INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed post-deflection acceleration mesh, sectioned y-plates, and metal-backed screen with internal graticule.

QUICK REFERENCE DATA					
Final accelerator voltage	V _{g9(ℓ)}			20	kV
Display area		100	x	80	mm^2
Deflection coefficient, horizontal vertical	$egin{array}{c} M_{\mathbf{X}} \ M_{\mathbf{y}} \end{array}$			9 3	V/cm V/cm

SCREEN

Metal-backed phosphor

		colour	persistence		
	D14-240GH/37	green	medium short		
Useful screen dir	mensions		> 100 x	80	mm
Spot eccentricity and vertical di			<	6	mm

HEATING

Indirect by a.c. or d.c.; parallel supply

Heater voltage	${ m v_f}$	6,3	V
Heater current	I_f	300	mA

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

Overall length (socket included) < 385 mm Face dimensions < 120 x 100 mm

MECHANICAL DATA (continued)

Net mass	æ	900	g
Base	14 pir	ı, all gla	ıss
Accessories			
Socket (supplied with tube)	type	55566	
Side contact connector (12 required)	type	55561	
Final accelerator contact connector	note	¹)	
Mu-metal shield	note 2	²)	

FOCUSING

electrostatic

symmetrical

symmetrical

DEFLECTION x-plates

double electrostatic

y-plates

900

Angle between x-trace and x-axis of the internal graticule

00

See also "Correction coils"

Angle between x and y traces

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x_1 to all other elements except x_2	$C_{x_1(x_2)}$	4,5	pF
\mathbf{x}_2 to all other elements except \mathbf{x}_1	$C_{\mathbf{x_2}(\mathbf{x_1})}$	4,5	pF
$y_{1.1}$ to all other elements except $y_{2.1}$	$C_{y_{1.1}(y_{2.1})}$	1,3	pF
y2.1 to all other elements except y1.1	$C_{y_{2.1}(y_{1.1})}$	1,3	pF
$x_1 \text{ to } x_2$	$C_{x_1x_2}$	3	pF
y _{1.1} to y _{2.1}	$^{C}y_{1.1}y_{2.1}$	0,7	pF
Control grid to all other elements	$^{\mathrm{C}_{\mathbf{g}_{1}}}$	5,5	pF
Cathode to all other elements	$C_{\mathbf{k}}$	4, 5	pF

¹⁾ The connection to the final accelerator electrode is made by means of an EHT cable attached to the tube.

²⁾ The diameter of the mu-metal shield should be large enough to avoid damage to the side contacts.

DIMENSIONS AND CONNECTIONS Dimensions in mm 10±5 +150V 60 nom R≤50kΩ 120[1] x-plate potential ~150V 210 ±10 360 ±6 +100V mean y-plate potential]R≤50kΩ ^y2.1 -100V Ø 2,0±6,4 2 min 1,65±0,40 y 1 Ø5,0±0,4 detail of side contact 72 70 396.2 118±2⁽⁴⁾ x-axis bottom view 7270393 108° max $10 \times 10 = 100$ 65 (2) max x-axis of face 8×10=80 7270394 bottom view 12°±10°

(1) Recommended position of correction coils.

sub-division 2mm

(2) See page 2.

line width 0,15 mm dot diameter 0,3 mm

- (3) Length of cable approx. 460 mm.
- (4) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm.

TYPICAL OPERATION

00					
Final accelerator voltage	Vg9(1))	20	kV	
Post deflection accelerator mesh electrode voltage	v_{g_8}		2000	V	
Geometry control electrode voltage	v_{g_7}		2000 ± 150	V	1)
Interplate shield voltage	v_{g_6}		2000	V	²)
Deflection plate shield voltage	v_{g_5}		2000	V	3)
Astigmatism control electrode voltage	v_{g_4}		2000 ± 100	V	⁴)
Focusing electrode voltage	v_{g_3}	500 t	o 800	V	
First accelerator voltage	v_{g_2}		2000	V	
Control grid voltage for visual extinction of focused spot		55 to	-110	v	
Voltage on outer conductive coating	$v_{\rm m}$		2000	V	
Performance					
Useful scan, horizontal vertical		> >	100 80	mm mm	⁵)
Deflection coefficient, horizontal	M_{X}	<	9 9,9	V/cm V/cm	
vertical	My	<	3 3,3	V/cn V/cn	
Line width		≈	0, 45	mm	6)
Writing speed		>	1,5	cm/r	15 ⁷)
Deviation of linearity of deflection		see	note 8	%	
Geometry distortion		see	note 9		
Grid drive for $10~\mu\mathrm{A}$ screen current		≈	20	v	

¹⁾ The geometry control electrode voltage V_{g7} should be adjusted within the indicated range (values with respect to the mean x-plate potential).

²⁾ The interplate shield voltage should be equal to the mean x-plate potential.

The deflection plate shield voltage should be equal to the mean y-plate potential.

The mean x-plate and y-plate potentials should be equal for optimum performance.

⁴⁾ The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.

⁵⁾ If the tube is operated at a ratio $V_g 9(\ell)/V_g 5 < 10$, the useful scan may be smaller than 100 mm x 80 mm. The scanned raster can be shifted and aligned with the internal graticule by means of correction coils fitted around the tube.

LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage	∨ _g 9(ℓ)	max. min.	21 kV 15 kV
Post deflection acceleration mesh electrode voltage	V _{g8}	max.	2200 V
Geometry control electrode voltage	V_{g7}	max.	2400 V
Interplate shield voltage	V _{g6}	max.	2200 V
Deflection plate shield voltage	$V_{g5}^{g_5}$	max.	2200 V
Astigmatism control electrode voltage	V_{g4}	max. min.	2300 V 1800 V
Focusing electrode voltage	V_{g3}	max.	2200 V
First accelerator voltage	V_{g2}	max. min.	2200 V 1900 V
Control grid voltage	$-v_{g1}$	max. min.	200 V 0 V
Cathode to heater voltage positive	$V_{\mathbf{kf}}$	max.	125 V
negative	$-v_{kf}$	max.	125 V
Voltage between astigmatism control			
electrode and any deflection plate	$V_{g4/x}$	max.	500 V
	$V_{g4/\gamma}$	max.	500 V
Grid drive, average		max.	30 V
Screen dissipation	Wو	max.	8 mW/cm ²
Ratio V_{g9}/V_{g5}	V_{g9}/V_{g5}	max. min.	10 8
Control grid circuit resistance	R_{g1}	max.	1 ΜΩ

6. Measured with the shrinking raster method in the centre of the screen, with corrections adjusted for optimum spot size, at a beam current of 10 μ A.

7. Writing speed measuring conditions:

Film Polaroid 410 (10 000 ASA)

Lens F 1/1,2 Object to image ratio 1/0,5

Modulation ΔV_{g1} = 55 V
 The deflection coefficient over each division will not differ more than 5% from that over any other division; all these deflection coefficients being measured per division along the axes.

 A graticule consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73,6 mm is aligned with the electrical x-axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.

CORRECTION COILS

On request a correction coil unit can be made available consisting of:

- 1. a pair of coils L1 and L2 which enable the angle between the x and y traces at the centre of the sceen to be made exactly 90° (orthogonality correction).
- a pair of coils L3 and L4 which enable the scanned area to be shifted up and down (vertical shift).
- 3. a coil L5 for image rotation which enables the alignment of the x trace with the x lines of the graticule.

Orthogonality (coils L1 and L2)

The current required under typical operating conditions with mu-metal shield being used is < 8~mA for complete correction of orthogonality.

The resistance of each coil is $\approx 160 \ \Omega$.

Shift (coils L3 and L4)

The current required under typical operating conditions with mu-metal shield being used is < 12 mA for a maximum shift of 5 mm.

The resistance of each coil is $\approx 160 \Omega$.

Image rotation (coil L5)

The image rotation coil is wound concentrically around the tube neck. Under typical operating conditions 27 ampere-turns are required for the maximum rotation of 5° . The coil has 1560 turns. This means that a current of < 18 mA is required. The resistance of the coil is $\approx 185~\Omega$.