<u>A-0897</u>

PLANAR TRIODE

DESCRIPTION AND RATING

For Grounded-Grid Oscillator And Amplifier Service

The A-0897 is a metal-and-ceramic, high-mu triode designed for use as a grounded-grid oscillator or amplifier at frequencies as high as 2500 megacycles.

GENERAL

Electrical

Cathode - Coated Unipotential

Heater Characteristics and Ratings		
Heater Voltage, AC or DC	*	Volts
Heater Current at Ef = 6.3 volts	1.03#	Amperes
Direct Interelectrode Capacitances		
Grid to Plate: (g to p)	2.01	pf
Grid to Cathode: (g to k)	6.5	pf
Plate to Cathode: (p to k)	0.023	pf

Mechanical

Operating Position - Any

Net Weight, approximate 2 Ounces

MAXIMUM RATINGS

Absolute-Maximum Values

Radio-Frequency Power Amplifier and Oscillator - Class C Telegraphy

Key-down Conditions per Tube Without Amplitude	Modulation¶	
Heater Voltage*	4.5 to 6.3	Volts
DC Plate Voltage	1000	Volts
Negative DC Grid Voltage	150	Volts
Peak Positive RF Grid Voltage	30	Volts
Peak Negative RF Grid Voltage	400	Volts
DC Grid Current	50	Milliamperes
DC Cathode Current	125	Milliamperes
Plate Dissipation#	10	Watts
Grid Dissipation	2.0	Watts
Envelope Temperature at Hottest Point##	250	С

A-0897

MAXIMUM RATINGS (Continued)

Radio-Frequency Power Amplifier and Oscillator - Class C Telephony

Carrier Conditions per Tube for Use With a Maximum	Modulation	Factor of 1.0
Heater Voltage* 4.5	to 6.3	Volts
DC Plate Voltage**	600	Volts
Negative DC Grid Voltage	150	Volts
Peak Positive RF Grid Voltage	30	Volts
Peak Negative RF Grid Voltage	400	Volts
DC Grid Current	50	Milliamperes
DC Cathode Current	100	Milliamperes
Plate Dissipation∆	7.0	Watts
Grid Dissipation	2.0	Watts
Envelope Temperature at Hottest Point##	250	C

Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron tube of a specified type as defined by its published data and should not be exceeded under the worst probable conditions.

The tube manufacturer chooses these values to provide acceptable serviceability of the tube, making no allowance for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the tube under consideration and of

all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

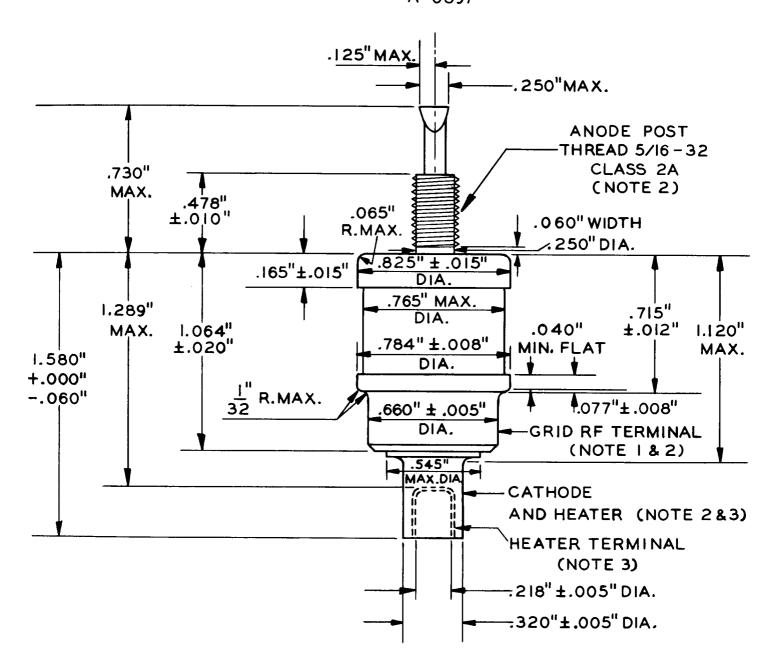
CHARACTERISTICS AND TYPICAL OPERATION

Average Characteristics§§			
Heater Voltage		6.3	Volts
Plate Voltage		600	Volts
Grid Voltage¶¶			Volts
Amplification Factor		95	
Transconductance		24800	Micromhos
Plate Current		75	Milliamperes
Radio-Frequency Oscillator - Class C§§ Frequency	500	2500	Megacycles
Heater Voltage	6.0	5.0	Volts
DC Plate Voltage	900	900	Volts
DC Plate Current	90	90	Milliamperes
DC Grid Current	30	27	Milliamperes
DC Grid Voltage	- 40	-22	Volts
Useful Power Output	40	17	Watts

A-0897

INITIAL CHARACTERISTICS LIMITS

	Min.	Bogey	Max.	
Heater Current				
Ef = 6.3 volts	950	1030	1100	Milliamperes
Grid Voltage				•
Ef = 6.3 volts, Eb = 600 volts,				
Ib = 75 ma	-1.3	-2.5	-3.5	Volts
Grid Voltage				
Ef = 6.3 volts, Eb = 600 volts,				
Ib = 1.0 ma	-7.0	-9.5	-15	Volts
Transconductance				
Ef = 6.3 volts, Eb = 600 volts,				
Ec adjusted for $Ib = 75 \text{ ma}$	22000	24800	27500	Micromhos
Amplification Factor				
Ef = 6.3 volts, Eb = 600 volts,				
Ec adjusted for Ib = 75 ma	75	95	115	
Negative Grid Current				
Ef = 6.3 volts, Eb = 600 volts,				
Ec adjusted for Ib = 75 ma			3.0	Microamperes
Interelectrode Leakage Resistance	_			
Ef = 6.3 volts, Polarity of appli	ed			
d-c interelectrode voltage is				
such that no cathode emission				
results				
Grid to Cathode at 500 volt	-			
d-c	50		***	Megohms
Interelectrode Capacitances				
Grid to Plate: (g to p)	1.89			
Grid to Cathode: (g to k)	6.0	6.5	7.0	
Plate to Cathode: (p to k)	0.018	0.023	0.029	Picofarads


SPECIAL PERFORMANCE TESTS

	Min.	Max.	
Oscillator Power Output Tubes are tested for power output as an oscillator under the following conditions: Ef = 5.0 volts; F = 2500 MC, min; Eb =	15		Watts
1000 volts; Ib = 90 ma	13		walls
Low Pressure Voltage Breakdown Test			
Statistical sample tested for voltage			
breakdown at a pressure of 27 mm Hg.			
Tubes shall not give visual evidence			
of flashover when 1000 volts RMS, 60			
cps, is applied between the plate and			
grid terminals			

A-0897

- * The equipment designer should design the equipment so that heater voltage is centered at some value within the range of 4.5 to 6.3 volts. Heater voltage variations about the center value should be kept as small as practical and should not, in any case, exceed ±5%. The optimum center value of heater voltage depends on the cathode current and on other parameters of circuit design and operation. For specific recommendations, contact your General Electric tube sales representative.
- # Heater current of a bogey tube at Ef = 6.3 volts.
- § Measured in a special shielded socket.
- ¶ Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 percent of the carrier conditions.
- # With an adequate heat sink, the maximum dissipation rating is 100 watts.
- Δ With an adequate heat sink, the maximum dissipation rating is 70 watts.
- \$\sqrt{\text{An adequate heat sink must be provided.}}
- ** Where long life and reliable operation are important, lower envelope temperatures should be used.
- ** For modulation factors less than 1.0, a higher d-c plate voltage may be used if the sum of the peak positive audio voltage and the d-c plate voltage does not exceed 1200 volts.
- ¶¶ Adjusted for Ib = 75 milliamperes.

OUTLINE A-0897

NOTES:

- 1. Solder not to extend radially beyond grid RF terminal.
- 2. Axis of threaded section shall be concentric with surface of Cathode-Fil. and Grid to within .020" T.I.R.. T.I.R. to be measured on cathode and grid contact areas within ±.040" of center of each area.
- 3. Total indicated runout of the heater-contact surface with respect to the cathode-contact surface shall not exceed 0.012".

TUBE DEPARTMENT GENERAL EBECTRIC

Owensboro, Kentucky