T970D T970Y T970Z

June 1967

ENGLISH ELECTRIC

Page 1

ABRIDGED DATA

16-inch diameter	radar tubes for use with valve or transistor scan amp	olifiers.
Two sets of scan	coils may be fitted for alpha-numeric character displa	y.

Neck Diameter	 	 	1.378	3 inch	es (35mm)
Deflection Angle	 	 		50	Degrees
Deflection Method	 	 			Magnetic
Focus Method (See Note 1)	 	 			Magnetic
E.H.T. Voltage	 	 		15	kV

GENERAL

Electrical

Cathode				In	directly	Heated	, Oxide Co	oated
Heater Voltage (See	Note 2)						6.3	V
Heater Current							0.3 ± 10	% A
Faceplate							(Clear
Screen (See Note 3)							Alumi	nised
Inter-electrode Capa	citances	:						
Grid to all other of	electrode	s, less	than				12	pF
Cathode to all oth	er electi	odes	less tha	n			12	ηF

Mechanical

Overall Length	 29.646 inches	(753 mm)	Max←
Overall Diameter	 16·142 inches	(410 mm)	Max
Useful Screen Diameter	 14.567 inches	(370 mm)	Min
Neck Diameter (See Page 9)	 1·398 inches	(35·5 mm)	Max
Net Weight	 24 pounds	(11 kg)	Approx
Base	 	B.S.	448-B12A
Final Anode Connection	 Ca	avity Cap B.S	S.448-CT8
Mounting Position	 	\$	See Note 4

← Indicates a change

Page 2

ENGLISII ELECTRIC

MAXIMUM AND MINIMUM RATINGS (Absolute Values)

(All voltages with respect to cathode)

	_		•	Min	Max	
Anode 2 Voltage				9.0	15.5	kV
Anode I Voltage				250	600	V
Grid Voltage, negative val	lue (See	Note 5)		0	250	V
Heater to Cathode Voltag	e (See 1	<i>Note</i> 6):				
Cathode negative .				-	150	V
Cathode positive					200	V
Peak Heater to Cathode V						
Cathode positive (See A	lote 7)			-	410	V
Cathode Current (Mean)				_	150	$\mu \mathbf{A}$
Grid to Cathode Resistance	ce				1.5	$M\Omega$
Grid to Cathode Impedan	ce (at 5	0c/s)			0.5	$M\Omega$
Heater to Cathode Resista	ince				See	Note 8

TYPICAL OPERATING CONDITIONS

Anode 2 Voltage		15	kV
Anode I Voltage			V
Grid Voltage for cut-off		-30 to -70	V
Grid Drive for 100µA beam curren	t	20 to 35	V
Line Width (See Note 9)		0.35	mm
Astigmatism (See Note 10)		20	% Max

OPTIMUM BEAM FOCUSING

In order to obtain maximum brightness and minimum spot size, it is necessary to carry out the following procedure.

- (a) Stray magnetic fields should be minimised in the region of the gun structure by fitting a tubular mumetal shield over the neck.
- (b) The beam may be centred in the defining aperture by a small magnet, located in the region of the grid and adjusted to give maximum brightness.
- (c) The magnetic axis of the focus coil should be aligned with the electron beam. This may be done either by adjusting the position of the focus coil (See Method 1), or by fitting additional deflection coils to adjust the position of the beam (See Method 2). In each case a.c. focusing (See Page 3) may be used to identify the optimum alignment condition.

ENGLISH ELECTRIC VALVE CO. LTD.

March 1966

Page 3

Method 1

Adjustment of the focus coil position

The mounting of the focus coil should be such that the coil can be moved in any direction, i.e. vertically, horizontally and tilted about either the vertical or horizontal axis. An a.c. current is passed through the focus coil and the position of the coil is adjusted until the optimum alignment is reached. (See Note * below).

Method 2

Electromagnetic deflection of the beam

Two sets of alignment coils are fitted on the tube neck, between the beam defining aperture and the focus coil (See Diagram, Page 8). Each set of coils is capable of deflecting the beam slightly in both X and Y directions. The currents in the alignment coils are adjusted to give correct alignment of the beam. (See Note * below).

*A.C. Focusing

An alternating current is passed through the focus coil such that the positive and negative excursions of the current each produce a focused spot. Provided there is no current through the main deflection coils, the picture on the tube faceplate will consist of a defocused area and two focused spots. The optimum focusing condition is obtained when the two focused spots coincide at the centre of the defocused spot.

NOTES

- 1. The focus coil should be positioned so that the focusing field is entirely on the screen side of the beam defining aperture. When using a focus coil having a short air gap, the centre of the air gap should be approximately 170mm from the reference plane.
- 2. The heater is suitable for series or parallel operation. In series operation the surge heater voltage must not exceed 9.5V_{r.m.s.}, when the supply is switched on and a current limiting device may be necessary in the circuit to ensure that this voltage is not exceeded.
- 3. Tubes in the T970 series have screens with the following characteristics.

Туре	EEV Screen	Equivalent	Fluorescent Colour	Persistence
T970D	D*	E.V.S.007	Yellow-orange	Long
T970Y	Y*	P33	Orange	Long
T970Z	Z*	P26	Orange	Very Long

^{*}This is a fluoride screen which is sensitive to burn and should not be operated with slow moving spots.

The tube can be manufactured with alternative screens, and customers'

ENGLISH ELECTRIC VALVE CO. LTD.

Page 4

enquiries are invited.

- 4. The tube may be mounted in any position except with the screen down and the axis of the tube making an angle of less than 20° with the vertical.
- 5. The d.c. value of grid bias must not be allowed to become positive with respect to the cathode except during the period immediately after switching the equipment on or off, when it may be allowed to rise to +1V. The maximum positive grid excursion may reach 2V and at this voltage the grid current may be expected to be approximately 2mA.
- 6. To avoid excessive hum, the a.c. component of the heater to cathode voltage should be as low as possible, preferably less than 20V_{r.m.s}.
- 7. During a warming-up period not exceeding 45 seconds.
- 8. When the heater is in a series chain or earthed, the impedance between the cathode and earth at 50c/s must not exceed $100k\Omega$. When the heater is supplied from a separate transformer, the heater to cathode resistance must not exceed $1M\Omega$.
- 9. Measured under the following conditions:

Pulsed line 370mm long

Pulse length 100:4sec

Pulse repetition rate 50p.p.s.

Beam current 1004A (peak)

Modulation pulses and deflection waveform synchronised

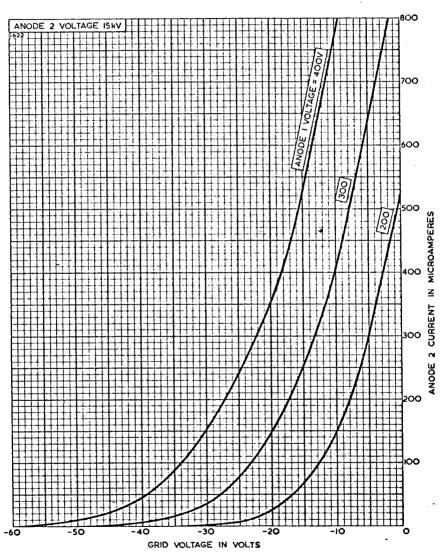
Line width measured with a microscope as in K1001/5.A.5.7.2.2.

10. Measured under the following conditions:

Undeflected, focused, pulsed spot

Pulse length 0-lusec

Pulse repetition rate 50p.p.s.

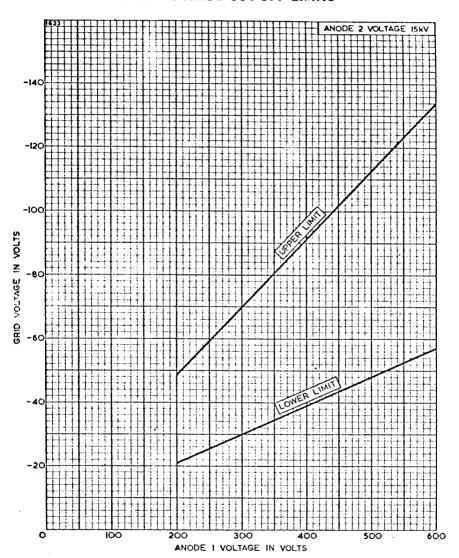

Beam current 100µA (peak).

March 1966

ENGLISH ELECTRIC

Page 5

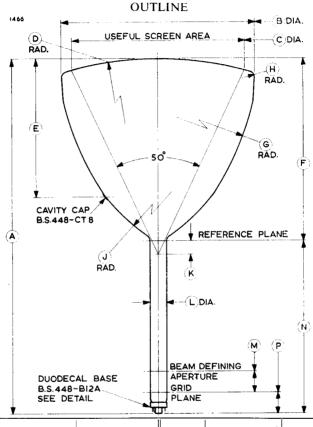
GRID VOLTAGE CHARACTERISTICS



ENGLISH ELECTRIC VALVE CO. LTD.

Page 6

GRID VOLTAGE CUT-OFF LIMITS



ENGLISH ELECTRIC VALVE CO. LTD.

June 1967

ENGLISH ELECTRIC

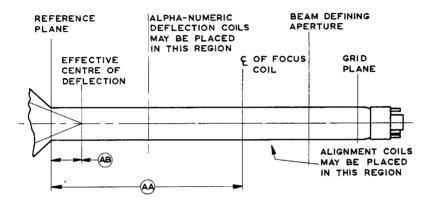
Page 7

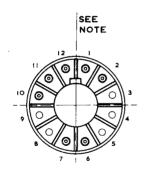
Ref.	Inches	Millimetres	Ref.	Inches	Millimetres	
A B C D E	29·252±0·394 15·984±0·157 14·567 Min 27·560 11·417+0·394	743·0±10·0 406·0±4·0 370·0 Min 700·0 290·0±10·0	J K L	16·732 1·260 Max 1·378 + 0·020 - 0·039 1·772	425.0 32.0 Max 35.0 + 0.5 - 1.0 45.0	_
 F G H	14·961 ± 0·157 23·504 0·472	380·0±4·0 597·0 12·0	N P	14·291 ± 0·236 1·732	363·0 ± 6·0 44·0	-

Inch dimensions have been derived from millimetres.

Note The mean axis of the neck will pass within 3mm of the geometric centre of the tube face and within 1° of a normal to a plane tangential to the geometric centre of the tube face.

← Indicates a change


ENGLISH ELECTRIC VALVE CO. LTD.


ENGLISH ELECTRIC

Page 8

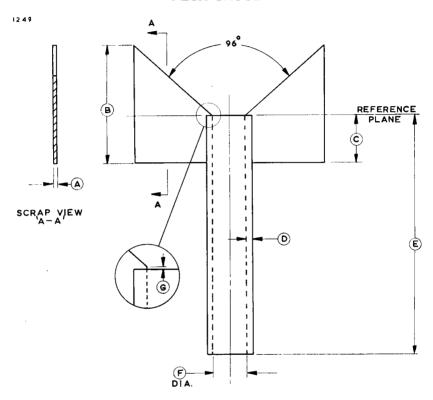
OUTLINE DETAILS

1203

Ref.	Inches	Millimetres
AA	6·693	170
AB	1·260 Ma×	32·0 Max

Inch dim ensions have been derived from millimetres.

Note The anode cavity cap will be in line with the base key to within 15°.


Pin	Element	Pin	Element
1 2 3 4 5 6 7	Heater Grid No Pin No Pin No Pin No Connection No Connection	8 9 10 11 12 Cavity Cap	No Pin No Pin Anode 1 Cathode Heater Anode 2

ENGLISH ELECTRIC VALVE CO. LTD.

ENGLISII ELECTRIC

Page 9

NECK GAUGE

The gauge shown above will pass freely over base and neck to the reference line, and when rotated through 360° the blades of the gauge will contact the flared neck at the reference line only.

Ref.	Inches	Millimetres	Ref.	Inches	Millimetres
A B C D E	0·125 4·921±0·039 1·969±0·039 0·252±0·012 9·843±0·039	3·18 125·0±1·0 50·0±1·0 6·4±0·3 250·0±1·0	F G	1.417 + 0.003 - 0.000 0.000 + 0.002 0.000 - 0.000	36·0+0·08 -0·00 0·00+0·05 0·00-0·00

Inch dimensions have been derived from millimetres except dimension A.

ENGLISH ELECTRIC VALVE CO. LTD.