

engineering data service

8477

GENERAL DATA

Spectral Response
Wavelength of
Max. Response
Sensitive Material
Sensitive Area
Construction

6100 ± 400 Angstroms Cadmium-Sulfide Viewed from End Hermetically Sealed in Glass with Flexible Leads

Outline Operating Position See Drawing

See Curve

ELECTRICAL DATA

RATINGS (Absolute Maximum Values)

Breakdown Voltage 2 300 Volts

Dissipation (See Curve)

T-amb = 25°C 50 mW

T-amb = 70°C 5 mW

Ambient Temperature Range -40 to +70 °C

Illumination Note 3

CHARACTERISTICS

Cell Resistance¹⁴
Illumination 2 FC
Color Temperature 2870°C
Dark Resistance⁵

12,000 Ohms 1.2 Megohms Min.

NOTES:

- 1. Minute increases in relative humidity will produce change in color.
- 2. Measured with cell in complete darkness at a pulse rate of 100 pps, 100 μ sec. duration. Voltage in excess of the rated value may damage the cell. Max. DC or AC peak voltage is limited by max. dissipation and min. dark resistance rating.
- 3. Care should be exercised to prevent localized overheating of the sensitive surface when the cell is used with a lens system.
- 4. Measured after 60 minutes minimum exposure to approximately 50 FC illumination (ambient room light).
- 5. Measured in complete darkness, 10 seconds after removal of 2 FC illumination.

QUICK REFERENCE DATA

The Sylvania Type 8477 is a miniature cadmium-sulfide photoconductive cell featuring high sensitivity and hermetically sealed-inglass construction. The cell is gaseous back-filled for a high dissipation safety factor and includes a blue-dot compound which turns pink if the cell envelope becomes damaged. The 8477 is designed for use in a wide variety of industrial applications.

SYLVANIA ELECTRIC PRODUCTS INC.

Electronic Components Group
ELECTRONIC TUBE DIVISION
EMPORIUM, PA.

A Technical Publication

July 9, 1964 Page 1 of 4

Page 2

SPECTRAL RESPONSE

SPECTRAL CHARACTERISTIC OF HUMAN EYE, TUNGSTEN AND FLUORESCENT LAMPS

Page 3

Page 4

CELL RESISTANCE VS ILLUMINATION

CELL CURRENT AND DISSIPATION VS VOLTAGE

