INSTRUMENT CATHODE-RAY TUBE

 $14\ cm$ diagonal, rectangular flat-faced oscilloscope tube with mesh and metal backed screen. The tube has side connections to the x- and y-plates, and is intended for use in transistorized oscilloscopes up to a frequency of $50\ MHz$.

QUICK REFERENCE DATA			
Final accelerator voltage	Vg8(1)	10	kV
Display area	. 10	00 x ::80	$^{ m mm^2}$
Deflection coefficient, horizontal	$M_{\mathbf{X}}$	15,5	V/cm
vertical	M_y	4, 2	V/cm

SCREEN: Metal backed phosphor

	Colour	Persistence
D14-121GH	green	medium short

Useful screen area		> 100 x	80	mm^2
Useful scan at $V_{g8(\ell)}/V_{g2,g4} = 6,7$,	horizontal	> •	100	mm
	vertical	>,	80	mm
Spot eccentricity in horizontal and vertical directions		<	6	mm
HEATING				
Indirect by AC or DC; parallel supply				
Heater voltage		v_f	6,3	v
Heater current		If	300	mA

MECHANICAL DATA

Dimensions in mm

- (1) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm.
- (2) The centre of the contact is located within a square of 10 mm x 10 mm around the true geometrical position.

Fig. 1 Outlines.

Mounting position

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions	and	connections

See also outline drawing Overall length (socket included) Face dimensions	< 100 x	385 120	mm mm
Net mass	approx.	900	g
Base	14-pin a	ll glass	
Accessories			
Socket (supplied with tube) Final accelerator contact connector Mu-metal shield	type type type	55566 55563 55581	Α
CAPACITANCES .			
x_1 to all other elements except x_2	$C_{x1(x2)}$	5,5	pF
x_2 to all other elements except x_1	$C_{x2(x1)}$	5,5	pF
y ₁ to all other elements except y ₂	$C_{y1(y2)}$	4	pF
y2 to all other elements except y1	$C_{y2(y1)}$	4	pF
x1 to x2	C_{x1x2}	2, 2	pF
y ₁ to y ₂	c_{y1y2}	1,7	pF
Control grid to all other elements	$C_{\mathbf{gl}}$	5,5	pF
Cathode to all other elements	Ck	4,5	pF

FOCUSING electrostatic

DEFLECTION double electrostatic

x plates symmetrical y plates symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $90 \pm 1^{\circ}$

Anglr between x trace and the horizontal axis of the face $< 5^{\circ}$ see note 1

LINE WIDTH

Measured with the shrinking raster method under typical operating conditions, adjusted for optimum spot size at a beam current I_ℓ = 10 $\mu A.$

Line width at screen centre 1.w. 0, 40 mm over the whole screen area 1.w. av. < 0, 45 mm

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	$V_{g_8(\ell)}$		10	kV
Geometry-control electrode voltage	V _{g7}	1500) + 100	V see note 2
Post deflection and interplate shield voltage	v^{g7}	1300	1500	
Background illumination control voltage		0		V
Deflection plate shield voltage	$\Delta V_{g_6}^{g_6}$	U	to -15	V see note 2
	νος		1500	V see note 3
Focusing electrode voltage	$v_{g_3}^{g_3}$	250	to 350	V
First accelerator voltage	Vg2.g₁		1500	V
Astigmatism control voltage	$\Delta V_{g_2,g_4}$		+50	V see note 4
Control grid voltage for extinction	82,84			
of focused spot	V	-20	to -60	V
Grid drive for $10 \mu A$ screen current	v_{g_1}			•
		approx.	12	V
Deflection coefficient, horizontal	M_x	av.	15,5	V/cm
•	Α	<	16	V/cm
vertical	M_v	av.	4, 2	V/cm
De tate of the same	у	<	4,6	V/cm
Deviation of linearity of deflection		<	2	% see note 5
Geometry distortion		See	note 6	
Useful scan, horizontal		>	100	mm
vertical		>	80	
			80	mm

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$v_{g_8(\ell)}$	max.	11	kV
Post deflection and interplate shield vo	ltage	min.	9	kV
and geometry control electrode voltage	V_{g_7}, V_{g_6}	max.	2200	V
Deflection plate shield voltage	v_{g7}, v_{g6} v_{g5}	max.	2200	V
Focusing electrode voltage	$V_{\mathbf{g_3}}^{3}$	max.	2200	V
First accelerator and astigmatism control electrode voltage	_	max.	2200	V
control electrode voltage	v_{g_2,g_4}	min.	1350	v
Control grid voltage	_V	max.	200	V
	$-v_{g_1}$	min.	0	v
Cathode to heater voltage	$v_{\mathbf{k}\mathbf{f}}$	max.	125	\mathbf{v}
	-V _{kf}	max.	125	V
Voltage between astigmatism control				
electrode and any deflection plate	$V_{g_A/x}$	max.	500	v
	$V_{g_4/x}$ $V_{g_4/y}$	max.	500	V
Grid drive, average	· .	max.	20	V
Screen dissipation	Wρ	max.	8	mW/cm^2
Ratio Vg8(1)/Vg2,g4	$V_{g_8(\ell)}V_{g_2,g_4}$	max.	6,7	
Control grid circuit resistance	R _{g1}	max.	1	MΩ

NOTES

- In order to align the x-trace with the horizontal axis of the screen, the whole
 picture can be rotated by means of a rotation coil. This coil will have 50 amp.
 turns for the indicated max. rotation of 5° and should be positioned as indicated
 on the drawing.
- 2. This tube is designed for optimum performance when operating at a ratio $V_{g_8(f)}/V_{g_2,g_4} = 6,7$

The geometry control voltage V_{g_7} should be adjusted within the indicated range (values with respect to the mean x-plate potential).

A negative control voltage on g_6 (with respect to the mean x-plate potential) will cause some pincushion distortion and less background light.

By the use of the two voltages, V_{g_6} and V_{g_7} , it is possible to find the best compromise between background light and raster distortion.

- 3. The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x- and y-plate potentials should be equal for optimum spot quality.
- 4. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 5. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 6. A graticule, consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73,6 mm is aligned with the electrical x axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.
- 7. To avoid damage to the side contacts the narrower end of the Mu-metal shield should have an internal diameter of not less than 64 mm.