs (two per block), and changing the jumper for each 256 byte block of PROM or ROM added. The jumper needed for each block of memory is as follows:

| MEMORY <br> SECTION | RAM <br> JUMPER | PROM/ROM <br> JUMPER |
| :--- | :--- | :---: |
| First Block | W12-W13 | W11-W13 |
| Second Block | W15-W16 | W14-W16 |

## I/O PORT CONFIGURATION

Two ports ( $C$ and $D$ ) are implemented with 8T31 bidirectional ports and can be used for general purpose I/O. Each consist of 8 clocked latches with two sets of bidirectional inputs/outputs. Data written into one side of the port will appear inverted at the other side.

One side of each port (Bus B of the 8T31) is tied to the external data bus ( $\overline{\mathrm{DBUSX}})$. The 2650 communicates with each port over this

| ADDRESS LINES |  |  |  |  |  | DECIMAL ADDRESS | ORGANIZATION | HEX <br> ADDRESS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A14 | A13 | A12 | A11 | A10 | ** ${ }^{*}$ | $8 K$$7 K$ |  | 1FFF |
| 0 | 0 | X | X | 1 | X |  | Second block RAM |  |
|  |  |  |  |  |  |  | First block RAM |  |
|  |  |  |  |  |  |  | Second block RAM |  |
| 0 | 0 | X | X | 0 | X |  | First block RAM |  |
|  |  |  |  |  |  |  | PIPBUG ROM | 17FF |
| 0 | 0 | X | X | 1 |  | 6 K | Second block RAM |  |
|  |  |  |  |  | X |  | First block RAM | 13FF |
|  |  |  |  |  |  |  | Second block RAM |  |
| 0 | 0 | X | X | 0 | X | 5K | First block RAM |  |
|  |  |  |  |  |  |  | PIPBUG ROM |  |
| 0 | 0 | X | X | 1 | X | 4 K | Second block RAM | OFFF |
|  |  |  |  |  |  |  | First block RAM |  |
|  |  |  |  |  |  |  | Second block RAM |  |
|  |  |  |  |  |  | 3K | First block RAM | OBFF |
| 0 | 0 | x | x | 0 | x |  | PIPBUG ROM |  |
| 0 | 0 | X | X | 1 | X | 2K | Second block RAM | 07FF |
|  |  |  |  |  |  |  | First block RAM | 06FF |
|  |  |  |  |  |  | 1K | Second block RAM | O4FF |
|  |  |  |  |  |  |  | First block RAM | 03FF |
| 0 | 0 | $x$ | $x$ | 0 | X |  | PIPBUG ROM |  |
| ¢0\% |  |  |  |  | тा1 | 0 |  | 0000 |

NOTES

1.     * = Don't care for ROM and RAM; ** = Don't care for RAM.
2. Each block of RAM $=256$ bytes.

Table 2 PAGE 0 MEMORY MAP
bus with one byte, non-extended I/O instructions. During 2650 activity with the ports, the ABC 1500 will provide four output strobes indicating the nature of the operation.

| STROBE | FUNCTION | STROBE <br> PULSE <br> WIDTH |
| :---: | :---: | :---: |
| WPC | Write to Port C | Duration of <br> WRP |
| WPD | Write to Port D | Duration of <br> WRP <br> RPC |
| Read Port C | Duration of <br> OPREQ <br> Ruration of <br> OPREQ |  |

The other side of each port (Bus A of the $8 T 31$ ) is controlled by the user. Four control lines are used to read, write or tri-state the buses.

| CONTROL LINE |  |  | FUNCTION |
| :---: | :---: | :--- | :--- |
| $\overline{\text { WBAD }}$ | $(1)$ | $\overline{\text { RBAD }}$ | $(0)$ |
| Read Port D |  |  |  |
| WBAD | $(0)$ | $\overline{\text { RBAD }}$ | $(0)$ |
| Write to Port D |  |  |  |
| WBAD | $(1)$ | $\overline{\text { RBAD }}$ | $(1)$ |
| WBAC | Tri-state D Bus |  |  |
| WBAC | $(0)$ | Read Port C |  |
| WBAC (0) | $\overline{\text { RBAC }}$ | $(0)$ | Write to Port C |
| WBAC (1) | $\overline{\text { RBAC }}$ | $(1)$ | Tri-state C Bus |

If no external logic is connected each port will be in the "read" mode ( $\overline{\text { WBAX }}$ lines pulled high). The $\overline{\text { RBAX }}$ lines are tied to ground to allow read/write control of the buses with just the WBAX lines. To allow control for tri-stating the buses, the following jumpers must be removed:

| LINE | JUMPER |
| :---: | :---: |
| $\overline{\text { RBAC }}$ | W19-W20 |
| $\overline{\mathrm{RBAD}}$ | W17-W18 |

The clock for each port (CKC—Port C clock, CKD-Port D clock) is available at a connector pin for external control. These normally "high" lines can be pulled low to disable writing to the ports from either the 2650 or the external device.

ABC 1500 EDGE CONNECTOR SIGNAL LIST

| PIN \# | FUNCTION | PIN \# | FUNCTION |
| :---: | :---: | :---: | :---: |
| 1 | GND | A | GND |
| 2 | GND | B | GND |
| 3 | NC* | C | NC* |
| 4 | $\overline{\text { DBUSO }}$ | D | OPD 0 |
| 5 | DBUS1 | E | OPD 1 |
| 6 | DBUS2 | F | OPD 2 |
| 7 | DBUS3 | H | OPD 3 |
| 8 | $\overline{\text { DBUS4 }}$ | J | OPD 4 |
| 9 | DBUS5 | K | OPD 5 |
| 10 | DBUS6 | L | OPD 6 |
| 11 | $\overline{\text { DBUS7 }}$ | M | OPD 7 |
| 12 | NC* | N | NC* |
| 13 | A14-D/ $\bar{C}$ | P | TTY SERIAL IN + |
| 14 | NC* | R | TTY SERIAL IN - |
| 15 | A13-E/ $\overline{N E}$ | S | TTY SERIAL OUT + |
| 16 | INTACK | T | TTY SERIAL OUT - |
| 17 | $\overline{\mathrm{R}} / \mathrm{W}$ | U | RS232 GROUND |
| 18 | WRP | V | RS232 OUTPUT |
| 19 | RUN/WAIT | W | NC* |
| 20 | OPREQ | X | NC* |
| 21 | $\mathrm{M} / \overline{\mathrm{IO}}$ | Y | RS232 INPUT |
| 22 | $\overline{\text { OPACK }}$ | Z | NC* |
| 23 | CLOCK | a | OPC 0 |
| 24 | TS | b | OPC 1 |
| 25 | RESET | c | OPC 2 |
| 26 | INTREQ | d | OPC 3 |
| 27 | PAUSE | e | OPC 4 |
| 28 | NC* | $f$ | OPC 5 |
| 29 | $\overline{\text { RBAD }}$ | g | OPC 6 |
| 30 | NC* | h | OPC 7 |
| 31 | $\overline{\text { RBAC }}$ | j | NC* |
| 32 | NC* | k | RPD |
| 33 | All | m | WBAD |
| 34 | A13-E/NE | n | WPD |
| 35 | A12 | p | CKD |
| 36 | A14-D/C | r | NC* |
| 37 | A9 | s | NC* |
| 38 | A10 | t | NC* |
| 39 | A8 | u | NC* |
| 40 | A7 | v | RPC |
| 41 | A6 | w | $\overline{\text { WBAC }}$ |
| 42 | A5 | x | WPC |
| 43 | A3 | $y$ | CKC |
| 44 | A0 | z | NC* |
| 45 | A1 | $\overline{\mathrm{a}}$ | NC* |
| 46 | A4 | $\overline{\text { b }}$ | NC* |
| 47 | A2 | $\overline{\mathrm{c}}$ | NC* |
| 48 | +12V | $\bar{d}$ | +12V |
| 49 | -12V | $\overline{\mathrm{e}}$ | -12V |
| 50 | $+5 \mathrm{~V}$ | $\bar{f}$ | $+5 \mathrm{~V}$ |

*NC $=$ No connection

ABC 1500 PARTS LIST

| QUANTITY | DESCRIPTION |
| :--- | :--- |
| 1 | PC1500 printed circuit board |
| 1 | Edge connector - AMP 225-804-50 |
| 1 | 2650 8-bit static microprocessor |
| 1 | N7402 quad 2 input NOR gate - I/O strobe logic |
| 1 | N7416 hex inverter buffer - current loop interface |
| 1 | N74123 monostable multivibrator - clock for 2650 |
| 1 | N74S138 3 line to 8 line decode - control decode |
| 1 | $8 T 15-$ EIA line driver - RS232 driver |
| 4 | $8 T 26$ quad Tri-state driver/receiver - data and memory data buffer |
| 2 | $8 T 31$ 8-bit latched bidirectional I/O port |
| 4 | $8 T 97$ hex Tri-state driver - address and control line buffer |
| 1 | 2608 static ROM (1024X8) - PIPBUG ROM - CN0035 |
| 4 | 2112 static RAM (256X4) - organized as 512 byte RAM |
| 1 | $82 S 123$ PROM (32X8) coded PROM CD 1500 - control decode |
| 4 | $1 N 914$ diode |
| 1 | $2 N 2222$ transistor |
| 1 | 50 pF capacitor |
| 1 | 300 pF capacitor |
| 13 | $.1 \mu \mathrm{~F}$ capacitor |
| 3 | $4.7 \mu \mathrm{~F}$ capacitor |
| 2 | 220 OHM resistor |
| 6 | 1 K resistor |
| 2 | 2 K resistor |
| 1 | 3.3 K resistor |
| 8 | 10 K resistor |
| 1 | 20 K resistor |
| 1 | 24 pin 2608 ROM socket - Robinson-Nugent ICN 246-54 |
|  |  |

NOTE
All resistors $1 / 4$ watt

## DESCRIPTION

The Signetics PC-4000 is an emulation of the Signetics 2656 , a 40 -pin NMOS-LSI system memory interface chip. The PC-4000, in circuit board form, offers the engineer a system design aid. By designing with the PC-board emulator the specific ROM and PGA (programmable gate array) patterns required for the user's application, can be determined.

In utilizing the PC-4000, the engineerdesigner is able to implement the same functions as the 2656 . Through a 40 -pin plug and cable attached to the PC-4000, which has identical pin-outs to the 2656 , the user connects the PC-4000 directly into his prototype system. He can access the 128X8 RAM and the PROM. The user can use the eight multi-function ports either as I/O ports or chip enables. Also he may use the poweron reset, and the clock generator and divider which are included on the PC-4000.

This data sheet contains:

- Circuit Emulation Description
- Functional Block Diagram
- Functional Block Descriptions
- Operation and Use

Load and Drive Characteristics
PC-4000 and 2656 Timing Comparisons
PC-4000 Component Positioning Diagram

- Programming System Address Map for Coding the FPLAs
FPLA Coding Forms Coding Switches and Jumpers
- Circuit Diagram and Connectors
- Parts List
- Shipping Configuration


## CIRCUIT EMULATION DESCRIPTION

The PC-4000 emulator contains the same circuits that are available to the user on the 2656 Systems Memory Interface chip. Functionally the PC-4000 replaces the 2656 in the user's prototyping system through a pin-for-pin compatible plug and its 40-wire ribbon cable attached to the PC-4000.
In emulating the 2656, the speed of the board circuitry is equivalent to or faster than the on-chip circuitry. ROM is implemented with bipolar PROMs and on-chip RAM is implemented with bipolar RAM packages. The programmable gate array (PGA) for selecting of the ROM and RAM enables and the I/O function selects are implemented with field programmable logic arrays (FPLAs).

## PC-4000 CABLE AND CONNECTOR ASSEMBLY



The oscillator provided on the PC-4000 has the same frequency dividers available as on the 2656. The oscillator divide ratio is selected by toggle switch settings.

## FUNCTIONAL BLOCK DESCRIPTIONS

Input Buffer: This circuitry buffers the incoming signals from the MPU (specifically for the 2650 MPU , the addresses, A0-A14, and the 4 control signals, OPREQ, WRP, $\overline{\mathrm{R}} / \mathrm{W}$ and $\mathrm{M} / \overline{\mathrm{IO})}$.

Data Bus Transceiver: This circuitry buffers the incoming 8 -bit data bus from the MPU, and provides output drivers to the data bus.

FPLAs 1 and 2: FPLAs 1 and 2 represent a portion of the programmable gate array of the 2656 SMI chip. These 2 FPLAs decode the chip enable signals.

FPLAs 3 and 4: These FPLAs represent the remainder of the gate array. FPLA 3 and a portion of FPLA 4 generate the on-board ROM, RAM and port enable signals. The remainder of FPLA 4 is used to generate the data bus control signals.

Function Select and I/O Port Logic (Via FPLAs 1-4): The function select and I/O port logic allow each of the multi-purpose pins of the 2656, to be individually selected as either an I/O port or a chip enable via eight switches, FSO-FS7. When assigned as chip enables, they must be programmed in FPLAs 1 and 2 . When a multi-purpose pin is assigned as I/O or as an input port, the port address is programmed in FPLAs 1 and 2.

When the FS switch is On, the corresponding pin of the 2656 is selected as an I/O port. When the FS switch is On, the corresponding pin is selected as a chip enable.
Memory: Both ROM and RAM memory functions are implemented in bipolar PROM and RAM respectively. The memory chip enables are programmed in FPLAs 3 and 4 . (See the Programming section)

Clock Divider, Reset Logic, and Internal Oscillator: This circuitry provides an internal oscillator with switches for frequency divide by $1,2,3$, or 4 . Reset logic is provided on the PC-4000 to allow the user to reset the system during debug via an external switch

## FUNCTIONAL BLOCK DIAGRAM


closure, without the need for powering down. The reset logic is used when the RC or external oscillator modes are selected.

If the RC or crystal internal oscillator mode is desired, the frequency determining components must be installed on the emulator PCB. The pins on the header that correspond to the RC and Crystal pins are not used in this mode, and only the external Reset function is provided.

## OPERATION AND USE

After preprogramming the on-board PROMs and FPLA with the desired user data, the operation of the PC-4000 consists of supplying electrical power from the external source and connecting into the user's system.

Power Supply Requirements: The PC-4000 requires 5 Vdc at 2.2 Adc typical. The maximum current requirement is 3.5 Adc .
Load and Drive Characteristics: The load characteristics of PC-4000 inputs presented to any bus input are $400 \mu \mathrm{Adc}$ for a zero and $40 \mu$ Adc for a 1. The PC-4000's output lines will drive a minimum of 5 TTL loads, which far exceeds the drive characteristics of the 2656 SMI. Thus the user must exercise care when changing from the emulator to the 2656 to avoid inadvertent loading problems.
PC-4000 and 2656 Timing Comparisons: The PC-4000 is implemented in TTL logic. All timing delays and Rise/Fall times are less than those of corresponding signals in the 2656.
Component Positioning Diagram: The
components, sockets, switches, and jumper connections that allow the user to adapt the PC-4000 to his specific system requirements are shown in Figure 1. Positioning Diagram. Each section of the PC-board containing components that the user must either insert, adjust, or program are shown as callouts. Only pins, 1,2/A, B (GND) and 9, $10 / \mathrm{K}, \mathrm{L}(+5 \mathrm{Vdc})$ of the edge connector should be used. All other pins must be left open.

## Programming and Operating Summary

1. Programming Address Functions:
A. Define Memory and I/O address map for system.
B. Program FPLA 1 and FPLA 2 with minimum programming configuration and $X$ pin chip select information. See Coding Table for FPLA 1 and FPLA 2.
C. Program FPLA 3 and FPLA 4 with Memory ROM and RAM and I/O port addresses and minimum programming configuration. See Coding table for FPLA 3 and FPLA 4.
See Tables for Coding Switches:
D. Is there ROM on SMI?

If yes, program switch S2-2 (No ROM) OFF.
If no, program switch S2-2 (No ROM) ON.
E. Is there RAM on SMI?

If yes, program switch S2-3 (No RAM) OFF.
If no, program switch S2-3 (No RAM) ON.
F. Is the I/O Port on SMI used?

If yes, program switch S2-1 (No Port) OFF.
If no, program switch S2-1 (No Port) ON.
G. Program Switch S2-4 (1k2k) Off if using 2656 SMI chip.
2. Clock Divider and Reset Programming:
A. Is SMI Oscillator XTAL Driven?

If yes, attach XTAL to board at W6 and W7. Jumper W8 to W2, skip to Step 2E.
B. Is SMI Oscillator RC Driven?

If yes, calculate capacitor value and attach capacitor to board at W6 and W7. Jumper W1 to W2, skip to Step 2D.
C. Is SMI Oscillator Driven by an external source?
If yes, jumper W2 to W3.
D. Is SMI to provide system power on reset?
If yes, jumper W4 to W5.
E. Set Frequency Divider Switches

Divide Oscillator Frequency by 1 set switches S2-5 Off, S2-6 Off
Divide Oscillator Frequency by 2 set switches S2-5 On, S2-6 Off
Divide Oscillator Frequency by 3 set switches S2-5 Off, S2-6 On
Divide Oscillator Frequency by 4 set switches S2-5 On, S2-6 On
3. Programming $X$ Pin Functions:
A. Is X0 Pin chip Select?

If yes, program switch S1-1 Off.
Is XO Pin I/O Port?
If yes, program switch S1-1 On.
B. Is X1 Pin chip Select?

If yes, program switch S1-2 Off.


Is X1 Pin I/O Port?
If yes, program switch S1-2 On.
C. Is X2 Pin chip Select?

If yes, program switch S1-3 Off. Is X2 Pin I/O Port?
If yes, program switch S1-3 On.
D. Is X3 Pin chip Select?

If yes, program switch S1-4 Off. Is X3 Pin I/O Port?
If yes, program switch S1-4 On.
E. Is X4 Pin chip Select?

If yes, program switch S1-5 Off.

Is X4 Pin I/O Port?
If yes, program switch S1-5 On.
F. Is X5 Pin chip Select?

If yes, program switch S1-6 Off. Is X5 Pin I/O Port?
If yes, program switch S1-6 On.
G. Is X6 Pin chip Select?

If yes, program switch S1-7 Off. Is X6 Pin I/O Port?
If yes, program switch S1-7 On.
H. Is X7 Pin chip Select?

If yes, program switch S1-8 Off.

Is X7 Pin I/O Port?
If yes, program switch S1-8 On.
4. PROM Programming:
A. Develop Application Software
B. Program PROMS
5. Actual Use
A. Connect power to Edge Connector
B. Connect umbilical cable to socket of 2656 in system
C. Turn power on and debug system

## PROGRAMMING

To program the PC-4000 the user must have available both FPLA programming equipment and PROM programming equipment. Equipment for programming the PROMs and FPLAs may be obtained from Data I/O Corporation, Curtis Electro Devices, and Signetics, among others. Normally, in defining the user's system hardware, the information needed to program the FPLAs, the Function Select Switches, the Clock and the Reset emerge from the system design. The following programming procedures are suggested for each of the programmable functions. The PGA in its FPLA implementation is considered first. It consists of:

- PGA input and output signal definitions. (See Table 1)
- System Address Map for coding the FPLAs
- FPLA Coding Forms

For detailed instructions on the programming procedures and equipment required for using FPLAs refer to "Signetics Field Programmable Logic Arrays," February 1976.

The Programmable Gate Array (PGA): The PGA decodes the X0 thru X 7 chip select signals in FPLA 1 and FPLA 2. The memory chip enable signals are decoded in FPLA 3. The I/O port select signals are decoded in FPLA 3 and FPLA 4, and the Data Bus Control Signal in FPLA 4. The PGA has a minimum programming configuration as shown in the coding tables. (Reference: Coding Forms and Schematic Diagram)

System Address Map for Coding the FPLAs: The system address map is used in conjunction with the FPLA coding forms that follow. These two sets of documents provide the source information for direct transfer into the customer pattern selected for the Programmable Gate Array (PGA) of the 2656. (Note: The specifics of programming the punch card deck for all programmable functions of the 2656 are covered in the Signetics 2656 data sheet. See CUSTOM PATTERN PROGRAMMING INSTRUCTIONS)

FPLA Coding Forms: (Tables 2-6) Four coding forms are provided respectively for FPLAs \#1, \#2, \#3, and \#4. These forms show the minimum coding required to make the PC-4000 functional. When additional coding from the systems address map is inserted on the FPLA coding forms, the PGA of the PC-4000 is defined.

| MNEMONIC | FPLA NO. | TYPE | FUNCTION |
| :---: | :---: | :---: | :---: |
| A0 to A14 | - | 1 | Address Input |
| MEM | - | 1 | Memory or I/O |
| OP | - | 1 | Operation Request |
| WRPB | - | 1 | Write Pulse |
| FS0 to FS7 | - | 1 | Function Select for Pins X0 to X7 |
| NOROMN | - | I | Disable the ROM Chip enables |
| NORAMN |  | 1 | Disable the RAM Chip enable |
| NOPORTN | - | 1 | Disable the I/O Port |
| 1k2k | - | 1 | Sets the configuration of the ROM Memory to $2 k$ (should be true for 2656 emulation) |
| READ | - | 1 | Read Signal |
| SELROM | - | 1 | Enable the Data Bus. A ROM operation has been selected. |
| PORT | - | 1 | The I/O Port operation has been selected. |
| RAMCEN | - | 1 | The RAM Chip enable. |
| PGAO to PGA7 | 1,2 | 0 | Chip Enable Decode for Pins X0 to X7 |
| ROMCEON | 3 | 0 | Chip Enable for ROM 0 |
| ROMCE1N | 3 | 0 | Chip Enable for ROM 1 |
| ROMCE2N | 3 | 0 | Chip Enable for ROM 2 |
| ROMCE3N | 3 | 0 | Chip Enable for ROM 3 |
| SELROM | 3 | 0 | ROM Operation has been selected |
| PORT | 3,4 | 0 | An I/O Operation has been selected |
| RAMCEN | 3 | 0 | Chip Enable for the RAM |
| RE | 4 | $\bigcirc$ | Enable the Data Bus Receiver |
| DE | 4 | 0 | Enable the Data Bus Driver |
| PWCN | 4 | 0 | Port Write Clock |
| REDPORTN | 4 | 0 | Enable the Port Read Driver to the Internal Data Bus. |
| REDRAMN | 4 | 0 | Turn on the RAM output Driver |

NOTE
Signals ending in ... N are active low.
OPTIONS
NORAM, NOROM, NOPORT disable the control signals for these functions. The Switch is on to disable these functions.

Table 1 PGA SIGNAL DESIGNATION

If the RAM, ROM and Port addresses are not programmed in the FPLAs (don't care all terms) the output signals will always be valid. The switch options along with the minimum programming of the FPLA prevent these signals from causing bus conflicts.

The symbols for the entries on the FPLA coding forms 1 through 4 (Tables 2-6) are:

| Input Variable | $\begin{aligned} H & =\text { Input High } \\ \mathrm{L} & =\text { Input Low } \\ - & =\text { Don't Care } \\ \text { Blank } & =\text { User Option } \end{aligned}$ |
| :---: | :---: |
| Output Function | A - Active <br> * - Not Present in Term |
| Active Level | H - Active High <br> L - Active Low |

The tables that follow all use the standard coding format used for Signetics FPLAs. The format provides a matrix expression for logical expressions of the forms:

| O | $\begin{aligned} =\left(I_{1} \cdot I_{2} \cdot I_{3}--I_{n}\right)_{1}+ \\ \left(I_{1} \bullet I_{2} \cdot I_{3} \bullet--I_{n}\right)_{2}+ \\ \left(I_{1} \cdot I_{2} \cdot I_{3}-I_{n}\right)_{k} \end{aligned}$ |
| :---: | :---: |
| Where: | $\mathrm{n}=18$ (for the 2656) |
|  | $k=1-4$ depending upon the particular use |
|  | $l_{i}=$ an input signal or its complement |

Example:
The output function:

$$
\overline{\text { Output }}=A \cdot B \cdot D+D \cdot \bar{A}+C \cdot \bar{B} \cdot E
$$

would be shown in the table as:

PRELIMINARY SPECIFICATION


Asterisks indicate that these terms are not present in this output.
The minimum necessary fixed programming for a 2650 application is shown below:

| DEVICE | MEMORY <br> ADDRESS | I/O PORT ADDRESS | WRP | OP | M/IO | A14 | A13 | A12 | A11 | A10 | A09 | A08 | A07 | A06 | A05 | A04 | A03 | A02 | A01 | A00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| X0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| X1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| X2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| X3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| X4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| X5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| X6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| X7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| I/O Port |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RAM |  |  |  |  | 1 |  |  |  |  |  |  |  |  | x | X | X | X | X | X | X |
| PROM |  |  |  |  | 1 |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X |

NOTE

Memory address and I/O Port address columns remain blank, unless X -pins are chip enables. The memory I/O columns for memory are programmed as "1" and for 1/O are programmed as " 0 ." For extended $\mathrm{I} / \mathrm{O}$ operation $\mathrm{A} 13=1, \mathrm{~A} 12$ thru A8 and A14 are
programmed Don't Care and A7 thru AO as I/O address. For non-extended I/O operation, there are two modes, data and control. For data $A 13=0, A 14=1, A 12$ thru A0 are Don't Care. For control, $\mathrm{A} 13=0, \mathrm{~A} 14=0, \mathrm{~A} 12$ thru A 0 are Don't Care.


Table 3 CODING TABLE FOR FPLA NO. 1


Table 4 CODING TABLE FOR FPLA NO. 2


Table 5 CODING TABLE FOR FPLA NO. 3


Table 6 CODING TABLE FOR FPLA NO. 4

CODING SWITCHES AND JUMPERS: The switches and jumpers are set by the user for the particular application of the 2656 in his system. Purposes of the switches and jumpers are described in the functional block descriptions. Specifics of coding are given in 3 groups.

Tables 7, 8 and 9 show the switch positions and jumper connections for:

1. Memory and clock divider functions.
2. Select port or chip enable.
3. Jumpers

These tables, when properly filled-in, may be used as source data for the codes to be transferred into the 2656 coding forms.
Oscillator Frequency: output clock frequency equals oscillator frequency:
$\div 1$ set S2-5 Off, S2-6 Off
$\div 2$ set S2-5 On, S2-6 Off
$\div 3$ set S2-5 Off, S2-6 On
$\div 4$ set S2-5 On, S2-6 On

| SWITCH | ON | OFF | FUNCTION |
| :---: | :---: | :---: | :---: |
| S2-2 |  |  | NO ROM |
| S2-3 |  |  | NO ROM |
| S2-1 |  |  | NO I/O PORT |
| S2-4 |  | $x$ | 1k/2k |
| S2-5 |  |  | DIVO |
| S2-6 |  |  | DIV1 |

Table 7 MEMORY AND CLOCK DIVIDER

| SWITCH <br> NO. | I/O <br> PORT <br> SWITCH <br> ON | CHIP <br> ENABLE <br> SWITCH <br> OFF | X PIN |
| :---: | :---: | :---: | :---: |
| S1-1 |  |  | X0 |
| S1-2 |  |  | X1 |
| S1-3 |  |  | X2 |
| S1-4 |  |  | X3 |
| S1-5 |  |  | X4 |
| S1-6 |  |  | X5 |
| S1-7 |  |  | X6 |
| S1-8 |  |  | X7 |

Table 8 PORT OR CHIP ENABLE

|  | JUMPER | COMPONENT |
| :--- | :---: | :---: |
| XTAL OSC | W2 to W8 | XTAL FROM <br> W6 to W7 <br> RC OSC |
| WAPACITOR <br> FXT DRIVEN <br> FESET <br> W6 to W7 <br> OUTPUT | W2 to W3 |  |

Table 9 JUMPERS AND ADDITIONAL COMPONENTS
40-Conductor Cable Pin-Out: The Interface from the PC-4000 to the users system is a 40 -pin cable with 40 -pin dip plugs on both ends.

| NO. | MNEMONIC | STATE | OPERATION |
| :---: | :---: | :---: | :---: |
| SWITCHES |  |  |  |
| S1-2 | FSO | ON | Select X0 As I/O Port Bit |
|  |  | OFF | Select X0 As Chip Select |
| S1-3 | FS1 | ON | Select X1 As I/O Port Bit |
|  |  | OFF | Select X1 As Chip Select |
| S1-1 | FS2 | ON | Select X2 As I/O Port Bit |
|  |  | OFF | Select X2 As Chip Select |
| S1-4 | FS3 | ON | Select X3 As I/O Port Bit |
|  |  | OFF | Select X3 As Chip Select |
| S1-5 | FS4 | ON | Select X4 As I/O Port Bit |
|  |  | OFF | Select X4 As Chip Select |
| S1-6 | FS5 | ON | Select X5 As I/O Port Bit |
|  |  | OFF | Select X5 As Chip Select |
| S1-7 | FS6 | ON | Select X6 As I/O Port Bit |
|  |  | OFF | Select X6 As Chip Select |
| S1-8 | FS7 | ON | Select X7 As I/O Port Bit |
|  |  | OFF | Select X7 As Chip Select |
| S2-1 | NOROM | ON | ROM Chip Selects Disabled |
|  |  | OFF | ROM Chip Selects Enable |
| S2-2 | NORAM | ON | RAM Chip Selects Disabled |
|  |  | OFF | RAM Chip Selects Enable |
| S2-3 | NOPORT | ON | Port Select Disabled |
|  |  | OFF | Port Select Enabled |
| S2-4 | 1k2k | $\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$ | ROMCE2N AND ROMCE3N Disabled ROMCE2N AND ROMCE3N Enabled |
| S2-5 | CLKDIVO |  |  |
| S2-6 | CLKDIV1 |  |  |
| JUMPERS |  |  |  |
| W2 to W8 |  |  | Use Internal Xtal Oscillator |
| W1 to W2 |  |  | Use Internal RC Oscillator |
| W2 to W3 |  |  | CK2 Pin is External Clock Input |
| W4 to W5 |  |  | CK1 is Reset Output |

Table 10 SWITCH AND JUMPER SUMMARY

| MNEMONIC | NO. | MNEMONIC | NO. |
| :--- | :---: | :---: | :---: |
| DBUS3 | 1 | DBUS2 | 40 |
| DBUS4 | 2 | DBUS1 | 39 |
| DBUS5 | 3 | DBUS0 | 38 |
| DBUS6 | 4 | X3 | 37 |
| DBUS7 | 5 | X2 | 36 |
| X7 | 6 | X1 | 35 |
| X6 | 7 | X0 | 34 |
| X5 | 8 | NC 2 | 33 |
| X4 | 9 | ADDR14 | 32 |
| CLK OUT | 10 | ADDR13 | 31 |
| CLK 1 | 11 | ADDR12 | 30 |
| CLK 2 | 12 | ADDR11 | 29 |
| VSS GND | 13 | ADDR10 | 28 |
| R/W | 14 | ADDR9 | 27 |
| M/I/O | 15 | ADDR8 | 26 |
| OPREQ | 16 | ADDR7 | 25 |
| WRP | 17 | ADDR6 | 24 |
| ADDR0 | 18 | ADDR5 | 23 |
| ADDR1 | 19 | ADDR4 | 22 |
| ADDR2 | 20 | ADDR3 | 21 |

Table 11 SMI CABLE PINOUTS ${ }^{1}$

## NOTES

1. Timing element pins have alternate functions Clock 1 is external reset out. To use, connect W (4) to $W(5)$. Clock 2 is external Clock in. To use, connect W (2) to W (3). Clock 2 not used: to use RC oscillator connect $W$ (1) to $W$ (2). To use internal XTAL oscillator connect $W(2)$ to $W(8)$.
2. V$V_{D D}$ for chip, no connect for board.

PRELIMINARY SPECIFICATION




Figure 4

## EDGE CONNECTOR

The edge connector for the 2650/PC-4000 is an AMP 225-21021-4-01-117 edge connector. This edge connector has 20 pins on 0.156 inch centers.

| EDGE CONNECTOR PIN-OUT |  |  |  |
| :---: | :---: | :---: | :---: |
| GND | 1 | A | GND |
| GND | 2 | B | GND |
|  | 3 | C | C2X |
|  | 4 | D |  |
|  | 5 | E | RESET OUT* |
|  | 6 | F | CLK OUT* |
|  | 7 | H | RESET IN* |
| CK | 8 | $J$ | OSC |
| VCC | 9 | K | VCC |
| Vcc | 10 | L | VCC |
| *Factory Test Only Do not Use |  |  |  |
| Figure 5 |  |  |  |

SHIPPING CONFIGURATION
Included with the PC-4000:
Blank 82S115 PROMS 4 Each.
Blank 825101 FPLAS 4 Each.
Edge Connector
2-foot cable with 40 pin headers on each
end.
PC-4000 Data Sheet
REQUIRED BUT NOT SUPPLIED
Timing element for oscillator

| PART NUMBER | QUANTITY | DESCRIPTION |
| :---: | :---: | :---: |
| 7403 | 2 | Open Collector Quad Nand |
| 7404 | 3 | Hex Inverter |
| 7405 | 2 | Open Collector Hex Inverter |
| 74LS14 | 1 | Hex Schmitt Trigger Inverter |
| 7432 | 1 | Quad 2 Input or Gate |
| 74LS86 | 1 | Quad 2 Input XOR |
| 74109 | 1 | Dual JK Flop |
| 74116 | 1 | Dual Quad D Latch with Clear |
| 74126 | 4 | Quad Tristate Buffer |
| 74163 | 1 | 4 Bit Binary Counter |
| 8T28B | 2 | Bidirectional Data Bus Driver Receiver |
| 8T97B | 5 | Tristate Hex Buffer |
| 8T98B | 2 | Tristate Hex Inverter Buffer |
| 825101 | 4 | Open Collector FPLA |
| 825115 | 4 | 512X8 PROM |
| 82509 | 2 | 64X9 BIPOLAR RAM |
| NE555 | 1 | Timer |
| 761-1-51.0KOHM | 4 | Resistor Dip Pak |
|  | 1 | 10k OHM Resistor |
|  | 1 | 100k OHM Resistor |
|  | 2 | 220 OHM Resistor |
|  |  | Note: All Resistors 1/4 Watt |
|  | 1 | 150pF Capacitor |
|  | 2 | $0.01 \mu \mathrm{~F}$ Capacitor |
|  | 5 | $4.7 \mu \mathrm{~F}$ Capacitor |
|  | 14 | $0.1 \mu \mathrm{~F}$ Capacitor |
| XTAL or Capacitor | 1 | Timing Element for Oscillator (Not Supplied) |
|  | 1 | Edge Connector AMP 225-21021-401-117 |
|  | 2 | 8 Position Dip Switch |
|  | 1 | PC Board 2650/PC-4000 |
|  | 4 | 24 Pin Dip Socket |
|  | 4 | 28 Pin Dip Socket |
|  | 1 | 40 Pin Dip Socket |
|  | 1 | Cable Assembly |

Table 12 PARTS LIST

## DESCRIPTION

The 2650PC1001 is a complete microcomputer on a single printed circuit board. The heart of this computer is Signetics' 2650 Microprocessor; a single chip, N-Channel MOS Integrated Circuit which contains the CPU and control sections of the classical general purpose computer architecture.
In addition to the Microprocessor, the 2650PC1001 contains both control and read/write memory, I/O ports, clock, and all the necessary buffering and interface circuits to permit data transfer both on and off the p.c.b.

## FEATURES

- 2650 Microprocessor
- 1 K bytes of ROM with PIPBUG*
- 1K bytes of RAM (off-board expandable)
- 1 MHz crystal oscillator
- Serial I/O (either TTY 20mA current loop or RS232-selectable by jumper wire)
- Two 8-bit output ports
- Two 8-bit input ports
- DMA capability
- LED display indicators
- Data bus and address bus test points
- Buffered data and address outputs
- Single power supply ( +5 volts) ${ }^{* *}$
*Signetics Loader and Debugging Program. (See app) note SS50)
**Assumes RS232 I/O port is not used.


## MEMORY

The memory of the 2650PC1001 is divided into two segments:
a. ROM with PIPBUG
b. RAM (Read/Write Memory)

The Read-Only Memory (ROM) supplied with the card is the Signetics' 82S129 Field Programmable type (PROM). Eight of these 256X4 devices are arranged to provide a 1 KX8 memory array. The 2650PC1001 is supplied with the PIPBUG loader and debugger already programmed into the ROM. Since the devices are loaded into sockets, however, they can be easily replaced with other ROMs or PROMs programmed by the user.
The 1KX8 array is constructed with Signetics' 2606 NMOS RAM devices. Since the 2606 is a $256 \times 4$ device, again 8 devices are used in the array.

## SERIAL I/O

The serial I/O capability of the 2650PC1001 utilizes a unique serial I/O feature of the basic 2650 microprocessor. This feature

## BLOCK DIAGRAM


allows serial data to be transferred directly into the 2650 under program control by using the sense and flag pins on the microprocessor.

Two types of serial I/O ports are available. The first is a teletype interface which can be directly connected to a teletype 20 mA current loop. The second is an RS232 interface which provides a connection for voltage driven peripheral equipment. The selection of the particular interface to be used is made by connecting a jumper wire directly from the microprocessor flag and sense lines to the appropriate output port. If the RS232 interface is used, +12 and -12 volt supplies are required in addition to the +5 volt supply which operates the rest of the board.

## PARALLEL I/O

Parallel I/O channels using the 2650's unique Non-Extended I/O mode are also provided. This mode allows a single byte instruction to select one of two distinct I/O devices. On the 2650PC1001, these two devices are represented by four separate data channels; two for reading and two for writing. The output (or write) channels are fully latched and buffered. The input (or read) channels are fully buffered. One read and one write channel represents a single 1/O device. In addition to the Non-Extended I/O ports, the data and address buses, plus the appropriate control signals, are also available to provide the full extended I/O capability.

## OTHER I/O

A complete listing of the I/O pins, plus a brief description of any I/O signal not detailed above, is as follows:

| PIN | DESCRIPTION |
| :---: | :---: |
| 1,2 | Ground |
| 4-11 | Processor Data Bus |
| 12 | Strobe to Enable Input Data Port |
| 13 | D/C Output |
| 14 | DMA Control Input |
| 15 | Extended/Non-Extended Output |
| 16 | Interrupt Acknowledge Output |
| 17 | R/W Output |
| 18 | Write Pulse Output |
| 19 | Run/Wait Output |
| 20 | Operation Request Output |
| 21 | Memory/IO Output |
| 22 | Operation Acknowledge Input |
| 23 | Clock Output (or Input if on-board clock not used) |
| 24 | Operation Request Input for DMA |
| 25 | Reset Input |
| 26 | Interrupt Request Input |
| 27 | Pause Input |
| 28-32 | Unused |
| 33-47 | Address Bus |
| 48 | +12 Volts for RS232 |
| 49 | -12 Volts for RS232 |
| 50 | +5 Volts |
| A, B | Ground |
| C | Not used |
| D-M | Non-Extended Output Port "D" |
| N | Clock to load data into Output Port "D" |
| P | TTY serial data input (t) |
| R | TTY serial data input (-) |
| S | TTY serial data Output pull up resistor (current loop +) |
| T | TTY serial data Output; TTL Level, open collector (current loop return) |
| U | RS232 ground |
| V | RS232 Output |
| W | TTY tape reader Output; TTL Level, open collector ( + ) |
| X | TTY tape reader Output pull up resistor (-) |
| Y | RS232 Input |
| Z | Clock to load data into Output Port "C" |
| a-h | Non-Extended Output Port "C" |
| j | Strobe to enable input Port Control |
| k-u | Non-Extended Input Port "D" |
| -c | Non-Extended Input Port "C" |
| d | +12 for RS232 |
| e | -12 for RS232 |
| f | +5 Volts |

NOTE
Italic items indicate buffered 2650 Microprocessor Outputs.

## SUMMARY

The above is intended to provide a brief description of Signetics' 2650PC1001 Prototyping Board. More detailed information can be obtained from the following:

M20 PIPBUG Application Note
M14 2650PC1001 Manual (Detailed Description)
M1 Serial I/O using Sense and Flag Application Note

## DESCRIPTION

The 2650 PC2000 is a 4 K Memory Card designed to be compatible with the 2650 microprocessor. It is composed of 32, 21L02 NMOS, 1 K by 1 bit static RAMs, and organized in four groups of one kilo-byte each. Decoding is provided to select one of the four groups and also distinguish the card in multi-card configurations. In a system application utilizing up to 8 cards (32K), each card is uniquely identified by hardwired jumpers. No external decoding is required.

The decoding logic is sectioned into two blocks. The first block determines if the address identifies that card as being part of the 8 K page address. (The 2650 memory scheme is organized into 4 pages of 8 K each.) The second block uniquely locates 1 K bytes of memory on the board in the 8 K bytes of memory of the selected page. Each 1 K bank is individually selected by hardwired jumpers to the decoder.

## FEATURES

- Requires only single +5 V supply
- Industry standard 21L02 memories
- Fully decoded for 32K memory organization
- Data bus buffered with tri-state drivers/receivers
- Accessible from microprocessor or DMA controller
- TTL compatible
- Dimensions are 8 " $\times 6.875^{\prime \prime}$ with a 50 pin edge connector along the $8^{\prime \prime}$ dimension
- Typical power consumption of 4.5 watts


## SIGNAL DEFINITION

Memory control signals and address lines between the 2650 microprocessor and the 2650 PC2000 are indicated in the block diagram. The $\overline{\mathrm{OPEX}}$ control line is reserved for use with DMA controllers. Its function is similar to that of the OPREQ line from the 2650. When either of these lines are true and a memory operation is specified ( $\mathrm{M} / \overline{\mathrm{IO}}=$ High) the memory card is enabled to decode address lines A0 through A14. When a bank is selected, the selected card control logic block allows the read-write line ( $\overline{\mathrm{R}} / \mathrm{W}$ ) and write pulse (WRP) to pass to the memory array and also enable the external data bus drivers. When the operation is complete the memory card responds with a true condition on OPACK.

## BLOCK DIAGRAM



## JUMPER ADDRESS DECODING

Jumpers are applied to designated platedthrough holes identified by a ' $W$ n' mnemonic. To identify the card to be part of a particular page, jumper point W5 to one of the following:

> W1 for page 0
> W2 for page 1
> W3 for page 2
> W4 for page 4

To locate each of the 1 K bytes of the memory card in the selected memory page, four bank jumpers are required. The outputs of the decoder used to select one of eight 1 K byte memory segments (W6-W13) must be connected to the selected 1 K bytes of memory on the 2650 PC2000 (W14-W17).

Factory installed jumpers allow for immediate hook-up to a Demo System (DS1000/2000) which has 2 K of memory. These jumpers have been hooked-up as follows:

W1 to W5 (page 0)
W8 to W14
W9 to W15
W10 to W16
W11 to W17

## DESCRIPTION

The Demo System 2000 ( 2650 DS2000) is a hardware base for use with the 2650 CPU printed circuit board (PC1001) and allows the exercising of this card with user defined options. When the DS2000 is combined with a CPU board (PC1001) and a TTY, the user is equipped with everything he needs to exercise any of the software or hardware features of the 2650. The DS2000 has a built in power supply.

## FEATURES

- User defined expansion capability from connector supplying address, data and control lines.
- RS232 and TTY interface
- Two extended and two non-extendedI/O ports
- Single step capability for program debugging
- Display of address bus, data bus and the two non-extended I/O ports


## CONNECTORS

The 2650 CPU Board (PC1001) is inserted into the J8 connector to complete the demo system. The user printed circuit board is inserted into the J7 connector. Both connectors are the same type (100 Pin Amphenol, series 225) and the numbered pins of J7 and J 8 have the same signals (except pin 12). The lettered pins of $J 7$ (pins A through $\bar{g}$ ) are not used. The sockets and connectors of the DS2000 and their associated signals are provided in this data sheet.

## DISPLAYS

The address and data bus LED displays reeach OPREQ (beginning of an external operation). Latches store the information until another OPREQ is received. The two nonextended port displays represent data on channel C (port 2) and channel D (port 1) during the OPREQ for each I/O operation. A logic one one these displays will turn "on" the LED and a logic zero will turn them "off."

## CONTROLS

The pause and step logic allows one instruction to be executed at a time by pushing the 'step' button when the Run/Pause switch is in the pause position. In this mode the Run/Wait display LED will go off. The reset switch will reset the display latches and place all zeros in the 2650 instruction address register.

HARDWARE BASE


SIGNAL NAMES FOR CONNECTORS 17 AND 18

| PIN NO. | FUNCTION (J7 \& J8) | PIN NO. | FUNCTION (J8 ONLY) ${ }^{1}$ |
| :---: | :---: | :---: | :---: |
| 1 | GND | A | GND |
| 2 | GND | B | GND |
| 3 | NC2 | C | NC |
| 4 | $\overline{\text { DBUSO }}$ | D | OPDO |
| 5 | DBUS1 | E | OPD1 |
| 6 | DBUS2 | F | OPD2 |
| 7 | DBUS3 | H | OPD3 |
| 8 | DBUS4 | J | OPD4 |
| 9 | DBUS5 | K | OPD5 |
| 10 | DBUS6 | L | OPD6 |
| 11 | $\overline{\text { DBUS7 }}$ | M | OPD7 |
| 121 | EIPD | N | COPD |
| 13 | D/ $\bar{C}$ | P | TTY SERIAL IN + |
| 14 | $\overline{\text { DMA }}$ | R | TTY SERIAL IN - |
| 15 | $\mathrm{E} / \overline{\mathrm{NE}}$ | S | TTY SERIAL OUT + |
| 16 | INTACK | T | TTY SERIAL OUT - |
| 17 | $\bar{R} / W$ | U | RS232 GROUND |
| 18 | WRP | V | RS232 OUTPUT |
| 19 | RUN/ $\overline{\text { WAIT }}$ | W | TTY TAPE READER OUT + |
| 20 | OPREQ | $X$ | TTY TAPE READER OUT - |
| 21 | M/IO | Y | RS232 INPUT |
| 22 | $\overline{\text { OPACK }}$ | z | COPC |
| 23 | CLOCK | a | OPC0 |
| 24 | OPEX | b | OPC1 |
| 25 | RESET | c | OPC2 |
| 26 | INTREQ | d | OPC3 |
| 27 | PAUSE | e | OPC4 |
| 28 | NC | $f$ | OPC5 |
| 29 | NC | g | OPC6 |
| 30 | NC | h | OPC7 |
| 31 | NC | j | EIPC |
| 32 | NC | k | IPD0 |
| 33 | ABUS11 | m | IPD1 |
| 34 | ABUS13 | n | IPD2 |
| 35 | ABUS12 | p | IPD3 |
| 36 | ABUS14 | $r$ | IPD4 |
| 37 | ABUS9 | s | IPD5 |
| 38 | ABUS10 | t | IPD6 |
| 39 | ABUS8 | u | IPD7 |
| 40 | ABUS7 | r | IPC0 |
| 41 | ABUS6 | w | IPC1 |
| 42 | ABUS5 | $x$ | IPC2 |
| 43 | ABUS3 | y | IPC3 |
| 44 | ABUSO | z | IPC4 |
| 45 | ABUS1 | a | IPC5 |
| 46 | ABUS4 | b | IPC6 |
| 47 | ABUS2 | c | IPC7 |
| 48 | +12V | d | +12V |
| 49 | -12V | e | -12V |
| 50 | $+5 \mathrm{~V}$ | g | $+5 \mathrm{~V}$ |

NOTES

1. J7 has no connections to these pins.
2. $\mathrm{NC}=$ no connection.

## EXTENDED INPUT/OUTPUT DIP SOCKETS

| PIN NO. | FUNCTION J5 | FUNCTION J6 |
| :---: | :---: | :---: |
| 1 | $\overline{\overline{D B U S O}}$ | ABUS0 |
| 2 | $\overline{\overline{D B U S 1}}$ | ABUS1 |
| 3 | $\overline{\overline{D B U S 2}}$ | ABUS2 |
| 4 | $\overline{\overline{D B U S 3}}$ | ABUS3 |
| 5 | $\overline{\overline{D B U S 4}}$ | ABUS4 |
| 6 | $\overline{\overline{D B U S 5}}$ | ABUS5 |
| 7 | $\overline{\overline{D B U S 6}}$ | ABUS6 |
| 8 | $\overline{\overline{D B U S 7}}$ | ABUS7 |
| 9 | $\overline{O P A C K}$ | ABUS8 |
| 10 | M/IO | ABUS9 |
| 11 | OPREQ | ABUS10 |
| 12 | RUN/WAIT | ABUS11 |
| 13 | $\overline{W R P}$ | ABUS12 |
| 14 | $\bar{R} / W$ | ABUS13 |
| 15 | INTACK | ABUS14 |
| 16 | $\overline{E / \overline{N E}}$ | $\overline{\text { PAUSE }}$ |
| 17 | $\overline{D M A}$ | $\overline{1 N T R E Q}$ |
| 18 | $D / \overline{\bar{C}}$ | CLOCK |

## NON-EXTENDED INPUT/OUTPUT DIP SOCKETS

| PIN NO. | FUNCTION J3 |  | FUNCTION J4 |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | (Output Port C) | 0 | (Output Port D) | 0 |
| 2 | OPC | 1 | OPD | 1 |
| 3 | OPC | 2 | OPD | 2 |
| 4 | OPC | 3 | OPD | 3 |
| 5 | OPC | 4 | OPD | 4 |
| 6 | OPC | 5 | OPD | 5 |
| 7 | OPC | 6 | OPD | 6 |
| 8 | OPC | 7 | OPD | 7 |
| 9 | Clock Output Port | C | Clock Output Port | D |
| 10 | Enable Input Port | C | Enable Input Port | D |
| 11 | (Input Port C) | 7 | (Input Port D) | 7 |
| 12 | IPC | 6 | IPC | 6 |
| 13 | IPC | 5 | IPC | 5 |
| 14 | IPC | 4 | IPC | 4 |
| 15 | IPC | 3 | IPC | 3 |
| 16 | IPC | 2 | IPC | 2 |
| 17 | IPC | 1 | IPC | 1 |
| 18 | IPC | 0 | IPC | 0 |

## DESCRIPTION

The 2650 PC3000 is a basic text generating system requiring only six integrated circuits including one 2650 microprocessor. The serial communication link between the 2650 and the users terminal is accomplished with the flag and sense lines on the microprocessor. The 2650 PC3000 is used to control the storage of characters entered from a terminal with either a current loop or voltage swing capability ( $\pm 7.5 \mathrm{~V} \mathrm{~min}$ ).

Control Characters allow the text to be printed out on the terminal with the capability for inserting unique characters at locations identified during text generation. When the text is printed out the entire text will be output unless a control character is detected. The microprocessor then stops the print-out and the operator enters the desired unique information. Another control character is then given to continue printing the text until all characters stored in memory are printed, or until another stop character is detected. The stop character is recorded in memory just like any other character; however, it is not printed during text print-out.
Additional control characters allow for the erasure of the previous character typed or the erasure of the entire memory.

## FEATURES

- Total of six IC packages
- Operates at +5 V at a max of 500 mA
- Interface to either current loop or device capable of sending and receiving a minimum voltage swing of $\pm 7.5$ volts referenced to signal ground
- 250 character storage capability
- Card size less than 3 " X 4 " with four screwed-on stand-offs at corners
- 1 MHz clock implemented with 74123 oneshot
- Variable baud rate between 110 and 300 baud by trimmer pot adjustment of clock
- PROM mounted in 24 pin socket
- Card edge connector supplied with each card
- Inputs provided for an external system reset


## TERMINAL INTERFACE Voltage Mode Terminal Connection

The voltage mode interface is very similar to the standard RS232 interface except that the "signal" ground cannot be connected to "protective" ground. When a Cinch type 25pin connector (DB25P or DB25S) is used on an RS232 compatible terminal, the PC3000 should be connected as shown in Table 1.

## Current Loop Terminal Connection

When a terminal is used that employs current loop transmission techniques the four wires from the terminal should be connected to the corresponding four pins on the PC3000 card: TTY OUT +, TTY OUT -, TTY IN +, and TTY IN -.
On card jumper point ' $A$ ' to ' $B$ ' and point ' $D$ ' to ' $F$.'
PC3000 COMMAND SUMMARY

| KEY | FUNCTION |
| :--- | :--- |
| Rubout (delete) | Erase last character in <br> memory and echo the <br> erased character. Addition- <br> al preceding characters <br> can be erased by continu- <br> ing to depress the delete <br> key. |
| Control and E |  |
| Erase entire memory. |  |
| Control and B B | Used to indicate beginning <br> of inserted message. Is not <br> printed but stored in mem- <br> ory. Stops print-out when <br> read from memory. Re- <br> quired once from each <br> unique information entry. |
| Control and $C$ | Continues print-out of <br> memory after entry of of <br> unique information. |
| Control and PPPrints out contents of ter- <br> minal memory. |  |
| Control and R | Software reset. |

note
Bell will ring if any of the following are true

1. Entering more than 250 characters in memory.
2. Requesting print-out of an empty buffer.
3. Attempting to delete more characters than there are in memory

| DB25P (DB25S) <br> PIN NO. | PC3000 EDGE <br> CONNECTOR PIN NO. | PC3000 <br> SIGNAL NAME |
| :---: | :---: | :---: |
| 1 | No connection | - |
| 3 | 6 | VS OUT + |
| 2 | $J$ | VS IN + |
| 7 | K | VS OUT-(Signal GND) |
| $5,6,8,20$ | Connect Together | - |

[^6]Table 1 VOLTAGE MODE TERMINAL PIN DESCRIPTION

BLOCK DIAGRAM


BOARD LAYOUT


PC3000 CONNECTOR PIN ASSIGNMENT

| PIN | FUNCTION | PIN | FUNCTION |
| :---: | :---: | :---: | :---: |
| 1 | GND | A | GND |
| 2 | +5 | B | +5 |
| 3 | +15 | C | +15 V |
| 4 | -15 | D | -15 |
| 5 | - | E | TTY IN - |
| 6 | VS OUT + | F | TTY OUT + |
| 7 | TTY IN + | H | TTY OUT - |
| 8 | - | VS IN + |  |
| 9 | RESET | K | VS OUT - (Signal Ground) |
| 10 | GND | L | GND |
| VS- | VoItage Swing |  |  |

## DESCRIPTION

The 2650 assembly language (PIPHASM) is a symbolic language designed specifically to facilitate the writing of programs for the Signetics 2650 microprocessor.
The AS1000 is configured to operate on 32bit or larger machines and the AS1100 is configured to operate on 16-bit machines.
The 2650 assembler is a program which accepts symbolic source code as input and produces a listing and/or an object module "Hexadecimal" format compatible to the two tape punching programs PIPHTAP (for acceptance by PIPBUG), PIPSTAP (for PROMs) and also to the simulator, PIPSIM.
The assembler is written in standard Fortran IV and is approximately 1,250 Fortran card images in length. It is modular and may be executed in an overlay mode should memory restrictions make that necessary. It operates in a two pass mode to build a symbol table, to issue helpful error messages, produce an easily readable program listing and output a computer readable object module. This version of the assembler compiles into a 12 K word load module on the PDP-11/40 (16-bit words) and executes under DOS ( 8 K ) within a 28 K memory.

## AVAILABILITY

The 2650 assembler is available on both NCSS and GE timeshare. It is also available from Signetics on 9 track magnetic tape written in EBCDIC in 80 character unblocked records at a density of 800 bpi .

## FEATURES

## - Forward references

- Pseudo-Ops to aid programming
- Self-defining constants
- Symbolic machine operation codes
- Free format source code
- Syntax error checking
- Symbolic address assignment and references
- Data creation statements
- Storage reservation statements
- Assembly listing control statements
- Addresses can be generated as constants
- Character codes may be specified as ASCII or EBCDIC
- Comments and remarks may be encoded for documentation


## LANGUAGE REQUIREMENTS

## Input Requirements

Input to the assembler consists of a sequence of characters combined to form assembly language elements. These language elements include symbols, instruc-
tion mnemonics, constants and expressions which make up the individual program statements that comprise a source program.

## CHARACTERS

| Alphabetic: Numeric: Special Characters: | A through Z <br> 0 through 9 <br> blank <br> ( left parenthesis <br> ) right parenthesis <br> + add or positive value <br> - subtract or negative value <br> * asterisk <br> , single quote <br> , comma <br> / slash <br> \$ dollar sign <br> $<$ less than sign <br> $>$ greater than sign |
| :---: | :---: |

## SYMBOLS

Symbols are formed from combination or characters. Symbols provide a convenient means of identifying program elements so they can be referenced by other elements.

## CONSTANTS

A constant is a self-defining language element. Unlike a symbol, the value of a constant is its own "face" value and is invariant. Internal numbers are represented in 2's complement notation. There are two forms in which constants may be written: the SelfDefining Constant and the General Constant.

## Self-Defining Constant

The self-defining constant is a form of constant which is written directly in an instruction and defines a decimal value.

## General Constant

The general constant is also written directly in an instruction, but the interpretation of its value is dictated by a code character and delimited by quotation marks. Its form can be binary, octal, decimal, hexadecimal, EBCDIC or ASCII.

## EXPRESSIONS

An expression is an assembly language element that represents a value. It consists of a single term or combination of terms separated by arithmetic operators. A term may be a valid symbolic reference, a selfdefining constant or a general constant.

## Fields

A statement prepared for processing by the assembler is logically divided into four fields, as indicated below. They are free form and are separated by at least one blank character. The name must begin in logical column 1.

## LABEL OPERATION OPERAND COMMENTS <br> name opcode operand(s)

Where:

| FIELD | DESCRIPTION |
| :--- | :--- |
| Label | Contains an optional label <br> which the assembler will as- <br> sign as the symbolic address <br> of the first byte of the instruc- <br> tion. <br> Operation <br> Contains any of the 2650 proc- <br> essor mnemonic operation <br> codes as detailed in Appendix <br> A, or any assembler Directive. <br> This field may include an <br> expression which specifies a <br> register or value as required by |
| the instruction. All symbols |  |
| used in this field must have |  |
| been previously defined, i.e., |  |
| no symbolic forward refer- |  |
| ences are allowed. |  |

Operand
Contains one or more operand
elements such as indirect ad-
dress indicator, operand ex-
pression, index register speci-
fication, auto-increment/auto-
decrement indicator, constant
specification, etc., depend-
ing on the requirements of
the particular instruction. $|$

## Directives

There are eleven directives which the assembler will recognize. These assembler directives, although written much like processor instructions, are simply commands to the assembler instead of to the processor. They direct the assembler to perform specific tasks during the assembly process, but have no meaning to the 2650 processor. These assembler directives are:

| MNEMONIC | FUNCTION |
| :--- | :--- |
| ORG | Set location counter |
| EQU | Specify a symbol |
|  | equivalence |
| ACON | Define address constant |
| DATA | Defines memory data |
| RES | Reserve memory storage |
| END | End of assembly |
| EJE | Eject the listing page |
| PRT | Printer control |
| SPC | Space control |
| TITL | Title |
| PCM | Punch control |

## DESCRIPTION

The 2650 Simulator (PIPSIM) is a Fortran IV program which allows a user to simulate the execution of his program without utilizing the 2650 processor. The simulator executes the 2650 program via host computer software by maintaining its own internal Fortran storage registers to describe the 2650 program, the microprocessor registers, the ROM/RAM memory configuration, and the input data to be read dynamically from I/O devices. Inputs to the simulator are the object module (or the 2650 program in object format) produced by the 2650 assembler and a deck of user commands. The simulator can accommodate an object module of up to 8,192 bytes.

The output consists of a listing of the user's commands and a printout of both static and dynamic information as requested by the commands. The user may request traces of the processor status, dumps of the contents of memory, and recording of program timing statistics. Multiple simulations of the same program with different parameters may be executed during one simulation run.

## FEATURES

- Cycle counter for timing estimates
- Instruction fetch break points
- Operand fetch break points
- Trace facilities
- Snapshot dumps
- Patching facility
- Statistical information generated
- Easy-to-use command language
- Optionally selected start and end addresses
- Simulated registers may be displayed while the simulation program is executed
- Simulated registers may be altered while the program is executing
- Maintain a 8 K cell to simulate a read/ write RAM
- Capability exists for configuring parts of simulator memory to look like ROM
- Incorporates a 200-byte first in, first out (FIFO) buffer to store the data read from a simulated input device
- Establishes initial program conditions
- Monitors execution sequences


## AVAILABILITY

The 2650 Simulator is available on NCSS, TYMSHARE and GE timesharing services. It is also available from Signetics on a 9 track magnetic tape written in EBCDIC in 80 character unblocked records at a density of 800bpi.

The Simulator available on tape is configured to execute 16 -bit machines (2650 SM1100) and 32-bit machines (2650 SM1000).

## DESCRIPTION

The Signetics higher level language is designed for use with the 2650 microprocessor. This language allows the programmer to to reduce programming effort while retaining the control and efficiency of assembly language. It is written in ANSI standard Fortran IV and will execute on most machines without alteration. Programs written in this language tend to be selfdocumenting and are easily altered.

## AVAILABILITY

The Signetics higher level language is available on both NCSS and GE timeshare. It is also available from Signetics on magnetic tape for 32-bit machines.

## FEATURES

- Written in free-form
- Block structured
- Employs procedure calls
- Byte and address data elements
- Based variables
- In line assembly language
- Macro capability
- Generates relocatable code supported by a relocating loader
- Includes PL/M as a subset
- Allows separate compilation of program modules
- Has improved control structure over PL/M
- Conditional compilation
- Compile time expression evaluation


## OVERVIEW OF THE LANGUAGE

The higher level language is a sequence of "Declarations" and "Executable Statements."

The declarations allow the programmer to control allocation of storage, define simple textual substitutions (Macros), and define procedures. The language is "Block Structured": Procedures may contain further declarations which control storage allocation and define other procedures.

The procedure definition facility of the language allows modular programming: A program can be divided into sections (e.g. teletype input, conversion from binary to decimal forms, and printing output messages). Each of these sections is written as a language procedure. Such procedures are conceptually simple, easy to formulate and debug, and easily incorporated into a large program. They may form a basis for a procedure library, if a family of similiar programs is being developed. Procedures may be individually compiled.

The language handles two kinds of data, its two basic "Data Types": Byte and address. A byte variable or constant is one that can be represented as an 8-bit quantity; an address variable or constant is a 16-bit or doublebyte quantity. The programmer can declare variable names to represent byte or address values. One can also declare vectors (or arrays) or type byte or address.

In general, executable statements specify the computational processes that are to take place. To achieve this, arithmetic, logical (Boolean), and comparison (relational) operations are defined for variables and constants of both types (BYTE and ADDRESS). These operators and operands are combined to form EXPRESSIONS, which resemble those of elementary algebra. Expressions are a major component of language statements.

A simple statement form is the assignment statement, which computes a result and stores it in a memory location defined by a variable name. Other statements in the language perform conditional tests and branching, loop control, and procedure invocation with parameter passing. The flow of program execution is specified by means of powerful control structures that take advantage of the block-structured nature of the language. Input and output statements read and write 8 -bit values from and to input and output ports. Procedures can be defined which use these basic input and output statements to perform more complicated I/O operations.

A method of automatic text-substitution (more specifically, a "compile-time macor facility") is also provided. A programmer can declare a symbolic name to be completely equivalent to an arbitrary sequence of characters. As each occurrence of the name is encountered by the compiler, the declared character sequence is substituted so the compiler actually processes the substituted character string instead of the symbolic name.

The compiler supports compile time expression evaluation and conditional compilation which allows selective compilation of code depending on an input parameter at compile time.

The language generates absolute and/or relocatable code. The relocatable modules may be linked by a powerful linkage editor at load time.

Additionally the language contains all machine independent features of the PL/M language as a subset, thereby enhancing portability of programs.

## DESCRIPTION

The 2650 assembly language is a symbolic language designed specifically to facilitate the writing of programs for the Signetics 2650 Microprocessor.
The 2650 relocatable assembler is a program which accepts symbolic source code as input and produces a listing, crossreference table of symbols, and an object module. The object module may be in absolute format compatible with the simulator (PIPSIM), PIPBUG and the 2650 TWIN system, or it may be a relocatable format for use with $\mathrm{PL} \mu \mathrm{S}$ and the relocating loader.
The assembler is written in ANSI standard Fortran IV and is approximately 3200 Fortran card images in length. It operates in a two-pass mode to build a symbol table, issue helpful error messages, produce an easily readable program listing and crossreference listing, and output a computer readable object module.

## AVAILABILITY

The 2650 relocatable assembler is available on NCSS, GE, and TYMSHARE timesharing services. It is also available from Signetics on 9-track magnetic tape written in EBCDIC in 80 character unblocked records at a density of 800 bpi.

## FEATURES

- Pseudo-ops to aid programming
- Self-defining constants
- Symbolic machine operation codes
- Free format source code
- Syntax error checking
- Symbolic address assignment and references
- Data creation statements
- Storage reservation statements
- Assembly listing control statements
- Address constants
- ASCII character codes
- Comments and remarks for documentation
- Six-character symbols
- Cross-reference listing of symbols
- Automatic formatting of the listing
- Complex expression evaluation
- Conditional assembly
- Boolean operators
- Relocatable output compatible with the PL $\mu \mathrm{S}$ compiler output


## LANGUAGE REQUIREMENTS Input Requirements

Input to the assembler consists of a sequence of chartacters combined to form assembly language elements. These language elements include symbols, instruction mnemonics, constants and expressions which make up the individual program
statements that comprise a source program.

## CHARACTERS

| Alphabetic: Numeric: Special Characters: | A through Z <br> 0 through 9 <br> blank <br> ( left parenthesis <br> ) right parenthesis <br> + add or positive value <br> - subtract or negative value <br> asterisk <br> - single quote <br> , comma <br> / slash <br> \$ dollar sign <br> < less than sign <br> > greater than sign <br> \# pound sign <br> @ at sign <br> ? question mark <br> ! exclamation <br> " double quote <br> \% percent sign <br> = equal <br> ; semicolon <br> $\urcorner$ not symbol <br> : colon <br> . period |
| :---: | :---: |

## SYMBOLS

Symbols are formed from combinations of characters. Symbols provide a convenient means of identifying program elements so they can be referenced by other elements.

## CONSTANTS

A constant is a self-defining language element. Unlike a symbol, the value of a constant is its own "face" value and is invariant. Internal numbers are represented in 2's complement notation. There are two forms in which constants may be written: the SelfDefining Constant and the General Constant.

## SELF-DEFINING CONSTANT

The self-defining constant is a form of constant which is written directly in an instruction and defines a decimal value.
GENERAL CONSTANT
The general constant is also written directly in an instruction, but the interpretation of its value is dictated by a code character and delimited by quotation marks. Its form can be binary, octal, decimal, hexadecimal, or ASCII.

## EXPRESSIONS

An expression is an assembly language element that represents a value. It consists of a single term or combination of terms separated by arithmetic or boolean operators. A term may be a valid symbolic reference, a self-defining constant or a general constant.

FIELDS
A statement prepared for processing by the assembler is logically divided into four fields, as indicated below. They are free form and are separated by at least one blank character. The name must begin in logical column 1.

| LABEL OPERATION | OPERAND |  |
| :---: | :---: | :---: |
| name | opcode | operand(s) |

## Where:

| FIELD | DESCRIPTION |
| :--- | :---: |
| Label | Contains an optional label | which the assembler will assign as the symbolic address of the first byte of the instruction.

Operation Contains any of the 2650 processor mnemonic operation codes as detailed in Appendix A of the reference manual, or any assembler directive. This field may include an expression which specifies a register or value as required by the instruction. All symbols used in this field must have been previously defined, i.e., no symbolic forward references are allowed.

Operand Contains one or more operand elements such as indirect address indicator, operand expression, index register specification, auto-incre-ment/auto-decrement indicator, constant specification, etc., depending on the requirements of the particular instruction.

Comments Any characters following the argument field will be reproduced in the assembly listing without processing. The Comments Field must be separated from the argument field by at least one blank.

## Directives

There are fifteen directives which the assembler will recognize. These assembler directives, although written much like processor instructions, are simply commands to the assembler instead of to the processor. They direct the assembler to perform specific tasks during the assembly process, but have no meaning to the 2650 processor. These assembler directives are:

| MNEMONIC | FUNCTION |
| :---: | :---: |
| ORG | Set location counter |
| EQU | Specify a symbol equivalence |
| ACON | Define address constant |
| DATA | Defines memory data |
| RES | Reserve memory storage |
| END | End of assembly |
| EJE | Eject the listing page |
| PRT | Printer control |
| SPC | Space control |
| TITL | Title |
| PCH | Punch control |
| IF |  |
| ENDIF <br> ELSE | Conditional assembly |
| SEG | Begin a relocatable segment |
| ENDS | End a relocatable segment |
| ENTRY | Define an entry point |
| EXTRN | Define an external reference |

## DESCRIPTION

The TWIN (TestWare Instrument) system, shown in the block diagram of Figure 1, consists of interdependent subsystems, each contributing to the total task of implementing user microprocessor applications from initial concept to actual hardware operation. The system closely resembles a general-purpose minicomputer during the initial stages of product development, and allows source programs to be entered, edited and assembled into object programs. Object programs may be executed simply as programs, or as part of a user's product emulation. When programs have been run and debugged to the user's satisfaction, the TWIN system is capable of programming PROM devices for inclusion in the user's prototype hardware.

The program development computer is configured using plug-in modules, each dedicated to a specific task within the system. Each module interacts with the others by use of a common bus structure. The major buses include a data bus, an address bus, and a control bus. The program development computer acts as the controller for the entire system, and performs the necessary functions of transferring data to and from system peripherals.
To facilitate system operation, a dual-drive floppy disk subsystem is provided in all TWIN configurations. This subsystem, with integral controller, stores user program "files" and allows retrieval of these files for operations by the editor and assembler. The Signetics Disk Operating System (SDOS) software is loaded from the disk system into the development computer. SDOS provides complete control over all portions of the TWIN system.
A CRT console is the standard device for entering user programs. It is equipped with a full ASCII keyboard for data entry and a CRT display to allow the operator to view the results of his program manipulations during editing, assembly, and debug operations. The display and keyboard can be separated for user convenience. An interface is provided for an ASR-33 teletypewriter, which can be used in place of the CRT console. An optional line printer provides hard copy output.
Other system I/O devices can be added to the system to enhance its capabilities. Physical interface to the system bus is accomplished by use of the optional GeneralPurpose I/O card. Addition of a peripheral device requires addition of its software driver to the TWIN operating system.

TWICE (TestWare In-Circuit Emulation) denotes hardware/software elements of the


TWIN system that support the integration and check-out of the user's prototype product. A number of different TWICE operation modes support product development, integration, and production.

## TWIN HARDWARE

The TWIN system is available in two configurations: the BASIC TWIN and the SUPER TWIN.

## Basic TWIN Configuration

Program Development Computer consisting of:

Master CPU-16K Master Memory
Slave CPU-16K Slave Memory
Debug Logic Card
TWICE Cable
Dual-Drive Floppy Disk Subsystem

## Super TWIN Configuration

Basic TWIN configuration plus:
1702A PROM Program card
825115 PROM Program card
General-Purpose I/O Card
CRT Console
Line Printer

## Program Development Computer

The Program Development Computer (PDC) is the principal subsystem of the TWIN. The

PDC employs dual-processor architecture operating on a common bus structure.

The Master/Slave architectural concept provides the following features:

1. Protected operating system memory and I/O.
2. Complete user access to slave memory address space and I/O address space.
3. Operating system and Debug software are independent of user programs.
4. Use of future Slave processors by adding boards and supplying additional software only.
5. Multiple Slave CPUs of different types can be accommodated.
6. Debug and TWICE hardware.

The PDC can be divided into four distinct areas as shown in Figure 2.

1. The master CPU provides access to all support peripherals (Floppy Disk, Line Printer and CRT console). By way of the common bus, the slave side of the system can make requests of these system peripherals. In addition, via the General Purpose I/O Board, the user has the option of adding system peripherals on the master side.
2. The master CPU controls PROM programming by transferring data from the slave memory to the PROM sockets. Both erasable (1702A) and nonerasable (82S113) PROMs can be programmed through sockets controlled by the operating system.


Figure 2
3. The third functional area, known as TWICE, provides interface from the Program Development Computer (PDC) to the prototyping world. TWICE consists of a cable and driver/receiver hardware that allow in-circuit emulation of the user programs in the TWIN system. The user's microprocessor is unplugged from the prototype and replaced by the TWICE cable plugged directly into the vacant socket. The other end of the Program Development Computer cable connects to the slave CPU board. This board contains multiplexing and other logic to support the TWICE operating modes. The slave CPU thus becomes the CPU for the prototype system, allowing programs to be executed in a hardware environment nearly identical to that of the user's final product.

In addition, a General-Purpose I/O card or prototype card may be added to the system bus to provide interface with user prototype peripherals.
4. The fourth subsystem is built around the control debug card that links the master CPU to the slave CPU. This card, in conjunction with the front panel and maintenance panel on the PDC, allows for Master/Slave communication under SDOS.

## PROGRAM DEVELOPMENT COMPUTER SUBASSEMBLIES

## Master CPU

Provides a resident microcomputer for the operating system software. Prioritizes and services all interrupts regardless of whether they were initiated from the master or slave
partitions.

- Responsible for system I/O


## Master Memory

This memory is reserved for the resident monitor and the overlays from disk necessary to service any valid user request. A minimum of 16 K bytes of memory is required.

- Protected from slave access
- Four 4K statis RAM cards (or 16 K dynamic card)
- 256 bytes of PROM-expandable to 2 K bytes on one of the master memory cards.


## Slave CPU

Provides an isolated microprocessor that enables the user to write and debug his program without endangering the operating system. The slave CPU also executes the user's program in his prototype via the TWICE cable.

- While the slave CPU is presently a 2650 microprocessor, future designs will support other microprocessors.
- Enables real-time execution of the user's programs in his prototype system.


## Slave Memory

The primary function of the slave memory is to store programs. During PROM program-
ming, the debugged software logic in the slave memory is sent via the common bus to the PROM programming cards on the master side. During in-circuit emulation, the TWICE cable is connected through the Slave CPU to the Slave memory.

- Four 4 K static RAM cards (or 16 K dynamic card)
- Base address selectable in 4 K increments
- Expandable from 16 K to 64 K bytes.


## Common Bus

These data, address and control channels provide communications between slave and master partitions as well as communications to other boards for outside world interfacing.

## Debug Board

Designed to provide communications between slave and master partitions; it also supplies interface capability to the front panel.

- Two address breakpoint registers
- Two program counter registers
- Single cycle, halt, and diagnostic interrupts


## PROM Programmer Boards

These cards, placed in two reserved slots of the master partition, provide access to front-panel PROM sockets on the PDC. They provide either erasable or nonerasable PROM programming of Signetics 82S115 bipolar PROMs and 1702A MOS PROMs.

- Read, write and compare functions
- Checks validity, power, and addresses
- Interfaces directly to bus
- Current limiting amplifier
- On-card rectifier/regulator


## General-Purpose I/O Card

This card may be placed on the master side to support additional system peripherals and/or on the slave side to provide an interface to the user's hardware I/O simulator boards.

- Compatible with $20 \mathrm{~mA}, 110$ baud TTY interface
- Compatible with EIA/RS-232 interfaces
- Baud rates-110/150/300/600/1200, jumper selectable
- Four 8-bit input ports and four 8-bit output ports
- Eight interrupts


## Disk/Printer Controller Board

This card supports parallel I/O transfers to the floppy disk subsystem and to the optional printer. This board is contained in the floppy disk subsystem.

## FUNCTIONAL HARDWARE/ SOFTWARE INTEGRATION

The TWIN system's operating functions can be grouped into three major modes as shown in Figure 3.

## Software Development

Using the TWIN Assembler and Text Editor, the designer clears his programs of any syntax errors. The system I/O devices interfaced through the master side of the TWIN enable the user to develop and debug his software. The software is verified as much as possible before actually running it in the user's prototype system. All memory and I/O are contained in the TWIN. As shown in Figure 3A, there is no interconnection with the user's prototype system.

## Software/Hardware Integration

The final development phases are accomplished using the TWICE capability. In these phases, the user can easily complete the normally complex function of hardware/ software system debugging.

PROTOTYPE HARDWARE INTERFACE (TWICE): The TWIN memory is used by the Slave, but $1 / O$ is provided to the user's
system via the TWICE cable as shown in Figure 3B. The user's program that had been loaded into Slave Memory by SDOS is executed by the user's prototype circuits.
PROM INTEGRATION (TWICE): All program memory and prototype I/O are contained in the user's system as shown in Figure 3C. The operator can still control breakpoints, starting addresses and obtain a partial Trace. This mode is used after PROMs and ROMs have been prepared. This mode verifies the final system configuration in real-time operation.

## TWIN DEVELOPMENT SOFTWARE

System software provided with the Prototype Development System includes the Signetics Disk Operating System (SDOS), Text Editor, Assembler, and Debug Package.

## SDOS

SDOS relieves the user of the necessity of understanding the detailed internal operation of the TWIN. It provides complete control over operation of all portions of the Prototype Development System. All functions relating to file handling, loading and execution are monitored and controlled by SDOS, including the in-circuit emulation and the PROM programming functions. SDOS is written in 2650 assembly language and resides in a dedicated memory consisting of a 256 -byte PROM and 16K RAM running under the master CPU.

The SDOS software allows the user to create, edit, and assemble files; obtain object and listing outputs; load and execute programs; and, through the debug system, check out programs in an efficient manner.
SDOS provides a powerful command file capability that enables the user to create customized operating system commands.

SDOS controls the multi-drive floppy disk subsystem, a line printer, and the CRT console, which may be an ASR-33 TTY or an RS-232 compatible device. Software drivers are provided within SDOS for these I/O devices. The SDOS software provides a flexible input/output system that enables the user to dynamically assign any logical channel to any physical device or file within the system. Thus, system I/O devices may be dynamically assigned using SDOS commands either from the console or from within a user's program. Thus, the user may write his own driver for other peripheral devices and link them into the SDOS system by use of the optional General-Purpose I/O Card.

A. Software Development

B. Prototype Hardware Interface (TWICE)

C. PROM Integration (TWICE)

Figure 3


Figure 4

## Text Editor

The Text Editor is a comprehensive software package that allows the user to enter and modify text files. The Text Editor is line oriented and accepts inputs from the terminal or a diskette file, performs modifications in a work space, and outputs the revised text to diskette file.

## Assembler

The Prototype Development System Resident Assembler translates symbolic assembly language instructions into appropriate machine language code.

The Assembler is written in the Signetics Higher-Level Language ( $\mathrm{PL} \mu \mathrm{S}$ ) and generates absolute object code. This code is in hexadecimal format and may be loaded into the system for direct execution or may be converted by an SDOS command to SMS format for PROM or ROM programming.

## Debug

The debug system is a software program which provides the user with real-time program debug capabilities within both a software and hardware environment. It uses special hardware features built into the program development system to control the execution of the user's program. User pro-

PHYSICAL AND ENVIRONMENTAL SPECIFICATIONS

|  | VOLTAGE | VOLT <br> AMPERES | LINE FRE- <br> QUENCY <br> (HERTZ) | WEIGHT <br> (POUNDS) | DIMEN- <br> SIONS <br> (INCHES) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Development Computer | $115 \pm 10 \%$ | 230 | $47-63$ | 65 | $8 \times 17 \times 22$ |
| Dual-Drive Floppy Disk | $115 \pm 10 \%$ | 400 | $59.5-60.5$ | 85 | $10 \times 17 \times 22$ |
| CRT Console | $115 \pm 10 \%$ | 130 | $47-63$ | 52 | $14 \times 17 \times 22$ |
| Printer | $115 \pm 10 \%$ | 375 | $59.5-60.5$ | 66 | $12 \times 23 \times 19$ |

NOTE
Export version will operate from other line voltages and frequencies

## Table 1 SUBSYSTEM CHARACTERISTICS

grams operating under the debug system have dynamic program trace, breakpoint capabilities, and memory modification capabilities. Status reporting on the memory, the program, and the processor is also provided.

## Total System Characteristics

Operating Temperature

Range:
Operating Humidity Range:
Basic system shipping weight:
$15^{\circ}-37^{\circ} \mathrm{C}$
$50 \%-80 \%$ NC
180 pounds

## Card Cage-Mother Board Assembly

$7 \times 11$ cards $/ 20$ slots in PDC

## Common Bus Structure

External +5 V ground bus (spare with rear panel terminals)

## Front Panel Switches

## and Indicators

Key-operated primary power On/Off switch PROM power switch
Reset switch that initializes system and sets both CPUs to location zero, enables master, and pauses slave.
Diagnostic interrupt switch
Power indicator
Run indicator
Master indicator
Slave indicator
PROM power indicator

## SDOS COMMAND SUMMARY

## System Utilities

| COMMAND | FUNCTION |
| :--- | :--- |

FORMAT D Formats the diskette on drive D.
VERIFY D Verifies the diskette on drive D.
RENAME D Re-identifies the diskette on drive D .
DUP Duplicates a diskette.
LDIR (D) Lists the directory of the diskette.
DELETE Deletes a diskette file.
COPY Copies data from a specified input device or file to a specified output device or file.
PRINT (L) Prints from a disk file to a specified output device. If (L) is included, the lines are numbered.

## System Control

| COMMAND | FUNCTION |
| :---: | :---: |
| SUSPEND | Suspends execution of an active program. |
| CONT | Continues execution of a suspended program. |
| ABORT | Aborts an active SDOS or user program. |
| ESCAPE* | Interrupts the execution of a program. |
| DOUBLE ESCAPE* | Suspends execution of all programs. |
| SPACE* | Stops or starts the console output. |
| STATUS | Gives the status of the program being executed by the Slave CPU. |
| ASSIGN | Connects a logical channel to a specified device. |
| CLOSE | Closes the specified channels. <br> *Keys on console |

## Object Program Utilities

| COMMAND |
| :---: |
| RHEXLoads an absolute hexa- <br> decimal object file into <br> slave memory. |
| WHEXOutputs an absolute hexa- <br> decimal data file from slave <br> memory. |
| WSMS Outputs a 512-byte block of |
| CSMSRemory in SMS format. <br> Rempares it with the con- <br> tents of memory. <br> MODULE Creates an absolute binary <br> program load module from <br> the Slave CPUs memory. |

## Debug Commands

| COMMAND FUNCTION |
| :---: |
| DEBUG Enables debug mode for |
| user programs. |
| BKPTSelects a program break- <br> point. <br> CLBP Clears breakpoint. |

## Editor

| COMMAND $\quad$ FUNCTION |
| :---: |
| EDIT Loads and executes the |
| Text Editor. |

## Assembler

| COMMAND FUNCTION |
| :---: |
| ASM Loads and executes the |
| 2650 assembler. |

## PROM Utilities

| COMMAND $\quad$ FUNCTION |
| ---: |
| RPROM Reads the contents of |
| PROM into slave memory. |
| CPROM Compares the contents of |
| slave memory with the con- |
| tents of PROM |
| WPROM Burns a PROM with the |
| contents of slave memory. |

## System Options

| COMMAND FUNCTION |
| :---: | :---: |
| SYSTEM Designates the system |
| drive. |
| DEVICEInforms SDOS of device <br> status. <br> SEARCH |
| Specifies file search option. |

## TEXT EDITOR COMMAND

## SUMMARY

| COMMAND | ND FUNCTION |
| :---: | :---: |
| AGAIN Re | Repeats the last "repeatable" command entered. |
|  | Sets the current line pointer to the first line of the work space. |
| BRIEF Re | Reverses the initial mode of operation. |
| COPY N C | Copies $n$ lines, or lines $p$ through q, from the input file FILENAME ${ }_{1}$ to the output file FILENAME ${ }_{2}$. |
| DOWN n M ${ }_{\text {po }}$ | Moves the current line pointer down $n$ lines. |
|  | Sets the current line pointer to the end of text (last line plus one) |
|  | Transfers all workspace text and remaining primary input file text to the primary output file and quits the editor. |
|  | Moves the current line pointer down to the line containing the first occurrence of a character string. |
| GET N G th | Gets $n$ lines or lines $p$ through q into the workspace. |
| INPUT Es | Establishes the "input" mode. |
| INSERT In | Inserts a given string above the current line. |
|  | Deletes $n$ lines starting with the current line, or deletes lines $p$ through $q$. |


| COMMAND | FUNCTION |
| :---: | :---: |
| $N$ | Lists $n$ lines or lines $p$ through q on the line print- |
| ACR | Creates a macro. |
| MACRO m | Executes the previou |
|  | Types the current line printer position on the console. |
| PUT( | Puts $n$ lines starting at the current line or puts lines $p$ through q from the workspace to the primary output file. |
| QUIT | Closes the primary input and primary output files and quits the editor. |
| REPLAC | Replaces the current line with a character string. |
| SDOS | Suspends the text editor and returns control to SDOS. |
| SUBSTITUTE | Substitutes text on the current line. |
| TAB C | Defines the character C as the tab character. |
| TABS | Sets tab positions to specified columns. |
| TYPE N | Types $n$ lines or lines $p$ through q on the console. |
|  | Moves the current line pointer up $n$ lines. |
| $\mathrm{m}<>$ | Repeats the command string enclosed by the brackets $m$ times. |
|  | Types the current I/O status on the console. |

## CHAPTER 3 Standard Support Circuits

## INTRODUCTION

In addition to the dedicated support circuits available for the various Signetics microprocessors, Signetics offers a complete line of standard circuits to complete the design of a microcomputer system.
A complete line of Schottky-clamped TTL, read/write memory arrays is offered. All feature open collector or tri-state output options for optimization of word expansion in bused organizations. Memory expansion is further enhanced by full on-chip address decoding, chip enable function and PNP input transistors which reduce input loading requirements. All devices offer high performance read access and write cycle times making these devices ideally suited in high speed memory applications such as "cache," buffers, scratch pads, writable control store, main store, etc.
Signetics offers the industry's broadest line of bipolar high performance ROMs, PROMs
and FPLAs. The PROMs and FPLAs are field programmable, which means that custom patterns are immediately available by following the provided fusing procedures. Signetics PROMs are supplied with all outputs at logical 0. Outputs are programmed to a logic 1 at any specified address by fusing a Ni - Cr link matrix. All bipolar ROMs, PROMs and FPLAs are fully TTL compatible, and include on-chip decoding and chip enable functions for ease of memory expansion. Tri-state and open collector output functions are available, and low input currents reduce input buffer requirements. Most Signetics PROMs and FPLAs also have pin and performance compatible ROMs and PLAs, offering the user the ultimate in flexibility and cost reduction.
Signetics n-channel MOS products include a complete family of 1 k static RAMs and 8 k static ROMs. These feature TTL compatible inputs and outputs, and require only a
single +5 V power supply. A variety of 4 k dynamic RAMs is also available for system configurations requiring large amounts of read/write memory.

The 8T series of interface devices includes display drivers, bus drivers, input/output ports, level converters, and special purpose devices. A complete line of standard and low power Schottky (LS) 74 series devices is available in addition to the 8200 series of MSI devices. Many devices from the Signetics analog product line are also suitable for use in microcomputer systems. These include voltage regulators, operational amplifiers, comparators and timers.
This chapter provides product line summaries and data for a representative selection of Signetics standard support circuits.

BIPOLAR MEMORY SELECTION GUIDE

| DEVICE | $\begin{aligned} & \text { ORGANI- } \\ & \text { ZATION } \end{aligned}$ | OUTPUT <br> CIRCUIT | OUTPUT LOGIC? | ACCESS <br> TIME [ns] ${ }^{4}$ | TEMPERATURE RANGE ${ }^{3}$ | PACKAGE | NO. OF PINS | $\begin{gathered} \text { MAX. } \\ \text { ICC }[m A]^{4} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CAMS } \\ & 10155 \end{aligned}$ | 8×2 | OE | - | 13 | C | F.N | 18 | 140 |
| SAMS 82S 12 82S112 | $\begin{aligned} & 8 \times 4 \\ & 8 \times 4 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { TS } \end{aligned}$ | $\begin{aligned} & T \\ & T \end{aligned}$ | $\begin{aligned} & 40 \\ & 40 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & \text { F,N } \\ & \text { F,N } \end{aligned}$ | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | $\begin{aligned} & 160 \\ & 160 \end{aligned}$ |
| $\begin{aligned} & \hline \text { RAMS } \\ & \text { 82S25 } \\ & 3101 \mathrm{~A} \\ & 54 / 74 \mathrm{~S} 89 \\ & 54 / 74 \mathrm{~S} 189 \end{aligned}$ | $\begin{aligned} & 16 \times 4 \\ & 16 \times 4 \\ & 16 \times 4 \\ & 16 \times 4 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { OC } \\ & \text { OC } \\ & \text { TS } \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { T } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 50 \\ & 35 \\ & 50 \\ & 35 \end{aligned}$ | M.C <br> M.C <br> M.C <br> M.C | $\begin{aligned} & \text { F,N } \\ & \text { F,N } \\ & \text { F,N } \\ & \text { F,N } \end{aligned}$ | $\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$ | $\begin{aligned} & 105 \\ & 105 \\ & 105 \\ & 110 \end{aligned}$ |
| $82 \mathrm{S21}$ | $32 \times 2$ | OC | T | 50 | C | F.N | 16 | 130 |
| 82S 16 <br> 82S116 <br> $82 S 17$ <br> 825117 <br> 54/74S200 <br> 54/74S201 <br> 54/74S301 | $\begin{aligned} & 256 \times 1 \\ & 256 \times 1 \end{aligned}$ | TS TS OC OC TS TS OC | T <br>  <br> $T$ <br> $T$ <br> $T$ <br> B <br> B <br> B | $\begin{aligned} & 50 \\ & 40 \\ & 50 \\ & 40 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$ | $\begin{gathered} M . C \\ C \\ M . C \\ C \\ M . C \\ M . C \\ M . C \end{gathered}$ | $\begin{aligned} & \text { F.N } \\ & \text { F.N } \\ & \text { F,N } \\ & \text { F,N } \\ & \text { F.N } \\ & \text { F.N } \\ & \text { F.N } \end{aligned}$ | $\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$ | $\begin{aligned} & 115 \\ & 115 \\ & 115 \\ & 115 \\ & 130 \\ & 130 \\ & 130 \end{aligned}$ |
| 82509 | $64 \times 9$ | OC | T | 45 | M, C | I,N | 28 | 190 |
| $\begin{aligned} & \text { 82S10 } \\ & \text { 82S110 } \\ & \text { 82S11 } \\ & \text { 82S111 } \\ & 93415 A \\ & 93425 A \end{aligned}$ | $\begin{aligned} & 1024 \mathrm{X} 1 \\ & 1024 \mathrm{X} 1 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { OC } \\ & \text { TS } \\ & \text { TS } \\ & \text { OC } \\ & \text { TS } \end{aligned}$ | $\begin{aligned} & \text { B } \\ & B \end{aligned}$ | $\begin{aligned} & 45 \\ & 35 \\ & 45 \\ & 35 \\ & 45 \\ & 45 \end{aligned}$ | $\begin{gathered} M, C \\ C \\ M . C \\ C \\ M . C \\ M . C \end{gathered}$ | $\begin{aligned} & \text { F.N } \\ & \text { F.N } \end{aligned}$ | $\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$ | $\begin{aligned} & 170 \\ & 170 \\ & 170 \\ & 170 \\ & 170 \\ & 170 \end{aligned}$ |
| $\begin{aligned} & 82 S 208^{*} \\ & 82 S 210^{*} \end{aligned}$ | $\begin{aligned} & 256 \times 8 \\ & 256 \times 9 \end{aligned}$ | $\begin{aligned} & \text { TS } \\ & \text { TS } \end{aligned}$ | $\begin{aligned} & B \\ & B \end{aligned}$ | $\begin{aligned} & 60 \\ & 60 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{gathered} F \\ F, N \end{gathered}$ | $\begin{aligned} & 22 \\ & 24 \end{aligned}$ | $\begin{aligned} & 185 \\ & 185 \end{aligned}$ |
| $\begin{aligned} & 82 S 400^{*} \\ & 82 S 401^{*} \end{aligned}$ | $\begin{aligned} & 4096 \times 1 \\ & 4096 \times 1 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { TS } \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 70 \\ & 70 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | I | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ | $\begin{aligned} & 155 \\ & 155 \end{aligned}$ |
| ROMS $82 S 226$ $82 S 229$ | $\begin{aligned} & 256 \times 4 \\ & 256 \times 4 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { TS } \end{aligned}$ | - | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & \text { M.C } \\ & M . C \end{aligned}$ | $\begin{aligned} & F, N \\ & F, N \end{aligned}$ | $\begin{aligned} & 16 \\ & 16 \end{aligned}$ | $\begin{aligned} & 120 \\ & 120 \end{aligned}$ |
| 82S214 | $256 \times 8$ | TS | - | 60 | M.C | F,N | 24 | 175 |
| $\begin{aligned} & 82 S 230 \\ & 82 S 231 \end{aligned}$ | $\begin{aligned} & 512 \times 4 \\ & 512 \times 4 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { TS } \end{aligned}$ | - | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & \text { M.C } \\ & \text { M.C } \end{aligned}$ | $\begin{aligned} & \text { F,N } \\ & \mathrm{F}, \mathrm{~N} \end{aligned}$ | $\begin{aligned} & 16 \\ & 16 \end{aligned}$ | $\begin{aligned} & 140 \\ & 140 \end{aligned}$ |
| $\begin{aligned} & 82 S 215 \\ & 82 S 240 \\ & 82 S 241 \end{aligned}$ | $\begin{aligned} & 512 \times 8 \\ & 512 \times 8 \\ & 512 \times 8 \end{aligned}$ | $\begin{aligned} & \text { TS } \\ & \text { OC } \\ & \text { TS } \end{aligned}$ | - | $\begin{aligned} & 60 \\ & 60 \\ & 60 \end{aligned}$ | $\begin{aligned} & \text { M.C } \\ & \text { M.C } \\ & \text { M.C } \end{aligned}$ | $\begin{aligned} & \text { F,N } \\ & \text { F,N } \\ & \text { F,N } \end{aligned}$ | $\begin{aligned} & 24 \\ & 24 \\ & 24 \end{aligned}$ | $\begin{aligned} & 175 \\ & 175 \\ & 175 \end{aligned}$ |
| 8228 | $1024 \times 4$ | TTL | - | 50 | c | F | 16 | 170 |
| $\begin{aligned} & 82 S 280 \\ & 82 S 281 \end{aligned}$ | $\begin{aligned} & 1024 \times 8 \\ & 1024 \times 8 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { TS } \end{aligned}$ | - | $\begin{aligned} & 70 \\ & 70 \end{aligned}$ | $\begin{aligned} & M, C \\ & M, C \end{aligned}$ | $\begin{aligned} & \text { F.N } \\ & \text { F,N } \end{aligned}$ | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | $\begin{aligned} & 140 \\ & 140 \end{aligned}$ |
| $\begin{aligned} & \text { 82S290 } \\ & \text { 82S291 } \end{aligned}$ | $\begin{aligned} & 2048 \times 8 \\ & 2048 \times 8 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { TS } \end{aligned}$ | - | $\begin{aligned} & 80 \\ & 80 \end{aligned}$ | $\begin{aligned} & M, C \\ & M, C \end{aligned}$ | $\begin{aligned} & \text { F,N } \\ & \text { F,N } \end{aligned}$ | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | $\begin{aligned} & 170 \\ & 170 \end{aligned}$ |

*To be announced
NOTES

| 1. Output circuit: | 3. Temperature range: |
| :--- | :--- |
| $O E=$ Open emitter | $\mathrm{C}=$ Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75{ }^{\circ} \mathrm{C}\right)$ |
| $\mathrm{OC}=$ Open collector | $\mathrm{M}=\mathrm{Military}\left(-55^{\circ} \mathrm{C} \mathrm{to}+125^{\circ} \mathrm{C}\right)$ |
| $\mathrm{TS}=$ Tri-state | All ECL 10.000 series $\left(-30^{\circ} \mathrm{C} \mathrm{t0}+85^{\circ} \mathrm{C}\right)$ |
| 2. Output logic: | 4. Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ |
| $\mathrm{T}=$ Transparent-input data appears on output during Write |  |
| $\mathrm{B}=$ Blanked-output is blanked during Write |  |

BIPOLAR MEMORY SELECTION GUIDE (Cont'd)

| DEVICE | ORGANI. ZATION | OUTPUT CIRCUIT ${ }^{1}$ | OUTPUT LOGIC ${ }^{2}$ | ACCESS <br> TIME [ns] | TEMPERATURE RANGE ${ }^{3}$ | PACKAGE | $\begin{gathered} \text { NO. } \\ \text { OF PINS } \end{gathered}$ | $\begin{gathered} \text { MAX } \\ \text { ICC }^{(\mathrm{mA})} \end{gathered}$ | EQUIVA. LENT ROM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { PROMS } \\ & 82 S 23 \\ & 82 S 123 \\ & 10139 \end{aligned}$ | $\begin{aligned} & 32 \times 8 \\ & 32 \times 8 \\ & 32 \times 8 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { TS } \\ & \text { OE } \end{aligned}$ | - | $\begin{aligned} & 50 \\ & 50 \\ & 15 \end{aligned}$ | $\begin{gathered} M, C \\ M, C \\ C \end{gathered}$ | $\begin{aligned} & \text { F,N } \\ & \text { F,N } \\ & \text { F,N } \end{aligned}$ | $\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$ | $\begin{array}{r} 77 \\ 77 \\ 145 \end{array}$ | - |
| $\begin{aligned} & 82 S 27 \\ & 82 S 126 \\ & 82 S 129 \\ & 10149 \end{aligned}$ | $\begin{aligned} & 256 \times 4 \\ & 256 \times 4 \\ & 256 \times 4 \\ & 256 \times 4 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { OC } \\ & \text { TS } \\ & O E \end{aligned}$ | - | $\begin{aligned} & 40 \\ & 50 \\ & 50 \\ & 20 \end{aligned}$ | $\begin{gathered} C \\ M, C \\ M, C \\ C \end{gathered}$ | $\begin{gathered} F \\ \text { F,N } \\ F, N \\ F \end{gathered}$ | $\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$ | $\begin{aligned} & 140 \\ & 120 \\ & 120 \\ & 150 \end{aligned}$ | $\begin{gathered} - \\ 82 S 226 \\ 82 S 229 \end{gathered}$ |
| 82S114 | 256X8 | TS | - | 60 | M, C | F.N | 24 | 175 | 82 S 214 |
| $\begin{aligned} & 82 S 130 \\ & 82 S 131 \end{aligned}$ | $\begin{aligned} & 512 \times 4 \\ & 512 \times 4 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { TS } \end{aligned}$ | - | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & M, C \\ & M, C \end{aligned}$ | $\begin{aligned} & \text { F,N } \\ & \text { F,N } \end{aligned}$ | $\begin{aligned} & 16 \\ & 16 \end{aligned}$ | $\begin{aligned} & 140 \\ & 140 \end{aligned}$ | $\begin{aligned} & 82 S 230 \\ & 82 S 231 \end{aligned}$ |
| $\begin{aligned} & 82 S 115 \\ & 82 S 140 \\ & 82 S 141 \end{aligned}$ | $\begin{aligned} & 512 \times 8 \\ & 512 \times 8 \\ & 512 \times 8 \end{aligned}$ | $\begin{aligned} & \text { TS } \\ & \text { OC } \\ & \text { TS } \end{aligned}$ | - | $\begin{aligned} & 60 \\ & 60 \\ & 60 \end{aligned}$ | $\begin{aligned} & M . C \\ & M . C \\ & M . C \end{aligned}$ | $\begin{aligned} & \text { F,N } \\ & \text { F,N } \\ & \text { F,N } \end{aligned}$ | $\begin{aligned} & 24 \\ & 24 \\ & 24 \end{aligned}$ | $\begin{aligned} & 175 \\ & 175 \\ & 175 \end{aligned}$ | 82 S 215 <br> 82S240 <br> 82S241 |
| $\begin{aligned} & 82 S 136 \\ & 82 S 137 \end{aligned}$ | $\begin{aligned} & 1024 \times 4 \\ & 1024 \times 4 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { TS } \end{aligned}$ | - | $\begin{aligned} & 60 \\ & 60 \end{aligned}$ | $\begin{aligned} & M, C \\ & M, C \end{aligned}$ | $\begin{aligned} & \text { F,N } \\ & \text { F,N } \end{aligned}$ | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ | $\begin{aligned} & 140 \\ & 140 \end{aligned}$ | - |
| $82 S 180$ 82S 181 82S2708 | $\begin{aligned} & 1024 \times 8 \\ & 1024 \times 8 \\ & 1024 \times 8 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { TS } \\ & \text { TS } \end{aligned}$ | - | $\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$ | $\begin{aligned} & M, C \\ & M . C \\ & M . C \end{aligned}$ | $\begin{aligned} & \text { F,N } \\ & \text { F,N } \\ & \text { F,N } \end{aligned}$ | $\begin{aligned} & 24 \\ & 24 \\ & 24 \end{aligned}$ | $\begin{aligned} & 175 \\ & 175 \\ & 175 \end{aligned}$ | $\begin{aligned} & 82 S 280 \\ & 82 S 281 \end{aligned}$ |
| $\begin{aligned} & 82 S 184 \\ & 82 S 185 \end{aligned}$ | $\begin{aligned} & 2048 \times 4 \\ & 2048 \times 4 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { TS } \end{aligned}$ | - | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ | $\begin{aligned} & M . C \\ & M . C \end{aligned}$ | i | $\begin{aligned} & 18 \\ & 18 \end{aligned}$ | $\begin{aligned} & 120 \\ & 120 \end{aligned}$ | - |
| $\begin{aligned} & 82 S 190 \\ & 82 S 191 \end{aligned}$ | $\begin{aligned} & 2048 \times 8 \\ & 2048 \times 8 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { TS } \end{aligned}$ | - | $\begin{aligned} & 70 \\ & 70 \end{aligned}$ | M.C | I | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | $\begin{aligned} & 175 \\ & 175 \end{aligned}$ | $\begin{aligned} & 82 S 290 \\ & 82 S 291 \end{aligned}$ |
| $\begin{aligned} & \text { FPLAS } \\ & 82 S 100 \\ & 82 S 101 \end{aligned}$ | $\begin{aligned} & 16 \times 48 \times 8 \\ & 16 \times 48 \times 8 \end{aligned}$ | $\begin{aligned} & \text { TS } \\ & \text { OC } \end{aligned}$ | - | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & M, C \\ & M, C \end{aligned}$ | $\begin{aligned} & \text { I,N } \\ & \text { I,N } \end{aligned}$ | $\begin{aligned} & 28 \\ & 28 \end{aligned}$ | $\begin{aligned} & 170 \\ & 170 \end{aligned}$ | - |
| PLAS 82S200 $82 S 201$ | $\begin{aligned} & 16 \times 48 \times 8 \\ & 16 \times 48 \times 8 \end{aligned}$ | $\begin{aligned} & \text { TS } \\ & \text { OC } \end{aligned}$ | - | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & M, C \\ & M, C \end{aligned}$ | $\begin{aligned} & \mathrm{I}, \mathrm{~N} \\ & \mathrm{I}, \mathrm{~N} \end{aligned}$ | $\begin{aligned} & 28 \\ & 28 \end{aligned}$ | $\begin{aligned} & 170 \\ & 170 \end{aligned}$ | - |
| FPGAS 82S 102 82S 103 | $\begin{aligned} & 16 \times 9 \\ & 16 \times 9 \end{aligned}$ | $\begin{aligned} & \text { OC } \\ & \text { TS } \end{aligned}$ | - | $\begin{aligned} & 30 \\ & 30 \end{aligned}$ | $\begin{aligned} & M, C \\ & M, C \end{aligned}$ | $\begin{aligned} & \mathrm{I}, \mathrm{~N} \\ & \mathrm{I}, \mathrm{~N} \end{aligned}$ | $\begin{aligned} & 28 \\ & 28 \end{aligned}$ | $\begin{aligned} & 170 \\ & 170 \end{aligned}$ | - |

*To be announced
NOTES

1. Output circuit:
$O E=$ Open emitter
$O C=$ Open collector
TS = Tri-state
2. Output logic
$T$ = Transparent-input data appears on output during Write
$B=$ Blanked-output is blanked during Write
3. Temperature range:
$\mathrm{C}=$ Commercial ( $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ )
$\mathrm{M}=$ Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
All ECL 10,000 series $\left(-30^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
4. Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

MOS MEMORY SELECTION GUIDE

| DEVICE | ORGANIZATION | OUTPUT <br> CIRCUIT | ACCESS/CYCLE TIME (ns) | TEMPERATURE RANGE ${ }^{2}$ | PACKAGE | NO. OF PINS | CLOCK/CE/TTL COMPATABILITY | POWER SUPPLIES (V) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RAMS |  |  |  |  |  |  |  |  |
| Static |  |  |  |  |  |  |  |  |
| 2501 | 256x1 | TTL | 1000/1000 | C | I, N | 16 | Yes | +5, -9 |
| 25 L 01 | 256x1 | TTL | 1000/1000 | C | I, N | 16 | Yes | $\pm 5 .-12$ |
| 2101 | $256 \times 4$ | TS | 1000/1000 | C | F, N | 22 | Yes | +5, Gnd |
| 2101-1 | $256 \times 4$ | TS | 500/500 | C | F, N | 22 | Yes | +5 , Gnd |
| 2101-2 | $256 \times 4$ | TS | 650/650 | C | F, N | 22 | Yes | +5 , Gnd |
| 2111 | 256X4 | TS | 1000/1000 | C | I, N | 18 | Yes | +5 , Gnd |
| 2111-1 | 256X4 | TS | 500/500 | c | I, N | 18 | Yes | +5 , Gnd |
| 2111-2 | 256X4 | TS | 650/650 | C | I, N | 18 | Yes | +5 , Gnd |
| 2112 | 256X4 | TS | 1000/1000 | C | F, N | 16 | Yes | +5 , Gnd |
| 2112-1 | $256 \times 4$ | TS | 500/500 | C | F, N | 16 | Yes | +5, Gnd |
| 2112-2 | 256X4 | TS | 650/650 | C | F, N | 16 | Yes | +5 . Gnd |
| 2606 | $256 \times 4$ | TS | 750/750 | C | F.I, N | 16 | Yes | +5 , Gnd |
| 2606-1 | $256 \times 4$ | TS | 500/500 | C | F. I, N | 16 | Yes | +5, Gnd |
| 2102 | 1024X1 | TS | 1000/1000 | C | F. I, N | 16 | Yes | +5, Gnd |
| 2102-1 | 1024X1 | TS | 500/500 | C | F, I, N | 16 | Yes | +5, Gnd |
| 2102-2 | 1024X1 | TS | 650/650 | C | F, I, N | 16 | Yes | +5, Gnd |
| 2102A | 1024X1 | TS | 350/350 | C | F, I, N | 16 | Yes | +5, Gnd |
| 2102AL | 1024X1 | TS | 350/350 | C | F, I, N | 16 | Yes | +5 , Gnd |
| 2102A-2 | 1024X1 | TS | 250/250 | C | F, I, N | 16 | Yes | +5, Gnd |
| 2102AL-2 | 1024X1 | TS | 250/250 | C | F, I, N | 16 | Yes | +5, Gnd |
| 2102A-4 | 1024X1 | TS | 450/450 | C | F, I, N | 16 | Yes | +5, Gnd |
| 2102AL-4 | 1024X1 | TS | 450/450 | c | F, I, N | 16 | Yes | +5, Gnd |
| 2102A-6 | $1024 \times 1$ | TS | 650/650 | C | F, I, N | 16 | Yes | +5. Gnd |
| 21 F02 | 1024X1 | TS | 350/350 | C | F, I, N | 16 | Yes | +5. Gnd |
| 210F02-2 | 1024X1 | TS | 250/250 | C | F. I, N | 16 | Yes | +5. Gnd |
| 21F02-4 | 1024X1 | TS | 450/450 | C | F, I, N | 16 | Yes | +5, Gnd |
| 21L02 | 1024X1 | TS | 1000/1000 | C | F, I, N | 16 | Yes | +5 , Gnd |
| 21L02-1 | 1024X1 | TS | 500/500 | C | F, I, N | 16 | Yes | +5, Gnd |
| 21L02-2 | 1024X1 | TS | 650/650 | C | F, I, N | 16 | Yes | +5, Gnd |
| 21L02-3 | 1024X1 | TS | 400/400 | C | F, I, N | 16 | Yes | +5, Gnd |
| 2115* | 1024X1 | OD | 45/45 | C | F, I, N | 16 | Yes | +5, Gnd |
| 2115L* | 1024X1 | OD | 45/45 | C | F, I, N | 16 | Yes | +5, Gnd |
| 2125* | 1024X1 | TS | 45/45 | C | F, I, N | 16 | Yes | +5, Gnd |
| 2125L* | 1024X1 | TS | 45/45 | C | F, I, N | 16 | Yes | +5, Gnd |
| 2614* | $1024 \times 4$ | TS | 200/200 | C | F, I, N | 18 | - | +5, Gnd |
| 2613* | 4096×1 | TS | 200/200 | C | F, I, N | 18 | - | +5 , Gnd |
| Dynamic |  |  |  |  |  |  |  |  |
| 1103 | 1024X1 | OD | 300/480 | c | I. N | 18 | No | +20, +16, Gnd |
| 2660 | 4096X1 | TS | 250/375 | c | F, I, N | 16 | Yes | +12, $\pm 5$, Gnd |
| 2660-1 | 4096X1 | TS | 300/425 | C | F, I, N | 16 | Yes | +12, $\pm 5$, Gnd |
| 2660-2 | - 4096X1 | TS | 350/500 | C | F, I, N | 16 | Yes | +12, $\pm 5$, Gnd |
| 2660-3 | 4096X1 | TS | 140/375 | c | F, I, N | 16 | Yes | +12, $\pm 5$, Gnd |
| 2680 | 4096x1 | TS | 200/400 | C | F, I, N | 22 | No | +12, $\pm 5$, Gnd |
| 2680-1 | 4096X1 | TS | 270/470 | c | F, I, N | 22 | No | +12, $\pm 5$, Gnd |
| 2680-2 | 4096X1 | TS | 350/800 | c | F, I, N | 22 | No | +12, $\pm 5$, Gnd |
| 2627* | 4096X1 | - | 150/320 | C | F | 16 | - | +12. $\pm 5$, Gnd |
| 2627-1* | 4096X1 | - | 200/200 | C | F | 16 | - | +12, $\pm 5$, Gnd |
| 2627.2* | 4096×1 | - | 250/250 | C | F | 16 | - | +12, $\pm 5$, Gnd |
| 2690* | 16,384X1 | - | 150/375 | c | - | 16 | - | +12. $\pm 5$. Gnd |

-To be announced
NOTES

[^7]MOS MEMORY SELECTION GUIDE (Cont'd)

| DEVICE | ORGANIZATION | OUTPUT <br> CIRCUIT' | ACCESS/CYCLE TIME (ns) | TEMPERATURE RANGE ${ }^{2}$ | PACKAGE | NO. OF PINS | CLOCK/CE/TTL COMPATABILITY | POWER SUPPLIES (V) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROMS |  |  |  |  |  |  |  |  |
| Static |  |  |  |  |  |  |  |  |
| 2530 | $512 \times 8$ | TS | 700/700 | C | I, N | 24 | Yes | $\pm 5,-12$ |
| 2609 | $128 \times 9 \times 7$ | TS | 500/500 | C | F, I, N | 24 | Yes | +5, Gnd |
| 2607 | $1024 \times 8$ | TS | 500/500 | C | F, I, N | 24 | Yes | +5, Gnd |
| 2608 | 1024X8 | TS | 550/550 | C | F, I, N | 24 | Yes | +5, Gnd |
| 2608-1 | $1024 \times 8$ | TS | 450/450 | C | F, I, N | 24 | Yes | +5, Gnd |
| 2580 | 2048X4 | TS | 950/950 | C | I, N | 24 | Yes | +5, -12 |
| 2600 | 2048×8 | TS | 500/500 | C | F, I, N | 24 | Yes | +5, Gnd |
| 2600-1 | 2048×8 | TS | 300/300 | C | F, I, N | 24 | Yes | +5, Gnd |
| 2616 | 2048×8 | TS | 450 | C | F, I, N | 24 | Yes | +5, Gnd |
| 2616-1 | 2048×8 | TS | 350 | C | F, I, N | 24 | Yes | +5, Gnd |
| 2617 | 2048×8 | TS | 450 | C | F, I, N | 24 | Yes | +5, Gnd |
| 2617-1 | 2048×8 | TS | 350 | C | F, I, N | 24 | Yes | +5, Gnd |
| 2632* | 4096×8 | - | 500/500 | C | I, N | 24 | - | +5, Gnd |
| 2633* | 4096×8 | - | 450/450 | C | I, N | 24 | - | +5, Gnd |
| CHARACTER | GENERATORS |  |  |  |  |  |  |  |
| 2513 | 64×8×5 | TS | 600/600 | C | I, N | 24 | Yes | $\pm 5,-12$ |
| 2516 | 64X6X8 | TS | 600/600 | C | I, N | 24 | Yes | $\pm 5,-12$ |
| 2526 | $64 \times 9 \times 9$ | TS | 700/700 | C | I, N | 24 | Yes | +5, -12 |
| UV EPROMS $1702 \mathrm{~A}$ | 256X8 | TS | 1000/1000 | C | 1 | 24 | Yes | +5, -9 |
| 2704 | $512 \times 8$ | TS | 450/450 | C | , | 24 | Yes | +12, $\pm 5$, Gnd |
| 2708 | 1024×8 | TS | 450/450 | C | 1 | 24 | Yes | +12, $\pm 5$, Gnd |

STANDARD ROM CODE

| DEVICE | CODE NO. | DESCRIPTION |
| :---: | :---: | :---: |
| STATIC ROM 2530 2608 2609 2580 | CM3530 <br> CNOOOO <br> CN6571 <br> CN6571A <br> CN6575 <br> CMXXXX | Code Converter, ASCH to EBCDIC and EBCDIC to ASCII <br> 10X7 Upper and Lower Case ASCII Character Generator <br> 128 ASCII Characters in 7X9 Matrix Count Down <br> 128 ASCII Characters in 7X9 Matrix Count Up <br> 128 ASCII Characters in 7X9 Matrix Count Up with Special Characters <br> Random code pattern for evaluation purposes |
| CHARACTER 2513 $2516$ $2526$ | RATOR CM2140 CM2170 CM3021 CM3030 CM4800 CM2150 CM3001/3010 CM3041 CM3970/3980 CM3400 CM3940 CM6760 | New ASCII Character Generator, Upper Case, 7X5, Horizontal Scan <br> ASCII Character Generator, Upper Case with Yen Sign, 7X5, Horizontal Scan <br> ASCII Character Generator, Lower Case, 7X5, Horizontal Scan <br> OId ASCII Character Generator, Upper Case, $7 \times 5$, Horizontal Scan <br> Katakana Character Generator, 7X5, Horizontal Scan <br> ASCII Character Generator. Upper Case, 5X7. Vertical Scan <br> ASCII Character Generator, Upper Case, 10X7, Vertical Scan (2 chips) <br> ASCII Character Generator, Lower Case, 10x7. Vertical Scan <br> ASCII Character Generator, Upper Case, 12X8. Vertical Scan (2 chips) <br> ASCII Character Generator with EBCDIC and BAUDOT code translations. Upper Case, 7X9, Vertical Scan <br> ASCII Character Generator. Upper Case, 7X9, Horizontal Scan <br> Katakana Character Generator, 7X9. Horizontal Scan |

*To be announced
NOTES

1. Output circuit:

TS = Tri-state
OD = Open drain
$\mathrm{BD}=$ Bare drain
$P D=$ Pull down
PP = Push-pull
2. Temperature range
$\mathrm{C}=$ Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75 \circ \mathrm{C}\right)$
$\mathrm{M}=$ Military $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ )

MOS MEMORY SELECTION GUIDE (Cont'd)

| DEVICE | ORGANIZATION | OUTPUT <br> CIRCUIT | ON CHIP RECIRCULATE | TEMPERATURE RANGE ${ }^{2}$ | PACKAGE | $\begin{aligned} & \text { NO. OF } \\ & \text { PINS } \end{aligned}$ | $\begin{aligned} & \text { NO. OF } \\ & \text { CLOCKS } \end{aligned}$ | TYPICAL SPEED (MHz] | CLOCK/CE/TTL COMPATABILITY | POWER SUPPLIES (V) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SHIFT REGISTERS |  |  |  |  |  |  |  |  |  |  |
| Static |  |  |  |  |  |  |  |  |  |  |
| 2518 | $32 \times 6$ | BD | Yes | C | $N$ | 16 | 1 | 3.0 | Yes | +5. -12 |
| 2519 | 40X6 | BD | Yes | c | N | 16 | 1 | 3.0 | Yes | +5, -12 |
| 2509 | $50 \times 2$ | TS | Yes | C | N. K | 14/10 | 1 | 3.0 | Yes | +5, $-5,-12$ |
| 2532 | 80X4 | PP | Yes | C | N | 16 | 1 | 3.0 | Yes | +5, -12 |
| 2510 | 100×2 | TS | Yes | C | N, K | 14/10 | 1 | 3.0 | Yes | +5, -5, -12 |
| 2521 | 128×2 | PP | Yes | C | N | 8 | 1 | 3.0 | Yes | +5, -12 |
| 2522 | 132X2 | PP | Yes | C | N | 8 | 1 | 3.0 | Yes | +5, -12 |
| 2511 | 200×2 | TS | Yes | C | N. K | 14/10 | 1 | 3.0 | Yes | +5, -5, -12 |
| 2527 | 240×2 | PP | Yes | C | N | 8 | 1 | 2.5 | Yes | +5, -12 |
| 2528 | 250x2 | PP | Yes | C | N | 8 | 1 | 2.5 | Yes | +5, -12 |
| 2529 | 256X2 | PP | Yes | C | N | 8 | 1 | 3.0 | Yes | +5, -12 |
| 2533 | 1024X1 | PP | Jumper | C | $N$ | 8 | 1 | 2.0 | Yes | +5, -12 |
| Dynamic |  |  |  |  |  |  |  |  |  |  |
| 2506 | 100X2 | BD | No | C | T. N | 8 | 2 | 4.0 | No | +5. -5 |
| 2507 | 100x2 | 7.5 KPD | No | C | T. N | 8 | 2 | 4.0 | No | +5, -5 |
| 2517 | 100x2 | 20KPD | No | C | T. N | 8 | 2 | 4.0 | No | +5, -5 |
| 2505 | $512 \times 1$ | BD | Yes | C | K | 10 | 2 | 3.0 | No | +5. -5 |
| 2524 | $512 \times 1$ | BD | Yes | C | N | 8 | 2 | 5.0 | No | +5. -5 |
| 2502 | $256 \times 4$ | BD | No | C | N | 16 | 2 | 10.0 | No | +5, -5 |
| 2503 | $512 \times 2$ | BD | No | C | TA. N | 8 | 2 | 10.0 | No | +5. -5 |
| 2504 | 1024X1 | BD | No | C | TA. N | 8 | 2 | 10.0 | No | +5, -5 |
| 2512 | 1024X1 | BD | Yes | C | K | 10 | 2 | 5.0 | No | +5. -5 |
| 2525 | 1024X1 | BD | Yes | C | N | 8 | 2 | 3.0 | No | +5. -5 |

*To be announced
NOTES

1. Output circuit

TS = Tri-state
OD = Open drain
$B D=$ Bare drain
$P D=$ Pull down
$P P=$ Push-pull
2 Temperature range
$\mathrm{C}=$ Commercial 10 C to $+75^{\circ} \mathrm{C}$ )
$\mathrm{M}=$ Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

## 7400 SERIES

|  |  | 7400 | 74H | 74LS | 74S |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DEVICE | DESCRIPTION |  | $\begin{aligned} & \text { 으ㅇㅡㅡㄹ } \\ & \text { 気要 } \end{aligned}$ | 氝号 気要 | 准年 |
| 74178 | 4－Bit Parallel Access Shift Reg（8270） | N F | －－ | － |  |
| 74179 | 4－Bit Parallel Access Shift Register（8271） | N F |  |  | $N \mathrm{~F}$ |
| 74180 | 8－Bit Odd／Even Parity Checker | N F | －－ | －－ | － |
| 74181 | 4－Bit Arithmetic Logic Unit | N F | －－ | N F | N F |
| 74182 | Look－Ahead Carry Generator | N F | －－ | － | N F |
| 74190 | Synchronous Up／Down Counter（BCD） | N F | －－ | N F | －－ |
| 74191 | Synchronous Up／Down Counter（Binary） | N F | －－ | N F | －－ |
| 74192 | Synchronous Decade Up／Down Counter | N F | －－ | N F |  |
| 74193 | Synchronous 4－Bit Binary Up／Down Counter | N F | －－ | N F | －－ |
| 74194 | 4－Bit Bidirectional Universal Shift Reg． | N F | －－ | N F |  |
| 74195 | 4－Bit Parallel－Access Shift Register | N F | －－ | N F |  |
| 74196 | Presettable Decade Counter／Latch（8290） | N F | －－ | N F | N F |
| 74197 | Presettable Binary Counter／Latch（8291） | N F | －－ | N F | N F |
| 74198 | 8 －Bit Shift Register | N F | －－ | －－ |  |
| 74199 | 8－Bit Shift Register | N F | －－ | － | －－ |
| 74221 | Dual Monostable Multivibrator | N F | －－ |  | － |
| 74251 | Data Selector／Mux with 3－State Outputs | －－ | －－ | N F |  |
| 74253 | Dual 4－Line to 1－Line Data Selector／Mux | －－ | －－ |  |  |
| 74257 | Quad 2－Line to 1－Line Data Selector／Mux | －－ | －－ | N F | N F |
| 74258 | Quad 2－Line to 1－Line Data Selector／Mux | －－ |  |  | N F |
| 74260 | Dual 5－Input NOR Gate | －－ | －－ | N F | N |
| 74261 | 2X4 Parallel Binary Multiplier | －－ | －－ |  | －－ |
| 74266 | Quad Exclusive NOR Gate | －－ | －－ | N F | －－ |
| 74273 | Octal D Flip－Flop | － | －－ | N F | －－ |
| 74279 | Quad S－R Latch |  | －－ | －－ |  |
| 74280 | 9－Bit Odd／Even Parity Generator／Checker | －－ | －－ | －－ |  |
| 74283 | 4－Bit Adder | －－ | －－ |  | －－ |
| 74290 | Decade Counter | －－ | －－ |  | －－ |
| 74293 | 4－Bit Binary Counter | －－ | －－ |  | －－ |
| 74295A | 4－Bit Right－Shift Left－Shift Register | －－ | －－ |  | －－ |
| 74298 | Quad 2－Input Mux with Storage |  | －－ |  | －－ |
| 74365 | Hex Buffer w／Common Enable（3－State） | N F | －－ |  | －－ |
| 74366 | Hex Buffer w／Common Enable（3－State） | N F | －－ |  | －－ |
| 74367 | Hex Buffer，4－Bit and 2－Bit（3－State） | N F | －－ |  | －－ |
| 74368 | Hex Inverter，4－Bit and 2－Bit（3－State） |  | －－ |  | －－ |
| 74375 | Quad Latch |  | －－ |  | －－ |
| 74377 | Octal D Flip－Flop |  | －－ | N F | －－ |
| 74386 | Quad Exclusive－OR Gate |  | －－ |  | －－ |
| 74395 | 4－Bit Cascadeable Shift Register（3－State） |  | －－ | N F | －－ |
| 74670 | 4X4 Register File（Tri－state） | －－ | －－ | N F |  |


| DEVICE | DESCRIPTION | $\begin{aligned} & \text { JM38510 } \\ & \text { SLASH } \\ & \text { SHEET } \end{aligned}$ | JAN QUALIFIED* |  | $\begin{gathered} \text { JAN } \\ \text { PROCESSED } \end{gathered}$ |  | MIL REL/883 MIL TEMP |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Dip | Flat <br> Pack | Dip | Flat <br> Pack | Dip | Flat <br> Pack |
| 8200 | Dual 5-Bit Buffer Register | - | - | - | - | - | 1 | Q |
| 8201 | Dual 5-Bit Buffer Register with D Inputs | - |  | - | - | - | 1 | Q |
| 8202 | 10-Bit Buffer Register | - | - | - | - | - | 1 | Q |
| 8203 | 10-Bit Buffer Register with D Inputs | - | - | - | - | - | 1 | Q |
| 8230 | 8-Input Digital Multiplexer | 101402 | * | * | F | W | F | W |
| 8231 | 8-Input Digital Multiplexer | - | - | - | - | - | F | W |
| 8232 | 8-Input Digital Multiplexer | - | - | - | - | - | F | W |
| 8233 | 2-Input 4-Bit Digital Multiplexer | - | - | - | - | - | F | W |
| 8234 | 2-Input 4-Bit Digital Multiplexer |  | - | - | - | - | F | W |
| 8235 | 2-Input 4-Bit Digital Multiplexer | - | - | - | - | - | F | W |
| 8241 | Quad Exclusive-OR Gate | - | - | - | - | - | F | W |
| 8242 | Quad Exclusive-NOR Gate | - | - | - | - | - | F | W |
| 8243 | 8-Bit Position Scaler | - | - | - | - | - | I | Q |
| 8250 | Binary-to-Octal Decoder | /15204 | 2 | 2 | F | W | F | W |
| 8251 | BCD-to-Decimal Decoder | /15205 | 2 | 2 | F | W | F | W |
| 8252 | BCD-to-Decimal Decoder | /15206 | 2 | 2 | F | W | F | W |
| 8260 | Arithmetic Logic Unit | - | - | - | - | - | 1 | Q |
| 8261 | Fast Carry Extender | - | - | - | - | - | F | W |
| 8262 | 9 -Bit Parity Generator and Checker | - | - | - | - | - | F | W |
| 8263 | 3-Input 4-Bit Digital Multiplexer | - | - | - | - | - | 1 | Q |
| 8264 | 3-Input 4-Bit Digital Multiplexer |  | - | - | - | - | 1 | Q |
| 8266 | 2-Input 4-Bit Digital Multiplexer | - | - | - | - | - | F | W |
| 8267 | 2-Input 4-Bit Digital Multiplexer | - | - | - | - | - | F | W |
| 8268 | Gated Full Adder | - | - | - | - | - | F | Q |
| 8269 | 4-Bit Comparator | - | - | - | -- | - | F | W |
| 8270 | 4-Bit Shift Register | - | - | - | - | - | F | W |
| 8271 | 4-Bit Shift Register | - | - | - | - | - | F | W |
| 8273 | 10-Bit Serial-In, Parallel-Out Shift Register | - | - | - | - | - | F | W |
| 8274 | 10-Bit Parallel-In, Serial-Out Shift Register | - | - | - | - | - | F | W |
| 8275 | Quad Bistable Latch | - | - | - | - | - | F | W |
| 8276 | 8-Bit Serial Shift Register | - | - | - | - | - | F | - |
| 8277 | Dual 8-Bit Shift Register | - | - | - | - | - | F | - |
| 8280 | Presettable Decade Counter | - | - | - | - | - | F | W |
| 8281 | Presettable Binary Counter | - | - | - | - | - | F | W |
| 8284 | Binary Up/Down Counter | - | - | - | - | - | F | W |
| 8285 | Decade Up/Down Counter | - | - | - | - | - | F | W |
| 8288 | Divide-by-Twelve Counter | - | - | - | - | - | F | W |
| 8290 | Presettable High Speed Decade Counter | - | - | - | - | - | F | W |
| 8291 | Presettable High Speed Binary Counter | - | - | - | - | - | F | W |
| 8292 | Presettable Low Power Decade Counter | - | - | - | - | - | F | W |
| 8293 | Presettable Low Power Binary Counter | - | - | - | - | - | F | W |
| 9300 | 4-Bit Shift Register | /15901 |  | - | F | W | F | W |
| 9301 | $B C D$ to Decimal Decoder | /15206 | 2 | 2 | F | W | F | W |
| 9308 | Dual 4-Bit Latch w/Clear | - | - | - | - | - | I | Q |
| 9309 | Dual 4-Input Multiplexer | 101404 | 1 | 1 | F | W | F | W |
| 9310 | 4-Bit Decade Counter | - | - | - | - | - | F | W |
| 9312 | 8-Input Digital Multiplexer | 101402 | - | * | F | W | F | W |
| 9316 | 4-Bit Binary Counter | - | - | - | - | - | F | W |
| 9322 | Data Selector-Multiplexer | - | - | - | - | - | F | W |
| 9324 | 5-Bit Comparator | /15002 | . | * | F | WF | W | - |
| 9334 | 8-Bit Addressable Latch | /16001 | - | - | - | - | F | W |
| 9602 | Dual Monostable Multivibrator | - | * | * | F | W | F | W |

NOTE
Per QFL 38510-28 dated 1 Apr 1977
$1=$ Level 1 Qualification
$2=$ Level 2 Qualification

## 8T00 SERIES INTERFACE

The 8T00 Series provide a line of integrated circuits for applications such as line driving and receiving, level shifting and tri-state bus interfacing. Both Gold Doped and Schottky technologies are used to produce these devices.

| DEVICE | DESCRIPTION | 品 | $\sum_{\substack{\text { ¢ }}}^{\text {¢ }}$ |
| :---: | :---: | :---: | :---: |
| 8704 | 7-Segment Decoder Display Driver (Active-Low Outputs) | N | F |
| 8705 | 7-Segment Decoder Display Driver (Active-Hi Outputs) | N | F |
| 8706 | 7-Segment Decoder Display Driver (Active-Low Outputs) | N | F |
| 8709 | Quad Bus Driver with Tri-State Outputs | N | F |
| 8 T 10 | Quad D-Type Bus Latch (Tri-State) | N | F |
| 8713 | Dual Line Driver | N | F |
| 8 T 14 | Triple Line Receiver/Schmitt Trigger | N | F |
| 8715 | Dual Communications EIA/MIL Line Driver | N | F |
| 8716 | Dual Communications EIA/MIL Line Receiver | N | F |
| 8718 | Dual 2-Input NAND (High Voltage to TTL Interface) | N | F |
| 8 T20 | Bidirectional Monostable Multivibrator (Diff. Input) | N | F |
| 8 T22 | Retriggerable Monostable Multivibrator (74122/9601) | N | F |
| 8 T23 | Dual Line Driver for IBM 360/370 Interface (75123) | N | F |
| $8 T 24$ | Triple Line Receiver for IBM 360/370 Interface (75124) | N | F |
| 8 T25 | Dual MOS Sense Amplifier with Latch (Tri-State Outputs) | V | - |
| 8126A | Quad Bus Driver/Receiver (Tri-State Outputs) | N | F |
| 8728 | Quad Non-Inverting Bus Driver/Receiver (Tri-State Outputs) | N | F |
| 8730 | Dual TTL/DTL to MOS Transceiver/Port Controller | N | F |
| 8731 | 8-Bit Bidirectional l/O Port | N | F |
| 8732 | Programmable 8-Bit I/0 Port (3-State) | N | F |
| 8 T33 | Programmable 8-Bit I/0 Port (Open Collector) | N | F |
| 8 T34 | Quad Bus Transceiver (DM8834) | N | F |
| 8 T35 | Asynchronous Programmable 8-Bit I/O Port (Open Collector) | N | F |
| 8736 | Asynchronous Programmable 8-Bit I/O Port (3-State) | N | F |
| 8 T37 | Hex Bus Receiver with Hysteresis-Schmitt Trigger (DM8837) | N | F |
| 8738 | Quad Bus Transceiver (Open Collector) (DM8838) | N | F |
| 8739 | Bus Extender/Repeater | N | F |
| 8740 | Pipeline 1/0 Port | N | F |
| 8758 | Working Storage Bus Extender | N | F |
| 8780 | Quad 2-Input NAND Gate (High Voltage) | N | F |
| 8 T90 | Hex Inverter (High Voltage) | N | F |
| $8 \mathrm{T95}$ | High Speed Hex Buffers/Inverters (74365/DM8095) | N | F |
| 8796 | High Speed Hex Buffers/Inverters (74366/DM8096) | N | F |
| $8 \mathrm{T97}$ | High Speed Hex Buffers/Inverters (74367/DM8097) | N | F |
| 8 T98 | High Speed Hex Buffers/Inverters (74368/DM8098) | N | F |
| 8 T363 | Dual Zero Crossing Detector | N | - |
| 87380 | Quad Bus Receiver with Hysteresis | N | F |

## ANALOG (LINEAR)

| CONSUMER/COMMUNICATION CIRCUITS |  |
| :--- | :--- |
| NE/SE540 | Power Driver |
| NE541 | Power Driver |
| NE542 | Dual Preamp |
| NE543 | Servo Amplifier |
| NE544/644 | Servo Amplifier |
| NE546 | AM Radio |
| NE570/571 | Analog Compandor |
| N/S5596 | Balanced Modulator/Demodulator |
| uA758 | Stereo Decoder |
| ULN2111 | FM Detector/Limiter |
| ULN2208 | FM Gain Block |
| ULN2209 | FM Gain Block |
| ULN2211 | TV Sound Channel |
| TBA120S/U | TV Sound IF |
| TBA1440 | TV Video IF |
| TBA327/395/396 | TV PAL Chroma Set |
| TCA440 | AM Receiver |
| TDA2541 | TV Video IF |
| CA3089 | FM IF System |
| PA239 | Dual Preamp |
| LM381, 381A | Dual Preamp |
| LM382 | Dual Preamp |
| LM387 | Dual Preamp |
| MC1496/1596 | Balanced Modulator/Demodulator |

Also see D-MOS FETS

| OP AMPS |  |
| :---: | :---: |
| NE/SE531 | High Slew Rate Op Amp |
| *NE/SE/SA532 | Dual Op Amp |
| NE/SE532A | Dual Op Amp |
| *NE/SE535 | High Slew Rate Op Amp |
| NE/SU536 | FET Input 0p Amp |
| NE/SE538 | High Slew Rate 0p Amp |
| NE/SE5534 | Low Noise Op. Amp |
| *MC1456/1556 | High Performance Op Amp |
| *MC1458/1558/SA1458 | Dual Op Amp |
| * $\mu$ A709/709C/SA709C | Op Amp |
| $\mu \mathrm{A} 740 \mathrm{C}$ | FET Input Op Amp |
| ${ }^{*} \mu$ A741/741C/SA741C | General Purpose Op Amp |
| ${ }^{*} \mu$ A747/747C/ SA747C | Dual Op Amp |
| ${ }^{*} \mu$ A748/748C/SA748C | General Purpose Op Amp |
| LF155/255/355 | BIFET Input Op Amp |
| LF156/256/356 | BIFET Input Op Amp |
| LF157/257/357 | BIFET Input Op Amp |
| *LM101/201 | High Performance Op Amp |
| *LM101A/201A/301A | High Performance Op Amp |
| *LM107/207/307 | General Purpose 0p Amp |
| *LM108/208/308 | Precision Op Amp |
| *LM108A/208A/308A | Precision Op Amp |
| *LM124/224/324 | Quad Op Amp |
| LM124A/224A/324A | Quad Op Amp |
| *LM158/258/358 | Dual Op Amp |
| SA1458 | Dual Op Amp |
| SA534 | Quad Op Amp |
| *SA709 | Op Amp |
| *SA741 | General Purpose Op Amp |
| *SA747 | Dual 0p Amp |


| PERIPHERAL INTERFACE |  |
| :---: | :---: |
| NE/SE501 | Video Amp |
| NE/SE592 | Video Amp |
| * $\mu$ A $733 / 733 \mathrm{C}$ | Video Amp |
| 55450B/51B/52B/ |  |
| $\begin{aligned} & 53 \mathrm{~B} / 54 \mathrm{~B} \\ & 75450 \mathrm{~B} / 51 \mathrm{~B} / 52 \mathrm{~B} / \end{aligned}$ | Dual Peripheral Drivers |
| 53B/54B | Dual Peripheral Drivers |
| DS3611/12/13/14 | Dual Peripheral Drivers-8L $\checkmark$ Output |
| UDN5711/12/13/14 | Dual Peripheral Drivers-80V Output |
| MC1488 | Quad Line Driver |
| MC1489/1489A | Quad Line Receiver |
| 75S107/108 | Dual Line Receiver |
| *DM7820/8820 | Dual Differential Line Receiver |
| *DM7820A/8820A | Dual Differential Line Receiver |
| *DM7830/8830 | Dual Differential Line Driver |


| DISPLAY INTERFACE |  |
| :--- | :--- |
| DM8880 | Display Decoder Driver |
| DM8880-1 | Display Decoder Driver-100V Outputs |
| NE584 | Gas Discharge Segment Driver |
| NE585 | Gas Discharge Digit Driver |
| NE582 | LED Digit Driver |


|  |  |
| :--- | :--- |
| MEMORY INTERFACE |  |
| 3207A | MOS Clock Driver |
| 3207A-1 | MOS Clock Driver |
| 7520 | Dual Core Memory Sense Amp |
| 7522 | Dual Core Memory Sense Amp |
| 7524 | Dual Core Memory Sense Amp |
| 7528 | Dual Core Memory Source Amp |
| 75232 | Dual Core Memory Source Amp |
| 75234 | Dual Core Memory Source Amp |
| $75 S 207 / 208$ | Dual MOS Memory Sense Amp |
| 75324 | Core Memory Driver |
| $55 / 75325$ | Switched Paid Quad Core Driver |


| MOSFET-ANALOG/DIGITAL SWITCHES (D-MOS) |  |
| :--- | :--- |
| *SD210/211 | Switch Driver |
| *SD212/213 | Switch |
| *SD214/215 | Switch |
| *SD5000/5001/5002 | Quad Switch Array IC |
| *SD5100/5101 | Quad Multiplexer IC |
| *SD5200 | Quad Switch Driver IC |
| *SD5301 | 8x2 Crosspoint Switch |
| SD5350 | 8 Channel Multiplexer w/Shift |
| Register Control |  |
| DMP/DMS4025 | Power FET |


| D/A/D CONVERTERS |  |
| :--- | :---: |
| MC1408-7 | 8 -Bit D/A Converter, 1 LSB Accuracy |
| MC1408-8 | 8 -Bit D/A Converter, $1 / 2$ LSB Accuracy |
| MC1508-8 | 8 -Bit D/A Converter, $1 / 2$ LSB Accuracy |
| NE5007 | 8 -Bit D/A Converte, 1 LSB Accuracy |
| NE/SE5008 | 8 -Bit D/A Converter, $1 / 2$ LSB Accuracy |
| NE/SE5009 | 8 -Bit D/A Converter, $1 / 4$ LSB Accuracy |

ANALOG (LINEAR) (Cont'd)

| MOSFET-RF (D-MOS) |  |
| :--- | :--- |
| SD200/201 | Single Gate UHF |
| SD202/203 | Single Gate UHF |
| SD300 | Dual Gate UHF |
| SD303 | Dual Gate UHF |
| SD304 | Dual Gate VHF |
| SD305 | Dual Gate VHF Mixer |
| SD306 | Dual Gate VHF Amp |
| SD6000 | VHF Mixer/Amp IC |
| DMP/DMS4025 | Power FET |


| TIMERS |  |
| :--- | :--- |
| NE/SE/SA558 | Quad Timer |
| NE/SE/SA559 | Quad Timer |
| ${ }^{*}$ NE SE/SA555 | Timer |
| ${ }^{*}$ NE/SE/SA556 | Dual Timer |


| PHASE LOCKED LOOPS |  |
| :--- | :--- |
| NE560 | Phase Locked Loop |
| NE561 | Phase Locked Loop |
| NE562 | Phase Locked Loop |
| NE/SE564 | Phase Locked Loop |
| NE SE565 | Phase Locked Loop |
| NE SE566 | Function Generator |
| ${ }^{*}$ NE/SE567 | Tone Decoder PLL |


| HYBRIDS |  |
| :--- | :--- |
| *LH2101AF | Dual Op Amp |
| *LH2108F | Dual Precision Op Amp |
| *LH2108AF | Dual Precision Op Amp |
| *LH2111AF | Dual Comparator |


| TRANSISTOR ARRAYS |  |
| :--- | :--- |
| ULN2001/2/3/4 Darlington Transistor Array <br> High Voltage Darlington <br> Transistor Array |  |


| DIFFERENTIAL AMPLIFIERS |  |
| :--- | :--- |
| ${ }^{*}$ NE/ SE510 | Dual Differential Amp |
| ${ }^{*}$ NE/SE511 | Dual Differential Amp |
| ${ }^{*}$ NE/SE515 | Differential Amp |
| ${ }^{*} \mu$ A733 | Video Amp |


| VOLTAGE REGULATORS |  |
| :---: | :---: |
| *LM109/209/309 | 5 V Voltage Regulator |
| NE/ SE550 | Precision Voltage Regulator |
| ${ }^{*} \mu$ A723/723C/SA723 | Precision Voltage Regulator |
| $\mu$ A78L02/05/06/08/ | Three-Terminal Positive |
| 12/15 | Voltage Regulators |
| $\mu$ A7805/06/08/12/14 | Three-Terminal Positive |
| 15/18/24 | Voltage Regulators |
| $\mu \mathrm{A} 78 \mathrm{HV} 05 / 06 / 08 /$ | High Input Breakdown (1 Amp) |
| 12/14/15/18/24 | Positive Voltage Regulators |
| $\mu$ A78M05/06/08/12/ | Three-Terminal Positive |
| 15/20/24 | Voltage Regulators |
| $\mu$ A78MHV05/06/08/ | High Input Breakdown ( 500 mA ) |
| 12/15/20/24 | Positive Voltage Regulators |
| $\mu$ A7905/5.2/06/08/ | Three Terminal Negative |
| 12/15/18/24 | Voltage Regulator |
| $\mu$ A79M05/06/08/12/ | Three Terminal Negative |
| 15/20/24 | Voltage Regulator ( 500 mA ) |
| $\mu \mathrm{A} 78 \mathrm{G}$ | 1 Amp Adjustable Positive |
|  | Voltage Regulator |
| $\mu \mathrm{A} 78 \mathrm{MG}$ | 500 mA Adjustable Positive |
|  | Voltage Regulator |
| $\mu \mathrm{A} 9$ G | 1 Amp Adjustable Negative |
|  | Voltage Regulator |
| $\mu$ A79MG | 500 mA Adjustable Negative |
|  | Voltage Regulator |
| $\begin{gathered} \text { *LM340-05/06/08/12/ } \\ 15 / 18 / 24 \end{gathered}$ | Voltage Regulator |
| SE/NE5554 | Dual Tracking Regulator |


| COMPARATORS |  |
| :--- | :--- |
| ${ }^{*}$ NE521/522 | High Speed Dual Differential Comparator |
| ${ }^{*}$ NE/SE526 | Analog Voltage Comparator |
| ${ }^{*}$ NE/SE527 | High Speed Voltage Comparator |
| ${ }^{*}$ NE/SE529 | High Speed Voltage Comparator |
| ${ }^{*}$ AA710/710C | Voltage Comparator |
| ${ }^{*}$ AA711/711C | Dual Voltage Comparator |
| ${ }^{*}$ LM111/211/311 | Voltage Comparator |
| ${ }^{*}$ LM119/219/319 | Dual Voltage Comparator |
| ${ }^{*}$ LM139/239/339 | Quad Voltage Comparator |
| ${ }^{* L M 139 A / 239 A / 339 A ~}$ | Quad Voltage Comparator |
| LM193/293/393 | Dual Voltage Comparator |
| LM2903 | Dual Voltage Comparator |
| MC3302 | Quad Voltage Comparator |
| SA539 | Quad Voltage Comparator |

## INTRODUCTION

Manufacturing integrated circuits to the stringent requirements of the Defense and Aerospace industries has been a dedication of Signetics since its founding in 1961. Today, Signetics remains unchanged in charter and continues to produce integrated circuits for this market segment with state-of-the-art process technologies which result in unequalled overall reliability.
Signetics' dedicated approach to the mili-
tary market is evidenced by the fact that it is the only major semiconductor manufacturer with a separate Military Products Division-with its own production facilities, engineering staff and marketing organization. Rather than dealing with each individual product division, as they must at many companies, Signetics' military customers can deal with one group of personnel familiar with the company's broad product capability as well as with the special requirements of the military market.

Assessing the individual products of any high-reliability supplier is enhanced by a complete understanding of the company's technological processes and the degree of its commitment to quality control and reliability.

## PROCESSING LEVELS And requlrements

## MILITARY PRODUCTS/ PROCESS LEVELS

The Signetics Mil 38510/883 Program is organized to provide a broad selection of processing options, structured around the most commonly requested customer flows. The program is designed to provide our customers:

- Standard processing flows to help minimize the need for custom specs.
- Cost savings realized by using standard processing flows in lieu of custom flows.
- Better delivery lead times by minimizing spec negotiation time, plus allows customers to buy product off-the-shelf or in various stages of production rather than waiting for devices started specifically to custom specs.
The following explains the different processing options available to you. Special device marking clearly distinguishes the type of screening performed. Refer to Tables 2, 3 and 4.


## JAN QUALIFIED (JB)

JAN Qualified product is designed to give you the optimum in quality and reliability. The JAN processing level is offered as the result of the government's product standardization programs, and is monitored by the Defense Electronic Supply Center (DESC), through the use of industry-wide procedures and specifications.

JAN Qualified products are manufactured, processed and tested in a government certified facility to Mil-M 38510, and appropriate device slash sheet specifications. Design documentation, lot sampling plans, electrical test data and qualification data for each specific part type has been approved by the Defense Electronic Supply Center (DESC) and products appear on the DESC Qualified Products List (QPL-38510).
Group B testing, per Mil-Std-883 Method 5005 , is performed on each six weeks of production on each slash sheet for each package type. Group C, per Mil-Std-883 Method 5005, is performed every ninety days for each microcircuit group. Group D testing, per Mil-Std-883 Method 5005, is performed every six months for each package type.
In addition to the common specs used throughout the industry for processing and testing, JAN Qualified products also possess a requirement for a standard marking used throughout the IC industry.

## JAN PROCESSING (JBX)

This option is extremely useful when the reliability and screening of a JAN device is required, however, Signetics is not listed on the QPL for the product needed. Processing is performed to Mil-Std-883 Method 5004, and product is $100 \%$ electrically tested to the appropriate JAN slash sheet.

Group B, C and D data for JAN processed and the other military processing levels

| JAN <br> CASE OUTLINE <br> AND <br> LEAD FINISH | SIGNETICS MILITARY PACKAGE TYPES |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 8 -Pin | $10-$ Pin |
|  | 14-Pin | 16 -Pin | 24-Pin |  |  |
| EB | - | - | $F$ | - | - |
| JB | - | - | - | $F$ | - |
| DB | - | - | - | - | $1 / F^{*}$ |
| FB | - | - | $W$ | - | - |
| ZC | - | - | - | $W$ | - |
| GC | - | - | - | - | $Q$ |
| IC | - | $K$ | - | - | - |

*The gold plated versions of these packages will be available for a limited time. All products listed in Military section are also available in Die form.

Table 1 MILITARY PACKAGE AVAILABILITY

|  | JB | JBX | RBX | RB | S |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | JAN Qualified | JAN <br> Processed | JAN <br> Rel | /883 | $\begin{aligned} & \text { Mil } \\ & \text { Temp } \end{aligned}$ |
| 54/54H | X | X | X | X | X |
| 54LS | X | X | X | X | X |
| 54 S | X | X | X | X | X |
| 82/8T | X | $x$ | X | X | X |
| 93XX | X | X | $x$ | X | $x$ |
| 96XX | - | - | X | X | X |
| Linear | Planned | X | X | X | X |
| Bipolar Memory | Planned | - | x | x | X |
| Microprocessor | - | - | X | X | X |

Table 2 MILITARY SUMMARY
which follow, consist of Group B, C and D testing performed per Mil-Std-883 Method 5005 , in accordance with the Signetics Military Data Program. Offshore assembly is allowed.

## JAN REL (RBX)

Processing to this option is ideal when no JAN slash sheets are released on devices required. Product is processed to Mil-Std883 Method 5004, and is $100 \%$ electrically tested to industry data sheets.

## /883B (RB)

This is a lower priced version of the JAN Rel option described above. Processing is identical with the only exceptions being the dc electrical testing over the temperature range and ac electrical testing at room temperature are performed as a part of Group A instead of $100 \%$.

## MIL TEMP/883C (S/RC)

If you need a Military temp. range device, but do not require all the high reliability screening performed in the other processing options, our Mil-Temp. product is ideal. Mil-Temp. parts are the standard full MilTemperature range product guaranteed to a $1 \%$ AQL to the Signetics data sheet parameters.

## MILITARY GENERIC DATA

Signetics has a new program for those customers who require quality conformance data on their products. This program
allows our customers to obtain reliability information without the necessity of running Groups B, C and D inspections for their particular purchase order. It provides for the customer something that has not been readily available before in the semiconductor industry in that all Military Generic Data is controlled and audited by both Government Inspection in the case of JAN data and Signetics Quality Assurance.
Signetics Military Generic Data is compiled by the Military Products Division based on data from 1) JAN quality conformance lots, and 2) Data generated by quality conformance lots run for other reliability programs. Refer to Table 4.
A Military Generic family is defined as consisting of die function and package type families.

## Military Generic Data

- Allows our customers to qualify Signetics products based on existing quality conformance data performed at Signetics.
- Allows our customers to reduce costs and improve deliveries.
- Provides assurance that all Signetics die function families and packages meet
- Mil-M-38510 and customer reliability requirements.
Provides an attributes summary to the customer backed by lot identity and traceability.

| PROCESS LEVEL AND MARKING | PRE-CAP VISUAL | BURN IN | FUNCTIONAL TEST | $\begin{aligned} & \mathrm{DC} / \mathrm{AC} \\ & @ 25^{\circ} \mathrm{C} \end{aligned}$ | DC/AC @TEMP | QPL | OFF SHORE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { JB } \\ \text { JM38510/XXXXX } \end{gathered}$ | 883B | Yes | 100\% | 100\% | 100\% | Yes | No |
| $\begin{gathered} \text { JBX } \\ \text { M38510/XXXXX } \end{gathered}$ | 883B | Yes | 100\% | 100\% | 100\% | No | Yes |
| $\begin{gathered} \text { RBX } \\ \text { M38510/P/N } \end{gathered}$ | 883B | Yes | 100\% | 100\% | 100\% | No | Yes |
| $\begin{gathered} R B \\ S X X X X / 883 B \end{gathered}$ | 883B | Yes | 100\% | 100\% dc Sample ac | Sample dc only | No | Yes |
| $\begin{gathered} \mathrm{RC} / \mathrm{S} \\ \mathrm{SXXXX} / 883 \mathrm{C} \end{gathered}$ | 883B | No | 100\% | $100 \%$ dc Sample ac | Sample dc only | No | Yes |

Table 3 MILITARY PRODUCTS PROCESSING MATRIX

| QUALIFIED SUB-GROUPS | QUALIFIES | OPTION 1 | OPTION 2 |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & A^{*} \\ & B \end{aligned}$ | Electrical Test <br> Package-Same package construction and lead finish. | Data selected from devices manufactured within 6 weeks of the manufacturing period on the same production line through final seal. | Data selected from devices manufactured within 24 weeks of manufacturing period. |
| C | Die/Process-Devices representing the same process families. | Data selected from representative devices from the same microcircuit group and sealed within 12 weeks of the manufacturing period. | Data selected from the representative devices from the same microcircuit group and sealed within 48 weeks of the manufacturing period. |
| D | Package-Same package construction and lead finish. | Data selected from the devices representing the same package construction and lead finish manufactured within the 24 weeks of manufacturing period. <br> If specific data not available, Option 2 will be supplied. | Data selected from the devices representing the same package construction and lead finish manufactured within the 52 weeks of manufacturing period. |

NOTE'
Group A is performed on each lot or sublot of Signetics devices.

Table 4 DEFINITION AND QUALIFYING MANUFACTURING PERIODS FOR GENERIC DATA

| DESCRIPTION OF REQUIREMENTS AND SCREENS | MIL-M-38510 AND MIL-STD883 REQUIREMENTS, METHODS AND TEST CONDITIONS | REQUIREMENT | PROCESSING LEVELS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { CLASS } \\ \text { A } \end{gathered}$ | JAN Qualified (JB) | JAN <br> Processed (JBX) | $\begin{gathered} \text { JAN } \\ \text { Rel } \\ \text { (RBX) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { /883B } \\ \text { (RB) } \\ \hline \end{gathered}$ | $\begin{gathered} / 883 \mathrm{C} \\ (\mathrm{RC}) \\ \hline \end{gathered}$ |
| General Mil-M-38510 <br> 1. Pre-Certification <br> A. Product Assurance Program Plan <br> B. Manufacturer's Certification | The manufacturer shall establish and implement a Products Assurance Program Plan and provide for a manufacturer survey by the qualifying activity, Para. 3.4.1.1 | - | X | X | N/A | N/A | N/A | N/A |
| 2. Certification | Received after manufacturer has completed a successful survey, Para. 3.4.1.2 | - | X | x | N/A | N/A | N/A | N/A |
| 3. Device Qualification | Device qualification shall consist of subjecting the desired device to groups A, B, C \& D of method 5005 to tightened LTPD, Para. 3.4.1.2 | - | X | x | N/A | N/A | N/A | N/A |
| 4. Traceability | Traceability maintained back to a production lot Para. 3.4.6 | - | X | x | x | $x$ | x | X |
| 5. Country of Origin | Devices must be manufactured, assembled, and tested within the U.S. or its territories, Para. 3.2.1 | - | X | $x$ | N/A | N/A | N/A | N/A |
| Screening Per Method 5004 of Mil-Std-883 |  |  |  |  |  |  |  |  |
| 6. Internal Visual (Precap) | 2010, Cond. A or B | 100\% | XA | XB | XB | XB | XB | XB |
| 7. Stabilization Bake | 1008, Cond. C Min; <br> ( 24 Hrs @ $150^{\circ} \mathrm{C}$ ) | 100\% | X | X | x | x | x | $x$ |
| 8. Temperature Cycling* <br> *For Class B and C devices thermal shock may be substituted, 1011, Cond. A; (15 cycles, $0^{\circ}$ to $+100^{\circ} \mathrm{C}$ ) | 1010, Cond. C; <br> (10 cycles, $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ) | 100\% | X | X | X | x | x | x |
| 9. Constant Acceleration | 2001, Cond. E; <br> ( 30 kg in YI Plane) | 100\% | x | X | $x$ | $x$ | x | x |
| 10. Visual Inspection | There is no test method for this screen; it is intended only for the removal of "Catastrophic Failures" defined as "Missing Leads, Broken Packages or Lids Off." | 100\% | x | X | $x$ | x | X | X |
| 11. Seal (Hermeticity) A. Fine | 1014 <br> Cond. A or B $(5.0 \times 10-8 \mathrm{CC} / \mathrm{Sec})$ | 100\% | X | X | X | X | X | X |
| B. Gross |  | 100\% | $\times$ | $\times$ | x | x | x | x |
| 12. Interim Electricals (Pre Burn-In) | Per applicable device specification | 100\% Optional | 100\% <br>  <br> Record | Slash <br> Sheet | Slash Sheet | Data Sheet | Data Sheet | N/A |
| 13. Burn-In | 1015, Cond. as specified (160 hrs. Min. at $125^{\circ} \mathrm{C}$ ) | 100\% | 100\% | X | X | X | X | N/A |
| 14. Final Electricals | Per applicable Device Specification | 100\% | $\begin{gathered} 240 \mathrm{hrs} . \\ 100 \% \end{gathered}$ | Slash | Slash | Data | Data | Data |
| A. Static Tests |  |  | Read \& Record | Sheet | Sheet | Sheet | Sheet | Sheet |
| @ $25^{\circ} \mathrm{C}$ <br> B. Static Tests | Sub Group 1 |  | $x$ | X | X | $x$ | X | X |
| @ $+125^{\circ} \mathrm{C}$ | Sub Group 2 |  | $x$ | $x$ | $x$ | $x$ | N/A | N/A |
| C. Static Tests <br> @ $-55^{\circ} \mathrm{C}$ | Sub Group 3 |  | X | X | X | X | N/A | N/A |

Table 5 REQUIREMENTS AND SCREENING FLOWS FOR STANDARD CLASS B PRODUCTS

| DESCRIPTION OF REQUIREMENTS AND SCREENS | MIL-M-38510 AND MIL-STD883 REQUIREMENTS, METHODS AND TEST CONDITIONS | REQUIREMENT | PROCESSING LEVELS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { CLASS } \\ \hline \end{gathered}$ | JAN Qualified (JB) | JAN <br> Processed (JBX) | JAN Rel (RBX) | $\begin{gathered} \text { /883B } \\ \text { (RB) } \end{gathered}$ | $\begin{gathered} / 883 \mathrm{C} \\ \text { (RC) } \end{gathered}$ |
| D. Dynamic Test <br> @ $25^{\circ} \mathrm{C}$ <br> E. Functional <br> Test @ $25^{\circ} \mathrm{C}$ <br> F. Switching Test @ $25^{\circ} \mathrm{C}$ | Sub Group 4 (for Linear Product Mainly) <br> Sub Group 7 <br> Sub Group 9 |  | X <br> X <br> X | X <br> X <br> X | x <br> X x | X <br> $x$ <br> X | X <br> X <br> N/A | X <br> X <br> N/A |
| 15. Percent Defective allowable (PDA) | A PDA of $10 \%$ is a normal requirement applied against the static tests @ $25^{\circ} \mathrm{C}(\mathrm{A}-1)$. This is controlled by the slash sheets for JB \& JBX products. For RBX \& RB $10 \%$ is standard. | 10\% | $5 \%$ | x | X | $x$ | $x$ | N/A Sxyxy |
| 16. Marking | Fungus Inhibiting Paint | $100 \%$ | As Req'd | $\begin{array}{\|l} \text { JM38510/ } \\ \text { XXXX } \\ \text { Slash } \\ \text { Sheet \# } \end{array}$ | $\begin{aligned} & \text { M38510/ } \\ & \text { XXXX } \\ & \text { Slash } \\ & \text { Sheet \# } \end{aligned}$ | M38510/ <br> SXXXX <br> Sig. <br> Basic \# | $\begin{gathered} \text { SXXXX/ } \\ 883 B \\ \text { Sig. } \\ \text { Basic \# } \end{gathered}$ | $\begin{gathered} \text { SXXXX/ } \\ 883 \mathrm{C} \\ \text { Sig. } \\ \text { Basic \# } \end{gathered}$ |
| 17. X-Ray | 2012 |  | 100\% | N/A | N/A | N/A | N/A | N/A |
| 18. External Visual | 2009 | 100\% | X | X | X | X | X | X |
| Quality Conformance Inspection per Method 5005 of Mil-Std-883 |  |  |  |  |  |  |  |  |
| 19. Group A | Electrical Tests-Final Electricals (\#14 above) repeated on a sample basis. (Sub Groups 1 thru 12 as specified.) | Each Lot | x | X | X | $x$ | X | X |
| 20. Group B | Package functional and constructional related test I.E. package dimensions, resistance to solvents, internal visual \& mechanical, bond strength \& solderability. | Every 6 week per microcircuit group | x | $x$ | Gener | Data Ava |  |  |
| 21. Group C | Die related tests I.E. $1,000 \mathrm{hr}$. operating life, temperature cycling, \& constant acceleration. | Every 3 months per package type | X | X | Gener | c Data Ava |  |  |
| 22. Group D | Package related tests I.E. physical dimensions, lead fatigue, thermal shock, temperature cycle, moisture resistance, mechanical shock, vibration variable frequency constant acceleration, \& salt atmosphere. | Every 6 months per package type | X | X |  | c Data A |  |  |

Table 5 REQUIREMENTS AND SCREENING FLOWS FOR STANDARD CLASS B PRODUCTS (Cont'd)

## IOGIC

LOGIC-54LS SERIES

|  |  |  | JAN QUAL | $\begin{aligned} & \text { JAN } \\ & \text { PROC- } \\ & \text { ESSED } \end{aligned}$ | $\begin{gathered} \text { MIL } \\ \text { REL/883 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DEVICE | DESCRIPTION | $\begin{gathered} \text { JM38510 } \\ \text { SLASH } \\ \text { SHEET } \end{gathered}$ |  |  | ¢ |
| 54LS00 | Quad 2-Input NAND Gate | 130001 | 22 | F W | F W |
| 54LS01 | Quad 2-Input NAND Gate with o/c | - | - - | F W | F W |
| 54LS02 | Quad 2-Input NOR Gate | 130301 | 22 | F W | F W |
| 54LS03 | Quad 2-Input NAND Gate with o/c | 130002 | 11 | F W | F W |
| 54LS04 | Hex Inverter | /30003 | 11 | F W | F W |
| 54LS05 | Hex Inverter with o/c | 130004 | 11 | F W | F W |
| 54LS08 | Quad 2-Input AND Gate | 131004 | 22 | F W | F W |
| 54LS09 | Quad 2-Input AND Gate with o/c | - |  | - - | F W |
| 54LS10 | Triple 3-Input NAND Gate | 130005 | 11 | F W | F W |
| 54LS11 | Triple 3-Input NAND Gate | 131001 | 22 | F W | F W |
| 54LS12 | Triple 3-Input NAND Gate with o/c | /30006 | 11 | F W | F W |
| 54LS13 | Dual NAND Schmitt Trigger | /31301 | * * | F W | F W |
| 54LS14 | Hex Schmitt Trigger | 131302 | * * | F W | F W |
| 54LS15 | Triple 3-Input AND Gate with o/c | /31002 | 22 | F W | F W |
| 54LS20 | Dual 4-Input NAND Gate | /30007 | 11 | F W | F W |
| 54LS21 | Dual 4-Input AND Gate | 131003 | 22 | F W | F W |
| 54LS22 | Dual 4-Input NAND Gate with o/c | 130008 | 11 | F W | F W |
| 54LS26 | Quad 2-Input NAND Gate with o/c | /32101 | * * | F W | F W |
| 54LS27 | Triple 3-Input NOR Gate | 130302 | 22 | F W | F W |
| 54LS28 | Quad 2-Input NOR Buffer | 130204 | * * | F W | F W |
| 54LS30 | 8-Input NAND Gate | 130009 | 22 | $F W$ | F W |
| 54LS32 | Quad 2-Input OR Gate | /30501 | 22 | F W | F W |
| 54LS33 | Quad 2-Input NOR Buffer with o/c | - | - - | - - | F W |
| 54LS37 | Quad 2-Input NAND Buffer | /30202 | 22 | F W | F W |
| 54LS38 | Quad 2-Input NAND Buffer with o/c | /30203 | * * | F W | F W |
| 54LS40 | Dual 4-Input NAND Buffer | 130201 | 22 | F W | F W |
| 54LS42 | BCD-to-Decimal Decoder | 130703 | * | * * | F W |
| 54LS51 | Dual 2-Wide 2-Input A01 Gate | 103401 | 22 | F W | $F \quad W$ |
| 54LS54 | 4-Wide 2-Input A01 Gate | /30402 | 22 | F W | F W |
| 54LS55 | 2-Wide 4-Input A01 Gate | - | - - | - - | F W |
| 54LS73 | Dual J-K Master-Slave Flip-Flop | /30101 | - - | - - | F W |
| 54LS74 | Dual D-Type Edge-Triggered Flip-Flop | /30102 | * * | F W | F W |
| 54LS75 | Quad Bistable Latch | - | - - | F W | F W |
| 54LS76 | Dual J-K Master-Slave Flip-Flop | /30110 | * * | F W | F W |
| 54LS78 | Quad Bistable Latch | - | - - | - | F W |
| 54LS83A | 4-Bit Binary Full Adder | 131201 | * * | F W | F W |
| 54LS85 | 4-Bit Magnitude Comparator | 131101 | * - | F W | F W |
| 54LS86 | Quad 2-Input Exclusive-OR Gate | /30502 | * * | F W | F W |
| 54LS90 | Decade Counter | 131501 | * * | F W | F W |
| 54LS92 | Divide-by-Twelve Counter | 131510 | * * | F W | F W |
| 54LS93 | 4-Bit Binary Counter | 131502 | * * | F W | F W |
| 54LS95 | 4-Bit Left-Right Shift Register | /30603 | * * | F W | F W |
| 54LS96 | 5-Bit Shift Register | /30604 | * | F W | F W |

NOTE
Per QPL 38510-28 dated 1 April 1977.
$1=$ Level 1 Qualification
$2=$ Level 2 Qualification $\cdot=$ In Process

LOGIC-54LS SERIES (Cont'd)

|  |  |  | JAN <br> QUAL | $\begin{aligned} & \text { JAN } \\ & \text { PROC- } \\ & \text { ESSED } \end{aligned}$ | $\begin{gathered} \text { MIL } \\ \text { REL/883 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DEVICE | DESCRIPTION | JM38510 <br> SLASH <br> SHEET |  |  | coll |
| 54LS107 | Dual J-K Master-Slave Flip-Flop | /30108 | * | F W | F W |
| 54LS109 | Dual J-K Positive EdgeTriggered Flip-Flop | /30109 | * * | F W | F W |
| 54LS112 | Dual J-K Negative EdgeTriggered Flip-Flop | /30103 | * * | F W | F W |
| 54LS113 | Dual J-K Negative EdgeTriggered Flip-Flop | /30104 | * * | F W | F W |
| 54LS114 | Dual J-K Negative EdgeTriggered Flip-Flop | /30105 | * * | F W | F W |
| 54LS122 | Retriggerable Monostable Multivibrator | $/ 31403$ | - - | - - | - - |
| 54LS125 | Quad Bus Buffer Gate w/Tri-State Outputs | /32301 | * * | * * | F W |
| 54LS126 | Quad Bus Buffer Gate w/Tri-State Outputs | /32302 | * * | * * | F W |
| 54LS132 | Quad Schmitt Trigger | /31303 | * * | F W | F W |
| 54LS136 | Quad Exclusive-OR with o/c | - | - - |  | F W |
| 54LS138 | 3-to-8 Line Decoder/Demux | /30701 | * * | * * | F W |
| 54LS139 | Dual 2-to-4 Line Decoder/ Demux | /30702 | * * | * * | F W |
| 54LS145 | $B C D$ to Decimal Decoder/Dye | - | - - | - - | F W |
| 54LS151 | 8-Line to 1-Line Mux | /30901 | * | * ** |  |
| 54LS153 | Dual 4-Line to 1-Line Mux | /30902 | * * | F W | F W |
| 54LS154 | 4 -Line to 16 -Line Decoder/ Demux | - | - | - | 1 Q |
| 54LS155 | Dual 2-Line to 4-Line Decoder/Demux | - | - - | - | F W |
| 54LS157 | Quad 2-Input Data Selector (non-inv.) | /30903 | * * | F W | F W |
| 54LS158 | Quad 2-Input Data Selector (inv.) | /30904 | * * | F W | F W |
| 54LS160 | Synchronous 4-Bit Decade Counter | /31503 | * * | * * | $F W$ |
| 54LS161 | Synchronous 4-Bit Binary Counter | /31504 | * * | F W | F W |
| 54LS162 | Synchronous 4-Bit Decade Counter | /31511 | * * | * * | F W |
| 54LS163 | Synchronous 4-Bit Binary Counter | /31512 | * | * * | F W |
| 54LS164 | 8-Bit Parallel-Out Serial Shift Register | /30605 | * * | F W | F W |
| 54LS170 | 4X4 Register File | - | - - | - - | F W |
| 54LS173 | Quad D-Type Flip-Flop (Tri-State) (8T10) | - | - - | - - | F W |
| 54LS174 | Hex D-Type Flip-Flop with Clear | /30106 | * * | F W | $F W$ |
| 54LS175 | Quad D-Type Edge-Triggered Flip-Flop | /30107 | * * | F W | F W |
| 54LS181 | 4-Bit Arithmetic Logic Unit | /30801 | 2 | 1 | 1 Q |
| 54LS190 | Synchronous Up/Down Counter (BCD) | /31513 | * * | F W | F W |
| 54LS191 | Synchronous Up/Down Counter (Binary) | /31509 | * * | F W | F W |

NOTE
Per QPL 38510-28 dated 1 April 1977
$1=$ Level 1 Qualification
2 = Level 2 Qualification
${ }^{*}=\operatorname{In}$ Process

LOGIC-54LS SERIES (Cont'd)

|  |  |  | JAN QUAL | $\begin{aligned} & \text { JAN } \\ & \text { PROC- } \\ & \text { ESSED } \end{aligned}$ | $\begin{gathered} \text { MIL } \\ \text { REL/883 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DEVICE | DESCRIPTION | $\begin{aligned} & \text { JM38510 } \\ & \text { SLASH } \\ & \text { SHEET } \end{aligned}$ |  | $\stackrel{y}{3}$ |  |
| 54LS192 | Synchronous Decade Up/Down Counter | /31507 | * * | F W | F W |
| 54LS193 | Synchronous 4-Bit Binary Up/Down Counter | /31508 | * * | F W | F W |
| 54LS194 | 4-Bit Bidirectional Universal Shift Register | /30601 | * | * * | * * |
| 54LS195 | 4-Bit Parallel-Access Shift Register | /30602 | * * | * * | * * |
| 54LS196 | Presettable Decade Counter/ <br> Latch (8290) | /31601 | * * | * * | * * |
| 54LS197 | Presettable Binary Counter/ <br> Latch (8291) | /31602 | * * | * * | * |
| 54LS221 | Dual Monostable Multivibrator | /31402 | * * | * * | * * |
| 54LS251 | Data Selector/Mux with 3-State Outputs | /30905 | * * | * * | * * |
| 54LS253 | Dual 4-Line to 1-Line Data Selector/Mux | 130908 | * * | F W | F W |
| 54LS257 | Quad 2-Line to 1-Line Data Selector/Mux | /30906 | * * | F W | F W |
| 54LS258 | Quad 2-Line to 1-Line Data Selector/Mux | /30907 | * * | * * | F W |
| 54LS260 | Dual 5-Input NOR Gate | - | - - | - | F W |
| 54LS261 | 2X4 Parallel Binary Multiplier | - |  | - - | F W |
| 54LS266 | Quad Exclusive-NOR Gate | /30303 | 22 | F W | F W |
| 54LS279 | Quad S-R Latch | - | - - | - - | F W |
| 54LS280 | 9-Bit Odd/Even Parity Generator/Checker | - | - | - - | ** |
| 54LS283 | 4-Bit Adder | 131202 | * * | * * | F W |
| 54LS290 | Decade Counter | /32003 | * * | F W | F W |
| 54LS293 | 4-Bit Binary Counter | /32004 | * * | F W | $F \quad W$ |
| 54LS295A | 4-Bit Right-Shift Left-Shift Register | /30606 | * * | * * | $F W$ |
| 54LS298 | Quad 2-Input Mux with Storage | - | - | - - | $F \quad W$ |
| 54LS365 | Hex Buffer w/Common Enable (3-State) | /32201 | * * | * | F W |
| 54LS366 | Hex Buffer w/Common Enable (3-State) | /32202 | * | * * | F W |
| 54LS367 | Hex Buffer, 4-Bit and 2-Bit (3-State) | /32203 | * | * | F W |
| 54LS368 | Hex Buffer, 4-Bit and 2-Bit (3-State) | /32204 | * * | * | F W |
| 54LS375 | Quad Latch | - | - | - | F W |
| 54LS386 | Exclusive-OR Gate | - | - | - - | F W |
| 54LS395 | 4-Bit Cascadeable Shift Register (3-State) | /30607 | * * | * * | F W |
| 54LS445 | BCD to Decimal Decoder/Dye | - | - - | - - | F W |
| 54LS670 | 4X4 Register File (Tri-State) | - | - | - - | F W |

NOTE
Per QPL 38510-28 dated 1 April 1977.
$1=$ Level 1 Qualification
$2=$ Level 2 Qualification

* $=\ln$ Process


## LOGIC-54S SERIES

|  |  |  | JAN QUAL | $\begin{aligned} & \text { JAN } \\ & \text { PROC- } \\ & \text { ESSED } \end{aligned}$ | MIL REL/883 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DEVICE | DESCRIPTION | $\begin{aligned} & \text { JM38510 } \\ & \text { SLASH } \\ & \text { SHEET } \end{aligned}$ |  |  | ¢ |
| 54S00 | Quad 2-Input NAND Gate | 107001 | 11 | F W | F W |
| 54S02 | Quad 2-Input NOR Gate | 107301 | 22 | F W | F W |
| 54S03 | Quad 2-Input NAND Gate with o/c | /07002 | 22 | F W | F W |
| 54S04 | Hex Inverter | 107003 | 11 | F W | F W |
| 54S05 | Hex Inverter with o/c | 107004 | 11 | F W | F W |
| 54S08 | Quad 2-Input AND Gate | 108003 | * * | F W | F W |
| 54S09 | Quad 2-Input AND Gate with o/c | 108004 | - - | - - | F W |
| 54 S 10 | Triple 3-Input NAND Gate | 107005 | 22 | F W | F W |
| 54 S 11 | Triple 3-Input NAND Gate | 108001 | 22 | F W | F W |
| 54S15 | Triple 3-Input AND Gate with o/c | /08002 | 22 | F W | F W |
| 54S20 | Dual 4-Input NAND Gate | 107006 | 22 | F W | F W |
| 54S22 | Dual 4-Input NAND Gate with o/c | 107007 | 11 | F W | F W |
| 54S30 | 8-Input NAND Gate | 107008 | - - | - - | - - |
| 54S32 | Quad 2-Input OR Gate | - | - - | - - | F W |
| 54S40 | Dual 4-Input NAND Buffer | 107201 | 22 | F W | F W |
| 54S51 | Dual 2-Wide 2-Input A01 Gate | 107401 | 22 | F W | F W |
| 54S64 | 4-2-3-2 Input A01 Gate | 107402 | 22 | F W | F W |
| 54S65 | 4-2-3-2 Input A01 Gate | 107403 | 22 | F W | F W |
| 54574 | Dual D-Type Edge-Triggered Flip-Flop | 107101 | 22 | F W | F W |
| 54S85 | 4-Bit Magnitude Comparator | 108201 | * - | F | F |
| 54586 | Quad 2-Input Exclusive-OR Gate | /07501 | 22 | F W | F W |
| 54S112 | Dual J-K Negative EdgeTriggered Flip-Flop | /07102 | - - | - | F W |
| 54S113 | Dual J-K Negative EdgeTriggered Flip-Flop | /07103 | - - | - - | F W |
| 54S114 | Dual J-K Negative EdgeTriggered Flip-Flop | /07104 | - - | - - | F W |
| 54S133 | 13-Input NAND Gate | /07009 | 22 | F W | F W |
| 54S134 | 12-Input NAND Gate w/TriState Outputs | /07010 | 22 | F W | F W |
| 54S135 | Quad Exclusive-OR/NOR Gate | 107502 | - - | - - | - - |
| 54 S 138 | 3-to-8 Line Decoder/Demux | 107701 | - - | - - | - - |
| 54S139 | Dual 2-to-4 Line Decoder/ Demux | 107702 | - - | - - | F W |
| 54 S 140 | Dual 4-Input NAND Line Driver | /08101 | 22 | F W | F W |
| 545151 | 8-Line to 1-Line Mux | /07901 | 22 | F W | F W |
| 545153 | Dual 4-Line to 1-Line Mux | /07902 | 22 | F W | F W |
| 54 S 157 | Quad 2-Input Data Selector (non.inv.) | /07903 | 22 | F W | F W |
| $54 S 158$ | Quad 2-Input Data Selector (inv.) | 107904 | * * | F W | F W |
| $54 S 174$ | Hex D-Type Flip-Flop with Clear | /07106 | - - | - - | * * |
| 545175 | Quad D-Type Edge-Triggered Flip-Flop | 107105 | - - | - - | * * |
| 545181 | 4-Bit Arithmetic Logic Unit | 107801 | * - | 1 | 1 |
| 545182 | Look-Ahead Carry Generator | /07802 | - - | - | * * |
| 545194 | 4-Bit Bidirectional Universal Shift Register | 107601 | - - | - - | - - |
| 545195 | 4-Bit Parallel-Access Shift Register | 107602 | - - | - - | - - |

NOTE
Per QPL 38510-28 dated 1 April 1977
$1=$ Level 1 Qualification
$2=$ Level 2 Qualification
$\cdot=\ln$ Process

LOGIC-54S SERIES (Cont'd)

|  |  |  | JAN QUAL | $\begin{aligned} & \text { JAN } \\ & \text { PROC- } \\ & \text { ESSED } \end{aligned}$ | $\begin{gathered} \text { MIL } \\ \text { REL/883 } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DEVICE | DESCRIPTION | $\begin{gathered} \text { JM38510 } \\ \text { SLASH } \\ \text { SHEET } \end{gathered}$ |  |  | ¢ |
| 54S251 | Data Selector/Mux with 3-State Outputs | /08905 | - - | - - | - - |
| 545253 | Dual 4-Line to 1-Line Data Selector/Mux | - | - | - - | F W |
| 545257 | Quad 2-Line to 1-Line Data Selector/Mux | /07906 |  | - | - |
| 54 S 258 | Quad 2-Lint to 1-Line Data Selector/Mux | /07907 | - - | - - | - - |
| 545260 | Dual 5-Input NOR Gate | - | - - | - - | F W |
| 54S280 | 9-Bit Odd/Even Parity Generator/Checker | /07703 | - - | - - | - |
| 54S350 | 4/6 Bit Shifter-Tri-State | - | - - | - - | F |

## NOTE

Per QPL 38510-28 dated 1 Apr. 1977
$1=$ Level 1 Qualification
$2=$ Level 2 Qualification

* $=\ln$ Process

LOGIC-8200/9300/9600 SERIES

| DEVICE | DESCRIPTION | JM38510 <br> SLASH <br> SHEET | JAN QUALIFIED* |  | $\begin{gathered} \text { JAN } \\ \text { PROCESSED } \end{gathered}$ |  | $\begin{gathered} \text { MIL } \\ \text { REL/883 } \\ \text { MIL TEMP } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Dip | Flat <br> Pack | Dip | Flat Pack | Dip | Flat <br> Pack |
| 8200 | Dual 5-Bit Buffer Register | - | - | - | - | - | 1 | Q |
| 8201 | Dual 5-Bit Buffer Register with D Inputs | - |  | - | - | - | 1 | Q |
| 8202 | 10-Bit Buffer Register | - | - | - | - | - | 1 | Q |
| 8203 | 10-Bit Buffer Register with D Inputs | - | - | - | - | - | I | Q |
| 8230 | 8-Input Digital Multiplexer | /01402 | * | * | F | W | F | W |
| 8231 | 8-Input Digital Multiplexer | - | - | - | - | - | F | W |
| 8232 | 8-Input Digital Multiplexer | - | - | - | - | - | F | W |
| 8233 | 2-Input 4-Bit Digital Multiplexer | - | - | - | - | - | F | W |
| 8234 | 2-Input 4-Bit Digital Multiplexer |  | - | - | - | - | F | W |
| 8235 | 2-Input 4-Bit Digital Multiplexer | - | - | - | - | - | F | W |
| 8241 | Quad Exclusive-OR Gate | - | - | - | - | - | F | W |
| 8242 | Quad Exclusive-NOR Gate | - | - | - | - | - | F | W |
| 8243 | 8-Bit Position Scaler | - | - | - | - | - | I | Q |
| 8250 | Binary-to-Octal Decoder | /15204 | 2 | 2 | F | W | F | W |
| 8251 | BCD-to-Decimal Decoder | /15205 | 2 | 2 | F | W | F | W |
| 8252 | BCD-to-Decimal Decoder | /15206 | 2 | 2 | F | W | F | W |
| 8260 | Arithmetic Logic Unit | - | - | - | - | - | 1 | Q |
| 8261 | Fast Carry Extender | - | - | - | - | - | F | W |
| 8262 | 9-Bit Parity Generator and Checker | - | - | - | - | - | F | W |
| 8263 | 3-Input 4-Bit Digital Multiplexer | - | - | - | - | - | 1 | Q |
| 8264 | 3-Input 4-Bit Digital Multiplexer |  | - | - | - | - | I | Q |
| 8266 | 2-Input 4-Bit Digital Multiplexer | - | - | - | - | - | F | W |
| 8267 | 2-Input 4-Bit Digital Multiplexer | - | - | - | - | - | F | W |
| 8268 | Gated Full Adder | - | - | - | - | - | F | Q |
| 8269 | 4-Bit Comparator | - | - | - | - | - | F | W |
| 8270 | 4-Bit Shift Register | - | - | - | - | - | F | W |
| 8271 | 4-Bit Shift Register | - | - | - | - | - | F | W |
| 8273 | 10-Bit Serial-In, Parallel-Out Shift Register | - | - | - | - | - | F | W |
| 8274 | 10-Bit Parallel-In, Serial-Out Shift Register | - | - | - | - | - | F | W |
| 8275 | Quad Bistable Latch | - | - | - | - | - | F | W |
| 8276 | 8-Bit Serial Shift Register | - | - | - | - | - | F | - |
| 8277 | Dual 8-Bit Shift Register | - | - | - | - | - | F | - |
| 8280 | Presettable Decade Counter | - | - | - | - | - | F | W |
| 8281 | Presettable Binary Counter | - | - | - | - | - | F | W |
| 8284 | Binary Up/Down Counter | - | - | - | - | - | F | W |
| 8285 | Decade Up/Down Counter | - | - | - | - | - | F | W |
| 8288 | Divide-by-Twelve Counter | - | - | - | - | - | F | W |
| 8290 | Presettable High Speed Decade Counter | - | - | - | - | - | F | W |
| 8291 | Presettable High Speed Binary Counter | - | - | - | - | - | F | W |
| 8292 | Presettable Low Power Decade Counter | - | - | - | - | - | F | W |
| 8293 | Presettable Low Power Binary Counter | - | - | - | - | - | F | W |
| 9300 | 4-Bit Shift Register | /15901 | * | * | F | W | F | W |
| 9301 | BCD to Decimal Decoder | /15206 | 2 | 2 | F | W | F | W |
| 9308 | Dual 4-Bit Latch w/Clear | - | - | - | - | - | I | Q |
| 9309 | Dual 4-Input Multiplexer | /01404 | 1 | 1 | F | W | F | W |
| 9310 | 4-Bit Decade Counter |  | - | - | - | - | F | W |
| 9312 | 8-Input Digital Multiplexer | 101402 | * | * | F | W | F | W |
| 9316 | 4-Bit Binary Counter | - | - | - | - | - | F | W |
| 9322 | Data Selector-Multiplexer | - | - | - | F | - | F | W |
| 9324 | 5-Bit Comparator | /15002 | * | * | F | WF | W | - |
| 9334 | 8-Bit Addressable Latch | /16001 | - | - | - | - | F | W |
| 9602 | Dual Monostable Multivibrator | - | * | * | F | W | F | W |

NOTE
Per QPL 38510-28 dated 1 Apr. 1977
$1=$ Level 1 Qualification
$2=$ Level 2 Qualification
${ }^{*}=$ In Process

LOGIC-8T INTERFACE SERIES

| DEVICE | DESCRIPTION | JAN <br> M38510 <br> SHEET | MIL REL/883 MIL TEMP |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Dip | Flat <br> Pack |
| 8T04 | 7-Segment Decoder Display Driver (Active-Low Outputs) | - | F | W |
| 8 T05 | 7-Segment Decoder Display Driver (Active-Hi Outputs) | - | F | W |
| 8 8T06 | 7-Segment Decoder Display Driver (Active-Low Outputs) | - | F | W |
| 8T09 | Quad Bus Driver with Tri-State Outputs | - | F | W |
| 8T10 | Quad D-Type Bus Latch (Tri-State) | - | F | W |
| 8 T13 | Dual Line Driver | - | F | W |
| 8T14 | Triple Line Receiver/Schmitt Trigger | - | F | W |
| 8T18 | Dual 2-Input NAND (High Voltage to TTL Interface) | - | F | W |
| 8T20 | Bidirectional Monostable Multivibrator (Diff. Input) | - | * | * |
| 8 T22 | Retriggerable Monostable Multivibrator (54122/9601) | - | F | W |
| 8T26A | Quad Bus Driver/Receiver (Tri-State Outputs) | - | F | W |
| 8 T28 | Quad Non-Inverting Bus Driver/Receiver (Tri-State Outputs) | - | F | W |
| 8T31 | 8-Bit Bidirectional I/O Port | - | * | * |
| 8 T32 | Programmable 8-Bit, 1/O Port (3-State) | - | 1 | * |
| 8 T33 | Programmable 8-Bit, 1/O Port (Open Collector) | - | 1 | , |
| 8 T35 | Asynchronous Programmable 8-Bit I/O Port (Open Collector) | - | 1 | W |
| 8 T37 | Hex Bus Receiver with Hysteresis-Schmitt Trigger (DM8837) |  | F | W |
| 8T38 | Quad Bus Transceiver (Open Collector) (DM8838) | - | F | W |
| 8 870 | Quad 2-Input NAND Gate (High Voltage) | - | F | W |
| 8 T90 | Hex Inverter (High Voltage) | - | F | W |
| 8 T95 | High Speed Hex Buffers/Inverters (74365/DM8095) | - | F | W |
| 8T96 | High Speed Hex Buffers/Inverters (74366/DM8096) | - | F | W |
| 8 T97 | High Speed Hex Buffers/Inverters (74367/DM8097) |  | F | W |
| 8 T98 | High Speed Hex Buffers/Inverters (74368/DM8098) |  | F | W |

[^8]|  |  |  | $\begin{gathered} \text { JAN } \\ \text { QUAL* } \end{gathered}$ | $\begin{aligned} & \text { JAN } \\ & \text { PROC- } \\ & \text { ESSED } \end{aligned}$ | $\begin{gathered} \text { MIL } \\ \text { REL/883 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DEVICE | DESCRIPTION | $\begin{gathered} \text { JM38510 } \\ \text { SLASH } \\ \text { SHEET } \end{gathered}$ |  |  | ¢ |
| 5400 | Quad 2-Input NAND Gate | /00104 | 11 | F W | F W |
| 5401 | Quad 2-Input NAND Gate with o/c | /00107 | 11 | F W | F W |
| 5402 | Quad 2-Input NOR Gate | /00101 | 11 | F W | F W |
| 5403 | Quad 2-Input NAND Gate with o/c | /00109 | 11 | F | F - |
| 5404 | Hex Inverter | /00105 | 11 | F W | F W |
| 5405 | Hex Inverter with o/c | /00108 | 11 | F W | F W |
| 5406 | Hex Inverter w/Buffer/Driver with o/c | 100801 | - - | F W | F W |
| 5407 | Hex Buffer/Driver with o/c | 100803 | - - | F W | F W |
| 5408 | Quad 2-Input AND Gate | 101601 | 11 | $F \quad W$ | F W |
| 5409 | Quad 2-Input AND Gate with o/c | /01602 | 11 | F W | F W |
| 5410 | Triple 3-Input NAND Gate | /00103 | 11 | F W | F W |
| 5411 | Triple 3-Input NAND Gate | - | - - | - - | F W |
| 5412 | Triple 3-Input NAND Gate wih o/c | /00106 | - - | - | F W |
| 5413 | Dual NAND Schmitt Trigger | /15101 | * * | F W | F W |
| 5414 | Hex Schmitt Trigger | /15102 | * * | F W | F W |
| 5416 | Hex Inverter Buffer/Driver with o/c | /00802 | - - | F W | F W |
| 5417 | Hex Buffer/Driver with o/c | 100804 | - - | F W | F W |
| 5420 | Dual 4-Input NAND Gate | /00102 | 11 | F W | F W |
| 5421 | Dual 4-Input AND Gate | , | - | - - | F W |
| 5426 | Quad 2-Input NAND Gate with o/c | 100805 | $1-$ | F | F - |
| 5427 | Triple 3-Input NOR Gate | /00404 | * * | F W | F W |
| 5428 | Quad 2-Input NOR Buffer | /16201 | - - | - | F W |
| 5430 | 8-Input NAND Gate | /00101 | 11 | F W | F W |
| 5432 | Quad 2-Input OR Gate | /16101 | - | - - | F W |
| 5433 | Quad 2-Input NOR Buffer with o/c | - | - - | - - | F W |
| 5437 | Quad 2-Input NAND Buffer | 100302 | 11 | F W | F W |
| 5438 | Quad 2-Input NAND Buffer with o/c | /00303 | 11 | F W | F W |
| 5439 | Quad 2-Input NAND Buffer | - | - | - - | F W |
| 5440 | Dual 4-Input NAND Buffer | 100301 | 11 | F W | F W |
| 5442 | BCD-to-Decimal Decoder | 101001 | 11 | F W | $F$ W |
| 5443 | Excess 3-to-Decimal Decoder | 101002 | 11 | F W | F W |
| 5444 | Excess 3-Gray-to-Decimal Decoder | 101003 | 11 | F W | F W |
| 5445 | BCD-to-Decimal Decoder/Driver with o/c | /01004 | - - | F W | F W |
| 5446A | BCD-to-7 Segment Decoder/ Driver | /01006 | - - | F W | F W |
| 5447A | BCD-to-7 Segment Decoder/ Driver | /01007 | - - | F W | F W |
| 5448 | BCD-to-7 Segment Decoder/ Driver | $/ 01008$ | - - | F W | F W |
| 5450 | Expandable Dual 2-Wide 2Input A01 | /00501 | 11 | F W | F W |
| 5451 | Dual 2-Wide 2-Input A01 Gate | 100502 | 11 | F W | F W |
| 5453 | 4-Wide 2-Input A01 Gate (Expandable) | 100503 | 11 | F W | F W |
| 5454 | 4-Wide 2-Input A01 Gate | 100504 | 11 | F W | F W |
| 5455 | 2-Wide 4-Input A01 Gate | /04005 | - | - | - - |

## NOTE

Per QPL 38510-28 dated 1 Apr. 1977
$1=$ Level 1 Qualification
2 = Level 2 Qualification
$\cdot=\ln$ process

LOGIC-5400 SERIES (Cont'd)

|  |  |  | JAN <br> QUAL* | $\begin{aligned} & \text { JAN } \\ & \text { PROC- } \\ & \text { ESSED } \end{aligned}$ | $\begin{gathered} \text { MIL } \\ \text { REL/883 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DEVICE | DESCRIPTION | $\begin{gathered} \text { JM38510 } \\ \text { SLASH } \\ \text { SHEET } \end{gathered}$ |  |  | $\cdots$ |
| 5460 | Dual 4-Input Expander | - | - - | - | F W |
| 5470 | J-K Flip-Flop | /00206 | 11 | F W | $F W$ |
| 5472 | J-K Master-Slave Flip-Flop | $/ 00201$ | 11 | F W | F W |
| 5473 | Dual J-K Master-Slave Flip-Flop | /00202 | 11 | F W | F W |
| 5474 | Dual D-Type Edge-Triggered Flip-Flop | /00205 | 11 | F W | F W |
| 5475 | Quad Bistable Latch | 101501 | 11 | $F \quad W$ | F W |
| 5476 | Dual J-K Master-Slave Flip-Flop | 100204 | 11 | F W | $F W$ |
| 5477 | Quad Bistable Latch | 101502 | 1 | W | W |
| 5480 | Gated Full Adder | - | - - | - - | F W |
| 5483 | 4-Bit Binary Full Adder | 100602 | 11 | F W | F W |
| 5485 | 4-Bit Magnitude Comparator | /15001 | 11 | F W | F W |
| 5486 | Quad 2-Input Exclusive-OR Gate | /00701 | 11 | F W | F W |
| 5490 | Decade Counter | /01307 | * * | F W | F W |
| 5491 | 8-Bit Shift Register | - | - - | - - | F W |
| 5492 | Divide-by-Twelve Counter | 101301 | 11 | F W | $F \quad W$ |
| 5493 | 4-Bit Binary Counter | 101302 | 11 | F W | F W |
| 5494 | 4-Bit Shift Register (PISO) | - | - - | - | F W |
| 5495 | 4-Bit Left-Right Shift Register | 100901 | 1 - | F - | F W |
| 5496 | 5-Bit Shift Register | 100902 | 11 | F W | $F W$ |
| 54100 | 4-Bit Bistable Latch (Dual) | - | - - | - - | F W |
| 54107 | Dual J-K Master-Slave Flip-Flop | 100203 | 1 - | F | F - |
| 54109 | Dual J-K Positive EdgeTriggered Flip-Flop | - | - - | - - | F W |
| 54116 | Dual 4-Bit Latch with Clear | 101503 | $2-$ | I | I |
| 54121 | Monostable Multivibrator | /01201 | 11 | F W | F W |
| 54122 | Retriggerable Monostable Multivibrator | 101202 | - - | - - | - - |
| 54123 | Retriggerable Monostable Multivibrator | 101203 | 11 | F W | $F \quad$ W |
| 54125 | Quad Bus Buffer Gate w/Tri-State Outputs | /15301 | 22 | F W | F W |
| 54126 | Quad Bus Buffer Gate w/Tri-State Outputs | /15302 | 22 | F W | F W |
| 54128 | Quad 2-Input NOR Buffer | - | - - | - | F W |
| 54132 | Quad Schmitt Trigger | /15103 | * * | F W | F W |
| 54145 | BCD-to-Decimal Decoder/Driver with o/c | 101005 | - - | F W | F W |
| 54147 | 10-Line to 4-Line Priority Encoder | /15601 | * * | F W | F W |
| 54148 | 8-Line to 3-Line Priority Encoder | $/ 15602$ | * | F W | F W |
| 54150 | 16-Line to 1-Line Mux | 101401 | $2-$ | 1 - | 1 - |
| 54151 | 8 -Line to 1 -Line Mux | 101406 | 22 | F W | F W |
| 54152 | 8-Line to 1-Line Mux | - | - | - - | F W |
| 54153 | Dual 4-Line to 1-Line Mux | 101403 | 22 | F W | F W |
| 54154 | 4-Line to 16 -Line Decoder/ Demux | /15201 | * | 1 - | 1 Q |
| 54155 | Dual 2-Line to 4-Line Decoder/Demux | $/ 15202$ | 22 | F W | F W |
| 54156 | Dual 2-Line to 4-Line Decoder/Demux | /15203 | 22 | F W | F W |
| 54157 | Quad 2-Input Data Selector (non-inv.) | 101405 | 11 | F W | F W |
| 54158 | Quad 2-Input Data Selector (inv.) | - |  | - - | F W |
| 54160 | Synchronous 4-Bit Decade Counter | 101303 | 11 | F W | F W |

NOTE
Per QPL 38510-28 dated 1 Apr. 1977
$1=$ Level 1 Qualification
$2=$ Level 2 Qualification
$*=$ In process

LOGIC-5400 SERIES (Cont'd)

|  |  |  | $\begin{aligned} & \text { JAN } \\ & \text { QUAL } \end{aligned}$ | $\begin{aligned} & \text { JAN } \\ & \text { PROC- } \\ & \text { ESSED } \end{aligned}$ | $\begin{gathered} \text { MIL } \\ \text { REL/883 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DEVICE | DESCRIPTION | $\begin{aligned} & \text { JM38510 } \\ & \text { SLASH } \\ & \text { SHEET } \end{aligned}$ |  |  |  |
| 54161 | Synchronous 4-Bit Binary Counter | /01306 | 11 | F W | F W |
| 54162 | Synchronous 4-Bit Decade Counter | 101305 | 11 | F W | F W |
| 54163 | Synchronous 4-Bit Binary Counter | /01304 | 11 | F W | F W |
| 54164 | 8-Bit Parallel-Out Serial Shift Register | /00903 | 1 - | F - | F - |
| 54165 | Parallel-Load 8-Bit Shift Register | /00904 |  |  | $\begin{array}{ll} F & W \\ F & W \end{array}$ |
| 54166 | 8-Bit Shift Register | - | - - | - - | F |
| 54170 | 4X4 Register File | 101801 |  |  |  |
| 54174 | Hex D-Type Flip-Flop with Clear | 101701 | 11 | F W | F W |
| 54175 | Quad D-Type Edge-Triggered Flip-Flop | 101702 | 11 | F W | F W |
| 54180 | 8-Bit Odd/Even Parity Checker | 101901 | 2 | F W | F W |
| 54181 | 4-Bit Arithmetic Logic Unit | /01101 | 1 | I - | 1 - |
| 54182 | Look-Ahead Carry Generator | /01102 | 11 | F W | F W |
| 54190 | Synchronous Up/Down Counter (BCD) | - | - | - - | * |
| 54191 | Synchronous Up/Down Counter (Binary) | - | - - | - - | * * |
| 54192 | Synchronous Decade Up/Down Counter | 101308 | * * | F W | F W |
| 54193 | Synchronous 4-Bit Binary Up/Down Counter | 101309 | * * | F W | F W |
| 54194 | 4-Bit Bidirectional Universal Shift Register | 100905 | * * | F W | F W |
| 54195 | 4-Bit Parallel-Access Shift Register | 100906 | * * | F W | F W |
| 54198 | 8-Bit Shift Register | - | - - | - - | 1 Q |
| 54199 | 8-Bit Shift Register | - | - - | - - | - - |
| 54221 | Dual Monostable Multivibrator | - | - - | - - | F W |
| 54279 | Quad S-R Latch | - | - - | - | F W |
| 54298 | Quad 2-Input Mux with Storage | - | - - | - - | F W |
| 54365 | Hex Buffer w/Common Enable (3-State) | /16301 | * | * * | * |
| 54366 | Hex Buffer w/Common Enable (3-State) | /16302 | * | * | F W |
| 54367 | Hex Buffer, 4-Bit and 2-Bit (3-State) | /16303 | * | * * | F W |
| 54368 | Hex Buffer, 4-Bit and 2-Bit (3-State) | /16304 | * * | * * | F W |

NOTE
Per QPL 38510-28 dated 1 Apr. 1977
$1=$ Level 1 Qualification
$2=$ Level 2 Qualification
$\cdot=\operatorname{In}$ process

## LOGIC-54H SERIES

|  |  |  | JAN QUAL | $\begin{aligned} & \text { JAN } \\ & \text { PROC- } \\ & \text { ESSED } \end{aligned}$ | $\begin{gathered} \text { MIL } \\ \text { REL/883 } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DEVICE | DESCRIPTION | $\begin{gathered} \text { JM38510 } \\ \text { SLASH } \\ \text { SHEET } \end{gathered}$ |  |  |  |
| 54 HOO | Quad 2-Input NAND Gate | / 02304 | 11 | F W | F W |
| 54 HO 1 | Quad 2-Input NAND Gate with o/c | /02306 | 11 | F W | F W |
| 54 H 04 | Hex Inverter | /02305 | 11 | F W | F W |
| 54 H 05 | Hex Inverter with o/c | - | - - | - - | $F$ W |
| 54 H 08 | Quad 2-Input AND Gate | /15501 | $2-$ | F | F W |
| 54 H 10 | Triple 3-Input NAND Gate | 102303 | 11 | F W | $F W$ |
| 54 H 11 | Triple 3-Input NAND Gate | /15502 | $2-$ | $F$ - | F W |
| 54 H 20 | Dual 4-Input NAND Gate | 102302 | 11 | F W | F W |
| 54 H 21 | Dual 4-Input AND Gate | /15503 | $2-$ | F | F W |
| 54 H 22 | Dual 4-Input NAND Gate with o/c | 102307 | 1 - | F W | F W |
| 54 H 30 | 8-Input NAND Gate | 102301 | 11 | F W | F W |
| 54 H 40 | Dual 4-Input NAND Buffer | /02401 | 11 | F W | F W |
| 54H50 | Expandable Dual 2-Wide 2-Input A01 | /04001 | 11 | F W | F W |
| 54H51 | Dual 2-Wide 2-Input A01 Gate | /04002 | 11 | F W | F W |
| 54H52 | Expandable 4-Wide 2-2-2-3 Input AND-OR Gate | - | - - | - | $F W$ |
| 54H53 | 4-Wide 2-Input A01 Gate (Expandable) | 104003 | 11 | F W | $F W$ |
| 54H54 | 4-Wide 2-Input A01 Gate | 104004 | 11 | F W | F W |
| 54 H 55 | 2-Wide 2-Input A01 Gate | 104005 | 11 | F W | F W |
| 54H60 | Dual 4-Input Expander | - | - - | - - | F W |
| 54 H 61 | Triple 3-Input Expander | - | - - | - - | F W |
| 54H62 | 3-2-2-3 Input AND-OR Expander | - | - - | - - | F W |
| 54 H 71 | J-K Master-Slave Flip-Flop with AND-OR Inputs | - | - - | - - | F W |
| 54 H 72 | J-K Master-Slave Flip-Flop | /02201 | 11 | F W | F W |
| 54 H 73 | Dual J-K Master-Slave Flip-Flop | /02202 | 11 | F W | F W |
| 54 H 74 | Dual D-Type Edge-Triggered Flip-Flop | 102203 | 11 | F W | F W |
| 54 H 76 | Dual J-K Master-Slave Flip-Flop | 102204 | 11 | F W | $F W$ |
| 54 H 101 | J-K Negative Edge-Triggered Flip-Flop | 102205 | 11 | F W | F W |
| 54 H 102 | J-K Negative Edge-Triggered Flip-Flop | - | - - | - - | F W |
| 54 H 103 | Dual J-K Negative EdgeTriggered Flip-Flop | 102206 | 11 | F W | F W |
| 54H106 | Dual J-K Negative EdgeTriggered Flip-Flop | - | - - | - - | F W |
| 54H108 | Dual J-K Negative EdgeTriggered Flip-Flop | - | - - | - - | $F \quad-$ |

## NOTE

Per QPL 38510-28 dated 1 April 1977.
$1=$ Level 1 Qualification
$2=$ Level 2 Qualification

* $=\ln$ Process


## BIPOLAR MEMORY

BIPOLAR MEMORY

*NOTE
$\mathrm{R}=\mathrm{BeO}$ Flat Pack
$\mathrm{F}=$ Cerdip
I = Ceramic DIP

BIPOLAR MEMORY CROSS REFERENCE

| AMD | SIGNETICS |
| :---: | :---: |
| 2700/27LS00 | 82S16 |
| 2701/27LS01 | 82S17 |
| 27S08/27LS08 | 82523 |
| 27S09/27LS09 | 82S123 |
| 27 S 10 | 82S126 |
| 27511 | 82 S 129 |
| 3101 | 82 S25 |
| 3101A/27S02 | 3101A |
| 93415 | 82510 |
| 93415A | 82510 |
| 93425 | 82511 |
| 93425A | 82511 |


| FAIRCHILD | SIGNETICS |
| :---: | :--- |
| 93403 | $82 S 25$ |
| 93406 | $82 S 226$ |
| 93411 | $82 S 17$ |
| 93415 | $82 S 10$ |
| $93415 A$ | $82 S 10$ |
| 93417 | $82 S 126$ |
| 93419 | $82 S 09$ |
| 93421 | $82 S 16$ |
| $93425 A$ | $82 S 11$ |
| 93427 | $82 S 129$ |
| 93431 | $82 S 130$ |
| 93436 | $82 S 130$ |
| 93438 | $82 S 140$ |
| 93441 | $82 S 131$ |
| 93442 | $82 S 240$ |
| 93446 | $82 S 131$ |
| 93448 | $82 S 141$ |
| 93452 | $82 S 136$ |
| 93453 | $82 S 137$ |
| 93454 | $82 S 280$ |
| 93457 | $82 S 126$ |
| 93464 | $82 S 281$ |
| 93467 | $82 S 129$ |


| HARRIS | SIGNETICS |  |
| :--- | :---: | :---: |
| 0064 | 82 S25 |  |
| HM7602-2 | $82 S 23$ |  |
| HM7603-2 | $82 S 123$ |  |
| HM7608-2 | $82 S 2708$ |  |
| HM7610-2 | $82 S 126$ |  |
| HM7611-2 | $82 S 129$ |  |
| HM7620-2 | $82 S 130$ |  |
| HM7621-2 | $82 S 131$ |  |
| HM7640-2 | $82 S 140$ |  |
| HM7641-2 | $82 S 141$ |  |
| HM7642-2 | $82 S 136$ |  |
| HM7643-2 | $82 S 137$ |  |
| HM7647-2 | $82 S 115$ |  |
| HM7680-2 | $82 S 180$ |  |
| HM7681-2 | $82 S 181$ |  |
| HM7684-2 | $82 S 184$ |  |
| HM7685-2 | $82 S 185$ |  |
|  |  |  |
| INTEL | SIGNETICS |  |
| 2708 | $82 S 2708$ |  |
| 2716 | $82 S 2716$ |  |
| 3101 | $82 S 25$ |  |
| $3101 A$ | $3101 A$ |  |
| $3106 / A$ | $82 S 16$ |  |
| $3107 / A$ | $82 S 17$ |  |
| $3301 A$ | $82 S 226$ |  |
| 3302 | $82 S 230$ |  |
| 3322 | $82 S 231$ |  |
| 3601 | $82 S 126$ |  |
| 3602 | $82 S 130$ |  |
| 3604 | $82 S 140$ |  |
| 3605 | $82 S 136$ |  |
| 3608 | $82 S 180$ |  |
| 3622 | $82 S 131$ |  |
| 3624 | $82 S 141$ |  |
| 3625 | $82 S 137$ |  |
| 3628 | $82 S 181$ |  |


| INTERSIL | SIGNETICS |
| :--- | :--- |
| 5501 | $82 S 25$ |
| 5508 | $82 S 10$ |
| 5508 A | $82 S 10$ |
| 5518 | $82 S 11$ |
| 5518 A | $82 S 11$ |
| 5523 | 74 S201 |
| $5523 A$ | $82 S 16$ |
| 5533 | 74 S301 |
| $5533 A$ | $82 S 17$ |
| 5600 | $82 S 23$ |
| $5603 A$ | $82 S 126$ |
| 5604 | $82 S 130$ |
| 5605 | $82 S 140$ |
| 5610 | $82 S 123$ |
| $5623 A$ | $82 S 129$ |
| 5624 | $82 S 131$ |
| 5625 | $82 S 141$ |
| 56506 | $82 S 136$ |
| 56526 | $82 S 137$ |


| MOTOROLA | SIGNETICS |
| :---: | :---: |
| $4004 A$ | $82 S 226$ |
| 4064 | $82 S 25$ |
| 4256 | $82 S 16$ |
| 5005 | $82 S 126$ |


| MMI | SIGNETICS |
| :--- | :--- |
| 5200 | 82 S226 |
| 5201 | $82 S 229$ |
| 5205 | $82 S 230$ |
| 5206 | $82 S 231$ |
| $5300-1$ | $82 S 126$ |
| $5301-1$ | $82 S 129$ |
| $5305-1$ | $82 S 130$ |
| $5306-1$ | $82 S 131$ |
| 5330 | $82 S 23$ |
| 5331 | $82 S 123$ |

NOTE
Parts are pin for pin functional replacements except where noted

| MMI | SIGNETICS |
| :---: | :---: |
| 5340-1 | 828140 |
| 5341 | 82S141 |
| 5348 | 82S146 |
| 5349 | 82S147 |
| 5352 | 82S136 |
| 5353 | $82 S 137$ |
| 5380 | 82S180 |
| 5381 | 82S181 |
| 5385 | 82S2708 |
| 5530 | 82 S 17 |
| 5531 | $82 S 16$ |
| 5560 | 82S25/3101A |


| NATIONAL | SIGNETICS |
| :---: | :---: |
| 54187 | 825226 |
| $54 \mathrm{S188}$ | $82 S 23$ |
| $54 \mathrm{S287}$ | 82S129 |
| 54 S 288 | 82S123 |
| 54 S 387 | 82S126 |
| 545570 | 82S130 |
| 545571 | 82S 131 |
| 545572 | 82S136 |
| 545573 | 82S 137 |
| 8582 | 82S17 |
| 86L99 | $82 S 25$ |
| 87 2295 | 82S140 |
| 87 2996 | 82S141 |


| T.I. | SIGNETICS |
| :---: | :---: |
| 54187 | 82S226 |
| 54 S 188 | 82 S 23 |
| 54 S 189 | 74S189 |
| 54 S 200 | 74 S 200 |
| 54S201 | 74S201 |
| 54S209 | 82S11 |
| 54S270 | 82S230 |
| 54 S 287 | 82S129 |
| 54 S 288 | 82S123 |
| 54S289 | 3101A |
| 54S301 | 745301 |
| 54 S 309 | $82 S 10$ |
| 54 S 370 | 82S231 |
| 54 S 387 | 825126 |
| 54 S 472 | $82 S 147$ |
| 54S473 | $82 S 146$ |
| 54S474 | $82 S 141$ |
| 54S475 | 82S 140 |
| 54 S 476 | 82S 137 |
| 54 S 477 | 82S136 |

## BIPOLAR MICROPROCESSOR

BIPOLAR MICROPROCESSORS

|  |  | AVAILABILITY |  |
| :---: | :---: | :---: | :---: |
| PRODUCT | DESCRIPTION | Dip | Flat Pack |
| 3001 | Microprogram Control Unit | I | R |
| 3002 | Central Processing Element (2-bit slice) | I | R |
| $8 \times 300$ | Interpreter/Microcontroller | I (4-bit slice) | $*$ |
| $2901-1$ | Central Processing Element | $*$ |  |

*Under development

MICROPROCESSOR SUPPORT CIRCUITS

| PRODUCT | DESCRIPTION | AVAILABILITY |  |
| :---: | :---: | :---: | :---: |
|  |  | Dip | Flatpack |
| LOGIC |  |  |  |
| 54123 | Retriggerable Monostable Multivibrator | F | W |
| 54180 | 8-Bit Odd/Even Parity Checker | F | W |
| 54298 | Quad 2-Input Mux with Storage | F | W |
| 54S182 | Look-Ahead Carry Generator | * | * |
| 54S194 | 4-Bit Bidirectional Shift Register | * | * |
| 54S195 | 4-Bit Parallel Access Shift Register | * | * |
| 54LS365 | High Speed Hex Tri-State Buffer | F | * |
| 54LS366 | High Speed Hex Tri-State Buffer | F | * |
| 54LS367 | High Speed Hex Tri-State Buffer | F | * |
| 54LS368 | High Speed Hex Tri-State Buffer | F | * |
| 8262 | 9-Bit Parity Generator Checker | F | W |
| 8281 | Presettable Binary Counter | F | W |
| 8291 | Presettable High Speed Binary Counter | F | W |
| 9602 | Dual Monostable Multivibrator | F | W |
| INTERFACE |  |  |  |
| 8T09 | Quad Bus Driver with Tri-State Output | F | w |
| 8T10 | Quad D-Type Bus Latch (Tri-State Outputs) | F | w |
| 8 T 13 | Dual Line Driver | F | w |
| 8 T 14 | Triple Line Receiver/Schmitt Trigger | F | w |
| 8T26A | Quad Bus Driver/Receiver (Tri-State) | F | w |
| 8 T 28 | Quad Bus Non-Inverting Driver/Receiver (Tri-State) | F | W |
| 8 T 32 | Programmable 8-Bit I/O Port (3-State) | 1 | * |
| 8 873 | Programmable 8-Bit I/O Port (Open Collector) | I | * |
| 8T35 | Asynchronous Programmable 8-Bit I/O Port (Open Collector) | 1 | * |
| 8 T95 | High Speed Hex Buffer (Tri-State) | F | * |
| 8T96 | High Speed Hex Inverter (Tri-State) | F | * |
| 8T97 | High Speed Hex Buffer (Tri-State) | F | * |
| 8T98 | High Speed Hex Inverter (Tri-State) | F | * |

*Under development

## AnALOG

LINEAR INDUSTRY CROSS REFERENCE

| FAIRCHILD | SIGNETICS | NATIONAL | SIGNETICS | RAYtheon | SIGNETICS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu$ A111 | LM111 | LM161 | SE527 | LM111 | LM111 |
| $\mu$ A139 | LM139 | LH2111 | LH2111 | LM139 | LM139 |
| $\mu$ A710 | $\mu$ A710 | LM111 | LM111 | RM710 | $\mu \mathrm{A} 710$ |
| $\mu$ A711 | $\mu$ A711 | LM119 | LM119 | RM711 | $\mu$ A711 |
| $\mu$ A733 | $\mu$ A733 | LM139 | LM139 | RM733 | $\mu$ A733 |
| $\mu$ AF155/156 | LF155/156 | LM193 | LM193/193A | LF155/56 | LF155/156 |
| $\mu \mathrm{A} 101$ | LM101 | LM710 | $\mu$ A710 | LM101 | LM101 |
| $\mu$ A101A | LM101A | LM711 | $\mu$ A711 | LM101A | LM101A |
| $\mu \mathrm{A} 107$ | LM107 | LM733 | $\mu$ A733 | LM107 | LM107 |
| $\mu \mathrm{A} 108$ | LM108 | LF155/56 | LM155/156 | LM108 | LM108 |
| $\mu$ A108A | LM108A | LH2101A | LH2101A | LM108A | LM108A |
| MC1556 | MC1556 | LH2108A | LH2108A | LM124 | LM124 |
| $\mu \mathrm{A} 1558$ | MC1558 | LM101A | LM101 | RM1556 | MC1556 |
| $\mu$ A709 | $\mu$ A709 | LM101 | LM101A | RM1558 | MC1558 |
| $\mu$ A709A | $\mu$ A709A | LM107 | LM107 | RM709 | $\mu$ A709 |
| $\mu$ A741 | $\mu$ A741 | LM108 | LM108 | RM741 | $\mu \mathrm{A} 71$ |
| ${ }_{\mu}^{\mu \text { A } 7747}$ | $\mu$ A 747 $\mu$ A 748 | ${ }_{\text {LM108A }}$ | ${ }_{\text {LM108A }}$ | RM 747 RM555 | $\mu$ A 747 |
| MC1555 | SE555 | LM158 | LM158 | LM109 | LM109 |
| $\mu \mathrm{A} 56$ | SE556 | LM1558 | MC1558 | RM723 | $\mu$ A723 |
| $\mu \mathrm{A} 109$ | LM109 | LM1581 | SE532 |  |  |
| $\mu$ A79XX | 79XX (7) | LM709 | $\mu$ A709 | T.I. | SIGNETICS |
| $\mu$ A723 | $\mu$ A723 | LM747 | ${ }_{\mu \text { A A } 747}$ | LM111 | LM111 |
|  |  | LM748 | $\mu \mathrm{A} 48$ | SN52710 | $\mu$ A710 |
| MOTOROLA | SIGNETICS | LM567 | SE567 | SN52711 | $\mu$ A711 |
| MLM111 | LM111 | DM7820 | DM7820 | SN52733 | $\mu \mathrm{A} 33$ |
| MC1710 | $\mu$ A710 | DM7830 | DM7830 SE555 | SN52101A | ${ }^{\text {LF }}$ LM101A 156 |
| MC1711 MC1733 | ${ }_{\mu}^{\mu}$ A7733 | LM555 | SE555 LM109 | SN52107 | LM107 |
| LF155/56 | LF155/156 | LM723 | $\mu \mathrm{A} 23$ | SN52709 | $\mu$ A709 |
| MLM101 | LM101 |  |  | SN52741 | $\mu$ A741 |
| MLM101A | LM101A | PMI | SIGNETICS | SN52748 | ¢A/78 DM7820 |
| MC1558 | MC1558 | SSS1508 | MC1508-8 | SN55183 | DM7830 |
| MC1709 | $\mu \mathrm{A} 09$ | DAC-08 | SE5008 | SN52555 | SE55 |
| MC1709P2 | $\mu$ A709A |  |  | SE556 | SE556 LM109 |
| MC1741 | $\mu$ A741 |  |  | ${ }_{\mu \text { A }}$ L99x ${ }^{\text {a }}$ | ${ }_{\mu \text { LM }}^{\text {A79XX }}$ (7) |
| MC1747 | ${ }_{\mu}^{\mu}$ A 74748 |  |  | SN52723 |  |
| MC3556 | SE556 |  |  |  |  |
| MLM109 | LM109 |  |  |  |  |
| MC788X | 78XX (7) |  |  |  |  |
| MC79XX | $79 \times \mathrm{X}$ (7) |  |  |  |  |
| MC1723 MC1508 |  |  |  |  |  |

## LINEAR PRODUCTS


*NOTE
F = Cerdip
$\mathrm{K} / \mathrm{T} / \mathrm{L}=$ Metal can
DA/DB = TO-3 can
Flat pack available-special request

| DEVICE | DESCRIPTION | PACKAGE |  |
| :---: | :---: | :---: | :---: |
| SE567 | PHASE LOCKED LOOPS Tone Decoder P11 | F | T |
| DM7820 | LINE RECEIVERS Dual Differential Line Receiver | F |  |
| DM7830 | Dual Differential Line Receiver | F |  |
|  | TIMERS |  |  |
| SE555 | Timer | F | T |
| SE556 | Dual Timer | F |  |
| SE558/9 | Quad Timer | F |  |
| M109 | VOLTAGE REGULATORS | DA |  |
| SE5554 | Dual Track Reg | F |  |
| 78XX (7) | Positive Reg | DA |  |
| 79XX (7) | Negative Reg | DA |  |
| 79MXX (7) | Med Power Reg | DB |  |
| $\mu \mathrm{A} 723$ | Precision Voltage Regulator | F | L |
|  | DRIVERS |  |  |
| DS1611-1614 | Peripheral Drivers |  | T |
|  | D/A |  |  |
| MC1508-8 | 8-Bit D/A | F |  |
| SE5008 | 8-Bit D/A | F |  |
| SE5009 | 8-Bit D/A | F |  |

## CHIP PROGRAM

## CHIP PROGRAM

Signetics recognizes the industry need for integrated circuit die requirements. All standard military and commercial products can be supplied in chip form.

The matrix below outlines process options available for all chip products. Refer to Signetics Die Program catalog for additional information regarding: testing, lot qualification, product pin-outs and ordering information.

| FLOW DESIGNATOR | VIS LEVEL | GLASS | GOLD BACKING |
| :---: | :---: | :---: | :---: |
| CB | H | Yes | No |
| CD | X | Yes | No |
| CE | H | Yes | Yes |
| CF | $X$ | Yes | Yes |
| CG | S | No | Yes |
| CH | $X$ | No | Yes |
| CJ | H | No | Yes |
| CK | S | Yes | No |
| CN | S | Yes | Yes |
| CP | X (SEM) | Yes | No |
| CW | H | No | No |
| CX | S | No | No |
| CY | X | No | No |

Table 6 PROCESS MATRIX
NOTES

1. Visual levels
$\mathrm{X}=$ Mil std 8832010.2 cond. A
$H=$ Mil std 8832010.2 cond. $B$
$\mathrm{S}=$ Signetics standard criteria
2. Temperature options:
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

## INTRODUCTION

The following information applies to all packages unless otherwise specified on individual package outline drawings.

## General

1. Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).
2. Lead spacing shall be measured within this zone.
a. Shoulder and lead tip dimensions are to centerline of leads.
3. Tolerances non-cumulative
4. Thermal resistance values are determined by utilizing the linear temperature dependence of the forward voltage drop across the substrate diode in a digital device to monitor the junction temperature rise during known power application across VCC and ground. The values are based upon 120 mils square die for plastic packages and a 90 mils square die in the smallest available cavity for hermetic packages. All units were solder mounted to P.C. boards, with standard stand-off, for measurement.

## Plastic Only

5. Lead material: Alloy 42 or equivalent, solder dipped.
6. Body material: Plastic
7. Round hole in top corner denotes lead No. 1.
8. Body dimensions do not include molding flash.

## Hermetic Only

9. Lead material
a. Alloy 52-gold plated, or solder dipped.
b. ASTM alloy F-15 (KOVAR) or equivalentgold plated, tin plated, or solder dipped.
c. ASTM alloy F-30 (Alloy 42) or equivalenttin plated.
d. ASTM alloy F-15 (KOVAR) or equivalentgold plated
e.ASTM alloy F-15 (KOVAR) or equivalenttin plated.
10. Body Material
a. 1010 Steel-nickel plated or tin plate over nickel.
b. Eyelet, ASTM alloy F-15 or equivalent-gold or tin plated.
c. Eyelet, ASTM alloy F -15 or equivalent-gold or tin plated, glass body
d. Ceramic with glass seal at leads.
e. BeO ceramic with glass seal at leads.
f. Ceramic with ASTM alloy F-15 or equivalent.
11. Lid Material
a. 1010 steel, nickel plated, or tin-plate over nickel, weld seal.
b. Nickel or tin plated nickel, weld seal.
c. Ceramic, glass seal.
d. ASTM alloy $\mathrm{F}-15$ or equivalent, gold plated
e. BeO Ceramic with glass seal.
f. Translucent $\mathrm{A1}_{2} \mathrm{O}_{3}$, glass seal.

## PLASTIC PACKAGES

| NO. OF LEADS | PACKAGE CODE | $\theta_{\mathrm{ja}} / \theta_{\mathrm{jc}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ | DESCRIPTION ${ }^{1}$ | PAGE |
| :---: | :---: | :---: | :---: | :---: |
| Standard Dual-in-Line |  |  |  |  |
| 8 | NE | 162/65 |  | 3 |
| 14 | NH | 150/65 | TO-116/MO-001 | 3 |
| 16 | NJ | 137/53 | MO-001 | 3 |
| 18 | NK | 135/53 |  | 3 |
| 20 | NL | 135/53 |  | 3 |
| 22 | NM | 120/53 |  | 3 |
| 24 | NN | 116/53 | MO-015 | 4 |
| 28 | NQ | 116/53 | MO-015 | 4 |
| 40 | NW ${ }^{3}$ | 110/50 | MO-015 | 4 |
| Power Dual-in-Line |  |  |  |  |
| 14 | $\mathrm{NHA}^{2}$ | 95/33 | Butterfly | 3 |
| 16 | NJA ${ }^{2}$ | 95/33 | Butterfly | 3 |
| 18 | NKA ${ }^{2,3}$ | 90/26 | Butterfly | 3 |
| 20 | NLA ${ }^{2,3}$ | 90/26 | Butterfly | 3 |
| 24 | NNA ${ }^{2}$ | 60/23 | Butterfly | 4 |
| 28 | NQA ${ }^{2}$ | 56/21 | Butterfly | 4 |
| Power |  |  |  |  |
| 3 | S | 200/70 | TO-92 | 5 |
| 3 | U | 75/3 | TO-220 | 5 |
| $3+$ GND | GB ${ }^{3}$ | 95/15 | Single-in-Line (SIL) | 5 |
| 4 + GND | $\mathrm{GC}^{3}$ | 95/15 | Single-in-Line (SIL) | 5 |
| $12+$ GND | $\mathrm{PH} / \mathrm{PHA}^{3}$ | 3 C 95/15 | Batwing | 5 |

12. Signetics symbol, angle cut, or lead tab denotes Lead No. 1.
13. Recommended minimum offset before lead bend.
14. Maximum glass climb .010 inches.
15. Maximum glass climb or lid skew is .010 inches.
16. Typical four places.
17. Dimension also applies to seating plane.

HERMETIC PACKAGES

| NO. OF LEADS | PACKAGE CODE | $\theta_{\mathbf{j a} /} / \theta_{\mathbf{j c}}\left({ }^{\circ} \mathrm{C} / \mathrm{w}\right)$ | DESCRIPTION ${ }^{1}$ | PAGE |
| :---: | :---: | :---: | :---: | :---: |
| Metal Headers |  |  |  |  |
| 2 | DA | TBD | TO-3 Solid Header | 6 |
| 3 | DB | TBD | TO-39 Solid Header, Short Can | 6 |
| 4 | DC | TBD | T0-72 Solid Header | 6 |
| 4 | DE | TBD | TO-72 Glass Filled Header | 6 |
| 8 | T | 150/25 | TO-99 Header ( 200 Dia .) | 7 |
| 10 | K | 150/25 | TO-100 Header, Short Can | 7 |
| 10 | L | 150/25 | TO-100 Header, Tall Can | 7 |
| Flat Packs |  |  |  |  |
| 10 | WF | 240/50 | Flat Ceramic | 8 |
| 14 | WH | 205/50 | Flat Ceramic | 8 |
| 16 | WJ | 200/50 | Flat Ceramic | 8 |
| 24 | WN | 155/40 | Flat Ceramic | 8 |
| 16 | RJ/RJA | 133/30 | Flat Ceramic, BeO | 8 |
| 18 | RKA ${ }^{3}$ | TBD | Flat Ceramic, BeO | - |
| 24 | RNA | TBD | Flat Ceramic, BeO | 8 |
| 28 | RQA | TBD | Flat Ceramic, BeO | 9 |
| 40 | RWA | TBD | Flat Ceramic, BeO | 9 |
| 10 | QF | 230/55 | Flat Ceramic | 9 |
| 14 | QH | 185/45 | Flat Ceramic | 9 |
| 16 | QJ | 170/45 | Flat Ceramic | 9 |
| 24 | QN | 155/44 | Flat Ceramic | 9 |
| 10 | QFA | 230/55 | Flat Ceramic Laminate | 10 |
| 14 | QHA | 185/45 | Flat Ceramic Laminate | 10 |
| 16 | QJA | 170/45 | Flat Ceramic Laminate | 10 |
| 24 | QNA | 155/44 | Flat Ceramic Laminate | 10 |
| Cerdip Family |  |  |  |  |
| 14 | FH | 110/30 | Dual in-Line Ceramic | 11 |
| 16 | FJ | 100/30 | Dual-in-Line Ceramic | 11 |
| 18 | FK | 93/27 | Dual-in-Line Ceramic | 11 |
| 22 | FM | 75/27 | Dual-in-Line Ceramic | 11 |
| 24 | FN | 60/26 | Dual-in-Line Ceramic | 11 |
| Laminated Ceramic, Side Brazed Lead |  |  |  |  |
| 8 | IEA | 100/30 | Dip Laminate | 12 |
| 14 | IHA | 95/25 | Dip Laminate | 12 |
| 16 | IJA | 90/25 | Dip Laminate | 12 |
| 18 | IKA | 88/25 | Dip Laminate | 12 |
| 22 | IMA | 80/25 | Dip Laminate | 12 |
| 24 | INC/IND | - 65/25 | Dip Laminate | 12 |
| 28 | IQA | 60/25 | Dip Laminate | 13 |
| 40 | IWA | 55/25 | Dip Laminate | 13 |
| 50 | IZA | TBD | Dip Laminate | 13 |

## NOTES

1. Dual-in-Line packages unless otherwise described
2. Package outline is the same as corresponding standard Dual-in-Line package with identical number of leads
3. Package not yet available, scheduled for 1977 release

## PACRAGES

PLASTIC: Standard and Power Dual-In-Line

## NE Package



## NJ Package and NJA Package



## NL Package and NLA Package



NH Package and NHA Package


NK Package and NKA Package


NM Package


## PACKAGES

PLASTIC: Standard and Power Dual-In-Line (cont'd.)

NN Package and NNA Package


NQ Package and NQA Package


NW Package

Package not yet available
Scheduled for 1977 release

## PAGKAGES

## PLASTIC: Power (Not Dual-In-Line)

## S Package



GB Package
U Package


GC Package

## Package not yet available

 Scheduled for 1977 release
## Package not yet available

Scheduled for 1977 release

## PH/PHA Package



## PACKAGES

HERMETIC: Metal Headers


DC Package


CONSTRUCTION NOTES: 9b, 10b, 11b

## DB Package



CONSTRUCTION NOTES: 9b, 10b, 11b


CONSTRUCTION NOTES: 9b, 10c, 11b

## PACKAGES

## HERMETIC: Metal Headers (cont'd.)

## T Package



CONSTRUCTION NOTES: 9b, 10c, 11b

## K Package



CONSTRUCTION NOTES: 9b, 10c, 11b

## L Package



CONSTRUCTION NOTES: 9b, 10c, 11 b

## PACRAGES

## HERMETIC: Flat Packs

## WF Package



CONSTRUCTION NOTES: 9c, 10d, 11c

## WH Package



WN Package


CONSTRUCTION NOTES: 9c, 10d, 11c

RNA Package


## PACKAGES

## HERMETIC: Flat Packs (cont'd.)

## RQA Package



CONSTRUCTION NOTES: 9c. 10e, 11e

## QF Package



CONSTRUCTION NOTES: 9d, 10d, 11c
QJ Package


CONSTRUCTION NOTES: 9d, 10d, 11c

RWA Package


CONSTRUCTION NOTES: 9d, 10d, 11c

## QN Package



## PACKAGES

HERMETIC: Flat Packs (cont'd.)

QFA Package


CONSTRUCTION NOTES: 9d, 10t, 11e

OJA Package


CONSTRUCTION NOTES: 9d, 10f, 11c

OHA Package


CONSTRUCTION NOTES: 9d, 10f, 11c

QNA Package


RKA Package

Package not yet available Scheduled for 1977 release

## PACKAGES

HERMETIC: Cerdip

## FH Package



## FK Package



CONSTRUCTION NOTES: 9c, 10d, 11 c

## FJ Package



CONSTRUCTION NOTES: 9c, 10d, 11c

FM Package


FN Package


HERMETIC: Laminated Ceramic, Side Brazed Lead

## IEA Package



CONSTRUCTION NOTES: 9e, 10f, 11c

## IJA Package



CONSTRUCTION NOTES: 9e, 10t, 11e

## IMA Package



CONSTRUCTION NOTES: 9o, 10f, 11c

IHA Package


CONSTRUCTION NOTES: 9e, 10f, 11e

IKA Package


CONSTRUCTION NOTES: 9e, 10f, 11c

INC Package and IND Package


CONSTRUCTION NOTES: 9e, 101, 11e, 11f(IND)

## PACKAGES

## HERMETIC: Laminated Ceramic, Side Brazed Lead (cont'd.)

IQA Package


CONSTRUCTION NOTES: 9e, 10t, 11e

## IZA Package

CONSTRUCTION NOTES: 9e, 10f, 11c


IWA Package


# Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies 

Argentina: FAPESA I.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 421261.
Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.
Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel 5230000.
Brazil: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S /Loja, SAO PAULO, SP, Tel. 284-4511.
Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01.
Colombia: SADAPE S.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600600.
Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KOBENHAVN NV., Tel. (01) 691622.
Finland: OY PHILIPS AB, Elcoma Division, K aivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915311.
Hong Kong: PHILIPS HONG KONG LTD., Comp. Dept., Philips Ind. Bidg., Kung Yip St., K.C.T.L. 289, KWAI CHUNG, N.T. Tel. $12-245121$.
India: PHILIPS INDIA LTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, JI. Jen. Gatot Subroto, JAKARTA, Tel. 44163.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.P.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6994.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 44-4202.
Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 5-33-11-80.
Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, NL-4510 EINDHOVEN, Tel. (040) 793333.
New Zealand: Philips Electrical Ind. Ltd., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867119.
Norway: ELECTRONICA A/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 150590.
Peru: CADESA, Jr. Ilo, No. 216, Apartado 10132, LIMA, Tel. 277317.
Philippines: ELDAC, Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL, Tel. 86-89-51 to 59.
Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, TeI. 683121.
Singapore: PHILIPS SINGAPORE PTE LTD., Elcoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 538811.
South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG 2001, Tel. $24 / 6701$.
Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 3016312.
Sweden: A.B. ELCOMA, Lidingövägen 50, S-19 250 STOCKHOLM 27, TeI. 08/679780.
Switzerland: PHILIPS A.G., Elcoma Dept., Edenstrasse 20, CH-8027 ZÜRICH, Tel. 01/44 2211.
Taiwan: PHILIPS TAIWAN LTD., 3rd FI., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAlPEI, Tel. $5513101-5$.
Turkey: TÜRK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 435910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.
United States: (Active devices \& Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.
(Passive devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739.7700.
Uruguay: LUZILEGTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 94321.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, CARACAS, Tel. 360511.


[^0]:    NOTES on following page.

[^1]:    Input and Output fields of unused P-terms can be left blank. Unused inputs and outputs are FPLA terminals left floating

[^2]:    For each of the 9 outputs, either the function Fp (active high) or Fp (active low) is available, but not both

[^3]:    1. Conditional branch with condition not met
[^4]:    *Indicates possible interrupt signal

[^5]:    *A quasi-bidirectional port allows each bit to be designated as input or output under program control. If any bit of the port is set to a '1,' that bit becomes an input or output depending on the usage of the port pin. If the peripheral is driving the port bit (i.e., overriding the logic "1" condition produced by the internal port pull up resistor), then the bit is an input. If the peripheral is receiving from the port bit, then a " 0 " or " " written to the port will be transmitted to the peripheral

[^6]:    On card jumper point ' $A$ ' to ' $C$ ' and point ' $D$ ' to ' $E$.'

[^7]:    1. Output circuit:

    TS = Tri-state
    $00=0$ pen drain
    $B D=$ Bare drain
    $P D=$ Pull down
    PP $=$ Push-pull
    2. Temperature range
    $\mathrm{C}=$ Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75{ }^{\circ} \mathrm{C}\right)$
    $M=$ Military $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ )

[^8]:    * = Qualification planned

