INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat faced oscilloscope tube with mesh and metal-backed screen. The tube has side connections to the x and y-plates and an internal graticule.

QUICK REFERENCE DATA				
Final accelerator voltage	${ m v_{g8(\ell)}}$	10	kV	
Display area	_	100 x 80	mm^2	
Deflection coefficient, horizontal	$M_{\mathbf{X}}$	15, 2	V/cm	
vertical	$M_{\mathbf{v}}$	4, 1	V/cm	

SCREEN: Metal-backed phosphor

		Colour	Persi	stence		
	D14-162GH/09	green	medium	-short		
Useful screen area		>	100 x 80	$^{\rm mm^2}$		
Useful scan at $V_{g8(\ell)}/V_{g2,g4} = 6,7$, horizontal		>	100	mm		
	-	vertical	>	80	mm	
Spot eccentricity in horizontal direction		<	6	mm		

The x-trace can be aligned with the x-lines of the graticule by means of correction coils fitted around the tube by the manufacturer (see last page but one).

HEATING: Indirect by a.c. or d.c.; parallel supply

Heater voltage	v_f	6,3	<u>v</u>
Heater current	I _f	300	mA

MECHANICAL DATA

Dimensions and connections

See also outline drawing

Overall length (socket included) < 407,5 mm

Face dimensions < 100 x 120 mm

Net mass approx. 1200 g

- (1) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm.
- * The centre of the contact is situated within a square of 10 mm x 10 mm around the true geometrical position.

Base

14 pin all glass

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Accessories

Socket (supplied with tube) type 55566
Final accelerator contact connector type 55563A
Mu-metal shield type 55585 1)

FOCUSING

electrostatic

DEFLECTION

double electrostatic

x-plates

symmetrical

y-plates

symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y-traces $90^{\circ} \pm 1^{\circ}$

Line width at the centre of the screen

Angle between x-trace and the horizontal axis of the face 0° See "Correction Coils".

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I_{ℓ} = 10 μA .

	•	
$C_{x1(x2)}$	5,5	pF
$C_{x2(x1)}$	5,5	pF
$C_{y1(y1)}$	3,5	pF
$C_{y2(y1)}$	3,5	pF
C_{x1x2}	2	pF
C_{y1y2}	1,6	pF
$C_{f g1}$	5,5	pF
$C_{\mathbf{k}}$	4	pF
	$C_{x2(x1)}$ $C_{y1(y1)}$ $C_{y2(y1)}$ C_{x1x2} C_{y1y2} C_{g1}	$\begin{array}{cccc} C_{x2(x1)} & 5,5 \\ C_{y1(y1)} & 3,5 \\ C_{y2(y1)} & 3,5 \\ C_{x1x2} & 2 \\ C_{y1y2} & 1,6 \\ C_{g1} & 5,5 \\ \end{array}$

0,3

mm

1. w.

¹⁾ See "Notes".

TYPICAL OPERATING CONDITIONS				
Final accelerator voltage		$V_{g8(\ell)}$) 10	kV
Geometry control electrode voltage		V_{g7}	1500 ± 100	v ²)
Post deflection and interplate shield voltage Background illumination control voltage	age	$V_{g6} \\ \Delta V_{g6}$	1500 0 to -15	V V 2)
Deflection plate shield voltage		V_{g5}	1500	v 3)
Focusing electrode voltage		V_{g3}	450 to 550	v
First accelerator voltage Astigmatism control voltage		$V_{g2,g}$ $\Delta V_{g2,g}$	4 1500 4 ±50	V V 4)
Control grid voltage for visual extinction	of focused spot	v_{g1}	-30 to -70	v
Grid drive for $10\mu\text{A}$ screen current			approx. 20	v
Deflection coefficient, horizontal		$M_{\mathbf{X}}$	15, 2 < 16	V/cm V/cm
vertical		My	4, 1 < 4, 4	V/cm V/cm
Deviation of linearity of deflection			< 2	% ⁵)
Geometry distortion			See note 6	
Useful scan, horizontal vertical			> 100 > 80	mm mm
LIMITING VALUES (Absolute max. ratin	g system)			
Final accelerator voltage	$V_{g8(\ell)}$	max. min.	12 9	kV kV
Post deflection and interplate shield voltage and geometry control electrode voltage	U	max.	2200	v
Deflection plate shield voltage	v_{g5}	max.	2200	v
Focusing electrode voltage	$v_{\mathbf{g}3}$	max.	2200	v
First accelerator and astigmatism contr	ol V _{g2, g4}	max.	2200	v
electrode voltage	82,81	min. max.	1350 200	V V
Control grid voltage	$-v_{gl}$	min.	0	v
Cathode to heater voltage	Vkf	max.	125	V
Walks are between a relieve bloom of the	-Vkf	max.	125	V
Voltage between astigmatism control electrode and any deflection plate	${ m ^{V}g4/x} \ { m ^{V}g4/y}$	max. max.	500 500	V V
Grid drive, average	6-73	max.	30	V
Screen dissipation	$\mathbf{w}_{m{\ell}}$	max.	8	mW/cm ²
Ratio Vg8(1)/Vg2, g4	$V_{g8(\ell)}/V_{g2,g4}$	max.	6,7	
Control grid circuit resistance	R _{g1}	max.	1	$\mathbf{M}\Omega$
Notes see next page.	-			

NOTES

- 1) To avoid damage to the side contacts the narrower end of the mu-metal shield should have an internal diameter of not less than 64 mm.
- ²) This tube is designed for optimum performance when operating at a ratio $V_{g8(\ell)}/V_{g2g4}$ $V_{g8(\ell)}/V_{g2,g4}$ = 6, 7. The geometry control voltage V_{g7} should be adjusted within the indicated range (values

with respect to the mean x-plate potential).

A negative control voltage on g6 (with respect to the mean x-plate potential) will cause some pincushion distortion and less background light.

By the use of two voltages, V_{g6} and V_{g7} , it is possible to find the best compromise between background light and raster distortion.

If a fixed voltage on Vg6 is required this voltage should be 10 V lower than the mean x-plate potential.

- 3) The deflection plate shield voltage should be equal to the mean y-plate potential.

 The mean x and y-plate potentials should be equal for optimum spot quality.
- 4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 5) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 6) A graticule, consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73,6 mm is aligned with the electrical x-axis of the tube. With optimum corrections applied a a raster will fall between these rectangles.

CORRECTION COILS

General

The D14-1626H/09 is provided with a pair of coils L1 and L2 for image rotation which enable the alignment of the x-trace with the x-lines of the graticule.

The image rotation coils are wound concentrically around the tube neck. Under typical operating conditions 50 ampere-turns are required for the maximum rotation of 5° . Both coils have 850 turns. This means that a current of < 30 mA per coil is required which can be obtained by using a 24 V supply when the coils are connected in series, or a 12 V supply when they are in parallel.

D14-162GH/09

Connecting the coils

The coils have been connected to the 4 soldering tags as follows:

